datasetId
stringlengths
2
117
card
stringlengths
19
1.01M
dhanyabahadur/ddpm-butterflies-128
--- license: mit language: - en ---
SolaireOfTheSun/SAPFICODATASET
--- license: bigscience-openrail-m ---
thisisanshgupta/Pycode
--- license: mit ---
open-llm-leaderboard/details_jondurbin__bagel-8x7b-v0.2
--- pretty_name: Evaluation run of jondurbin/bagel-8x7b-v0.2 dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [jondurbin/bagel-8x7b-v0.2](https://huggingface.co/jondurbin/bagel-8x7b-v0.2)\ \ on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\ \nThe dataset is composed of 63 configuration, each one coresponding to one of the\ \ evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be\ \ found as a specific split in each configuration, the split being named using the\ \ timestamp of the run.The \"train\" split is always pointing to the latest results.\n\ \nAn additional configuration \"results\" store all the aggregated results of the\ \ run (and is used to compute and display the aggregated metrics on the [Open LLM\ \ Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\ \nTo load the details from a run, you can for instance do the following:\n```python\n\ from datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_jondurbin__bagel-8x7b-v0.2\"\ ,\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\n\ These are the [latest results from run 2024-01-06T04:05:05.899101](https://huggingface.co/datasets/open-llm-leaderboard/details_jondurbin__bagel-8x7b-v0.2/blob/main/results_2024-01-06T04-05-05.899101.json)(note\ \ that their might be results for other tasks in the repos if successive evals didn't\ \ cover the same tasks. You find each in the results and the \"latest\" split for\ \ each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6937196740742246,\n\ \ \"acc_stderr\": 0.030405501341035,\n \"acc_norm\": 0.7063691103588217,\n\ \ \"acc_norm_stderr\": 0.031125133352099654,\n \"mc1\": 0.4320685434516524,\n\ \ \"mc1_stderr\": 0.01734120239498825,\n \"mc2\": 0.6003433287827963,\n\ \ \"mc2_stderr\": 0.015137869033462238\n },\n \"harness|arc:challenge|25\"\ : {\n \"acc\": 0.6518771331058021,\n \"acc_stderr\": 0.013921008595179344,\n\ \ \"acc_norm\": 0.6825938566552902,\n \"acc_norm_stderr\": 0.013602239088038169\n\ \ },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6750647281418044,\n\ \ \"acc_stderr\": 0.00467393483715045,\n \"acc_norm\": 0.8631746664011153,\n\ \ \"acc_norm_stderr\": 0.003429605106216367\n },\n \"harness|hendrycksTest-abstract_algebra|5\"\ : {\n \"acc\": 0.37,\n \"acc_stderr\": 0.04852365870939099,\n \ \ \"acc_norm\": 0.37,\n \"acc_norm_stderr\": 0.04852365870939099\n \ \ },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.674074074074074,\n\ \ \"acc_stderr\": 0.040491220417025055,\n \"acc_norm\": 0.674074074074074,\n\ \ \"acc_norm_stderr\": 0.040491220417025055\n },\n \"harness|hendrycksTest-astronomy|5\"\ : {\n \"acc\": 0.8092105263157895,\n \"acc_stderr\": 0.031975658210325,\n\ \ \"acc_norm\": 0.8092105263157895,\n \"acc_norm_stderr\": 0.031975658210325\n\ \ },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.71,\n\ \ \"acc_stderr\": 0.04560480215720683,\n \"acc_norm\": 0.71,\n \ \ \"acc_norm_stderr\": 0.04560480215720683\n },\n \"harness|hendrycksTest-clinical_knowledge|5\"\ : {\n \"acc\": 0.7886792452830189,\n \"acc_stderr\": 0.025125766484827845,\n\ \ \"acc_norm\": 0.7886792452830189,\n \"acc_norm_stderr\": 0.025125766484827845\n\ \ },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.8263888888888888,\n\ \ \"acc_stderr\": 0.03167473383795719,\n \"acc_norm\": 0.8263888888888888,\n\ \ \"acc_norm_stderr\": 0.03167473383795719\n },\n \"harness|hendrycksTest-college_chemistry|5\"\ : {\n \"acc\": 0.53,\n \"acc_stderr\": 0.050161355804659205,\n \ \ \"acc_norm\": 0.53,\n \"acc_norm_stderr\": 0.050161355804659205\n \ \ },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"\ acc\": 0.61,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\"\ : 0.61,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-college_mathematics|5\"\ : {\n \"acc\": 0.41,\n \"acc_stderr\": 0.049431107042371025,\n \ \ \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.049431107042371025\n \ \ },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6820809248554913,\n\ \ \"acc_stderr\": 0.0355068398916558,\n \"acc_norm\": 0.6820809248554913,\n\ \ \"acc_norm_stderr\": 0.0355068398916558\n },\n \"harness|hendrycksTest-college_physics|5\"\ : {\n \"acc\": 0.46078431372549017,\n \"acc_stderr\": 0.049598599663841815,\n\ \ \"acc_norm\": 0.46078431372549017,\n \"acc_norm_stderr\": 0.049598599663841815\n\ \ },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\":\ \ 0.75,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.75,\n\ \ \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-conceptual_physics|5\"\ : {\n \"acc\": 0.6978723404255319,\n \"acc_stderr\": 0.030017554471880557,\n\ \ \"acc_norm\": 0.6978723404255319,\n \"acc_norm_stderr\": 0.030017554471880557\n\ \ },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.6140350877192983,\n\ \ \"acc_stderr\": 0.045796394220704355,\n \"acc_norm\": 0.6140350877192983,\n\ \ \"acc_norm_stderr\": 0.045796394220704355\n },\n \"harness|hendrycksTest-electrical_engineering|5\"\ : {\n \"acc\": 0.6206896551724138,\n \"acc_stderr\": 0.04043461861916747,\n\ \ \"acc_norm\": 0.6206896551724138,\n \"acc_norm_stderr\": 0.04043461861916747\n\ \ },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\"\ : 0.47619047619047616,\n \"acc_stderr\": 0.025722097064388525,\n \"\ acc_norm\": 0.47619047619047616,\n \"acc_norm_stderr\": 0.025722097064388525\n\ \ },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.5079365079365079,\n\ \ \"acc_stderr\": 0.044715725362943486,\n \"acc_norm\": 0.5079365079365079,\n\ \ \"acc_norm_stderr\": 0.044715725362943486\n },\n \"harness|hendrycksTest-global_facts|5\"\ : {\n \"acc\": 0.41,\n \"acc_stderr\": 0.049431107042371025,\n \ \ \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.049431107042371025\n \ \ },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\"\ : 0.8096774193548387,\n \"acc_stderr\": 0.02233170761182307,\n \"\ acc_norm\": 0.8096774193548387,\n \"acc_norm_stderr\": 0.02233170761182307\n\ \ },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\"\ : 0.6108374384236454,\n \"acc_stderr\": 0.03430462416103872,\n \"\ acc_norm\": 0.6108374384236454,\n \"acc_norm_stderr\": 0.03430462416103872\n\ \ },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \ \ \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\"\ : 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-high_school_european_history|5\"\ : {\n \"acc\": 0.8303030303030303,\n \"acc_stderr\": 0.029311188674983127,\n\ \ \"acc_norm\": 0.8303030303030303,\n \"acc_norm_stderr\": 0.029311188674983127\n\ \ },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\"\ : 0.8787878787878788,\n \"acc_stderr\": 0.023253157951942088,\n \"\ acc_norm\": 0.8787878787878788,\n \"acc_norm_stderr\": 0.023253157951942088\n\ \ },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n\ \ \"acc\": 0.9481865284974094,\n \"acc_stderr\": 0.01599622932024412,\n\ \ \"acc_norm\": 0.9481865284974094,\n \"acc_norm_stderr\": 0.01599622932024412\n\ \ },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \ \ \"acc\": 0.6974358974358974,\n \"acc_stderr\": 0.023290888053772725,\n\ \ \"acc_norm\": 0.6974358974358974,\n \"acc_norm_stderr\": 0.023290888053772725\n\ \ },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"\ acc\": 0.3074074074074074,\n \"acc_stderr\": 0.02813325257881564,\n \ \ \"acc_norm\": 0.3074074074074074,\n \"acc_norm_stderr\": 0.02813325257881564\n\ \ },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \ \ \"acc\": 0.8109243697478992,\n \"acc_stderr\": 0.02543511943810536,\n \ \ \"acc_norm\": 0.8109243697478992,\n \"acc_norm_stderr\": 0.02543511943810536\n\ \ },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\"\ : 0.48344370860927155,\n \"acc_stderr\": 0.0408024418562897,\n \"\ acc_norm\": 0.48344370860927155,\n \"acc_norm_stderr\": 0.0408024418562897\n\ \ },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\"\ : 0.8788990825688073,\n \"acc_stderr\": 0.013987618292389713,\n \"\ acc_norm\": 0.8788990825688073,\n \"acc_norm_stderr\": 0.013987618292389713\n\ \ },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\"\ : 0.5925925925925926,\n \"acc_stderr\": 0.03350991604696044,\n \"\ acc_norm\": 0.5925925925925926,\n \"acc_norm_stderr\": 0.03350991604696044\n\ \ },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\"\ : 0.8529411764705882,\n \"acc_stderr\": 0.024857478080250447,\n \"\ acc_norm\": 0.8529411764705882,\n \"acc_norm_stderr\": 0.024857478080250447\n\ \ },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"\ acc\": 0.8860759493670886,\n \"acc_stderr\": 0.020681745135884562,\n \ \ \"acc_norm\": 0.8860759493670886,\n \"acc_norm_stderr\": 0.020681745135884562\n\ \ },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.757847533632287,\n\ \ \"acc_stderr\": 0.028751392398694755,\n \"acc_norm\": 0.757847533632287,\n\ \ \"acc_norm_stderr\": 0.028751392398694755\n },\n \"harness|hendrycksTest-human_sexuality|5\"\ : {\n \"acc\": 0.7938931297709924,\n \"acc_stderr\": 0.03547771004159464,\n\ \ \"acc_norm\": 0.7938931297709924,\n \"acc_norm_stderr\": 0.03547771004159464\n\ \ },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\":\ \ 0.8512396694214877,\n \"acc_stderr\": 0.03248470083807194,\n \"\ acc_norm\": 0.8512396694214877,\n \"acc_norm_stderr\": 0.03248470083807194\n\ \ },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8333333333333334,\n\ \ \"acc_stderr\": 0.036028141763926456,\n \"acc_norm\": 0.8333333333333334,\n\ \ \"acc_norm_stderr\": 0.036028141763926456\n },\n \"harness|hendrycksTest-logical_fallacies|5\"\ : {\n \"acc\": 0.7914110429447853,\n \"acc_stderr\": 0.03192193448934725,\n\ \ \"acc_norm\": 0.7914110429447853,\n \"acc_norm_stderr\": 0.03192193448934725\n\ \ },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.6160714285714286,\n\ \ \"acc_stderr\": 0.046161430750285455,\n \"acc_norm\": 0.6160714285714286,\n\ \ \"acc_norm_stderr\": 0.046161430750285455\n },\n \"harness|hendrycksTest-management|5\"\ : {\n \"acc\": 0.8252427184466019,\n \"acc_stderr\": 0.037601780060266224,\n\ \ \"acc_norm\": 0.8252427184466019,\n \"acc_norm_stderr\": 0.037601780060266224\n\ \ },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8974358974358975,\n\ \ \"acc_stderr\": 0.019875655027867447,\n \"acc_norm\": 0.8974358974358975,\n\ \ \"acc_norm_stderr\": 0.019875655027867447\n },\n \"harness|hendrycksTest-medical_genetics|5\"\ : {\n \"acc\": 0.8,\n \"acc_stderr\": 0.04020151261036845,\n \ \ \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.04020151261036845\n },\n\ \ \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8735632183908046,\n\ \ \"acc_stderr\": 0.01188448890589555,\n \"acc_norm\": 0.8735632183908046,\n\ \ \"acc_norm_stderr\": 0.01188448890589555\n },\n \"harness|hendrycksTest-moral_disputes|5\"\ : {\n \"acc\": 0.7803468208092486,\n \"acc_stderr\": 0.022289638852617897,\n\ \ \"acc_norm\": 0.7803468208092486,\n \"acc_norm_stderr\": 0.022289638852617897\n\ \ },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.40670391061452515,\n\ \ \"acc_stderr\": 0.016428811915898865,\n \"acc_norm\": 0.40670391061452515,\n\ \ \"acc_norm_stderr\": 0.016428811915898865\n },\n \"harness|hendrycksTest-nutrition|5\"\ : {\n \"acc\": 0.7679738562091504,\n \"acc_stderr\": 0.02417084087934086,\n\ \ \"acc_norm\": 0.7679738562091504,\n \"acc_norm_stderr\": 0.02417084087934086\n\ \ },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.8070739549839229,\n\ \ \"acc_stderr\": 0.022411516780911363,\n \"acc_norm\": 0.8070739549839229,\n\ \ \"acc_norm_stderr\": 0.022411516780911363\n },\n \"harness|hendrycksTest-prehistory|5\"\ : {\n \"acc\": 0.8487654320987654,\n \"acc_stderr\": 0.019935086092149872,\n\ \ \"acc_norm\": 0.8487654320987654,\n \"acc_norm_stderr\": 0.019935086092149872\n\ \ },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"\ acc\": 0.5460992907801419,\n \"acc_stderr\": 0.029700453247291474,\n \ \ \"acc_norm\": 0.5460992907801419,\n \"acc_norm_stderr\": 0.029700453247291474\n\ \ },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.529335071707953,\n\ \ \"acc_stderr\": 0.012748238397365552,\n \"acc_norm\": 0.529335071707953,\n\ \ \"acc_norm_stderr\": 0.012748238397365552\n },\n \"harness|hendrycksTest-professional_medicine|5\"\ : {\n \"acc\": 0.7720588235294118,\n \"acc_stderr\": 0.025483081468029804,\n\ \ \"acc_norm\": 0.7720588235294118,\n \"acc_norm_stderr\": 0.025483081468029804\n\ \ },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"\ acc\": 0.75,\n \"acc_stderr\": 0.01751781884501444,\n \"acc_norm\"\ : 0.75,\n \"acc_norm_stderr\": 0.01751781884501444\n },\n \"harness|hendrycksTest-public_relations|5\"\ : {\n \"acc\": 0.7,\n \"acc_stderr\": 0.04389311454644286,\n \ \ \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.04389311454644286\n },\n\ \ \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7714285714285715,\n\ \ \"acc_stderr\": 0.026882144922307744,\n \"acc_norm\": 0.7714285714285715,\n\ \ \"acc_norm_stderr\": 0.026882144922307744\n },\n \"harness|hendrycksTest-sociology|5\"\ : {\n \"acc\": 0.8557213930348259,\n \"acc_stderr\": 0.024845753212306042,\n\ \ \"acc_norm\": 0.8557213930348259,\n \"acc_norm_stderr\": 0.024845753212306042\n\ \ },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\":\ \ 0.89,\n \"acc_stderr\": 0.03144660377352203,\n \"acc_norm\": 0.89,\n\ \ \"acc_norm_stderr\": 0.03144660377352203\n },\n \"harness|hendrycksTest-virology|5\"\ : {\n \"acc\": 0.5301204819277109,\n \"acc_stderr\": 0.03885425420866767,\n\ \ \"acc_norm\": 0.5301204819277109,\n \"acc_norm_stderr\": 0.03885425420866767\n\ \ },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8888888888888888,\n\ \ \"acc_stderr\": 0.024103384202072867,\n \"acc_norm\": 0.8888888888888888,\n\ \ \"acc_norm_stderr\": 0.024103384202072867\n },\n \"harness|truthfulqa:mc|0\"\ : {\n \"mc1\": 0.4320685434516524,\n \"mc1_stderr\": 0.01734120239498825,\n\ \ \"mc2\": 0.6003433287827963,\n \"mc2_stderr\": 0.015137869033462238\n\ \ },\n \"harness|winogrande|5\": {\n \"acc\": 0.8129439621152328,\n\ \ \"acc_stderr\": 0.01095971643524291\n },\n \"harness|gsm8k|5\": {\n\ \ \"acc\": 0.04700530705079606,\n \"acc_stderr\": 0.005829898355937209\n\ \ }\n}\n```" repo_url: https://huggingface.co/jondurbin/bagel-8x7b-v0.2 leaderboard_url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard point_of_contact: clementine@hf.co configs: - config_name: harness_arc_challenge_25 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|arc:challenge|25_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|arc:challenge|25_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|arc:challenge|25_2024-01-06T04-05-05.899101.parquet' - config_name: harness_gsm8k_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|gsm8k|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|gsm8k|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|gsm8k|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hellaswag_10 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hellaswag|10_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hellaswag|10_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hellaswag|10_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-management|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-virology|5_2024-01-06T04-02-43.736147.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-management|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-virology|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-management|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-virology|5_2024-01-06T04-05-05.899101.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_abstract_algebra_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_anatomy_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-anatomy|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_astronomy_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-astronomy|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_business_ethics_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_clinical_knowledge_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_college_biology_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_biology|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_college_chemistry_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_college_computer_science_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_college_mathematics_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_college_medicine_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_college_physics_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_physics|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_computer_security_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-computer_security|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_conceptual_physics_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_econometrics_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-econometrics|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_electrical_engineering_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_elementary_mathematics_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_formal_logic_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_global_facts_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-global_facts|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_high_school_biology_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_high_school_chemistry_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_high_school_computer_science_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_high_school_european_history_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_high_school_geography_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_high_school_government_and_politics_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_high_school_macroeconomics_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_high_school_mathematics_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_high_school_microeconomics_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_high_school_physics_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_high_school_psychology_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_high_school_statistics_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_high_school_us_history_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_high_school_world_history_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_human_aging_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-human_aging|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_human_sexuality_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_international_law_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-international_law|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_jurisprudence_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_logical_fallacies_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_machine_learning_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_management_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-management|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-management|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-management|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_marketing_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-marketing|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_medical_genetics_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_miscellaneous_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_moral_disputes_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_moral_scenarios_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_nutrition_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-nutrition|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_philosophy_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-philosophy|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_prehistory_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-prehistory|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_professional_accounting_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_professional_law_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_law|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_professional_medicine_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_professional_psychology_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_public_relations_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-public_relations|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_security_studies_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-security_studies|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_sociology_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-sociology|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_us_foreign_policy_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_virology_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-virology|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-virology|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-virology|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_hendrycksTest_world_religions_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|hendrycksTest-world_religions|5_2024-01-06T04-05-05.899101.parquet' - config_name: harness_truthfulqa_mc_0 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|truthfulqa:mc|0_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|truthfulqa:mc|0_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|truthfulqa:mc|0_2024-01-06T04-05-05.899101.parquet' - config_name: harness_winogrande_5 data_files: - split: 2024_01_06T04_02_43.736147 path: - '**/details_harness|winogrande|5_2024-01-06T04-02-43.736147.parquet' - split: 2024_01_06T04_05_05.899101 path: - '**/details_harness|winogrande|5_2024-01-06T04-05-05.899101.parquet' - split: latest path: - '**/details_harness|winogrande|5_2024-01-06T04-05-05.899101.parquet' - config_name: results data_files: - split: 2024_01_06T04_02_43.736147 path: - results_2024-01-06T04-02-43.736147.parquet - split: 2024_01_06T04_05_05.899101 path: - results_2024-01-06T04-05-05.899101.parquet - split: latest path: - results_2024-01-06T04-05-05.899101.parquet --- # Dataset Card for Evaluation run of jondurbin/bagel-8x7b-v0.2 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [jondurbin/bagel-8x7b-v0.2](https://huggingface.co/jondurbin/bagel-8x7b-v0.2) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_jondurbin__bagel-8x7b-v0.2", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-06T04:05:05.899101](https://huggingface.co/datasets/open-llm-leaderboard/details_jondurbin__bagel-8x7b-v0.2/blob/main/results_2024-01-06T04-05-05.899101.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6937196740742246, "acc_stderr": 0.030405501341035, "acc_norm": 0.7063691103588217, "acc_norm_stderr": 0.031125133352099654, "mc1": 0.4320685434516524, "mc1_stderr": 0.01734120239498825, "mc2": 0.6003433287827963, "mc2_stderr": 0.015137869033462238 }, "harness|arc:challenge|25": { "acc": 0.6518771331058021, "acc_stderr": 0.013921008595179344, "acc_norm": 0.6825938566552902, "acc_norm_stderr": 0.013602239088038169 }, "harness|hellaswag|10": { "acc": 0.6750647281418044, "acc_stderr": 0.00467393483715045, "acc_norm": 0.8631746664011153, "acc_norm_stderr": 0.003429605106216367 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.37, "acc_stderr": 0.04852365870939099, "acc_norm": 0.37, "acc_norm_stderr": 0.04852365870939099 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.674074074074074, "acc_stderr": 0.040491220417025055, "acc_norm": 0.674074074074074, "acc_norm_stderr": 0.040491220417025055 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.8092105263157895, "acc_stderr": 0.031975658210325, "acc_norm": 0.8092105263157895, "acc_norm_stderr": 0.031975658210325 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.71, "acc_stderr": 0.04560480215720683, "acc_norm": 0.71, "acc_norm_stderr": 0.04560480215720683 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7886792452830189, "acc_stderr": 0.025125766484827845, "acc_norm": 0.7886792452830189, "acc_norm_stderr": 0.025125766484827845 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.8263888888888888, "acc_stderr": 0.03167473383795719, "acc_norm": 0.8263888888888888, "acc_norm_stderr": 0.03167473383795719 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.53, "acc_stderr": 0.050161355804659205, "acc_norm": 0.53, "acc_norm_stderr": 0.050161355804659205 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.61, "acc_stderr": 0.04902071300001975, "acc_norm": 0.61, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.41, "acc_stderr": 0.049431107042371025, "acc_norm": 0.41, "acc_norm_stderr": 0.049431107042371025 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6820809248554913, "acc_stderr": 0.0355068398916558, "acc_norm": 0.6820809248554913, "acc_norm_stderr": 0.0355068398916558 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.46078431372549017, "acc_stderr": 0.049598599663841815, "acc_norm": 0.46078431372549017, "acc_norm_stderr": 0.049598599663841815 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.75, "acc_stderr": 0.04351941398892446, "acc_norm": 0.75, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.6978723404255319, "acc_stderr": 0.030017554471880557, "acc_norm": 0.6978723404255319, "acc_norm_stderr": 0.030017554471880557 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.6140350877192983, "acc_stderr": 0.045796394220704355, "acc_norm": 0.6140350877192983, "acc_norm_stderr": 0.045796394220704355 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.6206896551724138, "acc_stderr": 0.04043461861916747, "acc_norm": 0.6206896551724138, "acc_norm_stderr": 0.04043461861916747 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.47619047619047616, "acc_stderr": 0.025722097064388525, "acc_norm": 0.47619047619047616, "acc_norm_stderr": 0.025722097064388525 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.5079365079365079, "acc_stderr": 0.044715725362943486, "acc_norm": 0.5079365079365079, "acc_norm_stderr": 0.044715725362943486 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.41, "acc_stderr": 0.049431107042371025, "acc_norm": 0.41, "acc_norm_stderr": 0.049431107042371025 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.8096774193548387, "acc_stderr": 0.02233170761182307, "acc_norm": 0.8096774193548387, "acc_norm_stderr": 0.02233170761182307 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.6108374384236454, "acc_stderr": 0.03430462416103872, "acc_norm": 0.6108374384236454, "acc_norm_stderr": 0.03430462416103872 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.71, "acc_stderr": 0.045604802157206845, "acc_norm": 0.71, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.8303030303030303, "acc_stderr": 0.029311188674983127, "acc_norm": 0.8303030303030303, "acc_norm_stderr": 0.029311188674983127 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.8787878787878788, "acc_stderr": 0.023253157951942088, "acc_norm": 0.8787878787878788, "acc_norm_stderr": 0.023253157951942088 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9481865284974094, "acc_stderr": 0.01599622932024412, "acc_norm": 0.9481865284974094, "acc_norm_stderr": 0.01599622932024412 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6974358974358974, "acc_stderr": 0.023290888053772725, "acc_norm": 0.6974358974358974, "acc_norm_stderr": 0.023290888053772725 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3074074074074074, "acc_stderr": 0.02813325257881564, "acc_norm": 0.3074074074074074, "acc_norm_stderr": 0.02813325257881564 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.8109243697478992, "acc_stderr": 0.02543511943810536, "acc_norm": 0.8109243697478992, "acc_norm_stderr": 0.02543511943810536 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.48344370860927155, "acc_stderr": 0.0408024418562897, "acc_norm": 0.48344370860927155, "acc_norm_stderr": 0.0408024418562897 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8788990825688073, "acc_stderr": 0.013987618292389713, "acc_norm": 0.8788990825688073, "acc_norm_stderr": 0.013987618292389713 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5925925925925926, "acc_stderr": 0.03350991604696044, "acc_norm": 0.5925925925925926, "acc_norm_stderr": 0.03350991604696044 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8529411764705882, "acc_stderr": 0.024857478080250447, "acc_norm": 0.8529411764705882, "acc_norm_stderr": 0.024857478080250447 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8860759493670886, "acc_stderr": 0.020681745135884562, "acc_norm": 0.8860759493670886, "acc_norm_stderr": 0.020681745135884562 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.757847533632287, "acc_stderr": 0.028751392398694755, "acc_norm": 0.757847533632287, "acc_norm_stderr": 0.028751392398694755 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7938931297709924, "acc_stderr": 0.03547771004159464, "acc_norm": 0.7938931297709924, "acc_norm_stderr": 0.03547771004159464 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8512396694214877, "acc_stderr": 0.03248470083807194, "acc_norm": 0.8512396694214877, "acc_norm_stderr": 0.03248470083807194 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.8333333333333334, "acc_stderr": 0.036028141763926456, "acc_norm": 0.8333333333333334, "acc_norm_stderr": 0.036028141763926456 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7914110429447853, "acc_stderr": 0.03192193448934725, "acc_norm": 0.7914110429447853, "acc_norm_stderr": 0.03192193448934725 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.6160714285714286, "acc_stderr": 0.046161430750285455, "acc_norm": 0.6160714285714286, "acc_norm_stderr": 0.046161430750285455 }, "harness|hendrycksTest-management|5": { "acc": 0.8252427184466019, "acc_stderr": 0.037601780060266224, "acc_norm": 0.8252427184466019, "acc_norm_stderr": 0.037601780060266224 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8974358974358975, "acc_stderr": 0.019875655027867447, "acc_norm": 0.8974358974358975, "acc_norm_stderr": 0.019875655027867447 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.8, "acc_stderr": 0.04020151261036845, "acc_norm": 0.8, "acc_norm_stderr": 0.04020151261036845 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8735632183908046, "acc_stderr": 0.01188448890589555, "acc_norm": 0.8735632183908046, "acc_norm_stderr": 0.01188448890589555 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7803468208092486, "acc_stderr": 0.022289638852617897, "acc_norm": 0.7803468208092486, "acc_norm_stderr": 0.022289638852617897 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.40670391061452515, "acc_stderr": 0.016428811915898865, "acc_norm": 0.40670391061452515, "acc_norm_stderr": 0.016428811915898865 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7679738562091504, "acc_stderr": 0.02417084087934086, "acc_norm": 0.7679738562091504, "acc_norm_stderr": 0.02417084087934086 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.8070739549839229, "acc_stderr": 0.022411516780911363, "acc_norm": 0.8070739549839229, "acc_norm_stderr": 0.022411516780911363 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.8487654320987654, "acc_stderr": 0.019935086092149872, "acc_norm": 0.8487654320987654, "acc_norm_stderr": 0.019935086092149872 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.5460992907801419, "acc_stderr": 0.029700453247291474, "acc_norm": 0.5460992907801419, "acc_norm_stderr": 0.029700453247291474 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.529335071707953, "acc_stderr": 0.012748238397365552, "acc_norm": 0.529335071707953, "acc_norm_stderr": 0.012748238397365552 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.7720588235294118, "acc_stderr": 0.025483081468029804, "acc_norm": 0.7720588235294118, "acc_norm_stderr": 0.025483081468029804 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.75, "acc_stderr": 0.01751781884501444, "acc_norm": 0.75, "acc_norm_stderr": 0.01751781884501444 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7, "acc_stderr": 0.04389311454644286, "acc_norm": 0.7, "acc_norm_stderr": 0.04389311454644286 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7714285714285715, "acc_stderr": 0.026882144922307744, "acc_norm": 0.7714285714285715, "acc_norm_stderr": 0.026882144922307744 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8557213930348259, "acc_stderr": 0.024845753212306042, "acc_norm": 0.8557213930348259, "acc_norm_stderr": 0.024845753212306042 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.89, "acc_stderr": 0.03144660377352203, "acc_norm": 0.89, "acc_norm_stderr": 0.03144660377352203 }, "harness|hendrycksTest-virology|5": { "acc": 0.5301204819277109, "acc_stderr": 0.03885425420866767, "acc_norm": 0.5301204819277109, "acc_norm_stderr": 0.03885425420866767 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8888888888888888, "acc_stderr": 0.024103384202072867, "acc_norm": 0.8888888888888888, "acc_norm_stderr": 0.024103384202072867 }, "harness|truthfulqa:mc|0": { "mc1": 0.4320685434516524, "mc1_stderr": 0.01734120239498825, "mc2": 0.6003433287827963, "mc2_stderr": 0.015137869033462238 }, "harness|winogrande|5": { "acc": 0.8129439621152328, "acc_stderr": 0.01095971643524291 }, "harness|gsm8k|5": { "acc": 0.04700530705079606, "acc_stderr": 0.005829898355937209 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
distilled-one-sec-cv12-each-chunk-uniq/chunk_194
--- dataset_info: features: - name: logits sequence: float32 - name: mfcc sequence: sequence: float64 splits: - name: train num_bytes: 1016130868.0 num_examples: 197999 download_size: 1031967918 dataset_size: 1016130868.0 --- # Dataset Card for "chunk_194" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
barto17/gtzan_all_preprocessed_kaggle_version
--- configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* dataset_info: features: - name: label dtype: class_label: names: '0': blues '1': classical '2': country '3': disco '4': hiphop '5': jazz '6': metal '7': pop '8': reggae '9': rock - name: input_values sequence: float32 - name: attention_mask sequence: int32 splits: - name: train num_bytes: 3452159816 num_examples: 899 - name: test num_bytes: 384000696 num_examples: 100 download_size: 1923103931 dataset_size: 3836160512 --- # Dataset Card for "gtzan_all_preprocessed_kaggle_version" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
odunola/french-audio-preprocessed
--- dataset_info: features: - name: sentence dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: english_transcript dtype: string - name: labels sequence: int64 - name: input_features sequence: sequence: float32 splits: - name: train num_bytes: 12478074884.75 num_examples: 11386 download_size: 3441305010 dataset_size: 12478074884.75 configs: - config_name: default data_files: - split: train path: data/train-* ---
benchang1110/humantw
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: title dtype: string - name: article dtype: string splits: - name: train num_bytes: 427517649 num_examples: 86860 download_size: 298703936 dataset_size: 427517649 --- # Dataset Card for "humantw" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mask-distilled-one-sec-cv12/chunk_73
--- dataset_info: features: - name: logits sequence: float32 - name: mfcc sequence: sequence: float64 splits: - name: train num_bytes: 1308822220 num_examples: 257035 download_size: 1334313748 dataset_size: 1308822220 --- # Dataset Card for "chunk_73" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
facebook/tgve_plus
--- dataset_info: features: - name: idx dtype: int64 - name: task_name dtype: string - name: input_caption dtype: string - name: output_caption dtype: string - name: instruction dtype: string - name: video_path dtype: string splits: - name: train num_bytes: 287914 num_examples: 1418 download_size: 115426 dataset_size: 287914 --- # Dataset Card for the TGVE+ Test Set ## Dataset Description - **Homepage: https://fdd-video-edit.github.io/** - **Paper: https://arxiv.org/abs/2403.09334** ### Dataset Summary We extend the widely used Text Guided Video Editing (TGVE) benchmark with additional editing tasks. The dataset now comprises seven editing tasks in total: four from the original TGVE and three new tasks, namely (i) object removal (Remove), (ii) object addition (Add), and (iii) texture alterations (Texture). The new tasks utilize the same 76 videos from the original TGVE benchmark. Each row in the dataset consists of the instruction, input/output captions, and the relative path of the video in [TGVE](https://drive.google.com/file/d/1D7ZVm66IwlKhS6UINoDgFiFJp_mLIQ0W/view). For more details please see our [paper](https://arxiv.org/abs/2403.09334) and [project page](https://fdd-video-edit.github.io/). We'd like to thank [InstructVid2Vid](https://github.com/amazon-science/instruct-video-to-video) for creating instructions for the original TGVE tasks. ### Licensing Information Licensed with CC-BY-NC 4.0 License available [here](https://creativecommons.org/licenses/by-nc/4.0/legalcode?fbclid=IwAR2SYZjLRywwUMblkWg0LyAxHVVTloIFlvC-ju3BthIYtOM2jpQHgbeXOsM). ### Citation Information ``` @inproceedings{Singer2024VideoEV, title={Video Editing via Factorized Diffusion Distillation}, author={Uriel Singer and Amit Zohar and Yuval Kirstain and Shelly Sheynin and Adam Polyak and Devi Parikh and Yaniv Taigman}, year={2024}, url={https://api.semanticscholar.org/CorpusID:268385300} } ```
Eitanli/abstracts_cleaned
--- configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: valid path: data/valid-* dataset_info: features: - name: recall dtype: int64 - name: article_title dtype: string - name: topic dtype: string - name: abstract dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 137515873.22056717 num_examples: 79863 - name: test num_bytes: 17189699.389716417 num_examples: 9983 - name: valid num_bytes: 17189699.389716417 num_examples: 9983 download_size: 92795013 dataset_size: 171895272.0 --- # Dataset Card for "abstracts_cleaned" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
open-llm-leaderboard/details_chargoddard__servile-harpsichord-cdpo
--- pretty_name: Evaluation run of chargoddard/servile-harpsichord-cdpo dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [chargoddard/servile-harpsichord-cdpo](https://huggingface.co/chargoddard/servile-harpsichord-cdpo)\ \ on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\ \nThe dataset is composed of 63 configuration, each one coresponding to one of the\ \ evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be\ \ found as a specific split in each configuration, the split being named using the\ \ timestamp of the run.The \"train\" split is always pointing to the latest results.\n\ \nAn additional configuration \"results\" store all the aggregated results of the\ \ run (and is used to compute and display the aggregated metrics on the [Open LLM\ \ Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\ \nTo load the details from a run, you can for instance do the following:\n```python\n\ from datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_chargoddard__servile-harpsichord-cdpo\"\ ,\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\n\ These are the [latest results from run 2023-12-10T06:44:09.091422](https://huggingface.co/datasets/open-llm-leaderboard/details_chargoddard__servile-harpsichord-cdpo/blob/main/results_2023-12-10T06-44-09.091422.json)(note\ \ that their might be results for other tasks in the repos if successive evals didn't\ \ cover the same tasks. You find each in the results and the \"latest\" split for\ \ each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6467821760747017,\n\ \ \"acc_stderr\": 0.032099406932013255,\n \"acc_norm\": 0.6493833410875584,\n\ \ \"acc_norm_stderr\": 0.032737739125074355,\n \"mc1\": 0.4369645042839657,\n\ \ \"mc1_stderr\": 0.017363844503195978,\n \"mc2\": 0.6061030127349698,\n\ \ \"mc2_stderr\": 0.015471882890395387\n },\n \"harness|arc:challenge|25\"\ : {\n \"acc\": 0.6407849829351536,\n \"acc_stderr\": 0.014020224155839157,\n\ \ \"acc_norm\": 0.6732081911262798,\n \"acc_norm_stderr\": 0.013706665975587331\n\ \ },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6618203545110536,\n\ \ \"acc_stderr\": 0.004721231637092722,\n \"acc_norm\": 0.851822346146186,\n\ \ \"acc_norm_stderr\": 0.0035454991695580435\n },\n \"harness|hendrycksTest-abstract_algebra|5\"\ : {\n \"acc\": 0.35,\n \"acc_stderr\": 0.0479372485441102,\n \ \ \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.0479372485441102\n },\n\ \ \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6444444444444445,\n\ \ \"acc_stderr\": 0.04135176749720385,\n \"acc_norm\": 0.6444444444444445,\n\ \ \"acc_norm_stderr\": 0.04135176749720385\n },\n \"harness|hendrycksTest-astronomy|5\"\ : {\n \"acc\": 0.6710526315789473,\n \"acc_stderr\": 0.03823428969926605,\n\ \ \"acc_norm\": 0.6710526315789473,\n \"acc_norm_stderr\": 0.03823428969926605\n\ \ },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.59,\n\ \ \"acc_stderr\": 0.049431107042371025,\n \"acc_norm\": 0.59,\n \ \ \"acc_norm_stderr\": 0.049431107042371025\n },\n \"harness|hendrycksTest-clinical_knowledge|5\"\ : {\n \"acc\": 0.6792452830188679,\n \"acc_stderr\": 0.028727502957880277,\n\ \ \"acc_norm\": 0.6792452830188679,\n \"acc_norm_stderr\": 0.028727502957880277\n\ \ },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7708333333333334,\n\ \ \"acc_stderr\": 0.03514697467862388,\n \"acc_norm\": 0.7708333333333334,\n\ \ \"acc_norm_stderr\": 0.03514697467862388\n },\n \"harness|hendrycksTest-college_chemistry|5\"\ : {\n \"acc\": 0.47,\n \"acc_stderr\": 0.050161355804659205,\n \ \ \"acc_norm\": 0.47,\n \"acc_norm_stderr\": 0.050161355804659205\n \ \ },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"\ acc\": 0.49,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\"\ : 0.49,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-college_mathematics|5\"\ : {\n \"acc\": 0.28,\n \"acc_stderr\": 0.04512608598542128,\n \ \ \"acc_norm\": 0.28,\n \"acc_norm_stderr\": 0.04512608598542128\n \ \ },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.653179190751445,\n\ \ \"acc_stderr\": 0.036291466701596636,\n \"acc_norm\": 0.653179190751445,\n\ \ \"acc_norm_stderr\": 0.036291466701596636\n },\n \"harness|hendrycksTest-college_physics|5\"\ : {\n \"acc\": 0.4117647058823529,\n \"acc_stderr\": 0.04897104952726366,\n\ \ \"acc_norm\": 0.4117647058823529,\n \"acc_norm_stderr\": 0.04897104952726366\n\ \ },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\":\ \ 0.76,\n \"acc_stderr\": 0.042923469599092816,\n \"acc_norm\": 0.76,\n\ \ \"acc_norm_stderr\": 0.042923469599092816\n },\n \"harness|hendrycksTest-conceptual_physics|5\"\ : {\n \"acc\": 0.5531914893617021,\n \"acc_stderr\": 0.0325005368436584,\n\ \ \"acc_norm\": 0.5531914893617021,\n \"acc_norm_stderr\": 0.0325005368436584\n\ \ },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5263157894736842,\n\ \ \"acc_stderr\": 0.046970851366478626,\n \"acc_norm\": 0.5263157894736842,\n\ \ \"acc_norm_stderr\": 0.046970851366478626\n },\n \"harness|hendrycksTest-electrical_engineering|5\"\ : {\n \"acc\": 0.593103448275862,\n \"acc_stderr\": 0.04093793981266236,\n\ \ \"acc_norm\": 0.593103448275862,\n \"acc_norm_stderr\": 0.04093793981266236\n\ \ },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\"\ : 0.3835978835978836,\n \"acc_stderr\": 0.025043757318520196,\n \"\ acc_norm\": 0.3835978835978836,\n \"acc_norm_stderr\": 0.025043757318520196\n\ \ },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.4444444444444444,\n\ \ \"acc_stderr\": 0.04444444444444449,\n \"acc_norm\": 0.4444444444444444,\n\ \ \"acc_norm_stderr\": 0.04444444444444449\n },\n \"harness|hendrycksTest-global_facts|5\"\ : {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001975,\n \ \ \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001975\n \ \ },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7903225806451613,\n\ \ \"acc_stderr\": 0.023157879349083525,\n \"acc_norm\": 0.7903225806451613,\n\ \ \"acc_norm_stderr\": 0.023157879349083525\n },\n \"harness|hendrycksTest-high_school_chemistry|5\"\ : {\n \"acc\": 0.4975369458128079,\n \"acc_stderr\": 0.03517945038691063,\n\ \ \"acc_norm\": 0.4975369458128079,\n \"acc_norm_stderr\": 0.03517945038691063\n\ \ },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \ \ \"acc\": 0.7,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\"\ : 0.7,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-high_school_european_history|5\"\ : {\n \"acc\": 0.7636363636363637,\n \"acc_stderr\": 0.03317505930009182,\n\ \ \"acc_norm\": 0.7636363636363637,\n \"acc_norm_stderr\": 0.03317505930009182\n\ \ },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\"\ : 0.797979797979798,\n \"acc_stderr\": 0.02860620428922987,\n \"acc_norm\"\ : 0.797979797979798,\n \"acc_norm_stderr\": 0.02860620428922987\n },\n\ \ \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \ \ \"acc\": 0.9119170984455959,\n \"acc_stderr\": 0.02045374660160103,\n\ \ \"acc_norm\": 0.9119170984455959,\n \"acc_norm_stderr\": 0.02045374660160103\n\ \ },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \ \ \"acc\": 0.676923076923077,\n \"acc_stderr\": 0.02371088850197057,\n \ \ \"acc_norm\": 0.676923076923077,\n \"acc_norm_stderr\": 0.02371088850197057\n\ \ },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"\ acc\": 0.34444444444444444,\n \"acc_stderr\": 0.028972648884844267,\n \ \ \"acc_norm\": 0.34444444444444444,\n \"acc_norm_stderr\": 0.028972648884844267\n\ \ },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \ \ \"acc\": 0.7016806722689075,\n \"acc_stderr\": 0.02971914287634286,\n \ \ \"acc_norm\": 0.7016806722689075,\n \"acc_norm_stderr\": 0.02971914287634286\n\ \ },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\"\ : 0.33112582781456956,\n \"acc_stderr\": 0.038425817186598696,\n \"\ acc_norm\": 0.33112582781456956,\n \"acc_norm_stderr\": 0.038425817186598696\n\ \ },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\"\ : 0.8532110091743119,\n \"acc_stderr\": 0.015173141845126253,\n \"\ acc_norm\": 0.8532110091743119,\n \"acc_norm_stderr\": 0.015173141845126253\n\ \ },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\"\ : 0.5092592592592593,\n \"acc_stderr\": 0.034093869469927006,\n \"\ acc_norm\": 0.5092592592592593,\n \"acc_norm_stderr\": 0.034093869469927006\n\ \ },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\"\ : 0.8382352941176471,\n \"acc_stderr\": 0.025845017986926917,\n \"\ acc_norm\": 0.8382352941176471,\n \"acc_norm_stderr\": 0.025845017986926917\n\ \ },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"\ acc\": 0.7932489451476793,\n \"acc_stderr\": 0.026361651668389094,\n \ \ \"acc_norm\": 0.7932489451476793,\n \"acc_norm_stderr\": 0.026361651668389094\n\ \ },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7130044843049327,\n\ \ \"acc_stderr\": 0.03036037971029195,\n \"acc_norm\": 0.7130044843049327,\n\ \ \"acc_norm_stderr\": 0.03036037971029195\n },\n \"harness|hendrycksTest-human_sexuality|5\"\ : {\n \"acc\": 0.7938931297709924,\n \"acc_stderr\": 0.03547771004159465,\n\ \ \"acc_norm\": 0.7938931297709924,\n \"acc_norm_stderr\": 0.03547771004159465\n\ \ },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\":\ \ 0.768595041322314,\n \"acc_stderr\": 0.03849856098794088,\n \"acc_norm\"\ : 0.768595041322314,\n \"acc_norm_stderr\": 0.03849856098794088\n },\n\ \ \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8148148148148148,\n\ \ \"acc_stderr\": 0.03755265865037181,\n \"acc_norm\": 0.8148148148148148,\n\ \ \"acc_norm_stderr\": 0.03755265865037181\n },\n \"harness|hendrycksTest-logical_fallacies|5\"\ : {\n \"acc\": 0.754601226993865,\n \"acc_stderr\": 0.03380939813943354,\n\ \ \"acc_norm\": 0.754601226993865,\n \"acc_norm_stderr\": 0.03380939813943354\n\ \ },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.48214285714285715,\n\ \ \"acc_stderr\": 0.047427623612430116,\n \"acc_norm\": 0.48214285714285715,\n\ \ \"acc_norm_stderr\": 0.047427623612430116\n },\n \"harness|hendrycksTest-management|5\"\ : {\n \"acc\": 0.8058252427184466,\n \"acc_stderr\": 0.03916667762822584,\n\ \ \"acc_norm\": 0.8058252427184466,\n \"acc_norm_stderr\": 0.03916667762822584\n\ \ },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8717948717948718,\n\ \ \"acc_stderr\": 0.02190190511507332,\n \"acc_norm\": 0.8717948717948718,\n\ \ \"acc_norm_stderr\": 0.02190190511507332\n },\n \"harness|hendrycksTest-medical_genetics|5\"\ : {\n \"acc\": 0.7,\n \"acc_stderr\": 0.046056618647183814,\n \ \ \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.046056618647183814\n \ \ },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8314176245210728,\n\ \ \"acc_stderr\": 0.013387895731543604,\n \"acc_norm\": 0.8314176245210728,\n\ \ \"acc_norm_stderr\": 0.013387895731543604\n },\n \"harness|hendrycksTest-moral_disputes|5\"\ : {\n \"acc\": 0.7283236994219653,\n \"acc_stderr\": 0.02394851290546837,\n\ \ \"acc_norm\": 0.7283236994219653,\n \"acc_norm_stderr\": 0.02394851290546837\n\ \ },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.4212290502793296,\n\ \ \"acc_stderr\": 0.0165136760311796,\n \"acc_norm\": 0.4212290502793296,\n\ \ \"acc_norm_stderr\": 0.0165136760311796\n },\n \"harness|hendrycksTest-nutrition|5\"\ : {\n \"acc\": 0.7287581699346405,\n \"acc_stderr\": 0.02545775669666788,\n\ \ \"acc_norm\": 0.7287581699346405,\n \"acc_norm_stderr\": 0.02545775669666788\n\ \ },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7202572347266881,\n\ \ \"acc_stderr\": 0.025494259350694912,\n \"acc_norm\": 0.7202572347266881,\n\ \ \"acc_norm_stderr\": 0.025494259350694912\n },\n \"harness|hendrycksTest-prehistory|5\"\ : {\n \"acc\": 0.7314814814814815,\n \"acc_stderr\": 0.024659685185967284,\n\ \ \"acc_norm\": 0.7314814814814815,\n \"acc_norm_stderr\": 0.024659685185967284\n\ \ },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"\ acc\": 0.4787234042553192,\n \"acc_stderr\": 0.029800481645628693,\n \ \ \"acc_norm\": 0.4787234042553192,\n \"acc_norm_stderr\": 0.029800481645628693\n\ \ },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.45241199478487615,\n\ \ \"acc_stderr\": 0.012712265105889135,\n \"acc_norm\": 0.45241199478487615,\n\ \ \"acc_norm_stderr\": 0.012712265105889135\n },\n \"harness|hendrycksTest-professional_medicine|5\"\ : {\n \"acc\": 0.6875,\n \"acc_stderr\": 0.02815637344037142,\n \ \ \"acc_norm\": 0.6875,\n \"acc_norm_stderr\": 0.02815637344037142\n\ \ },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"\ acc\": 0.6519607843137255,\n \"acc_stderr\": 0.019270998708223977,\n \ \ \"acc_norm\": 0.6519607843137255,\n \"acc_norm_stderr\": 0.019270998708223977\n\ \ },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6909090909090909,\n\ \ \"acc_stderr\": 0.044262946482000985,\n \"acc_norm\": 0.6909090909090909,\n\ \ \"acc_norm_stderr\": 0.044262946482000985\n },\n \"harness|hendrycksTest-security_studies|5\"\ : {\n \"acc\": 0.7346938775510204,\n \"acc_stderr\": 0.028263889943784603,\n\ \ \"acc_norm\": 0.7346938775510204,\n \"acc_norm_stderr\": 0.028263889943784603\n\ \ },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8606965174129353,\n\ \ \"acc_stderr\": 0.024484487162913973,\n \"acc_norm\": 0.8606965174129353,\n\ \ \"acc_norm_stderr\": 0.024484487162913973\n },\n \"harness|hendrycksTest-us_foreign_policy|5\"\ : {\n \"acc\": 0.84,\n \"acc_stderr\": 0.03684529491774709,\n \ \ \"acc_norm\": 0.84,\n \"acc_norm_stderr\": 0.03684529491774709\n \ \ },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.536144578313253,\n\ \ \"acc_stderr\": 0.038823108508905954,\n \"acc_norm\": 0.536144578313253,\n\ \ \"acc_norm_stderr\": 0.038823108508905954\n },\n \"harness|hendrycksTest-world_religions|5\"\ : {\n \"acc\": 0.8187134502923976,\n \"acc_stderr\": 0.029547741687640044,\n\ \ \"acc_norm\": 0.8187134502923976,\n \"acc_norm_stderr\": 0.029547741687640044\n\ \ },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.4369645042839657,\n\ \ \"mc1_stderr\": 0.017363844503195978,\n \"mc2\": 0.6061030127349698,\n\ \ \"mc2_stderr\": 0.015471882890395387\n },\n \"harness|winogrande|5\"\ : {\n \"acc\": 0.7916337805840569,\n \"acc_stderr\": 0.011414554399987729\n\ \ },\n \"harness|gsm8k|5\": {\n \"acc\": 0.5708870356330553,\n \ \ \"acc_stderr\": 0.013633369425647234\n }\n}\n```" repo_url: https://huggingface.co/chargoddard/servile-harpsichord-cdpo leaderboard_url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard point_of_contact: clementine@hf.co configs: - config_name: harness_arc_challenge_25 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|arc:challenge|25_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|arc:challenge|25_2023-12-10T06-44-09.091422.parquet' - config_name: harness_gsm8k_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|gsm8k|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|gsm8k|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hellaswag_10 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hellaswag|10_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hellaswag|10_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-international_law|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-management|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-marketing|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-sociology|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-virology|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-international_law|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-management|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-marketing|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-sociology|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-virology|5_2023-12-10T06-44-09.091422.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_abstract_algebra_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_anatomy_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-anatomy|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-anatomy|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_astronomy_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-astronomy|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-astronomy|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_business_ethics_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-business_ethics|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-business_ethics|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_clinical_knowledge_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_college_biology_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-college_biology|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_biology|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_college_chemistry_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-college_chemistry|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_chemistry|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_college_computer_science_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-college_computer_science|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_computer_science|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_college_mathematics_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-college_mathematics|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_mathematics|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_college_medicine_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-college_medicine|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_medicine|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_college_physics_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-college_physics|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_physics|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_computer_security_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-computer_security|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-computer_security|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_conceptual_physics_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_econometrics_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-econometrics|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-econometrics|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_electrical_engineering_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_elementary_mathematics_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_formal_logic_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-formal_logic|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-formal_logic|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_global_facts_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-global_facts|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-global_facts|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_high_school_biology_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-high_school_biology|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_biology|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_high_school_chemistry_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_high_school_computer_science_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_high_school_european_history_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_high_school_geography_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-high_school_geography|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_geography|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_high_school_government_and_politics_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_high_school_macroeconomics_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_high_school_mathematics_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_high_school_microeconomics_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_high_school_physics_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-high_school_physics|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_physics|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_high_school_psychology_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_high_school_statistics_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_high_school_us_history_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_high_school_world_history_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_human_aging_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-human_aging|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-human_aging|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_human_sexuality_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-human_sexuality|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-human_sexuality|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_international_law_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-international_law|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-international_law|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_jurisprudence_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-jurisprudence|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-jurisprudence|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_logical_fallacies_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_machine_learning_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-machine_learning|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-machine_learning|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_management_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-management|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-management|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_marketing_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-marketing|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-marketing|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_medical_genetics_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-medical_genetics|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-medical_genetics|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_miscellaneous_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-miscellaneous|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-miscellaneous|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_moral_disputes_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-moral_disputes|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-moral_disputes|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_moral_scenarios_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_nutrition_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-nutrition|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-nutrition|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_philosophy_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-philosophy|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-philosophy|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_prehistory_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-prehistory|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-prehistory|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_professional_accounting_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-professional_accounting|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_accounting|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_professional_law_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-professional_law|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_law|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_professional_medicine_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-professional_medicine|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_medicine|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_professional_psychology_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-professional_psychology|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_psychology|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_public_relations_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-public_relations|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-public_relations|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_security_studies_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-security_studies|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-security_studies|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_sociology_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-sociology|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-sociology|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_us_foreign_policy_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_virology_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-virology|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-virology|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_hendrycksTest_world_religions_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|hendrycksTest-world_religions|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|hendrycksTest-world_religions|5_2023-12-10T06-44-09.091422.parquet' - config_name: harness_truthfulqa_mc_0 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|truthfulqa:mc|0_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|truthfulqa:mc|0_2023-12-10T06-44-09.091422.parquet' - config_name: harness_winogrande_5 data_files: - split: 2023_12_10T06_44_09.091422 path: - '**/details_harness|winogrande|5_2023-12-10T06-44-09.091422.parquet' - split: latest path: - '**/details_harness|winogrande|5_2023-12-10T06-44-09.091422.parquet' - config_name: results data_files: - split: 2023_12_10T06_44_09.091422 path: - results_2023-12-10T06-44-09.091422.parquet - split: latest path: - results_2023-12-10T06-44-09.091422.parquet --- # Dataset Card for Evaluation run of chargoddard/servile-harpsichord-cdpo ## Dataset Description - **Homepage:** - **Repository:** https://huggingface.co/chargoddard/servile-harpsichord-cdpo - **Paper:** - **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard - **Point of Contact:** clementine@hf.co ### Dataset Summary Dataset automatically created during the evaluation run of model [chargoddard/servile-harpsichord-cdpo](https://huggingface.co/chargoddard/servile-harpsichord-cdpo) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_chargoddard__servile-harpsichord-cdpo", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2023-12-10T06:44:09.091422](https://huggingface.co/datasets/open-llm-leaderboard/details_chargoddard__servile-harpsichord-cdpo/blob/main/results_2023-12-10T06-44-09.091422.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6467821760747017, "acc_stderr": 0.032099406932013255, "acc_norm": 0.6493833410875584, "acc_norm_stderr": 0.032737739125074355, "mc1": 0.4369645042839657, "mc1_stderr": 0.017363844503195978, "mc2": 0.6061030127349698, "mc2_stderr": 0.015471882890395387 }, "harness|arc:challenge|25": { "acc": 0.6407849829351536, "acc_stderr": 0.014020224155839157, "acc_norm": 0.6732081911262798, "acc_norm_stderr": 0.013706665975587331 }, "harness|hellaswag|10": { "acc": 0.6618203545110536, "acc_stderr": 0.004721231637092722, "acc_norm": 0.851822346146186, "acc_norm_stderr": 0.0035454991695580435 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.35, "acc_stderr": 0.0479372485441102, "acc_norm": 0.35, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6444444444444445, "acc_stderr": 0.04135176749720385, "acc_norm": 0.6444444444444445, "acc_norm_stderr": 0.04135176749720385 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6710526315789473, "acc_stderr": 0.03823428969926605, "acc_norm": 0.6710526315789473, "acc_norm_stderr": 0.03823428969926605 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.59, "acc_stderr": 0.049431107042371025, "acc_norm": 0.59, "acc_norm_stderr": 0.049431107042371025 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6792452830188679, "acc_stderr": 0.028727502957880277, "acc_norm": 0.6792452830188679, "acc_norm_stderr": 0.028727502957880277 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7708333333333334, "acc_stderr": 0.03514697467862388, "acc_norm": 0.7708333333333334, "acc_norm_stderr": 0.03514697467862388 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.47, "acc_stderr": 0.050161355804659205, "acc_norm": 0.47, "acc_norm_stderr": 0.050161355804659205 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.49, "acc_stderr": 0.05024183937956912, "acc_norm": 0.49, "acc_norm_stderr": 0.05024183937956912 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.28, "acc_stderr": 0.04512608598542128, "acc_norm": 0.28, "acc_norm_stderr": 0.04512608598542128 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.653179190751445, "acc_stderr": 0.036291466701596636, "acc_norm": 0.653179190751445, "acc_norm_stderr": 0.036291466701596636 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4117647058823529, "acc_stderr": 0.04897104952726366, "acc_norm": 0.4117647058823529, "acc_norm_stderr": 0.04897104952726366 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.76, "acc_stderr": 0.042923469599092816, "acc_norm": 0.76, "acc_norm_stderr": 0.042923469599092816 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5531914893617021, "acc_stderr": 0.0325005368436584, "acc_norm": 0.5531914893617021, "acc_norm_stderr": 0.0325005368436584 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5263157894736842, "acc_stderr": 0.046970851366478626, "acc_norm": 0.5263157894736842, "acc_norm_stderr": 0.046970851366478626 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.593103448275862, "acc_stderr": 0.04093793981266236, "acc_norm": 0.593103448275862, "acc_norm_stderr": 0.04093793981266236 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.3835978835978836, "acc_stderr": 0.025043757318520196, "acc_norm": 0.3835978835978836, "acc_norm_stderr": 0.025043757318520196 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.4444444444444444, "acc_stderr": 0.04444444444444449, "acc_norm": 0.4444444444444444, "acc_norm_stderr": 0.04444444444444449 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.39, "acc_stderr": 0.04902071300001975, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7903225806451613, "acc_stderr": 0.023157879349083525, "acc_norm": 0.7903225806451613, "acc_norm_stderr": 0.023157879349083525 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4975369458128079, "acc_stderr": 0.03517945038691063, "acc_norm": 0.4975369458128079, "acc_norm_stderr": 0.03517945038691063 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.7, "acc_stderr": 0.046056618647183814, "acc_norm": 0.7, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7636363636363637, "acc_stderr": 0.03317505930009182, "acc_norm": 0.7636363636363637, "acc_norm_stderr": 0.03317505930009182 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.797979797979798, "acc_stderr": 0.02860620428922987, "acc_norm": 0.797979797979798, "acc_norm_stderr": 0.02860620428922987 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9119170984455959, "acc_stderr": 0.02045374660160103, "acc_norm": 0.9119170984455959, "acc_norm_stderr": 0.02045374660160103 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.676923076923077, "acc_stderr": 0.02371088850197057, "acc_norm": 0.676923076923077, "acc_norm_stderr": 0.02371088850197057 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.34444444444444444, "acc_stderr": 0.028972648884844267, "acc_norm": 0.34444444444444444, "acc_norm_stderr": 0.028972648884844267 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.7016806722689075, "acc_stderr": 0.02971914287634286, "acc_norm": 0.7016806722689075, "acc_norm_stderr": 0.02971914287634286 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.33112582781456956, "acc_stderr": 0.038425817186598696, "acc_norm": 0.33112582781456956, "acc_norm_stderr": 0.038425817186598696 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8532110091743119, "acc_stderr": 0.015173141845126253, "acc_norm": 0.8532110091743119, "acc_norm_stderr": 0.015173141845126253 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5092592592592593, "acc_stderr": 0.034093869469927006, "acc_norm": 0.5092592592592593, "acc_norm_stderr": 0.034093869469927006 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8382352941176471, "acc_stderr": 0.025845017986926917, "acc_norm": 0.8382352941176471, "acc_norm_stderr": 0.025845017986926917 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7932489451476793, "acc_stderr": 0.026361651668389094, "acc_norm": 0.7932489451476793, "acc_norm_stderr": 0.026361651668389094 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.7130044843049327, "acc_stderr": 0.03036037971029195, "acc_norm": 0.7130044843049327, "acc_norm_stderr": 0.03036037971029195 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7938931297709924, "acc_stderr": 0.03547771004159465, "acc_norm": 0.7938931297709924, "acc_norm_stderr": 0.03547771004159465 }, "harness|hendrycksTest-international_law|5": { "acc": 0.768595041322314, "acc_stderr": 0.03849856098794088, "acc_norm": 0.768595041322314, "acc_norm_stderr": 0.03849856098794088 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.8148148148148148, "acc_stderr": 0.03755265865037181, "acc_norm": 0.8148148148148148, "acc_norm_stderr": 0.03755265865037181 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.754601226993865, "acc_stderr": 0.03380939813943354, "acc_norm": 0.754601226993865, "acc_norm_stderr": 0.03380939813943354 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.48214285714285715, "acc_stderr": 0.047427623612430116, "acc_norm": 0.48214285714285715, "acc_norm_stderr": 0.047427623612430116 }, "harness|hendrycksTest-management|5": { "acc": 0.8058252427184466, "acc_stderr": 0.03916667762822584, "acc_norm": 0.8058252427184466, "acc_norm_stderr": 0.03916667762822584 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8717948717948718, "acc_stderr": 0.02190190511507332, "acc_norm": 0.8717948717948718, "acc_norm_stderr": 0.02190190511507332 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.7, "acc_stderr": 0.046056618647183814, "acc_norm": 0.7, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8314176245210728, "acc_stderr": 0.013387895731543604, "acc_norm": 0.8314176245210728, "acc_norm_stderr": 0.013387895731543604 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7283236994219653, "acc_stderr": 0.02394851290546837, "acc_norm": 0.7283236994219653, "acc_norm_stderr": 0.02394851290546837 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.4212290502793296, "acc_stderr": 0.0165136760311796, "acc_norm": 0.4212290502793296, "acc_norm_stderr": 0.0165136760311796 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7287581699346405, "acc_stderr": 0.02545775669666788, "acc_norm": 0.7287581699346405, "acc_norm_stderr": 0.02545775669666788 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7202572347266881, "acc_stderr": 0.025494259350694912, "acc_norm": 0.7202572347266881, "acc_norm_stderr": 0.025494259350694912 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7314814814814815, "acc_stderr": 0.024659685185967284, "acc_norm": 0.7314814814814815, "acc_norm_stderr": 0.024659685185967284 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4787234042553192, "acc_stderr": 0.029800481645628693, "acc_norm": 0.4787234042553192, "acc_norm_stderr": 0.029800481645628693 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.45241199478487615, "acc_stderr": 0.012712265105889135, "acc_norm": 0.45241199478487615, "acc_norm_stderr": 0.012712265105889135 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6875, "acc_stderr": 0.02815637344037142, "acc_norm": 0.6875, "acc_norm_stderr": 0.02815637344037142 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6519607843137255, "acc_stderr": 0.019270998708223977, "acc_norm": 0.6519607843137255, "acc_norm_stderr": 0.019270998708223977 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6909090909090909, "acc_stderr": 0.044262946482000985, "acc_norm": 0.6909090909090909, "acc_norm_stderr": 0.044262946482000985 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7346938775510204, "acc_stderr": 0.028263889943784603, "acc_norm": 0.7346938775510204, "acc_norm_stderr": 0.028263889943784603 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8606965174129353, "acc_stderr": 0.024484487162913973, "acc_norm": 0.8606965174129353, "acc_norm_stderr": 0.024484487162913973 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.84, "acc_stderr": 0.03684529491774709, "acc_norm": 0.84, "acc_norm_stderr": 0.03684529491774709 }, "harness|hendrycksTest-virology|5": { "acc": 0.536144578313253, "acc_stderr": 0.038823108508905954, "acc_norm": 0.536144578313253, "acc_norm_stderr": 0.038823108508905954 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8187134502923976, "acc_stderr": 0.029547741687640044, "acc_norm": 0.8187134502923976, "acc_norm_stderr": 0.029547741687640044 }, "harness|truthfulqa:mc|0": { "mc1": 0.4369645042839657, "mc1_stderr": 0.017363844503195978, "mc2": 0.6061030127349698, "mc2_stderr": 0.015471882890395387 }, "harness|winogrande|5": { "acc": 0.7916337805840569, "acc_stderr": 0.011414554399987729 }, "harness|gsm8k|5": { "acc": 0.5708870356330553, "acc_stderr": 0.013633369425647234 } } ``` ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
ravel365artur/Treinar-voz
--- license: openrail ---
Maverick17/cira_dataset
--- configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: eval path: data/eval-* dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 778205 num_examples: 1556 - name: test num_bytes: 100751 num_examples: 196 - name: eval num_bytes: 95330 num_examples: 194 download_size: 294020 dataset_size: 974286 --- # Dataset Card for "cira_dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
huggingartists/the-grateful-dead
--- language: - en tags: - huggingartists - lyrics --- # Dataset Card for "huggingartists/the-grateful-dead" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 2.732505 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/18f21c424e2f02f0c9a59c15bac56406.736x736x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/the-grateful-dead"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">The Grateful Dead</div> <a href="https://genius.com/artists/the-grateful-dead"> <div style="text-align: center; font-size: 14px;">@the-grateful-dead</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/the-grateful-dead). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/the-grateful-dead") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |2266| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/the-grateful-dead") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
mshubhr/arakoo
--- license: llama2 ---
NeuralNovel/Neural-Story-v1
--- license: apache-2.0 --- # Neural-Story-v1 Dataset ## Overview The **Neural-Story-v1** dataset is a curated collection of short stories featuring a rich variety of genres and plot settings. Carefully assembled by NeuralNovel, this dataset aims to serve as a valuable resource for testing and fine-tuning small language models using LoRa. ## Data Source The dataset content is a result of a combination of automated generation by Mixtral 8x7b and manual refinement. ## Purpose Designed specifically for testing purposes, the dataset facilitates the precise fine-tuning of small language models. The primary objective is to enhance genre variety and elevate creativity and nuance in writing. ## Curation Rationale This dataset is curated with a deliberate focus on providing a diverse mix of genres. The intention is to inspire and encourage more varied and creative writing outputs. ## Recommendations While the Neural-Story-v0.1 dataset serves as an excellent starting point for testing language models, users are advised to exercise caution, as there might be some inherent genre or writing bias.
nomic-ai/nomic-bert-2048-pretraining-data
--- dataset_info: features: - name: input_ids sequence: int32 - name: token_type_ids sequence: int8 - name: attention_mask sequence: int8 - name: special_tokens_mask sequence: int8 splits: - name: train num_bytes: 38003435808 num_examples: 2647954 download_size: 10083076260 dataset_size: 38003435808 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "bert-pretokenized-2048-wiki-2023" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
PJMixers/limarp-perscengen-converted-combined
--- language: - en tags: - not-for-all-audiences source_datasets: lemonilia/LimaRP --- Reversed order so that you give it *blind* two person dialogues it then spits out the names, character descriptions, and a scenario summary. I intend to try to use this to make the bluemoon set usable, I'll add conversion scripts for everything later. *Note: Many samples contain sus content. Be aware of this before using.*
liuyanchen1015/MULTI_VALUE_cola_no_preverbal_negator
--- dataset_info: features: - name: sentence dtype: string - name: label dtype: int64 - name: idx dtype: int64 - name: value_score dtype: int64 splits: - name: dev num_bytes: 3979 num_examples: 50 - name: test num_bytes: 3561 num_examples: 45 - name: train num_bytes: 15201 num_examples: 204 download_size: 16387 dataset_size: 22741 --- # Dataset Card for "MULTI_VALUE_cola_no_preverbal_negator" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
autoevaluate/autoeval-eval-conll2003-conll2003-fb14e9-48103145236
--- type: predictions tags: - autotrain - evaluation datasets: - conll2003 eval_info: task: entity_extraction model: alvarobartt/distilbert-base-cased-ner metrics: [] dataset_name: conll2003 dataset_config: conll2003 dataset_split: test col_mapping: tokens: tokens tags: ner_tags --- # Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Token Classification * Model: alvarobartt/distilbert-base-cased-ner * Dataset: conll2003 * Config: conll2003 * Split: test To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@alvarobartt](https://huggingface.co/alvarobartt) for evaluating this model.
hanifabdlh/Setfit-Sample-Dataset
--- dataset_info: features: - name: sample_text dtype: string - name: label dtype: class_label: names: '0': affirm '1': bot_challenge '2': deny '3': goodbye '4': greet '5': mood_great '6': mood_unhappy splits: - name: train num_bytes: 1674 num_examples: 68 download_size: 2301 dataset_size: 1674 configs: - config_name: default data_files: - split: train path: data/train-* ---
jxm/scidocs__gtr_base__dpr
--- dataset_info: features: - name: text dtype: string - name: embeddings_A sequence: float32 - name: embeddings_B sequence: float32 splits: - name: train num_bytes: 187036558 num_examples: 25657 download_size: 206524641 dataset_size: 187036558 configs: - config_name: default data_files: - split: train path: data/train-* ---
yuan-sf63/word_label_0.5_96_D
--- dataset_info: features: - name: text dtype: string - name: '0' dtype: int64 - name: '1' dtype: int64 - name: '2' dtype: int64 - name: '3' dtype: int64 - name: '4' dtype: int64 - name: '5' dtype: int64 - name: '6' dtype: int64 - name: '7' dtype: int64 - name: '8' dtype: int64 - name: '9' dtype: int64 - name: '10' dtype: int64 - name: '11' dtype: int64 - name: '12' dtype: int64 - name: '13' dtype: int64 - name: '14' dtype: int64 - name: '15' dtype: int64 - name: '16' dtype: int64 - name: '17' dtype: int64 - name: '18' dtype: int64 - name: '19' dtype: int64 - name: '20' dtype: int64 - name: '21' dtype: int64 - name: '22' dtype: int64 - name: '23' dtype: int64 - name: '24' dtype: int64 - name: '25' dtype: int64 - name: '26' dtype: int64 - name: '27' dtype: int64 - name: '28' dtype: int64 - name: '29' dtype: int64 - name: '30' dtype: int64 - name: '31' dtype: int64 - name: '32' dtype: int64 - name: '33' dtype: int64 - name: '34' dtype: int64 - name: '35' dtype: int64 - name: '36' dtype: int64 - name: '37' dtype: int64 - name: '38' dtype: int64 - name: '39' dtype: int64 - name: '40' dtype: int64 - name: '41' dtype: int64 - name: '42' dtype: int64 - name: '43' dtype: int64 - name: '44' dtype: int64 - name: '45' dtype: int64 - name: '46' dtype: int64 - name: '47' dtype: int64 - name: '48' dtype: int64 - name: '49' dtype: int64 - name: '50' dtype: int64 - name: '51' dtype: int64 - name: '52' dtype: int64 - name: '53' dtype: int64 - name: '54' dtype: int64 - name: '55' dtype: int64 - name: '56' dtype: int64 - name: '57' dtype: int64 - name: '58' dtype: int64 - name: '59' dtype: int64 - name: '60' dtype: int64 - name: '61' dtype: int64 - name: '62' dtype: int64 - name: '63' dtype: int64 - name: '64' dtype: int64 - name: '65' dtype: int64 - name: '66' dtype: int64 - name: '67' dtype: int64 - name: '68' dtype: int64 - name: '69' dtype: int64 - name: '70' dtype: int64 - name: '71' dtype: int64 - name: '72' dtype: int64 - name: '73' dtype: int64 - name: '74' dtype: int64 - name: '75' dtype: int64 - name: '76' dtype: int64 - name: '77' dtype: int64 - name: '78' dtype: int64 - name: '79' dtype: int64 - name: '80' dtype: int64 - name: '81' dtype: int64 - name: '82' dtype: int64 - name: '83' dtype: int64 - name: '84' dtype: int64 - name: '85' dtype: int64 - name: '86' dtype: int64 - name: '87' dtype: int64 - name: '88' dtype: int64 - name: '89' dtype: int64 - name: '90' dtype: int64 - name: '91' dtype: int64 - name: '92' dtype: int64 - name: '93' dtype: int64 - name: '94' dtype: int64 - name: '95' dtype: int64 splits: - name: train num_bytes: 63418468.38393638 num_examples: 71983 - name: validation num_bytes: 7047279.616063614 num_examples: 7999 download_size: 9813776 dataset_size: 70465748.0 --- # Dataset Card for "word_label_0.5_96_D" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
CyberHarem/passionlip_fgo
--- license: mit task_categories: - text-to-image tags: - art - not-for-all-audiences size_categories: - n<1K --- # Dataset of passionlip/パッションリップ/Passionlip (Fate/Grand Order) This is the dataset of passionlip/パッションリップ/Passionlip (Fate/Grand Order), containing 500 images and their tags. The core tags of this character are `long_hair, purple_hair, ribbon, hair_ribbon, breasts, very_long_hair, huge_breasts, pink_eyes, purple_eyes, pink_ribbon`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 500 | 764.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/passionlip_fgo/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 1200 | 500 | 660.60 MiB | [Download](https://huggingface.co/datasets/CyberHarem/passionlip_fgo/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 1170 | 1.18 GiB | [Download](https://huggingface.co/datasets/CyberHarem/passionlip_fgo/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/passionlip_fgo', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 16 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, bare_shoulders, claws, looking_at_viewer, o-ring_top, solo, belt_collar, blush, open_mouth, pantyhose | | 1 | 5 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, bare_shoulders, belt_collar, claw_(weapon), claws, looking_at_viewer, o-ring_top, parted_lips, solo, sideboob, purple_ribbon | | 2 | 5 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 1girl, bare_shoulders, belt_collar, claw_(weapon), claws, o-ring_top, sideboob, solo, white_thighhighs, looking_at_viewer, blush, smile, covered_navel, thighs | | 3 | 6 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | 1girl, bare_shoulders, collar, o-ring_top, simple_background, solo, upper_body, white_background, blush, claws, cleavage, looking_at_viewer, open_mouth, smile | | 4 | 5 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | black_coat, large_breasts, long_sleeves, neck_ribbon, red_ribbon, smile, white_gloves, 1girl, blush, high-waist_skirt, open_coat, open_mouth, popped_collar, white_leotard, wide_sleeves, black_skirt, closed_eyes, looking_at_viewer, multiple_girls, solo, wand | | 5 | 33 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | long_sleeves, looking_at_viewer, blue_eyes, 1girl, solo, blue_ribbon, smile, blush, armored_boots, sleeves_past_fingers, navel | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | bare_shoulders | claws | looking_at_viewer | o-ring_top | solo | belt_collar | blush | open_mouth | pantyhose | claw_(weapon) | parted_lips | sideboob | purple_ribbon | white_thighhighs | smile | covered_navel | thighs | collar | simple_background | upper_body | white_background | cleavage | black_coat | large_breasts | long_sleeves | neck_ribbon | red_ribbon | white_gloves | high-waist_skirt | open_coat | popped_collar | white_leotard | wide_sleeves | black_skirt | closed_eyes | multiple_girls | wand | blue_eyes | blue_ribbon | armored_boots | sleeves_past_fingers | navel | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------------|:--------|:--------------------|:-------------|:-------|:--------------|:--------|:-------------|:------------|:----------------|:--------------|:-----------|:----------------|:-------------------|:--------|:----------------|:---------|:---------|:--------------------|:-------------|:-------------------|:-----------|:-------------|:----------------|:---------------|:--------------|:-------------|:---------------|:-------------------|:------------|:----------------|:----------------|:---------------|:--------------|:--------------|:-----------------|:-------|:------------|:--------------|:----------------|:-----------------------|:--------| | 0 | 16 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 5 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | X | X | X | X | X | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2 | 5 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | X | X | X | X | X | X | X | | | X | | X | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | 3 | 6 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | X | X | X | X | X | X | | X | X | | | | | | | X | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | 4 | 5 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | X | | | X | | X | | X | X | | | | | | | X | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | 5 | 33 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | X | | | X | | X | | X | | | | | | | | X | | | | | | | | | | X | | | | | | | | | | | | | X | X | X | X | X |
gorar/A-MNIST
--- license: mit task_categories: - image-classification size_categories: - 100K<n<1M ---
lsh35/test
--- license: llama2 ---
ftopal/huggingface-models-embeddings
--- dataset_info: features: - name: sha dtype: 'null' - name: last_modified dtype: 'null' - name: library_name dtype: string - name: text dtype: string - name: metadata dtype: string - name: pipeline_tag dtype: string - name: id dtype: string - name: tags sequence: string - name: created_at dtype: string - name: arxiv sequence: string - name: languages sequence: string - name: tags_str dtype: string - name: text_str dtype: string - name: text_lists sequence: string - name: processed_texts sequence: string - name: tokens_length sequence: int64 - name: input_texts sequence: string - name: embeddings sequence: float32 splits: - name: train num_bytes: 2528620129 num_examples: 240530 download_size: 1308575820 dataset_size: 2528620129 configs: - config_name: default data_files: - split: train path: data/train-* ---
Tugay/nsf_title_qa
--- dataset_info: features: - name: id dtype: 'null' - name: question dtype: 'null' - name: answer dtype: 'null' splits: - name: train num_bytes: 0 num_examples: 0 download_size: 904 dataset_size: 0 configs: - config_name: default data_files: - split: train path: data/train-* ---
ofis_publik
--- annotations_creators: - found language_creators: - found language: - br - fr license: - unknown multilinguality: - multilingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - translation task_ids: [] paperswithcode_id: null pretty_name: OfisPublik dataset_info: features: - name: id dtype: string - name: translation dtype: translation: languages: - br - fr config_name: br-fr splits: - name: train num_bytes: 12256825 num_examples: 63422 download_size: 3856983 dataset_size: 12256825 --- # Dataset Card for OfisPublik ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** http://opus.nlpl.eu/OfisPublik.php - **Repository:** None - **Paper:** http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf - **Leaderboard:** [More Information Needed] - **Point of Contact:** [More Information Needed] ### Dataset Summary [More Information Needed] ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data [More Information Needed] #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations [More Information Needed] #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset.
Circularmachines/batch_indexing_machine_230529_004
--- dataset_info: features: - name: image dtype: image splits: - name: train num_bytes: 163377382.0 num_examples: 720 download_size: 163389369 dataset_size: 163377382.0 --- # Dataset Card for "batch_indexing_machine_230529_004" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
waboucay/wikilarge
--- language: - en task_categories: - text2text-generation --- # WikiLarge <!-- Provide a quick summary of the dataset. --> HuggingFace implementation of the WikiLarge corpus for sentence simplification gathered by Zhang, Xingxing and Lapata, Mirella. /!\ I am not one of the creators of the dataset, I just needed a HF version of this dataset and uploaded it. I encourage you to read the paper introducing the dataset: [Sentence Simplification with Deep Reinforcement Learning](https://aclanthology.org/D17-1062) (Zhang & Lapata, EMNLP 2017) <!-- ## Dataset Details ### Dataset Description --> <!-- Provide a longer summary of what this dataset is. --> <!-- - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] --> <!-- Provide the basic links for the dataset. --> <!-- - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] --> ## Uses This dataset can be used to train sentence simplification models. <!-- ### Direct Use --> <!-- This section describes suitable use cases for the dataset. --> <!-- [More Information Needed] ### Out-of-Scope Use --> <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> <!-- [More Information Needed] --> ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> - **Size of the generated dataset:** 69.3 MB An example of 'train' looks as follows. ``` { 'complex': 'Sensing of both the external and internal environments at the cellular level relies on signal transduction . Many disease processes , such as diabetes , heart disease , autoimmunity , and cancer arise from defects in signal transduction pathways , further highlighting the critical importance of signal transduction to biology , as well as medicine .', 'simple': 'A signal transduction in biology , is a cellular mechanism .' } ``` <!-- ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> <!-- [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> <!-- #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> <!-- [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> <!-- [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> <!-- #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> <!-- [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> <!-- [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> <!-- [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> <!-- [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> <!-- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. --> ## Citation <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** ``` @InProceedings{D17-1063, author = "Zhang, Xingxing and Lapata, Mirella", title = "Sentence Simplification with Deep Reinforcement Learning", booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing", year = "2017", publisher = "Association for Computational Linguistics", pages = "595--605", location = "Copenhagen, Denmark", url = "http://aclweb.org/anthology/D17-1063" } ``` **ACL:** Xingxing Zhang and Mirella Lapata. 2017. Sentence Simplification with Deep Reinforcement Learning. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 584–594, Copenhagen, Denmark. Association for Computational Linguistics. <!-- ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> <!-- [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed] -->
thanhdath/legal_chat
--- configs: - config_name: default data_files: - split: train_sft path: data/train_sft-* - split: test_sft path: data/test_sft-* dataset_info: features: - name: prompt_id dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train_sft num_bytes: 646516984 num_examples: 108780 - name: test_sft num_bytes: 11923316 num_examples: 2000 download_size: 213534245 dataset_size: 658440300 --- # Dataset Card for "legal_chat" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Falah/chapter6_1_prompts
--- dataset_info: features: - name: prompts dtype: string splits: - name: train num_bytes: 2772 num_examples: 9 download_size: 3664 dataset_size: 2772 --- # Dataset Card for "chapter6_1_prompts" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
TrainingDataPro/email-spam-classification
--- license: cc-by-nc-nd-4.0 task_categories: - text-classification language: - en tags: - code - legal - finance --- # Email Spam Classification The dataset consists of a collection of emails categorized into two major classes: **spam** and **not spam**. It is designed to facilitate the development and evaluation of spam detection or email filtering systems. **The spam emails** in the dataset are typically unsolicited and unwanted messages that aim to promote products or services, spread malware, or deceive recipients for various malicious purposes. These emails often contain misleading subject lines, excessive use of advertisements, unauthorized links, or attempts to collect personal information. The **non-spam emails** in the dataset are genuine and legitimate messages sent by individuals or organizations. They may include personal or professional communication, newsletters, transaction receipts, or any other non-malicious content. The dataset encompasses emails of varying *lengths, languages, and writing styles*, reflecting the inherent heterogeneity of email communication. This diversity aids in training algorithms that can generalize well to different types of emails, making them robust against different spammer tactics and variations in non-spam email content. # Get the dataset ### This is just an example of the data Leave a request on **[https://trainingdata.pro/data-market](https://trainingdata.pro/data-market/spambase?utm_source=huggingface&utm_medium=cpc&utm_campaign=email-spam-classification)** to discuss your requirements, learn about the price and buy the dataset. ### The dataset's possible applications: - spam detection - fraud detection - email filtering systems - customer support automation - natural language processing ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6440e71f603214724eb96358/ehYVU_22FnzlFfxw-DHk7.png) # File with the extension .csv includes the following information: - **title**: title of the email, - **text**: text of the email, - **type**: type of the email # Email spam might be collected in accordance with your requirements. ## **[TrainingData](https://trainingdata.pro/data-market/spambase?utm_source=huggingface&utm_medium=cpc&utm_campaign=email-spam-classification)** provides high-quality data annotation tailored to your needs
AbdulMuqtadir/English_Urdu_Generated_Dataset
--- license: apache-2.0 ---
TheFinAI/flare-australian
--- dataset_info: features: - name: id dtype: int64 - name: query dtype: string - name: answer dtype: string - name: choices sequence: string - name: gold dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 434142 num_examples: 482 - name: valid num_bytes: 62168 num_examples: 69 - name: test num_bytes: 125227 num_examples: 139 download_size: 107361 dataset_size: 621537 --- # Dataset Card for "flare-australian" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Ramitha/open-australian-legal-qa-results-k-test-cosine
--- dataset_info: features: - name: index dtype: 'null' - name: normal_bert_pipeline_1_result dtype: 'null' - name: normal_bert_pipeline_2_context dtype: 'null' - name: normal_bert_pipeline_2_result dtype: 'null' - name: normal_bert_pipeline_2_case_indexes sequence: int64 - name: normal_bert_pipeline_3_context dtype: 'null' - name: normal_bert_pipeline_3_result dtype: 'null' - name: normal_bert_pipeline_3_case_indexes dtype: 'null' - name: normal_bert_pipeline_4_context dtype: 'null' - name: normal_bert_pipeline_4_result dtype: 'null' - name: normal_bert_pipeline_4_case_indexes sequence: int64 - name: normal_bert_pipeline_5_context dtype: 'null' - name: normal_bert_pipeline_5_result dtype: 'null' - name: normal_bert_pipeline_5_case_indexes dtype: 'null' - name: normal_bert_pipeline_6_context dtype: 'null' - name: normal_bert_pipeline_6_result dtype: 'null' - name: normal_bert_pipeline_6_case_indexes sequence: int64 - name: normal_bert_pipeline_7_context dtype: 'null' - name: normal_bert_pipeline_7_result dtype: 'null' - name: normal_bert_pipeline_7_case_indexes dtype: 'null' - name: legal_bert_pipeline_1_result dtype: 'null' - name: legal_bert_pipeline_2_context dtype: 'null' - name: legal_bert_pipeline_2_result dtype: 'null' - name: legal_bert_pipeline_2_case_indexes sequence: int64 - name: legal_bert_pipeline_3_context dtype: 'null' - name: legal_bert_pipeline_3_result dtype: 'null' - name: legal_bert_pipeline_3_case_indexes dtype: 'null' - name: legal_bert_pipeline_4_context dtype: 'null' - name: legal_bert_pipeline_4_result dtype: 'null' - name: legal_bert_pipeline_4_case_indexes sequence: int64 - name: legal_bert_pipeline_5_context dtype: 'null' - name: legal_bert_pipeline_5_result dtype: 'null' - name: legal_bert_pipeline_5_case_indexes dtype: 'null' - name: legal_bert_pipeline_6_context dtype: 'null' - name: legal_bert_pipeline_6_result dtype: 'null' - name: legal_bert_pipeline_6_case_indexes sequence: int64 - name: legal_bert_pipeline_7_context dtype: 'null' - name: legal_bert_pipeline_7_result dtype: 'null' - name: legal_bert_pipeline_7_case_indexes dtype: 'null' - name: angle_bert_pipeline_1_result dtype: 'null' - name: angle_bert_pipeline_2_context dtype: 'null' - name: angle_bert_pipeline_2_result dtype: 'null' - name: angle_bert_pipeline_2_case_indexes sequence: int64 - name: angle_bert_pipeline_3_context dtype: 'null' - name: angle_bert_pipeline_3_result dtype: 'null' - name: angle_bert_pipeline_3_case_indexes dtype: 'null' - name: angle_bert_pipeline_4_context dtype: 'null' - name: angle_bert_pipeline_4_result dtype: 'null' - name: angle_bert_pipeline_4_case_indexes sequence: int64 - name: angle_bert_pipeline_5_context dtype: 'null' - name: angle_bert_pipeline_5_result dtype: 'null' - name: angle_bert_pipeline_5_case_indexes dtype: 'null' - name: angle_bert_pipeline_6_context dtype: 'null' - name: angle_bert_pipeline_6_result dtype: 'null' - name: angle_bert_pipeline_6_case_indexes sequence: int64 - name: angle_bert_pipeline_7_context dtype: 'null' - name: angle_bert_pipeline_7_result dtype: 'null' - name: angle_bert_pipeline_7_case_indexes dtype: 'null' - name: question dtype: string - name: answer dtype: string - name: original_texts dtype: string - name: question_normal_bert_matching_embeddings dtype: string - name: question_legal_bert_matching_embeddings dtype: string - name: question_angle_bert_matching_embeddings dtype: string - name: question_normal_bert_retrieval_embeddings dtype: string - name: question_legal_bert_retrieval_embeddings dtype: string - name: question_angle_bert_retrieval_embeddings dtype: string - name: answer_normal_bert_matching_embeddings dtype: string - name: answer_legal_bert_matching_embeddings dtype: string - name: answer_angle_bert_matching_embeddings dtype: string - name: answer_normal_bert_retrieval_embeddings dtype: string - name: answer_legal_bert_retrieval_embeddings dtype: string - name: answer_angle_bert_retrieval_embeddings dtype: string - name: case_index dtype: float64 - name: normal_bert_pipeline_8_case_indexes sequence: int64 - name: normal_bert_pipeline_10_case_indexes sequence: int64 - name: normal_bert_pipeline_12_case_indexes sequence: int64 - name: legal_bert_pipeline_8_case_indexes sequence: int64 - name: legal_bert_pipeline_10_case_indexes sequence: int64 - name: legal_bert_pipeline_12_case_indexes sequence: int64 - name: angle_bert_pipeline_8_case_indexes sequence: int64 - name: angle_bert_pipeline_10_case_indexes sequence: int64 - name: angle_bert_pipeline_12_case_indexes sequence: int64 splits: - name: ktestcosine num_bytes: 17409099 num_examples: 35 download_size: 7318031 dataset_size: 17409099 configs: - config_name: default data_files: - split: ktestcosine path: data/ktestcosine-* ---
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/6561e16e
--- dataset_info: features: - name: result dtype: string - name: id dtype: int64 splits: - name: train num_bytes: 182 num_examples: 10 download_size: 1313 dataset_size: 182 --- # Dataset Card for "6561e16e" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
sogeeking/vqvae_token
--- dataset_info: config_name: Burgers_Sols_Nu0.002 features: - name: parameters dtype: string - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: mean sequence: float32 - name: std sequence: float32 splits: - name: train num_bytes: 82800000 num_examples: 10000 download_size: 16914568 dataset_size: 82800000 configs: - config_name: Burgers_Sols_Nu0.002 data_files: - split: train path: Burgers_Sols_Nu0.002/train-* ---
plaguss/oss-pref-test
--- dataset_info: features: - name: input dtype: string - name: generation_model sequence: string - name: generation_prompt list: list: - name: content dtype: string - name: role dtype: string - name: raw_generation_responses sequence: string - name: generations sequence: string splits: - name: train num_bytes: 165537 num_examples: 10 download_size: 86598 dataset_size: 165537 configs: - config_name: default data_files: - split: train path: data/train-* ---
ibivibiv/alpaca_tasksource2
--- dataset_info: features: - name: input dtype: string - name: instruction dtype: string - name: output dtype: string splits: - name: train num_bytes: 135759147 num_examples: 253970 download_size: 77133603 dataset_size: 135759147 configs: - config_name: default data_files: - split: train path: data/train-* ---
zolak/twitter_dataset_79_1713043108
--- dataset_info: features: - name: id dtype: string - name: tweet_content dtype: string - name: user_name dtype: string - name: user_id dtype: string - name: created_at dtype: string - name: url dtype: string - name: favourite_count dtype: int64 - name: scraped_at dtype: string - name: image_urls dtype: string splits: - name: train num_bytes: 2646608 num_examples: 6465 download_size: 1313470 dataset_size: 2646608 configs: - config_name: default data_files: - split: train path: data/train-* ---
open-llm-leaderboard/details_souvik0306__falcon_7b_3epoch_norobots
--- pretty_name: Evaluation run of souvik0306/falcon_7b_3epoch_norobots dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [souvik0306/falcon_7b_3epoch_norobots](https://huggingface.co/souvik0306/falcon_7b_3epoch_norobots)\ \ on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\ \nThe dataset is composed of 64 configuration, each one coresponding to one of the\ \ evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be\ \ found as a specific split in each configuration, the split being named using the\ \ timestamp of the run.The \"train\" split is always pointing to the latest results.\n\ \nAn additional configuration \"results\" store all the aggregated results of the\ \ run (and is used to compute and display the aggregated metrics on the [Open LLM\ \ Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\ \nTo load the details from a run, you can for instance do the following:\n```python\n\ from datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_souvik0306__falcon_7b_3epoch_norobots_public\"\ ,\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\n\ These are the [latest results from run 2023-11-23T18:17:00.996113](https://huggingface.co/datasets/open-llm-leaderboard/details_souvik0306__falcon_7b_3epoch_norobots_public/blob/main/results_2023-11-23T18-17-00.996113.json)(note\ \ that their might be results for other tasks in the repos if successive evals didn't\ \ cover the same tasks. You find each in the results and the \"latest\" split for\ \ each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.30608343755546813,\n\ \ \"acc_stderr\": 0.032414744112033704,\n \"acc_norm\": 0.30836499703771436,\n\ \ \"acc_norm_stderr\": 0.03322598255455117,\n \"mc1\": 0.22276621787025705,\n\ \ \"mc1_stderr\": 0.014566506961396731,\n \"mc2\": 0.36274944744996707,\n\ \ \"mc2_stderr\": 0.01351391478780607,\n \"em\": 0.0016778523489932886,\n\ \ \"em_stderr\": 0.00041913301788269156,\n \"f1\": 0.051564597315436486,\n\ \ \"f1_stderr\": 0.0012887815427970884\n },\n \"harness|arc:challenge|25\"\ : {\n \"acc\": 0.44112627986348124,\n \"acc_stderr\": 0.014509747749064664,\n\ \ \"acc_norm\": 0.4761092150170648,\n \"acc_norm_stderr\": 0.014594701798071654\n\ \ },\n \"harness|hellaswag|10\": {\n \"acc\": 0.5743875721967735,\n\ \ \"acc_stderr\": 0.0049342503908797785,\n \"acc_norm\": 0.7723561043616809,\n\ \ \"acc_norm_stderr\": 0.004184545675387351\n },\n \"harness|hendrycksTest-abstract_algebra|5\"\ : {\n \"acc\": 0.28,\n \"acc_stderr\": 0.04512608598542128,\n \ \ \"acc_norm\": 0.28,\n \"acc_norm_stderr\": 0.04512608598542128\n \ \ },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.28888888888888886,\n\ \ \"acc_stderr\": 0.03915450630414251,\n \"acc_norm\": 0.28888888888888886,\n\ \ \"acc_norm_stderr\": 0.03915450630414251\n },\n \"harness|hendrycksTest-astronomy|5\"\ : {\n \"acc\": 0.25,\n \"acc_stderr\": 0.03523807393012047,\n \ \ \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.03523807393012047\n \ \ },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.23,\n\ \ \"acc_stderr\": 0.04229525846816505,\n \"acc_norm\": 0.23,\n \ \ \"acc_norm_stderr\": 0.04229525846816505\n },\n \"harness|hendrycksTest-clinical_knowledge|5\"\ : {\n \"acc\": 0.2943396226415094,\n \"acc_stderr\": 0.028049186315695248,\n\ \ \"acc_norm\": 0.2943396226415094,\n \"acc_norm_stderr\": 0.028049186315695248\n\ \ },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.25,\n\ \ \"acc_stderr\": 0.03621034121889507,\n \"acc_norm\": 0.25,\n \ \ \"acc_norm_stderr\": 0.03621034121889507\n },\n \"harness|hendrycksTest-college_chemistry|5\"\ : {\n \"acc\": 0.26,\n \"acc_stderr\": 0.04408440022768079,\n \ \ \"acc_norm\": 0.26,\n \"acc_norm_stderr\": 0.04408440022768079\n \ \ },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\"\ : 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n\ \ \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-college_mathematics|5\"\ : {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \ \ \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n \ \ },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.3179190751445087,\n\ \ \"acc_stderr\": 0.03550683989165582,\n \"acc_norm\": 0.3179190751445087,\n\ \ \"acc_norm_stderr\": 0.03550683989165582\n },\n \"harness|hendrycksTest-college_physics|5\"\ : {\n \"acc\": 0.27450980392156865,\n \"acc_stderr\": 0.04440521906179326,\n\ \ \"acc_norm\": 0.27450980392156865,\n \"acc_norm_stderr\": 0.04440521906179326\n\ \ },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\":\ \ 0.28,\n \"acc_stderr\": 0.04512608598542128,\n \"acc_norm\": 0.28,\n\ \ \"acc_norm_stderr\": 0.04512608598542128\n },\n \"harness|hendrycksTest-conceptual_physics|5\"\ : {\n \"acc\": 0.30638297872340425,\n \"acc_stderr\": 0.030135906478517563,\n\ \ \"acc_norm\": 0.30638297872340425,\n \"acc_norm_stderr\": 0.030135906478517563\n\ \ },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.22807017543859648,\n\ \ \"acc_stderr\": 0.03947152782669415,\n \"acc_norm\": 0.22807017543859648,\n\ \ \"acc_norm_stderr\": 0.03947152782669415\n },\n \"harness|hendrycksTest-electrical_engineering|5\"\ : {\n \"acc\": 0.3586206896551724,\n \"acc_stderr\": 0.03996629574876719,\n\ \ \"acc_norm\": 0.3586206896551724,\n \"acc_norm_stderr\": 0.03996629574876719\n\ \ },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\"\ : 0.2619047619047619,\n \"acc_stderr\": 0.022644212615525208,\n \"\ acc_norm\": 0.2619047619047619,\n \"acc_norm_stderr\": 0.022644212615525208\n\ \ },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.1746031746031746,\n\ \ \"acc_stderr\": 0.03395490020856113,\n \"acc_norm\": 0.1746031746031746,\n\ \ \"acc_norm_stderr\": 0.03395490020856113\n },\n \"harness|hendrycksTest-global_facts|5\"\ : {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \ \ \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n \ \ },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.2806451612903226,\n\ \ \"acc_stderr\": 0.0255606047210229,\n \"acc_norm\": 0.2806451612903226,\n\ \ \"acc_norm_stderr\": 0.0255606047210229\n },\n \"harness|hendrycksTest-high_school_chemistry|5\"\ : {\n \"acc\": 0.29064039408866993,\n \"acc_stderr\": 0.031947400722655415,\n\ \ \"acc_norm\": 0.29064039408866993,\n \"acc_norm_stderr\": 0.031947400722655415\n\ \ },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \ \ \"acc\": 0.26,\n \"acc_stderr\": 0.04408440022768079,\n \"acc_norm\"\ : 0.26,\n \"acc_norm_stderr\": 0.04408440022768079\n },\n \"harness|hendrycksTest-high_school_european_history|5\"\ : {\n \"acc\": 0.2787878787878788,\n \"acc_stderr\": 0.03501438706296781,\n\ \ \"acc_norm\": 0.2787878787878788,\n \"acc_norm_stderr\": 0.03501438706296781\n\ \ },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\"\ : 0.3383838383838384,\n \"acc_stderr\": 0.033711241426263014,\n \"\ acc_norm\": 0.3383838383838384,\n \"acc_norm_stderr\": 0.033711241426263014\n\ \ },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n\ \ \"acc\": 0.2849740932642487,\n \"acc_stderr\": 0.03257714077709661,\n\ \ \"acc_norm\": 0.2849740932642487,\n \"acc_norm_stderr\": 0.03257714077709661\n\ \ },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \ \ \"acc\": 0.32051282051282054,\n \"acc_stderr\": 0.02366129639396428,\n\ \ \"acc_norm\": 0.32051282051282054,\n \"acc_norm_stderr\": 0.02366129639396428\n\ \ },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"\ acc\": 0.24444444444444444,\n \"acc_stderr\": 0.02620276653465215,\n \ \ \"acc_norm\": 0.24444444444444444,\n \"acc_norm_stderr\": 0.02620276653465215\n\ \ },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \ \ \"acc\": 0.3277310924369748,\n \"acc_stderr\": 0.03048991141767323,\n \ \ \"acc_norm\": 0.3277310924369748,\n \"acc_norm_stderr\": 0.03048991141767323\n\ \ },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\"\ : 0.36423841059602646,\n \"acc_stderr\": 0.03929111781242742,\n \"\ acc_norm\": 0.36423841059602646,\n \"acc_norm_stderr\": 0.03929111781242742\n\ \ },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\"\ : 0.28073394495412846,\n \"acc_stderr\": 0.019266055045871613,\n \"\ acc_norm\": 0.28073394495412846,\n \"acc_norm_stderr\": 0.019266055045871613\n\ \ },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\"\ : 0.2361111111111111,\n \"acc_stderr\": 0.02896370257079102,\n \"\ acc_norm\": 0.2361111111111111,\n \"acc_norm_stderr\": 0.02896370257079102\n\ \ },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\"\ : 0.28431372549019607,\n \"acc_stderr\": 0.03166009679399812,\n \"\ acc_norm\": 0.28431372549019607,\n \"acc_norm_stderr\": 0.03166009679399812\n\ \ },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"\ acc\": 0.3333333333333333,\n \"acc_stderr\": 0.03068582059661079,\n \ \ \"acc_norm\": 0.3333333333333333,\n \"acc_norm_stderr\": 0.03068582059661079\n\ \ },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.32286995515695066,\n\ \ \"acc_stderr\": 0.031381476375754995,\n \"acc_norm\": 0.32286995515695066,\n\ \ \"acc_norm_stderr\": 0.031381476375754995\n },\n \"harness|hendrycksTest-human_sexuality|5\"\ : {\n \"acc\": 0.29770992366412213,\n \"acc_stderr\": 0.04010358942462203,\n\ \ \"acc_norm\": 0.29770992366412213,\n \"acc_norm_stderr\": 0.04010358942462203\n\ \ },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\":\ \ 0.3140495867768595,\n \"acc_stderr\": 0.042369647530410184,\n \"\ acc_norm\": 0.3140495867768595,\n \"acc_norm_stderr\": 0.042369647530410184\n\ \ },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.23148148148148148,\n\ \ \"acc_stderr\": 0.04077494709252627,\n \"acc_norm\": 0.23148148148148148,\n\ \ \"acc_norm_stderr\": 0.04077494709252627\n },\n \"harness|hendrycksTest-logical_fallacies|5\"\ : {\n \"acc\": 0.3006134969325153,\n \"acc_stderr\": 0.03602511318806771,\n\ \ \"acc_norm\": 0.3006134969325153,\n \"acc_norm_stderr\": 0.03602511318806771\n\ \ },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.3125,\n\ \ \"acc_stderr\": 0.043994650575715215,\n \"acc_norm\": 0.3125,\n\ \ \"acc_norm_stderr\": 0.043994650575715215\n },\n \"harness|hendrycksTest-management|5\"\ : {\n \"acc\": 0.2912621359223301,\n \"acc_stderr\": 0.044986763205729224,\n\ \ \"acc_norm\": 0.2912621359223301,\n \"acc_norm_stderr\": 0.044986763205729224\n\ \ },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.27350427350427353,\n\ \ \"acc_stderr\": 0.029202540153431194,\n \"acc_norm\": 0.27350427350427353,\n\ \ \"acc_norm_stderr\": 0.029202540153431194\n },\n \"harness|hendrycksTest-medical_genetics|5\"\ : {\n \"acc\": 0.32,\n \"acc_stderr\": 0.046882617226215034,\n \ \ \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.046882617226215034\n \ \ },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.31545338441890164,\n\ \ \"acc_stderr\": 0.01661750173876339,\n \"acc_norm\": 0.31545338441890164,\n\ \ \"acc_norm_stderr\": 0.01661750173876339\n },\n \"harness|hendrycksTest-moral_disputes|5\"\ : {\n \"acc\": 0.34104046242774566,\n \"acc_stderr\": 0.025522474632121615,\n\ \ \"acc_norm\": 0.34104046242774566,\n \"acc_norm_stderr\": 0.025522474632121615\n\ \ },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2446927374301676,\n\ \ \"acc_stderr\": 0.014378169884098447,\n \"acc_norm\": 0.2446927374301676,\n\ \ \"acc_norm_stderr\": 0.014378169884098447\n },\n \"harness|hendrycksTest-nutrition|5\"\ : {\n \"acc\": 0.3235294117647059,\n \"acc_stderr\": 0.02678745311190653,\n\ \ \"acc_norm\": 0.3235294117647059,\n \"acc_norm_stderr\": 0.02678745311190653\n\ \ },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.3311897106109325,\n\ \ \"acc_stderr\": 0.026730620728004913,\n \"acc_norm\": 0.3311897106109325,\n\ \ \"acc_norm_stderr\": 0.026730620728004913\n },\n \"harness|hendrycksTest-prehistory|5\"\ : {\n \"acc\": 0.33024691358024694,\n \"acc_stderr\": 0.026168298456732842,\n\ \ \"acc_norm\": 0.33024691358024694,\n \"acc_norm_stderr\": 0.026168298456732842\n\ \ },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"\ acc\": 0.25177304964539005,\n \"acc_stderr\": 0.025892151156709405,\n \ \ \"acc_norm\": 0.25177304964539005,\n \"acc_norm_stderr\": 0.025892151156709405\n\ \ },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.26010430247718386,\n\ \ \"acc_stderr\": 0.011204382887823829,\n \"acc_norm\": 0.26010430247718386,\n\ \ \"acc_norm_stderr\": 0.011204382887823829\n },\n \"harness|hendrycksTest-professional_medicine|5\"\ : {\n \"acc\": 0.3897058823529412,\n \"acc_stderr\": 0.0296246635811597,\n\ \ \"acc_norm\": 0.3897058823529412,\n \"acc_norm_stderr\": 0.0296246635811597\n\ \ },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"\ acc\": 0.272875816993464,\n \"acc_stderr\": 0.018020474148393577,\n \ \ \"acc_norm\": 0.272875816993464,\n \"acc_norm_stderr\": 0.018020474148393577\n\ \ },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.3181818181818182,\n\ \ \"acc_stderr\": 0.04461272175910508,\n \"acc_norm\": 0.3181818181818182,\n\ \ \"acc_norm_stderr\": 0.04461272175910508\n },\n \"harness|hendrycksTest-security_studies|5\"\ : {\n \"acc\": 0.4,\n \"acc_stderr\": 0.031362502409358936,\n \ \ \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.031362502409358936\n \ \ },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.31840796019900497,\n\ \ \"acc_stderr\": 0.032941184790540944,\n \"acc_norm\": 0.31840796019900497,\n\ \ \"acc_norm_stderr\": 0.032941184790540944\n },\n \"harness|hendrycksTest-us_foreign_policy|5\"\ : {\n \"acc\": 0.38,\n \"acc_stderr\": 0.04878317312145632,\n \ \ \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.04878317312145632\n \ \ },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.3855421686746988,\n\ \ \"acc_stderr\": 0.03789134424611549,\n \"acc_norm\": 0.3855421686746988,\n\ \ \"acc_norm_stderr\": 0.03789134424611549\n },\n \"harness|hendrycksTest-world_religions|5\"\ : {\n \"acc\": 0.2982456140350877,\n \"acc_stderr\": 0.03508771929824563,\n\ \ \"acc_norm\": 0.2982456140350877,\n \"acc_norm_stderr\": 0.03508771929824563\n\ \ },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.22276621787025705,\n\ \ \"mc1_stderr\": 0.014566506961396731,\n \"mc2\": 0.36274944744996707,\n\ \ \"mc2_stderr\": 0.01351391478780607\n },\n \"harness|winogrande|5\"\ : {\n \"acc\": 0.6953433307024467,\n \"acc_stderr\": 0.012935646499325307\n\ \ },\n \"harness|drop|3\": {\n \"em\": 0.0016778523489932886,\n \ \ \"em_stderr\": 0.00041913301788269156,\n \"f1\": 0.051564597315436486,\n\ \ \"f1_stderr\": 0.0012887815427970884\n },\n \"harness|gsm8k|5\":\ \ {\n \"acc\": 0.015163002274450341,\n \"acc_stderr\": 0.0033660229497263386\n\ \ }\n}\n```" repo_url: https://huggingface.co/souvik0306/falcon_7b_3epoch_norobots leaderboard_url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard point_of_contact: clementine@hf.co configs: - config_name: harness_arc_challenge_25 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|arc:challenge|25_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|arc:challenge|25_2023-11-23T18-17-00.996113.parquet' - config_name: harness_drop_3 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|drop|3_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|drop|3_2023-11-23T18-17-00.996113.parquet' - config_name: harness_gsm8k_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|gsm8k|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|gsm8k|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hellaswag_10 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hellaswag|10_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hellaswag|10_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-international_law|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-management|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-marketing|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-sociology|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-virology|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-international_law|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-management|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-marketing|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-sociology|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-virology|5_2023-11-23T18-17-00.996113.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_abstract_algebra_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_anatomy_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-anatomy|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-anatomy|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_astronomy_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-astronomy|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-astronomy|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_business_ethics_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-business_ethics|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-business_ethics|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_clinical_knowledge_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_college_biology_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-college_biology|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_biology|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_college_chemistry_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-college_chemistry|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_chemistry|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_college_computer_science_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-college_computer_science|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_computer_science|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_college_mathematics_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-college_mathematics|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_mathematics|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_college_medicine_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-college_medicine|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_medicine|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_college_physics_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-college_physics|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_physics|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_computer_security_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-computer_security|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-computer_security|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_conceptual_physics_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_econometrics_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-econometrics|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-econometrics|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_electrical_engineering_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_elementary_mathematics_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_formal_logic_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-formal_logic|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-formal_logic|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_global_facts_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-global_facts|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-global_facts|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_high_school_biology_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-high_school_biology|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_biology|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_high_school_chemistry_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_high_school_computer_science_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_high_school_european_history_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_high_school_geography_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-high_school_geography|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_geography|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_high_school_government_and_politics_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_high_school_macroeconomics_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_high_school_mathematics_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_high_school_microeconomics_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_high_school_physics_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-high_school_physics|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_physics|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_high_school_psychology_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_high_school_statistics_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_high_school_us_history_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_high_school_world_history_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_human_aging_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-human_aging|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-human_aging|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_human_sexuality_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-human_sexuality|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-human_sexuality|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_international_law_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-international_law|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-international_law|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_jurisprudence_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-jurisprudence|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-jurisprudence|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_logical_fallacies_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_machine_learning_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-machine_learning|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-machine_learning|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_management_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-management|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-management|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_marketing_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-marketing|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-marketing|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_medical_genetics_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-medical_genetics|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-medical_genetics|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_miscellaneous_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-miscellaneous|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-miscellaneous|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_moral_disputes_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-moral_disputes|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-moral_disputes|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_moral_scenarios_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_nutrition_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-nutrition|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-nutrition|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_philosophy_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-philosophy|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-philosophy|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_prehistory_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-prehistory|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-prehistory|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_professional_accounting_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-professional_accounting|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_accounting|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_professional_law_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-professional_law|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_law|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_professional_medicine_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-professional_medicine|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_medicine|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_professional_psychology_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-professional_psychology|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_psychology|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_public_relations_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-public_relations|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-public_relations|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_security_studies_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-security_studies|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-security_studies|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_sociology_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-sociology|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-sociology|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_us_foreign_policy_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_virology_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-virology|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-virology|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_hendrycksTest_world_religions_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|hendrycksTest-world_religions|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|hendrycksTest-world_religions|5_2023-11-23T18-17-00.996113.parquet' - config_name: harness_truthfulqa_mc_0 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|truthfulqa:mc|0_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|truthfulqa:mc|0_2023-11-23T18-17-00.996113.parquet' - config_name: harness_winogrande_5 data_files: - split: 2023_11_23T18_17_00.996113 path: - '**/details_harness|winogrande|5_2023-11-23T18-17-00.996113.parquet' - split: latest path: - '**/details_harness|winogrande|5_2023-11-23T18-17-00.996113.parquet' - config_name: results data_files: - split: 2023_11_23T18_17_00.996113 path: - results_2023-11-23T18-17-00.996113.parquet - split: latest path: - results_2023-11-23T18-17-00.996113.parquet --- # Dataset Card for Evaluation run of souvik0306/falcon_7b_3epoch_norobots ## Dataset Description - **Homepage:** - **Repository:** https://huggingface.co/souvik0306/falcon_7b_3epoch_norobots - **Paper:** - **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard - **Point of Contact:** clementine@hf.co ### Dataset Summary Dataset automatically created during the evaluation run of model [souvik0306/falcon_7b_3epoch_norobots](https://huggingface.co/souvik0306/falcon_7b_3epoch_norobots) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_souvik0306__falcon_7b_3epoch_norobots_public", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2023-11-23T18:17:00.996113](https://huggingface.co/datasets/open-llm-leaderboard/details_souvik0306__falcon_7b_3epoch_norobots_public/blob/main/results_2023-11-23T18-17-00.996113.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.30608343755546813, "acc_stderr": 0.032414744112033704, "acc_norm": 0.30836499703771436, "acc_norm_stderr": 0.03322598255455117, "mc1": 0.22276621787025705, "mc1_stderr": 0.014566506961396731, "mc2": 0.36274944744996707, "mc2_stderr": 0.01351391478780607, "em": 0.0016778523489932886, "em_stderr": 0.00041913301788269156, "f1": 0.051564597315436486, "f1_stderr": 0.0012887815427970884 }, "harness|arc:challenge|25": { "acc": 0.44112627986348124, "acc_stderr": 0.014509747749064664, "acc_norm": 0.4761092150170648, "acc_norm_stderr": 0.014594701798071654 }, "harness|hellaswag|10": { "acc": 0.5743875721967735, "acc_stderr": 0.0049342503908797785, "acc_norm": 0.7723561043616809, "acc_norm_stderr": 0.004184545675387351 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.28, "acc_stderr": 0.04512608598542128, "acc_norm": 0.28, "acc_norm_stderr": 0.04512608598542128 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.28888888888888886, "acc_stderr": 0.03915450630414251, "acc_norm": 0.28888888888888886, "acc_norm_stderr": 0.03915450630414251 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.25, "acc_stderr": 0.03523807393012047, "acc_norm": 0.25, "acc_norm_stderr": 0.03523807393012047 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.23, "acc_stderr": 0.04229525846816505, "acc_norm": 0.23, "acc_norm_stderr": 0.04229525846816505 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.2943396226415094, "acc_stderr": 0.028049186315695248, "acc_norm": 0.2943396226415094, "acc_norm_stderr": 0.028049186315695248 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.25, "acc_stderr": 0.03621034121889507, "acc_norm": 0.25, "acc_norm_stderr": 0.03621034121889507 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.26, "acc_stderr": 0.04408440022768079, "acc_norm": 0.26, "acc_norm_stderr": 0.04408440022768079 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.3179190751445087, "acc_stderr": 0.03550683989165582, "acc_norm": 0.3179190751445087, "acc_norm_stderr": 0.03550683989165582 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.27450980392156865, "acc_stderr": 0.04440521906179326, "acc_norm": 0.27450980392156865, "acc_norm_stderr": 0.04440521906179326 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.28, "acc_stderr": 0.04512608598542128, "acc_norm": 0.28, "acc_norm_stderr": 0.04512608598542128 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.30638297872340425, "acc_stderr": 0.030135906478517563, "acc_norm": 0.30638297872340425, "acc_norm_stderr": 0.030135906478517563 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.22807017543859648, "acc_stderr": 0.03947152782669415, "acc_norm": 0.22807017543859648, "acc_norm_stderr": 0.03947152782669415 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.3586206896551724, "acc_stderr": 0.03996629574876719, "acc_norm": 0.3586206896551724, "acc_norm_stderr": 0.03996629574876719 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.2619047619047619, "acc_stderr": 0.022644212615525208, "acc_norm": 0.2619047619047619, "acc_norm_stderr": 0.022644212615525208 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.1746031746031746, "acc_stderr": 0.03395490020856113, "acc_norm": 0.1746031746031746, "acc_norm_stderr": 0.03395490020856113 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.2806451612903226, "acc_stderr": 0.0255606047210229, "acc_norm": 0.2806451612903226, "acc_norm_stderr": 0.0255606047210229 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.29064039408866993, "acc_stderr": 0.031947400722655415, "acc_norm": 0.29064039408866993, "acc_norm_stderr": 0.031947400722655415 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.26, "acc_stderr": 0.04408440022768079, "acc_norm": 0.26, "acc_norm_stderr": 0.04408440022768079 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.2787878787878788, "acc_stderr": 0.03501438706296781, "acc_norm": 0.2787878787878788, "acc_norm_stderr": 0.03501438706296781 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.3383838383838384, "acc_stderr": 0.033711241426263014, "acc_norm": 0.3383838383838384, "acc_norm_stderr": 0.033711241426263014 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.2849740932642487, "acc_stderr": 0.03257714077709661, "acc_norm": 0.2849740932642487, "acc_norm_stderr": 0.03257714077709661 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.32051282051282054, "acc_stderr": 0.02366129639396428, "acc_norm": 0.32051282051282054, "acc_norm_stderr": 0.02366129639396428 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.24444444444444444, "acc_stderr": 0.02620276653465215, "acc_norm": 0.24444444444444444, "acc_norm_stderr": 0.02620276653465215 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.3277310924369748, "acc_stderr": 0.03048991141767323, "acc_norm": 0.3277310924369748, "acc_norm_stderr": 0.03048991141767323 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.36423841059602646, "acc_stderr": 0.03929111781242742, "acc_norm": 0.36423841059602646, "acc_norm_stderr": 0.03929111781242742 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.28073394495412846, "acc_stderr": 0.019266055045871613, "acc_norm": 0.28073394495412846, "acc_norm_stderr": 0.019266055045871613 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.2361111111111111, "acc_stderr": 0.02896370257079102, "acc_norm": 0.2361111111111111, "acc_norm_stderr": 0.02896370257079102 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.28431372549019607, "acc_stderr": 0.03166009679399812, "acc_norm": 0.28431372549019607, "acc_norm_stderr": 0.03166009679399812 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.3333333333333333, "acc_stderr": 0.03068582059661079, "acc_norm": 0.3333333333333333, "acc_norm_stderr": 0.03068582059661079 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.32286995515695066, "acc_stderr": 0.031381476375754995, "acc_norm": 0.32286995515695066, "acc_norm_stderr": 0.031381476375754995 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.29770992366412213, "acc_stderr": 0.04010358942462203, "acc_norm": 0.29770992366412213, "acc_norm_stderr": 0.04010358942462203 }, "harness|hendrycksTest-international_law|5": { "acc": 0.3140495867768595, "acc_stderr": 0.042369647530410184, "acc_norm": 0.3140495867768595, "acc_norm_stderr": 0.042369647530410184 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.23148148148148148, "acc_stderr": 0.04077494709252627, "acc_norm": 0.23148148148148148, "acc_norm_stderr": 0.04077494709252627 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.3006134969325153, "acc_stderr": 0.03602511318806771, "acc_norm": 0.3006134969325153, "acc_norm_stderr": 0.03602511318806771 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.3125, "acc_stderr": 0.043994650575715215, "acc_norm": 0.3125, "acc_norm_stderr": 0.043994650575715215 }, "harness|hendrycksTest-management|5": { "acc": 0.2912621359223301, "acc_stderr": 0.044986763205729224, "acc_norm": 0.2912621359223301, "acc_norm_stderr": 0.044986763205729224 }, "harness|hendrycksTest-marketing|5": { "acc": 0.27350427350427353, "acc_stderr": 0.029202540153431194, "acc_norm": 0.27350427350427353, "acc_norm_stderr": 0.029202540153431194 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.32, "acc_stderr": 0.046882617226215034, "acc_norm": 0.32, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.31545338441890164, "acc_stderr": 0.01661750173876339, "acc_norm": 0.31545338441890164, "acc_norm_stderr": 0.01661750173876339 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.34104046242774566, "acc_stderr": 0.025522474632121615, "acc_norm": 0.34104046242774566, "acc_norm_stderr": 0.025522474632121615 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.2446927374301676, "acc_stderr": 0.014378169884098447, "acc_norm": 0.2446927374301676, "acc_norm_stderr": 0.014378169884098447 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.3235294117647059, "acc_stderr": 0.02678745311190653, "acc_norm": 0.3235294117647059, "acc_norm_stderr": 0.02678745311190653 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.3311897106109325, "acc_stderr": 0.026730620728004913, "acc_norm": 0.3311897106109325, "acc_norm_stderr": 0.026730620728004913 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.33024691358024694, "acc_stderr": 0.026168298456732842, "acc_norm": 0.33024691358024694, "acc_norm_stderr": 0.026168298456732842 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.25177304964539005, "acc_stderr": 0.025892151156709405, "acc_norm": 0.25177304964539005, "acc_norm_stderr": 0.025892151156709405 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.26010430247718386, "acc_stderr": 0.011204382887823829, "acc_norm": 0.26010430247718386, "acc_norm_stderr": 0.011204382887823829 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.3897058823529412, "acc_stderr": 0.0296246635811597, "acc_norm": 0.3897058823529412, "acc_norm_stderr": 0.0296246635811597 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.272875816993464, "acc_stderr": 0.018020474148393577, "acc_norm": 0.272875816993464, "acc_norm_stderr": 0.018020474148393577 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.3181818181818182, "acc_stderr": 0.04461272175910508, "acc_norm": 0.3181818181818182, "acc_norm_stderr": 0.04461272175910508 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.4, "acc_stderr": 0.031362502409358936, "acc_norm": 0.4, "acc_norm_stderr": 0.031362502409358936 }, "harness|hendrycksTest-sociology|5": { "acc": 0.31840796019900497, "acc_stderr": 0.032941184790540944, "acc_norm": 0.31840796019900497, "acc_norm_stderr": 0.032941184790540944 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.38, "acc_stderr": 0.04878317312145632, "acc_norm": 0.38, "acc_norm_stderr": 0.04878317312145632 }, "harness|hendrycksTest-virology|5": { "acc": 0.3855421686746988, "acc_stderr": 0.03789134424611549, "acc_norm": 0.3855421686746988, "acc_norm_stderr": 0.03789134424611549 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.2982456140350877, "acc_stderr": 0.03508771929824563, "acc_norm": 0.2982456140350877, "acc_norm_stderr": 0.03508771929824563 }, "harness|truthfulqa:mc|0": { "mc1": 0.22276621787025705, "mc1_stderr": 0.014566506961396731, "mc2": 0.36274944744996707, "mc2_stderr": 0.01351391478780607 }, "harness|winogrande|5": { "acc": 0.6953433307024467, "acc_stderr": 0.012935646499325307 }, "harness|drop|3": { "em": 0.0016778523489932886, "em_stderr": 0.00041913301788269156, "f1": 0.051564597315436486, "f1_stderr": 0.0012887815427970884 }, "harness|gsm8k|5": { "acc": 0.015163002274450341, "acc_stderr": 0.0033660229497263386 } } ``` ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
Yama/augmath
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: answer dtype: string - name: question dtype: string - name: id dtype: string - name: context dtype: string splits: - name: train num_bytes: 8673014 num_examples: 28386 download_size: 833425 dataset_size: 8673014 --- # Dataset Card for "augmath" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
heliosprime/twitter_dataset_1713049791
--- dataset_info: features: - name: id dtype: string - name: tweet_content dtype: string - name: user_name dtype: string - name: user_id dtype: string - name: created_at dtype: string - name: url dtype: string - name: favourite_count dtype: int64 - name: scraped_at dtype: string - name: image_urls dtype: string splits: - name: train num_bytes: 12319 num_examples: 27 download_size: 9194 dataset_size: 12319 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "twitter_dataset_1713049791" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mHossain/buet_model_buet_test_data_paraphrase_detection
--- configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* dataset_info: features: - name: 'Unnamed: 0' dtype: int64 - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 7576560.9 num_examples: 36000 - name: test num_bytes: 841840.1 num_examples: 4000 download_size: 3715813 dataset_size: 8418401.0 --- # Dataset Card for "buet_model_buet_test_data_paraphrase_detection" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Juanid14317/UrduSentimentAnalysis
--- dataset_info: features: - name: text dtype: string - name: label dtype: int64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 22541332.2496945 num_examples: 13993 - name: test num_bytes: 1187233.750305499 num_examples: 737 download_size: 11767554 dataset_size: 23728566.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Atipico1/trivia-top5_preprocessed_with_o-u_case
--- dataset_info: features: - name: question dtype: string - name: answers sequence: string - name: ctxs list: - name: hasanswer dtype: bool - name: id dtype: string - name: score dtype: float64 - name: text dtype: string - name: title dtype: string - name: masked_query dtype: string - name: original_case list: - name: answer dtype: string - name: context dtype: string - name: distance dtype: string - name: question dtype: string - name: unans_case list: - name: answer dtype: string - name: context dtype: string - name: distance dtype: string - name: question dtype: string splits: - name: train num_bytes: 107507400 num_examples: 10000 - name: test num_bytes: 121815925 num_examples: 11313 download_size: 138962266 dataset_size: 229323325 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
davanstrien/autotrain-data-flyswot-jan
Invalid username or password.
hemachandher/final_dataset
--- dataset_info: features: - name: image struct: - name: bytes dtype: binary - name: path dtype: 'null' - name: text dtype: string splits: - name: train num_bytes: 138098403 num_examples: 1001 download_size: 100680621 dataset_size: 138098403 configs: - config_name: default data_files: - split: train path: data/train-* ---
Cybersoulja/djscrew
--- license: artistic-2.0 ---
EduardoPacheco/FoodSeg103
--- license: apache-2.0 task_categories: - image-segmentation task_ids: - semantic-segmentation size_categories: - n<1K dataset_info: features: - name: image dtype: image - name: label dtype: image splits: - name: train num_bytes: 1125278411.056 num_examples: 4983 - name: validation num_bytes: 114576466.17 num_examples: 2135 download_size: 1259085777 dataset_size: 1239854877.226 --- # Dataset Card for FoodSeg103 ## Table of Contents - [Dataset Card for FoodSeg103](#dataset-card-for-foodseg103) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Dataset Structure](#dataset-structure) - [Data categories](#data-categories) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization) - [Annotations](#annotations) - [Annotation process](#annotation-process) - [Refinement process](#refinement-process) - [Who are the annotators?](#who-are-the-annotators) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** [Dataset homepage](https://xiongweiwu.github.io/foodseg103.html) - **Repository:** [FoodSeg103-Benchmark-v1](https://github.com/LARC-CMU-SMU/FoodSeg103-Benchmark-v1) - **Paper:** [A Large-Scale Benchmark for Food Image Segmentation](https://arxiv.org/pdf/2105.05409.pdf) - **Point of Contact:** [Not Defined] ### Dataset Summary FoodSeg103 is a large-scale benchmark for food image segmentation. It contains 103 food categories and 7118 images with ingredient level pixel-wise annotations. The dataset is a curated sample from [Recipe1M](https://github.com/facebookresearch/inversecooking) and annotated and refined by human annotators. The dataset is split into 2 subsets: training set, validation set. The training set contains 4983 images and the validation set contains 2135 images. ### Supported Tasks and Leaderboards No leaderboard is available for this dataset at the moment. ## Dataset Structure ### Data categories | id | ingridient | | --- | ---- | | 0 | background | | 1 | candy | | 2 | egg tart | | 3 | french fries | | 4 | chocolate | | 5 | biscuit | | 6 | popcorn | | 7 | pudding | | 8 | ice cream | | 9 | cheese butter | | 10 | cake | | 11 | wine | | 12 | milkshake | | 13 | coffee | | 14 | juice | | 15 | milk | | 16 | tea | | 17 | almond | | 18 | red beans | | 19 | cashew | | 20 | dried cranberries | | 21 | soy | | 22 | walnut | | 23 | peanut | | 24 | egg | | 25 | apple | | 26 | date | | 27 | apricot | | 28 | avocado | | 29 | banana | | 30 | strawberry | | 31 | cherry | | 32 | blueberry | | 33 | raspberry | | 34 | mango | | 35 | olives | | 36 | peach | | 37 | lemon | | 38 | pear | | 39 | fig | | 40 | pineapple | | 41 | grape | | 42 | kiwi | | 43 | melon | | 44 | orange | | 45 | watermelon | | 46 | steak | | 47 | pork | | 48 | chicken duck | | 49 | sausage | | 50 | fried meat | | 51 | lamb | | 52 | sauce | | 53 | crab | | 54 | fish | | 55 | shellfish | | 56 | shrimp | | 57 | soup | | 58 | bread | | 59 | corn | | 60 | hamburg | | 61 | pizza | | 62 | hanamaki baozi | | 63 | wonton dumplings | | 64 | pasta | | 65 | noodles | | 66 | rice | | 67 | pie | | 68 | tofu | | 69 | eggplant | | 70 | potato | | 71 | garlic | | 72 | cauliflower | | 73 | tomato | | 74 | kelp | | 75 | seaweed | | 76 | spring onion | | 77 | rape | | 78 | ginger | | 79 | okra | | 80 | lettuce | | 81 | pumpkin | | 82 | cucumber | | 83 | white radish | | 84 | carrot | | 85 | asparagus | | 86 | bamboo shoots | | 87 | broccoli | | 88 | celery stick | | 89 | cilantro mint | | 90 | snow peas | | 91 | cabbage | | 92 | bean sprouts | | 93 | onion | | 94 | pepper | | 95 | green beans | | 96 | French beans | | 97 | king oyster mushroom | | 98 | shiitake | | 99 | enoki mushroom | | 100 | oyster mushroom | | 101 | white button mushroom | | 102 | salad | | 103 | other ingredients | ### Data Splits This dataset only contains two splits. A training split and a validation split with 4983 and 2135 images respectively. ## Dataset Creation ### Curation Rationale Select images from a large-scale recipe dataset and annotate them with pixel-wise segmentation masks. ### Source Data The dataset is a curated sample from [Recipe1M](https://github.com/facebookresearch/inversecooking). #### Initial Data Collection and Normalization After selecting the source of the data two more steps were added before image selection. 1. Recipe1M contains 1.5k ingredient categoris, but only the top 124 categories were selected + a 'other' category (further became 103). 2. Images should contain between 2 and 16 ingredients. 3. Ingredients should be visible and easy to annotate. Which then resulted in 7118 images. ### Annotations #### Annotation process Third party annotators were hired to annotate the images respecting the following guidelines: 1. Tag ingredients with appropriate categories. 2. Draw pixel-wise masks for each ingredient. 3. Ignore tiny regions (even if contains ingredients) with area covering less than 5% of the image. #### Refinement process The refinement process implemented the following steps: 1. Correct mislabelled ingredients. 2. Deleting unpopular categories that are assigned to less than 5 images (resulting in 103 categories in the final dataset). 3. Merging visually similar ingredient categories (e.g. orange and citrus) #### Who are the annotators? A third party company that was not mentioned in the paper. ## Additional Information ### Dataset Curators Authors of the paper [A Large-Scale Benchmark for Food Image Segmentation](https://arxiv.org/pdf/2105.05409.pdf). ### Licensing Information [Apache 2.0 license.](https://github.com/LARC-CMU-SMU/FoodSeg103-Benchmark-v1/blob/main/LICENSE) ### Citation Information ```bibtex @inproceedings{wu2021foodseg, title={A Large-Scale Benchmark for Food Image Segmentation}, author={Wu, Xiongwei and Fu, Xin and Liu, Ying and Lim, Ee-Peng and Hoi, Steven CH and Sun, Qianru}, booktitle={Proceedings of ACM international conference on Multimedia}, year={2021} } ```
pietrolesci/mnli-stats
--- dataset_info: - config_name: pietrolesci__bert-base-uncased_mnli_53fb0761e0 features: - name: epoch dtype: int32 - name: uid dtype: int64 - name: logits sequence: float64 - name: loss dtype: float64 - name: gamma dtype: float64 - name: grad_1norm dtype: float64 - name: grad_2norm dtype: float64 - name: grad_infnorm dtype: float64 - name: label dtype: int32 splits: - name: epoch1 num_bytes: 33576024 num_examples: 392702 - name: epoch20 num_bytes: 33576024 num_examples: 392702 - name: epoch12 num_bytes: 33576024 num_examples: 392702 - name: epoch6 num_bytes: 33576024 num_examples: 392702 - name: epoch3 num_bytes: 33576024 num_examples: 392702 - name: epoch14 num_bytes: 33576024 num_examples: 392702 - name: epoch17 num_bytes: 33576024 num_examples: 392702 - name: epoch9 num_bytes: 33576024 num_examples: 392702 - name: epoch5 num_bytes: 33576024 num_examples: 392702 - name: epoch11 num_bytes: 33576024 num_examples: 392702 - name: epoch15 num_bytes: 33576024 num_examples: 392702 - name: epoch16 num_bytes: 33576024 num_examples: 392702 - name: epoch19 num_bytes: 33576024 num_examples: 392702 - name: epoch13 num_bytes: 33576024 num_examples: 392702 - name: epoch7 num_bytes: 33576024 num_examples: 392702 - name: epoch8 num_bytes: 33576024 num_examples: 392702 - name: epoch10 num_bytes: 33576024 num_examples: 392702 - name: epoch18 num_bytes: 33576024 num_examples: 392702 - name: epoch2 num_bytes: 33576024 num_examples: 392702 - name: epoch4 num_bytes: 33576024 num_examples: 392702 download_size: 281263306 dataset_size: 671520480 - config_name: pietrolesci__bert-tiny_mnli_cdc7ea0d50 features: - name: epoch dtype: int32 - name: uid dtype: int64 - name: logits sequence: float64 - name: loss dtype: float64 - name: gamma dtype: float64 - name: grad_1norm dtype: float64 - name: grad_2norm dtype: float64 - name: grad_infnorm dtype: float64 - name: label dtype: int32 splits: - name: epoch10 num_bytes: 33576024 num_examples: 392702 - name: epoch18 num_bytes: 33576024 num_examples: 392702 - name: epoch2 num_bytes: 33576024 num_examples: 392702 - name: epoch1 num_bytes: 33576024 num_examples: 392702 - name: epoch20 num_bytes: 33576024 num_examples: 392702 - name: epoch12 num_bytes: 33576024 num_examples: 392702 - name: epoch3 num_bytes: 33576024 num_examples: 392702 - name: epoch6 num_bytes: 33576024 num_examples: 392702 - name: epoch4 num_bytes: 33576024 num_examples: 392702 - name: epoch11 num_bytes: 33576024 num_examples: 392702 - name: epoch16 num_bytes: 33576024 num_examples: 392702 - name: epoch15 num_bytes: 33576024 num_examples: 392702 - name: epoch9 num_bytes: 33576024 num_examples: 392702 - name: epoch17 num_bytes: 33576024 num_examples: 392702 - name: epoch14 num_bytes: 33576024 num_examples: 392702 - name: epoch5 num_bytes: 33576024 num_examples: 392702 - name: epoch19 num_bytes: 33576024 num_examples: 392702 - name: epoch7 num_bytes: 33576024 num_examples: 392702 - name: epoch8 num_bytes: 33576024 num_examples: 392702 - name: epoch13 num_bytes: 33576024 num_examples: 392702 download_size: 207493740 dataset_size: 671520480 configs: - config_name: pietrolesci__bert-base-uncased_mnli_53fb0761e0 data_files: - split: epoch1 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch1-* - split: epoch20 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch20-* - split: epoch12 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch12-* - split: epoch6 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch6-* - split: epoch3 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch3-* - split: epoch14 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch14-* - split: epoch17 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch17-* - split: epoch9 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch9-* - split: epoch5 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch5-* - split: epoch11 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch11-* - split: epoch15 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch15-* - split: epoch16 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch16-* - split: epoch19 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch19-* - split: epoch13 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch13-* - split: epoch7 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch7-* - split: epoch8 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch8-* - split: epoch10 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch10-* - split: epoch18 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch18-* - split: epoch2 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch2-* - split: epoch4 path: pietrolesci__bert-base-uncased_mnli_53fb0761e0/epoch4-* - config_name: pietrolesci__bert-tiny_mnli_cdc7ea0d50 data_files: - split: epoch10 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch10-* - split: epoch18 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch18-* - split: epoch2 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch2-* - split: epoch1 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch1-* - split: epoch20 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch20-* - split: epoch12 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch12-* - split: epoch3 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch3-* - split: epoch6 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch6-* - split: epoch4 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch4-* - split: epoch11 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch11-* - split: epoch16 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch16-* - split: epoch15 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch15-* - split: epoch9 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch9-* - split: epoch17 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch17-* - split: epoch14 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch14-* - split: epoch5 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch5-* - split: epoch19 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch19-* - split: epoch7 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch7-* - split: epoch8 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch8-* - split: epoch13 path: pietrolesci__bert-tiny_mnli_cdc7ea0d50/epoch13-* ---
FanChen0116/syn_few0_32500_chat_all_data_pvi
--- dataset_info: features: - name: id dtype: int64 - name: tokens sequence: string - name: labels sequence: class_label: names: '0': O '1': I-time '2': B-date '3': B-last_name '4': B-people '5': I-date '6': I-people '7': I-last_name '8': I-first_name '9': B-first_name '10': B-time - name: request_slot sequence: string splits: - name: train num_bytes: 3934237 num_examples: 22975 - name: validation num_bytes: 646729 num_examples: 3731 - name: test num_bytes: 646729 num_examples: 3731 download_size: 0 dataset_size: 5227695 --- # Dataset Card for "syn_few0_32500_chat_all_data_pvi" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
bruno-cotrim/arch-max-blender-proj
--- license: apache-2.0 ---
chargoddard/rpguild
--- language: - en license: cc-by-nc-4.0 size_categories: - 100K<n<1M task_categories: - conversational - text-generation dataset_info: - config_name: default features: - name: username dtype: string - name: char_name dtype: string - name: bio dtype: string - name: context list: - name: text dtype: string - name: username dtype: string - name: char_name dtype: string - name: reply dtype: string - name: has_nameless dtype: bool - name: char_confidence dtype: float64 splits: - name: train num_bytes: 1921588254 num_examples: 140469 download_size: 764073630 dataset_size: 1921588254 - config_name: grammar_filtered features: - name: username dtype: string - name: char_name dtype: string - name: bio dtype: string - name: context list: - name: char_name dtype: string - name: text dtype: string - name: username dtype: string - name: reply dtype: string - name: char_confidence dtype: float64 splits: - name: train num_bytes: 371438765 num_examples: 27053 download_size: 166606326 dataset_size: 371438765 - config_name: high_confidence features: - name: username dtype: string - name: char_name dtype: string - name: bio dtype: string - name: context list: - name: text dtype: string - name: username dtype: string - name: char_name dtype: string - name: reply dtype: string - name: has_nameless dtype: bool - name: char_confidence dtype: float64 splits: - name: train num_bytes: 949419370.7676569 num_examples: 69403 download_size: 386317057 dataset_size: 949419370.7676569 - config_name: pruned features: - name: username dtype: string - name: char_name dtype: string - name: bio dtype: string - name: context list: - name: text dtype: string - name: username dtype: string - name: char_name dtype: string - name: reply dtype: string - name: has_nameless dtype: bool - name: char_confidence dtype: float64 splits: - name: train num_bytes: 782484734.2032762 num_examples: 57200 download_size: 326987882 dataset_size: 782484734.2032762 configs: - config_name: default data_files: - split: train path: data/train-* - config_name: grammar_filtered data_files: - split: train path: grammar_filtered/train-* - config_name: high_confidence data_files: - split: train path: high_confidence/train-* - config_name: pruned data_files: - split: train path: pruned/train-* tags: - roleplay - not-for-all-audiences --- Data scraped from [roleplayerguild](https://www.roleplayerguild.com/) and parsed into prompts with a conversation history and associated character bio. Thanks to an anonymous internet stranger for the original scrape. As usernames can be associated with multiple character biographies, assignment of characters is a little fuzzy. The `char_confidence` feature reflects how likely this assignment is to be correct. Not all posts in the conversation history necessarily have an associated character name. The column `has_nameless` reflects this. Each row should fit into 4096 Llama tokens, depending on your prompt format - there's built in slack of 128 tokens + 8 per message. There are a few configurations available. I *highly* recommend not using the default configuration as it contains a lot of questionable quality data. The options, in order of increasing usefulness: * `default` - ocean of garbage with some gems * `high_confidence` - only entries with no nameless posts that are highly likely to be assigned a correct `char_name`/`bio` * `pruned` - Further filtered from `high_confidence` to remove common types of junk replies * `grammar_filtered` - run through a grammar checker to remove rows with too many mistakes The `grammar_filtered` configuration is almost certainly what you want to be using. (Unless you want to do your own processing and filtering.)
togethercomputer/llama-instruct
--- license: llama2 language: - en --- # llama-instruct This dataset was used to finetune [Llama-2-7B-32K-Instruct](https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct). We follow the distillation paradigm that is used by [Alpaca](https://crfm.stanford.edu/2023/03/13/alpaca.html), [Vicuna](https://lmsys.org/blog/2023-03-30-vicuna/), [WizardLM](https://arxiv.org/abs/2304.12244), [Orca](https://www.microsoft.com/en-us/research/publication/orca-progressive-learning-from-complex-explanation-traces-of-gpt-4/) — producing instructions by querying a powerful LLM, which in our case, is the [Llama-2-70B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) model released by [Meta](https://ai.meta.com/llama/). To build [Llama-2-7B-32K-Instruct](https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct), we collect instructions from 19K human inputs extracted from [ShareGPT-90K](https://huggingface.co/datasets/philschmid/sharegpt-raw) (only using human inputs, not ChatGPT outputs). The actual script handles multi-turn conversations and also supports restarting and caching via a SQLite3 database. You can find the full script [here](https://github.com/togethercomputer/Llama-2-7B-32K-Instruct/blob/main/scripts/distill.py), with merely 122 lines! The output of this step is a jsonl file, each line corresponding to one conversation: ``` {"text": "[INST] ... instruction ... [/INST] ... answer ... [INST] ... instruction ... [/INST] ..."} {"text": "[INST] ... instruction ... [/INST] ... answer ... [INST] ... instruction ... [/INST] ..."} {"text": "[INST] ... instruction ... [/INST] ... answer ... [INST] ... instruction ... [/INST] ..."} ``` For more details, please refer to the [Github repo](https://github.com/togethercomputer/Llama-2-7B-32K-Instruct). ## Languages The language of the data is entirely English.
saibo/bookcorpus_compact_1024_shard5_of_10_meta
--- dataset_info: features: - name: text dtype: string - name: concept_with_offset dtype: string - name: cid_arrangement sequence: int32 - name: schema_lengths sequence: int64 - name: topic_entity_mask sequence: int64 - name: text_lengths sequence: int64 splits: - name: train num_bytes: 7507064864 num_examples: 61605 download_size: 1650231022 dataset_size: 7507064864 --- # Dataset Card for "bookcorpus_compact_1024_shard5_of_10_meta" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
indonlp/NusaX-senti
--- pretty_name: NusaX-senti annotations_creators: - expert-generated language_creators: - expert-generated license: - cc-by-sa-4.0 multilinguality: - multilingual language: - ace - ban - bjn - bug - en - id - jv - mad - min - nij - su - bbc size_categories: - 10K<n<100K source_datasets: - original task_categories: - text-classification task_ids: - sentiment-classification dataset_info: features: - name: id dtype: string - name: text dtype: string - name: lang dtype: string - name: label dtype: class_label: names: 0: negative 1: neutral 2: positive --- # Dataset Card for NusaX-Senti ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** [GitHub](https://github.com/IndoNLP/nusax/tree/main/datasets/sentiment) - **Paper:** [EACL 2022](https://arxiv.org/abs/2205.15960) - **Point of Contact:** [GitHub](https://github.com/IndoNLP/nusax/tree/main/datasets/sentiment) ### Dataset Summary NusaX is a high-quality multilingual parallel corpus that covers 12 languages, Indonesian, English, and 10 Indonesian local languages, namely Acehnese, Balinese, Banjarese, Buginese, Madurese, Minangkabau, Javanese, Ngaju, Sundanese, and Toba Batak. NusaX-Senti is a 3-labels (positive, neutral, negative) sentiment analysis dataset for 10 Indonesian local languages + Indonesian and English. ### Supported Tasks and Leaderboards - Sentiment analysis for Indonesian languages ### Languages - ace: acehnese, - ban: balinese, - bjn: banjarese, - bug: buginese, - eng: english, - ind: indonesian, - jav: javanese, - mad: madurese, - min: minangkabau, - nij: ngaju, - sun: sundanese, - bbc: toba_batak, ## Dataset Creation ### Curation Rationale There is a shortage of NLP research and resources for the Indonesian languages, despite the country having over 700 languages. With this in mind, we have created this dataset to support future research for the underrepresented languages in Indonesia. ### Source Data #### Initial Data Collection and Normalization NusaX-senti is a dataset for sentiment analysis in Indonesian that has been expertly translated by native speakers. #### Who are the source language producers? The data was produced by humans (native speakers). ### Annotations #### Annotation process NusaX-senti is derived from SmSA, which is the biggest publicly available dataset for Indonesian sentiment analysis. It comprises of comments and reviews from multiple online platforms. To ensure the quality of our dataset, we have filtered it by removing any abusive language and personally identifying information by manually reviewing all sentences. To ensure balance in the label distribution, we randomly picked 1,000 samples through stratified sampling and then translated them to the corresponding languages. #### Who are the annotators? Native speakers of both Indonesian and the corresponding languages. Annotators were compensated based on the number of translated samples. ### Personal and Sensitive Information Personal information is removed. ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases NusaX is created from review text. These data sources may contain some bias. ### Other Known Limitations No other known limitations ## Additional Information ### Licensing Information CC-BY-SA 4.0. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. Please contact authors for any information on the dataset. ### Citation Information ``` @misc{winata2022nusax, title={NusaX: Multilingual Parallel Sentiment Dataset for 10 Indonesian Local Languages}, author={Winata, Genta Indra and Aji, Alham Fikri and Cahyawijaya, Samuel and Mahendra, Rahmad and Koto, Fajri and Romadhony, Ade and Kurniawan, Kemal and Moeljadi, David and Prasojo, Radityo Eko and Fung, Pascale and Baldwin, Timothy and Lau, Jey Han and Sennrich, Rico and Ruder, Sebastian}, year={2022}, eprint={2205.15960}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Contributions Thanks to [@afaji](https://github.com/afaji) for adding this dataset.
yaoandy107/moba-audio
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: sentence dtype: string - name: conf dtype: float64 splits: - name: train num_bytes: 6540633.0 num_examples: 695 download_size: 3456572 dataset_size: 6540633.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
mpingale/guanaco-llama2-1k
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 1654448 num_examples: 1000 download_size: 966693 dataset_size: 1654448 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "guanaco-llama2-1k" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mHossain/final_train_v2_120000
--- dataset_info: features: - name: 'Unnamed: 0' dtype: int64 - name: input_text dtype: string - name: target_text dtype: string - name: prefix dtype: string splits: - name: train num_bytes: 9133587.0 num_examples: 27000 - name: test num_bytes: 1014843.0 num_examples: 3000 download_size: 4454698 dataset_size: 10148430.0 --- # Dataset Card for "final_train_v2_120000" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
israfelsr/img-wikipedia-simple
--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - en license: [] multilinguality: - monolingual pretty_name: image-wikipedia-simple size_categories: [] source_datasets: [] task_categories: - image-to-text --- # Dataset Card for [Dataset Name] ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary [More Information Needed] ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed]
Francesco/uno-deck
--- dataset_info: features: - name: image_id dtype: int64 - name: image dtype: image - name: width dtype: int32 - name: height dtype: int32 - name: objects sequence: - name: id dtype: int64 - name: area dtype: int64 - name: bbox sequence: float32 length: 4 - name: category dtype: class_label: names: '0': uno-deck '1': 0 '2': 1 '3': 2 '4': 3 '5': 4 '6': 5 '7': 6 '8': 7 '9': 8 '10': 9 '11': 10 '12': 11 '13': 12 '14': 13 '15': 14 annotations_creators: - crowdsourced language_creators: - found language: - en license: - cc multilinguality: - monolingual size_categories: - 1K<n<10K source_datasets: - original task_categories: - object-detection task_ids: [] pretty_name: uno-deck tags: - rf100 --- # Dataset Card for uno-deck ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/uno-deck - **Point of Contact:** francesco.zuppichini@gmail.com ### Dataset Summary uno-deck ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/uno-deck ### Citation Information ``` @misc{ uno-deck, title = { uno deck Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/uno-deck } }, url = { https://universe.roboflow.com/object-detection/uno-deck }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
WmVernon/nfl-wk14-2023-stats
--- license: apache-2.0 ---
SaffalPoosh/deepFashion-with-masks
--- license: apache-2.0 tags: - code pretty_name: fashion clothes segmentation dataset_info: features: - name: images dtype: image - name: gender dtype: string - name: pose dtype: string - name: cloth_type dtype: string - name: pid dtype: string - name: caption dtype: string - name: mask dtype: image - name: mask_overlay dtype: image splits: - name: train num_bytes: 1821511821.448 num_examples: 40658 download_size: 1449380618 dataset_size: 1821511821.448 --- # Dataset Dataset name is deepfashion2 datasest, the dataset is in raw form with annotations, for original dataset repo. see `https://github.com/switchablenorms/DeepFashion2` This dataset is just the extracted version of original deepfashion2 dataset and can be used for training **Controlnet Model**.
Codec-SUPERB/vocalset_unit
--- dataset_info: features: - name: id dtype: string - name: unit sequence: sequence: int64 splits: - name: academicodec_hifi_16k_320d num_bytes: 50680575 num_examples: 3612 - name: academicodec_hifi_16k_320d_large_uni num_bytes: 50680575 num_examples: 3612 - name: academicodec_hifi_24k_320d num_bytes: 75967935 num_examples: 3612 - name: audiodec_24k_320d num_bytes: 162173727 num_examples: 3612 - name: dac_16k num_bytes: 194105311 num_examples: 3612 - name: dac_24k num_bytes: 763939231 num_examples: 3612 - name: dac_44k num_bytes: 245367967 num_examples: 3612 - name: encodec_24k_12bps num_bytes: 304011679 num_examples: 3612 - name: encodec_24k_1_5bps num_bytes: 38095231 num_examples: 3612 - name: encodec_24k_24bps num_bytes: 607916191 num_examples: 3612 - name: encodec_24k_3bps num_bytes: 76083295 num_examples: 3612 - name: encodec_24k_6bps num_bytes: 152059423 num_examples: 3612 - name: funcodec_en_libritts_16k_gr1nq32ds320 num_bytes: 405619103 num_examples: 3612 - name: funcodec_en_libritts_16k_gr8nq32ds320 num_bytes: 405619103 num_examples: 3612 - name: funcodec_en_libritts_16k_nq32ds320 num_bytes: 405617311 num_examples: 3612 - name: funcodec_en_libritts_16k_nq32ds640 num_bytes: 203325599 num_examples: 3612 - name: funcodec_zh_en_16k_nq32ds320 num_bytes: 405617311 num_examples: 3612 - name: funcodec_zh_en_16k_nq32ds640 num_bytes: 203325599 num_examples: 3612 - name: speech_tokenizer_16k num_bytes: 101484703 num_examples: 3612 download_size: 729684692 dataset_size: 4851689869 configs: - config_name: default data_files: - split: academicodec_hifi_16k_320d path: data/academicodec_hifi_16k_320d-* - split: academicodec_hifi_16k_320d_large_uni path: data/academicodec_hifi_16k_320d_large_uni-* - split: academicodec_hifi_24k_320d path: data/academicodec_hifi_24k_320d-* - split: audiodec_24k_320d path: data/audiodec_24k_320d-* - split: dac_16k path: data/dac_16k-* - split: dac_24k path: data/dac_24k-* - split: dac_44k path: data/dac_44k-* - split: encodec_24k_12bps path: data/encodec_24k_12bps-* - split: encodec_24k_1_5bps path: data/encodec_24k_1_5bps-* - split: encodec_24k_24bps path: data/encodec_24k_24bps-* - split: encodec_24k_3bps path: data/encodec_24k_3bps-* - split: encodec_24k_6bps path: data/encodec_24k_6bps-* - split: funcodec_en_libritts_16k_gr1nq32ds320 path: data/funcodec_en_libritts_16k_gr1nq32ds320-* - split: funcodec_en_libritts_16k_gr8nq32ds320 path: data/funcodec_en_libritts_16k_gr8nq32ds320-* - split: funcodec_en_libritts_16k_nq32ds320 path: data/funcodec_en_libritts_16k_nq32ds320-* - split: funcodec_en_libritts_16k_nq32ds640 path: data/funcodec_en_libritts_16k_nq32ds640-* - split: funcodec_zh_en_16k_nq32ds320 path: data/funcodec_zh_en_16k_nq32ds320-* - split: funcodec_zh_en_16k_nq32ds640 path: data/funcodec_zh_en_16k_nq32ds640-* - split: speech_tokenizer_16k path: data/speech_tokenizer_16k-* ---
AMead10/Universal-Verified-Camel
--- dataset_info: features: - name: conversation list: - name: input dtype: string - name: output dtype: string - name: system dtype: string splits: - name: train num_bytes: 326725 num_examples: 127 download_size: 168364 dataset_size: 326725 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "Universal-Verified-Camel" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
wjm123/wjm123
--- license: afl-3.0 ---
AIrtisian/testcsv
--- license: other ---
MatsuoDochiai/Took
--- license: openrail ---
wav2gloss/fieldwork
--- license: cc-by-nc-sa-4.0 dataset_info: features: - name: id dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string - name: language dtype: string - name: speaker dtype: string - name: surface dtype: string - name: underlying dtype: string - name: gloss dtype: string - name: translation dtype: string - name: translation_language dtype: string - name: length dtype: float32 - name: discard dtype: bool splits: - name: train num_bytes: 4841476668.601 num_examples: 48987 - name: validation num_bytes: 879881255.295 num_examples: 7715 - name: test num_bytes: 2556166473.915 num_examples: 23759 download_size: 8175211998 dataset_size: 8277524397.811 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- # Wav2Gloss Fieldwork Corpus ## Description The Wav2Gloss Fieldwork corpus is a collection of linguistic field recordings which have been previously transcribed and glossed. The dataset is used by Wav2Gloss project to develop machine learning models that can automatically generate transcriptions, morphological segmentations, glosses, and translations, with the goal of helping linguists annotate field data. ## Statistics See below for a breakdown of languages by training and dev/test hours. | Glottocode | Name | CC Type | Train (h) | Dev+Test (h) | | ---------- | -------------------- | -------- | --------- | ------------ | | `beja1238` | Beja | BY-NC | 1.55 | 0.29 | | `ruul1235` | Ruuli | BY | 0.96 | 0.28 | | `texi1237` | Texistepec Popoluca | BY | 0.84 | 0.26 | | `komn1238` | Komnzo | BY | 0.73 | 0.42 | | `arap1274` | Arapaho | BY | 0.56 | 0.88 | | `goro1270` | Gorwaa | BY | 0.52 | 0.45 | | `teop1238` | Teop | BY | 0.52 | 0.52 | | `nngg1234` | Nǁng | BY | 0.52 | 0.33 | | `sumi1235` | Sümi | BY | 0.40 | 0.40 | | `jeju1234` | Jejuan | BY | 0.38 | 0.65 | | `bora1263` | Bora | BY | 0.23 | 1.44 | | `apah1238` | Yali (Apahapsili) | BY-NC-SA | 0.18 | 0.27 | | `port1286` | Daakie | BY | 0.14 | 0.75 | | `savo1255` | Savosavo | BY | 0.10 | 1.20 | | `trin1278` | Mojeño Trinitario | BY | - | 1.56 | | `sout2856` | Nafsan (South Efate) | BY-NC-SA | - | 1.55 | | `pnar1238` | Pnar | BY-NC | - | 0.91 | | `kaka1265` | Kakabe | BY | - | 0.90 | | `vera1241` | Vera'a | BY | 1.02 | 0.97 | | `tond1251` | Tondano | BY | 0.22 | 0.67 | | `taul1251` | Tulil | BY | - | 1.18 | | `arta1239` | Arta | BY | - | 0.91 | | `nort2641` | Northern Kurdish | BY | - | 0.86 | | `tehr1242` | Persian | BY | - | 0.82 | | `taba1259` | Tabasaran | BY | - | 0.79 | | `sanz1248` | Sanzhi Dargwa | BY | - | 0.67 | | `kach1280` | Jinghpaw | BY | - | 0.66 | | `mand1415` | Mandarin | BY | - | 0.66 | | `sumb1241` | Sumbawa | BY | - | 0.63 | | `kara1499` | Kalamang | BY | - | 0.59 | | `slav1254` | Slavomolisano | BY-NC | 1.01 | 0.96 | | `balk1252` | Balkan Romani | BY-NC-SA | - | 0.35 | | `dolg1241` | Dolgan | BY-NC-SA | 11.64 | 1.23 | | `kama1378` | Kamas | BY-NC-SA | 9.91 | 1.15 | | `selk1253` | Selkup | BY-NC-SA | 1.70 | 1.15 | | `even1259` | Evenki | BY-NC-SA | 1.54 | 1.13 | | `ainu1240` | Ainu | BY-SA | 7.12 | 1.13 | ## Citation ```bibtex ``` ## Corpora citations #### Yali (Apahapsili) (apah1238) ```bibtex @incollection{doreco-apah1238, address = {Berlin \& Lyon}, author = {Riesberg, Sonja}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Yali (Apahapsili) DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/apah1238}, doi = {10.34847/nkl.9d91nkq2}, urldate = {07/10/2023}, year = {2022} } ``` #### Arapaho (arap1274) ```bibtex @incollection{doreco-arap1274, address = {Berlin \& Lyon}, author = {Cowell, Andrew}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Arapaho DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/arap1274}, doi = {10.34847/nkl.36f5r1b6}, urldate = {07/10/2023}, year = {2022} } ``` #### Beja (beja1238) ```bibtex @incollection{doreco-beja1238, address = {Berlin \& Lyon}, author = {Vanhove, Martine}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Beja DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/beja1238}, doi = {10.34847/nkl.edd011t1}, urldate = {07/10/2023}, year = {2022} } ``` #### Bora (bora1263) ```bibtex @incollection{doreco-bora1263, address = {Berlin \& Lyon}, author = {Seifart, Frank}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Bora DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/bora1263}, doi = {10.34847/nkl.6eaf5laq}, urldate = {07/10/2023}, year = {2022} } ``` #### Gorwaa (goro1270) ```bibtex @incollection{doreco-goro1270, address = {Berlin \& Lyon}, author = {Harvey, Andrew}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Gorwaa DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/goro1270}, doi = {10.34847/nkl.a4b4ijj2}, urldate = {07/10/2023}, year = {2022} } ``` #### Jejuan (jeju1234) ```bibtex @incollection{doreco-jeju1234, address = {Berlin \& Lyon}, author = {Kim, Soung-U}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Jejuan DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/jeju1234}, doi = {10.34847/nkl.06ebrk38}, urldate = {07/10/2023}, year = {2022} } ``` #### Kakabe (kaka1265) ```bibtex @incollection{doreco-kaka1265, address = {Berlin \& Lyon}, author = {Vydrina, Alexandra}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Kakabe DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/kaka1265}, doi = {10.34847/nkl.d5aeu9t6}, urldate = {07/10/2023}, year = {2022} } ``` #### Komnzo (komn1238) ```bibtex @incollection{doreco-komn1238, address = {Berlin \& Lyon}, author = {Döhler, Christian}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Komnzo DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/komn1238}, doi = {10.34847/nkl.c5e6dudv}, urldate = {07/10/2023}, year = {2022} } ``` #### Nǁng (nngg1234) ```bibtex @incollection{doreco-nngg1234, address = {Berlin \& Lyon}, author = {Güldemann, Tom and Ernszt, Martina and Siegmund, Sven and Witzlack-Makarevich, Alena}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Nǁng DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/nngg1234}, doi = {10.34847/nkl.f6c37fi0}, urldate = {07/10/2023}, year = {2022} } ``` #### Pnar (pnar1238) ```bibtex @incollection{doreco-pnar1238, address = {Berlin \& Lyon}, author = {Ring, Hiram}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Pnar DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/pnar1238}, doi = {10.34847/nkl.5ba1062k}, urldate = {07/10/2023}, year = {2022} } ``` #### Daakie (port1286) ```bibtex @incollection{doreco-port1286, address = {Berlin \& Lyon}, author = {Krifka, Manfred}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Daakie DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/port1286}, doi = {10.34847/nkl.efeav5l9}, urldate = {07/10/2023}, year = {2022} } ``` #### Ruuli (ruul1235) ```bibtex @incollection{doreco-ruul1235, address = {Berlin \& Lyon}, author = {Witzlack-Makarevich, Alena and Namyalo, Saudah and Kiriggwajjo, Anatol and Molochieva, Zarina}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Ruuli DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/ruul1235}, doi = {10.34847/nkl.fde4pp1u}, urldate = {07/10/2023}, year = {2022} } ``` #### Savosavo (savo1255) ```bibtex @incollection{doreco-savo1255, address = {Berlin \& Lyon}, author = {Wegener, Claudia}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Savosavo DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/savo1255}, doi = {10.34847/nkl.b74d1b33}, urldate = {07/10/2023}, year = {2022} } ``` #### Nafsan (South Efate) (sout2856) ```bibtex @incollection{doreco-sout2856, address = {Berlin \& Lyon}, author = {Thieberger, Nick}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Nafsan (South Efate) DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/sout2856}, doi = {10.34847/nkl.ba4f760l}, urldate = {07/10/2023}, year = {2022} } ``` #### Sümi (sumi1235) ```bibtex @incollection{doreco-sumi1235, address = {Berlin \& Lyon}, author = {Teo, Amos}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Sümi DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/sumi1235}, doi = {10.34847/nkl.5ad4t01p}, urldate = {07/10/2023}, year = {2022} } ``` #### Teop (teop1238) ```bibtex @incollection{doreco-teop1238, address = {Berlin \& Lyon}, author = {Mosel, Ulrike}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Teop DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/teop1238}, doi = {10.34847/nkl.9322sdf2}, urldate = {07/10/2023}, year = {2022} } ``` #### Texistepec Popoluca (texi1237) ```bibtex @incollection{doreco-texi1237, address = {Berlin \& Lyon}, author = {Wichmann, Søren}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Texistepec Popoluca DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/texi1237}, doi = {10.34847/nkl.c50ck58f}, urldate = {07/10/2023}, year = {2022} } ``` #### Mojeño Trinitario (trin1278) ```bibtex @incollection{doreco-trin1278, address = {Berlin \& Lyon}, author = {Rose, Françoise}, booktitle = {Language Documentation Reference Corpus (DoReCo) 1.2}, editor = {Seifart, Frank and Paschen, Ludger and Stave, Matthew}, publisher = {Leibniz-Zentrum Allgemeine Sprachwissenschaft \& laboratoire Dynamique Du Langage (UMR5596, CNRS \& Université Lyon 2)}, title = {Mojeño Trinitario DoReCo dataset}, url = {https://doreco.huma-num.fr/languages/trin1278}, doi = {10.34847/nkl.cbc3b4xr}, urldate = {07/10/2023}, year = {2022} } ``` #### Dolgan (dolg1241) ```bibtex @misc{inel-dolgan, author = {Däbritz, Chris Lasse and Kudryakova, Nina and Stapert, Eugénie}, title = {INEL Dolgan Corpus}, month = nov, year = 2022, doi = {10.25592/uhhfdm.11165}, url = {https://doi.org/10.25592/uhhfdm.11165} } ``` #### Evenki (even1259) ```bibtex @misc{inel-evenki, author = {Däbritz, Chris Lasse and Gusev, Valentin}, title = {INEL Evenki Corpus}, month = dec, year = 2021, doi = {10.25592/uhhfdm.9628}, url = {https://doi.org/10.25592/uhhfdm.9628} } ``` #### Kamas (kama1378) ```bibtex @misc{inel-kamas, author = {Gusev, Valentin and Klooster, Tiina and Wagner-Nagy, Beáta}, title = {INEL Kamas Corpus}, month = dec, year = 2019, doi = {10.25592/uhhfdm.9752}, url = {https://doi.org/10.25592/uhhfdm.9752} } ``` #### Selkup (selk1253) ```bibtex @misc{inel-selkup, author = {Brykina, Maria and Orlova, Svetlana and Wagner-Nagy, Beáta}, title = {INEL Selkup Corpus}, month = dec, year = 2021, doi = {10.25592/uhhfdm.9754}, url = {https://doi.org/10.25592/uhhfdm.9754} } ``` #### Arta (arta1239) ```bibtex @incollection{arta1239, author = {Kimoto, Yukinori}, title = {{Multi-CAST Arta}}, year = {2019}, editor = {Haig, Geoffrey and Schnell, Stefan}, booktitle = {{Multi-CAST}}, booksubtitle = {{Multilingual corpus of annotated spoken texts}}, note = {Version 2211}}, address = {Bamberg}, publisher = {University of Bamberg}, url = {multicast.aspra.uni-bamberg.de/#arta} } ``` #### Jinghpaw (kach1280) ```bibtex @incollection{kach1280, author = {Kurabe, Keita}, title = {{Multi-CAST Jinghpaw}}, year = {2021}, editor = {Haig, Geoffrey and Schnell, Stefan}, booktitle = {{Multi-CAST}}, booksubtitle = {{Multilingual corpus of annotated spoken texts}}, note = {Version 2211}}, address = {Bamberg}, publisher = {University of Bamberg}, url = {multicast.aspra.uni-bamberg.de/#jinghpaw} } ``` #### Kalamang (kara1499) ```bibtex @incollection{kara1499, author = {Visser, Eline}, title = {{Multi-CAST Kalamang}}, year = {2021}, editor = {Haig, Geoffrey and Schnell, Stefan}, booktitle = {{Multi-CAST}}, booksubtitle = {{Multilingual corpus of annotated spoken texts}}, note = {Version 2211}}, address = {Bamberg}, publisher = {University of Bamberg}, url = {multicast.aspra.uni-bamberg.de/#kalamang} } ``` #### Mandarin (mand1415) ```bibtex @incollection{mand1415, author = {Vollmer, Maria}, title = {{Multi-CAST Mandarin}}, year = {2020}, editor = {Haig, Geoffrey and Schnell, Stefan}, booktitle = {{Multi-CAST}}, booksubtitle = {{Multilingual corpus of annotated spoken texts}}, note = {Version 2211}}, address = {Bamberg}, publisher = {University of Bamberg}, url = {multicast.aspra.uni-bamberg.de/#mandarin} } ``` #### Northern Kurdish (nort2641) ```bibtex @incollection{nort2641, author = {Haig, Geoffrey and Vollmer, Maria and Thiele, Hanna}, title = {{Multi-CAST Northern Kurdish}}, year = {2015}, editor = {Haig, Geoffrey and Schnell, Stefan}, booktitle = {{Multi-CAST}}, booksubtitle = {{Multilingual corpus of annotated spoken texts}}, note = {Version 2211}}, address = {Bamberg}, publisher = {University of Bamberg}, url = {multicast.aspra.uni-bamberg.de/#nkurd} } ``` #### Sanzhi Dargwa (sanz1248) ```bibtex @incollection{sanz1248, author = {Forker, Diana and Schiborr, Nils N.}, title = {{Multi-CAST Sanzhi Dargwa}}, year = {2019}, editor = {Haig, Geoffrey and Schnell, Stefan}, booktitle = {{Multi-CAST}}, booksubtitle = {{Multilingual corpus of annotated spoken texts}}, note = {Version 2211}}, address = {Bamberg}, publisher = {University of Bamberg}, url = {multicast.aspra.uni-bamberg.de/#sanzhi} } ``` #### Sumbawa (sumb1241) ```bibtex @incollection{sumb1241, author = {Shiohara, Asako}, title = {{Multi-CAST Sumbawa}}, year = {2022}, editor = {Haig, Geoffrey and Schnell, Stefan}, booktitle = {{Multi-CAST}}, booksubtitle = {{Multilingual corpus of annotated spoken texts}}, note = {Version 2211}}, address = {Bamberg}, publisher = {University of Bamberg}, url = {multicast.aspra.uni-bamberg.de/#sumbawa} } ``` #### Tabasaran (taba1259) ```bibtex @incollection{taba1259, author = {Bogomolova, Natalia & Ganenkov, Dmitry & Schiborr, Nils N.}, title = {{Multi-CAST Tabasaran}}, year = {2021}, editor = {Haig, Geoffrey and Schnell, Stefan}, booktitle = {{Multi-CAST}}, booksubtitle = {{Multilingual corpus of annotated spoken texts}}, note = {Version 2211}}, address = {Bamberg}, publisher = {University of Bamberg}, url = {multicast.aspra.uni-bamberg.de/#tabasaran} } ``` #### Tulil (taul1251) ```bibtex @incollection{taul1251, author = {Meng, Chenxi}, title = {{Multi-CAST Tulil}}, year = {2016}, editor = {Haig, Geoffrey and Schnell, Stefan}, booktitle = {{Multi-CAST}}, booksubtitle = {{Multilingual corpus of annotated spoken texts}}, note = {Version 2211}}, address = {Bamberg}, publisher = {University of Bamberg}, url = {multicast.aspra.uni-bamberg.de/#tulil} } ``` #### Persian (tehr1242) ```bibtex @incollection{tehr1242, author = {Adibifar, Shirin}, title = {{Multi-CAST Persian}}, year = {2016}, editor = {Haig, Geoffrey and Schnell, Stefan}, booktitle = {{Multi-CAST}}, booksubtitle = {{Multilingual corpus of annotated spoken texts}}, note = {Version 2211}}, address = {Bamberg}, publisher = {University of Bamberg}, url = {multicast.aspra.uni-bamberg.de/#persian} } ``` #### Tondano (tond1251) ```bibtex @incollection{tond1251, author = {Brickell, Timothy}, title = {{Multi-CAST Tondano}}, year = {2016}, editor = {Haig, Geoffrey and Schnell, Stefan}, booktitle = {{Multi-CAST}}, booksubtitle = {{Multilingual corpus of annotated spoken texts}}, note = {Version 2211}}, address = {Bamberg}, publisher = {University of Bamberg}, url = {multicast.aspra.uni-bamberg.de/#tondano} } ``` #### Vera'a (vera1241) ```bibtex @incollection{vera1241, author = {Schnell, Stefan}, title = {{Multi-CAST Vera'a}}, year = {2015}, editor = {Haig, Geoffrey and Schnell, Stefan}, booktitle = {{Multi-CAST}}, booksubtitle = {{Multilingual corpus of annotated spoken texts}}, note = {Version 2211}}, address = {Bamberg}, publisher = {University of Bamberg}, url = {multicast.aspra.uni-bamberg.de/#veraa} } ``` #### Balkan Romani (balk1252) ```bibtex @misc{balk1252, title={{Le romani (xoraxane, vlax du sud, Grèce)}}, url={https://pangloss.cnrs.fr/corpus/Romani_(Xoraxane,_Southern_Vlax,_Greece)}, journal={La collection Pangloss}, author={Adamou, Evangelia} } ``` #### Slavomolisano (slav1254) ```bibtex @misc{slav1254, title={{Na-našu (slave Molisan) : Le dialecte d’acquaviva collecroce}}, url={https://pangloss.cnrs.fr/corpus/Na-na%C5%A1u_(Acquaviva_Collecroce)}, journal={La collection Pangloss}, author={Breu, Walter} } ``` #### Ainu (ainu1240) ```bibtex @misc{ninjal-ainu-folklore, title={A Glossed Audio Corpus of Ainu Folklore}, url={https://ainu.ninjal.ac.jp/folklore/}, author={Nakagawa, Hiroshi and Bugaeva, Anna and Kobayashi, Miki and Yoshikawa, Yoshimi}, publisher={The National Institute for Japanese Language and Linguistics ({NINJAL})}, date={2016--2021} } ```
Itaki/Chocothul
--- license: openrail ---
open-llm-leaderboard/details_aboros98__merlin1.2
--- pretty_name: Evaluation run of aboros98/merlin1.2 dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [aboros98/merlin1.2](https://huggingface.co/aboros98/merlin1.2) on the [Open LLM\ \ Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\ \nThe dataset is composed of 63 configuration, each one coresponding to one of the\ \ evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be\ \ found as a specific split in each configuration, the split being named using the\ \ timestamp of the run.The \"train\" split is always pointing to the latest results.\n\ \nAn additional configuration \"results\" store all the aggregated results of the\ \ run (and is used to compute and display the aggregated metrics on the [Open LLM\ \ Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\ \nTo load the details from a run, you can for instance do the following:\n```python\n\ from datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_aboros98__merlin1.2\"\ ,\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\n\ These are the [latest results from run 2024-03-14T15:48:59.739721](https://huggingface.co/datasets/open-llm-leaderboard/details_aboros98__merlin1.2/blob/main/results_2024-03-14T15-48-59.739721.json)(note\ \ that their might be results for other tasks in the repos if successive evals didn't\ \ cover the same tasks. You find each in the results and the \"latest\" split for\ \ each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.566620364984462,\n\ \ \"acc_stderr\": 0.033868726883359755,\n \"acc_norm\": 0.5679730470859095,\n\ \ \"acc_norm_stderr\": 0.03456526384633218,\n \"mc1\": 0.30354957160342716,\n\ \ \"mc1_stderr\": 0.01609588415538685,\n \"mc2\": 0.46240578362725326,\n\ \ \"mc2_stderr\": 0.015035560895837513\n },\n \"harness|arc:challenge|25\"\ : {\n \"acc\": 0.5691126279863481,\n \"acc_stderr\": 0.01447113339264247,\n\ \ \"acc_norm\": 0.5921501706484642,\n \"acc_norm_stderr\": 0.014361097288449696\n\ \ },\n \"harness|hellaswag|10\": {\n \"acc\": 0.5575582553276239,\n\ \ \"acc_stderr\": 0.004956609327218404,\n \"acc_norm\": 0.7418840868352917,\n\ \ \"acc_norm_stderr\": 0.004367037632204528\n },\n \"harness|hendrycksTest-abstract_algebra|5\"\ : {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \ \ \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n \ \ },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.4222222222222222,\n\ \ \"acc_stderr\": 0.04266763404099582,\n \"acc_norm\": 0.4222222222222222,\n\ \ \"acc_norm_stderr\": 0.04266763404099582\n },\n \"harness|hendrycksTest-astronomy|5\"\ : {\n \"acc\": 0.5460526315789473,\n \"acc_stderr\": 0.04051646342874142,\n\ \ \"acc_norm\": 0.5460526315789473,\n \"acc_norm_stderr\": 0.04051646342874142\n\ \ },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.56,\n\ \ \"acc_stderr\": 0.04988876515698589,\n \"acc_norm\": 0.56,\n \ \ \"acc_norm_stderr\": 0.04988876515698589\n },\n \"harness|hendrycksTest-clinical_knowledge|5\"\ : {\n \"acc\": 0.5773584905660377,\n \"acc_stderr\": 0.03040233144576954,\n\ \ \"acc_norm\": 0.5773584905660377,\n \"acc_norm_stderr\": 0.03040233144576954\n\ \ },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.5833333333333334,\n\ \ \"acc_stderr\": 0.04122728707651282,\n \"acc_norm\": 0.5833333333333334,\n\ \ \"acc_norm_stderr\": 0.04122728707651282\n },\n \"harness|hendrycksTest-college_chemistry|5\"\ : {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \ \ \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n \ \ },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\"\ : 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n\ \ \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_mathematics|5\"\ : {\n \"acc\": 0.42,\n \"acc_stderr\": 0.04960449637488584,\n \ \ \"acc_norm\": 0.42,\n \"acc_norm_stderr\": 0.04960449637488584\n \ \ },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.5491329479768786,\n\ \ \"acc_stderr\": 0.0379401267469703,\n \"acc_norm\": 0.5491329479768786,\n\ \ \"acc_norm_stderr\": 0.0379401267469703\n },\n \"harness|hendrycksTest-college_physics|5\"\ : {\n \"acc\": 0.30392156862745096,\n \"acc_stderr\": 0.045766654032077636,\n\ \ \"acc_norm\": 0.30392156862745096,\n \"acc_norm_stderr\": 0.045766654032077636\n\ \ },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\":\ \ 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n\ \ \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-conceptual_physics|5\"\ : {\n \"acc\": 0.502127659574468,\n \"acc_stderr\": 0.03268572658667492,\n\ \ \"acc_norm\": 0.502127659574468,\n \"acc_norm_stderr\": 0.03268572658667492\n\ \ },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.37719298245614036,\n\ \ \"acc_stderr\": 0.045595221419582166,\n \"acc_norm\": 0.37719298245614036,\n\ \ \"acc_norm_stderr\": 0.045595221419582166\n },\n \"harness|hendrycksTest-electrical_engineering|5\"\ : {\n \"acc\": 0.503448275862069,\n \"acc_stderr\": 0.04166567577101579,\n\ \ \"acc_norm\": 0.503448275862069,\n \"acc_norm_stderr\": 0.04166567577101579\n\ \ },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\"\ : 0.4074074074074074,\n \"acc_stderr\": 0.025305906241590636,\n \"\ acc_norm\": 0.4074074074074074,\n \"acc_norm_stderr\": 0.025305906241590636\n\ \ },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.373015873015873,\n\ \ \"acc_stderr\": 0.04325506042017086,\n \"acc_norm\": 0.373015873015873,\n\ \ \"acc_norm_stderr\": 0.04325506042017086\n },\n \"harness|hendrycksTest-global_facts|5\"\ : {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001975,\n \ \ \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001975\n \ \ },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.6903225806451613,\n\ \ \"acc_stderr\": 0.026302774983517418,\n \"acc_norm\": 0.6903225806451613,\n\ \ \"acc_norm_stderr\": 0.026302774983517418\n },\n \"harness|hendrycksTest-high_school_chemistry|5\"\ : {\n \"acc\": 0.4630541871921182,\n \"acc_stderr\": 0.035083705204426656,\n\ \ \"acc_norm\": 0.4630541871921182,\n \"acc_norm_stderr\": 0.035083705204426656\n\ \ },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \ \ \"acc\": 0.61,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\"\ : 0.61,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-high_school_european_history|5\"\ : {\n \"acc\": 0.6363636363636364,\n \"acc_stderr\": 0.03756335775187898,\n\ \ \"acc_norm\": 0.6363636363636364,\n \"acc_norm_stderr\": 0.03756335775187898\n\ \ },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\"\ : 0.7323232323232324,\n \"acc_stderr\": 0.03154449888270285,\n \"\ acc_norm\": 0.7323232323232324,\n \"acc_norm_stderr\": 0.03154449888270285\n\ \ },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n\ \ \"acc\": 0.7823834196891192,\n \"acc_stderr\": 0.029778663037752954,\n\ \ \"acc_norm\": 0.7823834196891192,\n \"acc_norm_stderr\": 0.029778663037752954\n\ \ },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \ \ \"acc\": 0.5461538461538461,\n \"acc_stderr\": 0.02524277098712618,\n \ \ \"acc_norm\": 0.5461538461538461,\n \"acc_norm_stderr\": 0.02524277098712618\n\ \ },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"\ acc\": 0.31851851851851853,\n \"acc_stderr\": 0.028406533090608463,\n \ \ \"acc_norm\": 0.31851851851851853,\n \"acc_norm_stderr\": 0.028406533090608463\n\ \ },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \ \ \"acc\": 0.6008403361344538,\n \"acc_stderr\": 0.03181110032413925,\n \ \ \"acc_norm\": 0.6008403361344538,\n \"acc_norm_stderr\": 0.03181110032413925\n\ \ },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\"\ : 0.3443708609271523,\n \"acc_stderr\": 0.038796870240733264,\n \"\ acc_norm\": 0.3443708609271523,\n \"acc_norm_stderr\": 0.038796870240733264\n\ \ },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\"\ : 0.7761467889908257,\n \"acc_stderr\": 0.017871217767790232,\n \"\ acc_norm\": 0.7761467889908257,\n \"acc_norm_stderr\": 0.017871217767790232\n\ \ },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\"\ : 0.4398148148148148,\n \"acc_stderr\": 0.033851779760448106,\n \"\ acc_norm\": 0.4398148148148148,\n \"acc_norm_stderr\": 0.033851779760448106\n\ \ },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\"\ : 0.6519607843137255,\n \"acc_stderr\": 0.03343311240488419,\n \"\ acc_norm\": 0.6519607843137255,\n \"acc_norm_stderr\": 0.03343311240488419\n\ \ },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"\ acc\": 0.7341772151898734,\n \"acc_stderr\": 0.02875679962965834,\n \ \ \"acc_norm\": 0.7341772151898734,\n \"acc_norm_stderr\": 0.02875679962965834\n\ \ },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6322869955156951,\n\ \ \"acc_stderr\": 0.03236198350928276,\n \"acc_norm\": 0.6322869955156951,\n\ \ \"acc_norm_stderr\": 0.03236198350928276\n },\n \"harness|hendrycksTest-human_sexuality|5\"\ : {\n \"acc\": 0.7022900763358778,\n \"acc_stderr\": 0.04010358942462203,\n\ \ \"acc_norm\": 0.7022900763358778,\n \"acc_norm_stderr\": 0.04010358942462203\n\ \ },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\":\ \ 0.71900826446281,\n \"acc_stderr\": 0.04103203830514512,\n \"acc_norm\"\ : 0.71900826446281,\n \"acc_norm_stderr\": 0.04103203830514512\n },\n\ \ \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.75,\n \ \ \"acc_stderr\": 0.04186091791394607,\n \"acc_norm\": 0.75,\n \ \ \"acc_norm_stderr\": 0.04186091791394607\n },\n \"harness|hendrycksTest-logical_fallacies|5\"\ : {\n \"acc\": 0.7177914110429447,\n \"acc_stderr\": 0.03536117886664742,\n\ \ \"acc_norm\": 0.7177914110429447,\n \"acc_norm_stderr\": 0.03536117886664742\n\ \ },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.49107142857142855,\n\ \ \"acc_stderr\": 0.04745033255489123,\n \"acc_norm\": 0.49107142857142855,\n\ \ \"acc_norm_stderr\": 0.04745033255489123\n },\n \"harness|hendrycksTest-management|5\"\ : {\n \"acc\": 0.7475728155339806,\n \"acc_stderr\": 0.04301250399690878,\n\ \ \"acc_norm\": 0.7475728155339806,\n \"acc_norm_stderr\": 0.04301250399690878\n\ \ },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8333333333333334,\n\ \ \"acc_stderr\": 0.02441494730454368,\n \"acc_norm\": 0.8333333333333334,\n\ \ \"acc_norm_stderr\": 0.02441494730454368\n },\n \"harness|hendrycksTest-medical_genetics|5\"\ : {\n \"acc\": 0.62,\n \"acc_stderr\": 0.048783173121456316,\n \ \ \"acc_norm\": 0.62,\n \"acc_norm_stderr\": 0.048783173121456316\n \ \ },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.6768837803320562,\n\ \ \"acc_stderr\": 0.016723726512343048,\n \"acc_norm\": 0.6768837803320562,\n\ \ \"acc_norm_stderr\": 0.016723726512343048\n },\n \"harness|hendrycksTest-moral_disputes|5\"\ : {\n \"acc\": 0.6705202312138728,\n \"acc_stderr\": 0.025305258131879702,\n\ \ \"acc_norm\": 0.6705202312138728,\n \"acc_norm_stderr\": 0.025305258131879702\n\ \ },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.21340782122905028,\n\ \ \"acc_stderr\": 0.013702859932196094,\n \"acc_norm\": 0.21340782122905028,\n\ \ \"acc_norm_stderr\": 0.013702859932196094\n },\n \"harness|hendrycksTest-nutrition|5\"\ : {\n \"acc\": 0.6143790849673203,\n \"acc_stderr\": 0.02787074527829027,\n\ \ \"acc_norm\": 0.6143790849673203,\n \"acc_norm_stderr\": 0.02787074527829027\n\ \ },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6077170418006431,\n\ \ \"acc_stderr\": 0.02773125864701199,\n \"acc_norm\": 0.6077170418006431,\n\ \ \"acc_norm_stderr\": 0.02773125864701199\n },\n \"harness|hendrycksTest-prehistory|5\"\ : {\n \"acc\": 0.5987654320987654,\n \"acc_stderr\": 0.027272582849839796,\n\ \ \"acc_norm\": 0.5987654320987654,\n \"acc_norm_stderr\": 0.027272582849839796\n\ \ },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"\ acc\": 0.4148936170212766,\n \"acc_stderr\": 0.029392236584612503,\n \ \ \"acc_norm\": 0.4148936170212766,\n \"acc_norm_stderr\": 0.029392236584612503\n\ \ },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4211212516297262,\n\ \ \"acc_stderr\": 0.012610325733489905,\n \"acc_norm\": 0.4211212516297262,\n\ \ \"acc_norm_stderr\": 0.012610325733489905\n },\n \"harness|hendrycksTest-professional_medicine|5\"\ : {\n \"acc\": 0.4338235294117647,\n \"acc_stderr\": 0.030105636570016626,\n\ \ \"acc_norm\": 0.4338235294117647,\n \"acc_norm_stderr\": 0.030105636570016626\n\ \ },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"\ acc\": 0.5424836601307189,\n \"acc_stderr\": 0.020154685712590888,\n \ \ \"acc_norm\": 0.5424836601307189,\n \"acc_norm_stderr\": 0.020154685712590888\n\ \ },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6909090909090909,\n\ \ \"acc_stderr\": 0.044262946482000985,\n \"acc_norm\": 0.6909090909090909,\n\ \ \"acc_norm_stderr\": 0.044262946482000985\n },\n \"harness|hendrycksTest-security_studies|5\"\ : {\n \"acc\": 0.7020408163265306,\n \"acc_stderr\": 0.02927956741106568,\n\ \ \"acc_norm\": 0.7020408163265306,\n \"acc_norm_stderr\": 0.02927956741106568\n\ \ },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.7860696517412935,\n\ \ \"acc_stderr\": 0.028996909693328923,\n \"acc_norm\": 0.7860696517412935,\n\ \ \"acc_norm_stderr\": 0.028996909693328923\n },\n \"harness|hendrycksTest-us_foreign_policy|5\"\ : {\n \"acc\": 0.74,\n \"acc_stderr\": 0.0440844002276808,\n \ \ \"acc_norm\": 0.74,\n \"acc_norm_stderr\": 0.0440844002276808\n },\n\ \ \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5,\n \"\ acc_stderr\": 0.03892494720807614,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\"\ : 0.03892494720807614\n },\n \"harness|hendrycksTest-world_religions|5\":\ \ {\n \"acc\": 0.6783625730994152,\n \"acc_stderr\": 0.03582529442573122,\n\ \ \"acc_norm\": 0.6783625730994152,\n \"acc_norm_stderr\": 0.03582529442573122\n\ \ },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.30354957160342716,\n\ \ \"mc1_stderr\": 0.01609588415538685,\n \"mc2\": 0.46240578362725326,\n\ \ \"mc2_stderr\": 0.015035560895837513\n },\n \"harness|winogrande|5\"\ : {\n \"acc\": 0.749802683504341,\n \"acc_stderr\": 0.012173009642449155\n\ \ },\n \"harness|gsm8k|5\": {\n \"acc\": 0.5109931766489765,\n \ \ \"acc_stderr\": 0.013769155509690907\n }\n}\n```" repo_url: https://huggingface.co/aboros98/merlin1.2 leaderboard_url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard point_of_contact: clementine@hf.co configs: - config_name: harness_arc_challenge_25 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|arc:challenge|25_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|arc:challenge|25_2024-03-14T15-48-59.739721.parquet' - config_name: harness_gsm8k_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|gsm8k|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|gsm8k|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hellaswag_10 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hellaswag|10_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hellaswag|10_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-international_law|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-management|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-marketing|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-sociology|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-virology|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-international_law|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-management|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-marketing|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-sociology|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-virology|5_2024-03-14T15-48-59.739721.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_abstract_algebra_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_anatomy_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-anatomy|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-anatomy|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_astronomy_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-astronomy|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-astronomy|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_business_ethics_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-business_ethics|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-business_ethics|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_clinical_knowledge_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_college_biology_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-college_biology|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_biology|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_college_chemistry_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-college_chemistry|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_chemistry|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_college_computer_science_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-college_computer_science|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_computer_science|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_college_mathematics_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-college_mathematics|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_mathematics|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_college_medicine_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-college_medicine|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_medicine|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_college_physics_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-college_physics|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_physics|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_computer_security_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-computer_security|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-computer_security|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_conceptual_physics_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_econometrics_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-econometrics|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-econometrics|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_electrical_engineering_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_elementary_mathematics_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_formal_logic_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-formal_logic|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-formal_logic|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_global_facts_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-global_facts|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-global_facts|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_high_school_biology_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-high_school_biology|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_biology|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_high_school_chemistry_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_high_school_computer_science_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_high_school_european_history_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_high_school_geography_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-high_school_geography|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_geography|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_high_school_government_and_politics_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_high_school_macroeconomics_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_high_school_mathematics_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_high_school_microeconomics_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_high_school_physics_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-high_school_physics|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_physics|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_high_school_psychology_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_high_school_statistics_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_high_school_us_history_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_high_school_world_history_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_human_aging_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-human_aging|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-human_aging|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_human_sexuality_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-human_sexuality|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-human_sexuality|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_international_law_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-international_law|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-international_law|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_jurisprudence_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-jurisprudence|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-jurisprudence|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_logical_fallacies_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_machine_learning_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-machine_learning|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-machine_learning|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_management_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-management|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-management|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_marketing_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-marketing|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-marketing|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_medical_genetics_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-medical_genetics|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-medical_genetics|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_miscellaneous_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-miscellaneous|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-miscellaneous|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_moral_disputes_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-moral_disputes|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-moral_disputes|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_moral_scenarios_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_nutrition_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-nutrition|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-nutrition|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_philosophy_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-philosophy|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-philosophy|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_prehistory_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-prehistory|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-prehistory|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_professional_accounting_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-professional_accounting|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_accounting|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_professional_law_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-professional_law|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_law|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_professional_medicine_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-professional_medicine|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_medicine|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_professional_psychology_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-professional_psychology|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_psychology|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_public_relations_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-public_relations|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-public_relations|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_security_studies_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-security_studies|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-security_studies|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_sociology_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-sociology|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-sociology|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_us_foreign_policy_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_virology_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-virology|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-virology|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_hendrycksTest_world_religions_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|hendrycksTest-world_religions|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|hendrycksTest-world_religions|5_2024-03-14T15-48-59.739721.parquet' - config_name: harness_truthfulqa_mc_0 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|truthfulqa:mc|0_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|truthfulqa:mc|0_2024-03-14T15-48-59.739721.parquet' - config_name: harness_winogrande_5 data_files: - split: 2024_03_14T15_48_59.739721 path: - '**/details_harness|winogrande|5_2024-03-14T15-48-59.739721.parquet' - split: latest path: - '**/details_harness|winogrande|5_2024-03-14T15-48-59.739721.parquet' - config_name: results data_files: - split: 2024_03_14T15_48_59.739721 path: - results_2024-03-14T15-48-59.739721.parquet - split: latest path: - results_2024-03-14T15-48-59.739721.parquet --- # Dataset Card for Evaluation run of aboros98/merlin1.2 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [aboros98/merlin1.2](https://huggingface.co/aboros98/merlin1.2) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_aboros98__merlin1.2", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-03-14T15:48:59.739721](https://huggingface.co/datasets/open-llm-leaderboard/details_aboros98__merlin1.2/blob/main/results_2024-03-14T15-48-59.739721.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.566620364984462, "acc_stderr": 0.033868726883359755, "acc_norm": 0.5679730470859095, "acc_norm_stderr": 0.03456526384633218, "mc1": 0.30354957160342716, "mc1_stderr": 0.01609588415538685, "mc2": 0.46240578362725326, "mc2_stderr": 0.015035560895837513 }, "harness|arc:challenge|25": { "acc": 0.5691126279863481, "acc_stderr": 0.01447113339264247, "acc_norm": 0.5921501706484642, "acc_norm_stderr": 0.014361097288449696 }, "harness|hellaswag|10": { "acc": 0.5575582553276239, "acc_stderr": 0.004956609327218404, "acc_norm": 0.7418840868352917, "acc_norm_stderr": 0.004367037632204528 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.4222222222222222, "acc_stderr": 0.04266763404099582, "acc_norm": 0.4222222222222222, "acc_norm_stderr": 0.04266763404099582 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.5460526315789473, "acc_stderr": 0.04051646342874142, "acc_norm": 0.5460526315789473, "acc_norm_stderr": 0.04051646342874142 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.56, "acc_stderr": 0.04988876515698589, "acc_norm": 0.56, "acc_norm_stderr": 0.04988876515698589 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.5773584905660377, "acc_stderr": 0.03040233144576954, "acc_norm": 0.5773584905660377, "acc_norm_stderr": 0.03040233144576954 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.5833333333333334, "acc_stderr": 0.04122728707651282, "acc_norm": 0.5833333333333334, "acc_norm_stderr": 0.04122728707651282 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.36, "acc_stderr": 0.04824181513244218, "acc_norm": 0.36, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.48, "acc_stderr": 0.050211673156867795, "acc_norm": 0.48, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.42, "acc_stderr": 0.04960449637488584, "acc_norm": 0.42, "acc_norm_stderr": 0.04960449637488584 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.5491329479768786, "acc_stderr": 0.0379401267469703, "acc_norm": 0.5491329479768786, "acc_norm_stderr": 0.0379401267469703 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.30392156862745096, "acc_stderr": 0.045766654032077636, "acc_norm": 0.30392156862745096, "acc_norm_stderr": 0.045766654032077636 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.69, "acc_stderr": 0.04648231987117316, "acc_norm": 0.69, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.502127659574468, "acc_stderr": 0.03268572658667492, "acc_norm": 0.502127659574468, "acc_norm_stderr": 0.03268572658667492 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.37719298245614036, "acc_stderr": 0.045595221419582166, "acc_norm": 0.37719298245614036, "acc_norm_stderr": 0.045595221419582166 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.503448275862069, "acc_stderr": 0.04166567577101579, "acc_norm": 0.503448275862069, "acc_norm_stderr": 0.04166567577101579 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.4074074074074074, "acc_stderr": 0.025305906241590636, "acc_norm": 0.4074074074074074, "acc_norm_stderr": 0.025305906241590636 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.373015873015873, "acc_stderr": 0.04325506042017086, "acc_norm": 0.373015873015873, "acc_norm_stderr": 0.04325506042017086 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.39, "acc_stderr": 0.04902071300001975, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.6903225806451613, "acc_stderr": 0.026302774983517418, "acc_norm": 0.6903225806451613, "acc_norm_stderr": 0.026302774983517418 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4630541871921182, "acc_stderr": 0.035083705204426656, "acc_norm": 0.4630541871921182, "acc_norm_stderr": 0.035083705204426656 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.61, "acc_stderr": 0.04902071300001975, "acc_norm": 0.61, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.6363636363636364, "acc_stderr": 0.03756335775187898, "acc_norm": 0.6363636363636364, "acc_norm_stderr": 0.03756335775187898 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7323232323232324, "acc_stderr": 0.03154449888270285, "acc_norm": 0.7323232323232324, "acc_norm_stderr": 0.03154449888270285 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.7823834196891192, "acc_stderr": 0.029778663037752954, "acc_norm": 0.7823834196891192, "acc_norm_stderr": 0.029778663037752954 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5461538461538461, "acc_stderr": 0.02524277098712618, "acc_norm": 0.5461538461538461, "acc_norm_stderr": 0.02524277098712618 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.31851851851851853, "acc_stderr": 0.028406533090608463, "acc_norm": 0.31851851851851853, "acc_norm_stderr": 0.028406533090608463 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6008403361344538, "acc_stderr": 0.03181110032413925, "acc_norm": 0.6008403361344538, "acc_norm_stderr": 0.03181110032413925 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3443708609271523, "acc_stderr": 0.038796870240733264, "acc_norm": 0.3443708609271523, "acc_norm_stderr": 0.038796870240733264 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.7761467889908257, "acc_stderr": 0.017871217767790232, "acc_norm": 0.7761467889908257, "acc_norm_stderr": 0.017871217767790232 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4398148148148148, "acc_stderr": 0.033851779760448106, "acc_norm": 0.4398148148148148, "acc_norm_stderr": 0.033851779760448106 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.6519607843137255, "acc_stderr": 0.03343311240488419, "acc_norm": 0.6519607843137255, "acc_norm_stderr": 0.03343311240488419 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7341772151898734, "acc_stderr": 0.02875679962965834, "acc_norm": 0.7341772151898734, "acc_norm_stderr": 0.02875679962965834 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6322869955156951, "acc_stderr": 0.03236198350928276, "acc_norm": 0.6322869955156951, "acc_norm_stderr": 0.03236198350928276 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7022900763358778, "acc_stderr": 0.04010358942462203, "acc_norm": 0.7022900763358778, "acc_norm_stderr": 0.04010358942462203 }, "harness|hendrycksTest-international_law|5": { "acc": 0.71900826446281, "acc_stderr": 0.04103203830514512, "acc_norm": 0.71900826446281, "acc_norm_stderr": 0.04103203830514512 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.75, "acc_stderr": 0.04186091791394607, "acc_norm": 0.75, "acc_norm_stderr": 0.04186091791394607 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7177914110429447, "acc_stderr": 0.03536117886664742, "acc_norm": 0.7177914110429447, "acc_norm_stderr": 0.03536117886664742 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.49107142857142855, "acc_stderr": 0.04745033255489123, "acc_norm": 0.49107142857142855, "acc_norm_stderr": 0.04745033255489123 }, "harness|hendrycksTest-management|5": { "acc": 0.7475728155339806, "acc_stderr": 0.04301250399690878, "acc_norm": 0.7475728155339806, "acc_norm_stderr": 0.04301250399690878 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8333333333333334, "acc_stderr": 0.02441494730454368, "acc_norm": 0.8333333333333334, "acc_norm_stderr": 0.02441494730454368 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.62, "acc_stderr": 0.048783173121456316, "acc_norm": 0.62, "acc_norm_stderr": 0.048783173121456316 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.6768837803320562, "acc_stderr": 0.016723726512343048, "acc_norm": 0.6768837803320562, "acc_norm_stderr": 0.016723726512343048 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6705202312138728, "acc_stderr": 0.025305258131879702, "acc_norm": 0.6705202312138728, "acc_norm_stderr": 0.025305258131879702 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.21340782122905028, "acc_stderr": 0.013702859932196094, "acc_norm": 0.21340782122905028, "acc_norm_stderr": 0.013702859932196094 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6143790849673203, "acc_stderr": 0.02787074527829027, "acc_norm": 0.6143790849673203, "acc_norm_stderr": 0.02787074527829027 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.6077170418006431, "acc_stderr": 0.02773125864701199, "acc_norm": 0.6077170418006431, "acc_norm_stderr": 0.02773125864701199 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.5987654320987654, "acc_stderr": 0.027272582849839796, "acc_norm": 0.5987654320987654, "acc_norm_stderr": 0.027272582849839796 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4148936170212766, "acc_stderr": 0.029392236584612503, "acc_norm": 0.4148936170212766, "acc_norm_stderr": 0.029392236584612503 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4211212516297262, "acc_stderr": 0.012610325733489905, "acc_norm": 0.4211212516297262, "acc_norm_stderr": 0.012610325733489905 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.4338235294117647, "acc_stderr": 0.030105636570016626, "acc_norm": 0.4338235294117647, "acc_norm_stderr": 0.030105636570016626 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.5424836601307189, "acc_stderr": 0.020154685712590888, "acc_norm": 0.5424836601307189, "acc_norm_stderr": 0.020154685712590888 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6909090909090909, "acc_stderr": 0.044262946482000985, "acc_norm": 0.6909090909090909, "acc_norm_stderr": 0.044262946482000985 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7020408163265306, "acc_stderr": 0.02927956741106568, "acc_norm": 0.7020408163265306, "acc_norm_stderr": 0.02927956741106568 }, "harness|hendrycksTest-sociology|5": { "acc": 0.7860696517412935, "acc_stderr": 0.028996909693328923, "acc_norm": 0.7860696517412935, "acc_norm_stderr": 0.028996909693328923 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.74, "acc_stderr": 0.0440844002276808, "acc_norm": 0.74, "acc_norm_stderr": 0.0440844002276808 }, "harness|hendrycksTest-virology|5": { "acc": 0.5, "acc_stderr": 0.03892494720807614, "acc_norm": 0.5, "acc_norm_stderr": 0.03892494720807614 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.6783625730994152, "acc_stderr": 0.03582529442573122, "acc_norm": 0.6783625730994152, "acc_norm_stderr": 0.03582529442573122 }, "harness|truthfulqa:mc|0": { "mc1": 0.30354957160342716, "mc1_stderr": 0.01609588415538685, "mc2": 0.46240578362725326, "mc2_stderr": 0.015035560895837513 }, "harness|winogrande|5": { "acc": 0.749802683504341, "acc_stderr": 0.012173009642449155 }, "harness|gsm8k|5": { "acc": 0.5109931766489765, "acc_stderr": 0.013769155509690907 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
SkyWR/Nigga
--- license: openrail ---
Samburskoy/TT4
--- license: openrail ---
Locutusque/cogstack-qa-sharegpt
--- dataset_info: features: - name: org_text dtype: string - name: raw_id dtype: string - name: question dtype: string - name: answer dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 26117232 num_examples: 24665 download_size: 11459634 dataset_size: 26117232 configs: - config_name: default data_files: - split: train path: data/train-* ---
results-sd-v1-5-sd-v2-1-if-v1-0-karlo/851887d0
--- dataset_info: features: - name: result dtype: string - name: id dtype: int64 splits: - name: train num_bytes: 182 num_examples: 10 download_size: 1340 dataset_size: 182 --- # Dataset Card for "851887d0" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
open-llm-leaderboard/details_CalderaAI__30B-Epsilon
--- pretty_name: Evaluation run of CalderaAI/30B-Epsilon dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [CalderaAI/30B-Epsilon](https://huggingface.co/CalderaAI/30B-Epsilon) on the [Open\ \ LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\ \nThe dataset is composed of 64 configuration, each one coresponding to one of the\ \ evaluated task.\n\nThe dataset has been created from 4 run(s). Each run can be\ \ found as a specific split in each configuration, the split being named using the\ \ timestamp of the run.The \"train\" split is always pointing to the latest results.\n\ \nAn additional configuration \"results\" store all the aggregated results of the\ \ run (and is used to compute and display the aggregated metrics on the [Open LLM\ \ Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\ \nTo load the details from a run, you can for instance do the following:\n```python\n\ from datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_CalderaAI__30B-Epsilon\"\ ,\n\t\"harness_gsm8k_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese\ \ are the [latest results from run 2023-12-02T15:01:08.880467](https://huggingface.co/datasets/open-llm-leaderboard/details_CalderaAI__30B-Epsilon/blob/main/results_2023-12-02T15-01-08.880467.json)(note\ \ that their might be results for other tasks in the repos if successive evals didn't\ \ cover the same tasks. You find each in the results and the \"latest\" split for\ \ each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.24564063684609552,\n\ \ \"acc_stderr\": 0.011857183603902225\n },\n \"harness|gsm8k|5\":\ \ {\n \"acc\": 0.24564063684609552,\n \"acc_stderr\": 0.011857183603902225\n\ \ }\n}\n```" repo_url: https://huggingface.co/CalderaAI/30B-Epsilon leaderboard_url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard point_of_contact: clementine@hf.co configs: - config_name: harness_arc_challenge_25 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|arc:challenge|25_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|arc:challenge|25_2023-08-17T19:47:15.382915.parquet' - config_name: harness_drop_3 data_files: - split: 2023_09_09T14_24_13.994751 path: - '**/details_harness|drop|3_2023-09-09T14-24-13.994751.parquet' - split: 2023_09_23T06_45_40.292570 path: - '**/details_harness|drop|3_2023-09-23T06-45-40.292570.parquet' - split: latest path: - '**/details_harness|drop|3_2023-09-23T06-45-40.292570.parquet' - config_name: harness_gsm8k_5 data_files: - split: 2023_09_09T14_24_13.994751 path: - '**/details_harness|gsm8k|5_2023-09-09T14-24-13.994751.parquet' - split: 2023_09_23T06_45_40.292570 path: - '**/details_harness|gsm8k|5_2023-09-23T06-45-40.292570.parquet' - split: 2023_12_02T15_01_08.880467 path: - '**/details_harness|gsm8k|5_2023-12-02T15-01-08.880467.parquet' - split: latest path: - '**/details_harness|gsm8k|5_2023-12-02T15-01-08.880467.parquet' - config_name: harness_hellaswag_10 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hellaswag|10_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hellaswag|10_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-international_law|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-management|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-marketing|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-sociology|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-virology|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-anatomy|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-astronomy|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-business_ethics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-college_biology|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-college_chemistry|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-college_computer_science|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-college_mathematics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-college_medicine|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-college_physics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-computer_security|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-econometrics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-formal_logic|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-global_facts|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_biology|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_geography|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_physics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-human_aging|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-human_sexuality|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-international_law|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-jurisprudence|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-machine_learning|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-management|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-marketing|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-medical_genetics|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-miscellaneous|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-moral_disputes|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-nutrition|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-philosophy|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-prehistory|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-professional_accounting|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-professional_law|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-professional_medicine|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-professional_psychology|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-public_relations|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-security_studies|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-sociology|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-virology|5_2023-08-17T19:47:15.382915.parquet' - '**/details_harness|hendrycksTest-world_religions|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_abstract_algebra_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-abstract_algebra|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_anatomy_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-anatomy|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-anatomy|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_astronomy_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-astronomy|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-astronomy|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_business_ethics_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-business_ethics|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-business_ethics|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_clinical_knowledge_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-clinical_knowledge|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_college_biology_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-college_biology|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_biology|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_college_chemistry_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-college_chemistry|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_chemistry|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_college_computer_science_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-college_computer_science|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_computer_science|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_college_mathematics_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-college_mathematics|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_mathematics|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_college_medicine_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-college_medicine|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_medicine|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_college_physics_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-college_physics|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-college_physics|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_computer_security_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-computer_security|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-computer_security|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_conceptual_physics_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-conceptual_physics|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_econometrics_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-econometrics|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-econometrics|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_electrical_engineering_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-electrical_engineering|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_elementary_mathematics_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-elementary_mathematics|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_formal_logic_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-formal_logic|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-formal_logic|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_global_facts_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-global_facts|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-global_facts|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_high_school_biology_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-high_school_biology|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_biology|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_high_school_chemistry_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_chemistry|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_high_school_computer_science_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_computer_science|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_high_school_european_history_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_european_history|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_high_school_geography_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-high_school_geography|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_geography|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_high_school_government_and_politics_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_government_and_politics|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_high_school_macroeconomics_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_macroeconomics|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_high_school_mathematics_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_mathematics|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_high_school_microeconomics_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_microeconomics|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_high_school_physics_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-high_school_physics|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_physics|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_high_school_psychology_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_psychology|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_high_school_statistics_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_statistics|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_high_school_us_history_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_us_history|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_high_school_world_history_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-high_school_world_history|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_human_aging_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-human_aging|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-human_aging|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_human_sexuality_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-human_sexuality|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-human_sexuality|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_international_law_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-international_law|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-international_law|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_jurisprudence_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-jurisprudence|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-jurisprudence|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_logical_fallacies_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-logical_fallacies|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_machine_learning_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-machine_learning|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-machine_learning|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_management_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-management|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-management|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_marketing_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-marketing|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-marketing|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_medical_genetics_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-medical_genetics|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-medical_genetics|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_miscellaneous_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-miscellaneous|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-miscellaneous|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_moral_disputes_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-moral_disputes|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-moral_disputes|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_moral_scenarios_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-moral_scenarios|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_nutrition_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-nutrition|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-nutrition|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_philosophy_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-philosophy|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-philosophy|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_prehistory_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-prehistory|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-prehistory|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_professional_accounting_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-professional_accounting|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_accounting|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_professional_law_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-professional_law|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_law|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_professional_medicine_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-professional_medicine|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_medicine|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_professional_psychology_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-professional_psychology|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-professional_psychology|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_public_relations_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-public_relations|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-public_relations|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_security_studies_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-security_studies|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-security_studies|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_sociology_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-sociology|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-sociology|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_us_foreign_policy_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-us_foreign_policy|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_virology_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-virology|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-virology|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_hendrycksTest_world_religions_5 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|hendrycksTest-world_religions|5_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|hendrycksTest-world_religions|5_2023-08-17T19:47:15.382915.parquet' - config_name: harness_truthfulqa_mc_0 data_files: - split: 2023_08_17T19_47_15.382915 path: - '**/details_harness|truthfulqa:mc|0_2023-08-17T19:47:15.382915.parquet' - split: latest path: - '**/details_harness|truthfulqa:mc|0_2023-08-17T19:47:15.382915.parquet' - config_name: harness_winogrande_5 data_files: - split: 2023_09_09T14_24_13.994751 path: - '**/details_harness|winogrande|5_2023-09-09T14-24-13.994751.parquet' - split: 2023_09_23T06_45_40.292570 path: - '**/details_harness|winogrande|5_2023-09-23T06-45-40.292570.parquet' - split: latest path: - '**/details_harness|winogrande|5_2023-09-23T06-45-40.292570.parquet' - config_name: results data_files: - split: 2023_08_17T19_47_15.382915 path: - results_2023-08-17T19:47:15.382915.parquet - split: 2023_09_09T14_24_13.994751 path: - results_2023-09-09T14-24-13.994751.parquet - split: 2023_09_23T06_45_40.292570 path: - results_2023-09-23T06-45-40.292570.parquet - split: 2023_12_02T15_01_08.880467 path: - results_2023-12-02T15-01-08.880467.parquet - split: latest path: - results_2023-12-02T15-01-08.880467.parquet --- # Dataset Card for Evaluation run of CalderaAI/30B-Epsilon ## Dataset Description - **Homepage:** - **Repository:** https://huggingface.co/CalderaAI/30B-Epsilon - **Paper:** - **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard - **Point of Contact:** clementine@hf.co ### Dataset Summary Dataset automatically created during the evaluation run of model [CalderaAI/30B-Epsilon](https://huggingface.co/CalderaAI/30B-Epsilon) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 64 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 4 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_CalderaAI__30B-Epsilon", "harness_gsm8k_5", split="train") ``` ## Latest results These are the [latest results from run 2023-12-02T15:01:08.880467](https://huggingface.co/datasets/open-llm-leaderboard/details_CalderaAI__30B-Epsilon/blob/main/results_2023-12-02T15-01-08.880467.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.24564063684609552, "acc_stderr": 0.011857183603902225 }, "harness|gsm8k|5": { "acc": 0.24564063684609552, "acc_stderr": 0.011857183603902225 } } ``` ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
my-north-ai/scriber-data
--- license: apache-2.0 dataset_info: features: - name: audio dtype: audio - name: description dtype: string - name: n_speakers dtype: int32 - name: transcription dtype: string - name: gender dtype: class_label: names: '0': M '1': F '2': M-F '3': M-M '4': F-M - name: language dtype: class_label: names: '0': EN '1': PT '2': FR - name: music dtype: class_label: names: '0': 'YES' '1': 'NO' - name: lyrics dtype: class_label: names: '0': 'YES' '1': 'NO' - name: volume dtype: class_label: names: '0': 'NO' '1': LOW '2': MID '3': HIGH - name: type_interaction dtype: class_label: names: '0': TEST '1': ASSESSMENT '2': SOAP '3': GYM '4': MARQUISE - name: status dtype: class_label: names: '0': RAW '1': NOT-TRANSCRIBED '2': TRANSCRIBED '3': VERIFIED splits: - name: train num_bytes: 6460623.0 num_examples: 8 download_size: 6396421 dataset_size: 6460623.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
thomasavare/italian-dataset-helsinki
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: english dtype: string - name: italian dtype: string - name: Class dtype: string - name: Class_index dtype: float64 splits: - name: train num_bytes: 61402 num_examples: 500 download_size: 22595 dataset_size: 61402 --- # Dataset Card for "italian-dataset-helsinki" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
lightblue/email_templates
--- dataset_info: features: - name: anonymised_template_text dtype: string - name: instruction dtype: string - name: url dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 764153 num_examples: 620 download_size: 252151 dataset_size: 764153 configs: - config_name: default data_files: - split: train path: data/train-* ---
tyzhu/find_marker_before_sent_train_200_eval_40
--- configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* dataset_info: features: - name: inputs dtype: string - name: targets dtype: string - name: title dtype: string - name: context dtype: string splits: - name: train num_bytes: 1450283 num_examples: 1260 - name: validation num_bytes: 218272 num_examples: 203 download_size: 0 dataset_size: 1668555 --- # Dataset Card for "find_marker_before_sent_train_200_eval_40" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
bleugreen/typescript-instruct
--- task_categories: - text-classification - text2text-generation - summarization language: - en tags: - typescript - instruct - code size_categories: - 10K<n<100K --- # typescript-instruct A dataset of TypeScript snippets, processed from the typescript subset of [the-stack-smol](https://huggingface.co/datasets/bigcode/the-stack-smol). # Processing - Each source file is parsed with the TypeScript AST and queried for 'semantic chunks' of the following types. ``` ClassDeclaration - 2401 ArrowFunction - 16443 MethodDeclaration - 12096 FunctionDeclaration - 3226 TypeAliasDeclaration - 1489 InterfaceDeclaration - 5240 EnumDeclaration - 214 ``` - Leading comments are added to the front of `content` - Removed all chunks over max sequence length (2048) - Deduplicated / cleaned up - Generated instructions w/ `gpt-3.5-turbo` - Ran into of OpenAI API for the month, will finish other half next month # Dataset Structure ```python from datasets import load_dataset load_dataset("bleugreen/typescript-instruct") DatasetDict({ train: Dataset({ features: ['type', 'content', 'repo', 'path', 'language', 'instruction'], num_rows: 41109 }) }) ```
homersimpson/beletrain-gl
--- dataset_info: features: - name: dataset dtype: string - name: split dtype: string - name: passage dtype: string - name: question dtype: string - name: answer1 dtype: string - name: answer2 dtype: string - name: answer3 dtype: string - name: answer4 dtype: string - name: correct_answer dtype: string - name: correct_answer_num dtype: int64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 84297721 num_examples: 57051 - name: validation num_bytes: 10642258 num_examples: 7131 - name: test num_bytes: 10609276 num_examples: 7132 download_size: 65923746 dataset_size: 105549255 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
mirfan899/kids_phoneme_md
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: phonetic dtype: string splits: - name: train num_bytes: 707377196.786 num_examples: 2999 download_size: 691898690 dataset_size: 707377196.786 license: bsd language: - en --- # Dataset Card for "kids_phoneme_md" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Arconte/league_of_legends_wiki_scrape
--- license: mit size_categories: - n<1K language: - en pretty_name: League of legends wiki scrape-166 --- This dataset is a scrape from the League of Legends wiki, which contains the most up-to-date version with 166 champions. The data consists of: champion name, champion icon URL, champion wiki URL, stats, biography, passive ability, ability 1, ability 2, ability 3, ability 4, and curiosities.
HuggingFaceM4/NoCaps_support_query_sets
Invalid username or password.
HydraLM/partitioned_v2_standardized_14
--- dataset_info: features: - name: message dtype: string - name: message_type dtype: string - name: message_id dtype: int64 - name: conversation_id dtype: int64 - name: dataset_id dtype: string splits: - name: train num_bytes: 60172708.84968159 num_examples: 125409 download_size: 18554904 dataset_size: 60172708.84968159 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "partitioned_v2_standardized_14" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
james-burton/kick_starter_funding_ordinal
--- dataset_info: features: - name: name dtype: string - name: desc dtype: string - name: goal dtype: float64 - name: keywords dtype: string - name: disable_communication dtype: float64 - name: country dtype: float64 - name: currency dtype: float64 - name: deadline dtype: int64 - name: created_at dtype: int64 - name: final_status dtype: int64 splits: - name: train num_bytes: 20985411 num_examples: 73526 - name: validation num_bytes: 3710853 num_examples: 12976 - name: test num_bytes: 6170184 num_examples: 21626 download_size: 0 dataset_size: 30866448 --- # Dataset Card for "kick_starter_funding_ordinal" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reza-alipour/M3CelebA-Test
--- dataset_info: features: - name: id dtype: string - name: image dtype: image - name: mask dtype: image - name: caption dtype: string - name: caption_fre dtype: string - name: caption_deu dtype: string - name: caption_ita dtype: string - name: caption_spa dtype: string splits: - name: train num_bytes: 1066558558.5 num_examples: 2998 download_size: 697699660 dataset_size: 1066558558.5 configs: - config_name: default data_files: - split: train path: data/train-* ---
jordanfan/processed_us_congress_117_bills
--- dataset_info: features: - name: 'Unnamed: 0' dtype: int64 - name: index dtype: int64 - name: id dtype: string - name: policy_areas dtype: string - name: cur_summary dtype: string - name: cur_text dtype: string - name: title dtype: string - name: titles_official dtype: string - name: titles_short dtype: string - name: sponsor_name dtype: string - name: sponsor_party dtype: string - name: sponsor_state dtype: string - name: cleaned_summary dtype: string - name: extracted_text dtype: string splits: - name: train num_bytes: 267103581 num_examples: 11277 - name: val num_bytes: 81241627.68552457 num_examples: 3388 - name: test num_bytes: 9040169.314475432 num_examples: 377 download_size: 139661862 dataset_size: 357385378.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* - split: test path: data/test-* ---
acdzh/tadokoro-voice
--- license: mit --- 野兽先辈音声素材 来源:https://www.nicovideo.jp/watch/sm31721928
CyberHarem/tamaki_azurlane
--- license: mit task_categories: - text-to-image tags: - art - not-for-all-audiences size_categories: - n<1K --- # Dataset of tamaki/たまき/环 (Azur Lane) This is the dataset of tamaki/たまき/环 (Azur Lane), containing 58 images and their tags. The core tags of this character are `breasts, short_hair, green_hair, large_breasts, green_eyes, bangs, multicolored_hair, hair_between_eyes, mole_under_eye, mole`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:-----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 58 | 90.60 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tamaki_azurlane/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 58 | 49.20 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tamaki_azurlane/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 146 | 99.90 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tamaki_azurlane/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 58 | 76.75 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tamaki_azurlane/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 146 | 141.94 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tamaki_azurlane/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/tamaki_azurlane', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 8 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, cleavage, solo, bikini, looking_at_viewer, streaked_hair, blush, collarbone, smile, navel, ahoge, bare_shoulders, medium_breasts, hand_on_hip, jewelry, open_mouth | | 1 | 5 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, blush, looking_at_viewer, simple_background, smile, solo, bare_shoulders, cleavage, closed_mouth, white_background, bikini, blue_hair, collarbone, heart, medium_breasts, navel, one-piece_swimsuit, upper_body | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | cleavage | solo | bikini | looking_at_viewer | streaked_hair | blush | collarbone | smile | navel | ahoge | bare_shoulders | medium_breasts | hand_on_hip | jewelry | open_mouth | simple_background | closed_mouth | white_background | blue_hair | heart | one-piece_swimsuit | upper_body | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------|:-------|:---------|:--------------------|:----------------|:--------|:-------------|:--------|:--------|:--------|:-----------------|:-----------------|:--------------|:----------|:-------------|:--------------------|:---------------|:-------------------|:------------|:--------|:---------------------|:-------------| | 0 | 8 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | 1 | 5 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | X | X | X | | X | X | X | X | | X | X | | | | X | X | X | X | X | X | X |
KBlueLeaf/Danbooru2021-SQLite
--- task_categories: - text-generation - zero-shot-classification size_categories: - 1M<n<10M --- # Danbooru 2021 SQLite ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This is the metadata of danbooru 2021 dataset in SQLite format. https://gwern.net/danbooru2021 ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
erhwenkuo/dolly-15k-chinese-zhtw
--- dataset_info: features: - name: instruction dtype: string - name: context dtype: string - name: response dtype: string splits: - name: train num_bytes: 10483730 num_examples: 15011 download_size: 7492947 dataset_size: 10483730 configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-sa-3.0 task_categories: - question-answering - summarization language: - zh size_categories: - 10K<n<100K --- # Dataset Card for "dolly-15k-chinese-zhtw" ## 內容 dolly-15k-chinese-zhtw 是一個開源數據集,它的原始數據集 [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) 包含由數千名 Databricks 員工產生的指令追蹤記錄,涉及 [InstructGPT](https://arxiv.org/abs/2203.02155) 論文中概述的幾個行為類別,包括腦力激盪、分類、封閉式QA、生成、資訊擷取、開放式QA 和總結。 根據以下條款,該資料集可用於任何目的,無論是學術目的還是商業目的 [Creative Commons Attribution-ShareAlike 3.0 Unported License](https://creativecommons.org/licenses/by-sa/3.0/legalcode)。 ## 支援的任務 - 訓練 LLMs - 合成數據的生成 - 數據增強 ## 概述 databricks-dolly-15k 是由數千名 Databricks 員工產生的超過 15,000 筆記錄的語料庫,使大型語言模型能夠展現 ChatGPT 的神奇互動性。 Databricks 員工被邀請在八個不同的指令類別中的每一個類別中建立提示/回應對,其中包括 InstructGPT 論文中概述的七個類別,以及開放式自由格式類別。貢獻者被指示避免使用除維基百科(針對指令類別的特定子集)之外的網絡上任何來源的信息,並明確指示避免在製定指令或響應時使用生成式人工智能。提供了每種行為的範例,以激發適合每個類別的問題類型和說明。 在資料生成過程的中間,貢獻者可以選擇回答其他貢獻者提出的問題。他們被要求重新表述原來的問題,並且只選擇他們可以合理地預期正確回答的問題。 對於某些類別,貢獻者被要求提供從維基百科複製的參考文本。參考文本(由實際資料集中的上下文欄位指示)可能包含括號內的維基百科引用編號(例如[42]),我們建議使用者在下游應用程式中將其刪除。 ## 範例 一個樣本的範例: ``` { 'instruction': '小森田智昭是什麼時候出生的?', 'context': '小森田出生於1981年7月10日,出生在熊本縣。高中畢業後,他於2000年加入了J1聯賽俱樂部Avispa...', 'response': '小森田智明出生於1981年7月10日。' } ``` ## 資料欄位 資料有幾個欄位: - `instruction`: 描述模型應該執行的任務 - `context`: 任務內容的上下文 - `response`: 回應 ## 已知限制 - 維基百科是一個眾包語料庫,該資料集的內容可能反映維基百科中發現的偏見、事實錯誤和主題焦點 - 註釋者人口統計和主題可能反映 Databricks 員工的組成 ## 論文引用 ``` @online{DatabricksBlog2023DollyV2, author = {Mike Conover and Matt Hayes and Ankit Mathur and Jianwei Xie and Jun Wan and Sam Shah and Ali Ghodsi and Patrick Wendell and Matei Zaharia and Reynold Xin}, title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM}, year = {2023}, url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm}, urldate = {2023-06-30} } ``` ## 許可資訊 資料集中的某些類別的資料包括來自以下來源的資料,並根據 CC BY-SA 3.0 授權: - 維基百科 - https://www.wikipedia.org
qgiaohc/twitter_dataset_1713198629
--- dataset_info: features: - name: id dtype: string - name: tweet_content dtype: string - name: user_name dtype: string - name: user_id dtype: string - name: created_at dtype: string - name: url dtype: string - name: favourite_count dtype: int64 - name: scraped_at dtype: string - name: image_urls dtype: string splits: - name: train num_bytes: 22533 num_examples: 50 download_size: 14224 dataset_size: 22533 configs: - config_name: default data_files: - split: train path: data/train-* ---
isaacrehg/poetry-detailed-analysis
--- dataset_info: features: - name: _id dtype: int64 - name: title dtype: string - name: author dtype: string - name: url dtype: string - name: stanza_index dtype: int64 - name: stanza_header dtype: string - name: content dtype: string - name: analysis dtype: string splits: - name: train num_bytes: 18347594 num_examples: 14507 download_size: 9751592 dataset_size: 18347594 --- # Dataset Card for "poetry-detailed-analysis" This dataset contains scraped per-stanza analyses. Poems in this dataset also appear in [isaacrehg/poetry-summary](https://huggingface.co/datasets/isaacrehg/poetry-summary). Each row contains the following data: - _id: ID of the poem (for reference in [isaacrehg/poetry-summary](https://huggingface.co/datasets/isaacrehg/poetry-summary)) - title: The title of the poem - author: The poem's author - url: URL scraped from analysis content where the full poem can be found (may be missing or incorrect) - stanza_index: index for the section of the poem that this record pertains to - stanza_header: natural language description of the pertinant stanza (ie. "Stanza One" or "Lines 10-16") - content: poem content for this stanza (may be missing or partially ommited, ie. "Curling its coral feet, (…) Men long dead.") - analysis: analysis of this stanza
Marbyun/internal-datasets
--- annotations_creators: - generated language_creators: - found language: - en license: mit multilinguality: - monolingual size_categories: - 1K<n<10K source_datasets: - original task_categories: - question-answering task_ids: - extractive-qa - open-domain-qa pretty_name: synQA --- # Dataset Card for synQA ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Internal-Datasets homepage](https://github.com/Marbyun/datasets-huggingface) - **Point of Contact:** [Marbyun](https://huggingface.co/Marbyun) ### Dataset Summary This Datasets purpose for AI Question-Answering'Datasets. This Dataset inspired by SynQA And SQuAD v1.1 (https://arxiv.org/abs/1606.05250) training set. ### Languages The text in the dataset is in English. The associated BCP-47 code is `en`. ## Dataset Structure ### Data Instances Data is provided in the same format as SQuAD 1.1. An example is shown below: ``` { "data": [ { "title": "None", "paragraphs": [ { "context": "Architecturally, the school has a Catholic character. Atop the Main Building's gold dome is a golden statue of the Virgin Mary. Immediately in front of the Main Building and facing it, is a copper statue of Christ with arms upraised with the legend \"Venite Ad Me Omnes\". Next to the Main Building is the Basilica of the Sacred Heart. Immediately behind the basilica is the Grotto, a Marian place of prayer and reflection. It is a replica of the grotto at Lourdes, France where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous in 1858. At the end of the main drive (and in a direct line that connects through 3 statues and the Gold Dome), is a simple, modern stone statue of Mary.", "qas": [ { "id": "689f275aacba6c43ff112b2c7cb16129bfa934fa", "question": "What material is the statue of Christ made of?", "answers": [ { "answer_start": 190, "text": "organic copper" } ] }, { "id": "73bd3f52f5934e02332787898f6e568d04bc5403", "question": "Who is on the Main Building's gold dome?", "answers": [ { "answer_start": 111, "text": "the Virgin Mary." } ] }, { "id": "4d459d5b75fd8a6623446290c542f99f1538cf84", "question": "What kind of statue is at the end of the main drive?", "answers": [ { "answer_start": 667, "text": "modern stone" } ] }, { "id": "987a1e469c5b360f142b0a171e15cef17cd68ea6", "question": "What type of dome is on the Main Building at Notre Dame?", "answers": [ { "answer_start": 79, "text": "gold" } ] } ] } ] } ] } ``` ### Data Fields - title: all "None" in this dataset - context: the context/passage - id: a string identifier for each question - answers: a list of all provided answers (one per question in our case, but multiple may exist in SQuAD) with an `answer_start` field which is the character index of the start of the answer span, and a `text` field which is the answer text. ### Data Splits The dataset is composed of a single split of 314,811 examples that we used in a two-stage fine-tuning process (refer to the paper for further details). ## Dataset Creation ### Curation Rationale This dataset was created to investigate the effects of using synthetic adversarial data generation to improve robustness of state-of-the-art QA models. ### Source Data #### Initial Data Collection and Normalization The source passages are from Wikipedia and are the same as those used in [SQuAD v1.1](https://arxiv.org/abs/1606.05250). #### Who are the source language producers? The source language produces are Wikipedia editors for the passages, and a BART-Large generative model for the questions. ### Personal and Sensitive Information No annotator identifying details are provided. ## Considerations for Using the Data ### Social Impact of Dataset The purpose of this dataset is to help develop better question answering systems. A system that succeeds at the supported task would be able to provide an accurate extractive answer from a short passage. This dataset is to be seen as a support resource for improve the ability of systems t handle questions that contemporary state-of-the-art models struggle to answer correctly, thus often requiring more complex comprehension abilities than say detecting phrases explicitly mentioned in the passage with high overlap to the question. It should be noted, however, that the the source passages are both domain-restricted and linguistically specific, and that provided questions and answers do not constitute any particular social application. ### Discussion of Biases The dataset may exhibit various biases in terms of the source passage selection, selected candidate answers, generated questions, quality re-labelling process, as well as any algorithmic biases that may be exacerbated from the adversarial annotation process used to collect the SQuAD and AdversarialQA data on which the generators were trained. ### Other Known Limitations N/a ## Additional Information ### Dataset Curators This Dataset prepared by RnD Team. ### Licensing Information This dataset is distributed under the [MIT License](https://opensource.org/licenses/MIT). ### Citation Information ``` @inproceedings{Rnd-AI-Team, title = "Dataset for Develop AI.", author = "RnD Team,", booktitle = "", month = jun, year = "2023", address = "", publisher = "", url = "", doi = "", pages = "", abstract = "This Dataset prepare by RnD Team for develop AI Question and Answering Chatbot.", } ```