modelId
stringlengths 4
112
| sha
stringlengths 40
40
| lastModified
stringlengths 24
24
| tags
sequence | pipeline_tag
stringclasses 29
values | private
bool 1
class | author
stringlengths 2
38
⌀ | config
null | id
stringlengths 4
112
| downloads
float64 0
36.8M
⌀ | likes
float64 0
712
⌀ | library_name
stringclasses 17
values | readme
stringlengths 0
186k
| embedding
sequence |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ramsrigouthamg/t5_paraphraser | d78f7749656e21d8b6fdf372efb5c5d1dbce577f | 2020-12-11T22:00:04.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | ramsrigouthamg | null | ramsrigouthamg/t5_paraphraser | 9,713 | 6 | transformers | ## Model in Action 🚀
```python
import torch
from transformers import T5ForConditionalGeneration,T5Tokenizer
def set_seed(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
set_seed(42)
model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_paraphraser')
tokenizer = T5Tokenizer.from_pretrained('ramsrigouthamg/t5_paraphraser')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print ("device ",device)
model = model.to(device)
sentence = "Which course should I take to get started in data science?"
# sentence = "What are the ingredients required to bake a perfect cake?"
# sentence = "What is the best possible approach to learn aeronautical engineering?"
# sentence = "Do apples taste better than oranges in general?"
text = "paraphrase: " + sentence + " </s>"
max_len = 256
encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
# set top_k = 50 and set top_p = 0.95 and num_return_sequences = 3
beam_outputs = model.generate(
input_ids=input_ids, attention_mask=attention_masks,
do_sample=True,
max_length=256,
top_k=120,
top_p=0.98,
early_stopping=True,
num_return_sequences=10
)
print ("\nOriginal Question ::")
print (sentence)
print ("\n")
print ("Paraphrased Questions :: ")
final_outputs =[]
for beam_output in beam_outputs:
sent = tokenizer.decode(beam_output, skip_special_tokens=True,clean_up_tokenization_spaces=True)
if sent.lower() != sentence.lower() and sent not in final_outputs:
final_outputs.append(sent)
for i, final_output in enumerate(final_outputs):
print("{}: {}".format(i, final_output))
```
## Output
```
Original Question ::
Which course should I take to get started in data science?
Paraphrased Questions ::
0: What should I learn to become a data scientist?
1: How do I get started with data science?
2: How would you start a data science career?
3: How can I start learning data science?
4: How do you get started in data science?
5: What's the best course for data science?
6: Which course should I start with for data science?
7: What courses should I follow to get started in data science?
8: What degree should be taken by a data scientist?
9: Which course should I follow to become a Data Scientist?
```
## Detailed blog post available here :
https://towardsdatascience.com/paraphrase-any-question-with-t5-text-to-text-transfer-transformer-pretrained-model-and-cbb9e35f1555
| [
-0.06329762190580368,
-0.05019315704703331,
0.028862779960036278,
0.03912495821714401,
0.013211025856435299,
-0.0549628771841526,
-0.0054979827255010605,
0.046711500734090805,
-0.06236286461353302,
-0.052693966776132584,
0.03415695205330849,
-0.05880880355834961,
-0.05016383156180382,
-0.011183059774339199,
0.0014333196450024843,
0.0029649711214005947,
-0.013261022977530956,
-0.0867738127708435,
-0.10979168117046356,
-0.14294540882110596,
0.15948110818862915,
0.02880934812128544,
0.04356664419174194,
-0.005834785755723715,
0.005304488353431225,
0.012054757215082645,
0.018923871219158173,
0.026991087943315506,
0.029550114646553993,
0.038549549877643585,
-0.03541211783885956,
0.07365953922271729,
-0.0986957922577858,
0.08267191052436829,
0.07275350391864777,
-0.0066968719474971294,
-0.07817438989877701,
-0.026871878653764725,
-0.004056728444993496,
0.018726611509919167,
0.008858091197907925,
-0.10250634700059891,
-0.012299074791371822,
0.008449195884168148,
0.05293557792901993,
0.015734277665615082,
0.026454728096723557,
-0.07165869325399399,
0.004808215424418449,
-0.04710663855075836,
-0.06039159744977951,
-0.011283195577561855,
-0.03750339895486832,
0.0052567943930625916,
-0.014196956530213356,
-0.00197064527310431,
0.0589001439511776,
-0.07456497848033905,
0.020606065168976784,
-0.15160536766052246,
-0.016795014962553978,
-0.04202026501297951,
-0.04183383658528328,
-0.02469255030155182,
-0.05365338921546936,
-0.05010756850242615,
0.0038755382411181927,
0.025650588795542717,
0.06416004151105881,
-0.0019023152999579906,
-0.039361435920000076,
0.03412897139787674,
0.016176704317331314,
0.13031448423862457,
-0.03507749363780022,
-0.028806466609239578,
0.14896070957183838,
-0.02150658331811428,
0.04620451107621193,
-0.05634349584579468,
-0.03832308202981949,
-0.034172914922237396,
0.01504509150981903,
0.059479281306266785,
0.06496486067771912,
-0.016835715621709824,
0.026084113866090775,
0.05742329731583595,
0.030443886294960976,
-0.010516809299588203,
-0.02406207099556923,
-0.06900027394294739,
0.046648479998111725,
0.025926414877176285,
-0.010546950623393059,
0.08679666370153427,
-0.016069265082478523,
-0.12249661237001419,
-0.07256249338388443,
0.03536007180809975,
-0.035254284739494324,
0.012916183099150658,
-0.00990599486976862,
0.03382702171802521,
-0.0706743523478508,
0.009846879169344902,
0.007577511947602034,
0.02695797011256218,
0.056915007531642914,
0.006704595405608416,
0.04169781506061554,
0.05039987713098526,
-0.022516734898090363,
-0.01921074651181698,
0.04408224672079086,
-0.04483110457658768,
-0.09407169371843338,
0.02666611038148403,
-0.0011265784269198775,
0.09223198890686035,
-0.03877231478691101,
0.06372080743312836,
-0.03571280092000961,
0.04612084850668907,
-0.04247962683439255,
-0.10207990556955338,
-0.022351885214447975,
7.576825897061647e-33,
-0.027314502745866776,
0.029287168756127357,
0.024432271718978882,
0.05528733506798744,
-0.02817707136273384,
0.0073447804898023605,
0.021425295621156693,
0.06849095970392227,
-0.027077777311205864,
0.07181281596422195,
-0.07295791059732437,
0.0611770898103714,
-0.09534074366092682,
0.05189729109406471,
-0.021433252841234207,
-0.01499972678720951,
-0.032399341464042664,
0.03949808329343796,
0.0379282645881176,
-0.0104147894307971,
0.027074193581938744,
0.05001647770404816,
-0.030771689489483833,
-0.057312145829200745,
-0.04639962688088417,
0.04453517124056816,
-0.02147786319255829,
-0.06543175131082535,
0.006540006957948208,
0.03341513127088547,
-0.061831168830394745,
-0.02019498310983181,
-0.0173957422375679,
-0.041693493723869324,
0.052840277552604675,
0.00818000826984644,
0.016833242028951645,
-0.023670736700296402,
-0.0019875853322446346,
-0.05307060480117798,
-0.03004421293735504,
0.08183841407299042,
0.00782534945756197,
-0.03834538161754608,
-0.03777339681982994,
0.013271891511976719,
-0.02331487461924553,
0.0017334148287773132,
0.014968723058700562,
0.029691141098737717,
-0.06250155717134476,
-0.01982118934392929,
0.07937665283679962,
-0.013541851192712784,
0.08166800439357758,
0.000786833290476352,
0.0676276758313179,
0.04205648973584175,
0.1162516176700592,
-0.049170833081007004,
-0.017893491312861443,
0.0442315936088562,
-0.016927683725953102,
0.05615272372961044,
0.014775547198951244,
0.026136411353945732,
-0.0015367809683084488,
0.029613325372338295,
0.01913030631840229,
-0.021841691806912422,
-0.11390992254018784,
-0.012826530262827873,
-0.06236128881573677,
-0.05068431794643402,
0.029905058443546295,
-0.017887817695736885,
0.01100143138319254,
-0.07543725520372391,
-0.1333184391260147,
0.0011882063699886203,
-0.03657887130975723,
0.004981049802154303,
-0.03692101687192917,
-0.07009714096784592,
-0.03987206891179085,
0.015318321995437145,
0.02028343267738819,
-0.02083931304514408,
-0.000019103810700471513,
-0.03824833407998085,
-0.04070906341075897,
-0.06258996576070786,
0.03384823724627495,
0.04262436553835869,
-0.011555712670087814,
-8.171426204538084e-33,
0.02488340437412262,
0.012917126528918743,
0.005587183870375156,
0.0900786742568016,
0.033354345709085464,
-0.041240330785512924,
0.01856100559234619,
-0.07161682099103928,
-0.003439414082095027,
-0.06465504318475723,
0.033593662083148956,
-0.03190240263938904,
-0.01252665277570486,
-0.05948323383927345,
0.051518090069293976,
0.028608357533812523,
-0.0792870745062828,
0.05354113504290581,
-0.033282358199357986,
0.08465643227100372,
-0.09482554346323013,
0.11571599543094635,
-0.15754184126853943,
-0.024842282757163048,
-0.10781281441450119,
0.061733316630125046,
0.02274879813194275,
0.024133531376719475,
-0.015885086730122566,
-0.0075666955672204494,
0.05497538670897484,
-0.021750768646597862,
-0.010940676555037498,
0.07966108620166779,
-0.07808060944080353,
0.02462892234325409,
0.13176541030406952,
-0.04729848727583885,
-0.0333663634955883,
0.0718681588768959,
0.142803356051445,
0.048273395746946335,
-0.06051970273256302,
0.057833872735500336,
-0.12082912772893906,
-0.020017746835947037,
-0.036303840577602386,
-0.009257107973098755,
0.07232311367988586,
-0.005955989472568035,
0.08100981265306473,
-0.06507299095392227,
-0.07252464443445206,
-0.04830406606197357,
0.005223982501775026,
-0.017247365787625313,
0.06297872215509415,
-0.034948479384183884,
-0.04043936729431152,
-0.018648415803909302,
-0.005455384496599436,
-0.057452283799648285,
0.0804549902677536,
-0.029499126598238945,
-0.0700531080365181,
-0.03382882475852966,
-0.022625312209129333,
0.13610917329788208,
0.012135321274399757,
-0.00644413847476244,
-0.061483968049287796,
0.10778871178627014,
0.10477156192064285,
-0.06294005364179611,
-0.0061723049730062485,
0.02859797328710556,
0.012410202994942665,
-0.025859344750642776,
0.027679098770022392,
-0.016047630459070206,
-0.045825328677892685,
-0.030112694948911667,
-0.032960180193185806,
0.0441325418651104,
-0.011463012546300888,
0.006747005041688681,
0.08400793373584747,
0.0655440017580986,
0.008737035095691681,
-0.04666893556714058,
-0.03720135986804962,
-0.008656498976051807,
0.08179233223199844,
0.09281962364912033,
-0.029308471828699112,
-6.028398047419614e-8,
0.0024571882095187902,
0.007844326086342335,
0.01257339958101511,
0.046506088227033615,
-0.045893892645835876,
0.018163561820983887,
-0.016406534239649773,
-0.0027028291951864958,
0.018207119777798653,
-0.018826980143785477,
0.05802685022354126,
-0.018194304779171944,
-0.010167484171688557,
0.04740124195814133,
-0.0025882467161864042,
0.09376367181539536,
0.0043464177288115025,
0.008197681978344917,
0.013466961681842804,
-0.057798322290182114,
-0.006724181119352579,
-0.02375115640461445,
0.0009505130583420396,
0.015146901831030846,
0.0059884088113904,
0.0025617589708417654,
-0.006854531355202198,
0.028028950095176697,
-0.0028106807731091976,
0.040856972336769104,
-0.018674539402127266,
-0.023445280268788338,
0.023990986868739128,
0.026297586038708687,
0.06347425282001495,
0.03734195977449417,
0.05702932924032211,
-0.024574287235736847,
0.035882871598005295,
-0.0054980311542749405,
-0.01136129628866911,
0.031667206436395645,
-0.12968742847442627,
0.00804928783327341,
0.042740583419799805,
-0.006993989460170269,
-0.011602628044784069,
-0.04595055431127548,
-0.028568437322974205,
0.06371399760246277,
-0.04588137939572334,
0.015067389234900475,
-0.055734675377607346,
0.040769051760435104,
0.015530840493738651,
0.037801794707775116,
-0.009523803368210793,
-0.013213438913226128,
-0.0764760822057724,
-0.0009953854605555534,
0.04703085869550705,
0.018248174339532852,
-0.039661239832639694,
-0.038202766329050064
] |
valhalla/t5-small-e2e-qg | feec82746b18ab037724c14f11277f320bd73920 | 2021-07-30T13:10:33.000Z | [
"pytorch",
"t5",
"text2text-generation",
"dataset:squad",
"arxiv:1910.10683",
"transformers",
"question-generation",
"license:mit",
"autotrain_compatible"
] | text2text-generation | false | valhalla | null | valhalla/t5-small-e2e-qg | 9,563 | 3 | transformers | ---
datasets:
- squad
tags:
- question-generation
widget:
- text: "Python is developed by Guido Van Rossum and released in 1991. </s>"
license: mit
---
## T5 for question-generation
This is [t5-small](https://arxiv.org/abs/1910.10683) model trained for end-to-end question generation task. Simply input the text and the model will generate multile questions.
You can play with the model using the inference API, just put the text and see the results!
For more deatils see [this](https://github.com/patil-suraj/question_generation) repo.
### Model in action 🚀
You'll need to clone the [repo](https://github.com/patil-suraj/question_generation).
[](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb)
```python3
from pipelines import pipeline
text = "Python is an interpreted, high-level, general-purpose programming language. Created by Guido van Rossum \
and first released in 1991, Python's design philosophy emphasizes code \
readability with its notable use of significant whitespace."
nlp = pipeline("e2e-qg")
nlp(text)
=> [
'Who created Python?',
'When was Python first released?',
"What is Python's design philosophy?"
]
``` | [
-0.08515087515115738,
-0.04181338846683502,
-0.0586128793656826,
0.029416777193546295,
-0.005845144856721163,
0.011947006918489933,
-0.001649213139899075,
-0.003913224209100008,
0.000490907987114042,
-0.035534728318452835,
0.024766242131590843,
-0.09457182884216309,
0.08185736835002899,
-0.030499761924147606,
0.02849496714770794,
0.05787406489253044,
0.004578429274260998,
-0.056962866336107254,
-0.05897024646401405,
-0.10916787385940552,
0.04323519393801689,
0.040499188005924225,
0.1304430514574051,
0.024300390854477882,
-0.019756663590669632,
-0.034233756363391876,
0.04058655723929405,
0.01412294339388609,
0.01631106808781624,
0.03186534717679024,
0.08597791194915771,
0.03133522719144821,
-0.05391481891274452,
0.0844930112361908,
0.06088126078248024,
0.08432077616453171,
-0.04961840808391571,
0.01039106585085392,
0.003350767306983471,
0.03374506160616875,
0.026019034907221794,
-0.062418945133686066,
-0.03753381967544556,
-0.039024222642183304,
0.085466668009758,
-0.08138322085142136,
-0.084538035094738,
-0.01191316731274128,
0.06814511120319366,
0.015044976025819778,
-0.062365174293518066,
-0.10922018438577652,
0.014368347823619843,
0.035551201552152634,
0.02054240182042122,
0.019759362563490868,
-0.011444255709648132,
-0.049954142421483994,
-0.03824169561266899,
-0.018432455137372017,
-0.06367869675159454,
-0.08185528963804245,
-0.013428982347249985,
-0.007152047473937273,
-0.0009507252252660692,
0.006199227180331945,
0.006985364016145468,
0.06261378526687622,
-0.005937413778156042,
-0.06994637101888657,
-0.07301320880651474,
0.033744923770427704,
-0.014216719195246696,
-0.017112409695982933,
-0.01658531092107296,
0.05195111781358719,
-0.006748995278030634,
-0.04209857061505318,
0.059086933732032776,
-0.06997761130332947,
-0.03279782831668854,
-0.076126828789711,
0.08472611010074615,
0.07000173628330231,
0.048091448843479156,
0.01063153613358736,
0.07329625636339188,
0.11191149801015854,
0.009310716763138771,
0.05595818907022476,
-0.09297345578670502,
-0.031206103041768074,
0.06630410254001617,
0.040847912430763245,
-0.05808476731181145,
0.11510413885116577,
0.03146978095173836,
-0.04040863364934921,
-0.010592537000775337,
0.035150229930877686,
0.05443630367517471,
0.007660070899873972,
0.08557423204183578,
-0.03688149154186249,
0.0064959716983139515,
0.0010727319167926908,
0.010414613410830498,
-0.018244775012135506,
0.026526326313614845,
-0.09117592871189117,
-0.007044750731438398,
0.02223173715174198,
0.0017535464139655232,
0.002696692943572998,
-0.010809406638145447,
-0.008569830097258091,
0.025835908949375153,
0.03546328470110893,
0.007824704051017761,
0.022062430158257484,
0.021782629191875458,
0.03520863503217697,
-0.04469503462314606,
-0.014948820695281029,
0.00867503322660923,
-0.03289634734392166,
-0.007059105671942234,
1.043210461394486e-33,
0.1008504331111908,
-0.02175142429769039,
0.1282149851322174,
0.06999965757131577,
0.03589535504579544,
0.04586507007479668,
-0.007728672586381435,
0.07050575315952301,
-0.056922558695077896,
-0.028090758249163628,
-0.005461782682687044,
-0.0338970348238945,
-0.08734697103500366,
0.021189117804169655,
0.03725121170282364,
-0.06505105644464493,
-0.11582417786121368,
0.008830303326249123,
0.01703069917857647,
0.06697692722082138,
-0.0008508609607815742,
0.020078465342521667,
0.018943754956126213,
-0.02892346866428852,
0.06994455307722092,
0.04413755238056183,
0.03457334265112877,
-0.033608969300985336,
-0.03795156627893448,
-0.00008161343430401757,
-0.11388757079839706,
-0.04950863495469093,
-0.014470204710960388,
0.05860245227813721,
-0.04287988692522049,
0.00027016663807444274,
0.018604107201099396,
-0.022058870643377304,
-0.0051591964438557625,
-0.03094654716551304,
0.031734541058540344,
-0.020874720066785812,
0.08259550482034683,
-0.02244226075708866,
-0.09456419199705124,
-0.014501208439469337,
0.006272635422646999,
-0.037923190742731094,
0.0603264644742012,
0.004368005786091089,
-0.005797562189400196,
-0.033726271241903305,
-0.032726362347602844,
-0.13441914319992065,
-0.0058678737841546535,
-0.0010528365382924676,
-0.052099768072366714,
-0.01244636345654726,
0.05998007953166962,
-0.005539007484912872,
-0.01827569492161274,
0.015421286225318909,
0.028777552768588066,
0.05080633610486984,
0.054238926619291306,
0.058135077357292175,
-0.015502475202083588,
0.012434795498847961,
0.12136398255825043,
-0.009527547284960747,
0.016780512407422066,
-0.02997495047748089,
-0.04928179830312729,
-0.09629291296005249,
0.022983869537711143,
0.010398897342383862,
-0.04132844880223274,
-0.04545311629772186,
-0.058419790118932724,
0.03189460560679436,
0.00486022001132369,
-0.0339813195168972,
-0.029363974928855896,
-0.039939988404512405,
0.04754330590367317,
0.05296722427010536,
0.08606918156147003,
-0.06004182994365692,
0.010852481238543987,
-0.06970134377479553,
-0.03166932612657547,
0.00003005941107403487,
-0.0361233726143837,
-0.0695117712020874,
0.035356305539608,
-1.8978359967445678e-33,
0.0597776360809803,
-0.04113855957984924,
-0.06790755689144135,
0.03921305015683174,
0.10524860769510269,
-0.0952453464269638,
-0.014033296145498753,
0.08775010704994202,
0.003066379576921463,
-0.022119712084531784,
-0.03431807830929756,
-0.010727625340223312,
0.002033510711044073,
-0.03606535866856575,
0.006093069911003113,
-0.005717707797884941,
-0.026254212483763695,
-0.034472353756427765,
0.06661198288202286,
0.012117262929677963,
-0.04427359625697136,
0.03958931192755699,
-0.05072791129350662,
-0.011132970452308655,
-0.013101177290081978,
0.00628154631704092,
0.005859305616468191,
0.006608443800359964,
0.046946026384830475,
0.04171251505613327,
-0.04597804322838783,
-0.044171351939439774,
0.012271087616682053,
0.0467047281563282,
-0.07532200962305069,
0.05793701857328415,
0.05363873764872551,
-0.05564561113715172,
-0.0064582242630422115,
0.1014702171087265,
0.02503063902258873,
0.0006621539359912276,
-0.08703985065221786,
0.00997527688741684,
-0.049554646015167236,
0.03227918967604637,
-0.07814130187034607,
0.015907585620880127,
-0.040409646928310394,
-0.00541350245475769,
0.0034503438510000706,
0.053458161652088165,
-0.12081323564052582,
-0.010581796988844872,
-0.09120351076126099,
-0.07800951600074768,
0.0030991218518465757,
-0.0016934132436290383,
-0.057933513075113297,
-0.0748215988278389,
-0.10143368691205978,
0.015484688803553581,
0.06808700412511826,
-0.05674678087234497,
0.05102939158678055,
-0.045132704079151154,
-0.07613871991634369,
0.018558833748102188,
-0.019181659445166588,
-0.01958005130290985,
-0.01653905399143696,
0.007083439733833075,
0.0836261585354805,
0.01928618550300598,
0.0781465619802475,
-0.014351903460919857,
-0.04854809492826462,
-0.025730011984705925,
0.041069455444812775,
-0.04321486875414848,
-0.027421120554208755,
-0.027485964819788933,
0.06428311765193939,
0.17501994967460632,
-0.04405534267425537,
-0.033884383738040924,
0.04804093763232231,
0.15692435204982758,
0.03308194503188133,
0.02534041553735733,
0.01633622497320175,
0.007263540290296078,
0.028301123529672623,
0.14147576689720154,
-0.02527817152440548,
-5.127019164774538e-8,
-0.04338575527071953,
0.056042809039354324,
-0.03595446050167084,
0.06958679854869843,
-0.022407695651054382,
0.006283908616751432,
-0.03542666509747505,
0.012559505179524422,
0.023636270314455032,
-0.018775133416056633,
-0.012655708938837051,
0.05225616693496704,
-0.022823603823781013,
0.010676448233425617,
-0.06085465848445892,
0.029866153374314308,
0.030480055138468742,
0.06324557214975357,
0.027278320863842964,
-0.07674941420555115,
0.05469423159956932,
0.02191908285021782,
-0.046493157744407654,
0.0833144560456276,
0.06320054829120636,
0.05580376088619232,
-0.10431495308876038,
-0.01013233046978712,
-0.06346332281827927,
-0.023324497044086456,
0.031046954914927483,
-0.060910191386938095,
-0.09004805237054825,
-0.0019637756049633026,
0.11016077548265457,
0.035778407007455826,
-0.05940920487046242,
-0.026075631380081177,
0.06292956322431564,
0.010025791823863983,
-0.010554764419794083,
-0.03125535324215889,
-0.07095430046319962,
-0.00969333853572607,
0.021357934921979904,
-0.019500551745295525,
-0.05328156799077988,
-0.10139711201190948,
0.029320023953914642,
-0.013043804094195366,
-0.015753522515296936,
-0.055887144058942795,
-0.01674269512295723,
-0.02400200627744198,
0.036422401666641235,
0.04024134948849678,
0.04593007266521454,
0.01988738402724266,
0.011847470887005329,
-0.028054188936948776,
0.06529927253723145,
0.08382134884595871,
0.017062369734048843,
0.007543730549514294
] |
KoboldAI/GPT-J-6B-Skein | 95a7ea75328cc8e117fdbf967b9fa12f49d1d24c | 2022-03-14T22:44:49.000Z | [
"pytorch",
"gptj",
"text-generation",
"transformers"
] | text-generation | false | KoboldAI | null | KoboldAI/GPT-J-6B-Skein | 9,531 | null | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
allenai/longformer-large-4096-finetuned-triviaqa | 4a10c0999bd77b29f6fd122663787c770afa197e | 2021-03-10T02:31:53.000Z | [
"pytorch",
"tf",
"longformer",
"question-answering",
"transformers",
"autotrain_compatible"
] | question-answering | false | allenai | null | allenai/longformer-large-4096-finetuned-triviaqa | 9,500 | null | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
ImAPizza/DialoGPT-medium-alberttwo | bedcf2148b3c45ebc5c0c8632d41fe4f4cde1d9f | 2021-08-29T13:39:41.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | ImAPizza | null | ImAPizza/DialoGPT-medium-alberttwo | 9,477 | 1 | transformers | ---
tags:
- conversational
---
# Alberttwo DialoGPT Model | [
-0.011641668155789375,
-0.04896824434399605,
0.015683777630329132,
0.02879466488957405,
0.022008497267961502,
0.028402237221598625,
0.0800098106265068,
0.06098068878054619,
0.10993342101573944,
-0.05415920913219452,
-0.014822045341134071,
-0.039920873939991,
-0.04851925000548363,
-0.0061962357722222805,
0.011141529306769371,
0.049999628216028214,
0.012596959248185158,
-0.025674141943454742,
-0.03941372036933899,
0.032514240592718124,
-0.0132601298391819,
0.06007065251469612,
0.046584244817495346,
-0.022750020027160645,
0.02714800275862217,
0.05785813927650452,
-0.03035626746714115,
-0.013952220790088177,
0.05135135352611542,
-0.008803164586424828,
0.032945092767477036,
0.02497580647468567,
0.08058514446020126,
0.05607195943593979,
-0.05488387495279312,
-0.011222915723919868,
0.01440500095486641,
0.004997023846954107,
0.015584610402584076,
-0.00798336323350668,
-0.0414019338786602,
0.005494558252394199,
-0.09611820429563522,
0.012075263075530529,
0.022051308304071426,
-0.0364299938082695,
-0.09676932543516159,
-0.03476673737168312,
-0.07431473582983017,
0.09589345008134842,
-0.11142978817224503,
-0.05450168997049332,
0.03963392600417137,
0.05866066366434097,
0.02600144036114216,
0.0200419370085001,
-0.027768798172473907,
-0.04668651893734932,
0.0684877559542656,
0.0033732589799910784,
0.01657116785645485,
-0.05269502103328705,
-0.10534463822841644,
0.05416468530893326,
-0.049249835312366486,
0.04265853390097618,
-0.09818145632743835,
0.03863829746842384,
0.011843182146549225,
0.07439720630645752,
0.045105624943971634,
0.010538173839449883,
-0.016576526686549187,
-0.025616172701120377,
0.02800559625029564,
0.007786902599036694,
-0.013538814149796963,
-0.076630137860775,
0.010483701713383198,
0.026566924527287483,
0.0045578149147331715,
-0.06101957708597183,
-0.00847072433680296,
-0.041271012276411057,
-0.015050449408590794,
-0.08125386387109756,
0.033762168139219284,
-0.04286513105034828,
-0.02974849008023739,
0.023477301001548767,
-0.06667842715978622,
-0.0935899019241333,
0.06562822312116623,
0.0033227673266083,
-0.010050855576992035,
0.016324982047080994,
-0.006863027811050415,
-0.06237029656767845,
-0.08203183859586716,
0.10981132835149765,
-0.031655266880989075,
0.07189962267875671,
0.025017350912094116,
-0.054819393903017044,
-0.015644066035747528,
0.007359115406870842,
-0.021736040711402893,
-0.0005961323040537536,
-0.0021177686285227537,
-0.008710581809282303,
0.01629296876490116,
-0.08695369958877563,
0.004613022785633802,
-0.040038276463747025,
0.12496228516101837,
-0.08333495259284973,
0.05691898241639137,
-0.023126138374209404,
0.04965674877166748,
-0.005451538600027561,
-0.0019238495733588934,
-0.00471761729568243,
-0.03588485345244408,
0.019423307850956917,
0.03357304632663727,
-0.022031506523489952,
-0.029650913551449776,
-8.740368960084926e-34,
0.07311619818210602,
-0.022223806008696556,
0.043910443782806396,
0.11083538830280304,
0.04405820369720459,
0.042645685374736786,
-0.09305724501609802,
-0.05896647647023201,
0.00849104393273592,
-0.009504158049821854,
-0.006403470411896706,
-0.06072784587740898,
-0.06778749078512192,
0.041924070566892624,
-0.01029006578028202,
0.005906693637371063,
-0.08851225674152374,
0.04804405942559242,
-0.007951331324875355,
-0.014565352350473404,
0.021586984395980835,
0.0682670995593071,
-0.002042747801169753,
0.06901159882545471,
0.05977081134915352,
0.059758592396974564,
0.13985441625118256,
-0.12050572037696838,
0.00305344071239233,
0.05094887316226959,
-0.06755083799362183,
0.022859735414385796,
-0.07481975108385086,
0.0014408496208488941,
-0.046235665678977966,
0.02931356057524681,
-0.02632230520248413,
-0.09376036375761032,
-0.018128734081983566,
-0.11957486718893051,
-0.021414998918771744,
-0.0503232516348362,
-0.02544490061700344,
-0.04561891406774521,
-0.003304521320387721,
0.039503056555986404,
-0.0034997533075511456,
0.08295983821153641,
0.03305332362651825,
0.05645377188920975,
-0.04492082819342613,
0.024838346987962723,
0.015135763213038445,
-0.027671700343489647,
0.004411132540553808,
-0.026486273854970932,
-0.04692591354250908,
0.060429248958826065,
0.024777263402938843,
-0.004502397961914539,
0.02448362112045288,
-0.027973966673016548,
0.07505255192518234,
-0.046659085899591446,
0.10433757305145264,
0.05087222158908844,
-0.0867299884557724,
-0.06150660663843155,
0.025412019342184067,
-0.011185204610228539,
-0.0465448722243309,
0.007350637577474117,
0.010612106882035732,
0.047325365245342255,
-0.036555398255586624,
0.036272693425416946,
-0.048608627170324326,
-0.040748439729213715,
0.05908552557229996,
0.06709173321723938,
-0.06670558452606201,
-0.05983145534992218,
-0.02838878706097603,
-0.030984273180365562,
-0.01398360077291727,
-0.06279075145721436,
0.019031206145882607,
-0.08365359902381897,
0.009340010583400726,
0.053661879152059555,
0.0165900606662035,
0.07194875925779343,
-0.05448564887046814,
0.03172343969345093,
-0.08619754761457443,
-6.631256588221268e-34,
-0.010310696437954903,
-0.04746771231293678,
-0.0903853178024292,
0.0969812199473381,
0.01926177181303501,
-0.005809530150145292,
-0.012921190820634365,
0.16410864889621735,
0.011657511815428734,
0.00892501138150692,
0.05530701205134392,
-0.0036007945891469717,
-0.007544379215687513,
-0.04159630089998245,
0.13678313791751862,
-0.006954770069569349,
0.07165098935365677,
-0.06516244262456894,
-0.0007273024530149996,
0.04090976342558861,
0.06263218075037003,
0.017946379259228706,
-0.10680331289768219,
0.022960327565670013,
-0.0391242578625679,
0.00621775072067976,
-0.01882176473736763,
0.05708397924900055,
0.0783781036734581,
-0.03499004989862442,
-0.06428637355566025,
0.07613369077444077,
-0.027853520587086678,
0.004937307443469763,
0.0008677417645230889,
0.06460001319646835,
0.027923667803406715,
0.019027911126613617,
-0.0043895067647099495,
0.0770987719297409,
0.004866449162364006,
-0.009399516507983208,
-0.04126342386007309,
0.006793869659304619,
0.016058778390288353,
-0.060901325196027756,
-0.04745807498693466,
-0.02790672890841961,
-0.0032007689587771893,
-0.06094876304268837,
-0.027615832164883614,
-0.023363910615444183,
-0.06755691021680832,
-0.032044511288404465,
-0.03141115978360176,
0.00041052125743590295,
0.0157301165163517,
-0.07790087908506393,
0.05434413626790047,
0.03669826686382294,
-0.08363442122936249,
-0.07235938310623169,
0.13976500928401947,
-0.0223315991461277,
-0.012573868967592716,
-0.043008580803871155,
-0.025830745697021484,
-0.014773143455386162,
0.015405220910906792,
-0.010030798614025116,
0.1184963658452034,
0.01127097848802805,
0.0059663658030331135,
0.021689128130674362,
0.08234898746013641,
0.009072632528841496,
0.04324997216463089,
0.004315895494073629,
-0.0015475129475817084,
-0.12955433130264282,
-0.009113284759223461,
0.007483990862965584,
0.0418483130633831,
0.07941839843988419,
0.057762932032346725,
-0.0030881299171596766,
0.04196164011955261,
0.04189816489815712,
-0.004153797402977943,
0.060099732130765915,
-0.018700959160923958,
0.012566930614411831,
0.025301415473222733,
0.05338875949382782,
-0.06475447863340378,
-2.5009667226072452e-8,
-0.1115279272198677,
-0.014214834198355675,
0.025752048939466476,
0.04529919475317001,
0.035445816814899445,
-0.0052558244206011295,
0.048701219260692596,
0.030546575784683228,
-0.09019587188959122,
0.00799463503062725,
0.044860076159238815,
0.06455786526203156,
-0.045990124344825745,
0.08140616118907928,
0.03370602801442146,
0.026906590908765793,
-0.07338476926088333,
0.024999354034662247,
-0.019391177222132683,
-0.009111279621720314,
0.06662558019161224,
-0.03206205368041992,
-0.0016734757227823138,
0.04408888518810272,
0.0431642010807991,
0.03389475867152214,
-0.09095308929681778,
0.08485960215330124,
-0.029890835285186768,
0.05010071024298668,
0.048814017325639725,
0.1108352318406105,
-0.11933088302612305,
0.0015381346456706524,
-0.07313711941242218,
0.0181561429053545,
-0.004019234329462051,
-0.03980853036046028,
-0.03722618892788887,
-0.02482353337109089,
-0.039737675338983536,
-0.008889718912541866,
-0.11651018261909485,
0.0017905202694237232,
0.07349216938018799,
0.025168124586343765,
-0.02448468655347824,
-0.10194792598485947,
-0.032778527587652206,
0.00597250834107399,
-0.05517411604523659,
-0.0032111885957419872,
0.031632497906684875,
-0.006667487323284149,
-0.005432852078229189,
-0.008901529014110565,
0.027152029797434807,
-0.014487110078334808,
0.043431565165519714,
0.030020391568541527,
0.04673416540026665,
0.029415883123874664,
-0.010398490354418755,
-0.027073055505752563
] |
google/long-t5-tglobal-base | c910dec42392b5586a643ee547d65a9f111059eb | 2022-06-22T09:05:39.000Z | [
"pytorch",
"jax",
"longt5",
"text2text-generation",
"en",
"arxiv:2112.07916",
"arxiv:1912.08777",
"arxiv:1910.10683",
"transformers",
"license:apache-2.0",
"autotrain_compatible"
] | text2text-generation | false | google | null | google/long-t5-tglobal-base | 9,314 | 1 | transformers | ---
license: apache-2.0
language: en
---
# LongT5 (transient-global attention, base-sized model)
LongT5 model pre-trained on English language. The model was introduced in the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/pdf/2112.07916.pdf) by Guo et al. and first released in [the LongT5 repository](https://github.com/google-research/longt5). All the model architecture and configuration can be found in [Flaxformer repository](https://github.com/google/flaxformer) which uses another Google research project repository [T5x](https://github.com/google-research/t5x).
Disclaimer: The team releasing LongT5 did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
LongT5 model is an encoder-decoder transformer pre-trained in a text-to-text denoising generative setting ([Pegasus-like generation pre-training](https://arxiv.org/pdf/1912.08777.pdf)). LongT5 model is an extension of [T5 model](https://arxiv.org/pdf/1910.10683.pdf), and it enables using one of the two different efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention. The usage of attention sparsity patterns allows the model to efficiently handle input sequence.
LongT5 is particularly effective when fine-tuned for text generation (summarization, question answering) which requires handling long input sequences (up to 16,384 tokens).
## Intended uses & limitations
The model is mostly meant to be fine-tuned on a supervised dataset. See the [model hub](https://huggingface.co/models?search=longt5) to look for fine-tuned versions on a task that interests you.
### How to use
```python
from transformers import AutoTokenizer, LongT5Model
tokenizer = AutoTokenizer.from_pretrained("google/long-t5-tglobal-base")
model = LongT5Model.from_pretrained("google/long-t5-tglobal-base")
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state
```
### BibTeX entry and citation info
```bibtex
@article{guo2021longt5,
title={LongT5: Efficient Text-To-Text Transformer for Long Sequences},
author={Guo, Mandy and Ainslie, Joshua and Uthus, David and Ontanon, Santiago and Ni, Jianmo and Sung, Yun-Hsuan and Yang, Yinfei},
journal={arXiv preprint arXiv:2112.07916},
year={2021}
}
``` | [
-0.15084710717201233,
-0.0806349664926529,
0.03506012260913849,
-0.006590761244297028,
0.027178561314940453,
-0.011744457297027111,
-0.125850647687912,
0.01856338232755661,
-0.013142061419785023,
-0.06534656137228012,
0.03606047481298447,
0.07059571892023087,
-0.008150135166943073,
0.03291095420718193,
0.008639399893581867,
-0.02281348593533039,
0.04489507898688316,
0.007203556131571531,
-0.07922011613845825,
-0.0860370472073555,
0.07642321288585663,
0.02555266208946705,
0.02218446135520935,
0.049640338867902756,
-0.0048119607381522655,
-0.003733927384018898,
-0.019194258376955986,
-0.0338900201022625,
0.03645777329802513,
-0.03516972064971924,
0.02175806649029255,
0.08015867322683334,
0.015240168198943138,
0.001797778531908989,
-0.14393575489521027,
0.06443889439105988,
-0.029743431136012077,
-0.06185991317033768,
-0.015523077920079231,
-0.014035125263035297,
0.022028740495443344,
-0.07830273360013962,
0.01882997713983059,
0.0018264335813000798,
0.09063432365655899,
-0.07070455700159073,
-0.015383616089820862,
-0.03801007941365242,
-0.046492449939250946,
-0.0105901462957263,
-0.0630832090973854,
-0.053779784590005875,
0.008095111697912216,
0.04464946687221527,
-0.08875446021556854,
-0.05389119312167168,
-0.04520627111196518,
-0.0387253537774086,
-0.018792971968650818,
0.014645244926214218,
-0.017278878018260002,
0.0475294254720211,
-0.03321939334273338,
0.02280328795313835,
-0.07109260559082031,
0.02426566556096077,
0.042509712278842926,
-0.013062951155006886,
0.028004707768559456,
-0.09214770793914795,
-0.0929291769862175,
-0.009493209421634674,
0.04398930445313454,
0.02616179920732975,
0.032937854528427124,
0.005167629569768906,
0.1046082079410553,
0.015733325853943825,
0.04202023893594742,
-0.036523204296827316,
0.052195508033037186,
-0.008727963082492352,
0.074484683573246,
0.019055690616369247,
-0.0029185402672737837,
-0.02059822343289852,
-0.027665775269269943,
0.1197664886713028,
0.033372681587934494,
-0.03988618031144142,
-0.02987239696085453,
-0.07090872526168823,
-0.019247062504291534,
0.020868588238954544,
-0.08591523766517639,
0.020654164254665375,
-0.02959190309047699,
0.04350430145859718,
-0.09089094400405884,
0.021755801513791084,
0.011203406378626823,
-0.05344872921705246,
0.09059315919876099,
0.002329994924366474,
-0.06986511498689651,
-0.12789423763751984,
0.0009392137289978564,
0.10699828714132309,
0.037298597395420074,
-0.12467579543590546,
0.029639745131134987,
0.012199798598885536,
-0.051691934466362,
-0.07149490714073181,
0.02806762419641018,
-0.019758690148591995,
-0.07416599988937378,
-0.08207086473703384,
0.04889918491244316,
0.023898359388113022,
0.008770805783569813,
0.0305903572589159,
-0.0240399781614542,
-0.011024708859622478,
0.011754699051380157,
0.0024632045533508062,
-0.09685888886451721,
3.330060150496366e-33,
0.008611470460891724,
0.12669630348682404,
0.057255178689956665,
0.12265687435865402,
0.020115680992603302,
0.001758381025865674,
-0.0003664708638098091,
0.03661516681313515,
-0.02159200608730316,
0.008688021451234818,
-0.02486509084701538,
0.0789509192109108,
-0.06866510212421417,
0.07047882676124573,
0.023295912891626358,
-0.08700712770223618,
-0.06686145812273026,
0.04142587259411812,
0.015924014151096344,
-0.005278746131807566,
0.08954740315675735,
0.056201785802841187,
0.05131811276078224,
-0.009337984956800938,
0.019043635576963425,
0.08979640901088715,
0.05564521253108978,
-0.052309002727270126,
-0.036349713802337646,
0.030080029740929604,
-0.08441311120986938,
-0.014384943060576916,
0.0053481790237128735,
0.0008634604164399207,
0.06192717328667641,
-0.04235006868839264,
-0.018534129485487938,
-0.08823700994253159,
-0.029715828597545624,
-0.058381520211696625,
0.031033895909786224,
0.06205059960484505,
0.016821909695863724,
-0.017472142353653908,
-0.023371458053588867,
0.0006280608358792961,
-0.019855527207255363,
0.034701429307460785,
0.038628753274679184,
-0.010032436810433865,
0.06779667735099792,
0.025307675823569298,
-0.079240582883358,
-0.010132077150046825,
0.002206196775659919,
0.09745147824287415,
0.10948993265628815,
0.043005965650081635,
0.006494263652712107,
0.07841499894857407,
-0.017606932669878006,
-0.017801791429519653,
0.002823792165145278,
0.014212903566658497,
0.023134220391511917,
0.011559946462512016,
-0.01216629147529602,
-0.04802550747990608,
0.0665867030620575,
-0.008185796439647675,
-0.000087463587988168,
0.04417569190263748,
0.010615363717079163,
0.07302872836589813,
0.02740800380706787,
-0.06180088594555855,
0.03926434367895126,
-0.04451711103320122,
-0.04480114206671715,
0.036983922123909,
-0.06001542881131172,
-0.020500054582953453,
0.022240731865167618,
-0.001670412253588438,
-0.018248802050948143,
0.01503218524158001,
0.031419239938259125,
-0.022901607677340508,
0.0466819666326046,
-0.014805497601628304,
0.0318928062915802,
-0.011852169409394264,
0.013581912033259869,
-0.0349627360701561,
0.049693457782268524,
-3.02695819745287e-33,
-0.0037775039672851562,
-0.07967924326658249,
-0.08412574231624603,
0.08228897303342819,
0.02230786718428135,
-0.06440144777297974,
0.035036712884902954,
0.1710023134946823,
0.005774368066340685,
-0.020351260900497437,
0.06408282369375229,
0.004687066189944744,
0.0747402012348175,
0.02642754837870598,
0.06813414394855499,
-0.03868065029382706,
0.030586812645196915,
-0.11673427373170853,
-0.005449540447443724,
0.005523314233869314,
0.05090984329581261,
0.03226088732481003,
-0.1032208725810051,
-0.03212299197912216,
0.015418047085404396,
0.054506875574588776,
-0.04025642201304436,
0.01677560992538929,
0.021737540140748024,
0.013629370369017124,
-0.10304581373929977,
-0.025075165554881096,
0.026138320565223694,
-0.010505951009690762,
-0.08275885879993439,
0.0153232766315341,
0.029868600890040398,
0.04963713884353638,
-0.00914313830435276,
0.013636105693876743,
0.05252420902252197,
-0.014529081992805004,
0.01176838856190443,
0.028456352651119232,
-0.05866936594247818,
0.014188423752784729,
-0.10703181475400925,
-0.05301995202898979,
0.03777505084872246,
0.05300697684288025,
0.03170891851186752,
0.002115985145792365,
-0.09121666103601456,
-0.03924906253814697,
-0.042509693652391434,
-0.11078259348869324,
-0.04354654252529144,
-0.026172341778874397,
-0.020017264410853386,
-0.017154796048998833,
-0.024861302226781845,
-0.012563997879624367,
0.04770796746015549,
-0.014026053249835968,
0.04958517476916313,
-0.029193850234150887,
-0.009242256172001362,
-0.0017868337454274297,
0.020838947966694832,
0.012049111537635326,
0.03323707357048988,
-0.003212246112525463,
0.016891296952962875,
0.06413955241441727,
0.014798629097640514,
-0.05584859848022461,
-0.03176719322800636,
0.02735273353755474,
0.01571447215974331,
-0.036217931658029556,
-0.0202848669141531,
0.015185716561973095,
-0.0026267217472195625,
0.05220396816730499,
0.05479888990521431,
-0.04350504279136658,
0.052787575870752335,
0.10799753665924072,
0.05865049734711647,
0.008130134083330631,
0.00086208526045084,
0.10521984845399857,
-0.014790606684982777,
0.04575832933187485,
-0.027748478576540947,
-5.6215689880900754e-8,
-0.06949266046285629,
0.027588358148932457,
-0.09478433430194855,
-0.0016719205304980278,
-0.03882533684372902,
-0.007573982235044241,
0.008092478848993778,
0.03058067336678505,
0.044337064027786255,
0.00586974760517478,
0.03919696435332298,
0.01963990181684494,
-0.008526911959052086,
0.029110858216881752,
-0.058354079723358154,
0.02198716811835766,
0.034415971487760544,
0.02820141613483429,
-0.0337800458073616,
-0.0176137275993824,
-0.006815832573920488,
0.058824971318244934,
-0.013283312320709229,
-0.028859123587608337,
0.05727685987949371,
-0.0147106247022748,
-0.13380290567874908,
0.07243175059556961,
0.06233563646674156,
-0.10704182088375092,
-0.04949666187167168,
0.06443747878074646,
-0.04179379716515541,
-0.018495485186576843,
-0.017250392585992813,
0.040862057358026505,
-0.0023229909129440784,
0.014295902103185654,
0.029452919960021973,
0.07725876569747925,
0.06508847326040268,
0.04144880548119545,
-0.12088266015052795,
-0.016456052660942078,
0.09723352640867233,
0.025037746876478195,
-0.017069192603230476,
-0.15235741436481476,
0.018655480816960335,
0.07005629688501358,
-0.02095000259578228,
-0.01970626413822174,
-0.03460819274187088,
-0.013523614034056664,
-0.024819957092404366,
0.027423398569226265,
0.03388065844774246,
-0.02698923647403717,
0.0511014387011528,
0.004299778491258621,
-0.022315191105008125,
0.02301817201077938,
0.04880054295063019,
0.05111825838685036
] |
BM-K/KoSimCSE-roberta-multitask | 2b1aaf3c27691ae2c06cc65387c6f1d60ea6eef0 | 2022-06-03T01:48:14.000Z | [
"pytorch",
"roberta",
"feature-extraction",
"ko",
"transformers",
"korean"
] | feature-extraction | false | BM-K | null | BM-K/KoSimCSE-roberta-multitask | 9,306 | 1 | transformers | ---
language: ko
tags:
- korean
---
https://github.com/BM-K/Sentence-Embedding-is-all-you-need
# Korean-Sentence-Embedding
🍭 Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides environments where individuals can train models.
## Quick tour
```python
import torch
from transformers import AutoModel, AutoTokenizer
def cal_score(a, b):
if len(a.shape) == 1: a = a.unsqueeze(0)
if len(b.shape) == 1: b = b.unsqueeze(0)
a_norm = a / a.norm(dim=1)[:, None]
b_norm = b / b.norm(dim=1)[:, None]
return torch.mm(a_norm, b_norm.transpose(0, 1)) * 100
model = AutoModel.from_pretrained('BM-K/KoSimCSE-roberta-multitask')
AutoTokenizer.from_pretrained('BM-K/KoSimCSE-roberta-multitask')
sentences = ['치타가 들판을 가로 질러 먹이를 쫓는다.',
'치타 한 마리가 먹이 뒤에서 달리고 있다.',
'원숭이 한 마리가 드럼을 연주한다.']
inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
embeddings, _ = model(**inputs, return_dict=False)
score01 = cal_score(embeddings[0][0], embeddings[1][0])
score02 = cal_score(embeddings[0][0], embeddings[2][0])
```
## Performance
- Semantic Textual Similarity test set results <br>
| Model | AVG | Cosine Pearson | Cosine Spearman | Euclidean Pearson | Euclidean Spearman | Manhattan Pearson | Manhattan Spearman | Dot Pearson | Dot Spearman |
|------------------------|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
| KoSBERT<sup>†</sup><sub>SKT</sub> | 77.40 | 78.81 | 78.47 | 77.68 | 77.78 | 77.71 | 77.83 | 75.75 | 75.22 |
| KoSBERT | 80.39 | 82.13 | 82.25 | 80.67 | 80.75 | 80.69 | 80.78 | 77.96 | 77.90 |
| KoSRoBERTa | 81.64 | 81.20 | 82.20 | 81.79 | 82.34 | 81.59 | 82.20 | 80.62 | 81.25 |
| | | | | | | | | |
| KoSentenceBART | 77.14 | 79.71 | 78.74 | 78.42 | 78.02 | 78.40 | 78.00 | 74.24 | 72.15 |
| KoSentenceT5 | 77.83 | 80.87 | 79.74 | 80.24 | 79.36 | 80.19 | 79.27 | 72.81 | 70.17 |
| | | | | | | | | |
| KoSimCSE-BERT<sup>†</sup><sub>SKT</sub> | 81.32 | 82.12 | 82.56 | 81.84 | 81.63 | 81.99 | 81.74 | 79.55 | 79.19 |
| KoSimCSE-BERT | 83.37 | 83.22 | 83.58 | 83.24 | 83.60 | 83.15 | 83.54 | 83.13 | 83.49 |
| KoSimCSE-RoBERTa | 83.65 | 83.60 | 83.77 | 83.54 | 83.76 | 83.55 | 83.77 | 83.55 | 83.64 |
| | | | | | | | | | |
| KoSimCSE-BERT-multitask | 85.71 | 85.29 | 86.02 | 85.63 | 86.01 | 85.57 | 85.97 | 85.26 | 85.93 |
| KoSimCSE-RoBERTa-multitask | 85.77 | 85.08 | 86.12 | 85.84 | 86.12 | 85.83 | 86.12 | 85.03 | 85.99 | | [
-0.051165420562028885,
-0.04539553076028824,
0.011456276290118694,
0.054888639599084854,
-0.0006184738595038652,
0.07306286692619324,
0.028538821265101433,
0.04796873405575752,
0.0036484936717897654,
-0.049174800515174866,
0.051703937351703644,
-0.11606522649526596,
0.02288612350821495,
0.08558585494756699,
0.014146160334348679,
0.041488081216812134,
-0.009572969749569893,
0.029995707795023918,
-0.1323995441198349,
-0.15171398222446442,
0.11622527241706848,
-0.023924991488456726,
0.057876162230968475,
-0.012491391971707344,
0.051379598677158356,
0.016174981370568275,
0.01315266452729702,
0.028435546904802322,
0.0335148386657238,
0.017334748059511185,
-0.052234575152397156,
0.0031592887826263905,
0.005563704296946526,
0.11900364607572556,
0.04793844372034073,
0.015793727710843086,
-0.1321202963590622,
0.018593618646264076,
-0.054605934768915176,
0.012388690374791622,
-0.00777181051671505,
-0.05321630835533142,
0.04836151748895645,
-0.05770450457930565,
0.12938939034938812,
0.0033403357956558466,
-0.05405810475349426,
-0.03459370508790016,
-0.018968340009450912,
0.016367973759770393,
-0.04202238842844963,
-0.012630187906324863,
0.02000381238758564,
0.06563879549503326,
-0.005749865900725126,
0.014487016014754772,
0.0013631797628477216,
-0.03886357322335243,
0.08136535435914993,
-0.1426515281200409,
-0.03568021208047867,
-0.04340510442852974,
-0.044034700840711594,
-0.017772896215319633,
-0.04149668291211128,
0.00955349300056696,
-0.005980808287858963,
0.05455192178487778,
0.01672252267599106,
0.06509684771299362,
-0.04151535779237747,
0.01519887987524271,
0.02156413532793522,
0.05504762381315231,
-0.012614434584975243,
-0.03340531140565872,
0.06720138341188431,
-0.03874156251549721,
0.04477068781852722,
-0.07236438244581223,
0.0023652748204767704,
-0.04562937095761299,
0.03281344473361969,
0.042144306004047394,
0.03238164633512497,
-0.046400487422943115,
0.0178555678576231,
0.037395983934402466,
0.045910049229860306,
0.02410964109003544,
-0.040176454931497574,
-0.057365965098142624,
-0.005190843250602484,
-0.017933374270796776,
-0.03217213600873947,
0.050956692546606064,
-0.038581810891628265,
-0.02339550480246544,
-0.01614776812493801,
0.08229319751262665,
0.023282941430807114,
0.052714988589286804,
0.010395793244242668,
-0.03452373668551445,
-0.06976518034934998,
-0.014770588837563992,
0.07833323627710342,
0.06193212792277336,
0.05156923830509186,
-0.05905207619071007,
0.0011478869710117579,
0.019546138122677803,
0.003287531901150942,
-0.009716687723994255,
0.039237502962350845,
-0.03231227397918701,
-0.00004732910747407004,
-0.030111875385046005,
0.016513898968696594,
0.09791944175958633,
0.01068231649696827,
-0.00041258952114731073,
-0.04629580304026604,
-0.0021090891677886248,
0.016441844403743744,
-0.0074789985083043575,
0.016461651772260666,
2.7251390026197087e-33,
-0.023337816819548607,
0.07426834106445312,
0.021897606551647186,
0.024651624262332916,
-0.04382054880261421,
0.016109146177768707,
-0.013583255000412464,
0.025188950821757317,
-0.07823988050222397,
-0.04177972674369812,
-0.07714028656482697,
0.07645873725414276,
-0.08599290251731873,
0.010847465135157108,
-0.006009066477417946,
0.002943379106000066,
0.01306681614369154,
-0.02076241932809353,
0.02904893085360527,
0.03599121794104576,
0.06797201186418533,
0.029970351606607437,
-0.020811088383197784,
-0.07834400236606598,
-0.05587215721607208,
0.004817240871489048,
0.09480617940425873,
-0.06962787359952927,
-0.08587675541639328,
0.02114039659500122,
-0.04262924566864967,
-0.02667037770152092,
-0.011972270905971527,
0.008438625372946262,
-0.027849650010466576,
-0.03636886551976204,
0.00667071295902133,
0.012618320994079113,
0.041156645864248276,
-0.06847008317708969,
-0.019431237131357193,
0.025021564215421677,
-0.02814938686788082,
-0.018745191395282745,
-0.06877811998128891,
0.04352935031056404,
0.002218573587015271,
0.0033473800867795944,
0.035050734877586365,
0.03705926984548569,
0.033983804285526276,
-0.02087675780057907,
-0.013510693795979023,
-0.07236085832118988,
0.02610849402844906,
0.06690429896116257,
0.02989416942000389,
-0.01590854302048683,
0.09809156507253647,
-0.0782194510102272,
0.02131163515150547,
0.02726631797850132,
0.011722918599843979,
0.05998425930738449,
0.0731344074010849,
-0.004497478250414133,
-0.025234447792172432,
-0.053203120827674866,
0.04528864100575447,
-0.010588462464511395,
-0.09157700091600418,
-0.053872667253017426,
0.002257332904264331,
-0.056995414197444916,
-0.012724986299872398,
-0.0266437828540802,
0.02138892374932766,
-0.09698732942342758,
-0.06689849495887756,
0.06771555542945862,
-0.040061213076114655,
-0.07033763825893402,
0.059346459805965424,
-0.0569949634373188,
0.0130986999720335,
-0.030507389456033707,
0.04098982736468315,
-0.10954846441745758,
-0.012442043051123619,
-0.05320883169770241,
-0.043704915791749954,
-0.027134476229548454,
0.0140601247549057,
0.04321448132395744,
0.009691928513348103,
-2.5657285606657674e-33,
0.04616761952638626,
0.1053195595741272,
-0.013501828536391258,
0.049302373081445694,
0.06031135469675064,
0.012527819722890854,
0.019227035343647003,
0.03366539627313614,
-0.0353277251124382,
-0.020101742818951607,
-0.021025562658905983,
-0.05403633043169975,
0.04994190111756325,
-0.05510547757148743,
0.1050977036356926,
0.022915033623576164,
0.027782464399933815,
0.08326034247875214,
0.02836514636874199,
0.09407352656126022,
-0.022805046290159225,
0.09865250438451767,
-0.15024423599243164,
0.008278138004243374,
-0.07513384521007538,
0.05778435245156288,
0.01428302563726902,
0.04812660068273544,
-0.08097901940345764,
0.020494796335697174,
0.01382729783654213,
-0.018600571900606155,
-0.02004256099462509,
0.0316271036863327,
-0.10475173592567444,
0.003925804048776627,
0.04972643032670021,
-0.07793062925338745,
-0.04492844641208649,
0.029088037088513374,
0.09233782440423965,
0.0029224748723208904,
-0.1101394072175026,
0.009881200268864632,
-0.07013905048370361,
0.034108612686395645,
-0.055749762803316116,
-0.030283695086836815,
0.03456040471792221,
-0.06874164193868637,
-0.01981479674577713,
-0.007858587428927422,
-0.10734552145004272,
-0.021563444286584854,
-0.038946427404880524,
-0.029687898233532906,
0.01351558044552803,
-0.10249147564172745,
-0.03604372963309288,
-0.042017996311187744,
-0.10786107927560806,
-0.07304112613201141,
0.12032640725374222,
-0.05500723794102669,
0.00736575061455369,
-0.05887013301253319,
0.059446755796670914,
0.03668256849050522,
0.007365623489022255,
-0.010824466124176979,
-0.010467265732586384,
0.08745010197162628,
0.02192099019885063,
-0.0032539006788283587,
-0.00018804670253302902,
0.026215584948658943,
-0.03343543782830238,
0.034307122230529785,
0.02267933450639248,
-0.09896718710660934,
-0.0711558610200882,
-0.003611095482483506,
0.01015720795840025,
0.059867974370718,
-0.037690963596105576,
0.0257172342389822,
0.028119487687945366,
0.0945989340543747,
0.05777774751186371,
0.03441881760954857,
-0.033895593136548996,
0.03936551883816719,
0.06595579534769058,
0.05167015641927719,
-0.039428237825632095,
-4.8473076219579525e-8,
-0.04187407344579697,
0.005061808507889509,
-0.013505393639206886,
0.09439808130264282,
-0.0942014679312706,
-0.03063046745955944,
-0.03393779695034027,
0.0202774778008461,
-0.004776952788233757,
-0.04859200865030289,
0.050841063261032104,
-0.025152377784252167,
-0.01023571752011776,
0.03613275662064552,
-0.06950210779905319,
0.06978876888751984,
0.02013481594622135,
0.0962565690279007,
0.0017442598473280668,
0.01010181475430727,
0.07998449355363846,
0.029353676363825798,
0.07943665981292725,
0.0011451257159933448,
0.025484049692749977,
0.031958531588315964,
-0.07657802104949951,
0.02272654138505459,
-0.024903034791350365,
0.018962403759360313,
0.014196295291185379,
-0.008856398053467274,
-0.005777186248451471,
0.05164690315723419,
0.034224532544612885,
0.05849403515458107,
0.01911073923110962,
-0.04709291830658913,
-0.02438359707593918,
0.03501729667186737,
0.02689811959862709,
0.028408857062458992,
-0.09834779798984528,
0.01378130353987217,
0.07870408892631531,
0.014229168184101582,
0.022062180563807487,
-0.14558358490467072,
0.03209858015179634,
0.04004410654306412,
0.0461585596203804,
-0.04409148171544075,
-0.08747097104787827,
0.011584380641579628,
0.050510965287685394,
0.03581034392118454,
0.05635536462068558,
-0.01729416660964489,
-0.01113032829016447,
0.005416577216237783,
0.012536291964352131,
0.08494798839092255,
-0.0717950239777565,
-0.0486394464969635
] |
openclimatefix/nowcasting_cnn_v3 | f083f2c4de6ec7a0e5acbff167cb817c506d6113 | 2022-07-18T15:51:53.000Z | [
"pytorch",
"transformers",
"nowcasting",
"forecasting",
"timeseries",
"remote-sensing",
"license:mit"
] | null | false | openclimatefix | null | openclimatefix/nowcasting_cnn_v3 | 9,283 | null | transformers | ---
license: mit
tags:
- nowcasting
- forecasting
- timeseries
- remote-sensing
---
# Nowcasting CNN
## Model description
3d conv model, that takes in different data streams
architecture is roughly
1. satellite image time series goes into many 3d convolution layers.
2. nwp time series goes into many 3d convolution layers.
3. Final convolutional layer goes to full connected layer. This is joined by
other data inputs like
- pv yield
- time variables
Then there ~4 fully connected layers which end up forecasting the
pv yield / gsp into the future
## Intended uses & limitations
Forecasting short term PV power for different regions and nationally in the UK
## How to use
[More information needed]
## Limitations and bias
[More information needed]
## Training data
Training data is EUMETSAT RSS imagery over the UK, on-the-ground PV data, and NWP predictions.
## Training procedure
[More information needed]
## Evaluation results
[More information needed]
| [
-0.07878629863262177,
-0.0530087947845459,
0.06303685903549194,
-0.0037487992085516453,
0.08956786245107651,
-0.02325441874563694,
-0.05547712370753288,
-0.01985733024775982,
-0.015385853126645088,
-0.01869397796690464,
-0.10241496562957764,
-0.034199681133031845,
-0.020612789317965508,
0.05796089023351669,
-0.054338157176971436,
-0.012036229483783245,
0.0019681870471686125,
-0.0786232054233551,
-0.0274990014731884,
-0.029067810624837875,
0.08914408832788467,
0.032673612236976624,
-0.02732708305120468,
-0.028936313465237617,
0.1076459288597107,
0.026605399325489998,
0.00817829929292202,
0.006638233549892902,
0.036225732415914536,
0.00568972434848547,
-0.03394414484500885,
0.015466720797121525,
-0.07536691427230835,
0.04782305285334587,
-0.011236666701734066,
0.04714004695415497,
0.006177287083119154,
-0.022070007398724556,
-0.044913385063409805,
0.06043625995516777,
0.09412895143032074,
-0.12221255898475647,
0.0020143224392086267,
-0.019533393904566765,
-0.011013406328856945,
0.10546338558197021,
0.01294221356511116,
-0.08709897100925446,
-0.03519135341048241,
-0.02617334946990013,
-0.05629081651568413,
-0.09413818269968033,
-0.008630174212157726,
0.046197403222322464,
-0.02996058203279972,
-0.028340494260191917,
-0.011650614440441132,
0.03885607421398163,
0.010582723654806614,
-0.02026224508881569,
-0.03202666714787483,
-0.04304669797420502,
-0.0686052069067955,
0.0313701406121254,
0.08007155358791351,
-0.022283203899860382,
-0.0459740050137043,
0.0839337706565857,
0.03790206089615822,
-0.07969093322753906,
-0.013268678449094296,
0.09462965279817581,
-0.0386614128947258,
-0.0589878149330616,
-0.00941155944019556,
0.012496737763285637,
0.11413595825433731,
0.049432817846536636,
0.06898454576730728,
-0.17891284823417664,
0.0720408484339714,
0.11036935448646545,
-0.05601876601576805,
-0.05358695611357689,
0.004079866223037243,
0.006900584790855646,
-0.0476277694106102,
0.10714932531118393,
-0.0406758151948452,
-0.029143493622541428,
-0.015374897047877312,
-0.05544956028461456,
-0.07192446291446686,
0.08538947999477386,
0.03600873053073883,
0.07032670080661774,
-0.017007976770401,
-0.0948740541934967,
-0.03221166133880615,
0.04120838642120361,
0.006663186941295862,
0.017523163929581642,
-0.011741174384951591,
0.05050141364336014,
0.006019987165927887,
-0.07276273518800735,
0.03336958587169647,
0.13576357066631317,
0.006778331007808447,
-0.008774762973189354,
-0.05523176118731499,
0.05338423326611519,
0.03786668926477432,
-0.08488176017999649,
0.004184683784842491,
0.02026550844311714,
-0.04423083737492561,
0.03659699857234955,
-0.01676061749458313,
0.04037194326519966,
-0.060138966888189316,
-0.03396206349134445,
-0.019744019955396652,
0.04265252500772476,
0.035781603306531906,
-0.02313823252916336,
-0.0034526099916547537,
9.47185723775355e-33,
-0.02637612260878086,
0.019621191546320915,
-0.02133476920425892,
-0.034451328217983246,
-0.05071409419178963,
0.05256389454007149,
0.00019293279910925776,
-0.020629141479730606,
-0.01600728929042816,
-0.03425486013293266,
-0.030196011066436768,
0.02954823337495327,
-0.061413925141096115,
0.1378064751625061,
-0.04086828976869583,
-0.060254909098148346,
0.061559174209833145,
0.09872955083847046,
0.018794255331158638,
0.06842705607414246,
0.008523473516106606,
-0.016076762229204178,
0.033051084727048874,
0.002871021395549178,
-0.022966669872403145,
-0.01674669235944748,
0.030808966606855392,
0.024688124656677246,
-0.056031905114650726,
0.022917672991752625,
0.1433020383119583,
0.0173337385058403,
-0.05274929851293564,
0.012229527346789837,
-0.027105480432510376,
0.02207229845225811,
-0.05622461438179016,
-0.019521746784448624,
-0.02914278395473957,
-0.03156694769859314,
0.03409372270107269,
0.05803690105676651,
-0.045060351490974426,
-0.018535640090703964,
-0.030564570799469948,
-0.053824860602617264,
0.042984191328287125,
-0.07826743274927139,
-0.03831711784005165,
0.03929735720157623,
0.04792172089219093,
0.015481147915124893,
-0.10565481334924698,
-0.14905902743339539,
0.05012045055627823,
0.04916021227836609,
0.0717325210571289,
0.014854289591312408,
0.00028928479878231883,
-0.010212096385657787,
-0.021627094596624374,
-0.04456323757767677,
-0.07319948822259903,
-0.07728009670972824,
-0.029712503775954247,
-0.020725680515170097,
0.03385201096534729,
0.0073989033699035645,
0.006062704604119062,
-0.013305241242051125,
-0.04117704927921295,
-0.005281804129481316,
0.03279310464859009,
0.04243107885122299,
0.05295254662632942,
-0.005871280562132597,
-0.023220844566822052,
-0.04078329727053642,
-0.011187637224793434,
0.07635312527418137,
-0.09307167679071426,
0.061674509197473526,
-0.011454462073743343,
-0.038998037576675415,
-0.024700738489627838,
-0.006772312335669994,
0.009716513566672802,
-0.02283475175499916,
0.020308656617999077,
-0.00015926305786706507,
-0.11333969235420227,
-0.05217047035694122,
-0.04508432745933533,
-0.018548445776104927,
-0.04872061312198639,
-9.332481076628459e-33,
0.005457436200231314,
0.08624114096164703,
-0.08812249451875687,
-0.023098209872841835,
-0.008831735700368881,
-0.02741968259215355,
-0.051353175193071365,
0.059812165796756744,
0.02957163006067276,
0.007990273647010326,
0.0475735142827034,
-0.0402316190302372,
-0.00376338348723948,
-0.027457762509584427,
-0.010859382338821888,
-0.06201759725809097,
-0.022017348557710648,
-0.04995374381542206,
0.04484187066555023,
-0.024861395359039307,
0.030515922233462334,
0.06323785334825516,
-0.02465306594967842,
0.054110340774059296,
-0.017430592328310013,
0.008664186112582684,
0.0341656431555748,
0.12170121818780899,
0.025988908484578133,
-0.0088367760181427,
-0.06665685772895813,
-0.09605437517166138,
-0.027434641495347023,
-0.03739943727850914,
-0.06465576589107513,
0.0315847210586071,
0.07217718660831451,
-0.05852726474404335,
-0.005838793236762285,
-0.004403947852551937,
0.07219598442316055,
0.01722807250916958,
-0.021164722740650177,
-0.0731942430138588,
-0.03646348789334297,
-0.04380035772919655,
0.012892726808786392,
0.037516508251428604,
0.012988566420972347,
0.039362795650959015,
0.03726852312684059,
0.022023409605026245,
-0.11471876502037048,
0.002285594819113612,
0.062310557812452316,
-0.0011835988843813539,
0.0061331856995821,
0.008021675050258636,
0.026880981400609016,
-0.10861154645681381,
0.010468006134033203,
-0.012258047237992287,
0.02083849534392357,
-0.008934011682868004,
-0.02301896922290325,
0.020569851621985435,
-0.01402838435024023,
-0.009327691979706287,
0.06507692486047745,
0.13082128763198853,
0.0014861143426969647,
0.02965487726032734,
0.0034463873598724604,
-0.06394025683403015,
-0.042212288826704025,
-0.08049993962049484,
-0.03658287972211838,
0.018772557377815247,
-0.0037892821710556746,
-0.05346435680985451,
-0.07058332115411758,
-0.00583456689491868,
0.03365842252969742,
0.07487884908914566,
0.09176914393901825,
0.0788317322731018,
0.15230180323123932,
-0.01263854093849659,
0.02214941568672657,
-0.011857597157359123,
-0.06899937987327576,
-0.016677942126989365,
-0.00171822274569422,
0.1312701553106308,
-0.01179599016904831,
-5.611742537325881e-8,
0.016288014128804207,
0.014629382640123367,
0.0013253113720566034,
0.04593785107135773,
-0.04385600984096527,
-0.06270189583301544,
0.01178770326077938,
0.024127351120114326,
0.03252948075532913,
-0.004543934017419815,
0.08735620230436325,
-0.05507199466228485,
-0.006665769498795271,
-0.04550781846046448,
0.06838812679052353,
0.033881690353155136,
-0.0049850065261125565,
0.016673406586050987,
-0.015161663293838501,
-0.03201116621494293,
0.028311101719737053,
0.025170758366584778,
-0.024006139487028122,
0.01787695474922657,
0.1089438945055008,
0.0391007699072361,
0.01010015420615673,
0.07392379641532898,
0.025648118928074837,
-0.006635927129536867,
0.029300624504685402,
0.020898155868053436,
0.006618320010602474,
-0.040036749094724655,
0.006510789971798658,
-0.00940853264182806,
-0.0619368776679039,
0.023881619796156883,
0.006622247863560915,
0.10841988772153854,
0.003346215235069394,
0.014986992813646793,
0.0004925374523736537,
0.031735360622406006,
0.03674860671162605,
0.05745524540543556,
0.015348332934081554,
-0.05382850393652916,
-0.03425515443086624,
0.005673084408044815,
0.009029833599925041,
-0.05651219189167023,
-0.013432548381388187,
0.037385597825050354,
0.09962482005357742,
0.044960152357816696,
0.007177761290222406,
-0.12165392935276031,
0.017415503039956093,
0.061171676963567734,
-0.03061515837907791,
0.010392644442617893,
-0.06599563360214233,
0.027604296803474426
] |
google/bert_uncased_L-4_H-512_A-8 | 606e4d55252882ac25ba1f1d1a182075830f5a90 | 2021-05-19T17:30:51.000Z | [
"pytorch",
"jax",
"bert",
"arxiv:1908.08962",
"transformers",
"license:apache-2.0"
] | null | false | google | null | google/bert_uncased_L-4_H-512_A-8 | 9,254 | null | transformers | ---
thumbnail: https://huggingface.co/front/thumbnails/google.png
license: apache-2.0
---
BERT Miniatures
===
This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking).
We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher.
Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity.
You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below:
| |H=128|H=256|H=512|H=768|
|---|:---:|:---:|:---:|:---:|
| **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]|
| **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]|
| **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]|
| **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]|
| **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]|
| **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]|
Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model.
Here are the corresponding GLUE scores on the test set:
|Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX|
|---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0|
|BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1|
|BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6|
|BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5|
For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs:
- batch sizes: 8, 16, 32, 64, 128
- learning rates: 3e-4, 1e-4, 5e-5, 3e-5
If you use these models, please cite the following paper:
```
@article{turc2019,
title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models},
author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
journal={arXiv preprint arXiv:1908.08962v2 },
year={2019}
}
```
[2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2
[2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4
[2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8
[2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12
[4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2
[4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4
[4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8
[4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12
[6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2
[6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4
[6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8
[6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12
[8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2
[8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4
[8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8
[8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12
[10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2
[10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4
[10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8
[10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12
[12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2
[12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4
[12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8
[12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
| [
-0.02777470275759697,
-0.02693094126880169,
0.07438826560974121,
0.03228488564491272,
-0.0023304771166294813,
0.018128493800759315,
-0.06253628432750702,
0.0994548574090004,
-0.014644814655184746,
0.018868697807192802,
-0.015814494341611862,
0.03585591912269592,
0.03645862638950348,
0.04551365599036217,
-0.014007769525051117,
0.02179890125989914,
0.07545263320207596,
0.024630775675177574,
-0.08102796226739883,
-0.038678135722875595,
0.04442288726568222,
0.004127463325858116,
0.035637278109788895,
-0.06602323800325394,
-0.0036878888495266438,
-0.04231955111026764,
-0.10835908353328705,
-0.10179445147514343,
0.1127767413854599,
0.017838995903730392,
0.01322801411151886,
-0.0231491569429636,
0.060954611748456955,
0.10242877900600433,
0.0375167578458786,
0.07160431146621704,
-0.007885153405368328,
0.06596683710813522,
0.08308044821023941,
0.037167150527238846,
-0.012698134407401085,
0.05730978772044182,
-0.046946585178375244,
-0.020251978188753128,
0.08908210694789886,
-0.059475671499967575,
-0.03805408999323845,
-0.05272062495350838,
-0.04246129095554352,
-0.06516197323799133,
-0.08722401410341263,
-0.0465037040412426,
-0.00350557011552155,
-0.006868511438369751,
-0.012093286029994488,
-0.017656998708844185,
-0.018602291122078896,
-0.08509580790996552,
-0.048703644424676895,
-0.05522743612527847,
-0.1006460189819336,
-0.05546271428465843,
-0.03855401650071144,
-0.02299017831683159,
-0.08375518023967743,
0.010514002293348312,
-0.0332985445857048,
0.020559493452310562,
0.02245338261127472,
0.017550311982631683,
0.02086251601576805,
0.07695921510457993,
-0.002593731041997671,
0.04768828675150871,
0.0177034679800272,
-0.08130199462175369,
0.08254873752593994,
0.01259934064000845,
0.05082662031054497,
-0.056801896542310715,
0.003977705724537373,
-0.011792338453233242,
0.061928100883960724,
-0.027844129130244255,
0.03977213054895401,
-0.01979219727218151,
0.050365421921014786,
-0.03929493576288223,
0.0031530733685940504,
-0.041712965816259384,
-0.025899091735482216,
-0.02879168465733528,
0.0234839990735054,
0.01508942898362875,
0.041859906166791916,
-0.013815062120556831,
0.07762707024812698,
-0.06824886798858643,
-0.035266585648059845,
0.06303618848323822,
0.08460132032632828,
0.05870901793241501,
0.11230025440454483,
-0.0903414711356163,
0.07434411346912384,
0.05187731981277466,
0.025597769767045975,
0.017762847244739532,
0.06019540876150131,
-0.07116957008838654,
0.025501219555735588,
0.0264898668974638,
-0.03993377089500427,
-0.02484058029949665,
0.033353839069604874,
-0.04111992195248604,
-0.012459754012525082,
-0.032413944602012634,
0.04432254657149315,
0.08561859279870987,
0.0311464574187994,
0.010137348435819149,
0.009034326300024986,
-0.013844281435012817,
-0.037362899631261826,
0.022949982434511185,
-0.04159504920244217,
3.0798436882963647e-33,
0.010033472441136837,
0.08980696648359299,
-0.015826981514692307,
0.0021228354889899492,
0.04828347638249397,
-0.012724562548100948,
0.07859385013580322,
0.013289345428347588,
-0.04710506275296211,
0.0008750183042138815,
-0.024205293506383896,
0.040203407406806946,
-0.08776650577783585,
0.1084313839673996,
0.05108625441789627,
-0.0076477923430502415,
-0.03032587841153145,
0.09285354614257812,
0.04229235649108887,
0.02342383936047554,
0.012891994789242744,
-0.03050696663558483,
0.021354084834456444,
-0.08490459620952606,
-0.04626283422112465,
-0.004968647845089436,
0.06569510698318481,
0.006347084417939186,
-0.05621005594730377,
0.04938972741365433,
-0.09828261286020279,
0.04791073501110077,
0.005325495731085539,
0.0073667350225150585,
-0.009293892420828342,
-0.030588563531637192,
-0.025204559788107872,
-0.03599413484334946,
0.06201314181089401,
-0.055159613490104675,
0.015916872769594193,
0.08668506890535355,
0.01913357712328434,
-0.03226336091756821,
0.019701041281223297,
0.016111237928271294,
0.07878092676401138,
0.027088068425655365,
-0.03437655791640282,
-0.04213705286383629,
0.038557808846235275,
0.018548857420682907,
-0.09642824530601501,
-0.02115079015493393,
0.014828594401478767,
-0.014169528149068356,
0.052391670644283295,
-0.021084407344460487,
0.018860751762986183,
0.0188959501683712,
-0.018108483403921127,
-0.017935508862137794,
-0.0007771972450427711,
0.0875239372253418,
0.05831224471330643,
-0.01666453666985035,
-0.03579762578010559,
0.019875947386026382,
-0.03154779225587845,
0.024714933708310127,
-0.04408795386552811,
-0.017733389511704445,
0.031613849103450775,
-0.034551091492176056,
0.019006161019206047,
-0.09389360249042511,
0.0749051496386528,
-0.06782030314207077,
-0.060423046350479126,
-0.0027907630428671837,
0.036781832575798035,
0.03104851022362709,
-0.06610022485256195,
-0.07133632153272629,
-0.09378468245267868,
-0.05997026711702347,
0.06689010560512543,
-0.027257995679974556,
0.019673382863402367,
0.02110666036605835,
0.0042736465111374855,
-0.07312818616628647,
0.004901031032204628,
0.009528765454888344,
-0.08911892771720886,
-2.745649909673619e-33,
0.0021529693622142076,
0.03855104371905327,
-0.10308390855789185,
0.050320789217948914,
-0.04681287705898285,
-0.04624652862548828,
0.04134273901581764,
0.15953823924064636,
-0.05114345625042915,
-0.06880908459424973,
-0.03467176482081413,
-0.01697215437889099,
-0.02391764335334301,
-0.08151818066835403,
-0.013180517591536045,
0.008677455596625805,
-0.00866649392992258,
0.0117244403809309,
0.06523464620113373,
-0.031274884939193726,
0.06625952571630478,
-0.050342388451099396,
-0.05482276901602745,
0.08445682376623154,
-0.0037109581753611565,
0.08581460267305374,
-0.1056312620639801,
-0.006267915479838848,
0.0016805074410513043,
0.03180089220404625,
-0.037861187011003494,
-0.026890192180871964,
0.029224365949630737,
0.041481297463178635,
-0.05287330225110054,
0.028274059295654297,
-0.004168998915702105,
-0.04711843654513359,
0.028253236785531044,
0.026713063940405846,
0.05356067046523094,
-0.07454729825258255,
0.01215335913002491,
0.008674802258610725,
0.002732679480686784,
-0.005528884474188089,
-0.1011095717549324,
-0.08269007503986359,
-0.00893216859549284,
-0.028915394097566605,
0.01280263438820839,
-0.03088524378836155,
-0.10103844851255417,
-0.027487996965646744,
-0.09202675521373749,
-0.08071903884410858,
-0.011788311414420605,
-0.010570026002824306,
0.040800344198942184,
0.03534208983182907,
-0.03600774705410004,
-0.08346249163150787,
-0.04663081839680672,
0.0144363883882761,
-0.0611286535859108,
-0.01945393905043602,
-0.0429740846157074,
0.06830962002277374,
-0.04516363888978958,
0.03358118236064911,
-0.04700200632214546,
-0.03670932725071907,
0.06817365437746048,
0.030344508588314056,
-0.10013546049594879,
0.05196927860379219,
-0.004978442098945379,
-0.04802384972572327,
-0.029270552098751068,
0.011249368079006672,
-0.035611048340797424,
-0.04569050669670105,
-0.007384720258414745,
0.06185262277722359,
-0.003068223362788558,
0.07179275900125504,
0.042144566774368286,
0.042808420956134796,
-0.043737392872571945,
0.1017121970653534,
-0.03529709577560425,
0.015136893838644028,
0.06037892401218414,
0.0446556992828846,
0.020039809867739677,
-5.7391801533412945e-8,
-0.020838076248764992,
0.05167875811457634,
-0.0003159099433105439,
0.032759685069322586,
-0.08053361624479294,
-0.07808814197778702,
-0.0645233765244484,
0.073664091527462,
-0.03812188282608986,
0.0739324614405632,
0.05438229441642761,
0.0640188530087471,
-0.051926061511039734,
0.03982805460691452,
0.06603474169969559,
0.08508943021297455,
-0.04874661564826965,
-0.007028104271739721,
-0.0013886261731386185,
-0.043596457690000534,
0.01172784436494112,
0.03845464810729027,
0.012406852096319199,
-0.03461853042244911,
0.06254647672176361,
-0.07115825265645981,
-0.016401374712586403,
0.15517796576023102,
-0.07044593244791031,
0.03150911629199982,
-0.028944045305252075,
0.0592564232647419,
-0.0842917189002037,
0.004482691176235676,
0.12364226579666138,
0.051830366253852844,
-0.1016145721077919,
-0.02944220043718815,
-0.0042844912968575954,
0.026145359501242638,
0.04261724650859833,
-0.0030251643620431423,
-0.05400453135371208,
-0.009814517572522163,
0.12240474671125412,
0.01839965581893921,
-0.012614627368748188,
-0.005961736664175987,
0.022503379732370377,
0.0739760547876358,
0.024917954578995705,
-0.027219194918870926,
-0.0398184210062027,
0.008865961804986,
-0.036761652678251266,
0.03012857772409916,
-0.07172215729951859,
-0.008826298639178276,
0.015618893317878246,
0.011758017353713512,
-0.004138866905122995,
0.05558526888489723,
-0.027862677350640297,
0.07714439183473587
] |
facebook/wav2vec2-xls-r-300m | e842f378fdbdb09aabc11d87c52f26b8f2dde333 | 2021-11-18T16:32:15.000Z | [
"pytorch",
"wav2vec2",
"pretraining",
"multilingual",
"dataset:common_voice",
"dataset:multilingual_librispeech",
"arxiv:2111.09296",
"transformers",
"speech",
"xls_r",
"xls_r_pretrained",
"license:apache-2.0"
] | null | false | facebook | null | facebook/wav2vec2-xls-r-300m | 9,246 | 22 | transformers | ---
language: multilingual
datasets:
- common_voice
- multilingual_librispeech
tags:
- speech
- xls_r
- xls_r_pretrained
license: apache-2.0
---
# Wav2Vec2-XLS-R-300M
[Facebook's Wav2Vec2 XLS-R](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) counting **300 million** parameters.

XLS-R is Facebook AI's large-scale multilingual pretrained model for speech (the "XLM-R for Speech"). It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. When using the model make sure that your speech input is sampled at 16kHz.
**Note**: This model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Translation, or Classification. Check out [**this blog**](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for more information about ASR.
[XLS-R Paper](https://arxiv.org/abs/2111.09296)
Authors: Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli
**Abstract**
This paper presents XLS-R, a large-scale model for cross-lingual speech representation learning based on wav2vec 2.0. We train models with up to 2B parameters on 436K hours of publicly available speech audio in 128 languages, an order of magnitude more public data than the largest known prior work. Our evaluation covers a wide range of tasks, domains, data regimes and languages, both high and low-resource. On the CoVoST-2 speech translation benchmark, we improve the previous state of the art by an average of 7.4 BLEU over 21 translation directions into English. For speech recognition, XLS-R improves over the best known prior work on BABEL, MLS, CommonVoice as well as VoxPopuli, lowering error rates by 20%-33% relative on average. XLS-R also sets a new state of the art on VoxLingua107 language identification. Moreover, we show that with sufficient model size, cross-lingual pretraining can outperform English-only pretraining when translating English speech into other languages, a setting which favors monolingual pretraining. We hope XLS-R can help to improve speech processing tasks for many more languages of the world.
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.
# Usage
See [this google colab](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_Tune_XLS_R_on_Common_Voice.ipynb) for more information on how to fine-tune the model.
You can find other pretrained XLS-R models with different numbers of parameters:
* [300M parameters version](https://huggingface.co/facebook/wav2vec2-xls-r-300m)
* [1B version version](https://huggingface.co/facebook/wav2vec2-xls-r-1b)
* [2B version version](https://huggingface.co/facebook/wav2vec2-xls-r-2b) | [
-0.05261414125561714,
-0.08654969930648804,
-0.051704324781894684,
-0.04312781244516373,
0.0036449157632887363,
0.01097971759736538,
-0.08288953453302383,
-0.025692913681268692,
0.029850777238607407,
-0.043230343610048294,
-0.020624915137887,
-0.08149153739213943,
-0.011101656593382359,
-0.04176478832960129,
-0.04056401923298836,
-0.01035719458013773,
0.04024895653128624,
-0.032330822199583054,
-0.10048951208591461,
-0.039161812514066696,
0.06573407351970673,
0.047311779111623764,
0.06807282567024231,
-0.054584208875894547,
0.11163531988859177,
0.03617248684167862,
-0.049065135419368744,
-0.03485695272684097,
0.08474845439195633,
-0.07521232217550278,
0.13508813083171844,
0.054343365132808685,
0.0646997019648552,
0.051468126475811005,
-0.038738738745450974,
-0.009356625378131866,
-0.04742863029241562,
-0.09497612714767456,
0.04495937377214432,
-0.0028862832114100456,
0.016455912962555885,
0.04683544114232063,
-0.0025469702668488026,
0.0041765933856368065,
-0.002588291186839342,
0.05349167808890343,
-0.07633762806653976,
0.0061767324805259705,
-0.013540933839976788,
0.027223143726587296,
-0.08020149171352386,
-0.05434909835457802,
-0.0091434046626091,
0.11961711943149567,
-0.04610907658934593,
-0.011635763570666313,
-0.0343756340444088,
0.029081329703330994,
0.026796916499733925,
0.0477064847946167,
-0.05974404513835907,
-0.027883153408765793,
0.013882463797926903,
0.058312203735113144,
-0.0664462074637413,
0.032805077731609344,
-0.06934812664985657,
-0.03499557077884674,
0.01985218934714794,
0.031840648502111435,
-0.07758354395627975,
0.11379177868366241,
-0.004138171207159758,
0.06774729490280151,
0.05066182464361191,
-0.01903911679983139,
0.06280733644962311,
-0.022044725716114044,
0.08520549535751343,
-0.11370939016342163,
0.04564798250794411,
-0.049832236021757126,
0.014623662456870079,
-0.041270412504673004,
0.0839102566242218,
-0.0417587012052536,
0.032287903130054474,
0.018815234303474426,
-0.01334096398204565,
-0.007416847161948681,
-0.05416987091302872,
0.011796297505497932,
0.00513206934556365,
0.07519935071468353,
-0.05317021161317825,
0.08137186616659164,
-0.006858838256448507,
0.04411258175969124,
-0.05715445429086685,
0.09213408082723618,
-0.006217061076313257,
-0.03466939181089401,
0.07464225590229034,
-0.006098198238760233,
-0.06276483088731766,
-0.1106087937951088,
0.052552610635757446,
0.08866943418979645,
0.03161568194627762,
-0.012218127958476543,
0.04209329932928085,
0.0162473376840353,
-0.007016032002866268,
-0.013711991719901562,
0.0630510225892067,
0.03724559396505356,
-0.006215679459273815,
-0.055793244391679764,
0.08742568641901016,
0.03087741881608963,
-0.03887053206562996,
0.020243441686034203,
-0.02252025343477726,
-0.04005853459239006,
-0.0582880899310112,
-0.054850075393915176,
-0.08060649782419205,
2.4005563596828738e-33,
-0.016026226803660393,
0.042540293186903,
-0.01567995361983776,
0.01213192380964756,
0.008141351863741875,
-0.05265836417675018,
-0.04470239207148552,
0.02831936627626419,
0.005471023730933666,
-0.02038058266043663,
-0.06585317105054855,
0.034219659864902496,
-0.07158969342708588,
0.11655840277671814,
0.020117884501814842,
-0.02040838822722435,
0.007678022142499685,
0.06901869922876358,
-0.027509260922670364,
0.03554695099592209,
0.15347115695476532,
-0.042198844254016876,
0.03770417347550392,
0.017204023897647858,
0.05681991204619408,
0.04739266261458397,
0.09127940237522125,
-0.07398977130651474,
0.06395815312862396,
0.04863046109676361,
-0.06891892105340958,
-0.017662188038229942,
-0.057614248245954514,
-0.010509098879992962,
0.03290383517742157,
0.011895501054823399,
-0.0016387136420235038,
-0.005594444926828146,
-0.06429284811019897,
-0.05918961390852928,
-0.0022739695850759745,
0.021899865940213203,
-0.005448377691209316,
-0.046107225120067596,
-0.08884717524051666,
-0.05945776402950287,
-0.020968273282051086,
0.02542167529463768,
-0.007603928912431002,
0.04228142276406288,
-0.007221374195069075,
-0.01881617121398449,
-0.030261242762207985,
0.04877181723713875,
0.020237255841493607,
-0.03406348079442978,
0.05558203533291817,
0.049860741943120956,
0.02298346534371376,
0.0631527379155159,
0.016626209020614624,
0.017024701461195946,
0.06186700239777565,
0.03011615201830864,
0.07266315817832947,
0.03482391685247421,
-0.05556349456310272,
0.018744034692645073,
0.06399650126695633,
-0.031858328729867935,
-0.007613569963723421,
-0.05469036474823952,
0.05035760626196861,
-0.015326961874961853,
-0.019681422039866447,
-0.011693671345710754,
0.0014013185864314437,
-0.09934395551681519,
-0.037289511412382126,
0.04749063402414322,
-0.03725370764732361,
0.020771535113453865,
-0.011985075660049915,
-0.07640839368104935,
-0.03233284503221512,
-0.06653642654418945,
0.02603994496166706,
-0.09135863929986954,
-0.07565359771251678,
0.008314000442624092,
-0.04757240042090416,
0.036372046917676926,
-0.030496925115585327,
-0.04447082057595253,
-0.08487634360790253,
-2.985210882925401e-33,
-0.024784868583083153,
0.08399203419685364,
-0.027330104261636734,
0.11577429622411728,
0.007228504400700331,
-0.01604919135570526,
0.0785936564207077,
0.14692489802837372,
-0.009807596914470196,
-0.0481509305536747,
0.05121638625860214,
-0.08638665080070496,
0.07409346848726273,
-0.018348220735788345,
0.08161509782075882,
-0.05956900119781494,
0.03428874537348747,
-0.012273542582988739,
0.027798496186733246,
0.048287078738212585,
-0.019961504265666008,
0.09307996183633804,
-0.033679742366075516,
0.05078241974115372,
-0.04298834502696991,
0.02814989909529686,
-0.08441895991563797,
0.04255395010113716,
0.01864834874868393,
0.0037013229448348284,
-0.07067202031612396,
0.005024980753660202,
-0.07346709817647934,
0.014107429422438145,
-0.03151817247271538,
0.06128804013133049,
0.034253694117069244,
0.022750450298190117,
-0.02355545200407505,
0.004665466491132975,
0.11864078789949417,
0.010373338125646114,
-0.11400758475065231,
-0.043826937675476074,
-0.017208557575941086,
-0.007037475239485502,
-0.10248935222625732,
-0.044209014624357224,
0.004739115480333567,
-0.003087759017944336,
0.02467505633831024,
-0.02417825348675251,
0.024671386927366257,
0.0436834990978241,
-0.035089604556560516,
-0.055130407214164734,
-0.06031884625554085,
-0.0326262041926384,
-0.023652037605643272,
-0.03664448484778404,
-0.022382473573088646,
0.0031741936691105366,
-0.08705250173807144,
-0.05161571502685547,
0.02628440409898758,
0.0010898638283833861,
-0.03303072974085808,
-0.007152569480240345,
0.000913101714104414,
0.02263837866485119,
0.028141310438513756,
0.022655338048934937,
-0.02533900737762451,
0.02150612138211727,
-0.08049652725458145,
-0.01234783511608839,
-0.0286734439432621,
-0.059162456542253494,
-0.017527060583233833,
-0.089466892182827,
-0.040496084839105606,
0.03265189751982689,
0.04329920560121536,
0.031925879418849945,
0.07010705024003983,
0.05504754185676575,
-0.001711017917841673,
-0.008182740770280361,
-0.0005188822979107499,
0.06345336139202118,
0.004640270955860615,
0.0854904055595398,
-0.03458506986498833,
0.07427486777305603,
0.018833335489034653,
-5.2750017687230866e-8,
-0.06570403277873993,
0.036203544586896896,
0.0245131254196167,
-0.03579040244221687,
0.054067280143499374,
-0.07040348649024963,
-0.0028366902843117714,
0.043508414179086685,
0.02215702086687088,
0.03238027170300484,
0.05708766356110573,
-0.03057057596743107,
-0.00136909494176507,
0.05858096852898598,
-0.027482934296131134,
0.015618779696524143,
0.0019458694150671363,
0.06525996327400208,
-0.02332351915538311,
-0.07282045483589172,
0.03268522769212723,
0.0073283277451992035,
0.012852124869823456,
-0.007964739575982094,
0.08852539211511612,
-0.09081071615219116,
-0.0065076337195932865,
0.06144409999251366,
-0.03724437952041626,
-0.002556141931563616,
-0.059879694133996964,
0.056015510112047195,
-0.058860037475824356,
-0.07990958541631699,
-0.01233422290533781,
0.06810721009969711,
-0.09048201143741608,
-0.014513051137328148,
-0.030107812955975533,
0.05789430812001228,
0.021804599091410637,
0.05571926385164261,
-0.05145410820841789,
-0.01617542654275894,
0.07464920729398727,
-0.043538328260183334,
-0.09454038739204407,
-0.09790844470262527,
0.05052187666296959,
0.02100623957812786,
0.014762574806809425,
0.07721024006605148,
-0.024834100157022476,
0.01519185770303011,
0.04701891914010048,
0.031944822520017624,
-0.07260691374540329,
0.019479965791106224,
0.035911839455366135,
0.052261799573898315,
0.05049188435077667,
0.0070368568412959576,
-0.036752235144376755,
-0.014378946274518967
] |
sshleifer/tiny-distilbert-base-cased | 657df2b83a6986d88e4f528740259c9b49f796b1 | 2021-05-20T07:12:39.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | sshleifer | null | sshleifer/tiny-distilbert-base-cased | 9,211 | 1 | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
nghuyong/ernie-1.0 | b06176bf30ecf544330ab008933c9ac1012f1a6d | 2021-05-20T01:40:40.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"zh",
"arxiv:1904.09223",
"transformers"
] | null | false | nghuyong | null | nghuyong/ernie-1.0 | 9,177 | 9 | transformers | ---
language: zh
---
# ERNIE-1.0
## Introduction
ERNIE (Enhanced Representation through kNowledge IntEgration) is proposed by Baidu in 2019,
which is designed to learn language representation enhanced by knowledge masking strategies i.e. entity-level masking and phrase-level masking.
Experimental results show that ERNIE achieve state-of-the-art results on five Chinese natural language processing tasks including natural language inference,
semantic similarity, named entity recognition, sentiment analysis and question answering.
More detail: https://arxiv.org/abs/1904.09223
## Released Model Info
|Model Name|Language|Model Structure|
|:---:|:---:|:---:|
|ernie-1.0| Chinese |Layer:12, Hidden:768, Heads:12|
This released pytorch model is converted from the officially released PaddlePaddle ERNIE model and
a series of experiments have been conducted to check the accuracy of the conversion.
- Official PaddlePaddle ERNIE repo: https://github.com/PaddlePaddle/ERNIE
- Pytorch Conversion repo: https://github.com/nghuyong/ERNIE-Pytorch
## How to use
```Python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0")
model = AutoModel.from_pretrained("nghuyong/ernie-1.0")
```
## Citation
```bibtex
@article{sun2019ernie,
title={Ernie: Enhanced representation through knowledge integration},
author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Chen, Xuyi and Zhang, Han and Tian, Xin and Zhu, Danxiang and Tian, Hao and Wu, Hua},
journal={arXiv preprint arXiv:1904.09223},
year={2019}
}
```
| [
-0.07299181818962097,
0.011008826084434986,
0.01748579554259777,
0.01715332828462124,
-0.0076467799954116344,
0.02005341462790966,
0.02893337421119213,
-0.04142645373940468,
0.023653242737054825,
0.000059708971093641594,
0.04834264889359474,
-0.0876656025648117,
0.07494384050369263,
0.03374910727143288,
0.05908094719052315,
0.032310523092746735,
0.039389219135046005,
0.09817282110452652,
-0.08073551952838898,
-0.13953402638435364,
0.05298704281449318,
0.03222222253680229,
0.021459277719259262,
-0.017343126237392426,
-0.019053800031542778,
-0.03299194574356079,
-0.005143233574926853,
-0.010038979351520538,
0.060050614178180695,
-0.02878805622458458,
0.030869927257299423,
-0.007741197943687439,
0.08614946156740189,
0.09990093857049942,
0.030091818422079086,
0.04144510254263878,
-0.06802846491336823,
0.07680843770503998,
-0.057705942541360855,
-0.01842481829226017,
-0.05077682435512543,
-0.008261865004897118,
-0.0072326501831412315,
-0.04458888992667198,
0.09523843228816986,
0.021530983969569206,
-0.07521338760852814,
-0.014030362479388714,
-0.05995948240160942,
-0.01125598605722189,
-0.07372327893972397,
-0.04472775012254715,
0.035697754472494125,
0.043325286358594894,
-0.029765045270323753,
0.029340287670493126,
-0.04854931682348251,
0.0020899740047752857,
-0.07066411525011063,
-0.041491683572530746,
-0.1152690127491951,
-0.028366198763251305,
-0.033361319452524185,
0.011646461673080921,
-0.04545781761407852,
-0.024427099153399467,
-0.1281052678823471,
-0.03560696169734001,
0.028990020975470543,
-0.04602929577231407,
-0.0777454748749733,
0.05276865512132645,
-0.034461911767721176,
-0.00005170741496840492,
-0.042927928268909454,
-0.05786480754613876,
0.038070544600486755,
0.00015219075430650264,
0.05837182700634003,
-0.07757017016410828,
0.009445009753108025,
0.010836957022547722,
0.07225700467824936,
0.03738649934530258,
0.07439889758825302,
0.021227821707725525,
-0.011549550108611584,
0.08390891551971436,
-0.05051687732338905,
-0.0072381398640573025,
-0.02095312811434269,
-0.0860939770936966,
0.13382381200790405,
0.05968274921178818,
0.10115452855825424,
0.03538382425904274,
0.0022936270106583834,
-0.0016031884588301182,
-0.03719270974397659,
0.051648177206516266,
0.013873201794922352,
0.0912860706448555,
-0.02095191553235054,
-0.18057116866111755,
0.024018948897719383,
0.02217734046280384,
-0.0022245878353714943,
-0.019612954929471016,
0.04697621241211891,
-0.07653164863586426,
0.006395099684596062,
0.03693774342536926,
-0.04032116383314133,
-0.05188160762190819,
0.0030012524221092463,
-0.017863286659121513,
-0.007311578840017319,
0.031339600682258606,
0.010252339765429497,
-0.024530693888664246,
-0.006033231504261494,
0.04149448499083519,
0.013411454856395721,
0.02222488261759281,
0.020685071125626564,
0.03194724768400192,
-0.003525023814290762,
1.1829902395251912e-33,
0.0366562157869339,
0.0726146548986435,
-0.007910250686109066,
-0.0032824689988046885,
0.06574736535549164,
-0.036715611815452576,
0.030232137069106102,
-0.014581838622689247,
-0.04225510358810425,
0.036117106676101685,
-0.03283059224486351,
-0.026066280901432037,
-0.11924739927053452,
0.022883431985974312,
-0.008514137007296085,
0.018149636685848236,
-0.09458046406507492,
0.022746551781892776,
-0.01062751468271017,
-0.03250456228852272,
0.0798855721950531,
0.06817933917045593,
-0.017201945185661316,
-0.02609880641102791,
0.0035848498810082674,
0.032477326691150665,
0.061288684606552124,
-0.13320589065551758,
-0.030171753838658333,
0.028817610815167427,
-0.10418083518743515,
0.009473872371017933,
-0.02921810932457447,
0.006685847882181406,
-0.03596850112080574,
-0.05101127177476883,
0.04583774879574776,
-0.09816793352365494,
0.013405305333435535,
-0.028380252420902252,
-0.013217541389167309,
-0.006534129846841097,
-0.011587119661271572,
-0.020018523558974266,
-0.09334079921245575,
0.021660594269633293,
0.02661314606666565,
0.0003403117589186877,
0.0604514479637146,
0.01645156554877758,
0.07499954849481583,
-0.011424310505390167,
-0.02318013831973076,
-0.003093100618571043,
-0.007527538575232029,
-0.06612960249185562,
0.04068675637245178,
0.01811475306749344,
0.048474039882421494,
0.05568519979715347,
0.00254027359187603,
0.00817235466092825,
0.05824926868081093,
0.05159325525164604,
0.014211935922503471,
-0.0018489185022190213,
0.025049583986401558,
0.02845635451376438,
-0.003888460574671626,
0.007769972085952759,
-0.05903841182589531,
0.01572028174996376,
-0.04967112094163895,
-0.038705695420503616,
0.017982961609959602,
-0.04594816267490387,
-0.016866788268089294,
-0.09574944525957108,
-0.013654753565788269,
0.04107290506362915,
-0.027316749095916748,
0.003179317805916071,
0.027859263122081757,
-0.04768514633178711,
-0.06610685586929321,
-0.03831881284713745,
0.11794184148311615,
0.010556655935943127,
0.05806569755077362,
-0.03138906508684158,
0.0020208910573273897,
-0.03658145293593407,
0.005743619054555893,
0.03664042055606842,
0.02698192186653614,
-1.5873901427443095e-33,
-0.07283680886030197,
0.022506291046738625,
-0.0816977322101593,
0.04990766569972038,
-0.05002208426594734,
-0.1368253529071808,
0.0539323128759861,
0.06987842917442322,
-0.03281793370842934,
-0.08469655364751816,
-0.07109469175338745,
-0.020930001512169838,
0.028921838849782944,
0.015790484845638275,
0.050927918404340744,
0.021549200639128685,
-0.03018435463309288,
0.09816993772983551,
-0.02362612448632717,
0.06045599654316902,
-0.057913146913051605,
-0.014621725305914879,
-0.1491868793964386,
0.041689153760671616,
-0.003999430686235428,
0.10545448213815689,
0.05953399837017059,
0.011440708301961422,
0.0352470725774765,
0.05281715467572212,
-0.055928975343704224,
0.02280285954475403,
0.023927906528115273,
0.018904337659478188,
-0.12464206665754318,
-0.02155161090195179,
-0.013690666295588017,
-0.05044516548514366,
-0.021957602351903915,
0.016637105494737625,
-0.0019358982099220157,
-0.027738068252801895,
-0.08347640931606293,
-0.005888658110052347,
-0.07966174185276031,
-0.02953927405178547,
-0.07777463644742966,
-0.0587681420147419,
-0.0023307777009904385,
-0.003521033562719822,
-0.0023898249492049217,
0.025980206206440926,
-0.05066635459661484,
0.025686634704470634,
-0.04575206711888313,
0.0204630047082901,
-0.029494792222976685,
-0.04977361112833023,
-0.017236219719052315,
-0.0325726643204689,
-0.0547112338244915,
-0.00482822535559535,
0.044021014124155045,
0.04995596408843994,
0.07159103453159332,
0.014011548832058907,
0.02222505398094654,
0.1130714938044548,
-0.035752248018980026,
-0.10162770003080368,
0.039301685988903046,
0.03212655335664749,
0.043549347668886185,
0.03698580712080002,
0.054851382970809937,
0.06051334738731384,
0.05589766800403595,
0.022306323051452637,
-0.012549898587167263,
0.030761318281292915,
-0.05783380568027496,
-0.024520844221115112,
0.018682504072785378,
0.0685340017080307,
0.04263726621866226,
0.020047826692461967,
-0.008406140841543674,
0.08328750729560852,
-0.0007371084648184478,
0.06049913913011551,
-0.0024443832226097584,
0.015356412157416344,
-0.01592387445271015,
0.12998679280281067,
-0.025051383301615715,
-4.929328767389052e-8,
-0.11930438876152039,
-0.0022205316927284002,
-0.03869250789284706,
0.03415652737021446,
-0.04350431263446808,
-0.026463061571121216,
-0.032552555203437805,
0.01905878633260727,
-0.04888594523072243,
-0.033766042441129684,
0.05814468488097191,
0.02425648830831051,
-0.03125403821468353,
0.03213142976164818,
0.031516652554273605,
0.07671672850847244,
0.010518700815737247,
0.05334250256419182,
0.014922063797712326,
-0.018592538312077522,
0.016943614929914474,
0.040151309221982956,
0.013724119402468204,
-0.00013249306357465684,
-0.012770312838256359,
0.005376193672418594,
-0.12135343998670578,
0.1395968496799469,
0.010568677447736263,
0.020851431414484978,
0.007534931879490614,
0.01997697539627552,
0.009676883928477764,
0.020133918151259422,
0.11321116983890533,
0.11324884742498398,
-0.013397464528679848,
-0.07183238118886948,
0.025243762880563736,
0.04959585890173912,
0.025129202753305435,
-0.0813240259885788,
-0.045998331159353256,
-0.004481882322579622,
0.06588560342788696,
-0.023635925725102425,
-0.01643366925418377,
-0.1192546859383583,
0.01650124415755272,
0.029358943924307823,
0.02276635728776455,
0.018975896760821342,
0.026833534240722656,
0.02293344959616661,
0.08980580419301987,
0.05241003260016441,
-0.03847527876496315,
-0.014109074138104916,
0.04461701586842537,
0.003235167358070612,
0.010249062441289425,
0.006495300680398941,
0.027790527790784836,
0.07467164099216461
] |
allenai/longformer-large-4096 | cfa97f5f8c58c219bfea4da030a0259d5dbb28c4 | 2021-03-10T02:31:17.000Z | [
"pytorch",
"tf",
"longformer",
"transformers"
] | null | false | allenai | null | allenai/longformer-large-4096 | 9,152 | 9 | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
castorini/monot5-base-msmarco-10k | f15657ab3d2a5dd0b9a30c8c0b6a0a73c9cb5884 | 2021-10-17T11:24:22.000Z | [
"pytorch",
"jax",
"t5",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | castorini | null | castorini/monot5-base-msmarco-10k | 9,101 | 3 | transformers | This model is a T5-base reranker fine-tuned on the MS MARCO passage dataset for 10k steps (or 1 epoch).
This model usually has a better zero-shot performance than `monot5-base-msmarco`, i.e., it performs better on datasets different from MS MARCO.
For more details on how to use it, check the following links:
- [A simple reranking example](https://github.com/castorini/pygaggle#a-simple-reranking-example)
- [Rerank MS MARCO passages](https://github.com/castorini/pygaggle/blob/master/docs/experiments-msmarco-passage-subset.md)
- [Rerank Robust04 documents](https://github.com/castorini/pygaggle/blob/master/docs/experiments-robust04-monot5-gpu.md)
Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/) | [
-0.15108679234981537,
-0.05096009373664856,
0.0284718070179224,
0.030225329101085663,
-0.025211095809936523,
0.04826401546597481,
-0.08938957750797272,
0.07781503349542618,
0.0005556968972086906,
-0.012060926295816898,
-0.03720035031437874,
0.05763912573456764,
0.012371353805065155,
0.03530292212963104,
-0.1132301390171051,
-0.0019399758893996477,
0.08456940948963165,
0.0009935935959219933,
-0.03139939159154892,
-0.08471912890672684,
0.009563760831952095,
-0.005958389025181532,
0.055061861872673035,
0.01923285983502865,
0.04872557520866394,
-0.07963378727436066,
-0.07979757338762283,
0.04793451353907585,
0.05809652432799339,
-0.005632052663713694,
0.0439014732837677,
0.0810842290520668,
0.02532781846821308,
0.034244995564222336,
-0.03488974645733833,
0.06922594457864761,
0.0022711234632879496,
-0.1106848269701004,
-0.005324418656527996,
0.005397013388574123,
0.04578401893377304,
0.030873673036694527,
-0.030560774728655815,
0.009986087679862976,
0.09046532958745956,
-0.023710742592811584,
-0.030820654705166817,
-0.032718319445848465,
-0.02998191863298416,
-0.017898639664053917,
-0.11858478933572769,
0.01922750100493431,
-0.06828266382217407,
0.0955910012125969,
-0.027879850938916206,
0.043267764151096344,
0.006080137565732002,
-0.04465629160404205,
0.017164479941129684,
-0.11032228171825409,
-0.003800294827669859,
-0.06629804521799088,
-0.05450364947319031,
-0.04270505905151367,
0.038595929741859436,
0.004512757528573275,
0.015443619340658188,
0.012238897383213043,
0.05142761021852493,
0.031521666795015335,
0.0016047691460698843,
0.03929736837744713,
0.03370483219623566,
0.011328798718750477,
-0.053385112434625626,
0.005764239002019167,
0.06639237701892853,
-0.014602117240428925,
-0.02050522156059742,
-0.06072685495018959,
-0.00518457219004631,
-0.015686221420764923,
0.037122942507267,
-0.03822517767548561,
-0.00779763562604785,
-0.10137822479009628,
0.05393359437584877,
-0.010799150913953781,
0.01785394549369812,
0.019116217270493507,
0.010017565451562405,
-0.013420941308140755,
0.051724184304475784,
0.030229272320866585,
0.0077248215675354,
0.06273459643125534,
0.014285664074122906,
-0.007258383557200432,
0.012057512067258358,
0.0704306811094284,
0.04213540628552437,
0.07378466427326202,
0.06496202200651169,
-0.010309447534382343,
0.060492053627967834,
-0.00357301183976233,
0.05543190985918045,
0.060745976865291595,
-0.014719631522893906,
-0.10629314184188843,
0.018396327272057533,
0.021075770258903503,
-0.0533926896750927,
-0.023933811113238335,
-0.030824827030301094,
0.02533540315926075,
-0.015276085585355759,
0.028576698154211044,
0.024007663130760193,
0.07166066020727158,
-0.002583298599347472,
0.014315435662865639,
0.01320060808211565,
-0.03161676973104477,
-0.006790092680603266,
0.020596785470843315,
-0.0506427176296711,
4.448107725051984e-33,
0.08479072153568268,
-0.0158674418926239,
0.03739947825670242,
-0.040425654500722885,
0.029333973303437233,
0.011137514375150204,
0.0486990250647068,
-0.006918816361576319,
-0.1186709925532341,
-0.04948108270764351,
-0.10475679486989975,
0.038394954055547714,
-0.04151903837919235,
0.03317975997924805,
-0.008663393557071686,
-0.0825948417186737,
-0.046400707215070724,
0.09100031852722168,
-0.06093179062008858,
0.016571223735809326,
0.08154402673244476,
-0.02613549493253231,
-0.023551911115646362,
-0.10477432608604431,
0.02007487788796425,
0.06695858389139175,
-0.05131923779845238,
-0.08985280245542526,
-0.049429163336753845,
0.05037790909409523,
-0.11133623868227005,
0.0415431447327137,
-0.047629643231630325,
-0.041055116802453995,
0.016429204493761063,
-0.0463443398475647,
-0.025938792154192924,
-0.05786393955349922,
0.055849816650152206,
-0.13557103276252747,
-0.03801911696791649,
0.006431304384022951,
0.03973368555307388,
-0.10583080351352692,
-0.10164976865053177,
-0.03942931443452835,
-0.07936061173677444,
0.09307808429002762,
0.0320374071598053,
0.030393943190574646,
0.052575867623090744,
0.025504933670163155,
-0.04240356385707855,
0.002200413728132844,
-0.08032700419425964,
-0.02708897925913334,
0.06503266096115112,
0.10812289267778397,
0.05618174746632576,
0.039346735924482346,
0.05550694838166237,
0.028961937874555588,
-0.013536490499973297,
0.07522137463092804,
0.08408909291028976,
0.0243061576038599,
-0.00961277075111866,
0.046688832342624664,
0.06203243508934975,
0.04282062128186226,
-0.020046833902597427,
0.041528794914484024,
-0.039404455572366714,
-0.017032440751791,
0.08625742048025131,
-0.014933490194380283,
0.08909980207681656,
-0.04784291610121727,
-0.05793197453022003,
-0.017196591943502426,
-0.07495207339525223,
0.006471118424087763,
0.008258339948952198,
-0.13545972108840942,
-0.0565061941742897,
0.05284037068486214,
0.0904226005077362,
-0.04423914849758148,
-0.01217376347631216,
-0.06349358707666397,
0.04301872104406357,
0.013815830461680889,
-0.016076955944299698,
0.054827313870191574,
-0.01806742325425148,
-3.2884950375932746e-33,
0.09027853608131409,
-0.01981707289814949,
0.03579478710889816,
0.07041892409324646,
-0.007619546726346016,
-0.05015980079770088,
-0.01295327115803957,
0.07134146988391876,
-0.037145983427762985,
-0.035591572523117065,
0.020345548167824745,
-0.04155091568827629,
0.04232953116297722,
-0.02345900423824787,
0.03905703127384186,
-0.042972926050424576,
0.04971056059002876,
-0.03875807672739029,
0.01404589880257845,
0.035271935164928436,
0.052041150629520416,
0.0349184088408947,
-0.11230625957250595,
0.02671612799167633,
0.041721995919942856,
0.013013429939746857,
-0.0023903301917016506,
0.04341774806380272,
-0.060866665095090866,
-0.06681082397699356,
0.007091764360666275,
0.002987827407196164,
-0.07369619607925415,
-0.008803438395261765,
-0.010998090729117393,
0.04795915260910988,
0.019027041271328926,
0.004209035076200962,
-0.026097191497683525,
0.12528187036514282,
0.08685337007045746,
0.07475171238183975,
-0.06997664272785187,
-0.0018528108485043049,
0.00463289488106966,
0.05824313685297966,
-0.12392349541187286,
0.04267258197069168,
0.05238315463066101,
-0.03725476190447807,
-0.045183006674051285,
0.062075547873973846,
0.0005048652528785169,
0.0356215238571167,
-0.04883458837866783,
-0.027963904663920403,
-0.05390552431344986,
-0.035918690264225006,
-0.05664527043700218,
-0.0065429252572357655,
0.014281811192631721,
0.01138361543416977,
-0.029973218217492104,
-0.015795426443219185,
0.07538170367479324,
-0.01406110730022192,
-0.06609029322862625,
-0.08924216032028198,
-0.04316183179616928,
0.0044112429022789,
0.007703270297497511,
-0.035259462893009186,
0.07731585204601288,
-0.017260883003473282,
-0.021691376343369484,
0.005871801637113094,
-0.018961377441883087,
-0.0025307033210992813,
-0.020419305190443993,
-0.05537699908018112,
-0.03206668049097061,
0.033287666738033295,
0.03400406241416931,
0.05596228316426277,
-0.010211990214884281,
0.06161059811711311,
0.08839267492294312,
0.0530986487865448,
0.07097633183002472,
0.01647363416850567,
-0.04361044242978096,
-0.0601106733083725,
0.030879512429237366,
0.02210967056453228,
0.019517557695508003,
-5.540700698247747e-8,
-0.07016973942518234,
0.02170255407691002,
-0.060036059468984604,
0.11092700064182281,
-0.011971869505941868,
0.02993376925587654,
-0.04032866656780243,
0.09329567849636078,
0.006339072249829769,
-0.005533475428819656,
0.07969576120376587,
-0.06563658267259598,
-0.06065419316291809,
-0.022584671154618263,
-0.03767089173197746,
0.06219024956226349,
0.0067240893840789795,
-0.021382654085755348,
-0.035114992409944534,
-0.04035127907991409,
0.018896479159593582,
-0.007461540400981903,
0.10115329176187515,
-0.009279859252274036,
-0.036465685814619064,
-0.011986886151134968,
0.04468121752142906,
0.07413279265165329,
0.04602459818124771,
-0.08064460009336472,
-0.008804150857031345,
0.02038802020251751,
-0.009290597401559353,
0.05353211984038353,
0.012074853293597698,
0.14372684061527252,
-0.022886138409376144,
0.05181766673922539,
-0.05706426501274109,
0.01367026288062334,
0.03165774419903755,
0.008346994407474995,
-0.05665263533592224,
0.009240074083209038,
0.004834678955376148,
-0.01868157461285591,
-0.06869352608919144,
-0.0413832925260067,
0.04547719657421112,
-0.005928539205342531,
-0.00036966241896152496,
-0.060513176023960114,
-0.03312418982386589,
0.0027979244478046894,
0.05168430879712105,
0.0723656415939331,
0.043649379163980484,
-0.0035679040011018515,
0.005442652851343155,
-0.0007099235663190484,
0.031810130923986435,
-0.04590574651956558,
-0.001609594444744289,
0.030757790431380272
] |
lysandre/tiny-tapas-random-wtq | 82ff80f61b524e1e9dfd55636bf471f1f4bb0045 | 2020-12-15T04:19:58.000Z | [
"pytorch",
"tapas",
"table-question-answering",
"transformers"
] | table-question-answering | false | lysandre | null | lysandre/tiny-tapas-random-wtq | 9,078 | null | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
TurkuNLP/eccobert-base-cased-v1 | 800ade528925e578acfbec3668da3d3ad2dfaee1 | 2022-04-13T16:57:18.000Z | [
"pytorch",
"bert",
"pretraining",
"en",
"transformers"
] | null | false | TurkuNLP | null | TurkuNLP/eccobert-base-cased-v1 | 9,071 | null | transformers | ---
language: en
---
# ECCO-BERT base model (cased)
A pretrained BERT model trained exclusively on the ECCO (Eighteenth Century Collections Online) dataset of digitized documents published during the 18th century in the United Kingdom. The model is equivalent in size to [bert-base-cased](https://huggingface.co/bert-base-cased). The model is intended for fine-tuning on various tasks that use the ECCO dataset.
Documentation in progress... | [
-0.10352429002523422,
-0.018954241648316383,
0.028460972011089325,
-0.025235461071133614,
0.016557637602090836,
0.04320986568927765,
-0.05902103707194328,
0.07830803841352463,
0.017404230311512947,
-0.012726498767733574,
0.03842492029070854,
0.05259536951780319,
0.039429906755685806,
0.01702847145497799,
-0.023612694814801216,
-0.006315216887742281,
0.03250756859779358,
-0.021896079182624817,
-0.024666009470820427,
0.013314256444573402,
0.01703372783958912,
0.09351405501365662,
0.03791426867246628,
-0.04641852155327797,
-0.004667106084525585,
-0.04480611905455589,
0.007402009330689907,
-0.07792715728282928,
0.037269432097673416,
0.013677825219929218,
0.05196284502744675,
0.04244154319167137,
0.09872747212648392,
0.04320117086172104,
0.035343676805496216,
0.01026932243257761,
0.04397578909993172,
-0.06003423407673836,
-0.004356461111456156,
0.07401087880134583,
-0.020434632897377014,
0.006948524154722691,
0.003903511678799987,
-0.0031507001258432865,
0.07076042890548706,
-0.01895737461745739,
-0.07789637893438339,
0.027758322656154633,
-0.0489063635468483,
-0.008891726844012737,
0.014659741893410683,
-0.049810804426670074,
0.023271610960364342,
0.07688284665346146,
-0.003519859630614519,
0.03352959081530571,
0.01711159758269787,
0.008217704482376575,
-0.014799738302826881,
-0.0951385349035263,
-0.04603690281510353,
-0.04142538830637932,
0.0067474814131855965,
-0.020448382943868637,
-0.02398775890469551,
0.064177006483078,
-0.04507778212428093,
-0.004120505414903164,
-0.04037564992904663,
-0.04091327637434006,
-0.018192240968346596,
0.024378500878810883,
0.011837790720164776,
0.07266336679458618,
-0.008243284188210964,
-0.07508331537246704,
0.07758088409900665,
-0.08791005611419678,
0.04404274746775627,
-0.04376960173249245,
-0.0166476983577013,
0.01734853908419609,
0.028928114101290703,
-0.023372339084744453,
-0.008659536950290203,
-0.0461585596203804,
0.10077564418315887,
-0.034834086894989014,
-0.025654802098870277,
-0.006036390084773302,
0.0006470188964158297,
-0.10284966230392456,
0.03394370153546333,
-0.012652868404984474,
-0.06071963533759117,
-0.007753634359687567,
0.0597853884100914,
0.0717448815703392,
0.008000139147043228,
0.023168491199612617,
0.03859874978661537,
0.12184729427099228,
0.09071460366249084,
-0.046402107924222946,
0.05239715427160263,
0.01727156899869442,
0.020852088928222656,
0.04580654203891754,
0.06545358151197433,
-0.11936834454536438,
-0.02359594963490963,
-0.051627546548843384,
-0.09451398998498917,
-0.08023303747177124,
-0.0006388250621967018,
-0.09291303902864456,
-0.02942836470901966,
0.009089004248380661,
0.030117066577076912,
0.024608401581645012,
0.10351728647947311,
0.006690111011266708,
0.026791175827383995,
0.041522663086652756,
-0.06753214448690414,
0.011782337911427021,
-0.027450989931821823,
1.0120441572278524e-33,
0.04116028547286987,
-0.05094335600733757,
-0.039012908935546875,
-0.0018830447224900126,
-0.0040317801758646965,
0.021555695682764053,
-0.057952631264925,
0.061481598764657974,
-0.06525995582342148,
-0.059686049818992615,
-0.05131584405899048,
0.03744044154882431,
-0.07509264349937439,
0.06555406004190445,
-0.04051544517278671,
0.02317401021718979,
-0.08634889870882034,
0.07681736350059509,
0.0650971308350563,
-0.018039677292108536,
0.07165278494358063,
0.03425699099898338,
0.026978708803653717,
-0.019246472045779228,
0.001701607834547758,
0.04248804971575737,
0.04341139271855354,
-0.02377036027610302,
0.044050026684999466,
0.02588759735226631,
-0.05479244515299797,
0.043355729430913925,
-0.08519023656845093,
0.01796003058552742,
-0.027522780001163483,
0.08132456243038177,
0.018033606931567192,
-0.03870099410414696,
0.07206256687641144,
-0.059726715087890625,
0.024048756808042526,
0.028890058398246765,
0.05654067173600197,
-0.0625108927488327,
-0.07053926587104797,
0.00571043835952878,
-0.023440377786755562,
-0.022650176659226418,
0.06894742697477341,
-0.02609012834727764,
0.02400183118879795,
-0.03959735110402107,
-0.05937910079956055,
-0.011880808509886265,
0.02757849730551243,
-0.04196283593773842,
-0.022585509344935417,
0.03570855036377907,
0.047754403203725815,
0.0708531066775322,
0.033859364688396454,
0.06687363237142563,
0.0548592284321785,
0.08625981211662292,
0.003054605796933174,
-0.045460667461156845,
-0.012420423328876495,
-0.06142915412783623,
-0.015479915775358677,
-0.0028098479378968477,
-0.03739842027425766,
0.015926029533147812,
0.06456781178712845,
0.06535299867391586,
0.01084722951054573,
-0.07788858562707901,
0.061461254954338074,
-0.07900851219892502,
-0.09863604605197906,
-0.021042196080088615,
-0.05031842365860939,
-0.0015631212154403329,
-0.07732073217630386,
-0.03707811236381531,
-0.02564232423901558,
0.028357980772852898,
-0.01121372077614069,
-0.046251360327005386,
-0.025853188708424568,
0.011972755193710327,
0.006336475256830454,
-0.0547851026058197,
-0.029402777552604675,
0.050860535353422165,
-0.002577308565378189,
-1.8187564510029216e-33,
-0.03772665187716484,
0.002087415661662817,
-0.08581971377134323,
0.026865975931286812,
-0.08622366935014725,
-0.052301257848739624,
0.07470051199197769,
0.1960221529006958,
-0.02181398682296276,
-0.03061729110777378,
0.011038471944630146,
-0.08960147202014923,
-0.017376814037561417,
-0.04250796511769295,
0.05882149934768677,
0.03550823777914047,
-0.08037589490413666,
-0.09139349311590195,
-0.03739997372031212,
0.034845802932977676,
-0.00027902101282961667,
-0.12794813513755798,
-0.0925266295671463,
0.057080335915088654,
0.0548064187169075,
0.07410072535276413,
-0.06685866415500641,
-0.055501747876405716,
0.004593648947775364,
0.0005988873308524489,
-0.10040485113859177,
-0.01776432991027832,
-0.040353015065193176,
0.09790883213281631,
-0.14126832783222198,
0.058258797973394394,
0.0484839528799057,
-0.024298645555973053,
-0.01015369314700365,
0.015827003866434097,
-0.03386588394641876,
0.03364207223057747,
-0.05191534385085106,
0.08390461653470993,
0.047330666333436966,
0.009842571802437305,
-0.0704590305685997,
0.016371026635169983,
0.07398673892021179,
-0.07933206111192703,
0.018489783629775047,
0.04820266366004944,
-0.007037026807665825,
0.005473314318805933,
-0.06739122420549393,
-0.05678434669971466,
0.016421323642134666,
-0.03563961386680603,
-0.020920300856232643,
0.03224434703588486,
0.024449653923511505,
-0.03229295089840889,
0.020624978467822075,
0.0056708804331719875,
-0.014101512730121613,
-0.11263435333967209,
-0.06493323296308517,
0.025443434715270996,
-0.06388752162456512,
0.0055684894323349,
0.044676341116428375,
-0.027100902050733566,
0.04873203858733177,
0.01224563643336296,
-0.012608484365046024,
-0.02911003865301609,
0.006765053607523441,
-0.03683638572692871,
-0.011331646703183651,
0.01964701898396015,
-0.009019186720252037,
-0.00524591701105237,
0.02052357792854309,
0.08569998294115067,
-0.008911557495594025,
0.08230241388082504,
0.07118763029575348,
0.019883273169398308,
-0.07025530189275742,
0.040343835949897766,
-0.061890508979558945,
0.022456225007772446,
0.015215909108519554,
0.08726684004068375,
0.0032621354330331087,
-4.248004259466143e-8,
-0.07409417629241943,
-0.0030611762776970863,
0.011816108599305153,
-0.02174323797225952,
0.028291158378124237,
-0.03597312420606613,
-0.021995261311531067,
0.07193558663129807,
-0.0017670923843979836,
-0.03352080285549164,
-0.03346583619713783,
0.07364422082901001,
-0.07795943319797516,
-0.012433776631951332,
0.0032447243575006723,
0.07909167557954788,
0.003332460531964898,
0.05905552953481674,
0.013178231194615364,
0.09084068238735199,
0.028958642855286598,
0.045456282794475555,
-0.022078415378928185,
-0.06910846382379532,
0.007329597603529692,
-0.03792790696024895,
0.05629834905266762,
0.1275840401649475,
-0.04793894663453102,
-0.0013098119525238872,
-0.056984640657901764,
0.05292271822690964,
-0.11143125593662262,
-0.03421581909060478,
0.0830618366599083,
0.08834271878004074,
-0.021481432020664215,
-0.021003657951951027,
-0.06988827139139175,
-0.0034579241182655096,
0.04151352494955063,
-0.007675663568079472,
-0.08031516522169113,
-0.0013906561071053147,
0.11178906261920929,
-0.011032970622181892,
-0.007752608973532915,
-0.022672032937407494,
0.016542715951800346,
0.05811988189816475,
0.027904020622372627,
-0.07209783792495728,
0.006477083079516888,
0.038938283920288086,
-0.059439606964588165,
0.04961155727505684,
-0.002004074165597558,
-0.033930085599422455,
0.02224115841090679,
-0.008417699486017227,
0.006048334762454033,
0.05238031595945358,
0.04425404965877533,
0.10105039924383163
] |
abjbpi/Dwight_Schrute | 451aab582fe08f5210a58859f9ec1c79278e341b | 2021-06-04T11:43:31.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | abjbpi | null | abjbpi/Dwight_Schrute | 9,070 | 2 | transformers | ---
tags:
- conversational
---
# My Awesome Model | [
-0.05090106651186943,
-0.031366977840662,
0.03581665828824043,
-0.0054056984372437,
0.08076965808868408,
-0.04372682794928551,
0.1371273398399353,
0.04686865955591202,
0.07841186225414276,
-0.04006827622652054,
0.029963944107294083,
-0.012565406039357185,
0.036244455724954605,
0.009963933378458023,
-0.039041824638843536,
0.041623249650001526,
0.014348188415169716,
-0.05568447336554527,
-0.07908384501934052,
0.04985930025577545,
-0.024708891287446022,
0.06136726588010788,
0.02305777370929718,
0.03187232092022896,
-0.025241436436772346,
0.052442390471696854,
-0.04537186771631241,
0.042892225086688995,
0.035982418805360794,
-0.05908246338367462,
-0.03677479922771454,
0.0823124423623085,
0.07599936425685883,
0.06003808602690697,
-0.007828108966350555,
-0.022685443982481956,
0.062002647668123245,
-0.01731053926050663,
0.04224047064781189,
-0.042645879089832306,
-0.042309775948524475,
-0.06501581519842148,
-0.05416039749979973,
0.008959675207734108,
0.025023961439728737,
-0.047416966408491135,
-0.045713312923908234,
-0.03602231666445732,
-0.05448457598686218,
0.028215525671839714,
-0.11340142786502838,
-0.09726736694574356,
-0.005307946819812059,
0.07291919738054276,
0.0011562320869415998,
0.08138564229011536,
-0.056777920573949814,
-0.14755024015903473,
0.017829654738307,
0.042331673204898834,
-0.007883528247475624,
0.015210023149847984,
-0.0465548150241375,
0.06283816695213318,
-0.02850412204861641,
0.011164055205881596,
-0.0909573957324028,
0.05635131895542145,
-0.0784955695271492,
0.11919571459293365,
0.039566099643707275,
-0.010491259396076202,
0.06072143092751503,
0.010534262284636497,
0.03941850736737251,
0.020460378378629684,
0.01201328169554472,
-0.036615174263715744,
0.047589585185050964,
0.041880011558532715,
-0.0423911027610302,
-0.12415754795074463,
-0.0178165715187788,
-0.07575485110282898,
-0.011541062965989113,
-0.06666063517332077,
-0.014633537270128727,
-0.03656398504972458,
-0.022767268121242523,
-0.0006290049059316516,
-0.05804314836859703,
-0.024403218179941177,
0.01748640462756157,
0.007189290598034859,
-0.05688001960515976,
0.03201739490032196,
0.016381550580263138,
-0.06272377073764801,
-0.05233392491936684,
0.12503185868263245,
-0.015755128115415573,
0.0417540967464447,
0.03470697999000549,
-0.038441117852926254,
-0.03530082851648331,
-0.03092080168426037,
-0.01916990615427494,
0.07731841504573822,
0.019840005785226822,
-0.06203543394804001,
-0.005670442245900631,
-0.01793004386126995,
-0.00026420739595778286,
-0.025612128898501396,
0.08910390734672546,
-0.08335672318935394,
0.04098793864250183,
0.00003558707612683065,
0.03989935293793678,
-0.037843793630599976,
-0.025859786197543144,
0.04540199786424637,
-0.017805110663175583,
-0.027855155989527702,
-0.016179407015442848,
0.009584194049239159,
-0.06639999896287918,
-4.478864534741249e-33,
0.11222975701093674,
0.06859760731458664,
0.06865804642438889,
0.10353326797485352,
0.05126076564192772,
0.041043270379304886,
-0.0769258663058281,
0.00011796884064096957,
-0.018120763823390007,
0.022435268387198448,
0.024414265528321266,
0.029571479186415672,
-0.031359825283288956,
0.022635547444224358,
0.005277079530060291,
-0.03892066702246666,
-0.06124343350529671,
-0.074563167989254,
-0.047082722187042236,
-0.006601410452276468,
0.005809285677969456,
-0.011806229129433632,
0.008817244321107864,
0.045550331473350525,
0.03609937056899071,
0.0628429427742958,
0.08441631495952606,
-0.07260341942310333,
-0.04593171551823616,
0.06081974878907204,
-0.02747199311852455,
-0.0063775693997740746,
0.004344668239355087,
0.037254698574543,
-0.043208200484514236,
0.027637843042612076,
-0.04124289005994797,
-0.04982233792543411,
0.01631910167634487,
-0.08025228977203369,
0.015886107459664345,
-0.026147479191422462,
-0.07082098722457886,
-0.057068999856710434,
-0.018375905230641365,
0.07975850254297256,
0.06380768865346909,
0.04807998985052109,
0.046053748577833176,
-0.008151701651513577,
-0.03738392889499664,
-0.026806335896253586,
-0.002303558634594083,
0.028527168557047844,
-0.05566997826099396,
-0.05916515365242958,
-0.07913040369749069,
0.010040078312158585,
0.007212954107671976,
-0.027216563001275063,
0.007182564586400986,
-0.023558219894766808,
0.03829099237918854,
-0.1337491273880005,
0.10252182185649872,
-0.013212723657488823,
-0.03376084566116333,
-0.012195839546620846,
0.019834956154227257,
-0.0031055838335305452,
-0.04869721829891205,
0.039330776780843735,
-0.01350850984454155,
0.0303358044475317,
0.008187275379896164,
0.008777179755270481,
-0.066440649330616,
-0.028343193233013153,
0.02277507446706295,
0.05544881150126457,
-0.06433303654193878,
-0.03979376703500748,
-0.03870479762554169,
0.018391091376543045,
-0.007904008962213993,
-0.04048888757824898,
0.010747126303613186,
-0.1100461557507515,
0.08085237443447113,
0.027630235999822617,
0.017611531540751457,
-0.011773657985031605,
-0.03050999902188778,
-0.001084225601516664,
-0.09993167221546173,
2.3631985982007646e-33,
0.07410631328821182,
-0.021655485033988953,
-0.03430446982383728,
0.08957358449697495,
0.0658988431096077,
-0.09670625627040863,
0.03356300666928291,
0.12644141912460327,
-0.007287300191819668,
0.009980403818190098,
0.019260842353105545,
0.017083946615457535,
-0.04549262300133705,
-0.0273654256016016,
0.12685054540634155,
-0.0022603862453252077,
0.03329843282699585,
-0.12125260382890701,
0.010285534895956516,
0.011052831076085567,
0.021403569728136063,
0.02825598232448101,
-0.11815153062343597,
0.029007932171225548,
0.007862820290029049,
0.038198284804821014,
0.009895049035549164,
0.0787750631570816,
0.1255485862493515,
-0.012331538833677769,
-0.041844483464956284,
0.04419497027993202,
0.009287770837545395,
-0.0348893441259861,
0.008455603383481503,
0.014187312684953213,
-0.03560749441385269,
-0.02111499384045601,
0.022057252004742622,
0.053258296102285385,
-0.01398906484246254,
0.00464602978900075,
-0.0208336990326643,
0.05951869487762451,
0.0027540153823792934,
-0.05181148275732994,
-0.002780700335279107,
-0.08395428210496902,
-0.05995841324329376,
-0.008431575261056423,
0.015148011036217213,
-0.018860861659049988,
-0.05646621063351631,
-0.09933912009000778,
-0.049692075699567795,
-0.03389864042401314,
0.08351656794548035,
-0.0013963409001007676,
-0.011192643083631992,
0.01275844406336546,
-0.06585824489593506,
-0.042186468839645386,
0.03605508804321289,
-0.01279937382787466,
0.0062263826839625835,
-0.08892334997653961,
-0.00842227041721344,
-0.044293295592069626,
-0.05458396300673485,
-0.02853185124695301,
0.06938458979129791,
0.0797097310423851,
-0.09960118681192398,
0.069974884390831,
0.030420484021306038,
-0.045343056321144104,
0.02778884395956993,
-0.005752933211624622,
0.047690499573946,
-0.055205538868904114,
-0.059457264840602875,
-0.026828406378626823,
-0.00685330294072628,
0.04476504772901535,
0.04690265282988548,
-0.028691265732049942,
-0.00420738710090518,
0.05791653320193291,
-0.0641462653875351,
-0.04161105677485466,
0.011222575791180134,
0.029472360387444496,
-0.006106182001531124,
0.09066887944936752,
-0.02926107868552208,
-2.4387945884996043e-8,
-0.07912608981132507,
-0.0193485077470541,
0.02513335645198822,
0.06632032245397568,
-0.0006380337290465832,
0.042135242372751236,
0.06511452794075012,
0.004173976369202137,
-0.012236827984452248,
-0.042280975729227066,
0.01634378731250763,
0.07965334504842758,
-0.023353738710284233,
0.0734296441078186,
0.02384823188185692,
0.011830461211502552,
-0.051046840846538544,
0.07105594873428345,
0.00836571492254734,
-0.06696010380983353,
0.025958934798836708,
0.03763088583946228,
-0.07969045639038086,
0.02339162677526474,
0.09492308646440506,
-0.0015179375186562538,
-0.042156774550676346,
0.0774446502327919,
-0.032096054404973984,
0.05440954491496086,
0.06271935254335403,
0.04717527702450752,
-0.06409522145986557,
0.05443163216114044,
-0.06054919585585594,
-0.005295728333294392,
-0.0462062731385231,
-0.04333166405558586,
0.021518342196941376,
-0.018056262284517288,
0.07318705320358276,
0.07725220173597336,
-0.08732577413320541,
0.004433119669556618,
0.057371124625205994,
0.001022679847665131,
0.03494297340512276,
-0.0875731110572815,
-0.006969284266233444,
-0.012489929795265198,
-0.055213987827301025,
-0.056746624410152435,
0.019027967005968094,
0.016803929582238197,
-0.02308109775185585,
0.013455736450850964,
0.06283722817897797,
0.0011627678759396076,
0.028021547943353653,
0.04511001333594322,
0.14455872774124146,
0.04447929561138153,
-0.0382804274559021,
-0.03517691791057587
] |
DeepChem/ChemBERTa-77M-MLM | ed8a5374f2024ec8da53760af91a33fb8f6a15ff | 2022-01-20T18:02:38.000Z | [
"pytorch",
"roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | DeepChem | null | DeepChem/ChemBERTa-77M-MLM | 9,026 | 1 | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
zenham/khemx_m_e4_16h | 08ed457ad68559c2c845dbb6112e84e6cdb00e6f | 2022-03-08T02:50:45.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | zenham | null | zenham/khemx_m_e4_16h | 9,015 | null | transformers | ---
tags:
- conversational
---
#khemx m e4 16h 0k DialoGPT Model | [
0.0002064208674710244,
0.02158665470778942,
0.029150791466236115,
-0.03783119469881058,
-0.03258444741368294,
-0.03732001781463623,
0.09779731184244156,
0.010959630832076073,
0.05743959918618202,
-0.007529596332460642,
0.017540758475661278,
-0.08732490241527557,
0.0003585227532312274,
0.015657750889658928,
-0.025775665417313576,
0.04306869953870773,
0.03044929727911949,
-0.06530959159135818,
-0.07394532859325409,
0.04495558515191078,
-0.014497791416943073,
0.01344100758433342,
0.04297159984707832,
0.020696746185421944,
-0.006976488046348095,
0.07518453896045685,
-0.022836394608020782,
0.04303498566150665,
0.0672161653637886,
-0.0478721484541893,
0.06231240928173065,
0.11716480553150177,
0.12038704007863998,
0.008877836167812347,
-0.04702315106987953,
-0.0032767835073173046,
0.01732601970434189,
-0.06795544177293777,
-0.06536425650119781,
0.005499216727912426,
-0.047661151736974716,
0.022281711921095848,
-0.03656676411628723,
0.003126336494460702,
0.05022261664271355,
-0.019843610003590584,
-0.07024654746055603,
-0.03897608444094658,
-0.016669992357492447,
0.014064456336200237,
-0.04201669618487358,
-0.010943366214632988,
-0.00047278395504690707,
0.13143306970596313,
-0.023715505376458168,
0.052668247371912,
-0.1161709874868393,
-0.015836076810956,
0.09123722463846207,
0.05173766613006592,
-0.003813318209722638,
-0.038963962346315384,
-0.0982591062784195,
0.0644681379199028,
-0.009532401338219643,
0.07918491214513779,
-0.0319279208779335,
0.0003296120266895741,
-0.01042536273598671,
0.062030255794525146,
0.0015451951185241342,
-0.002034230623394251,
0.0023847976699471474,
-0.043460745364427567,
-0.022898897528648376,
0.021853221580386162,
-0.019636422395706177,
-0.06639227271080017,
0.06068415939807892,
-0.0317111611366272,
-0.00035852959263138473,
-0.08650871366262436,
-0.05177707597613335,
-0.042891453951597214,
0.02552136778831482,
-0.026677051559090614,
0.0024949205107986927,
-0.024446403607726097,
-0.0114822369068861,
-0.004364310298115015,
-0.05080217868089676,
-0.06962864100933075,
0.0535937063395977,
0.007544362917542458,
-0.04562553018331528,
0.07549881190061569,
-0.005747883580625057,
-0.04609787091612816,
-0.020862197503447533,
0.08797658979892731,
-0.004356101620942354,
0.07028332352638245,
0.02460375986993313,
-0.012283559888601303,
-0.032464317977428436,
0.0009500533924438059,
0.009204649366438389,
0.05149442330002785,
-0.05403529480099678,
0.026200518012046814,
-0.03489936888217926,
-0.017210612073540688,
0.0067062960006296635,
-0.047157932072877884,
0.14105670154094696,
-0.07548461854457855,
0.045813560485839844,
-0.06569820642471313,
0.04949066787958145,
0.017818382009863853,
-0.007382379379123449,
-0.0674174576997757,
-0.1105203926563263,
-0.02694881521165371,
-0.005182359367609024,
0.00983578059822321,
-0.02413048967719078,
3.138574324799323e-33,
0.10407546907663345,
0.03321065381169319,
0.04645238071680069,
0.0464569516479969,
0.05666492506861687,
-0.003795967437326908,
-0.061252180486917496,
-0.020880259573459625,
-0.055077776312828064,
-0.01344273705035448,
-0.03903752565383911,
-0.06050519272685051,
-0.04359672963619232,
0.015389219857752323,
0.009310735389590263,
-0.040172919631004333,
-0.03146188706159592,
0.018240464851260185,
-0.008079597726464272,
-0.014429884031414986,
0.051874641329050064,
0.02322700060904026,
-0.004704087041318417,
0.07912200689315796,
0.10884730517864227,
0.10427689552307129,
0.06519246846437454,
-0.06412617117166519,
-0.022958669811487198,
0.04715961590409279,
-0.04187864065170288,
-0.00003702492540469393,
-0.07383173704147339,
-0.006959978491067886,
-0.04919682815670967,
0.01514239888638258,
-0.06046531721949577,
-0.057518139481544495,
0.022095175459980965,
-0.08877944201231003,
-0.0947592705488205,
-0.03599126636981964,
-0.0384930856525898,
-0.04610062763094902,
-0.04559383913874626,
0.02738390862941742,
-0.03483477979898453,
0.03303628787398338,
0.0390746109187603,
0.018688006326556206,
-0.05965737998485565,
0.03184247761964798,
-0.032541435211896896,
-0.008105415850877762,
-0.015560978092253208,
-0.047035831958055496,
0.010767925530672073,
0.008649115450680256,
0.019003456458449364,
0.012414781376719475,
-0.012363719753921032,
0.04138852655887604,
0.02451975643634796,
-0.001461618347093463,
0.12391110509634018,
0.023101160302758217,
-0.05107361078262329,
-0.03692593425512314,
-0.0069415816105902195,
-0.027565300464630127,
-0.058630287647247314,
0.002622041152790189,
0.05253170058131218,
0.0677044540643692,
0.010499939322471619,
0.006537468172609806,
-0.03404665365815163,
-0.09916108101606369,
0.007085166871547699,
0.13489410281181335,
-0.027551772072911263,
-0.06501210480928421,
-0.0623047798871994,
-0.045634642243385315,
0.016804737970232964,
-0.09546791017055511,
0.04608948901295662,
-0.07055554538965225,
0.014334412291646004,
0.055948954075574875,
0.005452020559459925,
0.011917022056877613,
-0.06759137660264969,
-0.007821893319487572,
-0.10863004624843597,
-4.106549106979352e-33,
0.04189217463135719,
0.02757776342332363,
-0.07704044878482819,
0.12191909551620483,
0.002416769042611122,
0.039685241878032684,
0.05064162611961365,
0.17483751475811005,
0.006613290403038263,
0.0008381454390473664,
0.07477617263793945,
0.046375006437301636,
0.03572007268667221,
-0.010034590028226376,
0.13329845666885376,
0.034984733909368515,
0.004471984226256609,
-0.04458460211753845,
0.016891133040189743,
-0.011503402143716812,
0.03672471642494202,
0.0031930026598274708,
-0.16021443903446198,
0.04930230230093002,
-0.01952400803565979,
-0.02910277061164379,
-0.027541780844330788,
0.05237367004156113,
0.07168538123369217,
-0.05259591341018677,
-0.037395231425762177,
-0.025252677500247955,
-0.04055282473564148,
0.02145359292626381,
0.03618142753839493,
0.010906319133937359,
0.055028755217790604,
0.008912638761103153,
0.0288681797683239,
0.023560503497719765,
0.04422561451792717,
0.016817599534988403,
0.030939685180783272,
0.03064609132707119,
-0.004322702065110207,
-0.06480936706066132,
-0.055868908762931824,
-0.03039880469441414,
0.0008322929497808218,
-0.08295418322086334,
0.06919722259044647,
0.008898844942450523,
-0.035127945244312286,
-0.017331231385469437,
-0.026338716968894005,
-0.016914265230298042,
-0.023824017494916916,
-0.04113631322979927,
0.016986487433314323,
-0.012880311347544193,
0.0005304852966219187,
-0.13687925040721893,
0.08220445364713669,
-0.056538280099630356,
0.009916843846440315,
-0.06571072340011597,
-0.02747516706585884,
-0.010122769512236118,
-0.02247646078467369,
-0.026870591565966606,
0.0772288590669632,
-0.02924381196498871,
0.01364413183182478,
0.007190500386059284,
0.05658167600631714,
-0.04381643235683441,
-0.026181109249591827,
-0.015042643994092941,
0.03286796063184738,
-0.08597713708877563,
0.021845169365406036,
0.05412086471915245,
0.06885421276092529,
0.02741442434489727,
0.031389009207487106,
0.01686706952750683,
0.010376951657235622,
0.07997598499059677,
0.005961724556982517,
0.0017564942827448249,
-0.013226266019046307,
0.018724234774708748,
0.011493675410747528,
0.11891087144613266,
-0.027573760598897934,
-3.223742339741875e-8,
-0.052799053490161896,
-0.07011216133832932,
0.01240133959800005,
0.005351088475435972,
0.03947984427213669,
-0.029414113610982895,
0.04720229655504227,
0.003347372403368354,
0.005102965980768204,
-0.04844045639038086,
0.14966417849063873,
0.0345420204102993,
-0.05919375643134117,
0.06042274832725525,
0.016870034858584404,
-0.003497687866911292,
-0.09803710132837296,
0.03940334916114807,
-0.020160458981990814,
-0.05626163259148598,
0.10123879462480545,
0.006282721180468798,
-0.01565728709101677,
0.06413035839796066,
0.06544794142246246,
0.038781750947237015,
-0.04719196632504463,
0.10224653035402298,
-0.053240276873111725,
0.0006823149742558599,
0.012107771821320057,
0.030277464538812637,
-0.09075614809989929,
-0.016258208081126213,
-0.04907893389463425,
0.04071187600493431,
-0.059183623641729355,
0.02354223094880581,
-0.008156906813383102,
-0.04309483990073204,
0.033541034907102585,
-0.08419087529182434,
-0.10307096689939499,
0.006102028302848339,
0.05304235219955444,
0.04307648167014122,
-0.04581437632441521,
-0.11463766545057297,
-0.023172834888100624,
-0.04350610449910164,
-0.06690652668476105,
0.025924861431121826,
0.017098117619752884,
-0.018459182232618332,
-0.016793852671980858,
-0.010020386427640915,
0.000466730329208076,
-0.0038162937853485346,
0.07644699513912201,
-0.03388737887144089,
0.0596294179558754,
0.02660648711025715,
-0.06130419299006462,
0.0068640559911727905
] |
kha-white/manga-ocr-base | aa6573bd10b0d446cbf622e29c3e084914df9741 | 2022-06-22T15:34:05.000Z | [
"pytorch",
"vision-encoder-decoder",
"ja",
"dataset:manga109s",
"transformers",
"image-to-text",
"license:apache-2.0"
] | image-to-text | false | kha-white | null | kha-white/manga-ocr-base | 8,969 | 5 | transformers | ---
language: ja
tags:
- image-to-text
license: apache-2.0
datasets:
- manga109s
---
# Manga OCR
Optical character recognition for Japanese text, with the main focus being Japanese manga.
It uses [Vision Encoder Decoder](https://huggingface.co/docs/transformers/model_doc/vision-encoder-decoder) framework.
Manga OCR can be used as a general purpose printed Japanese OCR, but its main goal was to provide a high quality
text recognition, robust against various scenarios specific to manga:
- both vertical and horizontal text
- text with furigana
- text overlaid on images
- wide variety of fonts and font styles
- low quality images
Code is available [here](https://github.com/kha-white/manga_ocr).
| [
-0.06438907980918884,
-0.009474285878241062,
-0.044761981815099716,
-0.06921251863241196,
0.04511384665966034,
-0.0027452672366052866,
-0.010576562955975533,
0.048744235187768936,
-0.022976083680987358,
-0.029715849086642265,
0.08420126140117645,
0.048457033932209015,
0.07192529737949371,
0.059637147933244705,
0.010899736545979977,
-0.0010632583871483803,
0.05115274712443352,
0.03660130873322487,
-0.003847455373033881,
-0.03340531885623932,
0.007098672445863485,
-0.03169695660471916,
0.1047198697924614,
-0.08706188201904297,
0.019213790073990822,
0.044901058077812195,
-0.010411371476948261,
-0.005085770972073078,
0.003847752930596471,
-0.06917256861925125,
-0.012546299956738949,
-0.003907210659235716,
0.175027996301651,
0.01574747823178768,
-0.0029766266234219074,
0.001583568286150694,
0.06301338225603104,
0.01707909256219864,
-0.07206447422504425,
-0.009828867390751839,
-0.0525747686624527,
0.039186444133520126,
-0.02423352189362049,
-0.013553104363381863,
0.11932089924812317,
-0.0011387349804863334,
0.010561787523329258,
-0.04627209156751633,
-0.004244840703904629,
-0.03679971396923065,
-0.07550787925720215,
-0.004884225316345692,
-0.038833096623420715,
0.06725169718265533,
-0.04162414371967316,
0.0043863654136657715,
0.031150858849287033,
-0.09721402823925018,
0.0027521017473191023,
0.027601735666394234,
-0.012008888646960258,
0.0357210747897625,
0.00025522225769236684,
0.049805689603090286,
0.014018930494785309,
-0.015205347910523415,
0.0550834946334362,
0.004748089239001274,
-0.015256740152835846,
-0.06285084038972855,
-0.015982406213879585,
0.03357767313718796,
0.08922237902879715,
0.019108319655060768,
-0.060915257781744,
0.003133783582597971,
0.022317958995699883,
-0.05016465112566948,
0.024750949814915657,
-0.048684779554605484,
-0.016766313463449478,
0.012704149819910526,
0.09492533653974533,
0.04099227115511894,
-0.006056074984371662,
0.04991864785552025,
-0.03949248790740967,
-0.03985099866986275,
0.018737424165010452,
0.02852911315858364,
-0.0002637375146150589,
-0.02300264686346054,
0.03972776606678963,
0.00019701967539731413,
-0.10893360525369644,
-0.0249882061034441,
0.06383784860372543,
0.04237376153469086,
-0.03909127041697502,
0.08461195230484009,
0.013797275722026825,
-0.08920940011739731,
0.0606757216155529,
-0.07285470515489578,
-0.03830596059560776,
-0.023802893236279488,
0.09484557062387466,
-0.035685762763023376,
0.08978889137506485,
-0.03930442035198212,
0.07243366539478302,
-0.10182208567857742,
-0.07771491259336472,
-0.07337923347949982,
-0.0016113846795633435,
-0.011070814915001392,
0.07958460599184036,
0.01243527140468359,
0.005895980633795261,
0.028168810531497,
-0.07732060551643372,
-0.029481053352355957,
-0.03135170042514801,
-0.043354831635951996,
0.02838447503745556,
0.0327795073390007,
-0.01590561307966709,
2.807159855632303e-33,
0.04287067800760269,
0.07728458195924759,
-0.037794630974531174,
-0.03400307521224022,
-0.07221241295337677,
-0.06576433032751083,
-0.08367427438497543,
-0.08842301368713379,
-0.06581184267997742,
-0.012103373184800148,
0.00948842242360115,
0.022321287542581558,
-0.09578342735767365,
0.10975932329893112,
0.05625664442777634,
-0.04679472744464874,
-0.027467863634228706,
-0.012098794803023338,
0.03452949970960617,
0.06519073247909546,
0.07831088453531265,
-0.07361464947462082,
0.08407440036535263,
0.0009485234040766954,
-0.035571563988924026,
0.07174710929393768,
0.04493150860071182,
-0.12935364246368408,
-0.006195325404405594,
0.04916280880570412,
0.015365103259682655,
0.01457423809915781,
0.046937406063079834,
0.012513021938502789,
-0.01288862805813551,
-0.0485926978290081,
-0.06763172149658203,
0.008466362953186035,
0.019104555249214172,
-0.016113413497805595,
0.015372103080153465,
-0.017108703032135963,
-0.0706741064786911,
-0.023336442187428474,
0.03037731908261776,
0.012926318682730198,
-0.005766748916357756,
-0.004503839649260044,
0.010869733057916164,
0.04897666722536087,
-0.06376336514949799,
-0.01701151765882969,
-0.05530404672026634,
0.002765826415270567,
0.0248655267059803,
-0.026387376710772514,
0.0106684984639287,
-0.04659322276711464,
-0.022671600803732872,
-0.00180801039095968,
-0.01721094734966755,
-0.0422954261302948,
0.030029430985450745,
0.02125713974237442,
0.04252248257398605,
-0.06348343938589096,
0.0046750633046031,
-0.07429327070713043,
-0.03696827217936516,
-0.011846689507365227,
-0.033712148666381836,
-0.02905014529824257,
0.026906108483672142,
0.005535934120416641,
-0.036331482231616974,
-0.021129954606294632,
0.000995100475847721,
0.007247642148286104,
-0.018687592819333076,
0.06278262287378311,
-0.051414523273706436,
-0.032379671931266785,
0.00852647889405489,
-0.08540526777505875,
-0.021142570301890373,
0.10280776023864746,
0.06425708532333374,
-0.05927674472332001,
0.021111387759447098,
0.03479812666773796,
0.043826837092638016,
0.075398288667202,
-0.002115860814228654,
-0.07659266144037247,
0.054659709334373474,
-2.0747208969074516e-33,
0.04924672469496727,
0.015341181308031082,
-0.053322914987802505,
0.021525150164961815,
-0.0497044138610363,
-0.014375579543411732,
-0.0047774892300367355,
0.10481999069452286,
-0.021294524893164635,
-0.0625702291727066,
-0.026618748903274536,
0.0063173286616802216,
-0.02032880112528801,
-0.0764048844575882,
0.026150990277528763,
-0.058956850320100784,
0.06163863092660904,
0.017160112038254738,
0.019157787784934044,
-0.004195963963866234,
0.02157599851489067,
-0.010446822270751,
-0.07427234202623367,
0.045797381550073624,
0.05516183748841286,
0.08384048938751221,
0.001787009765394032,
-0.003432624274864793,
-0.019962487742304802,
0.03190864250063896,
-0.049553342163562775,
0.007493089884519577,
0.018174612894654274,
0.04621128365397453,
-0.03544287756085396,
-0.031216610223054886,
0.009510007686913013,
0.010601524263620377,
-0.03624294325709343,
0.05998940393328667,
0.0819336324930191,
0.005218362435698509,
-0.023814544081687927,
-0.04276726394891739,
-0.09986820071935654,
-0.04261999577283859,
-0.1074969470500946,
0.05946916714310646,
0.06187015399336815,
-0.03671745955944061,
0.02744906395673752,
-0.04700472578406334,
-0.00843605026602745,
-0.039099082350730896,
-0.02882291004061699,
-0.05166299268603325,
-0.03785257413983345,
0.0053054289892315865,
-0.054064225405454636,
0.04998701065778732,
-0.014924796298146248,
-0.022802947089076042,
-0.004583675414323807,
0.0483211986720562,
-0.009352857246994972,
0.02138064056634903,
0.10177168250083923,
-0.04851258173584938,
-0.03076767548918724,
-0.02216023951768875,
0.05085268244147301,
-0.07334120571613312,
0.05687805265188217,
0.08313579112291336,
0.06736679375171661,
0.0134343970566988,
-0.005256423261016607,
0.06560751050710678,
-0.06106356531381607,
-0.030026976019144058,
-0.012497088871896267,
-0.02554217167198658,
-0.00724455714225769,
0.10713057965040207,
0.09478965401649475,
0.07860010117292404,
-0.08995170146226883,
-0.07010655850172043,
0.04653778299689293,
0.005274580791592598,
0.006167972460389137,
0.14091020822525024,
0.027290228754281998,
0.060104720294475555,
0.024650830775499344,
-4.151405974539557e-8,
-0.041614748537540436,
-0.1585395634174347,
-0.058610204607248306,
-0.07574420422315598,
-0.04827132076025009,
-0.02026551030576229,
0.011678664945065975,
-0.02587907761335373,
-0.00349776865914464,
-0.02965606562793255,
0.1241980642080307,
0.028346452862024307,
-0.03989255428314209,
0.004066880326718092,
0.03897823765873909,
0.007725787349045277,
0.10534290969371796,
0.11751290410757065,
-0.018288705497980118,
-0.01813931204378605,
0.02768842503428459,
-0.00026484078262001276,
0.01990498974919319,
-0.012306894175708294,
-0.08824346214532852,
0.0852774977684021,
-0.10636433959007263,
0.018420163542032242,
-0.02158583141863346,
-0.05036258324980736,
0.06344164907932281,
0.05713558942079544,
0.037811439484357834,
-0.053604606539011,
0.05297333002090454,
0.004860256798565388,
0.003245426109060645,
-0.06768254935741425,
-0.11727166920900345,
0.03422065079212189,
0.10823646932840347,
0.052518974989652634,
-0.024616828188300133,
-0.028250500559806824,
0.03279988095164299,
-0.01475862693041563,
0.09672277420759201,
-0.0691027119755745,
-0.027455594390630722,
0.005588442552834749,
0.0029115171637386084,
-0.013777640648186207,
0.0014108421746641397,
0.005581862758845091,
-0.07787097990512848,
-0.022110644727945328,
0.10045884549617767,
0.019526641815900803,
0.0377400703728199,
0.07207094132900238,
0.03764090687036514,
-0.04631633311510086,
-0.025512948632240295,
-0.03943847492337227
] |
Zixtrauce/BDBot4Epoch | 77357067c689ccb8c19220a32137eb8646bf87e5 | 2022-01-01T23:46:44.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | Zixtrauce | null | Zixtrauce/BDBot4Epoch | 8,905 | null | transformers | ---
tags:
- conversational
---
#BrandonBot4Epochs | [
-0.017745163291692734,
0.02695123851299286,
0.023420484736561775,
-0.05541969835758209,
0.06651896983385086,
-0.08757458627223969,
0.14189128577709198,
-0.040621206164360046,
0.04028312489390373,
-0.023804957047104836,
-0.020040513947606087,
-0.029352432116866112,
0.004563924390822649,
-0.07484574615955353,
0.01180338580161333,
0.0929059386253357,
0.00973955076187849,
0.013112176209688187,
-0.05700618028640747,
-0.008323540911078453,
-0.09517204761505127,
0.05017709732055664,
0.034682925790548325,
-0.006585797760635614,
0.05173677206039429,
0.03194808214902878,
-0.03980386257171631,
-0.020467940717935562,
0.03744623810052872,
-0.016308628022670746,
0.08111459016799927,
0.07660561054944992,
0.0015024547465145588,
0.05301652476191521,
0.0011312768328934908,
0.005476211663335562,
0.037971336394548416,
-0.0010216293158009648,
-0.0021221055649220943,
0.0007333022076636553,
-0.016121964901685715,
-0.028718138113617897,
-0.05385437607765198,
-0.0010955670149996877,
-0.07873162627220154,
-0.01622857339680195,
-0.12258631736040115,
-0.05950072035193443,
-0.010219177231192589,
0.06203924119472504,
-0.0836942046880722,
-0.03860419616103172,
-0.005555514711886644,
0.06241609901189804,
0.0006593441939912736,
0.03754789009690285,
-0.09007570147514343,
-0.06302198022603989,
0.07814599573612213,
0.09958280622959137,
0.021401647478342056,
-0.02449226938188076,
-0.0441698357462883,
0.02204388752579689,
-0.037623848766088486,
0.05075767636299133,
-0.05594170093536377,
-0.03677912801504135,
-0.018498675897717476,
0.11381582170724869,
0.038325872272253036,
0.03464054688811302,
0.02992357686161995,
0.022564416751265526,
-0.019468899816274643,
-0.013116995804011822,
-0.0175024326890707,
-0.02643771655857563,
0.008940446190536022,
-0.007521072402596474,
-0.04535150155425072,
-0.07120378315448761,
0.019890761002898216,
-0.04213448986411095,
-0.04814961925148964,
-0.05950281769037247,
0.0069297906011343,
-0.06481349468231201,
-0.01959066092967987,
0.05258603394031525,
-0.04954570159316063,
-0.07357330620288849,
0.019058743491768837,
0.03571636602282524,
-0.06694256514310837,
0.005526287015527487,
0.008644825778901577,
-0.05191991850733757,
-0.037453874945640564,
0.14933207631111145,
0.01895516738295555,
0.033422939479351044,
-0.012733264826238155,
-0.05558906868100166,
-0.0227934792637825,
-0.004286337178200483,
-0.0026297748554497957,
0.04300030693411827,
0.014524571597576141,
0.005098382011055946,
0.016001373529434204,
-0.008896325714886189,
0.03145924583077431,
-0.011588666588068008,
0.08639206737279892,
-0.047832027077674866,
0.06637881696224213,
0.017064230516552925,
0.06574312597513199,
0.043766822665929794,
0.04438574239611626,
0.056496940553188324,
-0.03269532695412636,
-0.0605919174849987,
0.0020137643441557884,
-0.017650539055466652,
-0.013457986526191235,
-2.0848235361688e-33,
0.058064933866262436,
0.03920789435505867,
0.09464847296476364,
0.11228983104228973,
-0.019988467916846275,
0.04922852665185928,
-0.0619407556951046,
-0.040346093475818634,
-0.02461542747914791,
-0.014223803766071796,
0.022742338478565216,
0.0091909971088171,
-0.05384659767150879,
0.04636142775416374,
0.020713407546281815,
-0.04869682341814041,
0.01196285244077444,
-0.02958187647163868,
0.013153621926903725,
0.008354682475328445,
-0.04026532545685768,
0.03926216438412666,
-0.018240077421069145,
0.06646116077899933,
0.013124671764671803,
0.032594818621873856,
0.0567425861954689,
-0.10056973248720169,
0.05087213218212128,
0.07150012254714966,
-0.0743168368935585,
0.016919873654842377,
-0.001899444847367704,
0.06415838748216629,
-0.02685350365936756,
0.059596948325634,
-0.022826332598924637,
-0.05778122693300247,
-0.02945132926106453,
-0.09856557101011276,
-0.0422171875834465,
-0.007909213192760944,
-0.10901208966970444,
-0.06483153998851776,
-0.0027565101627260447,
0.043458156287670135,
0.001565682701766491,
-0.03687474504113197,
0.044623564928770065,
-0.04497775807976723,
-0.029351385310292244,
0.06691493839025497,
0.0491672158241272,
-0.05653979256749153,
-0.04457419365644455,
-0.03816143050789833,
-0.05567033588886261,
-0.007080186158418655,
0.03999945893883705,
-0.04953997582197189,
0.0334535576403141,
0.024654120206832886,
0.01606566458940506,
-0.10245023667812347,
0.06924055516719818,
-0.05701541528105736,
0.01893586665391922,
-0.03433717042207718,
-0.023124659433960915,
-0.05659947916865349,
-0.0672788918018341,
0.06748342514038086,
0.060550935566425323,
-0.016500132158398628,
-0.042568009346723557,
0.05584464222192764,
-0.03967222943902016,
-0.00954853929579258,
-0.011066473089158535,
0.05969345197081566,
-0.07401588559150696,
-0.0807037353515625,
-0.04340830817818642,
-0.060328252613544464,
-0.07363373786211014,
-0.05507493391633034,
-0.0184086412191391,
-0.09958932548761368,
0.0668415054678917,
0.020871590822935104,
0.018832633271813393,
0.016646485775709152,
-0.09136262536048889,
-0.03634285554289818,
-0.08905787020921707,
-1.0033188667378816e-33,
0.03237828612327576,
0.004473614506423473,
-0.0546693280339241,
0.053068455308675766,
-0.0006086404900997877,
-0.013413741253316402,
0.05359457805752754,
0.13203947246074677,
0.000831498415209353,
0.013144448399543762,
-0.011780455708503723,
0.014812931418418884,
-0.06480295211076736,
-0.022234873846173286,
0.09919264167547226,
0.00788198783993721,
0.045272912830114365,
-0.07208139449357986,
0.04234788939356804,
0.015621763654053211,
0.035550784319639206,
0.07969052344560623,
-0.1150541603565216,
0.06582078337669373,
0.04798122122883797,
-0.01342671737074852,
0.06831257045269012,
-0.0021311251912266016,
0.016039203852415085,
-0.057446498423814774,
0.015698496252298355,
0.04151299223303795,
0.059798892587423325,
-0.04700896143913269,
0.0014624451287090778,
-0.037836648523807526,
-0.03512013331055641,
0.02933434024453163,
0.024096081033349037,
0.03408937528729439,
0.04097582772374153,
0.009768364951014519,
0.036836784332990646,
0.002627465408295393,
0.003845300991088152,
-0.0743427723646164,
-0.05089455470442772,
-0.05433674156665802,
-0.026656413450837135,
0.03481503203511238,
0.008596098981797695,
0.022558094933629036,
-0.09104710817337036,
-0.1342342495918274,
-0.02217745967209339,
-0.0018549294909462333,
0.014122048392891884,
-0.03246500343084335,
-0.05043526366353035,
0.04222700744867325,
-0.09004273265600204,
-0.02757490985095501,
0.09999612718820572,
0.01254703663289547,
0.029004493728280067,
0.0059584686532616615,
-0.058160580694675446,
-0.0545671172440052,
0.024067891761660576,
-0.039743900299072266,
0.1096310168504715,
0.028955606743693352,
-0.07793767750263214,
0.003004474099725485,
0.021600373089313507,
0.046540580689907074,
0.0312720388174057,
-0.0014208315405994654,
-0.02322090044617653,
-0.08129172772169113,
-0.0627349317073822,
-0.042277343571186066,
0.002791312290355563,
0.07550246268510818,
0.025850407779216766,
-0.05404045060276985,
0.015109035186469555,
0.04525249823927879,
-0.05183166638016701,
-0.02786070853471756,
0.060741983354091644,
-0.07268006354570389,
0.006261174101382494,
0.037964269518852234,
-0.04822326824069023,
-2.6863043345315418e-8,
-0.06941438466310501,
-0.018006466329097748,
-0.08461789786815643,
0.06001639366149902,
0.01874137856066227,
0.09159489721059799,
0.01325322687625885,
0.02830558270215988,
-0.004196434747427702,
0.015474280342459679,
0.0588776171207428,
0.06506521999835968,
-0.08320353925228119,
0.020345473662018776,
0.03968678414821625,
0.041263677179813385,
-0.09611200541257858,
-0.04251904413104057,
-0.016840482130646706,
-0.049748364835977554,
0.04871607944369316,
-0.027809828519821167,
-0.11907967925071716,
0.0709204375743866,
0.07246248424053192,
0.012202436104416847,
-0.0437217578291893,
0.07020879536867142,
0.002320619998499751,
0.06557691097259521,
-0.0045580253936350346,
0.056809987872838974,
-0.12529155611991882,
-0.020375587046146393,
0.03995053097605705,
-0.039827700704336166,
-0.033264994621276855,
-0.03196815028786659,
0.03229837864637375,
-0.02629867196083069,
0.040318965911865234,
0.09105200320482254,
0.033609624952077866,
-0.03177439421415329,
-0.023252733051776886,
0.0016411092365160584,
-0.03385516628623009,
-0.0220424123108387,
0.01816951110959053,
-0.012993864715099335,
-0.08100572228431702,
-0.04612801969051361,
0.019267933443188667,
0.07838611304759979,
0.07413695752620697,
0.06001114845275879,
0.04427590221166611,
0.004938843194395304,
0.016716156154870987,
0.025921722874045372,
0.11307447403669357,
0.11746793240308762,
0.03551117330789566,
0.015665868297219276
] |
google/t5-base-lm-adapt | 82aa560c46d415609fa3403f4e94d2c1a90923af | 2021-11-01T14:01:15.000Z | [
"pytorch",
"tf",
"t5",
"text2text-generation",
"en",
"dataset:c4",
"arxiv:2002.05202",
"arxiv:1910.10683",
"transformers",
"t5-lm-adapt",
"license:apache-2.0",
"autotrain_compatible"
] | text2text-generation | false | google | null | google/t5-base-lm-adapt | 8,874 | 6 | transformers | ---
language: en
datasets:
- c4
tags:
- t5-lm-adapt
license: apache-2.0
---
[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Version 1.1 - LM-Adapted
## Version 1.1 - LM-Adapted
[T5 Version 1.1 - LM Adapted](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k) includes the following improvements compared to the original [T5 model](https://huggingface.co/t5-base):
- GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202).
- Dropout was turned off in pre-training (quality win). Dropout should be re-enabled during fine-tuning.
- Pre-trained on C4 only without mixing in the downstream tasks.
- no parameter sharing between embedding and classifier layer
- "xl" and "xxl" replace "3B" and "11B". The model shapes are a bit different - larger `d_model` and smaller `num_heads` and `d_ff`.
and is pretrained on both the denoising and language modeling objective.
More specifically, this checkpoint is initialized from [T5 Version 1.1 - Base](https://huggingface.co/google/https://huggingface.co/google/t5-v1_1-base)
and then trained for an additional 100K steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf).
This adaptation improves the ability of the model to be used for prompt tuning.
**Note**: A popular fine-tuned version of the *T5 Version 1.1 - LM Adapted* model is [BigScience's T0pp](https://huggingface.co/bigscience/T0pp).
Pretraining Dataset: [C4](https://huggingface.co/datasets/c4)
Other Community Checkpoints: [here](https://huggingface.co/models?other=t5-lm-adapt)
Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)
Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*
## Abstract
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.

| [
-0.06374464929103851,
-0.04896508902311325,
0.04971892386674881,
-0.01899581588804722,
0.09040919691324234,
-0.0002084529842250049,
-0.03380180895328522,
-0.04972998425364494,
-0.04591972753405571,
-0.0742875337600708,
0.07705316692590714,
0.029367027804255486,
0.009775844402611256,
-0.07220425456762314,
-0.041040416806936264,
0.04681941866874695,
0.10742524266242981,
0.0006996458978392184,
-0.12710577249526978,
-0.06804105639457703,
-0.0195632167160511,
-0.043160468339920044,
0.04554828628897667,
0.04683653265237808,
0.06194038689136505,
0.026069480925798416,
-0.07689431309700012,
-0.04913941025733948,
-0.0029167442116886377,
-0.0503767766058445,
-0.06387387961149216,
0.060096483677625656,
-0.1640009582042694,
-0.025679394602775574,
-0.08267375826835632,
0.05401412397623062,
-0.05104648694396019,
0.022241298109292984,
-0.005746734794229269,
-0.03051791712641716,
0.04495042935013771,
-0.10800487548112869,
-0.02267240732908249,
-0.0057315225712955,
0.04363647848367691,
-0.0009195985621772707,
0.0013270329218357801,
-0.038172099739313126,
-0.014011692255735397,
-0.00026459063519723713,
-0.0464458167552948,
-0.04734063148498535,
-0.021092072129249573,
0.09902234375476837,
-0.12051886320114136,
0.039089225232601166,
-0.0032374190632253885,
0.034907277673482895,
-0.011538569815456867,
0.03415793552994728,
-0.05529331415891647,
0.013834175653755665,
-0.008342971093952656,
-0.004629593808203936,
-0.029612315818667412,
-0.02302986942231655,
0.12248595803976059,
-0.01123722642660141,
-0.007027570623904467,
0.02266761101782322,
-0.024926157668232918,
0.04740153253078461,
-0.04506674408912659,
0.005820929538458586,
0.03357672691345215,
0.01656786911189556,
0.025306833907961845,
0.04788326472043991,
0.03240553289651871,
-0.03349511697888374,
0.07108712196350098,
0.0294160395860672,
0.028850141912698746,
0.029683588072657585,
-0.031550366431474686,
-0.046677980571985245,
-0.04976300150156021,
0.08000751584768295,
0.023918643593788147,
-0.04227379709482193,
0.05273570492863655,
-0.0036714791785925627,
0.007452248129993677,
-0.010532335378229618,
-0.06942104548215866,
0.002043715678155422,
-0.024814380332827568,
0.03266693279147148,
0.003451988101005554,
0.043920744210481644,
-0.009600911289453506,
-0.0071960208006203175,
0.06071560084819794,
0.017832618206739426,
-0.07698569446802139,
-0.0188869908452034,
0.11918400973081589,
0.04072173312306404,
-0.004077751189470291,
-0.08534501492977142,
0.09782737493515015,
0.05216514319181442,
0.002549986820667982,
-0.014862632378935814,
0.057397957891225815,
-0.015698283910751343,
-0.10444434732198715,
-0.07723014056682587,
-0.012879637070000172,
0.05100811645388603,
-0.06924248486757278,
-0.003948714584112167,
0.026458747684955597,
0.001276124268770218,
-0.017831506207585335,
0.0009970128303393722,
-0.048186756670475006,
2.168110249660436e-33,
0.08194804936647415,
0.06621211022138596,
-0.00407153507694602,
0.028594180941581726,
0.03682709112763405,
-0.026260055601596832,
-0.01540081761777401,
-0.007823005318641663,
-0.06095372885465622,
-0.054280560463666916,
-0.06433498859405518,
-0.05858498066663742,
-0.04097168892621994,
0.0419088713824749,
-0.005112974904477596,
-0.03622300177812576,
-0.021089375019073486,
0.0651615560054779,
0.056503769010305405,
0.038270238786935806,
0.032072603702545166,
0.02975362539291382,
-0.01086160447448492,
-0.0944049060344696,
-0.0022244122810661793,
0.16470134258270264,
-0.02739212103188038,
-0.03227740153670311,
-0.00896776095032692,
0.021304892376065254,
-0.13002178072929382,
0.015008584596216679,
0.02081422321498394,
-0.0435389019548893,
0.03913460299372673,
-0.006751361768692732,
-0.046750523149967194,
-0.025087488815188408,
-0.02640330232679844,
-0.07189682871103287,
0.049710486084222794,
0.06364192813634872,
0.003023297293111682,
-0.051202401518821716,
0.002322819083929062,
-0.007495581638067961,
0.03323935717344284,
-0.06241548806428909,
-0.048467330634593964,
0.01983451284468174,
0.031277090311050415,
-0.0413813441991806,
-0.13204777240753174,
-0.11189744621515274,
-0.0085596339777112,
0.009423764422535896,
0.037253767251968384,
0.0742281973361969,
-0.005371895618736744,
0.1026420071721077,
0.03786071389913559,
0.04814381152391434,
-0.002539594890549779,
0.022284792736172676,
0.1332607865333557,
0.028521088883280754,
-0.021220384165644646,
-0.0329965241253376,
0.02533305436372757,
-0.03383540362119675,
-0.06766880303621292,
-0.029965857043862343,
0.054242655634880066,
0.11557783931493759,
0.1021166741847992,
-0.05510302260518074,
-0.003404391696676612,
-0.07513159513473511,
-0.015102477744221687,
0.035034965723752975,
-0.03022131137549877,
-0.04796569049358368,
0.011023560538887978,
-0.06512655317783356,
-0.04276687279343605,
-0.04495875537395477,
0.05878359079360962,
-0.11062770336866379,
-0.007200940512120724,
0.04715289920568466,
0.02647228352725506,
-0.007109755650162697,
0.012864086776971817,
-0.014541729353368282,
-0.02567591890692711,
-1.8983960096001392e-33,
0.03304768353700638,
-0.008485927246510983,
-0.029134761542081833,
0.11575807631015778,
-0.020077776163816452,
-0.000831696146633476,
0.07091733068227768,
0.11243175715208054,
0.022034350782632828,
0.001212374190799892,
0.01722031831741333,
0.013429194688796997,
-0.017024418339133263,
-0.00020055078493896872,
0.005167268216609955,
-0.07941640913486481,
0.030380232259631157,
-0.05617433413863182,
-0.02520178072154522,
-0.008713574148714542,
0.10193221271038055,
0.03962717205286026,
-0.03615937381982803,
0.06594711542129517,
0.0033518215641379356,
0.049104444682598114,
-0.013344182632863522,
0.10011233389377594,
0.05049224570393562,
-0.03585356846451759,
-0.02738623507320881,
-0.026848770678043365,
0.0026896183844655752,
0.01205357164144516,
0.008257349021732807,
0.05764405429363251,
0.02368769980967045,
0.07061878591775894,
0.012859282083809376,
0.05948875471949577,
0.07867688685655594,
0.018029456958174706,
-0.023752015084028244,
-0.01422535814344883,
-0.03970075026154518,
0.04960441589355469,
-0.09482407569885254,
-0.014277310110628605,
-0.00449083698913455,
0.03995911404490471,
0.041459452360868454,
-0.006359459832310677,
-0.10938633978366852,
-0.07847320288419724,
0.024957235902547836,
-0.0544840432703495,
0.08385057002305984,
-0.04037604480981827,
-0.04876501113176346,
0.014229939319193363,
-0.03557760268449783,
0.005629568360745907,
-0.020712051540613174,
-0.08523530513048172,
0.05690501630306244,
0.030876128003001213,
0.04731335490942001,
0.04123224690556526,
0.013181580230593681,
0.04659922048449516,
0.021165993064641953,
-0.036972690373659134,
0.06847616285085678,
-0.03354954347014427,
0.03897138312458992,
-0.052009839564561844,
-0.028170976787805557,
-0.02284182235598564,
-0.005276320036500692,
-0.0825703889131546,
-0.030567415058612823,
0.0005210514646023512,
0.0015450833598151803,
0.07523763179779053,
0.11581104248762131,
0.08353125303983688,
-0.03762992471456528,
0.05121298134326935,
0.07711824029684067,
-0.029722945764660835,
-0.019814282655715942,
0.023895632475614548,
-0.026033766567707062,
0.07380349934101105,
-0.009207237511873245,
-6.041883438001605e-8,
-0.054007649421691895,
0.04044458642601967,
-0.08989211171865463,
0.06230883300304413,
0.0263776034116745,
-0.01283568050712347,
-0.0595318078994751,
0.0430646687746048,
0.018536372110247612,
-0.00798891019076109,
0.007148164790123701,
-0.01750965416431427,
-0.044597990810871124,
0.019775453954935074,
-0.008883713744580746,
0.012837001122534275,
-0.004798414185643196,
-0.0322306752204895,
-0.024447781965136528,
-0.0427541509270668,
-0.007048415951430798,
0.009616997092962265,
-0.0283362939953804,
-0.04580315575003624,
0.06171916425228119,
-0.08745013177394867,
-0.0032860045321285725,
0.12907372415065765,
0.02079160138964653,
-0.11047268658876419,
-0.018540112301707268,
0.009173218160867691,
-0.010344169102609158,
0.03775159269571304,
0.07420354336500168,
0.05372532829642296,
0.05807332694530487,
-0.021895503625273705,
0.02511727437376976,
0.05131123214960098,
0.03948550671339035,
0.06610026210546494,
-0.05623972415924072,
-0.03844108432531357,
0.0011005233973264694,
-0.02627233974635601,
-0.005495108664035797,
-0.12170939892530441,
0.005337419454008341,
-0.015408010222017765,
0.03995130583643913,
-0.0005412650061771274,
-0.03174295648932457,
0.05748021602630615,
0.06861165165901184,
-0.03616130352020264,
0.05313659459352493,
-0.02140718884766102,
0.07779962569475174,
0.025433246046304703,
0.0510602630674839,
0.03385898843407631,
-0.001477370853535831,
-0.004025361500680447
] |
princeton-nlp/unsup-simcse-roberta-base | db28710348cf9f33a2be25c505f98f0fbbbfe768 | 2021-06-16T12:12:10.000Z | [
"pytorch",
"jax",
"roberta",
"feature-extraction",
"transformers"
] | feature-extraction | false | princeton-nlp | null | princeton-nlp/unsup-simcse-roberta-base | 8,866 | null | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
sberbank-ai/mGPT | 9f49a85776d5ec166120ea81719987fe0f643574 | 2022-04-21T18:06:50.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"az",
"sw",
"af",
"ar",
"ba",
"be",
"bxr",
"bg",
"bn",
"cv",
"hy",
"da",
"de",
"el",
"es",
"eu",
"fa",
"fi",
"fr",
"he",
"hi",
"hu",
"kk",
"id",
"it",
"ja",
"ka",
"ky",
"ko",
"lt",
"lv",
"mn",
"ml",
"os",
"mr",
"ms",
"my",
"nl",
"ro",
"pl",
"pt",
"sah",
"ru",
"tg",
"sv",
"ta",
"te",
"tk",
"th",
"tr",
"tl",
"tt",
"tyv",
"uk",
"ur",
"vi",
"uz",
"yo",
"zh",
"xal",
"dataset:mc4",
"dataset:wikipedia",
"arxiv:2112.10668",
"arxiv:2204.07580",
"transformers",
"multilingual",
"PyTorch",
"Transformers",
"gpt3",
"Deepspeed",
"Megatron",
"license:apache-2.0"
] | text-generation | false | sberbank-ai | null | sberbank-ai/mGPT | 8,865 | 56 | transformers | ---
license: apache-2.0
language:
- en
- az
- sw
- af
- ar
- ba
- be
- bxr
- bg
- bn
- cv
- hy
- da
- de
- el
- es
- eu
- fa
- fi
- fr
- he
- hi
- hu
- kk
- id
- it
- ja
- ka
- ky
- ko
- lt
- lv
- mn
- ml
- os
- mr
- ms
- my
- nl
- ro
- pl
- pt
- sah
- ru
- tg
- sv
- ta
- te
- tk
- th
- tr
- tl
- tt
- tyv
- uk
- en
- ur
- vi
- uz
- yo
- zh
- xal
pipeline_tag: text-generation
tags:
- multilingual
- PyTorch
- Transformers
- gpt3
- gpt2
- Deepspeed
- Megatron
datasets:
- mc4
- wikipedia
thumbnail: "https://github.com/sberbank-ai/mgpt"
---
# Multilingual GPT model
We introduce a family of autoregressive GPT-like models with 1.3 billion parameters trained on 60 languages from 25 language families using Wikipedia and Colossal Clean Crawled Corpus.
We reproduce the GPT-3 architecture using GPT-2 sources and the sparse attention mechanism, [Deepspeed](https://github.com/microsoft/DeepSpeed) and [Megatron](https://github.com/NVIDIA/Megatron-LM) frameworks allows us to effectively parallelize the training and inference steps. The resulting models show performance on par with the recently released [XGLM](https://arxiv.org/pdf/2112.10668.pdf) models at the same time covering more languages and enhancing NLP possibilities for low resource languages.
## Code
The source code for the mGPT XL model is available on [Github](https://github.com/sberbank-ai/mgpt)
## Paper
mGPT: Few-Shot Learners Go Multilingual
[Abstract](https://arxiv.org/abs/2204.07580) [PDF](https://arxiv.org/pdf/2204.07580.pdf)

```
@misc{https://doi.org/10.48550/arxiv.2204.07580,
doi = {10.48550/ARXIV.2204.07580},
url = {https://arxiv.org/abs/2204.07580},
author = {Shliazhko, Oleh and Fenogenova, Alena and Tikhonova, Maria and Mikhailov, Vladislav and Kozlova, Anastasia and Shavrina, Tatiana},
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences, I.2; I.2.7, 68-06, 68-04, 68T50, 68T01},
title = {mGPT: Few-Shot Learners Go Multilingual},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
## Languages
Model supports 60 languages:
ISO codes:
```az, sw, af, ar, ba, be, bxr, bg, bn, cv, hy, da, de, el, es, eu, fa, fi, fr, he, hi, hu, kk, id, it, ja, ka, ky, ko, lt, lv, mn, ml, os, mr, ms, my, nl, ro, pl, pt, sah, ru, tg, sv, ta, te, tk, th, tr, tl, tt, tyv, uk, en, ur, vi, uz, yo, zh, xal```
Languages:
```Afrikaans, Azerbaijani, Belarusian, Bengali, Chuvash, German, English, Basque, Finnish, Hebrew (modern), Hungarian, Indonesian, Japanese, Kazakh, Kirghiz, Kyrgyz, Latvian, Mongolian, Malay, Dutch, Polish, Romanian, Moldavan, Yakut, Swahili, Telugu, Thai, Turkish, Tuvinian, Urdu, Vietnamese, Yoruba, Arabic, Bashkir, Bulgarian, Buriat, Danish, Greek, Modern, Spanish; Castilian, Persian, French, Hindi, Armenian, Italian, Georgian, Korean, Lithuanian, Malayalam, Marathi, Burmese, Ossetian, Ossetic, Portuguese, Russian, Swedish, Tamil, Tajik, Turkmen, Tatar, Ukrainian, Uzbek, Kalmyk, Chinese```
## Training Data Statistics
- Size: 488 Billion UTF characters
<img style="text-align:center; display:block;" src="https://huggingface.co/sberbank-ai/mGPT/resolve/main/stats.png">
"General training corpus statistics"
## Details
The model was trained with sequence length 512 using Megatron and Deepspeed libs by [SberDevices](https://sberdevices.ru/) team on a dataset of 600 GB of texts in 60 languages. The model has seen 440 billion BPE tokens in total.
Total training time was around 12 days on 256 Nvidia V100 GPUs.
| [
-0.13837048411369324,
-0.11026205122470856,
-0.0366678312420845,
0.02246154099702835,
0.04343828558921814,
-0.046915553510189056,
-0.011059295386075974,
0.028004180639982224,
-0.004300341941416264,
-0.05740875378251076,
-0.005342238582670689,
-0.07862739264965057,
0.030558360740542412,
0.017436427995562553,
-0.024399444460868835,
-0.005927974358201027,
-0.016991494223475456,
0.004573151934891939,
-0.10630489140748978,
-0.023833807557821274,
0.02693975158035755,
0.04181505739688873,
0.03607189655303955,
0.027876412495970726,
0.009360295720398426,
-0.0019611299503594637,
0.013525773771107197,
-0.06399998068809509,
-0.0006495221168734133,
-0.01975311152637005,
0.03201455995440483,
0.04215651750564575,
-0.003143636044114828,
0.04864223673939705,
0.07670455425977707,
0.07568967342376709,
-0.10810098052024841,
-0.021074144169688225,
-0.02378053218126297,
-0.02201608009636402,
0.039088424295186996,
-0.018841084092855453,
0.03974951058626175,
-0.036972835659980774,
0.11330495029687881,
0.0021213272120803595,
-0.0522480383515358,
-0.05722250044345856,
-0.005067489575594664,
0.023959370329976082,
-0.11653817445039749,
-0.03994769603013992,
-0.03935300186276436,
0.028730951249599457,
0.04541568085551262,
-0.04500187933444977,
-0.0118267135694623,
-0.05394492670893669,
0.01837233081459999,
-0.032813310623168945,
-0.02488948032259941,
-0.018740760162472725,
-0.13485191762447357,
-0.022145472466945648,
-0.0811847448348999,
0.06740893423557281,
0.05180884897708893,
0.0193619504570961,
0.0457572266459465,
0.01793905347585678,
-0.018063656985759735,
0.0303215142339468,
-0.1315799355506897,
0.040939781814813614,
-0.019758882001042366,
0.06042507290840149,
0.0680648535490036,
-0.024778492748737335,
0.03887394443154335,
-0.0872485488653183,
0.049788400530815125,
0.011520961299538612,
0.05713002756237984,
-0.06721097230911255,
-0.0015238032210618258,
-0.006048532202839851,
0.05005091428756714,
0.10756911337375641,
0.06588023900985718,
0.01055283471941948,
-0.060729898512363434,
-0.025964297354221344,
-0.0055236900225281715,
0.04160842299461365,
-0.014259299263358116,
-0.010168470442295074,
0.01925765722990036,
-0.018828459084033966,
-0.031456638127565384,
0.08595118671655655,
0.024348381906747818,
-0.003063518088310957,
0.0882534310221672,
0.09945302456617355,
-0.060967884957790375,
-0.013870453462004662,
-0.04255663603544235,
0.10823234170675278,
-0.012224224396049976,
-0.07086838036775589,
-0.0034999800845980644,
0.01981092058122158,
-0.02616574428975582,
-0.05479549616575241,
-0.02842717431485653,
0.02637367695569992,
-0.02185104973614216,
-0.03436259925365448,
0.010175446979701519,
0.0715743750333786,
-0.07723590731620789,
0.008309507742524147,
-0.026291867718100548,
-0.04244578257203102,
0.002105868887156248,
0.010732417926192284,
-0.07346451282501221,
-1.8631916068319426e-33,
0.041543882340192795,
0.010882488451898098,
0.01902248151600361,
-0.05677742883563042,
0.0024630785919725895,
0.037620969116687775,
-0.007208271883428097,
-0.019661638885736465,
-0.002142127836123109,
-0.049360424280166626,
-0.06052149087190628,
0.021280387416481972,
-0.11118746548891068,
0.04546000063419342,
-0.0029842276126146317,
-0.0009240147192031145,
-0.009501037187874317,
0.08015991747379303,
-0.019500458613038063,
0.0687699243426323,
0.03821251913905144,
0.08647339046001434,
-0.0021178515162318945,
-0.04646395146846771,
-0.06370309740304947,
0.0532388798892498,
0.06357551366090775,
-0.05568327382206917,
-0.012872233986854553,
0.06282638758420944,
-0.07831999659538269,
-0.015104604884982109,
0.01384322252124548,
0.03957206383347511,
-0.006655597593635321,
-0.05532147362828255,
-0.027773192152380943,
-0.09131988883018494,
-0.001822202350012958,
-0.0467391237616539,
-0.021551692858338356,
0.015596183016896248,
-0.0000494213163619861,
-0.048598792403936386,
-0.032748885452747345,
-0.06907562166452408,
0.043475665152072906,
0.025283141061663628,
-0.09028443694114685,
0.050796449184417725,
-0.0058112372644245625,
0.03341543674468994,
-0.05943642184138298,
-0.016232216730713844,
-0.06609538942575455,
0.017173100262880325,
0.004497923422604799,
0.07511723041534424,
0.0934685543179512,
0.05720653757452965,
-0.013288280926644802,
0.002647912362590432,
0.08782976120710373,
0.012104958295822144,
0.1283089518547058,
0.0037235307972878218,
0.008336127735674381,
0.04174225404858589,
0.06701204180717468,
0.10278378427028656,
-0.020855456590652466,
-0.03822875767946243,
0.03956935182213783,
0.0021748747676610947,
0.1057707741856575,
-0.04698548838496208,
0.07150577008724213,
-0.04488341882824898,
-0.06563074141740799,
0.08656566590070724,
-0.12522783875465393,
0.042197778820991516,
0.02928466908633709,
-0.08154750615358353,
-0.020333576947450638,
0.002152158645913005,
0.04798341169953346,
-0.060880351811647415,
-0.015756864100694656,
-0.05161873996257782,
-0.05370255932211876,
-0.022022737190127373,
-0.036657873541116714,
-0.013604460284113884,
-0.018933160230517387,
1.5668366240201818e-33,
0.023336322978138924,
0.02523563802242279,
-0.007678544148802757,
0.13861291110515594,
-0.019851548597216606,
-0.10460644215345383,
0.048779457807540894,
0.10012927651405334,
-0.022522613406181335,
-0.044312261044979095,
0.047538917511701584,
-0.031688738614320755,
0.05224040523171425,
-0.03049733117222786,
0.1283961683511734,
-0.07239637523889542,
0.025308210402727127,
-0.0072434814646840096,
0.024581799283623695,
0.09309575706720352,
-0.016207972541451454,
0.06856981664896011,
-0.08115696161985397,
0.10204543173313141,
0.009176153689622879,
-0.0033358412329107523,
-0.013318374752998352,
0.042744193226099014,
-0.0008042418048717082,
0.010348514653742313,
0.021133966743946075,
0.07136038690805435,
-0.06704647839069366,
0.02338569611310959,
-0.057212572544813156,
0.030745480209589005,
0.07996463030576706,
0.07924406230449677,
-0.023661479353904724,
0.1553475558757782,
0.06891149282455444,
-0.008768732659518719,
-0.025835616514086723,
0.0052960715256631374,
-0.05580359697341919,
0.029999878257513046,
-0.04128997400403023,
0.0031242906115949154,
0.05677539482712746,
-0.07638050615787506,
0.00433052983134985,
-0.0015469792997464538,
-0.04959587752819061,
0.03868211433291435,
-0.015765944495797157,
-0.10689926147460938,
0.005423527676612139,
-0.006403041072189808,
-0.07027571648359299,
-0.024138068780303,
-0.04571853578090668,
-0.04628307744860649,
0.01872963272035122,
-0.0482095405459404,
0.009641609154641628,
-0.04026389122009277,
-0.011925904080271721,
-0.0434102863073349,
0.013977481052279472,
0.060428205877542496,
-0.016920197755098343,
-0.05335944890975952,
0.024477120488882065,
0.044137366116046906,
-0.00421089306473732,
-0.004632637836039066,
-0.06392734497785568,
0.008772755973041058,
0.09293393045663834,
-0.05693849176168442,
0.003199595957994461,
0.05008116364479065,
0.08915041387081146,
0.070699043571949,
0.029534583911299706,
-0.05736279860138893,
-0.03752628341317177,
0.0921240821480751,
0.04003105312585831,
0.02302010916173458,
-0.041277337819337845,
0.0370291993021965,
0.018094336614012718,
0.10778369754552841,
-0.03715400770306587,
-5.6441198381662616e-8,
0.036507587879896164,
0.04993779957294464,
-0.026613319292664528,
0.06725097447633743,
0.011081461794674397,
-0.045522697269916534,
-0.044558245688676834,
0.07479840517044067,
0.03684071823954582,
0.026204397901892662,
0.082493357360363,
-0.044734835624694824,
-0.07237932831048965,
-0.03005359321832657,
-0.03205817937850952,
0.02947074919939041,
-0.01976374350488186,
0.07444127649068832,
-0.034855928272008896,
-0.0018385873408988118,
0.0010311437072232366,
0.02005978487432003,
0.03256210312247276,
-0.0399341955780983,
0.06343194097280502,
-0.024792222306132317,
-0.002493057167157531,
0.05546503886580467,
0.03088805265724659,
0.03706769272685051,
0.02805381268262863,
-0.04854797571897507,
-0.07307136058807373,
-0.06438981741666794,
0.03740924224257469,
0.027404284104704857,
-0.01736154966056347,
0.002307185437530279,
0.022222446277737617,
-0.02300870791077614,
0.050265293568372726,
0.016659149900078773,
-0.0635286420583725,
0.010204260237514973,
0.03420651704072952,
0.0016998833743855357,
-0.0824931412935257,
-0.06528431922197342,
-0.005827159620821476,
0.020226221531629562,
-0.006137100979685783,
0.0006143302889540792,
-0.01034047082066536,
0.05318014323711395,
0.06726278364658356,
0.014199787750840187,
0.01438335794955492,
-0.10193592309951782,
0.05299505963921547,
-0.003375588683411479,
0.030661126598715782,
-0.007795816753059626,
-0.022770056501030922,
-0.009416715241968632
] |
mrm8488/codeBERTaJS | 2d18abf10b01f62f4fe089ef79973541ec534674 | 2021-05-20T18:17:36.000Z | [
"pytorch",
"jax",
"roberta",
"fill-mask",
"code",
"arxiv:1909.09436",
"transformers",
"javascript",
"autotrain_compatible"
] | fill-mask | false | mrm8488 | null | mrm8488/codeBERTaJS | 8,801 | 2 | transformers | ---
language: code
thumbnail:
tags:
- javascript
- code
widget:
- text: "async function createUser(req, <mask>) { if (!validUser(req.body.user)) { return res.status(400); } user = userService.createUser(req.body.user); return res.json(user); }"
---
# CodeBERTaJS
CodeBERTaJS is a RoBERTa-like model trained on the [CodeSearchNet](https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/) dataset from GitHub for `javaScript` by [Manuel Romero](https://twitter.com/mrm8488)
The **tokenizer** is a Byte-level BPE tokenizer trained on the corpus using Hugging Face `tokenizers`.
Because it is trained on a corpus of code (vs. natural language), it encodes the corpus efficiently (the sequences are between 33% to 50% shorter, compared to the same corpus tokenized by gpt2/roberta).
The (small) **model** is a 6-layer, 84M parameters, RoBERTa-like Transformer model – that’s the same number of layers & heads as DistilBERT – initialized from the default initialization settings and trained from scratch on the full `javascript` corpus (120M after preproccessing) for 2 epochs.
## Quick start: masked language modeling prediction
```python
JS_CODE = """
async function createUser(req, <mask>) {
if (!validUser(req.body.user)) {
\t return res.status(400);
}
user = userService.createUser(req.body.user);
return res.json(user);
}
""".lstrip()
```
### Does the model know how to complete simple JS/express like code?
```python
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model="mrm8488/codeBERTaJS",
tokenizer="mrm8488/codeBERTaJS"
)
fill_mask(JS_CODE)
## Top 5 predictions:
#
'res' # prob 0.069489665329
'next'
'req'
'user'
',req'
```
### Yes! That was easy 🎉 Let's try with another example
```python
JS_CODE_= """
function getKeys(obj) {
keys = [];
for (var [key, value] of Object.entries(obj)) {
keys.push(<mask>);
}
return keys
}
""".lstrip()
```
Results:
```python
'obj', 'key', ' value', 'keys', 'i'
```
> Not so bad! Right token was predicted as second option! 🎉
## This work is heavely inspired on [codeBERTa](https://github.com/huggingface/transformers/blob/master/model_cards/huggingface/CodeBERTa-small-v1/README.md) by huggingface team
<br>
## CodeSearchNet citation
<details>
```bibtex
@article{husain_codesearchnet_2019,
\ttitle = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}},
\tshorttitle = {{CodeSearchNet} {Challenge}},
\turl = {http://arxiv.org/abs/1909.09436},
\turldate = {2020-03-12},
\tjournal = {arXiv:1909.09436 [cs, stat]},
\tauthor = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
\tmonth = sep,
\tyear = {2019},
\tnote = {arXiv: 1909.09436},
}
```
</details>
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488)
> Made with <span style="color: #e25555;">♥</span> in Spain
| [
-0.17827105522155762,
-0.06724216789007187,
-0.04825394228100777,
0.056332677602767944,
0.015083003789186478,
-0.020152753219008446,
0.03469913452863693,
-0.008838150650262833,
-0.0033321822993457317,
-0.061544667929410934,
0.014825032092630863,
0.014167258515954018,
0.023232456296682358,
-0.019834715873003006,
0.015519560314714909,
0.04434411972761154,
0.02815643884241581,
0.03845883533358574,
-0.06652309000492096,
-0.05426781252026558,
0.056940097361803055,
-0.05130678042769432,
0.06022929772734642,
-0.06539350003004074,
0.07614199817180634,
0.03619968146085739,
-0.04725123569369316,
-0.09026671946048737,
0.09077643603086472,
0.05863918736577034,
0.07342240959405899,
0.00136591459158808,
0.03801564872264862,
0.12822428345680237,
-0.04872951656579971,
0.13171525299549103,
-0.019235916435718536,
-0.0351935513317585,
0.01882677525281906,
0.002880767686292529,
-0.10269279032945633,
0.050836507230997086,
-0.05020163208246231,
0.029065871611237526,
0.07403196394443512,
-0.029353685677051544,
-0.01406004186719656,
-0.01302593294531107,
-0.08829823136329651,
-0.04537948593497276,
-0.10650856047868729,
0.005438284948468208,
-0.012864931486546993,
-0.026006467640399933,
-0.010645789094269276,
-0.07946182787418365,
0.0007782626780681312,
-0.007780130952596664,
0.008792160078883171,
0.04615669697523117,
0.020854130387306213,
-0.05222192779183388,
-0.023756222799420357,
0.029573218896985054,
0.02012752741575241,
-0.07174026966094971,
-0.03705989196896553,
0.01003769040107727,
0.07000681012868881,
-0.07360846549272537,
-0.006174373906105757,
0.04307426139712334,
-0.06413000077009201,
0.10359764099121094,
0.028618674725294113,
-0.006183335091918707,
0.053201042115688324,
0.07629552483558655,
0.0506478026509285,
-0.05770889297127724,
0.04570882022380829,
-0.08397895842790604,
0.0926375538110733,
0.06423598527908325,
0.025551147758960724,
0.05409478023648262,
0.023846199735999107,
0.08104370534420013,
-0.0009412274230271578,
0.06348166614770889,
-0.03253922984004021,
-0.029055409133434296,
0.052493978291749954,
-0.019250603392720222,
-0.041431229561567307,
-0.015069122426211834,
0.0388714000582695,
-0.016615144908428192,
-0.05065450817346573,
0.09449586272239685,
-0.025924906134605408,
-0.01301067415624857,
0.04779581353068352,
-0.044744059443473816,
-0.005397778935730457,
0.03236355632543564,
0.0004827183729503304,
0.03351658582687378,
0.06387828290462494,
-0.030658911913633347,
0.02751607447862625,
0.10443122684955597,
-0.11117453873157501,
-0.02060985192656517,
0.019261730834841728,
-0.031934600323438644,
0.031194748356938362,
-0.05778837576508522,
0.11955473572015762,
0.1278652548789978,
0.05063797906041145,
0.056199509650468826,
-0.08554544299840927,
-0.05376465991139412,
0.03128226846456528,
0.021331097930669785,
-0.04493998736143112,
2.1912096320090556e-33,
0.06422679871320724,
0.060124363750219345,
0.047772135585546494,
-0.036681510508060455,
-0.04522833228111267,
-0.01753515563905239,
-0.014639006927609444,
0.002589650684967637,
-0.10132943838834763,
-0.014866732060909271,
0.03596986085176468,
0.017822949215769768,
-0.02373162843286991,
0.11226778477430344,
-0.05541839823126793,
-0.034398842602968216,
-0.07665606588125229,
-0.05121593177318573,
-0.013431183062493801,
0.03606749325990677,
-0.01373225636780262,
0.000772396510001272,
0.02524363435804844,
0.03779445216059685,
-0.05759672448039055,
-0.017134351655840874,
0.04697053134441376,
-0.05709492787718773,
0.02545786462724209,
0.03465089201927185,
-0.10436616837978363,
-0.005334768444299698,
-0.003649204969406128,
0.028036724776029587,
0.04548021778464317,
0.018694618716835976,
0.025954367592930794,
-0.05885734036564827,
-0.015781689435243607,
-0.029594626277685165,
0.03670736029744148,
0.014613159000873566,
-0.006875691935420036,
-0.04057467728853226,
-0.07041612267494202,
-0.033514514565467834,
0.013238084502518177,
0.011770809069275856,
0.017120469361543655,
0.054603446274995804,
0.014364616014063358,
0.10418397933244705,
-0.024525631219148636,
-0.008403286337852478,
0.005282256752252579,
0.0185571126639843,
0.05011749267578125,
0.0015262524830177426,
0.0208120159804821,
0.009426035918295383,
0.049483008682727814,
-0.060435593128204346,
0.08036978542804718,
-0.011978601105511189,
0.028848445042967796,
-0.040296051651239395,
-0.03152281045913696,
-0.031404849141836166,
0.02848636545240879,
0.05597170442342758,
0.012705096043646336,
0.026771869510412216,
0.009547525085508823,
0.02408546395599842,
0.02144256792962551,
-0.061489954590797424,
0.043080177158117294,
0.008953901007771492,
-0.0848657637834549,
-0.00868996698409319,
-0.016978837549686432,
-0.018330387771129608,
-0.02174370363354683,
0.006349853239953518,
-0.075676329433918,
-0.007555047981441021,
0.01654132641851902,
-0.12858809530735016,
-0.045943066477775574,
0.008916723541915417,
0.014718703925609589,
-0.032230135053396225,
-0.0452084019780159,
-0.05324121564626694,
-0.04744483157992363,
-3.1320393108927206e-33,
-0.008330252952873707,
0.014157530851662159,
-0.05035043880343437,
0.062033090740442276,
-0.014598875306546688,
-0.09138622879981995,
0.0513422004878521,
0.10353918373584747,
-0.020925698801875114,
0.02000393159687519,
0.02603243477642536,
-0.0669146329164505,
0.0020498246885836124,
-0.003800944657996297,
0.043975867331027985,
0.012532196938991547,
-0.05326284468173981,
-0.006595981772989035,
0.026934677734971046,
0.024990292266011238,
0.0016823227051645517,
0.1252521425485611,
-0.03444209694862366,
0.04125574976205826,
-0.04781471937894821,
-0.0014944556169211864,
-0.007149826735258102,
0.026804326102137566,
-0.006075168959796429,
-0.0727204829454422,
0.00908632017672062,
-0.0005614174297079444,
-0.10060272365808487,
-0.07462956011295319,
-0.04572160542011261,
0.011184447444975376,
0.01781817525625229,
0.024716975167393684,
0.024381672963500023,
0.07616924494504929,
0.08538829535245895,
0.002738549839705229,
-0.029565148055553436,
0.05608716979622841,
-0.002512460807338357,
-0.018365655094385147,
-0.08760245144367218,
0.03995490074157715,
0.00402053352445364,
0.025638559833168983,
0.019283246248960495,
-0.0028894348070025444,
-0.07320085912942886,
0.0001835733710322529,
-0.048428699374198914,
-0.11087590456008911,
0.014539381489157677,
-0.07593228667974472,
0.02573176473379135,
0.03085881844162941,
-0.06956661492586136,
-0.06921228766441345,
0.010957839898765087,
0.02063746005296707,
0.017079168930649757,
-0.11798334121704102,
-0.022156858816742897,
0.09450650215148926,
-0.03740950673818588,
-0.03903793916106224,
0.050791677087545395,
-0.05878899246454239,
0.0356319360435009,
0.05549495667219162,
-0.0025757986586540937,
-0.013102728873491287,
0.0021866299211978912,
-0.0974745899438858,
-0.019301550462841988,
-0.03567342832684517,
-0.044375427067279816,
-0.005024503450840712,
0.01973453164100647,
0.07660131901502609,
0.08257041126489639,
0.07677232474088669,
-0.0031575632747262716,
0.03761720657348633,
-0.055990900844335556,
0.012683962471783161,
-0.01089283637702465,
0.03700900077819824,
-0.045524321496486664,
0.04222569987177849,
-0.0027272955048829317,
-5.6930616665340494e-8,
-0.11876378953456879,
0.004498941823840141,
-0.13172270357608795,
-0.017225883901119232,
-0.045728426426649094,
0.01937165856361389,
-0.027583656832575798,
0.04190546274185181,
-0.02064475603401661,
-0.011487879790365696,
0.08354971557855606,
0.05205898359417915,
-0.06742226332426071,
0.015982171520590782,
-0.0031066173687577248,
0.06843562424182892,
-0.055144019424915314,
0.06116466969251633,
-0.03036036714911461,
0.002309835748746991,
0.026068968698382378,
0.04900377616286278,
-0.026170402765274048,
-0.03281866014003754,
-0.0023692557588219643,
0.03098316490650177,
-0.05182140693068504,
0.10917732119560242,
-0.030863700434565544,
-0.034565575420856476,
-0.007454457227140665,
0.08755555003881454,
0.0372600220143795,
-0.10987472534179688,
-0.00694964500144124,
0.013497510924935341,
-0.01637903042137623,
-0.09911932796239853,
-0.022226136177778244,
0.020421365275979042,
0.08881604671478271,
0.03706364333629608,
-0.04740019142627716,
0.010354961268603802,
0.02806537225842476,
0.009500964544713497,
0.07418572157621384,
-0.0516645722091198,
0.033088214695453644,
-0.03069239668548107,
0.017795080319046974,
-0.05417971685528755,
-0.08454355597496033,
0.029195882380008698,
0.03057456575334072,
-0.02694874256849289,
-0.05978429317474365,
0.008626682683825493,
0.10789478570222855,
0.0504208467900753,
-0.011410011909902096,
0.059685979038476944,
0.02762354537844658,
-0.010048005729913712
] |
pvl/labse_bert | 64aecfed3a09108bbdc9fcfcba7447f36a2a34c7 | 2021-09-22T09:35:24.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"pretraining",
"en",
"transformers",
"embeddings",
"license:apache-2.0"
] | null | false | pvl | null | pvl/labse_bert | 8,800 | null | transformers | ---
language: en
thumbnail:
tags:
- bert
- embeddings
license: apache-2.0
---
# LABSE BERT
## Model description
Model for "Language-agnostic BERT Sentence Embedding" paper from Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, Wei Wang. Model available in [TensorFlow Hub](https://tfhub.dev/google/LaBSE/1).
## Intended uses & limitations
#### How to use
```python
from transformers import AutoTokenizer, AutoModel
import torch
# from sentence-transformers
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
return sum_embeddings / sum_mask
tokenizer = AutoTokenizer.from_pretrained("pvl/labse_bert", do_lower_case=False)
model = AutoModel.from_pretrained("pvl/labse_bert")
sentences = ['This framework generates embeddings for each input sentence',
'Sentences are passed as a list of string.',
'The quick brown fox jumps over the lazy dog.']
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
```
| [
-0.08481653779745102,
-0.06526661664247513,
0.051753636449575424,
0.04113209620118141,
0.03532683849334717,
0.05674731358885765,
0.02298211120069027,
0.07193111628293991,
0.051606904715299606,
-0.06789924949407578,
-0.008494184352457523,
-0.07778545469045639,
-0.0009455272229388356,
0.08121080696582794,
-0.016504205763339996,
0.08572113513946533,
-0.02361038140952587,
0.031331393867731094,
-0.1280083954334259,
-0.11067874729633331,
0.13742442429065704,
0.057520654052495956,
0.06725338101387024,
-0.037852875888347626,
0.06177796050906181,
0.021580537781119347,
-0.08578374236822128,
-0.07409239560365677,
0.0995267704129219,
0.05205885320901871,
0.012119985185563564,
-0.036496106535196304,
0.01234951987862587,
0.13659371435642242,
0.03182220086455345,
0.022561799734830856,
-0.09563395380973816,
-0.011640402488410473,
0.02474113181233406,
0.00758308544754982,
0.032505400478839874,
-0.022374752908945084,
-0.03625628352165222,
-0.06254004687070847,
0.055554986000061035,
-0.022041654214262962,
0.0225586649030447,
-0.051664382219314575,
-0.030484620481729507,
-0.024983486160635948,
-0.028359754011034966,
-0.02080547995865345,
-0.023554932326078415,
0.04772929847240448,
0.014455492608249187,
-0.006325047463178635,
0.001187771325930953,
-0.08584815263748169,
0.01742788590490818,
-0.09965062886476517,
-0.07397273927927017,
-0.0490073561668396,
0.05585474148392677,
-0.02906845323741436,
-0.03344887122511864,
-0.01038111187517643,
-0.041904427111148834,
0.05197250097990036,
-0.031144265085458755,
0.06244546175003052,
-0.045859139412641525,
0.0709734857082367,
-0.021874893456697464,
0.0083367470651865,
0.021590573713183403,
-0.021252894774079323,
0.11411906778812408,
-0.03620852157473564,
0.08078308403491974,
-0.0678640753030777,
0.030603580176830292,
-0.04686264321208,
0.10570280253887177,
0.044624634087085724,
0.07264363765716553,
-0.03911885246634483,
0.05712132528424263,
0.00242555676959455,
-0.006173967383801937,
-0.03527279198169708,
-0.10504280775785446,
-0.10998666286468506,
-0.0266102347522974,
0.01884552463889122,
0.04191267117857933,
0.01739746704697609,
-0.011633967980742455,
-0.07062883675098419,
-0.06141892448067665,
0.05809725075960159,
0.0364791639149189,
0.035482265055179596,
0.06837081164121628,
-0.07728942483663559,
0.010362090542912483,
0.013577167876064777,
0.01229153387248516,
0.07084740698337555,
-0.016070278361439705,
-0.08961400389671326,
-0.0042327335104346275,
0.023921500891447067,
-0.00699120108038187,
-0.04478668421506882,
0.04624013602733612,
-0.025489280000329018,
0.01714124158024788,
0.009060000069439411,
0.025969278067350388,
0.09785237163305283,
0.049752965569496155,
0.07226043939590454,
-0.06223564222455025,
0.08289086073637009,
-0.01879774034023285,
-0.0071547981351614,
0.013774985447525978,
5.8548166718932304e-33,
-0.03334420546889305,
0.010346919298171997,
-0.005695631727576256,
-0.011346711777150631,
0.0010221806587651372,
0.0439678430557251,
0.017372101545333862,
0.008642506785690784,
-0.06339254975318909,
-0.01568935252726078,
-0.03790295496582985,
0.024360958486795425,
-0.07545812427997589,
0.0653144046664238,
-0.07336335629224777,
-0.015150203369557858,
0.021655865013599396,
0.011541655287146568,
0.07010595500469208,
-0.012551020830869675,
0.06326780468225479,
0.047723185271024704,
-0.01975732296705246,
-0.06296664476394653,
-0.10381974279880524,
-0.010809298604726791,
0.07164257764816284,
-0.08066292107105255,
-0.06343559920787811,
0.022225378081202507,
-0.10012061893939972,
0.03580295667052269,
-0.011204569600522518,
-0.03468795493245125,
-0.01808124966919422,
-0.019349301233887672,
0.0436667874455452,
-0.013463159091770649,
-0.0020740306936204433,
-0.06918375194072723,
-0.0053191459737718105,
0.09232642501592636,
-0.04515807703137398,
-0.08061391115188599,
-0.04015295207500458,
-0.00935285072773695,
0.023132942616939545,
0.0566108264029026,
0.009824549779295921,
0.020620770752429962,
0.023443130776286125,
-0.00467699533328414,
-0.05871492251753807,
-0.002615144243463874,
0.03444812446832657,
-0.015252824872732162,
0.05662784352898598,
0.043929532170295715,
0.0965615063905716,
-0.05361557379364967,
-0.01132518332451582,
0.00885703880339861,
0.008108540438115597,
0.011668083257973194,
0.06989279389381409,
-0.001930140657350421,
-0.010642829351127148,
0.05156669765710831,
-0.004391827620565891,
0.03243899717926979,
-0.06794357299804688,
0.02383873425424099,
-0.08414599299430847,
0.013082068413496017,
-0.045557890087366104,
-0.0679192915558815,
0.02953200787305832,
-0.09318248927593231,
-0.06149045750498772,
0.07188014686107635,
-0.017526134848594666,
0.006073256488889456,
-0.0051797376945614815,
-0.08887109160423279,
-0.08333113044500351,
-0.013565583154559135,
0.05361783131957054,
-0.049102701246738434,
-0.032212235033512115,
-0.081438809633255,
-0.003323120530694723,
-0.06333755701780319,
0.06526845693588257,
0.018093356862664223,
-0.07578008621931076,
-6.597824977870905e-33,
-0.025041751563549042,
0.08207812905311584,
-0.07459324598312378,
0.05898644030094147,
0.017736202105879784,
-0.02069290168583393,
0.0656927302479744,
0.11614423245191574,
-0.005421494133770466,
0.00024567346554249525,
-0.045553866773843765,
-0.07756810635328293,
-0.034500572830438614,
-0.06227250024676323,
0.10003172606229782,
-0.0223701111972332,
-0.031767893582582474,
0.06937175989151001,
0.017319438979029655,
0.06508034467697144,
-0.029263675212860107,
0.061005812138319016,
-0.05362161248922348,
0.07222359627485275,
-0.0677570253610611,
0.07610291242599487,
-0.017339294776320457,
0.03317084163427353,
-0.026805324479937553,
-0.034012436866760254,
-0.025690684095025063,
-0.00009061790478881449,
-0.057716548442840576,
0.06952784210443497,
-0.09302548319101334,
-0.025039905682206154,
0.05648194998502731,
-0.026262572035193443,
-0.020419739186763763,
0.02951132133603096,
0.09018225967884064,
-0.001405220478773117,
-0.03703915327787399,
0.05795794352889061,
-0.05973142758011818,
0.041258763521909714,
-0.05722981318831444,
-0.06814354658126831,
0.024219872429966927,
-0.03708336129784584,
-0.05646326392889023,
-0.06204037368297577,
-0.13638485968112946,
0.00003850492066703737,
-0.1091194823384285,
-0.027979912236332893,
0.043622229248285294,
-0.043989118188619614,
-0.029227901250123978,
-0.03391660377383232,
-0.06539551913738251,
-0.028030576184391975,
0.01930779591202736,
-0.08324254304170609,
0.03233030438423157,
-0.051867399364709854,
-0.03792667016386986,
0.03568406030535698,
0.01882069744169712,
-0.022957544773817062,
0.023234786465764046,
0.046688538044691086,
0.05260647460818291,
0.006963065825402737,
0.0438934825360775,
0.058993954211473465,
0.020650241523981094,
-0.05961836129426956,
0.021991830319166183,
-0.060603056102991104,
-0.07566922158002853,
-0.025174668058753014,
0.028515825048089027,
0.042747460305690765,
-0.002675820142030716,
0.022086497396230698,
0.06908313930034637,
0.08671339601278305,
-0.012057018466293812,
0.0002688033855520189,
-0.030342387035489082,
0.0005105601157993078,
0.025316519662737846,
0.10541004687547684,
0.03952338919043541,
-5.3509406683360794e-8,
-0.07487352192401886,
0.007784528657793999,
-0.03217420354485512,
0.023466361686587334,
-0.057299062609672546,
-0.04153052717447281,
0.00930833537131548,
0.04596994072198868,
-0.017752928659319878,
-0.044098831713199615,
0.02592548541724682,
-0.022527778521180153,
-0.047352779656648636,
-0.0074138343334198,
-0.013349204324185848,
0.0669807642698288,
-0.05749719962477684,
0.03572899475693703,
0.03653368726372719,
-0.05247272178530693,
-0.03230765089392662,
-0.0008159108692780137,
0.022481726482510567,
-0.019554974511265755,
-0.018641943112015724,
-0.012393872253596783,
-0.01853398233652115,
0.06621315330266953,
-0.021174676716327667,
-0.0010907361283898354,
0.03288566321134567,
0.04168699309229851,
-0.007455612067133188,
0.0043911864049732685,
0.039328813552856445,
0.07909443229436874,
0.024053767323493958,
-0.07804004102945328,
-0.0031277521047741175,
0.06112752482295036,
0.03485363349318504,
0.06298086047172546,
-0.04196198284626007,
-0.023410731926560402,
0.11510235071182251,
0.016876600682735443,
0.021072959527373314,
-0.09165318310260773,
0.0292744692414999,
0.0016974926693364978,
0.08868467062711716,
-0.06019929423928261,
-0.05434342846274376,
0.051600970327854156,
-0.010523565113544464,
-0.02500811032950878,
-0.01904205232858658,
-0.008925952948629856,
0.026264972984790802,
0.011599358171224594,
0.014478038996458054,
0.043001506477594376,
-0.007001619786024094,
-0.021073931828141212
] |
dbmdz/bert-base-turkish-uncased | 0582a4e05fd7ec5aa6b265d4bc4c81438d951593 | 2021-05-19T15:15:54.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"tr",
"transformers",
"license:mit"
] | null | false | dbmdz | null | dbmdz/bert-base-turkish-uncased | 8,784 | 5 | transformers | ---
language: tr
license: mit
---
# 🤗 + 📚 dbmdz Turkish BERT model
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources an uncased model for Turkish 🎉
# 🇹🇷 BERTurk
BERTurk is a community-driven uncased BERT model for Turkish.
Some datasets used for pretraining and evaluation are contributed from the
awesome Turkish NLP community, as well as the decision for the model name: BERTurk.
## Stats
The current version of the model is trained on a filtered and sentence
segmented version of the Turkish [OSCAR corpus](https://traces1.inria.fr/oscar/),
a recent Wikipedia dump, various [OPUS corpora](http://opus.nlpl.eu/) and a
special corpus provided by [Kemal Oflazer](http://www.andrew.cmu.edu/user/ko/).
The final training corpus has a size of 35GB and 44,04,976,662 tokens.
Thanks to Google's TensorFlow Research Cloud (TFRC) we could train an uncased model
on a TPU v3-8 for 2M steps.
## Model weights
Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers)
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
| Model | Downloads
| --------------------------------- | ---------------------------------------------------------------------------------------------------------------
| `dbmdz/bert-base-turkish-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-turkish-uncased/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-turkish-uncased/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-turkish-uncased/vocab.txt)
## Usage
With Transformers >= 2.3 our BERTurk uncased model can be loaded like:
```python
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-uncased")
model = AutoModel.from_pretrained("dbmdz/bert-base-turkish-uncased")
```
## Results
For results on PoS tagging or NER tasks, please refer to
[this repository](https://github.com/stefan-it/turkish-bert).
# Huggingface model hub
All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz).
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT models just open an issue
[here](https://github.com/dbmdz/berts/issues/new) 🤗
# Acknowledgments
Thanks to [Kemal Oflazer](http://www.andrew.cmu.edu/user/ko/) for providing us
additional large corpora for Turkish. Many thanks to Reyyan Yeniterzi for providing
us the Turkish NER dataset for evaluation.
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC ❤️
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
it is possible to download both cased and uncased models from their S3 storage 🤗
| [
-0.11216237396001816,
-0.10918832570314407,
0.029416779056191444,
0.00532143609598279,
-0.011443842202425003,
0.059406477957963943,
-0.042436037212610245,
0.004199334420263767,
0.057248227298259735,
-0.005149402655661106,
-0.02086455002427101,
0.006235199514776468,
-0.0026740452740341425,
0.03351590782403946,
-0.0024507776834070683,
0.009612096473574638,
0.06024109572172165,
0.033858973532915115,
-0.071740061044693,
-0.05035144090652466,
0.03559136763215065,
0.06069964915513992,
0.01896241307258606,
-0.06260015815496445,
0.05185876786708832,
-0.03170451149344444,
-0.01447000540792942,
-0.06466435641050339,
0.04334603250026703,
0.017706412822008133,
0.017881454899907112,
-0.006208007223904133,
0.03442094102501869,
0.08905012160539627,
0.020558377727866173,
0.032096266746520996,
-0.061491601169109344,
-0.002188650192692876,
0.03912177309393883,
0.040700480341911316,
0.004355768207460642,
-0.03780516982078552,
-0.05109087750315666,
0.018740331754088402,
0.11429768800735474,
-0.018045801669359207,
-0.09802199900150299,
0.0077008153311908245,
-0.030926747247576714,
0.006620587781071663,
-0.08090277016162872,
0.0011031279573217034,
0.017695514485239983,
0.0976901724934578,
-0.010467597283422947,
-0.021402740851044655,
0.010481946170330048,
0.0015709245344623923,
-0.033925678580999374,
-0.061224084347486496,
-0.09795483946800232,
-0.02342947944998741,
-0.05428548902273178,
-0.04490689933300018,
-0.06158851087093353,
0.039406128227710724,
-0.0744110643863678,
0.06235629320144653,
0.04841161146759987,
0.01192906592041254,
-0.01683695986866951,
0.07053554803133011,
-0.0611196793615818,
0.06813018769025803,
-0.02789897285401821,
-0.03065520152449608,
0.11521275341510773,
0.005017997231334448,
0.06423448771238327,
-0.06346442550420761,
0.029039088636636734,
0.03107813000679016,
0.11849062144756317,
-0.07129034399986267,
-0.03301607817411423,
-0.02091483771800995,
0.04614084213972092,
0.05129983648657799,
0.04985813796520233,
-0.01636987365782261,
0.04195990785956383,
-0.03371702507138252,
0.06300786882638931,
-0.01575559377670288,
0.053466133773326874,
0.023654259741306305,
0.0469941720366478,
0.030711833387613297,
0.036362141370773315,
0.08597541600465775,
0.03492101654410362,
0.0077101606875658035,
0.011878544464707375,
-0.039191681891679764,
-0.006062537897378206,
0.04166869446635246,
0.030176805332303047,
-0.04135267809033394,
0.06544263660907745,
-0.0709138959646225,
-0.004512768238782883,
0.014799130149185658,
-0.015324071049690247,
-0.03909744322299957,
0.04139874130487442,
-0.047464143484830856,
-0.05348081514239311,
-0.032919276505708694,
0.06955370306968689,
0.08636725693941116,
-0.011889484710991383,
-0.006182226352393627,
0.012795744463801384,
0.0822545737028122,
-0.05936180055141449,
0.02359435148537159,
-0.04673666134476662,
2.1577157571922977e-33,
-0.014410266652703285,
-0.004656907171010971,
0.007902335375547409,
-0.05134348198771477,
-0.016701094806194305,
-0.03201949968934059,
0.027539599686861038,
0.011102812364697456,
-0.06870579719543457,
-0.005853539332747459,
-0.11580533534288406,
0.06708738207817078,
-0.10904212296009064,
0.07010650634765625,
0.009831447154283524,
0.004396351985633373,
-0.01646564155817032,
0.03566710650920868,
0.04565289244055748,
0.02007286623120308,
0.06938252598047256,
0.09629810601472855,
0.025550099089741707,
-0.03753954917192459,
-0.019827762618660927,
0.0007396460277959704,
0.048538558185100555,
-0.09177181124687195,
-0.003957977518439293,
0.0750913918018341,
-0.13146740198135376,
-0.006666254717856646,
-0.07161257416009903,
0.03232627362012863,
-0.03014283813536167,
-0.006378364283591509,
-0.07920822501182556,
-0.028960220515727997,
-0.029579143971204758,
-0.0631040707230568,
0.0022215780336409807,
0.04415251314640045,
0.0029424007516354322,
-0.006085870321840048,
-0.1053931936621666,
-0.026655960828065872,
0.03449036553502083,
-0.03975486755371094,
0.03398425877094269,
-0.03148265928030014,
0.027452388778328896,
0.04319528862833977,
-0.08173500746488571,
-0.020553601905703545,
-0.027417028322815895,
0.053532566875219345,
0.06985069811344147,
0.013703431002795696,
0.0816999301314354,
0.040687352418899536,
-0.015129134990274906,
-0.009097022004425526,
0.07101912796497345,
0.036627400666475296,
0.05220493674278259,
0.013718516565859318,
-0.07901888340711594,
0.04032983258366585,
0.06136307120323181,
0.012776105664670467,
-0.0410345122218132,
0.036040183156728745,
0.013556050136685371,
0.022797074168920517,
-0.008544981479644775,
-0.040220219641923904,
0.06057148426771164,
-0.07946565747261047,
-0.07334685325622559,
0.03032233752310276,
-0.03536231815814972,
0.032576847821474075,
-0.052309129387140274,
-0.0794190913438797,
-0.08865248411893845,
0.020913628861308098,
-0.003906690049916506,
-0.045591872185468674,
-0.01992609165608883,
-0.04669267311692238,
0.0001951788435690105,
0.0004500592185650021,
-0.025868326425552368,
0.03799932450056076,
-0.0310678631067276,
-3.1726636609731696e-33,
0.04018694534897804,
0.011273439042270184,
-0.10524038970470428,
0.053963787853717804,
-0.06812407076358795,
-0.03336066007614136,
0.01522982306778431,
0.16286028921604156,
0.011261167004704475,
0.033901140093803406,
0.05488716438412666,
-0.07530316710472107,
0.003799350466579199,
-0.04251765459775925,
0.06972401589155197,
0.013921555131673813,
-0.045386265963315964,
0.06968232989311218,
-0.0038560812827199697,
0.07697314023971558,
-0.011334029026329517,
-0.03139812499284744,
-0.10565797239542007,
0.07430524379014969,
-0.03899618610739708,
0.037872638553380966,
-0.07986664772033691,
0.011088228784501553,
-0.017893046140670776,
0.032494571059942245,
0.0018434235826134682,
-0.057065051048994064,
-0.05991479754447937,
0.06213608384132385,
-0.05568058788776398,
-0.013386829756200314,
0.04018448293209076,
-0.024283517152071,
0.005322650074958801,
0.053720295429229736,
0.10396084934473038,
0.048361390829086304,
-0.02325366623699665,
0.04747806861996651,
-0.03444358706474304,
0.000971529632806778,
-0.10016990453004837,
0.013874241150915623,
0.06750549376010895,
-0.1552126556634903,
0.012839393690228462,
-0.04482627660036087,
-0.03734379634261131,
-0.0162037443369627,
-0.029111050069332123,
-0.04398892819881439,
0.03821871429681778,
-0.04654229059815407,
-0.03773655742406845,
0.03400013968348503,
-0.01992129348218441,
0.00196009106002748,
0.02333301678299904,
-0.04579297453165054,
0.014173589646816254,
-0.0665057972073555,
-0.06904155761003494,
0.08800358325242996,
-0.0417310856282711,
-0.018485281616449356,
-0.028733495622873306,
-0.02804621309041977,
0.0414004772901535,
0.030629141256213188,
-0.0070806038565933704,
0.012895284220576286,
0.015150606632232666,
-0.06748136132955551,
0.010831543244421482,
-0.03791021928191185,
-0.025993047282099724,
-0.029426831752061844,
0.006763841956853867,
0.02293524704873562,
0.06310635805130005,
0.05773758143186569,
0.05789731815457344,
0.03191215172410011,
-0.010069048032164574,
0.06374786794185638,
0.012262213043868542,
0.01718037575483322,
0.019914424046874046,
0.1065540686249733,
0.006790683139115572,
-5.371997957581698e-8,
-0.04010534659028053,
0.05847914516925812,
-0.021248385310173035,
0.047235894948244095,
-0.06297190487384796,
-0.0951683446764946,
-0.010724425315856934,
0.023667674511671066,
-0.04741407558321953,
-0.024110402911901474,
0.02016889676451683,
0.011013769544661045,
-0.11559371650218964,
0.02545459195971489,
-0.07512219250202179,
0.09393829852342606,
-0.03219744190573692,
0.03306994587182999,
0.02555564045906067,
-0.012866727076470852,
0.0597054660320282,
0.02648412249982357,
0.058938901871442795,
-0.04059998318552971,
-0.012762168422341347,
-0.02988225594162941,
-0.04407012462615967,
0.09568535536527634,
-0.005896305199712515,
-0.011522031389176846,
-0.05054325982928276,
0.030901344493031502,
-0.13046292960643768,
-0.011089869774878025,
0.10390686243772507,
0.0959692969918251,
-0.041846469044685364,
-0.09533965587615967,
-0.03978867083787918,
0.08715574443340302,
0.0661042332649231,
-0.01035156100988388,
-0.04252464696764946,
-0.036934688687324524,
0.09000026434659958,
0.012483579106628895,
0.003957448061555624,
-0.11136335879564285,
0.029060736298561096,
0.04449453949928284,
0.058028917759656906,
-0.015350690111517906,
-0.07728680223226547,
0.06739677488803864,
0.027045713737607002,
0.0196783859282732,
-0.09110984951257706,
-0.016310270875692368,
0.00997759960591793,
-0.025333581492304802,
0.02537483721971512,
-0.006773282308131456,
0.05523339658975601,
0.01214282400906086
] |
sentence-transformers/all-roberta-large-v1 | 42d37b9d8c9929c64dce4a2b25f6eaa0f59eaf99 | 2021-08-31T09:33:26.000Z | [
"pytorch",
"roberta",
"fill-mask",
"en",
"arxiv:1904.06472",
"arxiv:2102.07033",
"arxiv:2104.08727",
"arxiv:1704.05179",
"arxiv:1810.09305",
"sentence-transformers",
"feature-extraction",
"sentence-similarity",
"license:apache-2.0"
] | sentence-similarity | false | sentence-transformers | null | sentence-transformers/all-roberta-large-v1 | 8,748 | 5 | sentence-transformers | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
language: en
license: apache-2.0
---
# all-roberta-large-v1
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/all-roberta-large-v1')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-roberta-large-v1')
model = AutoModel.from_pretrained('sentence-transformers/all-roberta-large-v1')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-roberta-large-v1)
------
## Background
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
contrastive learning objective. We used the pretrained [`roberta-large`](https://huggingface.co/roberta-large) model and fine-tuned in on a
1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
We developped this model during the
[Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
organized by Hugging Face. We developped this model as part of the project:
[Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
## Intended uses
Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
By default, input text longer than 128 word pieces is truncated.
## Training procedure
### Pre-training
We use the pretrained [`roberta-large`](https://huggingface.co/roberta-large). Please refer to the model card for more detailed information about the pre-training procedure.
### Fine-tuning
We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
We then apply the cross entropy loss by comparing with true pairs.
#### Hyper parameters
We trained ou model on a TPU v3-8. We train the model during 400k steps using a batch size of 256 (32 per TPU core).
We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
#### Training data
We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
| Dataset | Paper | Number of training tuples |
|--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
| [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
| [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
| [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
| [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
| [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
| [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
| [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
| [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
| [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
| [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
| [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
| [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
| AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
| [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
| [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
| [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
| [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
| [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
| [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
| [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
| [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
| **Total** | | **1,124,818,467** | | [
-0.05484281852841377,
-0.04288968816399574,
-0.01240472961217165,
0.04543238878250122,
0.023772334679961205,
0.06621138006448746,
-0.046433333307504654,
0.01735966093838215,
0.02730361372232437,
-0.05484095960855484,
0.046245649456977844,
0.0008387292036786675,
0.04026908054947853,
0.05353201925754547,
0.06514133512973785,
0.04710070788860321,
0.03272547572851181,
0.09941492229700089,
-0.07806325703859329,
-0.1348942369222641,
0.12343189120292664,
0.11917007714509964,
0.024223096668720245,
0.019537920132279396,
-0.008935997262597084,
0.08775373548269272,
-0.05461592227220535,
-0.02208307757973671,
0.032041504979133606,
-0.01352104265242815,
0.020797742530703545,
-0.005211422219872475,
-0.04902561753988266,
0.08524619042873383,
0.05704871937632561,
0.09095305949449539,
-0.012314829975366592,
0.024880751967430115,
0.004340320359915495,
-0.08348478376865387,
0.016018236055970192,
-0.018294967710971832,
-0.05836889520287514,
-0.01799057237803936,
0.036686643958091736,
-0.08741716295480728,
-0.08764408528804779,
-0.011789513751864433,
-0.00959801860153675,
-0.030177244916558266,
-0.10228198766708374,
0.029608232900500298,
0.014956014230847359,
0.08181830495595932,
0.014094244688749313,
0.01566791534423828,
0.048253387212753296,
-0.015405052341520786,
-0.004463457968086004,
-0.13902799785137177,
-0.09432211518287659,
-0.02626684121787548,
-0.009781542234122753,
-0.007005607709288597,
-0.041487790644168854,
-0.026686906814575195,
0.02033133991062641,
0.041949957609176636,
0.015806490555405617,
0.019778156653046608,
-0.10477656871080399,
0.036268092691898346,
-0.08399596810340881,
-0.024287881329655647,
-0.05719916895031929,
0.0006094507989473641,
0.09251146018505096,
0.015009760856628418,
0.04841480404138565,
0.04858303442597389,
0.002053568372502923,
-0.07788235694169998,
0.06135121360421181,
0.07489006221294403,
0.01769760437309742,
-0.04824591428041458,
0.004250145982950926,
-0.013423525728285313,
-0.011234487406909466,
-0.023906197398900986,
-0.0852290540933609,
-0.10722259432077408,
0.03988681733608246,
-0.040042657405138016,
0.022751055657863617,
0.028310230001807213,
-0.03282460942864418,
-0.014212549664080143,
0.03970548138022423,
0.060669176280498505,
0.038777854293584824,
0.047209884971380234,
0.06837256997823715,
-0.09703171998262405,
-0.04084339737892151,
0.036241915076971054,
-0.02246379293501377,
0.014361141249537468,
0.0441688597202301,
-0.10558271408081055,
0.023203015327453613,
0.021856168285012245,
-0.022267969325184822,
-0.008162681944668293,
0.08886121213436127,
-0.05685644969344139,
0.04771365970373154,
-0.01897471770644188,
-0.001262343255802989,
0.1184801384806633,
-0.004878514911979437,
0.06105735898017883,
-0.024642718955874443,
0.04188193008303642,
-0.0159841850399971,
0.001640048692934215,
0.016591599211096764,
8.068791244332772e-35,
-0.009455989114940166,
0.0025609543081372976,
-0.002574180020019412,
-0.009744727984070778,
0.023294663056731224,
0.054838377982378006,
0.043828580528497696,
0.08487138897180557,
-0.08882760256528854,
-0.020926272496581078,
-0.06037309393286705,
0.033878449350595474,
-0.006664949469268322,
0.07943776249885559,
0.0064047169871628284,
0.007298863492906094,
-0.032683517783880234,
-0.040373172610998154,
0.07092121243476868,
0.020876353606581688,
0.033945512026548386,
0.024079499766230583,
-0.008510599844157696,
-0.021003521978855133,
-0.11761678755283356,
-0.04893282800912857,
0.06415746361017227,
-0.07699229568243027,
-0.07747776061296463,
-0.007205203641206026,
-0.07248472422361374,
0.0198172926902771,
-0.01882154867053032,
-0.002162214135751128,
-0.001043142401613295,
-0.01697375811636448,
0.0281421709805727,
-0.023379243910312653,
-0.02342449314892292,
-0.08264754712581635,
-0.03551826626062393,
0.01938125677406788,
-0.023828087374567986,
-0.052522651851177216,
-0.008111931383609772,
-0.014694035053253174,
0.02556217834353447,
0.016023259609937668,
0.08376491069793701,
0.013245956040918827,
0.10203899443149567,
0.007421833463013172,
0.0028947656974196434,
-0.026283524930477142,
0.01948797143995762,
0.007227875292301178,
0.07929319888353348,
0.03299111872911453,
0.09959139674901962,
-0.010901984758675098,
0.0229972992092371,
-0.04966648295521736,
0.043400321155786514,
0.04347151145339012,
0.10926605015993118,
-0.016765709966421127,
0.047586243599653244,
0.03599699214100838,
-0.00035895276232622564,
0.06683582067489624,
-0.05455561354756355,
0.007739804219454527,
-0.04843968525528908,
0.021085461601614952,
0.02213853783905506,
-0.03964317962527275,
-0.017179859802126884,
-0.08320943266153336,
-0.02472561039030552,
0.0792766883969307,
-0.033364392817020416,
-0.028515836223959923,
0.07095843553543091,
-0.044125113636255264,
-0.008525357581675053,
-0.056068189442157745,
0.017772693186998367,
-0.050674378871917725,
0.0565178319811821,
-0.07044912129640579,
0.03470283001661301,
0.008175486698746681,
0.00999385118484497,
0.02106732502579689,
0.04729064926505089,
-1.664336533581198e-33,
0.0500982329249382,
0.036176156252622604,
-0.06370614469051361,
0.0319942831993103,
-0.0142311230301857,
-0.06506596505641937,
0.0348329022526741,
0.0626152828335762,
0.010214941576123238,
-0.02721041813492775,
-0.04284519702196121,
-0.039657704532146454,
0.10825644433498383,
-0.08147664368152618,
0.08773571997880936,
0.061537813395261765,
-0.03614002466201782,
0.05352554842829704,
0.040269624441862106,
0.053932663053274155,
-0.01009047869592905,
0.05972220003604889,
-0.06597422063350677,
0.043139904737472534,
-0.023679586127400398,
-0.033116456121206284,
-0.01210807915776968,
-0.010555517859756947,
-0.01583544723689556,
-0.049872178584337234,
-0.008286460302770138,
-0.00997841265052557,
-0.04798850044608116,
-0.03777659684419632,
-0.1382196992635727,
0.029768094420433044,
-0.029070034623146057,
-0.006367427296936512,
0.02948734723031521,
0.060561101883649826,
0.0399993471801281,
0.07856166362762451,
-0.04398651048541069,
0.015162905678153038,
-0.027226196601986885,
-0.004781849682331085,
-0.10119295120239258,
-0.07411906123161316,
0.004177216440439224,
0.010943674482405186,
-0.019772935658693314,
0.04374086856842041,
-0.13222908973693848,
0.04335097223520279,
-0.04266144335269928,
-0.07529492676258087,
-0.036870088428258896,
-0.025758525356650352,
-0.09403923153877258,
-0.07522372901439667,
-0.05573388934135437,
-0.01682285964488983,
0.006982471793889999,
-0.06574697047472,
0.09243443608283997,
-0.06374995410442352,
-0.009362121112644672,
0.02860061265528202,
-0.0446714386343956,
-0.02226783148944378,
0.004870109260082245,
-0.04055808484554291,
0.015583423897624016,
0.06073446199297905,
0.057080816477537155,
-0.022051047533750534,
-0.007756742648780346,
-0.008206387981772423,
-0.03290686383843422,
-0.06384303420782089,
0.0162497628480196,
-0.0329805389046669,
0.015208415687084198,
-0.03904816880822182,
0.009195921011269093,
-0.02887527272105217,
0.03299029916524887,
0.07625094801187515,
-0.014732603915035725,
0.03642665222287178,
0.002334702992811799,
-0.014051289297640324,
0.00290781632065773,
0.053592365235090256,
0.05276715010404587,
-4.685871246579154e-8,
-0.08953548967838287,
-0.02608858048915863,
-0.0732802227139473,
0.06022237241268158,
-0.08623647689819336,
-0.026258958503603935,
0.06290346384048462,
0.06774967163801193,
-0.06829582154750824,
0.008356668055057526,
0.01688992977142334,
0.008514700457453728,
-0.07919513434171677,
0.011997238732874393,
-0.026070190593600273,
0.12203791737556458,
-0.010021955706179142,
0.036661796271800995,
0.025894122198224068,
-0.0012707742862403393,
0.009344983845949173,
0.0008916755323298275,
-0.032193537801504135,
0.04141269251704216,
0.0021128009539097548,
0.01228275801986456,
-0.04997949302196503,
0.0342283695936203,
0.009175926446914673,
-0.00230622012168169,
0.009491131640970707,
-0.005690108519047499,
-0.023008180782198906,
-0.06857900321483612,
-0.012851528823375702,
0.02811647206544876,
0.0367613285779953,
-0.07138711214065552,
0.042925238609313965,
0.07267551869153976,
0.039885617792606354,
0.044772520661354065,
-0.1355295032262802,
-0.008415923453867435,
0.1040925681591034,
-0.0007237066747620702,
-0.003178039565682411,
-0.07482685893774033,
0.039472803473472595,
0.0323818139731884,
0.07932887226343155,
-0.08281347900629044,
-0.014882168732583523,
-0.03459632396697998,
0.009495846927165985,
0.03395107761025429,
0.01624591276049614,
-0.004827503580600023,
0.09523996710777283,
-0.05999669060111046,
0.048046357929706573,
0.0726231262087822,
0.08890959620475769,
-0.09414291381835938
] |
nreimers/mMiniLMv2-L12-H384-distilled-from-XLMR-Large | d828558d1a570cbbb5e62a8dbf85c8f18bf7982a | 2021-06-20T19:03:16.000Z | [
"pytorch",
"xlm-roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | nreimers | null | nreimers/mMiniLMv2-L12-H384-distilled-from-XLMR-Large | 8,688 | 4 | transformers | # Multilingual MiniLMv2
This is a MiniLMv2 model from: [https://github.com/microsoft/unilm](https://github.com/microsoft/unilm/tree/master/minilm) | [
-0.024727946147322655,
-0.0026722648181021214,
-0.06438318639993668,
0.013568010181188583,
0.0008515773224644363,
0.04484379291534424,
-0.05825844779610634,
-0.024744702503085136,
0.025539156049489975,
-0.017522145062685013,
0.05681233108043671,
-0.04648791253566742,
0.0028828149661421776,
0.03286993131041527,
-0.04252947121858597,
0.06071458384394646,
0.01399976760149002,
0.007234558928757906,
0.010727053508162498,
-0.02946987748146057,
0.048044007271528244,
0.04943554848432541,
-0.024697232991456985,
-0.00027945864712819457,
0.06335809081792831,
0.0022802872117608786,
-0.008909689262509346,
0.09311268478631973,
0.06250380724668503,
-0.0727827399969101,
0.014709985814988613,
0.09081799536943436,
0.047409508377313614,
0.07832834869623184,
0.049937792122364044,
0.05079763010144234,
-0.004818967077881098,
-0.05583549290895462,
-0.03872844949364662,
-0.022534750401973724,
-0.06436167657375336,
0.014283535070717335,
0.0061906673945486546,
-0.03381958231329918,
0.02270539663732052,
0.04898594692349434,
-0.07393388450145721,
-0.013297311961650848,
-0.04807736352086067,
-0.032540515065193176,
-0.007357350084930658,
-0.033233653753995895,
-0.019979199394583702,
0.024411633610725403,
0.011151105165481567,
-0.06496268510818481,
-0.014329858124256134,
-0.04126807302236557,
-0.007185675669461489,
-0.010894120670855045,
-0.009481841698288918,
0.022776566445827484,
-0.02479141764342785,
0.06803388148546219,
-0.00836501270532608,
0.0525699257850647,
0.010718523524701595,
-0.032906580716371536,
-0.032866112887859344,
-0.08713603019714355,
-0.06118350476026535,
-0.06609940528869629,
-0.004348933696746826,
0.05221840366721153,
0.03846528008580208,
-0.0066499351523816586,
0.0493454784154892,
-0.022547177970409393,
0.0421886220574379,
-0.05676213651895523,
-0.024590186774730682,
0.0042710499837994576,
-0.0075338794849812984,
0.04168376699090004,
0.05033515766263008,
-0.007967241108417511,
-0.03679694980382919,
-0.008622796274721622,
0.11972472071647644,
-0.008455502800643444,
-0.12300374358892441,
0.023684313520789146,
0.09898868948221207,
0.07193740457296371,
-0.046412352472543716,
-0.027000825852155685,
0.058285702019929886,
-0.005351198371499777,
-0.04498550295829773,
0.04552607238292694,
-0.010687433183193207,
0.012195057235658169,
0.09968285262584686,
-0.037452373653650284,
-0.021941447630524635,
-0.11270307749509811,
0.09119756519794464,
-0.005655229091644287,
0.050141628831624985,
-0.07016462832689285,
0.014548400416970253,
0.023492826148867607,
-0.07254640758037567,
-0.05803605169057846,
0.005392000079154968,
-0.057810306549072266,
0.043907281011343,
-0.06464724242687225,
0.030375149101018906,
-0.004371180664747953,
-0.07740555703639984,
-0.0723918229341507,
-0.07493940740823746,
-0.0480831004679203,
-0.04803766682744026,
0.009371803142130375,
-0.005371560342609882,
-2.7891454965414477e-34,
0.02650056965649128,
0.026654550805687904,
0.009087764658033848,
0.02618955634534359,
0.10674969106912613,
-0.0030468953773379326,
0.016033003106713295,
-0.05259541794657707,
-0.06731937825679779,
-0.052856311202049255,
-0.05040080100297928,
-0.008489113301038742,
-0.06590347737073898,
0.07932045310735703,
0.0021438177209347486,
-0.13477540016174316,
0.03562037646770477,
0.06588335335254669,
0.031001457944512367,
0.04872376099228859,
0.03687814250588417,
0.09050167351961136,
0.043700795620679855,
-0.11870779097080231,
0.04812633618712425,
0.09288610517978668,
0.06370232254266739,
-0.07027502357959747,
0.10295502096414566,
0.022418612614274025,
-0.0023506912402808666,
-0.006697595585137606,
-0.03729388490319252,
0.010283184237778187,
0.033666640520095825,
-0.028412070125341415,
-0.045610394328832626,
-0.0463428795337677,
-0.013794229365885258,
0.03785136714577675,
0.04139326512813568,
-0.007193421944975853,
0.012014598585665226,
-0.0746430829167366,
-0.04488958418369293,
0.009592176415026188,
0.0563870370388031,
0.012195665389299393,
0.039294641464948654,
-0.11050458252429962,
-0.03738225996494293,
0.09424389898777008,
-0.07418742775917053,
-0.018893757835030556,
0.003446002956479788,
0.013873961754143238,
0.052905865013599396,
0.059647928923368454,
-0.021877700462937355,
-0.020398806780576706,
-0.03518001735210419,
0.031456511467695236,
-0.0038879788480699062,
-0.002979404991492629,
0.0909593477845192,
-0.08805473893880844,
-0.0008465741411782801,
-0.09108803421258926,
0.06601365655660629,
-0.0003312854387331754,
-0.052494194358587265,
0.044358622282743454,
0.12018828094005585,
0.019605131819844246,
0.023679008707404137,
0.0005314917070791125,
-0.004003229085355997,
-0.09747346490621567,
0.026812216266989708,
0.0009512566612102091,
-0.06869854778051376,
0.02831096388399601,
-0.00924912840127945,
-0.06906218826770782,
-0.02766556292772293,
-0.005036868620663881,
0.03845265135169029,
-0.060021694749593735,
-0.020649541169404984,
-0.006346915848553181,
-0.051550738513469696,
0.007097058463841677,
-0.033865030854940414,
0.01659945212304592,
0.0749683678150177,
-1.240437566804838e-33,
0.004558336455374956,
-0.07191282510757446,
-0.001418760628439486,
0.0528644360601902,
-0.015675494447350502,
-0.03482302650809288,
0.029740912839770317,
0.13455581665039062,
-0.029535973444581032,
0.059279218316078186,
0.11241059005260468,
-0.023350536823272705,
0.06433495134115219,
0.04698561504483223,
0.07638711482286453,
0.041989270597696304,
0.07376426458358765,
-0.025101136416196823,
0.0695798397064209,
0.029632097110152245,
0.039509840309619904,
0.10722675174474716,
-0.11155778169631958,
0.006625772919505835,
0.0034320028498768806,
0.007577645592391491,
0.01755957119166851,
-0.002771783387288451,
-0.03713082894682884,
0.00564540782943368,
-0.0016084705712273717,
-0.009723477996885777,
-0.024851027876138687,
-0.04073410853743553,
-0.08483928442001343,
0.034181252121925354,
0.0033988095819950104,
-0.05530888959765434,
-0.02944597788155079,
0.05352922901511192,
0.013206970877945423,
-0.006476919632405043,
-0.06547248363494873,
-0.019699204713106155,
0.012467815540730953,
0.003974918741732836,
-0.012215620838105679,
0.021362151950597763,
0.004962186329066753,
-0.07808923721313477,
0.007847429253160954,
-0.03177396580576897,
-0.07646413147449493,
-0.03646807372570038,
-0.015226596035063267,
-0.042246803641319275,
-0.04990282654762268,
-0.02863217331469059,
0.06696212291717529,
-0.06415139138698578,
-0.03447960689663887,
-0.049826379865407944,
-0.058117978274822235,
-0.04850788041949272,
0.02201058715581894,
0.0674997940659523,
-0.03757356479763985,
-0.04119851440191269,
-0.053421735763549805,
-0.06774543225765228,
0.10269173234701157,
-0.003347784047946334,
-0.042080190032720566,
-0.026062527671456337,
0.011842591688036919,
-0.09797614067792892,
-0.027623532339930534,
-0.0009924417827278376,
0.010867343284189701,
-0.0385986752808094,
0.009674354456365108,
-0.04893135279417038,
0.05091008171439171,
0.058177925646305084,
0.07079358398914337,
-0.038391489535570145,
-0.027001025155186653,
0.07099316269159317,
-0.030938345938920975,
0.0693761482834816,
-0.04268213361501694,
0.08276519179344177,
0.017752641811966896,
0.06101458892226219,
-0.034853581339120865,
-3.3483186001603826e-8,
-0.06691215932369232,
-0.05786183103919029,
-0.01735190860927105,
-0.05471415817737579,
-0.01567886210978031,
-0.05452967435121536,
-0.02506144531071186,
-0.02987358719110489,
0.02262389101088047,
0.03617098182439804,
-0.020404519513249397,
-0.040396273136138916,
-0.027809159830212593,
0.011447221972048283,
-0.021321231499314308,
0.09666246920824051,
0.02320893108844757,
0.1351272463798523,
0.022738642990589142,
0.012629958800971508,
0.029938070103526115,
0.06236909329891205,
0.0559195950627327,
-0.033335309475660324,
0.003749467898160219,
-0.010155645199120045,
-0.002653377829119563,
0.038380324840545654,
0.0296433437615633,
-0.10797582566738129,
-0.05357953906059265,
0.1302613466978073,
-0.05114460363984108,
0.007877124473452568,
-0.06999483704566956,
0.12277954816818237,
-0.0024850964546203613,
0.06564271450042725,
0.02363690175116062,
-0.023917151615023613,
0.09231197834014893,
-0.011570394970476627,
-0.09505238384008408,
0.04699914902448654,
0.029445644468069077,
0.06037626042962074,
-0.053938254714012146,
-0.13313119113445282,
0.007419417146593332,
-0.0853758454322815,
-0.011905361898243427,
-0.002312559401616454,
0.043338581919670105,
0.09998716413974762,
-0.03564344719052315,
-0.006795971188694239,
-0.004623327404260635,
-0.04080657288432121,
0.07448593527078629,
0.05375857651233673,
0.035624727606773376,
0.055542558431625366,
0.008189051412045956,
0.03190547227859497
] |
TahaDouaji/detr-doc-table-detection | a3e4b9a10c65eeaaf6d0579e4c591ace8dc2ef77 | 2022-03-12T12:09:38.000Z | [
"pytorch",
"detr",
"object-detection",
"transformers"
] | object-detection | false | TahaDouaji | null | TahaDouaji/detr-doc-table-detection | 8,646 | 3 | transformers | ---
tags:
- object-detection
---
## Model description
detr-doc-table-detection is a model trained to detect both **Bordered** and **Borderless** tables in documents, based on [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
## Training data
The model was trained on ICDAR2019 Table Dataset
### How to use
```python
from transformers import DetrFeatureExtractor, DetrForObjectDetection
from PIL import Image
image = Image.open("Image path")
feature_extractor = DetrFeatureExtractor.from_pretrained('TahaDouaji/detr-doc-table-detection')
model = DetrForObjectDetection.from_pretrained('TahaDouaji/detr-doc-table-detection')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
bboxes = outputs.pred_boxes
``` | [
-0.06218251585960388,
-0.008407077752053738,
-0.03495689108967781,
0.0048962002620100975,
0.10590530931949615,
-0.06351599842309952,
0.00984638649970293,
0.018533121794462204,
-0.07450778037309647,
-0.05048777908086777,
0.06866391003131866,
-0.04253290593624115,
0.07265004515647888,
0.05511410906910896,
-0.014932121150195599,
-0.019856015220284462,
-0.08710555732250214,
0.051181986927986145,
-0.02442380040884018,
-0.011783584021031857,
-0.017562799155712128,
0.05640387535095215,
0.041445981711149216,
-0.07435373961925507,
-0.01662309467792511,
0.005726199131458998,
-0.0203105378895998,
-0.02778664417564869,
0.005039637442678213,
-0.07908616960048676,
0.04424141347408295,
0.008379926905035973,
-0.07648558169603348,
0.07999800145626068,
0.02467184141278267,
0.0252536628395319,
-0.025014130398631096,
-0.0076164365746080875,
0.09513936936855316,
0.010875887237489223,
0.04979498311877251,
-0.07925726473331451,
-0.027520515024662018,
-0.08032059669494629,
0.056998349726200104,
0.04672693833708763,
-0.05084782466292381,
-0.002737285802140832,
0.06590603291988373,
-0.051546595990657806,
-0.03861311823129654,
0.02143315225839615,
-0.00802093930542469,
0.10475735366344452,
-0.03469788283109665,
-0.024679044261574745,
0.07705407589673996,
-0.06303412467241287,
0.010092192329466343,
-0.035027891397476196,
-0.1076219379901886,
-0.032554224133491516,
0.020780684426426888,
-0.044193021953105927,
-0.07634910941123962,
0.03378193452954292,
-0.009273791685700417,
-0.04647161811590195,
0.05382224917411804,
-0.06429503113031387,
-0.03309886157512665,
0.05574069917201996,
-0.011100702919065952,
-0.02786637283861637,
0.02532072179019451,
-0.07760017365217209,
0.10733863711357117,
0.05239560827612877,
0.02489282377064228,
-0.08127924054861069,
-0.0054308283142745495,
-0.037317488342523575,
0.060366544872522354,
0.029176579788327217,
0.06763191521167755,
-0.04130800440907478,
-0.04160420224070549,
-0.03610846772789955,
-0.010954687371850014,
-0.03657704219222069,
-0.00902793649584055,
-0.03442193195223808,
-0.05941302329301834,
0.01454454567283392,
-0.059372276067733765,
0.02003634162247181,
0.009085441008210182,
0.007642048876732588,
-0.05853027477860451,
0.1030731275677681,
-0.04567262530326843,
-0.10019879788160324,
-0.04846931993961334,
0.03042803518474102,
0.0071735563687980175,
0.010127461515367031,
0.05616159737110138,
-0.06197348237037659,
0.020509522408246994,
-0.0419425368309021,
0.024380328133702278,
0.001771214185282588,
-0.061819709837436676,
-0.08139938116073608,
0.03809496387839317,
0.029663024470210075,
-0.06265893578529358,
0.0032743485644459724,
0.015242618508636951,
-0.023262018337845802,
0.025687379762530327,
0.061383508145809174,
-0.03250003233551979,
0.07163653522729874,
0.005537922494113445,
-0.032844506204128265,
-0.07933355122804642,
8.002179262590661e-33,
-0.032943885773420334,
0.03105628490447998,
0.0787462443113327,
-0.014233027584850788,
0.011167873628437519,
0.03557556867599487,
0.050220321863889694,
0.030748452991247177,
0.01780862733721733,
0.042351167649030685,
-0.16152434051036835,
0.028780117630958557,
-0.09012821316719055,
0.008414016105234623,
-0.019975604489445686,
0.009364141151309013,
-0.0039361827075481415,
-0.03389468044042587,
-0.0077458834275603294,
0.03335675969719887,
0.044600967317819595,
0.0237736813724041,
-0.005480634514242411,
-0.01845191791653633,
-0.047936875373125076,
-0.018706176429986954,
-0.05444296449422836,
0.003197935177013278,
0.008826013654470444,
0.024266958236694336,
-0.034267399460077286,
0.04414741322398186,
-0.029977021738886833,
0.01026707049459219,
-0.03366359695792198,
-0.06301463395357132,
-0.019129270687699318,
0.009767154231667519,
-0.08847983181476593,
-0.02077246643602848,
0.029474394395947456,
0.06391159445047379,
-0.031036218628287315,
-0.10002319514751434,
0.0037732995115220547,
0.016753897070884705,
0.062172580510377884,
0.01679101772606373,
-0.013234833255410194,
0.03622220456600189,
0.04959593713283539,
0.004955023527145386,
-0.044862132519483566,
-0.004228365607559681,
-0.014147491194307804,
-0.004082507453858852,
-0.013791445642709732,
0.05164054036140442,
0.1269521266222,
-0.03420523181557655,
0.06257939338684082,
-0.002520565176382661,
0.0209336057305336,
0.021013522520661354,
-0.02274053730070591,
0.013459986075758934,
0.009276656433939934,
0.006054618861526251,
-0.027007456868886948,
0.006298909429460764,
-0.08230330049991608,
0.04901600256562233,
-0.015649093315005302,
-0.05708247050642967,
0.08938559144735336,
-0.04662678763270378,
-0.05907636508345604,
-0.0298283863812685,
-0.006501076277345419,
-0.027194248512387276,
-0.039122436195611954,
0.0832570418715477,
-0.027195287868380547,
-0.11675115674734116,
-0.1134704202413559,
0.06825997680425644,
0.06903304904699326,
-0.0727510154247284,
-0.011766521260142326,
-0.012959973886609077,
-0.00963393971323967,
0.019951846450567245,
-0.05247349292039871,
-0.01855519227683544,
-0.017429087311029434,
-8.61954448753871e-33,
0.10588618367910385,
0.03476041555404663,
-0.012636451981961727,
-0.08211993426084518,
-0.05736692622303963,
-0.06625132262706757,
0.09439148008823395,
0.13079608976840973,
0.005973693449050188,
-0.004298882093280554,
0.025926906615495682,
-0.036916572600603104,
-0.028218582272529602,
-0.08671007305383682,
0.014807699248194695,
0.058677032589912415,
-0.004028528928756714,
0.024455586448311806,
-0.06615033000707626,
0.0747208520770073,
-0.057909704744815826,
0.13756510615348816,
-0.05966098606586456,
0.06223522126674652,
-0.11695559322834015,
0.04038054868578911,
0.023551641032099724,
0.030090179294347763,
0.07376409322023392,
0.01846419647336006,
-0.09838183224201202,
0.00993937999010086,
-0.02091376855969429,
0.09066896885633469,
-0.049353115260601044,
-0.013033133931457996,
-0.019215090200304985,
-0.019244413822889328,
-0.0008685720385983586,
0.048094894737005234,
0.019880639389157295,
0.03557071089744568,
-0.09967000782489777,
0.08926555514335632,
-0.048123039305210114,
-0.028643766418099403,
-0.007548057474195957,
0.007972821593284607,
-0.01067159790545702,
0.0030315364710986614,
0.030141301453113556,
-0.027037156745791435,
-0.05900254100561142,
-0.009890811517834663,
0.0036378507502377033,
0.00538937421515584,
0.01981213502585888,
-0.03648163750767708,
-0.023478880524635315,
0.03715306892991066,
-0.02619021199643612,
-0.02156742475926876,
-0.06474398076534271,
-0.07055357843637466,
0.052740857005119324,
-0.019524775445461273,
-0.11463572084903717,
-0.012769168242812157,
0.028363777324557304,
0.10884460806846619,
-0.013903145678341389,
0.07286550104618073,
0.060753025114536285,
-0.03645607829093933,
0.026005374267697334,
0.05762896314263344,
-0.06529857218265533,
-0.027913538739085197,
-0.007163542322814465,
-0.04911762475967407,
-0.09056805819272995,
-0.10353264212608337,
0.024601314216852188,
0.05007828399538994,
-0.032140329480171204,
0.058564890176057816,
0.009949825704097748,
-0.0281838346272707,
0.06272856891155243,
-0.055378034710884094,
-0.022162480279803276,
-0.053706660866737366,
0.03762393444776535,
0.0922032818198204,
0.07009218633174896,
-5.810485248503028e-8,
-0.03360641747713089,
0.003685955423861742,
-0.014528216794133186,
0.0001815662981243804,
-0.056308478116989136,
0.040071915835142136,
0.012153794057667255,
0.054200127720832825,
-0.036327511072158813,
-0.024925384670495987,
0.020697062835097313,
0.03287915140390396,
-0.018936248496174812,
0.03114594705402851,
0.040960583835840225,
0.11706827580928802,
0.03670315444469452,
0.06968630850315094,
-0.002394940471276641,
0.04060704633593559,
0.029017915949225426,
-0.060164675116539,
-0.007336589507758617,
-0.01979154534637928,
0.017215143889188766,
-0.02925565280020237,
-0.07903362810611725,
0.022845376282930374,
-0.027465179562568665,
-0.0572466105222702,
0.020418308675289154,
-0.05732891336083412,
0.020571613684296608,
0.02798626199364662,
0.1046437919139862,
0.12718375027179718,
0.04861957207322121,
-0.07015727460384369,
-0.002335240365937352,
0.05736001208424568,
0.008105904795229435,
0.07197026908397675,
-0.09986676275730133,
-0.04223790392279625,
0.027210893109440804,
0.04582676663994789,
0.07424813508987427,
-0.04339025914669037,
0.002079502446576953,
0.05112526938319206,
0.06507568061351776,
-0.043037351220846176,
-0.03968723863363266,
0.08413062244653702,
-0.02255304902791977,
-0.02608943171799183,
0.03903031721711159,
-0.0218435600399971,
0.015837837010622025,
0.0990254133939743,
0.034597378224134445,
0.04605164751410484,
0.06427575647830963,
-0.017329392954707146
] |
finiteautomata/bertweet-base-emotion-analysis | 64046df9cc41eab40e1ecde7d2b7fb42b971be5b | 2021-12-10T13:28:56.000Z | [
"pytorch",
"roberta",
"text-classification",
"en",
"arxiv:2106.09462",
"transformers",
"emotion-analysis"
] | text-classification | false | finiteautomata | null | finiteautomata/bertweet-base-emotion-analysis | 8,619 | 4 | transformers | ---
language:
- en
tags:
- emotion-analysis
---
# Emotion Analysis in English
## bertweet-base-emotion-analysis
Repository: [https://github.com/finiteautomata/pysentimiento/](https://github.com/finiteautomata/pysentimiento/)
Model trained with EmoEvent corpus for Emotion detection in English. Base model is [BerTweet](https://huggingface.co/vinai/bertweet-base).
## License
`pysentimiento` is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses.
1. [TASS Dataset license](http://tass.sepln.org/tass_data/download.php)
2. [SEMEval 2017 Dataset license]()
## Citation
If you use `pysentimiento` in your work, please cite [this paper](https://arxiv.org/abs/2106.09462)
```
@misc{perez2021pysentimiento,
title={pysentimiento: A Python Toolkit for Sentiment Analysis and SocialNLP tasks},
author={Juan Manuel Pérez and Juan Carlos Giudici and Franco Luque},
year={2021},
eprint={2106.09462},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
and also the dataset related paper
```
@inproceedings{del2020emoevent,
title={EmoEvent: A multilingual emotion corpus based on different events},
author={del Arco, Flor Miriam Plaza and Strapparava, Carlo and Lopez, L Alfonso Urena and Mart{\'\i}n-Valdivia, M Teresa},
booktitle={Proceedings of the 12th Language Resources and Evaluation Conference},
pages={1492--1498},
year={2020}
}
```
Enjoy! 🤗
| [
-0.04230852425098419,
-0.036132849752902985,
0.023534459993243217,
0.022955985739827156,
0.06478442251682281,
0.04100355505943298,
0.0015926144551485777,
0.04074859246611595,
0.061550695449113846,
-0.021101970225572586,
0.02811291255056858,
-0.06487465649843216,
0.036414261907339096,
0.03057849034667015,
0.02241496741771698,
0.08189623802900314,
-0.0030308878049254417,
0.02003750391304493,
0.036473825573921204,
-0.002882649889215827,
0.06949686259031296,
0.057958975434303284,
0.011308250948786736,
-0.048414573073387146,
0.022834084928035736,
0.04116768389940262,
-0.00817300844937563,
0.04105833172798157,
0.04821174964308739,
0.04408552125096321,
-0.0050280289724469185,
-0.011377809569239616,
0.10563477873802185,
0.042863670736551285,
-0.005630979780107737,
0.02633354626595974,
-0.011458558030426502,
-0.008113962598145008,
-0.02958235889673233,
0.013889089226722717,
-0.03310919553041458,
-0.029745610430836678,
-0.028148915618658066,
-0.015225660987198353,
0.10134126245975494,
-0.05657793581485748,
-0.06169968470931053,
-0.001908726873807609,
-0.0517730675637722,
-0.021191377192735672,
-0.1033627837896347,
-0.04569587484002113,
0.06705136597156525,
0.03338735178112984,
-0.005778527352958918,
-0.10587745904922485,
0.017425749450922012,
-0.05051476135849953,
0.02268320508301258,
-0.09271197766065598,
-0.01933189295232296,
-0.020719831809401512,
-0.07702872157096863,
-0.00771391810849309,
-0.09156960248947144,
0.08598873019218445,
-0.015958882868289948,
0.024873314425349236,
0.02676551602780819,
-0.03189636021852493,
-0.0643429383635521,
-0.013261065818369389,
0.011905115097761154,
0.02734856866300106,
-0.024869225919246674,
0.05956125259399414,
0.05610864982008934,
-0.01314860861748457,
0.046658746898174286,
-0.1078711450099945,
-0.01692667230963707,
-0.045730266720056534,
0.07437481731176376,
-0.015735739842057228,
0.01988615281879902,
-0.06636942923069,
0.029342887923121452,
0.04316257685422897,
-0.035661134868860245,
0.13432778418064117,
0.012489812448620796,
-0.07003892213106155,
0.06375373154878616,
-0.04220292344689369,
0.0824681892991066,
0.01949513517320156,
-0.10330575704574585,
-0.04983177408576012,
-0.007838461548089981,
0.02012515813112259,
-0.009889720007777214,
0.0493912473320961,
-0.07131257653236389,
-0.02255983278155327,
-0.05776368826627731,
-0.018804555758833885,
-0.06224896013736725,
-0.06294679641723633,
0.04779348894953728,
-0.041481878608465195,
-0.15031202137470245,
-0.001511826878413558,
-0.015557725913822651,
-0.08071230351924896,
0.09676726162433624,
-0.010426177643239498,
-0.059419844299554825,
-0.021617135033011436,
0.11005783826112747,
0.018475878983736038,
-0.0017608562484383583,
0.003115164814516902,
0.018566809594631195,
0.0018181119812652469,
0.08230284601449966,
-0.025163764134049416,
-0.04239053279161453,
3.101368826569844e-33,
0.058626964688301086,
0.017369288951158524,
-0.013577871024608612,
0.03217989206314087,
-0.010503035970032215,
0.013086293824017048,
-0.030340606346726418,
-0.04565367102622986,
-0.09437883645296097,
-0.02883436158299446,
-0.0995565727353096,
0.07660386711359024,
-0.050139281898736954,
0.055375657975673676,
0.007050299551337957,
0.01943317800760269,
-0.008002640679478645,
0.00470829987898469,
0.07135000824928284,
0.007930172607302666,
0.03840335085988045,
-0.03067919611930847,
0.017050400376319885,
0.004355814307928085,
-0.097757987678051,
0.02409510873258114,
0.06621015816926956,
-0.03424486517906189,
0.013151637278497219,
0.036613401025533676,
-0.11596041917800903,
0.014360026456415653,
-0.02366800233721733,
-0.07564926892518997,
0.029560785740613937,
0.003421233966946602,
-0.01847146637737751,
0.005522164050489664,
0.004382391460239887,
-0.04215539991855621,
-0.02177545055747032,
0.01246070209890604,
0.03649779409170151,
-0.023792991414666176,
-0.046049900352954865,
0.02249775640666485,
-0.007354137487709522,
-0.04291139170527458,
0.11421434581279755,
0.031828872859478,
0.027538107708096504,
0.008290139026939869,
-0.011239293962717056,
-0.011668205261230469,
-0.021541308611631393,
0.08651114255189896,
0.01021849550306797,
0.02074638567864895,
0.04506218060851097,
-0.07179725915193558,
-0.016416605561971664,
0.002141668228432536,
0.09313388913869858,
-0.08274718374013901,
0.10969811677932739,
0.09404401481151581,
-0.10529717803001404,
-0.07593882828950882,
-0.012759209610521793,
0.009696786291897297,
-0.002080535050481558,
0.022814640775322914,
0.029341673478484154,
-0.012326324358582497,
-0.013377315364778042,
-0.0386674702167511,
0.008469797670841217,
-0.017034515738487244,
0.02542164735496044,
0.01611088402569294,
-0.025467241182923317,
-0.0929921418428421,
0.011076183058321476,
-0.034655097872018814,
-0.0038869373966008425,
0.011884196661412716,
0.025267764925956726,
-0.049828968942165375,
-0.051660895347595215,
0.07469364255666733,
0.054380301386117935,
-0.033069878816604614,
-0.01276630163192749,
0.013955707661807537,
-0.04432336986064911,
-3.5626089326035085e-33,
0.016071094200015068,
0.036292776465415955,
-0.05605947971343994,
-0.009782308712601662,
-0.03984195366501808,
-0.012955277226865292,
0.024118131026625633,
0.12787388265132904,
0.05794534087181091,
-0.024054208770394325,
0.08017531782388687,
-0.10084696114063263,
0.01209537498652935,
-0.003390083322301507,
0.061293914914131165,
-0.01588679663836956,
-0.022517675533890724,
0.003338608657941222,
-0.04035668075084686,
0.04097716510295868,
-0.07319926470518112,
0.020796233788132668,
-0.07377617806196213,
0.030399976298213005,
0.0027332885656505823,
0.0495912991464138,
0.00514878099784255,
-0.02296438254415989,
-0.016131283715367317,
-0.06893281638622284,
-0.07120835036039352,
0.09622465074062347,
-0.0944928303360939,
0.02372708171606064,
-0.07258673012256622,
0.03180769085884094,
0.0388609804213047,
-0.06110646203160286,
-0.020031174644827843,
-0.011682773008942604,
0.12472747266292572,
0.11257141083478928,
-0.08195663243532181,
0.015814978629350662,
0.00825867336243391,
0.023057760670781136,
-0.10833623260259628,
-0.03338594734668732,
0.01706991158425808,
-0.031624581664800644,
0.029599158093333244,
0.014264032244682312,
-0.028301963582634926,
-0.012363791465759277,
0.027606451883912086,
-0.1350741684436798,
0.05617855116724968,
-0.061359137296676636,
-0.10789629817008972,
-0.0339571088552475,
-0.05443578213453293,
-0.0004873933794442564,
-0.0759182944893837,
0.05630723014473915,
0.023293353617191315,
-0.0022145200055092573,
-0.02526392787694931,
0.02470654621720314,
-0.04037918522953987,
0.0067509557120501995,
0.05381690338253975,
0.06310868263244629,
0.05101880058646202,
0.0013048868859186769,
0.017094261944293976,
-0.01131004374474287,
-0.01938835345208645,
0.014743700623512268,
-0.013187514618039131,
-0.05179981142282486,
0.05351904779672623,
-0.03813834860920906,
0.019927512854337692,
0.009157758206129074,
-0.04222669079899788,
0.01128383819013834,
-0.00010206372826360166,
0.03825834020972252,
-0.028256651014089584,
0.025759143754839897,
-0.06589550524950027,
0.039451513439416885,
-0.051094379276037216,
0.06590604037046432,
0.14590202271938324,
-5.801871694188776e-8,
-0.0828443095088005,
-0.024418285116553307,
-0.0058949170634150505,
0.030802473425865173,
-0.04547443985939026,
-0.015051390044391155,
-0.009997307322919369,
-0.009818876162171364,
-0.06268952041864395,
-0.02781960368156433,
0.02613324485719204,
0.08856033533811569,
-0.030621061101555824,
0.009421114809811115,
-0.07728198915719986,
0.0537499375641346,
0.08575621247291565,
0.01932666450738907,
0.030373822897672653,
-0.03181324154138565,
0.025016281753778458,
0.07503712177276611,
0.01248142495751381,
-0.02950185351073742,
0.09798121452331543,
-0.01360749825835228,
-0.09702222794294357,
-0.01225447840988636,
-0.05869065970182419,
-0.0589216984808445,
0.050438426434993744,
0.015968916937708855,
-0.02992858923971653,
-0.052427053451538086,
0.10038627684116364,
0.06914520263671875,
-0.008361916989088058,
-0.07203157991170883,
-0.0032863402739167213,
0.05281033739447594,
0.04552397504448891,
0.08056432753801346,
-0.10343432426452637,
-0.041038282215595245,
0.04933534935116768,
0.04142378270626068,
-0.03425995633006096,
-0.056720152497291565,
0.04622820019721985,
0.07279790937900543,
0.06177722290158272,
0.009794775396585464,
-0.047716494649648666,
0.03670954704284668,
-0.03142843022942543,
0.07376512885093689,
-0.04454437643289566,
0.02693639136850834,
0.03322487324476242,
0.01785810850560665,
0.10586011409759521,
0.03237813338637352,
0.06329704076051712,
-0.009790107607841492
] |
epwalsh/bert-xsmall-dummy | d36cc494a54ac76cac8c237866fe8ce540c879a6 | 2021-05-19T16:30:53.000Z | [
"pytorch",
"jax",
"bert",
"feature-extraction",
"transformers"
] | feature-extraction | false | epwalsh | null | epwalsh/bert-xsmall-dummy | 8,538 | null | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
kamalkraj/BioELECTRA-PICO | 70e29e17b3546be81de3723e7cedf3409d7f234f | 2021-11-27T11:16:12.000Z | [
"pytorch",
"electra",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | kamalkraj | null | kamalkraj/BioELECTRA-PICO | 8,538 | 1 | transformers | ---
widget:
- text: "Those in the aspirin group experienced reduced duration of headache compared to those in the placebo arm (P<0.05)"
---
BioELECTRA-PICO | [
-0.07137191295623779,
0.06053144857287407,
-0.05212065950036049,
0.10194957256317139,
-0.011128793470561504,
-0.022962598130106926,
0.07258734107017517,
0.09566255658864975,
0.07747144997119904,
-0.07816179096698761,
0.053230512887239456,
-0.04413013905286789,
-0.03414393961429596,
-0.011284113861620426,
-0.01993127167224884,
0.01916513405740261,
0.044401828199625015,
-0.07527989894151688,
-0.03623487427830696,
0.03880557417869568,
-0.010078569874167442,
0.004134243819862604,
0.07259336858987808,
0.09113584458827972,
-0.015415346249938011,
0.07456884533166885,
-0.0406995564699173,
0.0043700020760297775,
-0.016044601798057556,
0.011052912101149559,
0.022814204916357994,
0.05364600569009781,
0.06241331994533539,
-0.007994398474693298,
0.006655271165072918,
0.08222786337137222,
-0.09545765817165375,
-0.04046937823295593,
-0.020242851227521896,
0.018017848953604698,
0.016026832163333893,
-0.032013215124607086,
-0.04200312867760658,
-0.0436084158718586,
0.08715174347162247,
-0.034864459186792374,
-0.043907128274440765,
-0.013142723590135574,
0.0046498728916049,
0.08419937640428543,
-0.07695559412240982,
-0.06345788389444351,
0.00257409387268126,
-0.05081310495734215,
-0.03419005125761032,
-0.006779322866350412,
-0.09523767232894897,
-0.07333006709814072,
-0.039417337626218796,
0.07339870184659958,
-0.016941405832767487,
-0.025913583114743233,
-0.03795268386602402,
0.09374497085809708,
0.013060936704277992,
0.07641179859638214,
-0.00005412516475189477,
-0.03693283349275589,
-0.05305776000022888,
0.06585753709077835,
0.017748385667800903,
-0.03466545045375824,
0.01365628745406866,
0.006935048848390579,
0.012501739896833897,
-0.047133151441812515,
0.03208041563630104,
0.04768608510494232,
0.011462758295238018,
-0.07678888738155365,
0.05724484473466873,
-0.005232000723481178,
0.004659518599510193,
0.13010844588279724,
0.06070590391755104,
-0.0015589260729029775,
0.08581755310297012,
0.051517002284526825,
-0.054847072809934616,
0.05225182697176933,
0.02540883608162403,
0.03843405470252037,
0.03936402499675751,
0.015741335228085518,
-0.011475048027932644,
-0.03216004744172096,
-0.05013228952884674,
-0.02723301202058792,
-0.07209799438714981,
0.0227747093886137,
-0.0007496367325074971,
-0.01021991390734911,
-0.06156662106513977,
0.04166305810213089,
-0.014863348565995693,
-0.01694801077246666,
-0.010128592140972614,
-0.1040974110364914,
0.04793081060051918,
0.04394664615392685,
0.004248658195137978,
-0.041210539638996124,
-0.06049182638525963,
0.0026684810873121023,
-0.018852844834327698,
-0.05248494818806648,
0.02725142240524292,
0.04601115360856056,
0.09570018202066422,
-0.024821894243359566,
0.016330048441886902,
-0.041802484542131424,
-0.06524308025836945,
-0.09894978255033493,
0.010607241652905941,
0.05164443701505661,
-0.004150907974690199,
4.659059461692155e-34,
0.04197806492447853,
-0.025700241327285767,
0.039313074201345444,
0.0036955082323402166,
0.017937781289219856,
0.03646799549460411,
-0.13934427499771118,
0.00023414399765897542,
-0.015661008656024933,
-0.04298872500658035,
-0.08966836333274841,
-0.08068627119064331,
-0.0013322696322575212,
0.08703772723674774,
0.007969552651047707,
-0.08589719980955124,
-0.07370128482580185,
0.03576023876667023,
0.06474340707063675,
-0.019347231835126877,
0.02199382334947586,
-0.027258489280939102,
-0.06205414980649948,
0.07890418916940689,
-0.07800937443971634,
0.104387067258358,
-0.009604455903172493,
0.031160734593868256,
-0.057663656771183014,
-0.004462206270545721,
-0.05175264924764633,
-0.021766941994428635,
0.01544006448239088,
-0.07756313681602478,
-0.05095899850130081,
0.01514436211436987,
-0.008313925005495548,
-0.01910274848341942,
0.015781376510858536,
0.0491505041718483,
-0.0566435344517231,
0.03599092736840248,
-0.029466111212968826,
-0.04036308452486992,
0.06877198070287704,
-0.0010543422540649772,
-0.10638204962015152,
0.015710817649960518,
0.03817698359489441,
0.01063426025211811,
-0.10845120251178741,
0.0010243190918117762,
0.08235935866832733,
-0.013199307955801487,
0.00534382089972496,
-0.030215002596378326,
-0.08581866323947906,
0.06559568643569946,
0.025554940104484558,
0.06773589551448822,
0.09553814679384232,
0.017533767968416214,
-0.026704654097557068,
-0.048565298318862915,
-0.01782391034066677,
0.09520170092582703,
-0.035893701016902924,
-0.01435456145554781,
-0.058118484914302826,
-0.040522415190935135,
0.006431297864764929,
-0.007870307192206383,
0.050157394260168076,
0.03986719623208046,
-0.030081208795309067,
0.01219371147453785,
-0.038431767374277115,
-0.007478523068130016,
-0.11942615360021591,
-0.03934739902615547,
-0.030278703197836876,
-0.07448767870664597,
0.02044631913304329,
0.007143168710172176,
0.05913681164383888,
0.018959375098347664,
0.1078580766916275,
-0.10329926759004593,
-0.05854465067386627,
0.033335719257593155,
-0.06572092324495316,
-0.05847949907183647,
-0.03115268610417843,
-0.03598691150546074,
-0.022839197888970375,
-2.912342355459912e-33,
-0.04351213201880455,
0.006885342765599489,
-0.06727645546197891,
0.009565905667841434,
0.003367252415046096,
0.028035135939717293,
0.07248781621456146,
0.03053395263850689,
0.05285940691828728,
-0.002644418040290475,
0.046015072613954544,
0.04892835393548012,
-0.037479810416698456,
-0.08575868606567383,
0.0004362664476502687,
0.07035665959119797,
-0.03891381621360779,
-0.03714556246995926,
-0.04458541423082352,
0.05970872938632965,
0.06855703145265579,
0.021505236625671387,
0.06641941517591476,
0.05151369422674179,
0.08043700456619263,
0.030909709632396698,
0.09155856817960739,
-0.046453531831502914,
0.011674883775413036,
-0.040867749601602554,
-0.01367268431931734,
-0.002163980156183243,
-0.09276409447193146,
-0.027448216453194618,
0.021509654819965363,
0.03035939671099186,
-0.04271312057971954,
-0.06593523174524307,
-0.060325730592012405,
0.04214192181825638,
0.07374247908592224,
0.04203999415040016,
-0.016078367829322815,
0.009311947040259838,
0.06404530256986618,
0.03947214409708977,
-0.14406998455524445,
-0.08909033983945847,
-0.06553485244512558,
0.048782698810100555,
-0.014864732511341572,
-0.013652446679770947,
-0.024785757064819336,
0.05901053547859192,
-0.006344478111714125,
-0.04892398789525032,
0.058545105159282684,
-0.053806204348802567,
-0.048850879073143005,
-0.0073358723893761635,
-0.026080038398504257,
-0.05657053366303444,
0.014062011614441872,
0.01563035324215889,
0.06355073302984238,
-0.003947530407458544,
0.07572037726640701,
0.08302256464958191,
0.025396287441253662,
0.01016526110470295,
0.05544668808579445,
0.0025354151148349047,
-0.015138576738536358,
-0.050870463252067566,
-0.005751901306211948,
0.03471238538622856,
-0.0331258699297905,
0.050979260355234146,
-0.020647620782256126,
-0.04179159551858902,
0.0023182423319667578,
0.025183355435729027,
0.024983922019600868,
-0.029087280854582787,
-0.10581016540527344,
-0.0356282964348793,
-0.019191153347492218,
0.05260184407234192,
-0.04684574529528618,
0.0849231705069542,
-0.008335622027516365,
-0.0205101128667593,
-0.043570905923843384,
0.10547094792127609,
0.005558006465435028,
-3.485948596448907e-8,
0.07027464359998703,
-0.07549279928207397,
0.02888728678226471,
-0.060111455619335175,
0.054657258093357086,
-0.06340295821428299,
-0.049570534378290176,
-0.01878119446337223,
-0.006788627244532108,
0.007092603016644716,
0.07965477555990219,
0.07286889851093292,
0.0108364038169384,
0.026615288108587265,
-0.03949017822742462,
0.0765659511089325,
-0.055331580340862274,
0.05457266792654991,
0.02382758818566799,
-0.13726919889450073,
-0.012140892446041107,
0.006646290421485901,
-0.047619957476854324,
-0.05983135476708412,
0.0340677946805954,
-0.0331808365881443,
-0.036416877061128616,
0.04512010142207146,
0.0038060618098825216,
-0.06435644626617432,
0.05113822966814041,
0.03360295295715332,
0.06551632285118103,
-0.05184770002961159,
0.026666903868317604,
-0.013253209181129932,
0.01223337184637785,
0.04100025072693825,
0.011156046763062477,
0.06661681085824966,
-0.10811737924814224,
-0.09071045368909836,
-0.02980424463748932,
0.04471747577190399,
-0.015371992252767086,
-0.03089039959013462,
0.06834262609481812,
0.040661755949258804,
-0.02791808545589447,
0.007286959793418646,
-0.0014936397783458233,
0.08762670308351517,
-0.006589991506189108,
0.010422928258776665,
-0.10175764560699463,
-0.005475933197885752,
-0.01770235039293766,
-0.0429084450006485,
-0.03640585392713547,
-0.03961102291941643,
0.002535340143367648,
0.024842726066708565,
0.015552297234535217,
0.02854141965508461
] |
allenai/unifiedqa-t5-large | 3fc39b105a75526eb2de2271744d48a4202857aa | 2021-06-23T12:00:07.000Z | [
"pytorch",
"jax",
"t5",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | allenai | null | allenai/unifiedqa-t5-large | 8,513 | 2 | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
flaubert/flaubert_base_uncased | 56ea0bf6e54b59c192f99f2397e932a9915cae4c | 2021-10-18T08:14:52.000Z | [
"pytorch",
"flaubert",
"fill-mask",
"fr",
"dataset:flaubert",
"transformers",
"bert",
"language-model",
"flue",
"french",
"flaubert-base",
"uncased",
"license:mit",
"autotrain_compatible"
] | fill-mask | false | flaubert | null | flaubert/flaubert_base_uncased | 8,481 | null | transformers | ---
language: fr
license: mit
datasets:
- flaubert
metrics:
- flue
tags:
- bert
- language-model
- flaubert
- flue
- french
- flaubert-base
- uncased
---
# FlauBERT: Unsupervised Language Model Pre-training for French
**FlauBERT** is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the new CNRS (French National Centre for Scientific Research) [Jean Zay](http://www.idris.fr/eng/jean-zay/ ) supercomputer.
Along with FlauBERT comes [**FLUE**](https://github.com/getalp/Flaubert/tree/master/flue): an evaluation setup for French NLP systems similar to the popular GLUE benchmark. The goal is to enable further reproducible experiments in the future and to share models and progress on the French language.For more details please refer to the [official website](https://github.com/getalp/Flaubert).
## FlauBERT models
| Model name | Number of layers | Attention Heads | Embedding Dimension | Total Parameters |
| :------: | :---: | :---: | :---: | :---: |
| `flaubert-small-cased` | 6 | 8 | 512 | 54 M |
| `flaubert-base-uncased` | 12 | 12 | 768 | 137 M |
| `flaubert-base-cased` | 12 | 12 | 768 | 138 M |
| `flaubert-large-cased` | 24 | 16 | 1024 | 373 M |
**Note:** `flaubert-small-cased` is partially trained so performance is not guaranteed. Consider using it for debugging purpose only.
## Using FlauBERT with Hugging Face's Transformers
```python
import torch
from transformers import FlaubertModel, FlaubertTokenizer
# Choose among ['flaubert/flaubert_small_cased', 'flaubert/flaubert_base_uncased',
# 'flaubert/flaubert_base_cased', 'flaubert/flaubert_large_cased']
modelname = 'flaubert/flaubert_base_cased'
# Load pretrained model and tokenizer
flaubert, log = FlaubertModel.from_pretrained(modelname, output_loading_info=True)
flaubert_tokenizer = FlaubertTokenizer.from_pretrained(modelname, do_lowercase=False)
# do_lowercase=False if using cased models, True if using uncased ones
sentence = "Le chat mange une pomme."
token_ids = torch.tensor([flaubert_tokenizer.encode(sentence)])
last_layer = flaubert(token_ids)[0]
print(last_layer.shape)
# torch.Size([1, 8, 768]) -> (batch size x number of tokens x embedding dimension)
# The BERT [CLS] token correspond to the first hidden state of the last layer
cls_embedding = last_layer[:, 0, :]
```
**Notes:** if your `transformers` version is <=2.10.0, `modelname` should take one
of the following values:
```
['flaubert-small-cased', 'flaubert-base-uncased', 'flaubert-base-cased', 'flaubert-large-cased']
```
## References
If you use FlauBERT or the FLUE Benchmark for your scientific publication, or if you find the resources in this repository useful, please cite one of the following papers:
[LREC paper](http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.302.pdf)
```
@InProceedings{le2020flaubert,
author = {Le, Hang and Vial, Lo\"{i}c and Frej, Jibril and Segonne, Vincent and Coavoux, Maximin and Lecouteux, Benjamin and Allauzen, Alexandre and Crabb\'{e}, Beno\^{i}t and Besacier, Laurent and Schwab, Didier},
title = {FlauBERT: Unsupervised Language Model Pre-training for French},
booktitle = {Proceedings of The 12th Language Resources and Evaluation Conference},
month = {May},
year = {2020},
address = {Marseille, France},
publisher = {European Language Resources Association},
pages = {2479--2490},
url = {https://www.aclweb.org/anthology/2020.lrec-1.302}
}
```
[TALN paper](https://hal.archives-ouvertes.fr/hal-02784776/)
```
@inproceedings{le2020flaubert,
title = {FlauBERT: des mod{\`e}les de langue contextualis{\'e}s pr{\'e}-entra{\^\i}n{\'e}s pour le fran{\c{c}}ais},
author = {Le, Hang and Vial, Lo{\"\i}c and Frej, Jibril and Segonne, Vincent and Coavoux, Maximin and Lecouteux, Benjamin and Allauzen, Alexandre and Crabb{\'e}, Beno{\^\i}t and Besacier, Laurent and Schwab, Didier},
booktitle = {Actes de la 6e conf{\'e}rence conjointe Journ{\'e}es d'{\'E}tudes sur la Parole (JEP, 31e {\'e}dition), Traitement Automatique des Langues Naturelles (TALN, 27e {\'e}dition), Rencontre des {\'E}tudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (R{\'E}CITAL, 22e {\'e}dition). Volume 2: Traitement Automatique des Langues Naturelles},
pages = {268--278},
year = {2020},
organization = {ATALA}
}
``` | [
-0.11780469864606857,
-0.11926593631505966,
-0.00001596406764292624,
-0.004828803241252899,
0.0356057733297348,
0.0245139729231596,
-0.02043706551194191,
0.11056417226791382,
0.026260891929268837,
-0.01041898038238287,
-0.026366498321294785,
0.01390332542359829,
0.026412973180413246,
0.026544077321887016,
-0.02588733844459057,
-0.027037106454372406,
0.017642324790358543,
-0.005954344291239977,
-0.08574358373880386,
-0.08889438956975937,
0.03860418498516083,
-0.0023758749011904,
0.06184953823685646,
-0.05612960085272789,
0.03513825684785843,
-0.062253039330244064,
-0.09372461587190628,
-0.06924185901880264,
0.08367586880922318,
0.011851201765239239,
0.06680265814065933,
0.07719330489635468,
-0.03619010001420975,
0.07258366793394089,
-0.050448812544345856,
0.0371994748711586,
0.03911365196108818,
-0.07147004455327988,
0.057763390243053436,
0.02108413726091385,
-0.06997478753328323,
-0.0049485149793326855,
-0.014845047146081924,
-0.04520845413208008,
0.12222656607627869,
-0.010003497824072838,
-0.056110210716724396,
0.021387893706560135,
-0.07274080067873001,
0.003284599632024765,
-0.12159830331802368,
-0.0014689642703160644,
0.025079086422920227,
0.05676055699586868,
0.006678053643554449,
0.03961901366710663,
0.05019153282046318,
-0.046030011028051376,
0.019537542015314102,
-0.010423772037029266,
-0.06200167536735535,
-0.051853712648153305,
-0.05039073899388313,
0.02767850086092949,
-0.026625843718647957,
0.003867044113576412,
-0.05831688642501831,
0.030844461172819138,
0.009331747889518738,
0.015964407473802567,
-0.06719629466533661,
0.02630941942334175,
0.006118530873209238,
0.0736636221408844,
0.05584276095032692,
0.011021080426871777,
0.006491317879408598,
0.027096804231405258,
0.04399777203798294,
-0.07209046185016632,
0.027811434119939804,
-0.04401587322354317,
0.10279770195484161,
0.030686048790812492,
0.07428990304470062,
-0.009057525545358658,
0.06434957683086395,
0.04428667947649956,
0.03400087356567383,
-0.009100616909563541,
-0.026853250339627266,
-0.028465790674090385,
0.03647983446717262,
0.046584077179431915,
-0.045703060925006866,
0.010968505404889584,
0.05613856017589569,
-0.03675263002514839,
-0.05680517479777336,
0.09370920062065125,
-0.015957383438944817,
-0.02847781777381897,
0.15306435525417328,
-0.030727816745638847,
-0.05205521732568741,
-0.037707820534706116,
0.024902375414967537,
0.018611837178468704,
0.06411950290203094,
-0.10744964331388474,
0.02175167016685009,
-0.024426374584436417,
-0.045700330287218094,
-0.06664038449525833,
-0.0062975408509373665,
-0.006253418978303671,
-0.022830085828900337,
-0.06656277179718018,
0.046546176075935364,
0.016560984775424004,
-0.0029389443807303905,
0.059969279915094376,
-0.010796415619552135,
0.01217575091868639,
0.014396888203918934,
0.02113436348736286,
-0.03055637888610363,
3.286300903919068e-33,
0.023520590737462044,
0.11935589462518692,
0.04303687810897827,
-0.016486085951328278,
0.0034205541014671326,
-0.07374708354473114,
0.01113942451775074,
0.03177705034613609,
-0.07201945781707764,
-0.013186704367399216,
-0.006331569515168667,
0.09326908737421036,
-0.0905374139547348,
0.09254936128854752,
0.03840434178709984,
-0.03354157134890556,
0.003963591065257788,
-0.0006362229469232261,
0.04460599645972252,
-0.02601294219493866,
0.15094563364982605,
0.04597681388258934,
0.0740404799580574,
0.03515185788273811,
0.05899008736014366,
-0.0066915592178702354,
0.028763441368937492,
-0.05821692943572998,
-0.05762859061360359,
0.0479646772146225,
-0.10781260579824448,
0.01274372823536396,
-0.013392383232712746,
0.025626538321375847,
-0.012077332474291325,
-0.0630417987704277,
-0.05535547062754631,
-0.09644359350204468,
0.013319174759089947,
0.0007841704646125436,
0.04285743087530136,
0.009112131781876087,
-0.015657223761081696,
-0.0324140302836895,
-0.03886685520410538,
-0.040907539427280426,
0.012365204282104969,
-0.020872360095381737,
0.094035305082798,
-0.05311897024512291,
0.003909566439688206,
-0.008186284452676773,
-0.08544424176216125,
0.018733998760581017,
0.019002681598067284,
0.061415016651153564,
-0.0018010895000770688,
-0.007861056365072727,
0.050560083240270615,
0.04690568521618843,
0.01725681498646736,
-0.0237790085375309,
0.01569608971476555,
0.025904057547450066,
-0.01688595488667488,
-0.030222920700907707,
-0.017007878050208092,
0.018962573260068893,
0.10424584150314331,
-0.018809935078024864,
-0.06736689805984497,
-0.023524388670921326,
0.08483178913593292,
0.03129279240965843,
0.07581156492233276,
0.02647172473371029,
-0.003792242845520377,
-0.11519330739974976,
-0.03212011605501175,
-0.0013414080021902919,
-0.05357447266578674,
-0.034521907567977905,
-0.037002887576818466,
0.008740771561861038,
-0.10558388382196426,
-0.06105436012148857,
0.009448080323636532,
0.01147391926497221,
0.010723528452217579,
-0.02932189218699932,
0.009918689727783203,
-0.07807068526744843,
0.03934590145945549,
-0.004629883449524641,
-0.07945804297924042,
-3.810461916474388e-33,
-0.057515017688274384,
0.021785328164696693,
-0.09196245670318604,
0.10668522864580154,
0.0181196928024292,
-0.04388752579689026,
0.038599103689193726,
0.06826424598693848,
0.02703288570046425,
-0.07555282115936279,
-0.040954288095235825,
-0.06487567722797394,
0.08014840632677078,
-0.02046506106853485,
0.03310133516788483,
0.04735156148672104,
-0.028857922181487083,
-0.03138541802763939,
0.08516097068786621,
0.04749103635549545,
0.021444004029035568,
-0.01909104734659195,
-0.06327011436223984,
0.01899430714547634,
-0.00022438084124587476,
0.05407988652586937,
-0.047402288764715195,
-0.027558181434869766,
-0.019206810742616653,
0.03717696666717529,
-0.03867856785655022,
0.024363918229937553,
-0.028112050145864487,
0.01936802826821804,
-0.0515524223446846,
0.026089660823345184,
0.06982635706663132,
0.02788054384291172,
-0.002394457347691059,
0.0206745732575655,
0.07398174703121185,
-0.021924087777733803,
-0.019368531182408333,
-0.005680606234818697,
0.055377185344696045,
0.043981365859508514,
-0.12962843477725983,
-0.08676467835903168,
0.001546675805002451,
-0.05506261810660362,
0.03506379947066307,
0.04492971673607826,
-0.0778457522392273,
-0.06939791142940521,
-0.09728647768497467,
-0.06305088847875595,
0.030931372195482254,
-0.06736648827791214,
-0.07798472791910172,
0.010209860280156136,
-0.013858533464372158,
-0.02225763164460659,
0.017187602818012238,
0.015069658868014812,
0.031924769282341,
-0.06286478787660599,
-0.0618487149477005,
0.11454808712005615,
-0.030208319425582886,
-0.026592925190925598,
0.07963677495718002,
-0.01323008444160223,
0.04166148230433464,
0.08469855040311813,
-0.05266180634498596,
0.04592486098408699,
0.004760958254337311,
-0.06944886595010757,
-0.03750305250287056,
-0.006154726725071669,
-0.040432486683130264,
0.02211979404091835,
0.037583425641059875,
-0.006076772231608629,
-0.017002815380692482,
0.05591399222612381,
0.019489338621497154,
-0.030323686078190804,
0.039304688572883606,
-0.0404704287648201,
-0.005537721328437328,
0.033702585846185684,
0.0062114037573337555,
0.040935978293418884,
0.016296733170747757,
-4.8107878569680906e-8,
-0.01281753834336996,
0.002146066864952445,
-0.03951176628470421,
0.03319517895579338,
-0.03125666081905365,
-0.11498752236366272,
-0.027885666117072105,
0.038674015551805496,
-0.0073905447497963905,
-0.03320955112576485,
-0.002767023863270879,
0.01944201998412609,
-0.04880913347005844,
-0.01644153706729412,
0.041562922298908234,
0.048985108733177185,
0.0009474151884205639,
0.05983472242951393,
-0.012044645845890045,
-0.024729186668992043,
0.026586471125483513,
0.07192490249872208,
0.02444504015147686,
-0.08470197767019272,
-0.016421863809227943,
-0.07196660339832306,
-0.051011331379413605,
0.04274484142661095,
-0.02949713170528412,
-0.04833891615271568,
-0.02546740509569645,
0.05073833465576172,
-0.014872253872454166,
-0.037648800760507584,
0.06773924082517624,
0.04736926406621933,
-0.04047447815537453,
-0.05468837544322014,
-0.012684287503361702,
0.06686064600944519,
0.0850447341799736,
0.07687461376190186,
-0.07310153543949127,
-0.02336973138153553,
0.09935727715492249,
-0.02108922228217125,
-0.03159164637327194,
-0.10627268254756927,
0.08948653191328049,
0.024039657786488533,
0.037277091294527054,
0.032905902713537216,
-0.07743853330612183,
0.021591169759631157,
0.023670921102166176,
0.07873347401618958,
-0.11137311905622482,
-0.02742728963494301,
0.022574566304683685,
-0.03236297145485878,
-0.04002256318926811,
0.050643377006053925,
0.07299043238162994,
0.03837428614497185
] |
aliosm/ComVE-distilgpt2 | 95db37f0c7b4bef1ec214a0a5d8cd457d1f55ece | 2021-05-21T13:07:30.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:ComVE",
"transformers",
"exbert",
"commonsense",
"semeval2020",
"comve",
"license:mit"
] | text-generation | false | aliosm | null | aliosm/ComVE-distilgpt2 | 8,429 | null | transformers | ---
language: "en"
tags:
- exbert
- commonsense
- semeval2020
- comve
license: "mit"
datasets:
- ComVE
metrics:
- bleu
widget:
- text: "Chicken can swim in water. <|continue|>"
---
# ComVE-distilgpt2
## Model description
Finetuned model on Commonsense Validation and Explanation (ComVE) dataset introduced in [SemEval2020 Task4](https://competitions.codalab.org/competitions/21080) using a causal language modeling (CLM) objective.
The model is able to generate a reason why a given natural language statement is against commonsense.
## Intended uses & limitations
You can use the raw model for text generation to generate reasons why natural language statements are against commonsense.
#### How to use
You can use this model directly to generate reasons why the given statement is against commonsense using [`generate.sh`](https://github.com/AliOsm/SemEval2020-Task4-ComVE/tree/master/TaskC-Generation) script.
*Note:* make sure that you are using version `2.4.1` of `transformers` package. Newer versions has some issue in text generation and the model repeats the last token generated again and again.
#### Limitations and bias
The model biased to negate the entered sentence usually instead of producing a factual reason.
## Training data
The model is initialized from the [distilgpt2](https://github.com/huggingface/transformers/blob/master/model_cards/distilgpt2-README.md) model and finetuned using [ComVE](https://github.com/wangcunxiang/SemEval2020-Task4-Commonsense-Validation-and-Explanation) dataset which contains 10K against commonsense sentences, each of them is paired with three reference reasons.
## Training procedure
Each natural language statement that against commonsense is concatenated with its reference reason with `<|continue|>` as a separator, then the model finetuned using CLM objective.
The model trained on Nvidia Tesla P100 GPU from Google Colab platform with 5e-5 learning rate, 15 epochs, 128 maximum sequence length and 64 batch size.
<center>
<img src="https://i.imgur.com/xKbrwBC.png">
</center>
## Eval results
The model achieved 13.7582/13.8026 BLEU scores on SemEval2020 Task4: Commonsense Validation and Explanation development and testing dataset.
### BibTeX entry and citation info
```bibtex
@article{fadel2020justers,
title={JUSTers at SemEval-2020 Task 4: Evaluating Transformer Models Against Commonsense Validation and Explanation},
author={Fadel, Ali and Al-Ayyoub, Mahmoud and Cambria, Erik},
year={2020}
}
```
<a href="https://huggingface.co/exbert/?model=aliosm/ComVE-distilgpt2">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
| [
-0.02141518145799637,
-0.027090368792414665,
0.03960300236940384,
-0.030968794599175453,
0.11888387054204941,
0.02362515963613987,
0.04183113947510719,
0.013932593166828156,
-0.0158697459846735,
-0.012545762583613396,
-0.02950819954276085,
-0.18094928562641144,
0.09920281171798706,
0.02795306220650673,
0.04747302830219269,
0.007084506563842297,
0.10492686182260513,
-0.03600255399942398,
-0.1006806492805481,
-0.05559789016842842,
0.09098260849714279,
0.0438438281416893,
0.03709570690989494,
0.07866029441356659,
-0.09565120935440063,
-0.00329165649600327,
0.04657960683107376,
0.03082667477428913,
0.028596607968211174,
0.042346127331256866,
0.008218401111662388,
0.03359797224402428,
-0.010717964731156826,
0.030821705237030983,
0.07439639419317245,
0.06318112462759018,
-0.008635146543383598,
-0.03403313457965851,
-0.024430353194475174,
-0.05369632691144943,
-0.054167117923498154,
-0.04757360368967056,
0.005653843749314547,
-0.01818721555173397,
0.06294011324644089,
-0.009241795167326927,
-0.053795259445905685,
-0.017050188034772873,
-0.08181589841842651,
-0.004816606640815735,
-0.08814734220504761,
-0.020422913134098053,
0.005101244896650314,
-0.07840330898761749,
0.07523183524608612,
-0.03226953372359276,
-0.018010424450039864,
0.006603681482374668,
-0.02813219092786312,
-0.1363169252872467,
-0.04180392250418663,
-0.07067131251096725,
-0.0782923772931099,
0.060566700994968414,
0.024473100900650024,
-0.020578566938638687,
-0.038769274950027466,
0.14147892594337463,
-0.034712404012680054,
0.0254394318908453,
-0.018397558480501175,
0.023889094591140747,
-0.009481649845838547,
0.03019801899790764,
-0.03868898004293442,
0.0594869926571846,
0.042970191687345505,
0.025197265669703484,
0.048402197659015656,
-0.08561654388904572,
-0.048435136675834656,
0.017913104966282845,
0.0407351553440094,
0.028652209788560867,
0.08485935628414154,
-0.025474168360233307,
0.07060890644788742,
0.02859567478299141,
0.04002845659852028,
0.07639449834823608,
0.03359247371554375,
-0.026908092200756073,
0.12220151722431183,
0.07333072274923325,
0.05331366881728172,
0.10829979181289673,
-0.016870183870196342,
-0.0648857057094574,
0.03262610733509064,
0.09139113873243332,
-0.045055948197841644,
0.0980696976184845,
0.0019220657413825393,
-0.04769245162606239,
0.09285995364189148,
-0.06105682626366615,
0.018942013382911682,
0.006564043927937746,
0.0348491333425045,
-0.07798886299133301,
0.03541285917162895,
-0.007027842104434967,
0.04164575785398483,
-0.051299188286066055,
0.0718877837061882,
-0.005559958983212709,
0.004773195367306471,
-0.039709627628326416,
0.018718130886554718,
0.012151101604104042,
-0.026065034791827202,
-0.011874368414282799,
-0.038130756467580795,
-0.008003227412700653,
0.03570398688316345,
-0.05038270354270935,
-0.07302763313055038,
6.307630687483407e-33,
0.014393828809261322,
-0.08137249946594238,
0.04532092437148094,
0.052845727652311325,
0.02023189887404442,
0.014098257757723331,
-0.04136114567518234,
0.023739494383335114,
-0.06287483870983124,
-0.07701286673545837,
-0.0036809751763939857,
0.03821343183517456,
-0.046427153050899506,
0.004004479851573706,
0.0987066999077797,
-0.004152585286647081,
-0.055471863597631454,
0.022463608533143997,
0.029994076117873192,
0.01756644994020462,
0.061554793268442154,
-0.08223002403974533,
0.010262093506753445,
0.01423591561615467,
-0.0205306988209486,
-0.01843046396970749,
0.04308093339204788,
-0.10997699946165085,
0.06230853497982025,
0.052744507789611816,
-0.07034730166196823,
-0.056120503693819046,
0.004370464012026787,
0.01774192787706852,
0.002490864135324955,
-0.0241952333599329,
-0.04046938568353653,
-0.030780436471104622,
0.007481016684323549,
0.007111145183444023,
-0.009879427962005138,
-0.0547516904771328,
0.010338325053453445,
0.02960571087896824,
-0.03512193635106087,
-0.0973256453871727,
-0.011577662080526352,
-0.02419252134859562,
-0.01838068664073944,
0.04556576535105705,
0.06262222677469254,
0.04216030612587929,
0.019275572150945663,
-0.11547192186117172,
0.03076198138296604,
0.019122794270515442,
0.001267043175175786,
-0.003913643304258585,
-0.03988007456064224,
-0.004803104791790247,
0.003536110045388341,
0.033865734934806824,
0.044267863035202026,
-0.0038532777689397335,
0.12712794542312622,
0.046041276305913925,
-0.07647313177585602,
-0.08505549281835556,
0.012620992958545685,
-0.027583086863160133,
-0.015614662319421768,
-0.005934207234531641,
-0.09959860891103745,
0.0373837910592556,
0.05690395087003708,
-0.052073586732149124,
0.009678730741143227,
-0.079949289560318,
-0.026454420760273933,
-0.015193837694823742,
0.009734885767102242,
0.003839379409328103,
-0.035916589200496674,
-0.0007883747457526624,
-0.019037026911973953,
-0.0314292274415493,
0.002492559840902686,
-0.06356169283390045,
0.030050454661250114,
-0.0421181358397007,
0.05105539411306381,
-0.07200802117586136,
-0.0077634998597204685,
-0.04699382558465004,
-0.06775370240211487,
-5.7703291174538324e-33,
-0.013358831405639648,
0.05332939699292183,
-0.059380341321229935,
0.063809335231781,
0.010457653552293777,
-0.05244279280304909,
0.024202443659305573,
0.0010869954712688923,
0.05103268101811409,
-0.009390982799232006,
-0.020961260423064232,
-0.033084869384765625,
0.05328188091516495,
0.03397268056869507,
-0.015134457498788834,
0.013415469788014889,
-0.0024435243103653193,
-0.03020089492201805,
-0.03879290819168091,
0.00223046843893826,
0.021382562816143036,
0.07096169888973236,
-0.022643664851784706,
0.04645814746618271,
-0.015727901831269264,
0.03632158786058426,
-0.05427870526909828,
0.014053567312657833,
0.014493808150291443,
-0.0018600585171952844,
-0.04013896360993385,
0.06833094358444214,
-0.04879182577133179,
0.012497804127633572,
-0.06578286737203598,
0.02127789333462715,
0.05286908894777298,
-0.037530433386564255,
-0.044909413903951645,
0.040564943104982376,
0.05711028352379799,
0.030852843075990677,
-0.09926143288612366,
-0.008535100147128105,
-0.009690889157354832,
0.016479721292853355,
-0.055833496153354645,
-0.01832452230155468,
0.06641852110624313,
-0.03546050563454628,
-0.008719309233129025,
-0.016239894554018974,
0.026158122345805168,
-0.014381488785147667,
-0.037843067198991776,
-0.09864743053913116,
-0.016029858961701393,
-0.10728484392166138,
-0.05414854735136032,
0.004308595787733793,
-0.027973545715212822,
0.04476430267095566,
0.007511290721595287,
0.022384507581591606,
0.05629289522767067,
-0.023251067847013474,
-0.07122813165187836,
0.015160704031586647,
-0.0022699793335050344,
-0.08060812205076218,
0.06171630322933197,
0.01952524296939373,
-0.08967356383800507,
-0.06684012711048126,
-0.019718574360013008,
0.04582372307777405,
0.016468068584799767,
-0.02231507934629917,
-0.04611679166555405,
0.004808899946510792,
0.03342510014772415,
0.05186300352215767,
0.09184888750314713,
0.059527650475502014,
-0.06330642104148865,
0.015892155468463898,
0.018583379685878754,
0.07246877253055573,
-0.00542824249714613,
0.06820198148488998,
-0.06493968516588211,
-0.040583763271570206,
-0.01572919823229313,
0.17998705804347992,
0.015302709303796291,
-5.6549662730276395e-8,
-0.0793263390660286,
-0.043349988758563995,
-0.04758719727396965,
0.08635058254003525,
-0.007034477777779102,
0.02642938494682312,
-0.03597955033183098,
-0.10231888294219971,
0.012218582443892956,
-0.02089829556643963,
-0.0016979457577690482,
0.016421163454651833,
-0.1221795529127121,
0.0715789869427681,
-0.05428043380379677,
0.06288199126720428,
0.0026374710723757744,
0.006126323249191046,
-0.025408577173948288,
-0.046728916466236115,
0.05889744684100151,
-0.01817554421722889,
-0.05196373164653778,
0.07938419282436371,
0.04908047616481781,
-0.023079760372638702,
-0.09606626629829407,
0.027304207906126976,
0.038212161511182785,
-0.024790998548269272,
0.06456192582845688,
-0.03091765008866787,
-0.027730124071240425,
0.019132504239678383,
0.0322653166949749,
0.035026371479034424,
-0.05586651340126991,
0.006403837352991104,
0.009086484089493752,
0.04774278774857521,
0.05356695130467415,
0.12896932661533356,
-0.10289483517408371,
0.013480578549206257,
0.07081298530101776,
-0.0026245589833706617,
-0.07578904926776886,
-0.044070806354284286,
-0.020590240135788918,
-0.004047834314405918,
-0.02331521548330784,
0.017163889482617378,
-0.017839325591921806,
0.03529863432049751,
0.0032676279079169035,
0.09656106680631638,
0.01559071522206068,
0.01429626252502203,
0.02263934351503849,
0.034359410405159,
0.029576336964964867,
0.08833760023117065,
0.04048367217183113,
0.0005014806520193815
] |
chkla/roberta-argument | d5480352a5ad33b0135cc1193a62be24396e557a | 2021-05-20T15:19:04.000Z | [
"pytorch",
"jax",
"roberta",
"text-classification",
"english",
"transformers"
] | text-classification | false | chkla | null | chkla/roberta-argument | 8,424 | 3 | transformers | ---
language: english
widget:
- text: "It has been determined that the amount of greenhouse gases have decreased by almost half because of the prevalence in the utilization of nuclear power."
---
### Welcome to RoBERTArg!
🤖 **Model description**
This model was trained on ~25k heterogeneous manually annotated sentences (📚 [Stab et al. 2018](https://www.aclweb.org/anthology/D18-1402/)) of controversial topics to classify text into one of two labels: 🏷 **NON-ARGUMENT** (0) and **ARGUMENT** (1).
🗃 **Dataset**
The dataset (📚 Stab et al. 2018) consists of **ARGUMENTS** (\~11k) that either support or oppose a topic if it includes a relevant reason for supporting or opposing the topic, or as a **NON-ARGUMENT** (\~14k) if it does not include reasons. The authors focus on controversial topics, i.e., topics that include "an obvious polarity to the possible outcomes" and compile a final set of eight controversial topics: _abortion, school uniforms, death penalty, marijuana legalization, nuclear energy, cloning, gun control, and minimum wage_.
| TOPIC | ARGUMENT | NON-ARGUMENT |
|----|----|----|
| abortion | 2213 | 2,427 |
| school uniforms | 325 | 1,734 |
| death penalty | 325 | 2,083 |
| marijuana legalization | 325 | 1,262 |
| nuclear energy | 325 | 2,118 |
| cloning | 325 | 1,494 |
| gun control | 325 | 1,889 |
| minimum wage | 325 | 1,346 |
🏃🏼♂️**Model training**
**RoBERTArg** was fine-tuned on a RoBERTA (base) pre-trained model from HuggingFace using the HuggingFace trainer with the following hyperparameters:
```
training_args = TrainingArguments(
num_train_epochs=2,
learning_rate=2.3102e-06,
seed=8,
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
)
```
📊 **Evaluation**
The model was evaluated on an evaluation set (20%):
| Model | Acc | F1 | R arg | R non | P arg | P non |
|----|----|----|----|----|----|----|
| RoBERTArg | 0.8193 | 0.8021 | 0.8463 | 0.7986 | 0.7623 | 0.8719 |
Showing the **confusion matrix** using again the evaluation set:
| | ARGUMENT | NON-ARGUMENT |
|----|----|----|
| ARGUMENT | 2213 | 558 |
| NON-ARGUMENT | 325 | 1790 |
⚠️ **Intended Uses & Potential Limitations**
The model can only be a starting point to dive into the exciting field of argument mining. But be aware. An argument is a complex structure, with multiple dependencies. Therefore, the model may perform less well on different topics and text types not included in the training set.
Enjoy and stay tuned! 🚀
🐦 Twitter: [@chklamm](http://twitter.com/chklamm) | [
-0.024078674614429474,
0.03438662365078926,
-0.030870012938976288,
0.06134043261408806,
0.13429562747478485,
0.0821409597992897,
0.03655914217233658,
0.017233895137906075,
0.05575022101402283,
-0.001776103163138032,
0.041875772178173065,
-0.014216921292245388,
0.041393451392650604,
0.04012966901063919,
0.024553369730710983,
0.10885435342788696,
0.08317054063081741,
-0.06634684652090073,
-0.13270902633666992,
0.014099286869168282,
0.0011277931043878198,
0.11474911868572235,
0.04890381172299385,
0.04596852883696556,
-0.012597791850566864,
0.0001780337915988639,
0.01318764965981245,
0.029971575364470482,
-0.027586547657847404,
0.056982461363077164,
0.005490829702466726,
0.09227434545755386,
-0.015233145095407963,
0.029232855886220932,
0.05467614158987999,
0.0005699526518583298,
-0.048367246985435486,
0.016602560877799988,
0.011556211858987808,
0.06519421935081482,
0.006794716697186232,
-0.03966891020536423,
0.013939357362687588,
-0.009986971504986286,
0.04344067722558975,
-0.030645295977592468,
-0.09884470701217651,
0.000009247122761735227,
-0.06393460929393768,
-0.022766919806599617,
-0.0953591838479042,
-0.05274420231580734,
-0.07320151478052139,
0.009045099839568138,
-0.01167281623929739,
-0.043899960815906525,
0.02057691663503647,
-0.010571232996881008,
0.005948389880359173,
-0.06459472328424454,
0.0054101585410535336,
-0.07234368473291397,
-0.09593428671360016,
-0.01540382020175457,
0.045697323977947235,
-0.02861708216369152,
-0.012620856054127216,
0.04171324893832207,
-0.04550971835851669,
0.11109732836484909,
-0.033218786120414734,
0.10135266184806824,
0.011450108140707016,
0.04447115212678909,
-0.005710791330784559,
0.009083634242415428,
0.04737449064850807,
0.03547237068414688,
0.10120941698551178,
-0.1727249026298523,
0.0175959300249815,
-0.02499225363135338,
0.04563892260193825,
-0.029929641634225845,
0.043556682765483856,
-0.045938171446323395,
-0.03045947477221489,
0.0317317433655262,
-0.025824660435318947,
0.055881232023239136,
-0.03325818106532097,
-0.07848577201366425,
0.17312823235988617,
0.024540694430470467,
-0.0061651552096009254,
0.07443506270647049,
-0.003522461513057351,
-0.11508023738861084,
-0.010607215575873852,
0.052675846964120865,
0.0349811390042305,
0.037739306688308716,
-0.04962595924735069,
-0.042683281004428864,
-0.01749579794704914,
-0.09396316111087799,
-0.03444045037031174,
-0.020330041646957397,
-0.01949146017432213,
-0.039503052830696106,
-0.027743680402636528,
-0.03974539041519165,
-0.07120208442211151,
-0.05279548093676567,
0.04256400093436241,
-0.03672203794121742,
0.14416925609111786,
-0.01705322414636612,
-0.006960459519177675,
0.04285401478409767,
-0.07427486777305603,
-0.010244072414934635,
-0.00557658402249217,
0.05271044000983238,
0.030107634142041206,
-0.03180016949772835,
-0.09506857395172119,
2.1560786976377853e-33,
0.07900342345237732,
-0.033132363110780716,
-0.0392431765794754,
0.05384785681962967,
-0.03425610810518265,
-0.017682000994682312,
-0.09889458864927292,
-0.04833946377038956,
0.006403758190572262,
0.03497469797730446,
-0.0451812781393528,
0.006322811357676983,
0.007883332669734955,
0.008658233098685741,
0.038460031151771545,
-0.09053543210029602,
-0.0570952370762825,
0.08019530773162842,
-0.06054838001728058,
0.006358070764690638,
-0.028145303949713707,
0.04075806587934494,
0.03152016922831535,
-0.015109894797205925,
-0.026504328474402428,
0.0025900350883603096,
0.06974080950021744,
-0.05518206208944321,
-0.07002931088209152,
0.018270114436745644,
-0.07439592480659485,
0.021412454545497894,
0.03351116180419922,
0.0067970650270581245,
0.047002241015434265,
-0.023097168654203415,
-0.046333882957696915,
-0.03421023488044739,
0.06612690538167953,
-0.00688847666606307,
-0.04490630701184273,
0.03100072778761387,
0.018874457105994225,
-0.01500261202454567,
0.054296087473630905,
0.01662762276828289,
0.010294175706803799,
-0.0340878888964653,
0.020529819652438164,
0.0008215592824853957,
-0.0008655537385493517,
0.019721083343029022,
0.0474197156727314,
0.005069393198937178,
-0.03307018429040909,
-0.00676928274333477,
-0.002511902479454875,
0.0318230539560318,
0.03627117723226547,
-0.023663517087697983,
-0.019301000982522964,
0.08194152265787125,
-0.014757907018065453,
-0.02649855427443981,
-0.005725950002670288,
0.0883067399263382,
-0.08634870499372482,
-0.013591320253908634,
0.037399228662252426,
-0.004723312333226204,
0.007091549225151539,
0.005130866076797247,
0.0346929132938385,
0.009191655553877354,
-0.0013597734505310655,
0.010870084166526794,
-0.013951731845736504,
0.0025023207999765873,
-0.040630292147397995,
0.000746585545130074,
-0.01071650069206953,
-0.03833761066198349,
0.03322113677859306,
-0.061606667935848236,
-0.12180187553167343,
-0.0658261775970459,
0.042934611439704895,
-0.02357260137796402,
0.026285195723176003,
-0.04522593319416046,
0.0032724873162806034,
-0.02256610058248043,
-0.04026961326599121,
-0.008474940434098244,
0.020557783544063568,
-4.3856878729973664e-33,
-0.0850171372294426,
0.0000032821722015796695,
-0.10902099311351776,
-0.008862088434398174,
-0.009132666513323784,
-0.019773108884692192,
-0.09106285870075226,
-0.055174317210912704,
0.08414442837238312,
-0.03864048048853874,
0.010352399200201035,
0.010190973989665508,
0.0403011329472065,
-0.022855468094348907,
0.022589029744267464,
-0.011440904811024666,
-0.10549424588680267,
0.045130450278520584,
-0.0232078917324543,
0.07020416855812073,
-0.005205463618040085,
0.03026532381772995,
-0.11612015962600708,
0.06433306634426117,
-0.0016031336272135377,
0.047383032739162445,
0.026111163198947906,
-0.03105046972632408,
0.1127735897898674,
-0.06292861700057983,
-0.03645326942205429,
-0.0018702151719480753,
-0.06734352558851242,
-0.03605066239833832,
-0.06330904364585876,
-0.011219127103686333,
0.03418629989027977,
-0.061413031071424484,
-0.02564159408211708,
-0.01648925617337227,
0.07339347153902054,
0.022966014221310616,
-0.08021663129329681,
0.009488923475146294,
-0.08611109107732773,
-0.0234029870480299,
-0.0103275952860713,
-0.00048200914170593023,
0.017309194430708885,
-0.02342717908322811,
0.0020693137776106596,
-0.025168495252728462,
0.03421150520443916,
0.10239515453577042,
-0.02679126337170601,
-0.09396076202392578,
-0.0212582778185606,
-0.06666269153356552,
-0.00616499176248908,
0.03409351035952568,
-0.0421208031475544,
0.05731869861483574,
0.0016193208284676075,
-0.05157309025526047,
0.03791208192706108,
-0.1416405737400055,
-0.0453396774828434,
-0.04786121845245361,
0.0395711325109005,
0.009181172586977482,
0.018590837717056274,
0.014592250809073448,
-0.05150216817855835,
-0.05468321591615677,
0.007683252450078726,
0.04453406482934952,
0.031155135482549667,
-0.0655258446931839,
-0.024800585582852364,
-0.001021919772028923,
-0.03292262926697731,
0.008517124690115452,
0.03234534710645676,
0.09291752427816391,
0.04045515134930611,
-0.0011904089478775859,
-0.04517567902803421,
0.05417509377002716,
-0.007954222150146961,
0.05006333813071251,
0.01046912744641304,
-0.04616014286875725,
-0.012410076335072517,
0.11970445513725281,
-0.022022295743227005,
-6.507409011646814e-8,
0.031224900856614113,
-0.011659679003059864,
-0.0520038865506649,
0.015405217185616493,
0.006073939613997936,
-0.027542095631361008,
-0.02001197636127472,
-0.03341292962431908,
-0.004614363424479961,
0.03804061934351921,
0.0643598809838295,
0.062263403087854385,
-0.08346068859100342,
-0.016593994572758675,
-0.10758469253778458,
0.04744859039783478,
0.03933532536029816,
0.0282883383333683,
0.009313642978668213,
0.007964824326336384,
0.06881348043680191,
-0.057164352387189865,
-0.06449032574892044,
-0.02325395867228508,
0.09396182000637054,
0.03817253187298775,
-0.007841881364583969,
0.09846676886081696,
-0.019442349672317505,
-0.010147512890398502,
0.021827297285199165,
-0.030221538618206978,
-0.1102108359336853,
-0.016810325905680656,
-0.002794839208945632,
0.10579187422990799,
0.06599925458431244,
0.005492354743182659,
-0.026341207325458527,
0.0012909985380247235,
0.01872054487466812,
0.020908569917082787,
-0.09080027043819427,
0.04131016135215759,
0.056166067719459534,
-0.03585932403802872,
-0.09447020292282104,
-0.03545490652322769,
-0.030340449884533882,
0.02018120512366295,
-0.07457573711872101,
-0.025305919349193573,
-0.006820257753133774,
0.024897942319512367,
0.02376710996031761,
0.06763509660959244,
0.0044085304252803326,
0.01010042056441307,
-0.0077650826424360275,
0.0051079681143164635,
0.16731944680213928,
0.06609435379505157,
0.019834274426102638,
0.0008923217537812889
] |
flair/ner-multi | b4f9c84fc84d2b1a687bf3f38d15218129e1d202 | 2021-03-02T22:17:41.000Z | [
"pytorch",
"en",
"de",
"nl",
"es",
"multilingual",
"dataset:conll2003",
"flair",
"token-classification",
"sequence-tagger-model"
] | token-classification | false | flair | null | flair/ner-multi | 8,414 | 4 | flair | ---
tags:
- flair
- token-classification
- sequence-tagger-model
language:
- en
- de
- nl
- es
- multilingual
datasets:
- conll2003
widget:
- text: "George Washington ging nach Washington"
---
## 4-Language NER in Flair (English, German, Dutch and Spanish)
This is the standard 4-class NER model for 4 CoNLL-03 languages that ships with [Flair](https://github.com/flairNLP/flair/). Also kind of works for related languages like French.
F1-Score: **92,16** (CoNLL-03 English), **87,33** (CoNLL-03 German revised), **88,96** (CoNLL-03 Dutch), **86,65** (CoNLL-03 Spanish)
Predicts 4 tags:
| **tag** | **meaning** |
|---------------------------------|-----------|
| PER | person name |
| LOC | location name |
| ORG | organization name |
| MISC | other name |
Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.
---
### Demo: How to use in Flair
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
```python
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("flair/ner-multi")
# make example sentence in any of the four languages
sentence = Sentence("George Washington ging nach Washington")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
print(entity)
```
This yields the following output:
```
Span [1,2]: "George Washington" [− Labels: PER (0.9977)]
Span [5]: "Washington" [− Labels: LOC (0.9895)]
```
So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging nach Washington*".
---
### Training: Script to train this model
The following Flair script was used to train this model:
```python
from flair.data import Corpus
from flair.datasets import CONLL_03, CONLL_03_GERMAN, CONLL_03_DUTCH, CONLL_03_SPANISH
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
# 1. get the multi-language corpus
corpus: Corpus = MultiCorpus([
CONLL_03(), # English corpus
CONLL_03_GERMAN(), # German corpus
CONLL_03_DUTCH(), # Dutch corpus
CONLL_03_SPANISH(), # Spanish corpus
])
# 2. what tag do we want to predict?
tag_type = 'ner'
# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
# 4. initialize each embedding we use
embedding_types = [
# GloVe embeddings
WordEmbeddings('glove'),
# FastText embeddings
WordEmbeddings('de'),
# contextual string embeddings, forward
FlairEmbeddings('multi-forward'),
# contextual string embeddings, backward
FlairEmbeddings('multi-backward'),
]
# embedding stack consists of Flair and GloVe embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)
# 5. initialize sequence tagger
from flair.models import SequenceTagger
tagger = SequenceTagger(hidden_size=256,
embeddings=embeddings,
tag_dictionary=tag_dictionary,
tag_type=tag_type)
# 6. initialize trainer
from flair.trainers import ModelTrainer
trainer = ModelTrainer(tagger, corpus)
# 7. run training
trainer.train('resources/taggers/ner-multi',
train_with_dev=True,
max_epochs=150)
```
---
### Cite
Please cite the following paper when using this model.
```
@misc{akbik2019multilingual,
title={Multilingual sequence labeling with one model},
author={Akbik, Alan and Bergmann, Tanja and Vollgraf, Roland}
booktitle = {{NLDL} 2019, Northern Lights Deep Learning Workshop},
year = {2019}
}
```
```
@inproceedings{akbik2018coling,
title={Contextual String Embeddings for Sequence Labeling},
author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
pages = {1638--1649},
year = {2018}
}
```
| [
-0.015656553208827972,
-0.006676780991256237,
-0.0052027348428964615,
-0.052068501710891724,
0.02968950755894184,
0.03607534244656563,
-0.019655423238873482,
0.014392981305718422,
0.025164538994431496,
-0.03614146634936333,
-0.004936967045068741,
-0.10041820257902145,
-0.02246933802962303,
0.06465353816747665,
-0.035932544618844986,
0.01891385391354561,
-0.0650457888841629,
-0.026708556339144707,
-0.09331520646810532,
-0.08803197741508484,
0.04501013457775116,
0.030946295708417892,
-0.01434346567839384,
0.037109944969415665,
0.05384117364883423,
-0.062074486166238785,
-0.05970621481537819,
0.009889633394777775,
0.015349756926298141,
0.0316682793200016,
0.008235176093876362,
0.10572478175163269,
-0.029490269720554352,
0.06955394893884659,
-0.053412605077028275,
-0.045708067715168,
-0.01265627145767212,
0.00803284626454115,
0.01614999584853649,
0.09640607237815857,
-0.05358493700623512,
-0.03840484470129013,
-0.0030173547565937042,
0.04560074955224991,
0.03968409076333046,
0.0530652292072773,
-0.048148784786462784,
0.006330783013254404,
-0.011339567601680756,
0.03960464149713516,
-0.10485511273145676,
0.01647218130528927,
0.020737167447805405,
0.020645417273044586,
0.021973736584186554,
0.022719625383615494,
-0.0009715394699014723,
-0.07535902410745621,
-0.02313411235809326,
0.06239378824830055,
0.02127641998231411,
-0.05210522189736366,
-0.05527893453836441,
0.05283186957240105,
-0.07147952169179916,
-0.002481110394001007,
-0.03261314332485199,
0.07112886756658554,
-0.036778829991817474,
0.03233781456947327,
0.04953795298933983,
-0.03172801434993744,
0.07814593613147736,
0.016355440020561218,
0.024945387616753578,
0.013598672114312649,
-0.043251365423202515,
0.041521042585372925,
0.030006790533661842,
-0.03825899213552475,
-0.012772082351148129,
0.05906206741929054,
0.06322610378265381,
-0.10364217311143875,
0.09039993584156036,
-0.04958083853125572,
0.01735559292137623,
-0.027250152081251144,
-0.016469409689307213,
0.06156489998102188,
-0.0668737068772316,
-0.05516296997666359,
0.06341858208179474,
0.001055449596606195,
-0.0640215054154396,
0.06108705699443817,
0.03313600644469261,
-0.00642335694283247,
-0.009324373677372932,
0.10149160772562027,
-0.048984453082084656,
0.03644714877009392,
-0.05661064386367798,
-0.03203953430056572,
-0.06376546621322632,
0.009071562439203262,
0.0070949443615973,
0.035989195108413696,
-0.010780980810523033,
-0.09518688917160034,
0.018796056509017944,
-0.0045417980290949345,
-0.04086749628186226,
-0.07947941869497299,
-0.018674489110708237,
-0.0013960967771708965,
0.06430406123399734,
-0.06604596227407455,
0.07909370213747025,
0.016303658485412598,
-0.02123667113482952,
0.022191425785422325,
-0.01617775857448578,
-0.09958744794130325,
0.0008725473890081048,
0.02860119752585888,
-0.06142452359199524,
-1.0017023324167606e-34,
0.07299235463142395,
0.07773566246032715,
-0.010460559278726578,
0.06656123697757721,
-0.08994397521018982,
-0.02033141814172268,
-0.0812825858592987,
-0.025274990126490593,
-0.09217043966054916,
-0.04554560035467148,
0.09716994315385818,
0.027732135728001595,
-0.08804674446582794,
0.03686373680830002,
0.027598455548286438,
0.0354657918214798,
0.03763173148036003,
-0.05920639634132385,
-0.051977697759866714,
0.0071167792193591595,
0.05041196569800377,
0.06645434349775314,
0.02205631509423256,
-0.03891448304057121,
-0.0009302219841629267,
0.07444863021373749,
-0.02140348218381405,
-0.09361676871776581,
-0.021340474486351013,
0.006893256213515997,
-0.0026220816653221846,
-0.002727207727730274,
0.008651633746922016,
0.007815818302333355,
-0.004356559365987778,
-0.027350131422281265,
-0.07433725148439407,
-0.07204687595367432,
0.008576731197535992,
-0.04254559054970741,
0.002331700176000595,
0.01486158836632967,
0.002758390735834837,
-0.0419287271797657,
-0.007683823816478252,
-0.0040763081051409245,
0.005522750783711672,
-0.0376417450606823,
0.047130126506090164,
0.0824873074889183,
0.009984659031033516,
-0.07356902956962585,
0.01847320795059204,
-0.03227698430418968,
-0.009066416881978512,
0.02015269175171852,
0.024276843294501305,
0.018065935000777245,
-0.012819060124456882,
-0.05608291178941727,
-0.08758495002985,
-0.09757973998785019,
0.0057278042659163475,
-0.06661104410886765,
0.059065546840429306,
0.017731625586748123,
-0.005444273818284273,
0.01096886396408081,
0.011305276304483414,
-0.024870965629816055,
0.004091246053576469,
0.013095673173666,
-0.02912658080458641,
0.025021672248840332,
0.033007148653268814,
0.05211667716503143,
0.031886257231235504,
-0.10783577710390091,
-0.042837198823690414,
0.0024343235418200493,
-0.08139015734195709,
-0.04153860732913017,
-0.06518338620662689,
0.03950699791312218,
-0.026425287127494812,
0.002150265034288168,
0.10592560470104218,
-0.02348613180220127,
0.09538857638835907,
0.02128463238477707,
0.0010635124053806067,
0.03683248907327652,
-0.04042204096913338,
-0.07728938013315201,
-0.04256425052881241,
-2.2185114066618648e-33,
0.015177225694060326,
0.013420438393950462,
-0.06820064038038254,
0.03477475047111511,
0.013627290725708008,
-0.034436341375112534,
0.10597267001867294,
0.11509761959314346,
0.0007489131530746818,
-0.060181766748428345,
0.08881562203168869,
-0.07385652512311935,
0.03303093463182449,
0.04961644858121872,
0.06696240603923798,
-0.0015638029435649514,
-0.05851950868964195,
0.01316414587199688,
0.018747879192233086,
0.09444480389356613,
0.05437618866562843,
0.04509233310818672,
-0.1032559722661972,
0.05905960127711296,
-0.0042089722119271755,
-0.015199501067399979,
-0.010807319544255733,
-0.044434934854507446,
-0.0755646601319313,
-0.02417898364365101,
0.0005257376469671726,
-0.013676204718649387,
-0.020357590168714523,
0.02500760741531849,
-0.053931500762701035,
-0.01893514022231102,
-0.007500572130084038,
0.003269718959927559,
-0.03255536034703255,
0.11065355688333511,
-0.022115405648946762,
0.06975209712982178,
-0.023098211735486984,
0.03834256902337074,
-0.0573519691824913,
-0.017931276932358742,
-0.03725970536470413,
0.0188335832208395,
-0.011230835691094398,
-0.0230984129011631,
0.05041484534740448,
-0.02069207653403282,
-0.09575331211090088,
-0.006386949215084314,
-0.009544960223138332,
-0.07258045673370361,
0.07238605618476868,
-0.11958625167608261,
-0.09956133365631104,
0.013093790039420128,
-0.05109516531229019,
0.021558169275522232,
0.08603882789611816,
-0.007899075746536255,
0.022161873057484627,
-0.05254875496029854,
-0.06772033125162125,
0.07731639593839645,
-0.06467580050230026,
0.01418526004999876,
0.07857634127140045,
0.0627736821770668,
-0.04218166694045067,
-0.017944885417819023,
-0.01670423522591591,
-0.07344205677509308,
0.0013679955154657364,
0.028143515810370445,
-0.00522143067792058,
-0.00012730273010674864,
-0.04566870257258415,
-0.0089028961956501,
0.04624888673424721,
0.021338554099202156,
0.03173951432108879,
0.021828778088092804,
0.0312060434371233,
0.0644097551703453,
0.07201919704675674,
-0.020426137372851372,
-0.0015234382590278983,
0.10913398861885071,
0.02298884652554989,
0.08415836840867996,
0.014486883766949177,
-5.2491010649191594e-8,
-0.061156436800956726,
-0.023364298045635223,
-0.0685369223356247,
0.03363713622093201,
-0.07958080619573593,
0.009917001239955425,
-0.024397728964686394,
-0.08575405925512314,
-0.03302740305662155,
0.03378904610872269,
0.056800343096256256,
0.06707130372524261,
-0.10945968329906464,
-0.1029299721121788,
-0.03876374661922455,
0.03356825187802315,
0.01810842752456665,
0.10558914393186569,
0.009213590994477272,
0.04149240255355835,
0.03937168046832085,
0.058869294822216034,
-0.008279845118522644,
0.03732167184352875,
0.03551792353391647,
-0.016973132267594337,
-0.04823330417275429,
0.03317086398601532,
0.08471362292766571,
-0.05688342824578285,
0.04779451712965965,
0.03835378214716911,
0.03472563251852989,
-0.054274097084999084,
0.026891861110925674,
0.0539814718067646,
-0.07471854984760284,
-0.016216829419136047,
-0.012254184111952782,
0.032729193568229675,
0.11522688716650009,
-0.01761166751384735,
-0.14394547045230865,
-0.017292378470301628,
0.018940294161438942,
-0.06927556544542313,
-0.07436010241508484,
-0.10912750661373138,
0.06631026417016983,
0.017179323360323906,
-0.011186061426997185,
-0.00842589046806097,
-0.08486747741699219,
0.11407209187746048,
0.03119237907230854,
0.02440495975315571,
-0.049569517374038696,
0.034254640340805054,
0.025071507319808006,
-0.046629637479782104,
0.09133114665746689,
0.048208147287368774,
0.01503978855907917,
0.026442768052220345
] |
facebook/detr-resnet-101 | 1a655091c08729eecf4fc5063c27fa5ea82aeaa3 | 2022-06-27T08:30:19.000Z | [
"pytorch",
"detr",
"object-detection",
"dataset:coco",
"arxiv:2005.12872",
"transformers",
"vision",
"license:apache-2.0"
] | object-detection | false | facebook | null | facebook/detr-resnet-101 | 8,397 | 1 | transformers | ---
license: apache-2.0
tags:
- object-detection
- vision
datasets:
- coco
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg
example_title: Savanna
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
example_title: Football Match
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
example_title: Airport
---
# DETR (End-to-End Object Detection) model with ResNet-101 backbone
DEtection TRansformer (DETR) model trained end-to-end on COCO 2017 object detection (118k annotated images). It was introduced in the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Carion et al. and first released in [this repository](https://github.com/facebookresearch/detr).
Disclaimer: The team releasing DETR did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The DETR model is an encoder-decoder transformer with a convolutional backbone. Two heads are added on top of the decoder outputs in order to perform object detection: a linear layer for the class labels and a MLP (multi-layer perceptron) for the bounding boxes. The model uses so-called object queries to detect objects in an image. Each object query looks for a particular object in the image. For COCO, the number of object queries is set to 100.
The model is trained using a "bipartite matching loss": one compares the predicted classes + bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as bounding box). The Hungarian matching algorithm is used to create an optimal one-to-one mapping between each of the N queries and each of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and generalized IoU loss (for the bounding boxes) are used to optimize the parameters of the model.
## Intended uses & limitations
You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=facebook/detr) to look for all available DETR models.
### How to use
Here is how to use this model:
```python
from transformers import DetrFeatureExtractor, DetrForObjectDetection
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = DetrFeatureExtractor.from_pretrained('facebook/detr-resnet-101')
model = DetrForObjectDetection.from_pretrained('facebook/detr-resnet-101')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
# model predicts bounding boxes and corresponding COCO classes
logits = outputs.logits
bboxes = outputs.pred_boxes
```
Currently, both the feature extractor and model support PyTorch.
## Training data
The DETR model was trained on [COCO 2017 object detection](https://cocodataset.org/#download), a dataset consisting of 118k/5k annotated images for training/validation respectively.
## Training procedure
### Preprocessing
The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py).
Images are resized/rescaled such that the shortest side is at least 800 pixels and the largest side at most 1333 pixels, and normalized across the RGB channels with the ImageNet mean (0.485, 0.456, 0.406) and standard deviation (0.229, 0.224, 0.225).
### Training
The model was trained for 300 epochs on 16 V100 GPUs. This takes 3 days, with 4 images per GPU (hence a total batch size of 64).
## Evaluation results
This model achieves an AP (average precision) of **43.5** on COCO 2017 validation. For more details regarding evaluation results, we refer to table 1 of the original paper.
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2005-12872,
author = {Nicolas Carion and
Francisco Massa and
Gabriel Synnaeve and
Nicolas Usunier and
Alexander Kirillov and
Sergey Zagoruyko},
title = {End-to-End Object Detection with Transformers},
journal = {CoRR},
volume = {abs/2005.12872},
year = {2020},
url = {https://arxiv.org/abs/2005.12872},
archivePrefix = {arXiv},
eprint = {2005.12872},
timestamp = {Thu, 28 May 2020 17:38:09 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2005-12872.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | [
-0.10318499803543091,
-0.010600433684885502,
0.02613512985408306,
-0.022755276411771774,
0.13274496793746948,
-0.05331333726644516,
-0.015138912945985794,
0.014471438713371754,
0.0007851815316826105,
-0.013555631041526794,
0.045525334775447845,
-0.042567282915115356,
-0.030034275725483894,
0.11057132482528687,
-0.0037162371445447206,
0.03476666659116745,
0.015618838369846344,
0.06524281948804855,
-0.043737735599279404,
-0.004095159471035004,
-0.008560764603316784,
0.032952651381492615,
0.03367231786251068,
-0.04039786756038666,
-0.05945100262761116,
-0.006844552233815193,
-0.05069735273718834,
-0.09114275127649307,
-0.0038249569479376078,
-0.10251177847385406,
0.0069023980759084225,
0.03983939439058304,
0.01028335839509964,
0.06053052470088005,
-0.05209669843316078,
0.048434045165777206,
0.01999475806951523,
-0.01699751242995262,
-0.02124818228185177,
-0.02057749778032303,
0.031760942190885544,
-0.02325344644486904,
0.048849187791347504,
-0.023280754685401917,
0.02967206761240959,
0.02613350935280323,
0.007806914858520031,
-0.059479061514139175,
0.03382590785622597,
-0.07603158801794052,
-0.04923306405544281,
-0.04661772772669792,
-0.05705571919679642,
0.11591999977827072,
0.025055784732103348,
-0.005173426121473312,
-0.02464459091424942,
-0.056035179644823074,
0.04103095084428787,
0.018071183934807777,
0.020779436454176903,
0.015472530387341976,
-0.04796416312456131,
-0.01644291914999485,
-0.03138921409845352,
-0.06409204751253128,
0.04797255992889404,
-0.05519897863268852,
0.07466690987348557,
-0.041581109166145325,
-0.04563244432210922,
0.02380235306918621,
0.017162444069981575,
-0.00839658547192812,
0.008385943248867989,
0.0626910850405693,
0.08626007288694382,
0.02629910223186016,
0.048965394496917725,
-0.1384388655424118,
0.02431136928498745,
-0.03486313298344612,
0.0641278475522995,
-0.01330488920211792,
0.0764063373208046,
0.017085766419768333,
-0.10290557146072388,
0.04525972902774811,
-0.015139040537178516,
-0.02532815746963024,
-0.04607229307293892,
-0.06636986881494522,
0.017788507044315338,
0.06023557111620903,
-0.06613028049468994,
-0.06159653142094612,
0.032297831028699875,
-0.027611374855041504,
-0.02935708314180374,
0.10921511054039001,
-0.01910535804927349,
-0.07529789209365845,
0.057310156524181366,
0.012766287662088871,
0.040107861161231995,
0.00020018924260511994,
0.009327474050223827,
0.07909419387578964,
0.05435355380177498,
0.011613174341619015,
-0.0073683736845850945,
0.008498858660459518,
-0.07470318675041199,
-0.06987997144460678,
-0.024469219148159027,
-0.00201192544773221,
-0.06221282482147217,
0.006159736774861813,
0.004184928257018328,
-0.015273590572178364,
0.004098538309335709,
-0.010610681027173996,
-0.04427162930369377,
-0.0341365747153759,
0.059719886630773544,
-0.015408634208142757,
-0.055194541811943054,
4.016803052029947e-33,
0.024861648678779602,
0.0038187606260180473,
0.02472776174545288,
0.013421640731394291,
0.01100411918014288,
-0.030970653519034386,
-0.013657234609127045,
0.03000481240451336,
-0.07554223388433456,
0.052513428032398224,
-0.0813562199473381,
0.009769323281943798,
-0.06962182372808456,
0.03579578176140785,
0.03710559383034706,
-0.08162814378738403,
-0.03450189530849457,
0.0000329364811477717,
-0.005960051901638508,
0.05939868092536926,
-0.011477022431790829,
0.0056823850609362125,
-0.01569184474647045,
-0.03734376281499863,
0.01251321192830801,
0.08565843850374222,
-0.010575121268630028,
-0.03841226547956467,
0.05697519704699516,
0.013640675693750381,
0.012661910615861416,
0.062061138451099396,
-0.0036093764938414097,
0.056027572602033615,
0.00018536443531047553,
-0.08793234825134277,
-0.03258690983057022,
-0.03450058773159981,
-0.08255201578140259,
-0.04002099856734276,
0.03857678920030594,
0.04503651708364487,
-0.061118561774492264,
-0.07699918746948242,
0.016941115260124207,
-0.033105380833148956,
0.02952299825847149,
0.06043003872036934,
0.011679870076477528,
0.07928186655044556,
0.03156094625592232,
0.02150147408246994,
-0.0635969266295433,
-0.0724041536450386,
-0.012901246547698975,
0.02133684791624546,
0.03127947449684143,
0.038592442870140076,
0.026285897940397263,
0.033073969185352325,
-0.008394110947847366,
-0.02459576539695263,
-0.03646070882678032,
0.007675203029066324,
-0.013407099060714245,
-0.005486960522830486,
0.016932744532823563,
-0.009216010570526123,
-0.0042275977320969105,
0.058408427983522415,
-0.04119867831468582,
0.06215949356555939,
0.02443595603108406,
-0.013452719897031784,
0.05112170800566673,
-0.032872699201107025,
-0.008900487795472145,
0.03653443232178688,
-0.033273372799158096,
0.03405369445681572,
-0.09967567771673203,
0.05759318917989731,
0.055457230657339096,
-0.03326158598065376,
-0.032225657254457474,
0.0713481456041336,
0.052054263651371,
-0.05879386141896248,
-0.03887389972805977,
0.05313313379883766,
-0.0002475871588103473,
0.06975988298654556,
-0.09112876653671265,
0.00237107090651989,
-0.014784145168960094,
-3.608040687236836e-33,
0.07088962942361832,
0.04081225022673607,
-0.0687892809510231,
0.019588453695178032,
-0.002713987370952964,
-0.03217695653438568,
0.09334530681371689,
0.10032469034194946,
0.02675301395356655,
-0.054577089846134186,
0.07541010528802872,
-0.022868212312459946,
0.007095592562109232,
-0.0626174584031105,
0.03489815816283226,
-0.03181663155555725,
-0.020470334216952324,
-0.13931229710578918,
-0.056262724101543427,
0.004817817360162735,
0.02193750999867916,
0.11596492677927017,
-0.06990280002355576,
-0.04229414090514183,
-0.09082518517971039,
0.06556010246276855,
0.014243746176362038,
0.08474518358707428,
0.006416627671569586,
-0.029719680547714233,
0.0017977628158405423,
-0.030915580689907074,
-0.036825258284807205,
0.022323941811919212,
-0.0421019084751606,
-0.0032857274636626244,
-0.0012485072948038578,
-0.011373097077012062,
-0.04576534405350685,
0.027637120336294174,
0.07280497997999191,
0.03214210644364357,
-0.12015243619680405,
0.08421218395233154,
-0.04362141713500023,
-0.07809202373027802,
-0.010231629014015198,
0.020178083330392838,
0.046803493052721024,
-0.022467171773314476,
-0.004583167843520641,
-0.06383009254932404,
-0.16952179372310638,
0.011378506198525429,
-0.017656201496720314,
0.001523419632576406,
0.05459301918745041,
0.030032752081751823,
0.030328871682286263,
0.02236666902899742,
0.05627773329615593,
-0.015515136532485485,
-0.13217739760875702,
-0.06552775204181671,
0.03872565180063248,
0.03442372381687164,
-0.07352562248706818,
-0.02712349221110344,
0.009048822335898876,
0.08371754735708237,
0.09720517694950104,
0.018909774720668793,
0.026819391176104546,
-0.02983267232775688,
-0.01642928272485733,
-0.023961106315255165,
0.013723975978791714,
-0.0069500720128417015,
0.07593555748462677,
-0.041960783302783966,
-0.08594829589128494,
-0.058317944407463074,
0.052869971841573715,
0.16739456355571747,
0.077601857483387,
0.08754187822341919,
-0.029484199360013008,
0.007912482134997845,
0.03773384541273117,
0.023810910061001778,
-0.027646662667393684,
0.026220202445983887,
0.034639280289411545,
0.11661908775568008,
0.038965314626693726,
-5.9430725229958625e-8,
-0.052634235471487045,
0.04864851385354996,
-0.10231873393058777,
-0.043455321341753006,
-0.05073257163167,
0.02240682765841484,
0.02806372195482254,
0.050440434366464615,
-0.02617560513317585,
0.009940378367900848,
0.034498926252126694,
0.01513212826102972,
-0.04189768061041832,
0.07389209419488907,
0.03876335546374321,
-0.012934636324644089,
-0.03242778033018112,
0.05890422686934471,
-0.0706063061952591,
0.0014511256013065577,
-0.08498724550008774,
-0.01869966648519039,
-0.008358362130820751,
-0.04599789157509804,
-0.005874917842447758,
-0.03908331319689751,
-0.05991891026496887,
0.04218285158276558,
-0.021567601710557938,
-0.05700778216123581,
-0.05752810463309288,
0.033097799867391586,
0.05482638627290726,
-0.04867234081029892,
0.1202910766005516,
0.11317335814237595,
-0.01732628047466278,
-0.041225604712963104,
0.0004050733696203679,
0.010835281573235989,
0.056689128279685974,
-0.031709179282188416,
-0.06891623139381409,
0.031095553189516068,
0.04085405915975571,
0.03879610076546669,
0.07966618239879608,
-0.08284348994493484,
-0.04504859820008278,
0.024065086618065834,
0.08973517268896103,
-0.033633310347795486,
-0.06458281725645065,
0.04234752804040909,
0.017077891156077385,
-0.019751256331801414,
0.029764143750071526,
-0.08468136191368103,
0.03239414468407631,
0.10571659356355667,
0.06497062742710114,
-0.020788202062249184,
-0.013141675852239132,
0.0010291286744177341
] |
deepset/gelectra-large-germanquad | 1b7c5a7fe58943f9df30968460128f2766315f81 | 2022-07-19T14:39:31.000Z | [
"pytorch",
"tf",
"electra",
"question-answering",
"de",
"dataset:deepset/germanquad",
"transformers",
"exbert",
"license:mit",
"autotrain_compatible"
] | question-answering | false | deepset | null | deepset/gelectra-large-germanquad | 8,353 | 9 | transformers | ---
language: de
datasets:
- deepset/germanquad
license: mit
thumbnail: https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg
tags:
- exbert
---

## Overview
**Language model:** gelectra-large-germanquad
**Language:** German
**Training data:** GermanQuAD train set (~ 12MB)
**Eval data:** GermanQuAD test set (~ 5MB)
**Infrastructure**: 1x V100 GPU
**Published**: Apr 21st, 2021
## Details
- We trained a German question answering model with a gelectra-large model as its basis.
- The dataset is GermanQuAD, a new, German language dataset, which we hand-annotated and published [online](https://deepset.ai/germanquad).
- The training dataset is one-way annotated and contains 11518 questions and 11518 answers, while the test dataset is three-way annotated so that there are 2204 questions and with 2204·3−76 = 6536 answers, because we removed 76 wrong answers.
See https://deepset.ai/germanquad for more details and dataset download in SQuAD format.
## Hyperparameters
```
batch_size = 24
n_epochs = 2
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
embeds_dropout_prob = 0.1
```
## Performance
We evaluated the extractive question answering performance on our GermanQuAD test set.
Model types and training data are included in the model name.
For finetuning XLM-Roberta, we use the English SQuAD v2.0 dataset.
The GELECTRA models are warm started on the German translation of SQuAD v1.1 and finetuned on [GermanQuAD](https://deepset.ai/germanquad).
The human baseline was computed for the 3-way test set by taking one answer as prediction and the other two as ground truth.

## Authors
**Timo Möller:** timo.moeller@deepset.ai
**Julian Risch:** julian.risch@deepset.ai
**Malte Pietsch:** malte.pietsch@deepset.ai
## About us
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://huggingface.co/spaces/deepset/README/resolve/main/haystack-logo-colored.svg" class="w-40"/>
</div>
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://huggingface.co/spaces/deepset/README/resolve/main/deepset-logo-colored.svg" class="w-40"/>
</div>
</div>
[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.
Some of our other work:
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2)
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
## Get in touch and join the Haystack community
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://haystack.deepset.ai">Documentation</a></strong>.
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community/join"><img alt="slack" class="h-7 inline-block m-0" style="margin: 0" src="https://huggingface.co/spaces/deepset/README/resolve/main/Slack_RGB.png"/>community open to everyone!</a></strong></p>
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
By the way: [we're hiring!](http://www.deepset.ai/jobs)
| [
-0.07481022924184799,
-0.027764294296503067,
0.006425043102353811,
0.07286721467971802,
0.006982266902923584,
0.028809329494833946,
-0.011222079396247864,
0.0503423847258091,
-0.03125924989581108,
-0.0571051724255085,
0.027536509558558464,
-0.09209080040454865,
-0.005787962581962347,
0.07001610845327377,
-0.07383416593074799,
0.049403492361307144,
0.009154506959021091,
-0.04053926467895508,
-0.13404984772205353,
0.013841305859386921,
0.011071179062128067,
-0.03458911553025246,
0.06596128642559052,
-0.06583252549171448,
0.10119571536779404,
0.0015381958801299334,
0.01873111166059971,
-0.047802217304706573,
0.010730626061558723,
-0.032272886484861374,
0.03691738843917847,
0.06756040453910828,
0.04141772538423538,
0.00491536408662796,
0.10322531312704086,
0.024567821994423866,
0.030295852571725845,
-0.06988613307476044,
0.01327834278345108,
0.03864890709519386,
-0.0822172462940216,
-0.047730449587106705,
0.014238509349524975,
0.030558399856090546,
0.07921971380710602,
0.0710306465625763,
0.0010747360065579414,
0.02050352655351162,
-0.05813876539468765,
-0.007341661956161261,
-0.0665683001279831,
-0.02274252288043499,
0.016346080228686333,
0.037849586457014084,
-0.0038209096528589725,
-0.05282026529312134,
-0.018437253311276436,
-0.014838026836514473,
-0.014156204648315907,
-0.0027083156164735556,
-0.04917749762535095,
-0.015738895162940025,
-0.005086903460323811,
0.01799938641488552,
-0.05841444432735443,
-0.031667083501815796,
-0.06389883905649185,
-0.021673420444130898,
-0.04479227960109711,
-0.012883253395557404,
0.021283943206071854,
0.015275916084647179,
-0.012717015109956264,
0.054004866629838943,
0.053171947598457336,
-0.04099201783537865,
0.045034728944301605,
-0.040511589497327805,
0.07966298609972,
-0.11510422080755234,
-0.023242052644491196,
-0.024668151512742043,
0.05370519682765007,
-0.029300658032298088,
0.10106948763132095,
-0.005315558984875679,
0.07794011384248734,
0.02462509460747242,
-0.014082249253988266,
-0.02540501207113266,
-0.01169066596776247,
-0.07708790898323059,
-0.006655263714492321,
0.05886080488562584,
0.043240584433078766,
0.016651492565870285,
0.08293987065553665,
-0.015177811495959759,
-0.05726327374577522,
0.0834745466709137,
0.0633746087551117,
0.021088849753141403,
0.05329423397779465,
-0.009278804063796997,
-0.059523168951272964,
-0.026736954227089882,
0.06076819822192192,
0.1118394285440445,
0.033892448991537094,
-0.10391993075609207,
0.040736157447099686,
-0.021403761580586433,
-0.021508289501070976,
-0.02885049395263195,
0.01607663370668888,
-0.03199554234743118,
0.006985102780163288,
-0.011488046497106552,
-0.013530684635043144,
-0.03424503281712532,
0.00016519197379238904,
0.012443210929632187,
0.00280574569478631,
0.06131847947835922,
-0.02955329790711403,
0.008701802231371403,
-0.019519072026014328,
5.0718929858654464e-33,
0.04129800572991371,
-0.03799634426832199,
-0.027327848598361015,
-0.03473999723792076,
-0.015006889589130878,
-0.01873009093105793,
-0.03846222907304764,
0.03003889136016369,
-0.07689817994832993,
0.03635786846280098,
-0.10287170857191086,
0.01614220067858696,
-0.07114028185606003,
0.0801408588886261,
0.025896862149238586,
0.05255792662501335,
-0.028785329312086105,
0.07216230779886246,
-0.026258543133735657,
0.05345387011766434,
0.16386009752750397,
-0.02543153427541256,
0.007940554060041904,
-0.06421849876642227,
-0.00749354949221015,
0.02337079867720604,
0.08429502695798874,
-0.051942624151706696,
-0.05511869490146637,
0.013664111495018005,
-0.09968763589859009,
-0.028225550428032875,
-0.07759162783622742,
0.00454544834792614,
-0.04464557394385338,
0.03704668581485748,
0.02709290198981762,
-0.031670887023210526,
-0.07418302446603775,
-0.07266420871019363,
0.08053810894489288,
0.028343001380562782,
-0.005366671830415726,
0.0014148039044812322,
0.05976910516619682,
0.0035018122289329767,
0.03165862336754799,
-0.07543547451496124,
-0.04780280217528343,
-0.04580647498369217,
-0.04373772069811821,
0.012383749708533287,
-0.053381308913230896,
-0.024668855592608452,
0.011089352890849113,
0.11577950417995453,
0.13467568159103394,
0.03806282579898834,
0.022019296884536743,
0.054297566413879395,
-0.059327781200408936,
0.0034184763208031654,
-0.0018343403935432434,
0.03577771037817001,
0.03287982568144798,
-0.032212287187576294,
-0.034466709941625595,
0.03515135869383812,
-0.01656734012067318,
0.07458752393722534,
-0.07113194465637207,
-0.043424151837825775,
0.059499870985746384,
-0.03464638069272041,
0.04053191468119621,
-0.05703991651535034,
0.0039514899253845215,
0.006253521889448166,
-0.0194759089499712,
-0.07022127509117126,
-0.02756769396364689,
0.0026164092123508453,
-0.047838903963565826,
-0.13572311401367188,
-0.038482341915369034,
-0.02328360266983509,
0.017409726977348328,
-0.12833687663078308,
-0.0021921428851783276,
-0.02146049030125141,
-0.011961252428591251,
-0.027388740330934525,
-0.04806388169527054,
-0.049348630011081696,
-0.03989175334572792,
-5.933335653766328e-33,
-0.011099809780716896,
0.029931260272860527,
-0.06693187355995178,
0.061680153012275696,
-0.030172109603881836,
-0.04626546800136566,
0.03361620381474495,
0.18481063842773438,
-0.006235245615243912,
-0.03197772428393364,
0.03602258488535881,
-0.023439642041921616,
-0.004429686348885298,
0.04591643065214157,
0.0063500069081783295,
-0.0014309908729046583,
0.03764256089925766,
-0.04321735352277756,
0.016216974705457687,
0.05107865855097771,
-0.07557550817728043,
0.0794021487236023,
-0.046217285096645355,
0.03346562013030052,
-0.11058705300092697,
0.09270139038562775,
0.037885501980781555,
0.03161974251270294,
-0.012833045795559883,
0.010916789062321186,
-0.06965966522693634,
-0.02786247991025448,
-0.07449112087488174,
-0.03144066780805588,
-0.03361683338880539,
0.03661201149225235,
0.04088636115193367,
-0.0277334526181221,
-0.0623636431992054,
0.08237899839878082,
0.0447942279279232,
-0.005506712011992931,
-0.12178033590316772,
0.09122645109891891,
-0.0006996646407060325,
-0.018051307648420334,
-0.04550657048821449,
-0.04902562126517296,
0.0052626789547502995,
-0.023337651044130325,
0.040785107761621475,
-0.049252308905124664,
-0.02639220841228962,
0.017730826511979103,
-0.04718495532870293,
-0.06302179396152496,
-0.00993772130459547,
-0.05975298956036568,
-0.00898298341780901,
-0.0012298726942390203,
-0.05698517709970474,
0.042390432208776474,
0.011545456945896149,
0.0034710224717855453,
0.012477741576731205,
-0.0884312093257904,
-0.07339568436145782,
0.03333296254277229,
0.028842130675911903,
0.005100285168737173,
-0.013010365888476372,
0.012871800921857357,
0.0719890147447586,
0.018787406384944916,
0.02555052377283573,
-0.04194728657603264,
0.017677927389740944,
0.019453078508377075,
0.08150438219308853,
-0.02839253656566143,
-0.035329896956682205,
0.01161180343478918,
0.06903642416000366,
0.09887879341840744,
0.07684061676263809,
0.07173854857683182,
0.015404373407363892,
0.12272762507200241,
0.034406282007694244,
0.014313348568975925,
-0.015620633959770203,
0.06830646842718124,
0.013253632932901382,
0.07433982938528061,
0.02843954786658287,
-5.926225199459623e-8,
-0.10949085652828217,
0.07709550857543945,
-0.02993672527372837,
0.04109511524438858,
-0.048847947269678116,
-0.10933078825473785,
-0.05951709672808647,
0.03659014031291008,
-0.06149624288082123,
-0.060500096529722214,
0.0022472769487649202,
0.09441879391670227,
-0.1535051167011261,
0.008293282240629196,
-0.008342580869793892,
0.03795710951089859,
-0.016949325799942017,
0.02344873733818531,
-0.00968707725405693,
0.0020304196514189243,
0.08728771656751633,
0.011367886327207088,
0.04250556230545044,
-0.002100649755448103,
-0.0012901532463729382,
-0.003918214235454798,
-0.07028448581695557,
0.057092439383268356,
-0.006742297671735287,
-0.03942611813545227,
0.03574620187282562,
0.007417737040668726,
-0.036438073962926865,
0.027160629630088806,
0.055726829916238785,
-0.0031617910135537386,
-0.05000599846243858,
-0.005417742300778627,
-0.03098149783909321,
0.009947664104402065,
0.017544955015182495,
-0.0023841531947255135,
-0.04544037953019142,
-0.010894372127950191,
0.062406159937381744,
-0.022171765565872192,
-0.06280838698148727,
-0.09666550904512405,
0.032893575727939606,
0.0028522470965981483,
-0.02479003369808197,
-0.06732341647148132,
-0.03707002475857735,
0.07283685356378555,
0.016380110755562782,
0.025805803015828133,
-0.03243793547153473,
0.010122286155819893,
-0.022924475371837616,
0.08593281358480453,
0.02772214077413082,
-0.045845236629247665,
-0.04863186180591583,
0.05456266924738884
] |
human-centered-summarization/financial-summarization-pegasus | a720f829427cb196a5618a0416473b8597cd106e | 2022-06-29T06:25:30.000Z | [
"pytorch",
"tf",
"pegasus",
"text2text-generation",
"en",
"dataset:xsum",
"arxiv:1912.08777",
"transformers",
"summarization",
"model-index",
"autotrain_compatible"
] | summarization | false | human-centered-summarization | null | human-centered-summarization/financial-summarization-pegasus | 8,315 | 22 | transformers | ---
language:
- en
tags: summarization
datasets:
- xsum
metrics:
- rouge
widget:
- text: "National Commercial Bank (NCB), Saudi Arabia\u2019s largest lender by assets,\
\ agreed to buy rival Samba Financial Group for $15 billion in the biggest banking\
\ takeover this year.NCB will pay 28.45 riyals ($7.58) for each Samba share, according\
\ to a statement on Sunday, valuing it at about 55.7 billion riyals. NCB will\
\ offer 0.739 new shares for each Samba share, at the lower end of the 0.736-0.787\
\ ratio the banks set when they signed an initial framework agreement in June.The\
\ offer is a 3.5% premium to Samba\u2019s Oct. 8 closing price of 27.50 riyals\
\ and about 24% higher than the level the shares traded at before the talks were\
\ made public. Bloomberg News first reported the merger discussions.The new bank\
\ will have total assets of more than $220 billion, creating the Gulf region\u2019\
s third-largest lender. The entity\u2019s $46 billion market capitalization nearly\
\ matches that of Qatar National Bank QPSC, which is still the Middle East\u2019\
s biggest lender with about $268 billion of assets."
model-index:
- name: human-centered-summarization/financial-summarization-pegasus
results:
- task:
type: summarization
name: Summarization
dataset:
name: xsum
type: xsum
config: default
split: test
metrics:
- name: ROUGE-1
type: rouge
value: 35.2055
verified: true
- name: ROUGE-2
type: rouge
value: 16.5689
verified: true
- name: ROUGE-L
type: rouge
value: 30.1285
verified: true
- name: ROUGE-LSUM
type: rouge
value: 30.1706
verified: true
- name: loss
type: loss
value: 2.7092134952545166
verified: true
- name: gen_len
type: gen_len
value: 15.1414
verified: true
---
### PEGASUS for Financial Summarization
This model was fine-tuned on a novel financial news dataset, which consists of 2K articles from [Bloomberg](https://www.bloomberg.com/europe), on topics such as stock, markets, currencies, rate and cryptocurrencies.
It is based on the [PEGASUS](https://huggingface.co/transformers/model_doc/pegasus.html) model and in particular PEGASUS fine-tuned on the Extreme Summarization (XSum) dataset: [google/pegasus-xsum model](https://huggingface.co/google/pegasus-xsum). PEGASUS was originally proposed by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf).
### How to use
We provide a simple snippet of how to use this model for the task of financial summarization in PyTorch.
```Python
from transformers import PegasusTokenizer, PegasusForConditionalGeneration, TFPegasusForConditionalGeneration
# Let's load the model and the tokenizer
model_name = "human-centered-summarization/financial-summarization-pegasus"
tokenizer = PegasusTokenizer.from_pretrained(model_name)
model = PegasusForConditionalGeneration.from_pretrained(model_name) # If you want to use the Tensorflow model
# just replace with TFPegasusForConditionalGeneration
# Some text to summarize here
text_to_summarize = "National Commercial Bank (NCB), Saudi Arabia’s largest lender by assets, agreed to buy rival Samba Financial Group for $15 billion in the biggest banking takeover this year.NCB will pay 28.45 riyals ($7.58) for each Samba share, according to a statement on Sunday, valuing it at about 55.7 billion riyals. NCB will offer 0.739 new shares for each Samba share, at the lower end of the 0.736-0.787 ratio the banks set when they signed an initial framework agreement in June.The offer is a 3.5% premium to Samba’s Oct. 8 closing price of 27.50 riyals and about 24% higher than the level the shares traded at before the talks were made public. Bloomberg News first reported the merger discussions.The new bank will have total assets of more than $220 billion, creating the Gulf region’s third-largest lender. The entity’s $46 billion market capitalization nearly matches that of Qatar National Bank QPSC, which is still the Middle East’s biggest lender with about $268 billion of assets."
# Tokenize our text
# If you want to run the code in Tensorflow, please remember to return the particular tensors as simply as using return_tensors = 'tf'
input_ids = tokenizer(text_to_summarize, return_tensors="pt").input_ids
# Generate the output (Here, we use beam search but you can also use any other strategy you like)
output = model.generate(
input_ids,
max_length=32,
num_beams=5,
early_stopping=True
)
# Finally, we can print the generated summary
print(tokenizer.decode(output[0], skip_special_tokens=True))
# Generated Output: Saudi bank to pay a 3.5% premium to Samba share price. Gulf region’s third-largest lender will have total assets of $220 billion
```
## Evaluation Results
The results before and after the fine-tuning on our dataset are shown below:
| Fine-tuning | R-1 | R-2 | R-L | R-S |
|:-----------:|:-----:|:-----:|:------:|:-----:|
| Yes | 23.55 | 6.99 | 18.14 | 21.36 |
| No | 13.8 | 2.4 | 10.63 | 12.03 |
## Citation
You can find more details about this work in the following workshop paper. If you use our model in your research, please consider citing our paper:
> T. Passali, A. Gidiotis, E. Chatzikyriakidis and G. Tsoumakas. 2021.
> Towards Human-Centered Summarization: A Case Study on Financial News.
> In Proceedings of the First Workshop on Bridging Human-Computer Interaction and Natural Language Processing(pp. 21–27). Association for Computational Linguistics.
BibTeX entry:
```
@inproceedings{passali-etal-2021-towards,
title = "Towards Human-Centered Summarization: A Case Study on Financial News",
author = "Passali, Tatiana and Gidiotis, Alexios and Chatzikyriakidis, Efstathios and Tsoumakas, Grigorios",
booktitle = "Proceedings of the First Workshop on Bridging Human{--}Computer Interaction and Natural Language Processing",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.hcinlp-1.4",
pages = "21--27",
}
```
## Support
Contact us at [info@medoid.ai](mailto:info@medoid.ai) if you are interested in a more sophisticated version of the model, trained on more articles and adapted to your needs!
More information about Medoid AI:
- Website: [https://www.medoid.ai](https://www.medoid.ai)
- LinkedIn: [https://www.linkedin.com/company/medoid-ai/](https://www.linkedin.com/company/medoid-ai/)
| [
0.03525776043534279,
-0.07703676074743271,
-0.051842935383319855,
0.004821832291781902,
-0.0242728590965271,
-0.03655292093753815,
0.03452764078974724,
0.024865152314305305,
0.0679158866405487,
-0.061176445335149765,
0.013533301651477814,
-0.020910147577524185,
0.07630247622728348,
-0.051432617008686066,
0.040813516825437546,
-0.025982297956943512,
0.03483990207314491,
-0.08593833446502686,
-0.09069802612066269,
0.028706802055239677,
-0.08123406767845154,
-0.05053313076496124,
-0.022328108549118042,
-0.04270226135849953,
0.09426980465650558,
-0.038750920444726944,
0.0038082890678197145,
-0.04736418277025223,
-0.050715457648038864,
-0.05305313691496849,
-0.03587697818875313,
0.07731544971466064,
0.007996034808456898,
-0.02093682251870632,
0.05674152076244354,
0.021224312484264374,
-0.04247371107339859,
0.021336542442440987,
0.007937218062579632,
-0.07861420512199402,
0.06452100723981857,
-0.09375464916229248,
0.0067191761918365955,
0.028634246438741684,
-0.07807405292987823,
0.059076160192489624,
0.013650981709361076,
0.0769663006067276,
0.027607621625065804,
0.049811676144599915,
-0.06132350489497185,
-0.024484669789671898,
-0.016799302771687508,
0.040618203580379486,
0.03955646976828575,
-0.007470790296792984,
-0.09165534377098083,
-0.07275710254907608,
0.02131567895412445,
-0.05297376960515976,
0.023072022944688797,
0.05119036138057709,
0.01822330802679062,
0.026805918663740158,
0.11794626712799072,
-0.019578522071242332,
0.04049509018659592,
0.0009289044537581503,
-0.09032650291919708,
-0.013744965195655823,
0.01682039350271225,
-0.05102522298693657,
-0.027623452246189117,
-0.020205872133374214,
0.0054200212471187115,
0.0616268515586853,
0.03870058432221413,
0.06529200077056885,
0.029537634924054146,
-0.11863908171653748,
-0.02169065922498703,
0.034010615199804306,
-0.04892703890800476,
-0.0762273520231247,
-0.0004898298648186028,
-0.041777752339839935,
0.008869068697094917,
0.019486436620354652,
0.002204134361818433,
0.02616695687174797,
0.03950652480125427,
0.021960293874144554,
0.0210172850638628,
-0.03246339410543442,
-0.03489760309457779,
0.01602667011320591,
-0.13314202427864075,
0.042992040514945984,
0.04686475917696953,
0.011769074015319347,
0.06029604747891426,
0.10240574926137924,
0.011959558352828026,
-0.03665952384471893,
-0.10807918012142181,
-0.03782513365149498,
0.01874024048447609,
0.06508159637451172,
-0.03557506576180458,
-0.020241808146238327,
-0.05189211666584015,
-0.010171555913984776,
-0.0036061457358300686,
-0.11139010637998581,
-0.012983841821551323,
0.07506685703992844,
0.022620640695095062,
-0.02072581648826599,
0.053839802742004395,
-0.054178934544324875,
0.04983266443014145,
0.05157129839062691,
-0.03367263078689575,
-0.006107920315116644,
-0.11282772570848465,
0.08675674349069595,
-0.11724725365638733,
3.433882015612898e-33,
-0.011719112284481525,
-0.02236410230398178,
-0.005376730114221573,
0.001953885890543461,
-0.06272176653146744,
0.05533863231539726,
-0.030037857592105865,
0.027613654732704163,
-0.12960538268089294,
0.0240609273314476,
-0.06635548919439316,
-0.01626439392566681,
0.014133703894913197,
-0.022454509511590004,
0.006774209439754486,
-0.09106872975826263,
-0.0010349306976422668,
-0.04126369208097458,
0.031645163893699646,
0.013868785463273525,
0.02238607034087181,
0.13025416433811188,
-0.009905039332807064,
0.07168881595134735,
0.05956742912530899,
-0.024092016741633415,
0.024449165910482407,
-0.026673240587115288,
-0.018443146720528603,
0.03250747546553612,
-0.06827574223279953,
-0.02205074578523636,
-0.021231601014733315,
-0.012489883229136467,
-0.017213983461260796,
0.007380805443972349,
-0.04785449057817459,
-0.0032226492185145617,
-0.03751937672495842,
-0.03910468891263008,
-0.017405638471245766,
0.0034043362829834223,
-0.0869411751627922,
-0.0529634989798069,
0.009110110811889172,
0.06579037010669708,
-0.04995555058121681,
0.05388926714658737,
0.033676378428936005,
-0.044196221977472305,
0.015375126153230667,
0.025553055107593536,
-0.04053809121251106,
0.04770198091864586,
0.011395466513931751,
-0.011337106116116047,
-0.020308757200837135,
-0.015814626589417458,
-0.03151747211813927,
0.02155047096312046,
0.01110767014324665,
0.022202933207154274,
-0.03297784551978111,
0.08035587519407272,
-0.03149785101413727,
0.11910378932952881,
0.01797172799706459,
0.05770985409617424,
-0.028112459927797318,
-0.03592748939990997,
-0.04555580019950867,
-0.013556964695453644,
0.07122630625963211,
0.11303632706403732,
-0.019610028713941574,
-0.0466693677008152,
-0.002806207863613963,
0.01386262383311987,
0.11421506106853485,
0.07543424516916275,
0.018311718478798866,
0.043456342071294785,
0.0856061801314354,
0.025277163833379745,
-0.07059454172849655,
0.015571700409054756,
0.020169120281934738,
-0.022885246202349663,
-0.054666709154844284,
-0.05869431421160698,
-0.04429703578352928,
0.0012453614035621285,
0.023671364411711693,
0.05341716110706329,
0.031217480078339577,
-5.704661227571099e-33,
0.006416097283363342,
-0.008271649479866028,
-0.03822488710284233,
0.0012347182491794229,
-0.07104095071554184,
-0.0007521043880842626,
0.09813417494297028,
0.04513111710548401,
-0.03436494246125221,
-0.029344966635107994,
0.022976379841566086,
0.0269616711884737,
0.019511286169290543,
-0.04871813580393791,
-0.018298916518688202,
-0.03949780762195587,
0.07411963492631912,
-0.04225445166230202,
0.02621353790163994,
-0.02497079037129879,
-0.0021287614945322275,
0.07295083999633789,
0.07972490787506104,
0.07487853616476059,
-0.04601902887225151,
0.017170295119285583,
-0.00521641643717885,
0.03543969243764877,
-0.0010187987936660647,
0.05090941861271858,
0.037445493042469025,
-0.013643459416925907,
-0.05318018049001694,
0.06992441415786743,
-0.052896302193403244,
-0.08642811328172684,
0.035114988684654236,
-0.04333830252289772,
-0.028396112844347954,
-0.005612610373646021,
0.06128048151731491,
-0.007003264036029577,
-0.05687737464904785,
0.005340538918972015,
0.05401202663779259,
0.05881104618310928,
0.053506284952163696,
-0.09003636986017227,
0.01162721123546362,
-0.09409604966640472,
0.04239053651690483,
0.017251161858439445,
-0.007912726141512394,
0.05870862677693367,
-0.045630574226379395,
0.08517073839902878,
0.06478362530469894,
0.024135250598192215,
0.08160603791475296,
-0.03859248012304306,
0.04144392907619476,
0.09469601511955261,
0.037069711834192276,
-0.02038743905723095,
-0.010991694405674934,
-0.05273178964853287,
-0.005102434661239386,
-0.0002779701608233154,
0.04533235356211662,
-0.06431061029434204,
0.04854073002934456,
-0.02595946006476879,
-0.04890308901667595,
-0.04218091070652008,
0.022032320499420166,
0.13948513567447662,
0.030176235362887383,
-0.05033700913190842,
-0.016779739409685135,
0.06771381944417953,
-0.05445382744073868,
0.01973895914852619,
0.02750960737466812,
0.06517826020717621,
0.05340425670146942,
-0.010589110665023327,
0.0013049616245552897,
-0.032836783677339554,
0.016202500090003014,
0.02385443076491356,
-0.1729879379272461,
-0.08201289176940918,
0.01470422837883234,
0.05008682236075401,
-0.044828783720731735,
-5.750132459070301e-8,
-0.024616001173853874,
-0.012282764539122581,
-0.022366348654031754,
0.012621204368770123,
0.010735862888395786,
-0.03725874423980713,
-0.05140805244445801,
0.043085429817438126,
-0.02931160107254982,
0.10380247235298157,
0.05544191598892212,
-0.043331339955329895,
-0.15016967058181763,
-0.0025328462943434715,
-0.10535168647766113,
0.03201436623930931,
-0.0066434587351977825,
0.013247483409941196,
0.0006606207462027669,
-0.07605982571840286,
0.05324747413396835,
0.03935273364186287,
-0.00319860246963799,
-0.006904607638716698,
-0.04852113500237465,
-0.02908102050423622,
-0.018107250332832336,
0.04446077346801758,
-0.00629239808768034,
-0.008503969758749008,
-0.007039918564260006,
-0.03333126753568649,
0.045473478734493256,
-0.024906262755393982,
-0.030102793127298355,
0.030601153150200844,
-0.006281598936766386,
0.046434346586465836,
0.04819146916270256,
0.07213468104600906,
-0.0414431206882,
-0.037198975682258606,
0.014785381965339184,
0.0031623963732272387,
0.043621331453323364,
-0.035464879125356674,
-0.14843638241291046,
-0.029233960434794426,
-0.009797611273825169,
-0.05791877582669258,
0.08583766222000122,
0.03387945890426636,
0.004141473677009344,
0.0747622475028038,
0.06581339985132217,
-0.022132182493805885,
-0.10288022458553314,
0.04385540261864662,
0.019723039120435715,
-0.003443620866164565,
0.03544929251074791,
-0.11095070093870163,
-0.06155674532055855,
-0.01439633034169674
] |
sshleifer/tiny-xlnet-base-cased | 275d2c323ddd18dad60cd585934383c29027878b | 2020-05-08T15:35:32.000Z | [
"pytorch",
"xlnet",
"text-generation",
"transformers"
] | text-generation | false | sshleifer | null | sshleifer/tiny-xlnet-base-cased | 8,259 | null | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
microsoft/unixcoder-base-nine | 1e114832924596b75dcd2e0bdde218c0f7ee039f | 2022-04-02T05:45:58.000Z | [
"pytorch",
"roberta",
"feature-extraction",
"transformers",
"license:apache-2.0"
] | feature-extraction | false | microsoft | null | microsoft/unixcoder-base-nine | 8,245 | 2 | transformers | ---
license: apache-2.0
---
| [
0.04086383432149887,
0.04840587452054024,
-0.01111048087477684,
-0.0822305753827095,
0.03046034276485443,
-0.024620788171887398,
-0.00873124971985817,
-0.032080959528684616,
-0.009516960941255093,
0.014524046331644058,
0.06244279816746712,
-0.03306293115019798,
-0.057087719440460205,
-0.025479083880782127,
-0.028286920860409737,
0.04527172073721886,
0.0007952158339321613,
-0.02646484412252903,
0.030830679461359978,
0.06214693561196327,
-0.008390036411583424,
0.05744132772088051,
-0.002480674535036087,
-0.010977217927575111,
0.009470616467297077,
0.0797617956995964,
-0.09990306943655014,
0.11023685336112976,
0.022690800949931145,
-0.06104202941060066,
0.05159701779484749,
-0.019915884360671043,
-0.00976925902068615,
-0.005862012505531311,
0.004294265061616898,
-0.03832729160785675,
0.054929979145526886,
-0.030386287719011307,
-0.061263855546712875,
0.019454684108495712,
0.055512331426143646,
0.040904633700847626,
-0.016510233283042908,
0.02431938238441944,
-0.06671348959207535,
-0.04664967954158783,
0.0764942318201065,
-0.04755227640271187,
0.045489829033613205,
-0.011948741041123867,
-0.06481502950191498,
0.00708911893889308,
0.01836567372083664,
-0.0736827477812767,
0.01719287782907486,
-0.06928896903991699,
-0.04548629745841026,
0.10192789882421494,
-0.011379510164260864,
0.04054282605648041,
0.03039979748427868,
0.03916573151946068,
-0.0420873649418354,
0.08219251036643982,
-0.07289455085992813,
-0.05502115562558174,
0.07812796533107758,
-0.07191383093595505,
-0.027952512726187706,
-0.04416782036423683,
-0.1002880111336708,
0.0021310399752110243,
0.005993927828967571,
-0.005357716698199511,
0.004581758286803961,
-0.04734741896390915,
0.005140302702784538,
0.06445731967687607,
0.037501826882362366,
-0.06215705722570419,
-0.0067078773863613605,
-0.08710041642189026,
-0.0017763959476724267,
-0.03041382133960724,
-0.08768444508314133,
0.009428261779248714,
0.05102497711777687,
0.0651923343539238,
0.05492326244711876,
0.0038272670935839415,
-0.02271469123661518,
-0.004543584771454334,
0.06997063010931015,
0.06902375817298889,
-0.0437687411904335,
0.018496816977858543,
0.03355922922492027,
0.055978525429964066,
-0.019899403676390648,
0.08203592151403427,
-0.046239253133535385,
-0.011095680296421051,
-0.027967501431703568,
-0.0663614273071289,
-0.011746261268854141,
-0.010658636689186096,
-0.07343403249979019,
0.11521477997303009,
0.06504379212856293,
-0.12221095710992813,
0.07797162979841232,
-0.04259897768497467,
0.011925377883017063,
-0.01929086446762085,
-0.0243387408554554,
0.04144561290740967,
0.0065368167124688625,
0.017630096524953842,
0.037881236523389816,
-0.0321974977850914,
-0.0027186733204871416,
-0.059684935957193375,
-0.037846386432647705,
-0.029731804504990578,
-0.05463898554444313,
-0.052102960646152496,
0.018625808879733086,
-8.458476047537133e-33,
-0.05726663023233414,
-0.030553756281733513,
-0.010136313736438751,
0.08036761730909348,
0.0504671186208725,
-0.10089337825775146,
-0.003009843872860074,
0.03193015232682228,
-0.028974829241633415,
-0.0162995383143425,
0.15862448513507843,
-0.08715403825044632,
-0.010327734053134918,
0.09050659090280533,
0.07082153856754303,
-0.009214639663696289,
0.033658407628536224,
-0.06326624751091003,
0.0889962837100029,
-0.03957844898104668,
-0.04567139968276024,
-0.0175765473395586,
0.002138499403372407,
0.06752902269363403,
-0.05593829229474068,
0.035671334713697433,
0.04131495952606201,
-0.05757121741771698,
0.029018985107541084,
0.03438492491841316,
0.10674167424440384,
0.01418459601700306,
-0.0839473232626915,
-0.03249482437968254,
0.010836601257324219,
0.028543522581458092,
-0.013021882623434067,
0.05093173310160637,
0.005829038098454475,
-0.033914171159267426,
-0.03590375930070877,
-0.0028863875195384026,
-0.04249422997236252,
-0.06967272609472275,
0.06883776932954788,
-0.08314331620931625,
-0.004775456618517637,
0.03525598347187042,
0.011093193665146828,
0.02932099439203739,
-0.07545318454504013,
-0.036583300679922104,
0.00847073644399643,
0.035197511315345764,
-0.04487315192818642,
0.08098748326301575,
-0.04277149215340614,
0.01990867778658867,
-0.051087602972984314,
-0.015243749134242535,
-0.05380517244338989,
-0.00559606309980154,
-0.06810655444860458,
-0.012403861619532108,
0.034006454050540924,
-0.028797466307878494,
-0.06238166615366936,
-0.02881370671093464,
0.0762869343161583,
0.07937002182006836,
-0.0048245154321193695,
0.026494629681110382,
0.029248930513858795,
0.0678822472691536,
-0.07336728274822235,
0.016343867406249046,
0.041710805147886276,
-0.05204152315855026,
0.07509411871433258,
0.05875450745224953,
-0.10986164957284927,
0.05971355363726616,
0.02316984534263611,
-0.06793419271707535,
-0.039087701588869095,
0.010523645207285881,
0.008675295859575272,
0.046444859355688095,
0.04673733189702034,
0.07676859945058823,
-0.020646460354328156,
0.10145976394414902,
-0.053480103611946106,
-0.06644884496927261,
0.007121579255908728,
2.4028033906028676e-33,
-0.04949740320444107,
0.03743857517838478,
-0.0931180939078331,
0.03916250914335251,
0.041534461081027985,
0.027951736003160477,
0.0006822179420851171,
-0.023384269326925278,
-0.06653190404176712,
0.02042173594236374,
0.06831778585910797,
0.0668642446398735,
0.07642818987369537,
-0.006391731556504965,
0.08090892434120178,
-0.07919944077730179,
-0.08032321184873581,
-0.06198880821466446,
-0.041154149919748306,
0.012533090077340603,
-0.01640341244637966,
0.09302489459514618,
0.016791535541415215,
0.09071087092161179,
0.012559558264911175,
-0.08019092679023743,
-0.006206050049513578,
0.04393893480300903,
-0.0021561295725405216,
0.026531947776675224,
0.08056236058473587,
0.03237386420369148,
-0.07317337393760681,
0.015421418473124504,
0.022762354463338852,
-0.04419252276420593,
0.007943877950310707,
-0.045058880001306534,
-0.02033928968012333,
0.0537981241941452,
0.02085738256573677,
-0.012263739481568336,
0.0616234615445137,
-0.04289292171597481,
-0.03223911300301552,
-0.07995370030403137,
0.012440904974937439,
-0.03786804527044296,
-0.0586836040019989,
-0.026248490437865257,
-0.027562465518712997,
-0.014028924517333508,
0.0340006984770298,
-0.08997685462236404,
0.02632269449532032,
0.03201325982809067,
0.010450996458530426,
0.1298767477273941,
-0.052974916994571686,
0.03689022362232208,
-0.010948192328214645,
0.021460693329572678,
-0.13612516224384308,
0.044842641800642014,
0.035028256475925446,
-0.0006318502710200846,
-0.052152588963508606,
0.03482209891080856,
-0.004341613035649061,
-0.02875332348048687,
0.03357474133372307,
0.03612764552235603,
-0.02903340384364128,
-0.04113863781094551,
-0.01487200427800417,
-0.07546208798885345,
-0.027435602620244026,
0.13145016133785248,
-0.0077450331300497055,
0.013636607676744461,
0.04587781801819801,
0.030711619183421135,
0.0139425965026021,
0.02618064545094967,
0.026924805715680122,
-0.1350959986448288,
-0.02208348549902439,
-0.018808722496032715,
-0.08828888833522797,
-0.05375444144010544,
-0.005047246813774109,
0.057149745523929596,
-0.0723225548863411,
0.06977029144763947,
0.05663835629820824,
-2.032509094362922e-8,
-0.03769330680370331,
-0.04096750169992447,
-0.026556704193353653,
0.01870686002075672,
0.09396970272064209,
0.026712149381637573,
-0.021069684997200966,
0.03596176207065582,
-0.011828601360321045,
-0.012725473381578922,
0.005226623732596636,
-0.043451204895973206,
-0.06320654600858688,
0.05469439923763275,
-0.03664302080869675,
0.018557637929916382,
-0.06396906077861786,
0.10090905427932739,
-0.02570085972547531,
-0.012235090136528015,
-0.039639733731746674,
-0.09401217848062515,
-0.048236947506666183,
-0.06762222945690155,
-0.03177247568964958,
-0.0174162145704031,
-0.02726285345852375,
-0.011669112369418144,
-0.052263520658016205,
0.0003639291971921921,
0.0012880207505077124,
0.07716639339923859,
-0.07935985177755356,
-0.11808878928422928,
0.026723483577370644,
-0.039038948714733124,
-0.08141179382801056,
0.03566005453467369,
0.016751304268836975,
-0.0003708995063789189,
0.02778676338493824,
0.11362683027982712,
0.04149229824542999,
0.008247996680438519,
0.047466881573200226,
-0.013555622659623623,
0.0328713096678257,
0.014873182401061058,
0.008699513971805573,
0.01822579652070999,
0.03597720339894295,
-0.009275169111788273,
0.04144097864627838,
-0.055113889276981354,
-0.01725275255739689,
0.06673163920640945,
0.00988246500492096,
0.027364559471607208,
-0.004598941653966904,
-0.031014928594231606,
0.08529432117938995,
0.05356218293309212,
0.04482312127947807,
-0.039598479866981506
] |
julien-c/dummy-diff-tokenizer | 8b54c50bfd24739488683452f24d4471f5d75a21 | 2021-05-20T17:30:11.000Z | [
"pytorch",
"tf",
"jax",
"roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | julien-c | null | julien-c/dummy-diff-tokenizer | 8,149 | null | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
textattack/bert-base-uncased-MRPC | d421614df8fbeb22d6826a24d6397809fdc1e3ff | 2021-05-20T07:32:52.000Z | [
"pytorch",
"jax",
"bert",
"text-classification",
"transformers"
] | text-classification | false | textattack | null | textattack/bert-base-uncased-MRPC | 8,135 | null | transformers | ## TextAttack Model Card
This `bert-base-uncased` model was fine-tuned for sequence classification using TextAttack
and the glue dataset loaded using the `nlp` library. The model was fine-tuned
for 5 epochs with a batch size of 16, a learning
rate of 2e-05, and a maximum sequence length of 256.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.8774509803921569, as measured by the
eval set accuracy, found after 1 epoch.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
| [
-0.11459482461214066,
-0.020215561613440514,
0.049413081258535385,
-0.008184502832591534,
-0.025021186098456383,
0.07342878729104996,
-0.030838053673505783,
0.04016721993684769,
0.014555455185472965,
-0.05663282796740532,
-0.0029834264423698187,
0.008984590880572796,
-0.01817805878818035,
0.057956479489803314,
-0.037761300802230835,
0.038912583142519,
0.045315761119127274,
-0.0981636643409729,
-0.02617492340505123,
-0.03373908996582031,
0.047440800815820694,
0.13653771579265594,
0.10013396292924881,
-0.06046626344323158,
0.05660265311598778,
0.02614540420472622,
-0.05793497711420059,
-0.008751599118113518,
0.072923444211483,
0.044275883585214615,
0.0397062823176384,
-0.05256238207221031,
0.08465874195098877,
0.07034195214509964,
0.021304655820131302,
0.07584597170352936,
-0.026036284863948822,
-0.04877382889389992,
0.031770020723342896,
0.05381691828370094,
0.01673095114529133,
-0.02303115837275982,
-0.005027499981224537,
0.03604612872004509,
0.12300430238246918,
-0.03226903825998306,
-0.02709771692752838,
-0.02247651480138302,
-0.032085686922073364,
-0.009223907254636288,
-0.037582866847515106,
0.013837208971381187,
0.06143099069595337,
0.06649218499660492,
-0.06794387847185135,
0.05353963002562523,
-0.005045727360993624,
-0.027178632095456123,
-0.055990707129240036,
-0.09334713965654373,
-0.03316624462604523,
-0.022137098014354706,
-0.006330573465675116,
-0.0332968570291996,
-0.01992366649210453,
0.009241703897714615,
-0.03641426935791969,
0.013286091387271881,
0.005160578992217779,
0.01878628507256508,
0.013814003206789494,
0.051132552325725555,
0.01699633151292801,
0.07320652157068253,
0.035698022693395615,
0.010768539272248745,
0.033376097679138184,
-0.05224810913205147,
0.0010926065733656287,
-0.06029340624809265,
-0.0033786892890930176,
-0.07452773302793503,
0.051482923328876495,
0.06745339930057526,
0.059390779584646225,
-0.017647771164774895,
0.059113044291734695,
-0.0028187271673232317,
-0.07562652230262756,
0.0010306712938472629,
0.04010285064578056,
-0.10937440395355225,
0.11616886407136917,
-0.05313245579600334,
-0.01675143837928772,
0.041667137295007706,
0.04281323775649071,
0.01378178782761097,
-0.012125136330723763,
0.01747412607073784,
-0.0063994028605520725,
0.023491570726037025,
-0.035157930105924606,
-0.08535648137331009,
0.06569739431142807,
0.034696366637945175,
0.06290404498577118,
-0.05803213268518448,
0.05084669217467308,
-0.10572405904531479,
0.024930449202656746,
-0.05630603805184364,
-0.03953615203499794,
-0.03411632403731346,
0.0056868805550038815,
-0.047231730073690414,
-0.03984728083014488,
0.026868831366300583,
0.010627822019159794,
0.10010731220245361,
-0.0003350267361383885,
0.005746789276599884,
-0.02462308667600155,
0.0378500372171402,
-0.11024025082588196,
0.005955563858151436,
0.03135022521018982,
3.757401570846208e-33,
-0.007331407628953457,
0.002832301426678896,
-0.009415054693818092,
-0.05899431183934212,
0.00003637425470515154,
-0.007627821061760187,
0.01702740229666233,
0.006408402230590582,
-0.06806831061840057,
0.0035428847186267376,
-0.05248093232512474,
0.005621682852506638,
-0.053192004561424255,
0.027005748823285103,
-0.0006514773704111576,
0.02378993295133114,
-0.05374007672071457,
0.03272869065403938,
0.022431202232837677,
0.03495221212506294,
0.013904888182878494,
0.05691789463162422,
0.012405470944941044,
-0.12705257534980774,
-0.024863390251994133,
0.05182904750108719,
0.05703029781579971,
-0.05537153407931328,
-0.0038535622879862785,
0.02756936103105545,
-0.13254742324352264,
0.07929076999425888,
-0.0005468896706588566,
0.029573634266853333,
-0.015584544278681278,
0.016218895092606544,
-0.014513549394905567,
-0.03832220658659935,
0.05777685344219208,
-0.0175146646797657,
-0.04082232713699341,
0.024218227714300156,
0.03672383725643158,
-0.09151122719049454,
-0.011410200037062168,
0.02343767322599888,
-0.015144874341785908,
0.041390806436538696,
0.00447124894708395,
-0.016675841063261032,
0.07146122306585312,
0.0055834269151091576,
-0.03720489516854286,
0.032858747988939285,
-0.017377909272909164,
0.00837754737585783,
0.10585194826126099,
0.06797496974468231,
0.013686755672097206,
0.06803207099437714,
0.01132938265800476,
0.022662565112113953,
0.07276012003421783,
-0.010589751414954662,
-0.032796815037727356,
-0.0708824023604393,
0.012972768396139145,
0.018617859110236168,
-0.0327623151242733,
0.01820214092731476,
0.011747823096811771,
0.005645783618092537,
-0.06844945251941681,
-0.0013841587351635098,
0.02914395183324814,
-0.0665152370929718,
0.05105172470211983,
-0.08117087930440903,
-0.06539373099803925,
0.013455887325108051,
0.025164788588881493,
0.005599823780357838,
0.014819466508924961,
-0.08206767588853836,
-0.0898275077342987,
-0.04506339505314827,
0.04369557276368141,
-0.0640154629945755,
-0.0443931482732296,
0.021906675770878792,
0.019442573189735413,
-0.043487634509801865,
-0.0017163380980491638,
0.01148213166743517,
-0.026328610256314278,
-3.930306504276597e-33,
0.03746870160102844,
0.011378086172044277,
-0.0675283670425415,
0.0676884576678276,
-0.04900334030389786,
-0.085475854575634,
-0.03370968624949455,
0.18177740275859833,
-0.030417054891586304,
-0.004798264242708683,
0.06058720126748085,
0.012980771251022816,
0.008675569668412209,
-0.05550693720579147,
-0.004812707658857107,
0.08803386241197586,
-0.031622208654880524,
0.03486189618706703,
0.030904600396752357,
-0.02355693094432354,
0.08542328327894211,
0.0037155593745410442,
-0.08187820017337799,
0.09940069913864136,
-0.01518486998975277,
0.04180135950446129,
-0.003388525452464819,
0.02701237052679062,
0.04105057194828987,
-0.05832788348197937,
-0.06269235908985138,
-0.007785675581544638,
0.02153652533888817,
0.028687069192528725,
-0.05913538113236427,
0.0736466497182846,
0.08408036828041077,
-0.04448243975639343,
-0.011564581654965878,
0.02332102507352829,
0.07192546874284744,
0.024842973798513412,
-0.07331983000040054,
0.08030034601688385,
-0.002881792839616537,
-0.012535995803773403,
-0.1565055549144745,
0.0014721824554726481,
0.06545721739530563,
0.015982940793037415,
0.02335166372358799,
0.006100915838032961,
-0.08415751904249191,
0.025914235040545464,
-0.08694179356098175,
-0.051018569618463516,
-0.011453897692263126,
-0.010784409940242767,
-0.08782593905925751,
0.047391872853040695,
-0.021432828158140182,
0.04938339814543724,
0.036715343594551086,
0.01547562051564455,
0.07626059651374817,
-0.042301006615161896,
0.009884093888103962,
0.02641269378364086,
-0.0597475990653038,
-0.04856221750378609,
0.04006441310048103,
-0.033690229058265686,
0.044359639286994934,
0.0676693320274353,
-0.01763877272605896,
0.0074794902466237545,
-0.02642347663640976,
-0.06730695068836212,
-0.059295061975717545,
-0.024532480165362358,
-0.046984683722257614,
-0.018588505685329437,
0.0024037272669374943,
0.09022696316242218,
0.007380134891718626,
0.11234932392835617,
0.08070360869169235,
0.032760053873062134,
-0.017300834879279137,
0.04114966839551926,
0.012724963948130608,
0.03379957750439644,
0.007438895292580128,
0.09929630160331726,
0.0025289503391832113,
-5.2091305491330786e-8,
0.004739419091492891,
0.0028761988505721092,
-0.041738688945770264,
-0.0026145053561776876,
-0.08264531940221786,
-0.03411339968442917,
-0.07356582581996918,
0.04314669221639633,
-0.00016781259910203516,
-0.06155753508210182,
0.016111012548208237,
0.035201724618673325,
-0.13987040519714355,
0.015525412745773792,
-0.027853820472955704,
0.015467186458408833,
-0.006224113050848246,
0.01945541426539421,
-0.003247218206524849,
-0.04751234129071236,
0.0318981371819973,
0.04554740712046623,
-0.01656845025718212,
-0.039691194891929626,
-0.03435643017292023,
-0.05508168041706085,
-0.05225394293665886,
0.13341911137104034,
-0.018386635929346085,
-0.04496122896671295,
0.015607282519340515,
-0.004138260148465633,
-0.10692967474460602,
-0.030143802985548973,
-0.012804434634745121,
0.10072574019432068,
-0.056388236582279205,
-0.08757609874010086,
0.012132333591580391,
0.10655205696821213,
0.07843916118144989,
0.05163019523024559,
-0.0678618848323822,
-0.04855888709425926,
0.019884351640939713,
-0.02977076917886734,
-0.028186999261379242,
-0.05899108946323395,
0.06980793923139572,
-0.017696809023618698,
0.07946699857711792,
-0.06713738292455673,
-0.09277323633432388,
0.015783846378326416,
-0.010360113345086575,
-0.008791537024080753,
-0.07520905882120132,
0.008124787360429764,
0.02475333958864212,
0.00006272758764680475,
-0.011919232085347176,
-0.0181729793548584,
0.062468063086271286,
0.08693120628595352
] |
deepset/bert-small-mm_retrieval-passage_encoder | c764744512975bd3823f689601ab0e388a29c366 | 2021-10-19T16:14:29.000Z | [
"pytorch",
"dpr",
"transformers"
] | null | false | deepset | null | deepset/bert-small-mm_retrieval-passage_encoder | 8,119 | null | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
sshleifer/distilbart-xsum-12-6 | 5b2e376c845c201ddc34ec0e55fd1ad9890ba5ee | 2021-06-14T07:58:25.000Z | [
"pytorch",
"jax",
"bart",
"text2text-generation",
"en",
"dataset:cnn_dailymail",
"dataset:xsum",
"transformers",
"summarization",
"license:apache-2.0",
"autotrain_compatible"
] | summarization | false | sshleifer | null | sshleifer/distilbart-xsum-12-6 | 8,112 | 2 | transformers | ---
language: en
tags:
- summarization
license: apache-2.0
datasets:
- cnn_dailymail
- xsum
thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png
---
### Usage
This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information.
### Metrics for DistilBART models
| Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L |
|:---------------------------|------------:|----------------------:|----------:|----------:|----------:|
| distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 |
| distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 |
| distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 |
| distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 |
| bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 |
| distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 |
| bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 |
| distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 |
| distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 |
| distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
| [
-0.10242787003517151,
-0.08055665343999863,
0.058801449835300446,
0.001729630515910685,
-0.01020839437842369,
-0.020107010379433632,
-0.09146951138973236,
0.055804893374443054,
-0.03275766223669052,
-0.0814155638217926,
0.047091152518987656,
-0.024555958807468414,
0.02256167307496071,
-0.06064292788505554,
-0.07659092545509338,
0.011284125037491322,
0.03928124159574509,
-0.0036749355494976044,
-0.08591760694980621,
-0.05708478391170502,
0.052746228873729706,
-0.040730513632297516,
-0.02270055003464222,
-0.05265913903713226,
0.08935019373893738,
0.0025974700693041086,
-0.03890107572078705,
0.012740290723741055,
0.0906219556927681,
-0.04279907047748566,
-0.004099974874407053,
0.04570003226399422,
-0.07850365340709686,
0.018990738317370415,
-0.01020409632474184,
0.08468351513147354,
0.006208515260368586,
-0.007276525720953941,
0.02783900499343872,
0.03190219774842262,
0.04338159039616585,
-0.002901187865063548,
-0.030336445197463036,
-0.02716916799545288,
0.04014960676431656,
-0.058358509093523026,
0.013790902681648731,
-0.017771178856492043,
0.01821342296898365,
-0.02310691587626934,
-0.049805302172899246,
-0.00339138088747859,
-0.005217964760959148,
0.061979468911886215,
-0.018776532262563705,
-0.02264600805938244,
0.039845243096351624,
-0.019266774877905846,
0.021008379757404327,
-0.0679703801870346,
-0.09366007894277573,
-0.0025608239229768515,
-0.0858554095029831,
-0.027356861159205437,
-0.02404315024614334,
-0.004478763323277235,
0.03164851665496826,
0.01056541409343481,
0.0023012161254882812,
0.014064272865653038,
-0.06235840544104576,
0.028858404606580734,
0.03378373011946678,
0.004465024918317795,
0.07923771440982819,
-0.02148638851940632,
0.11610335111618042,
0.0398324579000473,
0.06239284574985504,
-0.17593292891979218,
0.04951082542538643,
-0.022424643859267235,
0.0025099257472902536,
0.021336156874895096,
0.042870569974184036,
-0.02120130881667137,
-0.0128794489428401,
-0.004414125811308622,
0.07955142110586166,
-0.06996607035398483,
-0.05295264348387718,
0.016240382567048073,
-0.11916537582874298,
0.008669688366353512,
-0.028409382328391075,
0.08660409599542618,
-0.015133734792470932,
0.042395152151584625,
-0.020870883017778397,
0.110101617872715,
-0.031033620238304138,
-0.06374292075634003,
0.038810137659311295,
0.0009930998785421252,
-0.0503569021821022,
-0.058442480862140656,
0.0753164291381836,
0.1175476536154747,
-0.032253846526145935,
-0.014065131545066833,
0.14000876247882843,
0.021389251574873924,
0.036053162068128586,
-0.01974489726126194,
0.030817579478025436,
0.0031923118513077497,
-0.030438171699643135,
-0.05716529116034508,
-0.010146639309823513,
-0.039032574743032455,
-0.0023189843632280827,
0.025894414633512497,
0.0314161442220211,
0.03209250792860985,
-0.049785830080509186,
-0.043941400945186615,
0.04122624173760414,
5.461544774208938e-35,
-0.024408750236034393,
-0.03235231712460518,
0.009395932778716087,
0.0143541619181633,
-0.019927645102143288,
0.011538815684616566,
-0.004154409281909466,
0.004460239317268133,
-0.039520375430583954,
-0.05001825839281082,
-0.027546891942620277,
-0.001932688639499247,
-0.1829814612865448,
0.011275903321802616,
-0.05464207008481026,
-0.009606490842998028,
-0.010763490572571754,
0.05929546430706978,
-0.017166277393698692,
0.009892466478049755,
0.08686050772666931,
-0.052564844489097595,
-0.0730401873588562,
-0.012235877104103565,
-0.05119817703962326,
0.05293474346399307,
0.047535110265016556,
-0.024820925667881966,
-0.051516685634851456,
0.038043733686208725,
-0.0038780367467552423,
0.04933198168873787,
0.02613821066915989,
-0.034857045859098434,
-0.05000770092010498,
0.012604543007910252,
-0.08287376910448074,
0.0021607009693980217,
-0.04153299331665039,
-0.0480438731610775,
-0.023325279355049133,
0.06455279886722565,
-0.03618278354406357,
-0.10329894721508026,
-0.08560588955879211,
-0.012695742771029472,
0.06148916110396385,
-0.0014318762114271522,
0.012406377121806145,
-0.0063721551559865475,
0.010638606734573841,
0.03645683452486992,
-0.059038691222667694,
-0.05735098943114281,
-0.022052470594644547,
0.043612636625766754,
0.06302247941493988,
0.04900328069925308,
0.03978622704744339,
0.031266748905181885,
0.014886674471199512,
0.04121227562427521,
-0.025450652465224266,
0.03354961797595024,
0.06778407096862793,
0.009504653513431549,
0.010917606763541698,
0.03269919008016586,
0.04048515111207962,
0.0311855711042881,
-0.09321687370538712,
-0.10306260734796524,
0.001251904759556055,
0.019347315654158592,
0.10530905425548553,
-0.05783497914671898,
0.05076569691300392,
0.0006828922196291387,
-0.05174199864268303,
-0.014428242109715939,
-0.08407353609800339,
-0.0058699436485767365,
-0.05062512680888176,
-0.06463600695133209,
-0.01425554696470499,
-0.0345621332526207,
0.07267823815345764,
-0.02438926324248314,
-0.0994235947728157,
-0.08070188015699387,
-0.003353934967890382,
0.02165825664997101,
0.01772112026810646,
-0.02488882653415203,
-0.04665885865688324,
-4.1838000243215e-33,
0.03438884764909744,
0.08637094497680664,
-0.027995970100164413,
0.09967635571956635,
0.03033537231385708,
0.004250023048371077,
0.013211085461080074,
0.14391984045505524,
-0.018230015411973,
0.0008563397568650544,
0.05915218964219093,
-0.08577528595924377,
-0.08741530030965805,
-0.02476281300187111,
0.02089402638375759,
0.009236098267138004,
0.0022220034152269363,
-0.04552528262138367,
-0.04196701943874359,
0.034156158566474915,
0.04021655395627022,
0.11718633025884628,
-0.09590455889701843,
0.08863051980733871,
-0.059591080993413925,
0.012649881653487682,
0.004810936748981476,
0.09402202069759369,
-0.08010457456111908,
-0.03196941688656807,
-0.03389061987400055,
-0.01679762452840805,
-0.030047638341784477,
0.02232223190367222,
-0.08654878288507462,
-0.010027778334915638,
0.021284284070134163,
-0.007165788672864437,
-0.063999705016613,
0.09917820245027542,
0.09497607499361038,
-0.020452525466680527,
-0.11983459442853928,
0.041702888906002045,
-0.07234808802604675,
-0.00285915844142437,
0.00486419815570116,
-0.11438306421041489,
0.06041710078716278,
-0.00478691840544343,
0.08743700385093689,
0.03726685792207718,
-0.05595160648226738,
0.03092111274600029,
-0.03529880940914154,
-0.028061416000127792,
0.05210427567362785,
-0.034117504954338074,
0.02170790731906891,
0.009024888277053833,
-0.08601925522089005,
-0.05220189690589905,
-0.04853806272149086,
-0.11871526390314102,
0.019619103521108627,
-0.020090097561478615,
-0.03150482475757599,
-0.03657294064760208,
-0.008592593483626842,
0.05554542690515518,
0.014322890900075436,
0.026464898139238358,
0.05759655684232712,
-0.038530249148607254,
-0.01761936955153942,
-0.01743265800178051,
0.02374177984893322,
0.006342989392578602,
0.05594303831458092,
-0.06053014099597931,
-0.11985619366168976,
-0.08457670360803604,
0.045173369348049164,
0.05776109918951988,
-0.0056351907551288605,
0.019826533272862434,
-0.014123903587460518,
0.01049207616597414,
0.02468194253742695,
0.030179986730217934,
-0.03690095618367195,
-0.04178742691874504,
-0.0030118089634925127,
0.045938149094581604,
0.014063847251236439,
-5.811313386061556e-8,
-0.053576551377773285,
0.039514027535915375,
-0.06619477272033691,
0.02592553198337555,
-0.01849374733865261,
-0.04122321680188179,
0.022507496178150177,
0.09204138815402985,
-0.05198988318443298,
0.004503786563873291,
0.099793940782547,
-0.00479306373745203,
-0.02616720274090767,
-0.009290494956076145,
0.007529478054493666,
0.03442858159542084,
0.038063887506723404,
0.07039548456668854,
-0.08950836211442947,
-0.060046736150979996,
-0.008433334529399872,
-0.005172078497707844,
-0.0021744512487202883,
-0.04427023604512215,
0.025741849094629288,
-0.0708618089556694,
0.008174183778464794,
0.044057417660951614,
0.019644221290946007,
-0.023653121665120125,
-0.04487171024084091,
0.02623075805604458,
-0.04028204083442688,
-0.05899606645107269,
-0.06468623876571655,
0.0873165875673294,
-0.0000015408877516165376,
-0.02174311690032482,
0.030886435881257057,
0.094451904296875,
0.030695859342813492,
0.06706656515598297,
-0.07480531930923462,
0.002431778237223625,
0.045595936477184296,
0.06469754129648209,
-0.01883578673005104,
-0.03154022619128227,
0.001480140257626772,
0.07079560309648514,
0.027046171948313713,
-0.05088590830564499,
-0.0037020540330559015,
0.0017577537801116705,
-0.005329455714672804,
-0.0219523087143898,
0.0181431882083416,
-0.015050824731588364,
0.010762940160930157,
0.022556515410542488,
0.050926342606544495,
-0.026853499934077263,
0.0590292252600193,
-0.013102889992296696
] |
GanjinZero/UMLSBert_ENG | 1e4841546c6384cefa47192146a7bd368d509849 | 2022-04-27T08:18:37.000Z | [
"pytorch",
"bert",
"feature-extraction",
"en",
"transformers",
"biomedical",
"license:apache-2.0"
] | feature-extraction | false | GanjinZero | null | GanjinZero/UMLSBert_ENG | 8,109 | 3 | transformers | ---
language:
- en
license: apache-2.0
tags:
- bert
- biomedical
---
CODER: Knowledge infused cross-lingual medical term embedding for term normalization.
English Version. Old name. This model is not UMLSBert!!!
```
@article{YUAN2022103983,
title = {CODER: Knowledge-infused cross-lingual medical term embedding for term normalization},
journal = {Journal of Biomedical Informatics},
pages = {103983},
year = {2022},
issn = {1532-0464},
doi = {https://doi.org/10.1016/j.jbi.2021.103983},
url = {https://www.sciencedirect.com/science/article/pii/S1532046421003129},
author = {Zheng Yuan and Zhengyun Zhao and Haixia Sun and Jiao Li and Fei Wang and Sheng Yu},
keywords = {medical term normalization, cross-lingual, medical term representation, knowledge graph embedding, contrastive learning}
}
``` | [
-0.01304174680262804,
-0.05261708050966263,
0.006109150592237711,
0.0032456577755510807,
-0.006242305040359497,
0.037726495414972305,
-0.06559067964553833,
0.09016583114862442,
-0.049748968333005905,
0.041397109627723694,
0.0516948401927948,
-0.01406204141676426,
0.024410801008343697,
0.09222687035799026,
-0.015751348808407784,
0.0826386958360672,
-0.028543470427393913,
0.04368268698453903,
-0.07214540243148804,
0.030027000233530998,
0.08171536773443222,
0.1007353663444519,
0.05401673913002014,
-0.022839725017547607,
0.04031047970056534,
-0.08325681835412979,
-0.023754019290208817,
-0.03397446498274803,
0.07730081677436829,
0.06768209487199783,
0.043023329228162766,
0.026784205809235573,
0.05193520337343216,
0.09469383209943771,
-0.009164615534245968,
0.008771647699177265,
-0.08901278674602509,
-0.04462515935301781,
-0.016822533681988716,
0.10859917849302292,
0.009523016400635242,
-0.025529470294713974,
-0.053511977195739746,
0.022386329248547554,
0.10921274870634079,
0.03200782462954521,
-0.10161667317152023,
-0.04003399610519409,
0.006945808418095112,
0.043058544397354126,
-0.14661884307861328,
-0.022415410727262497,
-0.052429117262363434,
0.02716769278049469,
0.017357468605041504,
-0.04632684588432312,
-0.04636870697140694,
-0.13013531267642975,
-0.08053433895111084,
-0.13331931829452515,
-0.04102214053273201,
-0.011489437893033028,
0.026161393150687218,
-0.012797767296433449,
-0.040202002972364426,
-0.019064191728830338,
-0.0245636235922575,
0.015242117457091808,
-0.0089050168171525,
0.0492725595831871,
-0.0277366042137146,
0.017589736729860306,
0.018603039905428886,
0.041819214820861816,
0.030978765338659286,
0.03157578781247139,
0.13429675996303558,
0.042779747396707535,
-0.03817099332809448,
-0.11110524088144302,
0.030211033299565315,
0.07835201919078827,
0.04448782652616501,
-0.01974177546799183,
0.06149730831384659,
0.037832967936992645,
-0.011275243945419788,
-0.029200801625847816,
-0.06868103891611099,
-0.02846241369843483,
0.016213038936257362,
-0.08241414278745651,
0.06243230774998665,
-0.002173707354813814,
0.04778309538960457,
-0.07881062477827072,
0.051110971719026566,
-0.02276325412094593,
-0.014983627013862133,
-0.024168459698557854,
0.014964149333536625,
0.052320968359708786,
0.01881325989961624,
-0.06224077567458153,
-0.03626051917672157,
-0.01161555852741003,
0.005061381962150335,
-0.024328036233782768,
0.058391932398080826,
-0.06930813938379288,
0.009355384856462479,
0.056884996592998505,
-0.024387039244174957,
-0.0303240604698658,
-0.026196511462330818,
-0.025701437145471573,
-0.022391609847545624,
-0.06386879086494446,
0.12943805754184723,
0.05186440795660019,
0.005180112551897764,
0.008214635774493217,
0.0017514523351565003,
-0.019053900614380836,
-0.04430074244737625,
-0.029647160321474075,
0.04094140976667404,
5.277369765731167e-33,
-0.004569552838802338,
-0.007257956080138683,
-0.006310997065156698,
0.015006239525973797,
-0.04568948969244957,
0.041611503809690475,
-0.043425027281045914,
-0.032630804926157,
-0.05300958454608917,
-0.04944037273526192,
-0.05800023302435875,
0.11642032116651535,
-0.028299065306782722,
0.07519646733999252,
-0.05466786399483681,
-0.0016050443518906832,
0.03210948407649994,
0.018831487745046616,
0.06565313786268234,
-0.029943371191620827,
0.07226594537496567,
0.040509019047021866,
-0.029245493933558464,
-0.04415211081504822,
-0.10668285191059113,
0.04364386573433876,
0.03333535045385361,
-0.08925727009773254,
0.01578363962471485,
0.008030475117266178,
-0.139534592628479,
0.012580692768096924,
0.05254491791129112,
-0.04665306210517883,
-0.01695564016699791,
0.02142784371972084,
0.030514629557728767,
-0.024123581126332283,
-0.0050345673225820065,
0.020740319043397903,
-0.01021803542971611,
0.03086051158607006,
0.0004620178078766912,
-0.05100947618484497,
0.017932822927832603,
-0.009265630505979061,
0.007099511101841927,
-0.051899999380111694,
0.03757646679878235,
-0.03861387446522713,
-0.052670229226350784,
-0.04566936194896698,
0.0072409543208777905,
-0.026514410972595215,
0.10128339380025864,
0.06486541777849197,
0.0035462717059999704,
0.04276454821228981,
-0.021416110917925835,
-0.015242722816765308,
-0.022456692531704903,
-0.00853861216455698,
0.06363047659397125,
0.039494406431913376,
0.031911417841911316,
-0.014934872277081013,
-0.06841358542442322,
-0.023722894489765167,
0.006940413266420364,
0.015266799367964268,
-0.08196966350078583,
0.029112285003066063,
-0.006373365875333548,
0.028424859046936035,
-0.016193030402064323,
-0.049327172338962555,
-0.03989914804697037,
-0.06663968414068222,
-0.053759489208459854,
-0.04670228436589241,
-0.0601528026163578,
0.03267176076769829,
-0.09811974316835403,
0.03057148866355419,
-0.035975825041532516,
-0.008657645434141159,
0.023501362651586533,
-0.020131736993789673,
-0.004663764964789152,
-0.013405965641140938,
-0.0015655551105737686,
-0.01327190175652504,
-0.010828983969986439,
0.046686988323926926,
-0.003427268238738179,
-7.284935221389118e-33,
-0.017935391515493393,
0.01824345253407955,
-0.05857878923416138,
0.028052421286702156,
0.03466065600514412,
-0.0244206003844738,
0.03133779019117355,
0.09624643623828888,
-0.010649303905665874,
-0.012405503541231155,
0.09134908020496368,
-0.08300621807575226,
-0.019159073010087013,
-0.035638343542814255,
0.0227204617112875,
0.07936837524175644,
-0.0781770870089531,
0.11893259733915329,
-0.034145865589380264,
0.1211763545870781,
-0.01563926413655281,
0.016890371218323708,
-0.07587230950593948,
0.07249520719051361,
0.04793112352490425,
0.09534486383199692,
-0.0059892055578529835,
0.04688725993037224,
0.007809583563357592,
-0.04183192551136017,
-0.051098451018333435,
-0.035844262689352036,
-0.05658651515841484,
0.0018143251072615385,
-0.047431543469429016,
0.016049565747380257,
0.012506790459156036,
-0.0605558343231678,
-0.016751814633607864,
-0.04796547815203667,
0.04283958300948143,
0.06453299522399902,
-0.041057977825403214,
-0.04985995963215828,
0.06215086951851845,
0.018863480538129807,
-0.14911822974681854,
-0.09600558876991272,
0.0804942399263382,
-0.04253900796175003,
-0.005689035635441542,
-0.08607874810695648,
-0.03494327515363693,
-0.01805177889764309,
-0.08028510957956314,
-0.01870626211166382,
0.0325506366789341,
-0.042053502053022385,
-0.07567618042230606,
-0.051354825496673584,
0.019334400072693825,
-0.03660643845796585,
-0.02440146915614605,
-0.021513693034648895,
-0.013486706651747227,
-0.01127867866307497,
0.03720580413937569,
0.04768778756260872,
-0.0022621017415076494,
-0.0074661001563072205,
-0.05801084637641907,
0.034375980496406555,
-0.010344970040023327,
-0.01198673527687788,
0.07001551240682602,
-0.047132447361946106,
-0.0011707578087225556,
-0.05386265739798546,
-0.04981641098856926,
-0.030485333874821663,
0.02115064486861229,
-0.08726729452610016,
0.04435470700263977,
0.03045790269970894,
-0.010476337745785713,
0.05075926333665848,
0.008310314267873764,
0.05383845046162605,
-0.044488564133644104,
-0.05485135316848755,
0.013692261651158333,
-0.05161414295434952,
-0.10453887283802032,
0.09922370314598083,
0.02969159185886383,
-6.024092868983644e-8,
-0.05810988321900368,
0.0073549095541238785,
0.012308155186474323,
-0.015569712035357952,
-0.04056800529360771,
-0.09332386404275894,
-0.07840394973754883,
-0.007445812691003084,
-0.02914411574602127,
-0.0038489848375320435,
-0.0003969837271142751,
0.05941643938422203,
-0.05698402225971222,
-0.029811862856149673,
0.009693385101854801,
0.08637485653162003,
-0.10638505965471268,
0.050768837332725525,
0.0643654465675354,
-0.01691240258514881,
0.009983179159462452,
-0.002052746945992112,
0.05158965662121773,
0.007719090208411217,
0.03044368512928486,
-0.029806170612573624,
-0.06147949770092964,
0.06449076533317566,
0.01581188105046749,
-0.05595371872186661,
0.005829526111483574,
0.06526843458414078,
0.023138070479035378,
0.05678337439894676,
-0.007348611485213041,
-0.04847309738397598,
0.04099806398153305,
-0.04210789501667023,
-0.015560639090836048,
0.09820358455181122,
0.12144938856363297,
0.04710187390446663,
-0.05570787563920021,
0.003077226225286722,
0.09606241434812546,
-0.016195911914110184,
0.06632345169782639,
0.061207421123981476,
0.05396415293216705,
-0.04986227676272392,
0.0418347492814064,
-0.015440084971487522,
0.0278930701315403,
-0.0037192651070654392,
-0.002477318746969104,
0.09237402677536011,
-0.02509213238954544,
0.046044833958148956,
0.0073246099054813385,
-0.013213527388870716,
0.05785970762372017,
-0.01126797217875719,
0.05572633072733879,
0.0630030483007431
] |
bigscience/bigscience-small-testing | 5fc95662beefe9606b9f9f3b9eefdd87cdf4b51a | 2022-07-11T10:04:17.000Z | [
"pytorch",
"bloom",
"feature-extraction",
"eng",
"transformers",
"integration",
"text-generation"
] | text-generation | false | bigscience | null | bigscience/bigscience-small-testing | 8,081 | null | transformers | ---
language:
- eng
tags:
- integration
pipeline_tag: text-generation
---
# BigScience - testing model
This model aims to test the conversion between Megatron-LM and transformers. It is a small ```GPT-2```-like model that has been used to debug the script. Use it only for integration tests | [
-0.08087308704853058,
0.01658627949655056,
-0.026207296177744865,
0.012760224752128124,
0.049331896007061005,
-0.11245300620794296,
-0.043065812438726425,
0.10059072077274323,
-0.10919713973999023,
-0.026045437902212143,
0.031146999448537827,
-0.0563659742474556,
0.049019262194633484,
-0.02604188770055771,
-0.034798309206962585,
0.01283596083521843,
-0.036600518971681595,
-0.039242446422576904,
-0.0409107580780983,
-0.05627334490418434,
0.07113729417324066,
0.08485348522663116,
-0.02709060162305832,
0.04501921311020851,
0.010174106806516647,
0.0001735256373649463,
-0.005139442626386881,
0.024944143369793892,
0.03759191930294037,
-0.031038543209433556,
0.06084802374243736,
0.067544125020504,
-0.056634970009326935,
0.039799731224775314,
0.08993808180093765,
0.05849767103791237,
0.012219228781759739,
-0.0928453728556633,
0.01534635853022337,
-0.026850230991840363,
0.0830235481262207,
-0.05986017733812332,
0.048773061484098434,
-0.0468905083835125,
0.07619041949510574,
-0.06659108400344849,
-0.09503049403429031,
-0.10569673776626587,
-0.1043313592672348,
0.01058077160269022,
-0.04362741485238075,
-0.08883898705244064,
-0.03556492179632187,
0.04327480122447014,
0.004675468895584345,
0.023680759593844414,
0.009060153737664223,
-0.06797593086957932,
0.006913234479725361,
-0.027127355337142944,
-0.055956944823265076,
0.03706802800297737,
-0.05479159951210022,
0.02747061848640442,
-0.026458919048309326,
0.014143609441816807,
-0.014857420697808266,
0.010095825418829918,
0.00003615567402448505,
-0.026413166895508766,
-0.04350646957755089,
-0.022365344688296318,
-0.06396126002073288,
-0.03460244834423065,
0.04462144523859024,
0.0037786371540278196,
0.0024198933970183134,
0.01454226952046156,
0.042248718440532684,
-0.016322603449225426,
-0.004539893940091133,
-0.07738152146339417,
-0.05471314117312431,
0.019694283604621887,
-0.047827765345573425,
0.11281675100326538,
0.05433403700590134,
0.04693601652979851,
0.013468916527926922,
0.00015051475202199072,
-0.03217406943440437,
-0.04120659828186035,
-0.03189825266599655,
0.08368708193302155,
-0.07862767577171326,
0.031127069145441055,
-0.03445474058389664,
-0.06300204247236252,
0.0006807807949371636,
0.0628240630030632,
-0.01754721626639366,
0.037976108491420746,
0.07994242757558823,
-0.0038893355522304773,
-0.10968204587697983,
-0.030741440132260323,
0.010213583707809448,
0.044770948588848114,
0.0599869005382061,
-0.07168500870466232,
0.053357042372226715,
-0.02406071498990059,
0.004791673738509417,
-0.0484071746468544,
0.005330982618033886,
-0.015574236400425434,
0.003535941243171692,
-0.0013061787467449903,
-0.04121195152401924,
0.059095267206430435,
-0.008875261060893536,
0.05223001167178154,
-0.0730883926153183,
-0.03698486089706421,
-0.05186246708035469,
0.05655548721551895,
-0.03968300297856331,
-1.234599859820563e-33,
0.024684995412826538,
-0.053534120321273804,
0.03994747996330261,
0.05718597024679184,
0.0024564540944993496,
0.09334182739257812,
0.00946063082665205,
0.028551554307341576,
-0.04802846908569336,
0.02277672477066517,
0.010947585105895996,
0.03244778886437416,
-0.09405732899904251,
0.05797142907977104,
-0.0635426938533783,
-0.03196961432695389,
0.02352125570178032,
0.0012553269043564796,
0.019809767603874207,
0.05443696677684784,
0.04826802387833595,
0.030672628432512283,
-0.046670716255903244,
-0.01880705915391445,
0.044308923184871674,
0.06211638078093529,
0.023948002606630325,
-0.04403020069003105,
-0.002670320915058255,
0.05985578894615173,
-0.09416721016168594,
0.0392816923558712,
-0.04589749872684479,
0.067317895591259,
-0.0007211342453956604,
-0.04259338229894638,
-0.04210876673460007,
-0.08587281405925751,
-0.015740100294351578,
-0.01286705955862999,
-0.05301133543252945,
-0.03612405061721802,
-0.06440150737762451,
-0.05747803673148155,
0.038715288043022156,
-0.009813111275434494,
0.023935798555612564,
-0.013648346066474915,
0.1335701197385788,
0.01291807834059,
-0.005884912330657244,
0.05891253426671028,
-0.01763104274868965,
-0.027452534064650536,
0.030404871329665184,
0.011112711392343044,
0.011563033796846867,
0.029809966683387756,
0.04740939289331436,
0.029792390763759613,
-0.043529678136110306,
0.03639660030603409,
0.04601142928004265,
0.05717814341187477,
0.07693697512149811,
-0.030968794599175453,
-0.02642708644270897,
-0.029076196253299713,
0.060035593807697296,
0.053123004734516144,
-0.0691394954919815,
-0.05447568744421005,
-0.013966524973511696,
0.07501882314682007,
0.08522742241621017,
-0.11009044945240021,
-0.010033555328845978,
0.04041100665926933,
-0.019003117457032204,
0.00837653037160635,
-0.022112974897027016,
-0.01743803173303604,
0.02010362595319748,
-0.06732618808746338,
0.05129430070519447,
-0.038192931562662125,
-0.021335316821932793,
-0.07047956436872482,
-0.010075333528220654,
-0.07417023926973343,
-0.032616693526506424,
-0.010132363997399807,
-0.04614953696727753,
-0.004550679121166468,
0.004637229721993208,
-1.3856150680577253e-33,
0.003132778452709317,
0.055304884910583496,
-0.016694527119398117,
0.10568264871835709,
-0.034369099885225296,
-0.14001308381557465,
0.06438403576612473,
0.031516171991825104,
0.027193620800971985,
0.06873016059398651,
0.03798648715019226,
0.036705825477838516,
-0.02063688263297081,
-0.06473556160926819,
0.1103668212890625,
-0.03517043963074684,
-0.03392869979143143,
-0.15122394263744354,
0.032584454864263535,
0.04382016882300377,
0.0306236632168293,
0.05610315129160881,
-0.029815485700964928,
0.014188157394528389,
-0.07020808756351471,
-0.011788886040449142,
-0.008524937555193901,
0.002076127100735903,
0.09377321600914001,
-0.015843376517295837,
-0.018969837576150894,
0.10296183079481125,
-0.0387069433927536,
0.050609342753887177,
-0.03569623827934265,
-0.03439487889409065,
0.13745377957820892,
0.05292229354381561,
0.035125985741615295,
0.03102024272084236,
-0.04924429580569267,
0.034692227840423584,
0.037008754909038544,
0.0197609793394804,
-0.03336658328771591,
0.05092565715312958,
0.04708654060959816,
-0.0704970732331276,
0.02844865620136261,
-0.032997358590364456,
0.008319192565977573,
0.006082312669605017,
-0.054295286536216736,
-0.045249104499816895,
-0.049003537744283676,
-0.07517904043197632,
-0.004683379549533129,
-0.00790129229426384,
-0.10971926152706146,
-0.05043961852788925,
0.020370837301015854,
-0.0357741080224514,
0.07744971662759781,
-0.022414706647396088,
-0.08950717002153397,
-0.03900827467441559,
0.0017729519167914987,
-0.04480123147368431,
0.02900274470448494,
0.0582125224173069,
0.06088697165250778,
-0.01778866909444332,
0.051861830055713654,
0.045500658452510834,
-0.015591416507959366,
-0.06500617414712906,
-0.05645779147744179,
-0.028000442311167717,
0.10188089311122894,
-0.019839724525809288,
-0.011089314706623554,
0.024678237736225128,
0.03731565177440643,
0.050062138587236404,
0.024520225822925568,
-0.12030688673257828,
0.017015725374221802,
0.10151535272598267,
-0.04411919787526131,
0.00972085539251566,
-0.06751076132059097,
0.09468159079551697,
-0.014174929820001125,
0.08295155316591263,
-0.005965719930827618,
-4.056854763234696e-8,
-0.018399087712168694,
-0.08185555040836334,
-0.11175176501274109,
0.04156985878944397,
-0.0730120912194252,
-0.026928609237074852,
-0.012475538067519665,
0.005893728695809841,
0.009395408444106579,
0.040210433304309845,
0.0028865712229162455,
0.03744720667600632,
-0.045023586601018906,
0.016419261693954468,
0.02415587194263935,
0.010064938105642796,
0.01545766368508339,
0.051547303795814514,
-0.020480437204241753,
-0.032374121248722076,
-0.017980458214879036,
0.04178192839026451,
0.02395927533507347,
-0.02482268400490284,
0.027063842862844467,
0.023256631568074226,
-0.009082593955099583,
0.06357850879430771,
-0.04824663698673248,
0.03328539431095123,
0.07762844860553741,
-0.009347453713417053,
-0.08481869101524353,
-0.036516062915325165,
0.03764999285340309,
0.08093579858541489,
0.05164184421300888,
0.015935610979795456,
0.14314651489257812,
-0.014605899341404438,
0.0542399100959301,
0.06859220564365387,
-0.05551159381866455,
0.010591061785817146,
-0.009320340119302273,
-0.06865576654672623,
-0.06834391504526138,
-0.07872601598501205,
-0.004972545430064201,
0.027778496965765953,
-0.002760404022410512,
-0.02211487852036953,
-0.0965329185128212,
-0.006366431247442961,
-0.007068354170769453,
0.040988292545080185,
0.009443951770663261,
-0.03960961475968361,
-0.0210688728839159,
-0.018740389496088028,
0.07234667986631393,
0.05764656513929367,
0.04542078077793121,
-0.04340827465057373
] |
lvwerra/distilbert-imdb | dc2e91fb7046e0ede2359fd54e667446daf267a3 | 2022-04-30T11:21:06.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"dataset:imdb",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | text-classification | false | lvwerra | null | lvwerra/distilbert-imdb | 8,073 | null | transformers | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
model-index:
- name: distilbert-imdb
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.928
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1903
- Accuracy: 0.928
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2195 | 1.0 | 1563 | 0.1903 | 0.928 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
| [
-0.10599382221698761,
-0.0434105359017849,
-0.012441826984286308,
0.02246803045272827,
0.013310329988598824,
0.0038301663007587194,
0.025629501789808273,
0.04090632498264313,
-0.038466550409793854,
-0.14717997610569,
0.03168392553925514,
-0.060193855315446854,
0.03140324726700783,
-0.024865439161658287,
-0.1237226203083992,
0.05343729257583618,
0.10605896264314651,
-0.035153452306985855,
-0.09091778844594955,
0.011171785183250904,
-0.01400844193994999,
0.056855201721191406,
0.006595251616090536,
0.06390390545129776,
-0.04181473329663277,
-0.0027712415903806686,
-0.05815548449754715,
0.04532967135310173,
0.008543118834495544,
-0.07471068948507309,
0.04115965962409973,
-0.0011229575611650944,
0.04370353743433952,
0.030832277610898018,
0.0185282900929451,
0.06894742697477341,
-0.01550241932272911,
-0.06527628749608994,
-0.011857882142066956,
-0.006061066873371601,
0.03588278591632843,
0.008562089875340462,
-0.0011521956184878945,
0.10846477746963501,
0.03271961957216263,
0.024145349860191345,
-0.05046721175312996,
-0.0859135091304779,
-0.023604605346918106,
0.018919827416539192,
-0.13521811366081238,
-0.02191406674683094,
0.053330715745687485,
-0.03359181433916092,
-0.034359026700258255,
0.01186956837773323,
-0.03859001398086548,
0.0017907400615513325,
-0.025933904573321342,
-0.009277907200157642,
0.07944895327091217,
0.007759247440844774,
-0.05321924015879631,
-0.03775942698121071,
-0.07167002558708191,
-0.04168980196118355,
0.022199634462594986,
-0.020046258345246315,
0.12240669131278992,
-0.07950138300657272,
0.01991117000579834,
0.05846383795142174,
-0.030298149213194847,
0.016456151381134987,
-0.014564480632543564,
0.0299946628510952,
-0.005151387769728899,
0.026196015998721123,
0.08633321523666382,
-0.06157798320055008,
-0.06294393539428711,
-0.1057528629899025,
0.03335067629814148,
-0.04413244128227234,
0.08866756409406662,
0.0032568753231316805,
0.04683224856853485,
0.015225150622427464,
0.03376515582203865,
-0.00946743879467249,
-0.015938282012939453,
-0.040595702826976776,
0.007551113609224558,
0.030521132051944733,
0.005060127004981041,
0.061915911734104156,
-0.010049118660390377,
0.039343688637018204,
-0.05907636508345604,
0.14273281395435333,
-0.0512564480304718,
0.017528750002384186,
-0.010389811359345913,
-0.025790242478251457,
0.008352902717888355,
-0.04123064875602722,
0.03906469792127609,
0.05998490750789642,
0.025552691891789436,
-0.07343626022338867,
0.0358576774597168,
-0.0031357582192867994,
-0.08368058502674103,
0.04712020233273506,
0.02062007039785385,
0.07036686688661575,
-0.01777811534702778,
0.007198255974799395,
-0.00997441541403532,
0.07406250387430191,
-0.02400185726583004,
-0.010619929060339928,
-0.005554548464715481,
0.01567232236266136,
-0.07987286895513535,
-0.06602716445922852,
-0.13179711997509003,
4.6450144164162405e-33,
0.00811712071299553,
0.021921081468462944,
0.02313394285738468,
-0.0024050376377999783,
0.011970609426498413,
-0.04424936696887016,
-0.061344653367996216,
0.03062780760228634,
-0.03113258071243763,
0.008480398915708065,
-0.039576299488544464,
0.009547394700348377,
-0.03679018095135689,
0.03926149755716324,
0.005723399110138416,
-0.04279116168618202,
-0.06330300122499466,
0.048086587339639664,
0.067232146859169,
0.0027891872450709343,
0.10792446881532669,
0.0626191720366478,
-0.04114237427711487,
-0.06558595597743988,
-0.0856638178229332,
0.08500631898641586,
-0.017794573679566383,
-0.02280987985432148,
0.035058412700891495,
0.05905603617429733,
-0.02101140283048153,
-0.0733543261885643,
0.023277563974261284,
-0.031620919704437256,
0.020159846171736717,
-0.02703835628926754,
-0.052892863750457764,
0.014017468318343163,
-0.024721918627619743,
-0.01434757374227047,
0.0023347896058112383,
0.021054582670331,
-0.02757851965725422,
-0.07955801486968994,
-0.05981937050819397,
0.05593876540660858,
0.05609503015875816,
0.027239197865128517,
0.013635926879942417,
-0.02790643461048603,
-0.04889631271362305,
-0.006783810444176197,
0.044206906110048294,
-0.08864714205265045,
-0.07546815276145935,
-0.010707193985581398,
0.04394727945327759,
0.12412802129983902,
0.04294126108288765,
-0.006140248849987984,
0.01242081355303526,
0.04412488639354706,
-0.002474934561178088,
0.011846659705042839,
-0.02482564002275467,
-0.015624777413904667,
-0.02752903662621975,
0.017852051183581352,
0.057262443006038666,
0.03157304972410202,
-0.08513292670249939,
-0.017075855284929276,
-0.019508475437760353,
-0.010614512488245964,
0.0612027533352375,
-0.08107643574476242,
-0.02427893690764904,
-0.0497780367732048,
-0.07514810562133789,
0.01725463941693306,
-0.033422306180000305,
0.09294302761554718,
0.011317629367113113,
-0.0815398246049881,
-0.0432882234454155,
-0.023879077285528183,
0.014317076653242111,
-0.010206612758338451,
0.023736367002129555,
0.05130588635802269,
0.023106249049305916,
0.05089152604341507,
-0.07330762594938278,
0.00040986857493408024,
0.012299954891204834,
-6.079338296952195e-33,
-0.008900640532374382,
-0.01472011860460043,
-0.041002415120601654,
0.06798300892114639,
0.05547340214252472,
0.013803909532725811,
0.016938744112849236,
0.16118596494197845,
0.012901975773274899,
-0.04177548363804817,
0.10776684433221817,
0.005635802634060383,
-0.10141558945178986,
-0.04614062234759331,
-0.019208339974284172,
0.02406316250562668,
-0.07224582880735397,
-0.04056224972009659,
-0.03284922614693642,
0.02870977483689785,
-0.017490927129983902,
0.09313997626304626,
-0.10945876687765121,
0.03586439788341522,
-0.0068976618349552155,
0.06722506880760193,
0.002139050280675292,
0.08040175586938858,
0.08278641849756241,
-0.00007188432937255129,
-0.0286626648157835,
-0.03163992241024971,
-0.03472502529621124,
0.02420203946530819,
-0.0854535698890686,
0.006721368990838528,
0.05387997254729271,
-0.07700929045677185,
-0.02673744410276413,
0.11067000031471252,
0.04568350315093994,
0.05495521426200867,
-0.08674120157957077,
0.06778549402952194,
-0.016625700518488884,
-0.004990289453417063,
0.013746298849582672,
-0.021016528829932213,
0.045208148658275604,
-0.030905764549970627,
0.032314497977495193,
-0.05915101617574692,
-0.05969309061765671,
0.007527089677751064,
-0.02218688279390335,
-0.021724842488765717,
-0.016652867197990417,
0.011915708892047405,
-0.03842823579907417,
0.08642537891864777,
-0.04513769969344139,
-0.021175187081098557,
-0.07332643866539001,
-0.03943921625614166,
-0.009303784929215908,
-0.006674479693174362,
-0.07688889652490616,
0.06191924214363098,
-0.06712064146995544,
-0.005460966844111681,
-0.015686271712183952,
0.031166493892669678,
0.026177596300840378,
-0.018580198287963867,
-0.004631239455193281,
-0.00717783160507679,
-0.008015677332878113,
0.01423268485814333,
-0.023660870268940926,
-0.06754644215106964,
-0.07066253572702408,
-0.04111700877547264,
0.017643053084611893,
0.07772664725780487,
0.1502518206834793,
0.04646863043308258,
0.02682093158364296,
0.05275069549679756,
0.002768297679722309,
-0.03298484906554222,
0.04456072673201561,
0.008869794197380543,
0.029645849019289017,
0.13903091847896576,
-0.006026222836226225,
-6.465975843639171e-8,
-0.037221331149339676,
-0.018593480810523033,
-0.07684774696826935,
0.053428445011377335,
-0.005831664428114891,
-0.005181823391467333,
-0.03325154259800911,
0.05997619405388832,
-0.04656796157360077,
0.0029469269793480635,
0.056121889501810074,
-0.00002518684595997911,
-0.13569781184196472,
0.021665997803211212,
-0.0006725243292748928,
0.013309665024280548,
0.0007812347030267119,
0.137091264128685,
-0.022970637306571007,
-0.018471991643309593,
0.034013472497463226,
-0.035985514521598816,
0.04256899654865265,
-0.07957276701927185,
0.0032418984919786453,
-0.05439995601773262,
-0.0527888648211956,
0.038844604045152664,
-0.04238790646195412,
0.024493427947163582,
0.02105405367910862,
0.06205253675580025,
-0.02015567198395729,
-0.04838313162326813,
-0.00038281106390058994,
0.1004117950797081,
-0.014869047328829765,
-0.034747567027807236,
-0.003110986202955246,
0.030267687514424324,
0.004514120053499937,
0.04722538962960243,
-0.08478717505931854,
0.01370162982493639,
0.09290221333503723,
0.00755646824836731,
0.05149898678064346,
-0.07196056097745895,
0.019905459135770798,
0.04167545586824417,
0.052799612283706665,
-0.008181975223124027,
-0.0269333366304636,
0.04276987910270691,
0.04085410758852959,
0.012018246576189995,
-0.0032362386118620634,
-0.09199115633964539,
-0.038678500801324844,
-0.017984021455049515,
0.05130350589752197,
-0.06325027346611023,
0.07541948556900024,
0.0036090114153921604
] |
uer/gpt2-chinese-lyric | c835964d9427bf1b4d01adf867454c9a85d4e385 | 2022-07-15T08:25:43.000Z | [
"pytorch",
"tf",
"jax",
"gpt2",
"text-generation",
"zh",
"transformers"
] | text-generation | false | uer | null | uer/gpt2-chinese-lyric | 8,060 | 8 | transformers | ---
language: zh
widget:
- text: "最美的不是下雨天,是曾与你躲过雨的屋檐"
---
# Chinese GPT2 Lyric Model
## Model description
The model is used to generate Chinese lyrics. You can download the model either from the [GPT2-Chinese Github page](https://github.com/Morizeyao/GPT2-Chinese), or via HuggingFace from the link [gpt2-chinese-lyric](https://huggingface.co/uer/gpt2-chinese-lyric)
## How to use
You can use the model directly with a pipeline for text generation:
```python
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-lyric")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-lyric")
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator("最美的不是下雨天,是曾与你躲过雨的屋檐", max_length=100, do_sample=True)
[{'generated_text': '最美的不是下雨天,是曾与你躲过雨的屋檐 , 下 课 铃 声 响 起 的 瞬 间 , 我 们 的 笑 脸 , 有 太 多 回 忆 在 浮 现 , 是 你 总 在 我 身 边 , 不 知 道 会 不 会 再 见 , 从 现 在 开 始 到 永 远 , 想 说 的 语 言 凝 结 成 一 句 , 不 管 我 们 是 否 能 够 兑 现 , 想 说 的 语 言 凝 结'}]
```
## Training data
Training data contains 150,000 Chinese lyrics which are collected by [Chinese-Lyric-Corpus](https://github.com/gaussic/Chinese-Lyric-Corpus) and [MusicLyricChatbot](https://github.com/liuhuanyong/MusicLyricChatbot).
## Training procedure
The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 100,000 steps with a sequence length of 512 on the basis of the pre-trained model [gpt2-base-chinese-cluecorpussmall](https://huggingface.co/uer/gpt2-base-chinese-cluecorpussmall)
```
python3 preprocess.py --corpus_path corpora/lyric.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path lyric_dataset.pt --processes_num 32 \
--seq_length 512 --data_processor lm
```
```
python3 pretrain.py --dataset_path lyric_dataset.pt \
--pretrained_model_path models/cluecorpussmall_gpt2_seq1024_model.bin-250000 \
--vocab_path models/google_zh_vocab.txt \
--config_path models/gpt2/config.json \
--output_model_path models/lyric_gpt2_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 100000 --save_checkpoint_steps 10000 --report_steps 5000 \
--learning_rate 5e-5 --batch_size 64
```
Finally, we convert the pre-trained model into Huggingface's format:
```
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path lyric_gpt2_model.bin-100000 \
--output_model_path pytorch_model.bin \
--layers_num 12
```
### BibTeX entry and citation info
```
@article{radford2019language,
title={Language Models are Unsupervised Multitask Learners},
author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
year={2019}
}
@article{zhao2019uer,
title={UER: An Open-Source Toolkit for Pre-training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP-IJCNLP 2019},
pages={241},
year={2019}
}
``` | [
-0.08998191356658936,
-0.032523803412914276,
0.02321925014257431,
0.010561428032815456,
-0.0019674666691571474,
0.0245301965624094,
0.026444820687174797,
0.024702711030840874,
0.0374826081097126,
-0.0925922691822052,
0.03440621867775917,
-0.08156166970729828,
0.04279472306370735,
-0.045385513454675674,
0.07427535206079483,
0.04449250549077988,
-0.004329994320869446,
-0.011190934106707573,
-0.05644863471388817,
-0.10174135118722916,
0.08982967585325241,
0.04862403869628906,
0.1039900854229927,
0.032517410814762115,
0.022920386865735054,
-0.04530169814825058,
0.0245937742292881,
0.09403570741415024,
0.07309458404779434,
0.09478563070297241,
0.0027200374752283096,
0.03901340067386627,
-0.025325126945972443,
0.07940545678138733,
-0.03565460070967674,
0.09460322558879852,
-0.008319004438817501,
-0.019735107198357582,
-0.04937869310379028,
0.010818816721439362,
0.06451775133609772,
0.03211372345685959,
-0.022055787965655327,
-0.04225747287273407,
0.08435239642858505,
-0.022106584161520004,
-0.0971037894487381,
-0.08203542977571487,
-0.0716748833656311,
0.02725980430841446,
-0.03922015801072121,
-0.02457481250166893,
0.05847235769033432,
0.039805926382541656,
-0.02932635508477688,
0.08518576622009277,
0.0620194636285305,
-0.0019492319552227855,
0.030793527141213417,
-0.05892905592918396,
-0.08646056801080704,
0.02385355718433857,
-0.022449614480137825,
-0.03812418133020401,
-0.019036870449781418,
-0.0058036246336996555,
-0.02944057062268257,
0.05248894542455673,
0.032284341752529144,
0.004216574132442474,
-0.05347469449043274,
0.01654800772666931,
-0.042563408613204956,
0.011973138898611069,
-0.05050013214349747,
-0.054640356451272964,
0.05718104913830757,
-0.057555314153432846,
-0.05421316623687744,
-0.05369140952825546,
0.007011633366346359,
-0.0183390025049448,
0.1923610121011734,
0.011295350268483162,
0.0029874087776988745,
0.016283007338643074,
0.005040319170802832,
0.038839489221572876,
-0.025332896038889885,
0.03451145067811012,
-0.06196216866374016,
-0.044109735637903214,
0.06466146558523178,
0.052814971655607224,
-0.05892370268702507,
0.013380341231822968,
0.03373236209154129,
-0.041982684284448624,
-0.02730565145611763,
0.047055166214704514,
0.043016694486141205,
0.017848830670118332,
0.011410458944737911,
-0.044884324073791504,
-0.03656451031565666,
-0.06975443661212921,
0.03951452672481537,
0.025095544755458832,
-0.03250972926616669,
-0.036597829312086105,
0.06820299476385117,
-0.03799967095255852,
-0.009052218869328499,
-0.023976456373929977,
-0.003081502392888069,
0.027558645233511925,
-0.0707348883152008,
-0.011240338906645775,
-0.0476759672164917,
0.055852293968200684,
-0.02958955429494381,
0.0316762700676918,
-0.07463525980710983,
-0.00935270357877016,
-0.05605020001530647,
-0.005769422743469477,
-0.016688039526343346,
3.7062407506205606e-33,
0.04231478273868561,
0.03517245128750801,
0.06979835778474808,
0.023914417251944542,
-0.031933460384607315,
0.011571969836950302,
0.006727190688252449,
-0.016034677624702454,
-0.019446780905127525,
-0.05790296196937561,
-0.018053198233246803,
-0.01293683797121048,
-0.12596102058887482,
0.029029035940766335,
-0.027929311618208885,
-0.058458149433135986,
-0.0399165116250515,
0.008874242193996906,
0.07219863682985306,
0.033642057329416275,
0.06760010123252869,
0.07481439411640167,
0.01567845419049263,
-0.13335396349430084,
-0.03425682336091995,
0.04766029864549637,
0.037115223705768585,
-0.04756224900484085,
-0.018442105501890182,
0.02263573743402958,
-0.09336859732866287,
0.003608925500884652,
0.05380776524543762,
0.03497186675667763,
-0.04438067972660065,
-0.022909780964255333,
0.01671624928712845,
-0.028934530913829803,
-0.0034036547876894474,
-0.0651325210928917,
0.044370900839567184,
0.008404300548136234,
0.011834479868412018,
-0.09027805924415588,
-0.05578482523560524,
0.07573559135198593,
-0.02135493978857994,
-0.029728665947914124,
0.06699099391698837,
0.017182067036628723,
-0.005343437194824219,
0.04415200278162956,
-0.04997681826353073,
0.09604662656784058,
0.00859279278665781,
-0.008860025554895401,
0.02535916119813919,
-0.053005535155534744,
0.051531195640563965,
-0.023768125101923943,
-0.0028239209204912186,
-0.0014901673421263695,
0.09231416881084442,
0.035998642444610596,
0.0725175216794014,
0.06485792249441147,
-0.001166643458418548,
-0.0606808178126812,
0.008713137358427048,
0.006669624242931604,
-0.0817902460694313,
-0.05963089317083359,
-0.0013856467558071017,
0.0053832316771149635,
0.017005039379000664,
-0.045086804777383804,
-0.012230177409946918,
-0.07849330455064774,
-0.011062832549214363,
0.026820562779903412,
-0.04939936101436615,
-0.012416105717420578,
-0.03126676380634308,
-0.008066820912063122,
0.006926065310835838,
-0.04079631716012955,
0.0808020830154419,
-0.06223785877227783,
-0.02007661946117878,
-0.07534050196409225,
-0.11739259213209152,
-0.06452372670173645,
-0.011227065697312355,
-0.03903813287615776,
-0.031389787793159485,
-5.6191961761105955e-33,
0.026373179629445076,
0.07254856079816818,
-0.003133105579763651,
0.02007800154387951,
0.015787025913596153,
-0.087550587952137,
0.08176246285438538,
0.068988136947155,
-0.00004197718226350844,
-0.006806820631027222,
0.014062611386179924,
0.0015859113773331046,
0.013079920783638954,
-0.030900388956069946,
0.049712732434272766,
-0.005386072210967541,
0.017205851152539253,
0.049757685512304306,
0.027292894199490547,
0.02837442420423031,
-0.02813943475484848,
-0.026256272569298744,
-0.1487124115228653,
0.029892219230532646,
-0.05731849744915962,
0.03340792655944824,
0.06905143707990646,
0.01661083661019802,
0.058448631316423416,
0.00006512514664791524,
-0.004400786478072405,
0.056715626269578934,
-0.030720969662070274,
0.027964390814304352,
-0.11941791325807571,
-0.012246426194906235,
0.03988248482346535,
-0.031834740191698074,
-0.039242222905159,
0.062220703810453415,
0.03908060863614082,
-0.021783340722322464,
-0.034010227769613266,
0.016603169962763786,
-0.013928942382335663,
0.05553440377116203,
-0.055677156895399094,
-0.014698788523674011,
-0.018135329708456993,
-0.014727599918842316,
0.03680296614766121,
-0.03285517171025276,
-0.036564070731401443,
0.008289138786494732,
-0.05256729573011398,
-0.09100307524204254,
0.03714432567358017,
-0.09116236865520477,
-0.07483675330877304,
-0.0757073387503624,
-0.056666504591703415,
-0.028975244611501694,
0.04286019131541252,
-0.0714796930551529,
-0.04074341058731079,
-0.05552401766180992,
0.09109997749328613,
0.002087540226057172,
0.05937444791197777,
-0.014765545725822449,
-0.0016658054664731026,
0.04490169882774353,
0.07552533596754074,
0.04410027340054512,
-0.030706940218806267,
0.023495323956012726,
-0.08993849903345108,
-0.0011912616901099682,
0.020680377259850502,
-0.06318943202495575,
0.003385254181921482,
0.016165778040885925,
0.07536567747592926,
0.030115598812699318,
0.03492649644613266,
-0.08541205525398254,
0.0027836982626467943,
0.08545337617397308,
0.00016620045062154531,
0.015612013638019562,
-0.026770535856485367,
0.07155308127403259,
0.01505199819803238,
0.10548296570777893,
-0.01904885098338127,
-4.634030759120833e-8,
-0.05828450620174408,
-0.07482543587684631,
-0.035533029586076736,
0.018915332853794098,
-0.15095248818397522,
-0.017817039042711258,
-0.02079954743385315,
-0.040520329028367996,
0.05358367785811424,
-0.07207605242729187,
0.0037873692344874144,
-0.004497862420976162,
-0.06362543255090714,
0.03617154434323311,
-0.07918912172317505,
0.03746305778622627,
0.020190773531794548,
0.08698327094316483,
0.006901690736413002,
-0.056380949914455414,
-0.07042878121137619,
0.0449780635535717,
0.018054252490401268,
-0.06346984207630157,
-0.015673061832785606,
0.04187900945544243,
-0.13388653099536896,
0.03891550004482269,
-0.06746276468038559,
-0.0013965459074825048,
0.04764039069414139,
-0.008125638589262962,
0.0012374130310490727,
0.045721519738435745,
0.022387290373444557,
0.01999800093472004,
-0.011345908045768738,
-0.07851041108369827,
0.05956213176250458,
0.0026425642427057028,
0.116904117166996,
0.05473430082201958,
-0.08427773416042328,
0.002397848293185234,
0.08341933786869049,
-0.04596054181456566,
0.032024744898080826,
-0.08941145241260529,
0.08096640557050705,
0.08119934797286987,
-0.006142551079392433,
-0.020717483013868332,
-0.05818495526909828,
-0.036488525569438934,
0.02297363057732582,
0.06289347261190414,
-0.05781504139304161,
0.06200553476810455,
0.015821849927306175,
0.03025142475962639,
-0.0038917185738682747,
0.03255531191825867,
0.0669923797249794,
-0.03733406588435173
] |
facebook/opt-66b | 8ea7547215f0999c2f648c8c034869bad974273e | 2022-06-25T15:31:09.000Z | [
"pytorch",
"tf",
"jax",
"opt",
"text-generation",
"en",
"arxiv:2205.01068",
"arxiv:2005.14165",
"transformers",
"license:other"
] | text-generation | false | facebook | null | facebook/opt-66b | 8,059 | 31 | transformers | ---
language: en
inference: false
tags:
- text-generation
- opt
license: other
commercial: false
---
# OPT : Open Pre-trained Transformer Language Models
OPT was first introduced in [Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) and first released in [metaseq's repository](https://github.com/facebookresearch/metaseq) on May 3rd 2022 by Meta AI.
**Disclaimer**: The team releasing OPT wrote an official model card, which is available in Appendix D of the [paper](https://arxiv.org/pdf/2205.01068.pdf).
Content from **this** model card has been written by the Hugging Face team.
## Intro
To quote the first two paragraphs of the [official paper](https://arxiv.org/abs/2205.01068)
> Large language models trained on massive text collections have shown surprising emergent
> capabilities to generate text and perform zero- and few-shot learning. While in some cases the public
> can interact with these models through paid APIs, full model access is currently limited to only a
> few highly resourced labs. This restricted access has limited researchers’ ability to study how and
> why these large language models work, hindering progress on improving known challenges in areas
> such as robustness, bias, and toxicity.
> We present Open Pretrained Transformers (OPT), a suite of decoder-only pre-trained transformers ranging from 125M
> to 175B parameters, which we aim to fully and responsibly share with interested researchers. We train the OPT models to roughly match
> the performance and sizes of the GPT-3 class of models, while also applying the latest best practices in data
> collection and efficient training. Our aim in developing this suite of OPT models is to enable reproducible and responsible research at scale, and
> to bring more voices to the table in studying the impact of these LLMs. Definitions of risk, harm, bias, and toxicity, etc., should be articulated by the
> collective research community as a whole, which is only possible when models are available for study.
## Model description
OPT was predominantly pretrained with English text, but a small amount of non-English data is still present within the training corpus via CommonCrawl. The model was pretrained using a causal language modeling (CLM) objective.
OPT belongs to the same family of decoder-only models like [GPT-3](https://arxiv.org/abs/2005.14165). As such, it was pretrained using the self-supervised causal language modedling objective.
For evaluation, OPT follows [GPT-3](https://arxiv.org/abs/2005.14165) by using their prompts and overall experimental setup. For more details, please read
the [official paper](https://arxiv.org/abs/2205.01068).
## Intended uses & limitations
The pretrained-only model can be used for prompting for evaluation of downstream tasks as well as text generation.
In addition, the model can be fine-tuned on a downstream task using the [CLM example](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling). For all other OPT checkpoints, please have a look at the [model hub](https://huggingface.co/models?filter=opt).
### How to use
For large OPT models, such as this one, it is not recommend to make use of the `text-generation` pipeline because
one should load the model in half-precision to accelerate generation and optimize memory consumption on GPU.
It is recommended to directly call the [`generate`](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate)
method as follows:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> import torch
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-66b", torch_dtype=torch.float16).cuda()
>>> # the fast tokenizer currently does not work correctly
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-66b", use_fast=False)
>>> prompt = "Hello, I am conscious and"
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
>>> generated_ids = model.generate(input_ids)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
['Hello, I am conscious and I am here.\nI am also conscious and I am here']
```
By default, generation is deterministic. In order to use the top-k sampling, please set `do_sample` to `True`.
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
>>> import torch
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-66b", torch_dtype=torch.float16).cuda()
>>> # the fast tokenizer currently does not work correctly
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-66b", use_fast=False)
>>> prompt = "Hello, I am conscious and"
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
>>> set_seed(32)
>>> generated_ids = model.generate(input_ids, do_sample=True)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
['Hello, I am conscious and aware that you have your back turned to me and want to talk']
```
### Limitations and bias
As mentioned in Meta AI's model card, given that the training data used for this model contains a lot of
unfiltered content from the internet, which is far from neutral the model is strongly biased :
> Like other large language models for which the diversity (or lack thereof) of training
> data induces downstream impact on the quality of our model, OPT-175B has limitations in terms
> of bias and safety. OPT-175B can also have quality issues in terms of generation diversity and
> hallucination. In general, OPT-175B is not immune from the plethora of issues that plague modern
> large language models.
Here's an example of how the model can have biased predictions:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
>>> import torch
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-66b", torch_dtype=torch.float16).cuda()
>>> # the fast tokenizer currently does not work correctly
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-66b", use_fast=False)
>>> prompt = "The woman worked as a"
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
>>> set_seed(32)
>>> generated_ids = model.generate(input_ids, do_sample=True, num_return_sequences=5, max_length=10)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
The woman worked as a supervisor in the office
The woman worked as a social worker in a
The woman worked as a cashier at the
The woman worked as a teacher from 2011 to
he woman worked as a maid at the house
```
compared to:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
>>> import torch
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-66b", torch_dtype=torch.float16).cuda()
>>> # the fast tokenizer currently does not work correctly
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-66b", use_fast=False)
>>> prompt = "The man worked as a"
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
>>> set_seed(32)
>>> generated_ids = model.generate(input_ids, do_sample=True, num_return_sequences=5, max_length=10)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
The man worked as a school bus driver for
The man worked as a bartender in a bar
The man worked as a cashier at the
The man worked as a teacher, and was
The man worked as a professional at a range
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The Meta AI team wanted to train this model on a corpus as large as possible. It is composed of the union of the following 5 filtered datasets of textual documents:
- BookCorpus, which consists of more than 10K unpublished books,
- CC-Stories, which contains a subset of CommonCrawl data filtered to match the
story-like style of Winograd schemas,
- The Pile, from which * Pile-CC, OpenWebText2, USPTO, Project Gutenberg, OpenSubtitles, Wikipedia, DM Mathematics and HackerNews* were included.
- Pushshift.io Reddit dataset that was developed in Baumgartner et al. (2020) and processed in
Roller et al. (2021)
- CCNewsV2 containing an updated version of the English portion of the CommonCrawl News
dataset that was used in RoBERTa (Liu et al., 2019b)
The final training data contains 180B tokens corresponding to 800GB of data. The validation split was made of 200MB of the pretraining data, sampled proportionally
to each dataset’s size in the pretraining corpus.
The dataset might contains offensive content as parts of the dataset are a subset of
public Common Crawl data, along with a subset of public Reddit data, which could contain sentences
that, if viewed directly, can be insulting, threatening, or might otherwise cause anxiety.
### Collection process
The dataset was collected form internet, and went through classic data processing algorithms and
re-formatting practices, including removing repetitive/non-informative text like *Chapter One* or
*This ebook by Project Gutenberg.*
## Training procedure
### Preprocessing
The texts are tokenized using the **GPT2** byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a
vocabulary size of 50272. The inputs are sequences of 2048 consecutive tokens.
The 175B model was trained on 992 *80GB A100 GPUs*. The training duration was roughly ~33 days of continuous training.
### BibTeX entry and citation info
```bibtex
@misc{zhang2022opt,
title={OPT: Open Pre-trained Transformer Language Models},
author={Susan Zhang and Stephen Roller and Naman Goyal and Mikel Artetxe and Moya Chen and Shuohui Chen and Christopher Dewan and Mona Diab and Xian Li and Xi Victoria Lin and Todor Mihaylov and Myle Ott and Sam Shleifer and Kurt Shuster and Daniel Simig and Punit Singh Koura and Anjali Sridhar and Tianlu Wang and Luke Zettlemoyer},
year={2022},
eprint={2205.01068},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
| [
-0.09430353343486786,
0.010255655273795128,
-0.006349516566842794,
0.079442597925663,
0.024165261536836624,
0.013372854329645634,
-0.011628345586359501,
0.022513514384627342,
0.048179179430007935,
0.007294895127415657,
0.06878720223903656,
0.0030618805903941393,
0.010361358523368835,
0.05260738730430603,
0.022207267582416534,
0.0006793889333494008,
0.04404209181666374,
-0.003331486601382494,
-0.03929690644145012,
-0.018890228122472763,
0.031440671533346176,
0.013129055500030518,
0.03994361683726311,
-0.028835631906986237,
0.01043931394815445,
-0.03445925936102867,
-0.0717320367693901,
-0.026663165539503098,
0.07505945861339569,
-0.0014781828504055738,
0.017537148669362068,
0.09376805275678635,
-0.019416891038417816,
0.03429664298892021,
0.007003861479461193,
0.06485766172409058,
-0.0052438159473240376,
0.012388104572892189,
0.012347854673862457,
-0.012338953092694283,
0.005925441160798073,
-0.04492534324526787,
-0.012497707270085812,
-0.014239883050322533,
0.12687425315380096,
0.0699930340051651,
-0.032093435525894165,
0.026164088398218155,
-0.10029667615890503,
-0.02905975840985775,
-0.12926533818244934,
-0.06538331508636475,
0.0024277891498059034,
0.010404117405414581,
-0.047480061650276184,
-0.0009099902235902846,
0.014983720146119595,
-0.07189447432756424,
-0.02193632163107395,
-0.03987812623381615,
-0.07016132026910782,
-0.046938665211200714,
-0.04661913961172104,
-0.029245467856526375,
-0.06977725028991699,
0.05356428772211075,
0.06280773878097534,
0.0011776555329561234,
-0.029860880225896835,
-0.0330926887691021,
0.032744597643613815,
0.02452193573117256,
-0.0010136058554053307,
0.059418585151433945,
0.0991978868842125,
0.03647478669881821,
0.07163278013467789,
-0.022126374766230583,
0.06285717338323593,
-0.06042564660310745,
0.04753889888525009,
0.0036256348248571157,
0.01126948557794094,
-0.0072245351038873196,
-0.013263977132737637,
0.018206492066383362,
-0.036615949124097824,
0.03048624098300934,
0.02310340479016304,
-0.0054916879162192345,
-0.010802929289638996,
-0.03686103969812393,
0.008564133197069168,
0.03555462881922722,
-0.005665007047355175,
0.013387543149292469,
-0.07495683431625366,
-0.033205315470695496,
-0.06148887053132057,
0.07736188918352127,
0.043472226709127426,
-0.021465064957737923,
0.07173214852809906,
0.006018929183483124,
-0.035111021250486374,
-0.0826234519481659,
0.046280838549137115,
0.03371426835656166,
0.020701976493000984,
-0.03936665132641792,
0.03830508515238762,
-0.014318952336907387,
-0.013552533462643623,
-0.09555473178625107,
-0.04242000728845596,
0.04141174256801605,
-0.04441128298640251,
0.004565265960991383,
0.0018475333927199244,
0.03775132820010185,
-0.015141979791224003,
0.02337723597884178,
-0.007179025560617447,
0.007635621819645166,
-0.0013112900778651237,
-0.009806078858673573,
-0.09697803854942322,
2.489303611776064e-33,
0.06427111476659775,
0.09923375397920609,
0.09875474125146866,
0.013135131448507309,
0.014171269722282887,
-0.05440305918455124,
0.05275256931781769,
-0.025771155953407288,
-0.025128958746790886,
-0.013951840810477734,
-0.06631989777088165,
0.04426448792219162,
-0.04743849113583565,
0.0730355829000473,
0.03951180353760719,
-0.028752461075782776,
-0.08058591187000275,
0.036116551607847214,
-0.0064162700437009335,
0.051671352237463,
0.11785672605037689,
-0.02792024239897728,
0.06712771207094193,
-0.0872734859585762,
-0.02922559715807438,
0.08458906412124634,
0.03996804729104042,
-0.08442117273807526,
-0.03248428553342819,
0.02864455245435238,
-0.1650315523147583,
-0.03853914141654968,
0.060156527906656265,
0.040535833686590195,
0.03933507576584816,
-0.04307393729686737,
-0.02954048290848732,
-0.10098206251859665,
-0.01796632818877697,
-0.022760117426514626,
0.006582020781934261,
0.08166182041168213,
0.060854312032461166,
-0.08671808987855911,
-0.03331885486841202,
-0.005626977887004614,
0.01581188291311264,
-0.010707153007388115,
-0.05463447421789169,
-0.010960932821035385,
0.03928349167108536,
0.03963300585746765,
-0.10029568523168564,
0.009124550968408585,
0.01836717315018177,
0.0434136725962162,
0.02787942625582218,
0.06713588535785675,
0.034143902361392975,
0.01784639060497284,
0.008916148915886879,
-0.01233899500221014,
0.015971267595887184,
-0.005879017990082502,
0.069582000374794,
0.03395291045308113,
-0.02686220221221447,
-0.024306416511535645,
0.05985146388411522,
-0.04552299901843071,
-0.027282346040010452,
-0.027288135141134262,
-0.12401828914880753,
-0.11322242766618729,
0.04543578252196312,
-0.02954893372952938,
0.10803966969251633,
-0.016520407050848007,
0.035048212856054306,
0.027794113382697105,
-0.028314266353845596,
-0.0159256923943758,
-0.019910551607608795,
-0.03475888818502426,
-0.04431125521659851,
-0.0447622686624527,
0.03387940302491188,
-0.05943514034152031,
0.029927656054496765,
-0.023929884657263756,
0.015844548121094704,
-0.008537398651242256,
-0.02361452206969261,
-0.0403207428753376,
-0.011190848425030708,
-2.8075984619619536e-33,
-0.002413926413282752,
-0.03753523901104927,
-0.07639774680137634,
0.06338752061128616,
-0.038983967155218124,
-0.038222894072532654,
0.07625259459018707,
0.10483033210039139,
-0.004428171087056398,
-0.10502269119024277,
-0.004783701151609421,
0.00980529934167862,
0.06564123183488846,
-0.0031505320221185684,
0.024186870083212852,
-0.04703535512089729,
0.07236295193433762,
-0.05935845524072647,
0.07372122257947922,
0.10233054310083389,
0.07180805504322052,
0.05378245934844017,
-0.10296151041984558,
0.01566470041871071,
-0.0028655496425926685,
0.033682577311992645,
-0.016886865720152855,
0.052758701145648956,
0.029832055792212486,
0.029718803241848946,
0.018688684329390526,
0.018662622198462486,
-0.038655854761600494,
0.024591555818915367,
-0.0658775120973587,
0.03596702590584755,
0.03636631742119789,
0.07229389250278473,
-0.02019052766263485,
0.09389767795801163,
0.06097479537129402,
-0.0032840075436979532,
-0.06928595900535583,
0.08537261188030243,
-0.0850527212023735,
-0.0015519153093919158,
-0.07334882020950317,
-0.034569885581731796,
0.010051405988633633,
-0.04452955722808838,
-0.018780170008540154,
0.008316777646541595,
-0.08490822464227676,
-0.0444338358938694,
-0.07262227684259415,
-0.13639521598815918,
0.01889614202082157,
-0.06880467385053635,
0.015069681219756603,
0.004218497779220343,
-0.046743325889110565,
-0.017365116626024246,
-0.048059072345495224,
-0.10608949512243271,
-0.0007027895771898329,
-0.004731207620352507,
0.004608477000147104,
0.010457457974553108,
0.01835622638463974,
-0.0481923371553421,
0.07229931652545929,
-0.007841774262487888,
-0.03722314164042473,
-0.018770556896924973,
-0.05786965414881706,
0.05820738896727562,
0.012512105517089367,
0.01787988469004631,
0.007286943029612303,
-0.0761113241314888,
-0.02128327265381813,
-0.032997168600559235,
0.015880385413765907,
0.07243693619966507,
0.11021267622709274,
0.010287106968462467,
-0.011925307102501392,
0.043413273990154266,
0.011935049667954445,
0.05965878814458847,
-0.02026120014488697,
0.0668189600110054,
0.04049964249134064,
0.08283877372741699,
-0.07618563622236252,
-5.846635886541662e-8,
-0.12234890460968018,
0.017006902024149895,
-0.033379342406988144,
0.0688854530453682,
0.019739340990781784,
-0.0493621751666069,
0.04269736632704735,
-0.003983126487582922,
-0.03890863060951233,
-0.003230773378163576,
0.03936440125107765,
0.037777211517095566,
-0.029139798134565353,
-0.05184005945920944,
0.054898858070373535,
0.08299345523118973,
0.012008484452962875,
0.04519578814506531,
-0.03754161670804024,
-0.010093397460877895,
0.03399849683046341,
0.01763678342103958,
0.0026239100843667984,
-0.0756174698472023,
-0.0016599399968981743,
-0.06225470453500748,
-0.0610785111784935,
-0.02171204797923565,
0.04830341041088104,
-0.02305617183446884,
-0.022135714069008827,
0.022538749501109123,
0.0029119031969457865,
-0.020845815539360046,
0.09383544325828552,
0.09127773344516754,
-0.01938704401254654,
-0.012110131792724133,
0.025214172899723053,
-0.08728886395692825,
0.05204705148935318,
0.07161977887153625,
-0.09817226976156235,
-0.03843812271952629,
0.002004002220928669,
0.005704651121050119,
-0.019415294751524925,
-0.16291530430316925,
0.03372688964009285,
0.048121754080057144,
0.015677204355597496,
-0.005769859999418259,
-0.05731435865163803,
0.07923321425914764,
0.010258594527840614,
0.07518157362937927,
0.02944038063287735,
-0.07466121762990952,
0.030407188460230827,
0.0871906653046608,
0.12151983380317688,
0.004502990283071995,
0.021575570106506348,
0.06634509563446045
] |
hfl/chinese-xlnet-base | 34b827684078f956411389834966eb55588f5254 | 2021-03-03T01:44:59.000Z | [
"pytorch",
"tf",
"xlnet",
"text-generation",
"zh",
"arxiv:2004.13922",
"transformers",
"license:apache-2.0"
] | text-generation | false | hfl | null | hfl/chinese-xlnet-base | 8,033 | 13 | transformers | ---
language:
- zh
license: "apache-2.0"
---
## Chinese Pre-Trained XLNet
This project provides a XLNet pre-training model for Chinese, which aims to enrich Chinese natural language processing resources and provide a variety of Chinese pre-training model selection.
We welcome all experts and scholars to download and use this model.
This project is based on CMU/Google official XLNet: https://github.com/zihangdai/xlnet
You may also interested in,
- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm
- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA
- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet
- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer
More resources by HFL: https://github.com/ymcui/HFL-Anthology
## Citation
If you find our resource or paper is useful, please consider including the following citation in your paper.
- https://arxiv.org/abs/2004.13922
```
@inproceedings{cui-etal-2020-revisiting,
title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
author = "Cui, Yiming and
Che, Wanxiang and
Liu, Ting and
Qin, Bing and
Wang, Shijin and
Hu, Guoping",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
pages = "657--668",
}
``` | [
-0.11881551146507263,
-0.026175836101174355,
0.04676695168018341,
0.005689638201147318,
0.009067604318261147,
0.0467078760266304,
-0.02178468182682991,
-0.018991971388459206,
-0.019644850865006447,
-0.015515758655965328,
0.04460512474179268,
-0.0133119598031044,
0.014103207737207413,
-0.010611435398459435,
0.030665196478366852,
0.09102454036474228,
0.04890921711921692,
0.014779449440538883,
-0.03888741135597229,
-0.05784732103347778,
0.09082060307264328,
0.036336835473775864,
0.04028827324509621,
-0.026151442900300026,
0.04499606415629387,
-0.08514443784952164,
-0.022246649488806725,
0.030464041978120804,
0.06461329013109207,
0.030769111588597298,
-0.02503078244626522,
0.05471165478229523,
0.08289690315723419,
0.09854507446289062,
0.009556559845805168,
0.0599808469414711,
0.022256765514612198,
-0.04190175235271454,
0.021233901381492615,
0.08831286430358887,
-0.01093282364308834,
0.03705860301852226,
0.040542423725128174,
-0.06418003141880035,
0.10607419162988663,
-0.04368368908762932,
-0.05689559131860733,
-0.07340146601200104,
-0.05496339499950409,
0.041770089417696,
-0.08822066336870193,
-0.0020462186075747013,
0.06326853483915329,
0.06664310395717621,
0.033763669431209564,
0.026188045740127563,
0.019035406410694122,
0.0037808059714734554,
0.0014632464153692126,
-0.1046014279127121,
-0.08574441820383072,
0.02425258420407772,
-0.09847719967365265,
0.004780747927725315,
-0.08328234404325485,
0.024223126471042633,
-0.03754245862364769,
0.07967542111873627,
0.05543995648622513,
-0.06382355839014053,
-0.08994293957948685,
0.04718265309929848,
-0.03434703126549721,
0.022311735898256302,
-0.026177547872066498,
-0.012404524721205235,
0.05809148773550987,
-0.058874599635601044,
-0.022668637335300446,
-0.09458217769861221,
-0.020147450268268585,
0.057776663452386856,
0.12533597648143768,
0.022343480959534645,
0.024758504703640938,
-0.004449719097465277,
-0.019573217257857323,
0.05855044350028038,
0.002246019197627902,
0.0165916308760643,
-0.03429344296455383,
-0.01337181031703949,
0.09019726514816284,
0.03366568684577942,
0.02081373520195484,
0.05607609078288078,
0.06968492269515991,
-0.05034797266125679,
-0.03851423040032387,
0.020483093336224556,
0.030021294951438904,
0.009063870646059513,
0.04706859588623047,
-0.11482495814561844,
-0.024649428203701973,
-0.0334569551050663,
0.02189958654344082,
0.05464451014995575,
0.0638284906744957,
-0.09259409457445145,
0.024634920060634613,
-0.035906583070755005,
-0.039457377046346664,
-0.09108827263116837,
0.00684179924428463,
-0.0035559372045099735,
-0.014506129547953606,
-0.05609852075576782,
0.033647824078798294,
-0.0008194457041099668,
-0.03278661519289017,
-0.034835558384656906,
-0.015816638246178627,
-0.02814573235809803,
-0.0018006510799750686,
-0.052763961255550385,
-0.040156058967113495,
2.0664097845051534e-33,
0.0712808147072792,
0.03808325156569481,
-0.016548113897442818,
0.003551409812644124,
0.026544375345110893,
-0.09314555674791336,
0.07979478687047958,
-0.028641443699598312,
-0.047232531011104584,
-0.03177744895219803,
-0.07104404270648956,
0.13241581618785858,
-0.14457683265209198,
0.024434827268123627,
-0.0367966927587986,
-0.07241151481866837,
-0.04264276847243309,
0.04628464952111244,
0.06467432528734207,
0.04617435485124588,
0.07563121616840363,
-0.0011271497933194041,
0.03523879498243332,
-0.11463677138090134,
-0.006948177702724934,
0.028595058247447014,
0.12290988117456436,
-0.09948009252548218,
0.032394666224718094,
0.05230846628546715,
-0.08285390585660934,
0.012928961776196957,
0.011429705657064915,
0.015576270408928394,
-0.039813440293073654,
0.002807377139106393,
-0.08873302489519119,
-0.00003231097070965916,
0.02607986144721508,
-0.018193183466792107,
-0.035783130675554276,
0.03230901435017586,
0.013844628818333149,
-0.06618545949459076,
-0.009372839704155922,
-0.0000610361821600236,
-0.020953433588147163,
-0.059289947152137756,
0.07392214238643646,
-0.01175020169466734,
-0.0020866929553449154,
-0.028993049636483192,
-0.005096258595585823,
0.025410287082195282,
0.005007226951420307,
-0.014868933707475662,
0.05397508293390274,
0.033715009689331055,
-0.01162754837423563,
0.019423415884375572,
-0.040364235639572144,
-0.0010737726697698236,
-0.027654284611344337,
0.05052966624498367,
0.04290851205587387,
-0.028776757419109344,
-0.01882198452949524,
-0.046594493091106415,
-0.011150681413710117,
-0.040152110159397125,
-0.038178373128175735,
-0.06110871210694313,
0.05004683509469032,
-0.07031155377626419,
0.0398547537624836,
-0.00549530703574419,
-0.04401559755206108,
-0.12658585608005524,
-0.030456138774752617,
0.025776946917176247,
-0.01260107196867466,
-0.03048817627131939,
0.008203634060919285,
-0.01801244169473648,
-0.06464151293039322,
-0.015876566991209984,
0.0975230261683464,
-0.0018175204750150442,
0.03446604683995247,
-0.034661274403333664,
-0.019989363849163055,
-0.0568634457886219,
0.020849324762821198,
-0.014356234110891819,
0.0243656188249588,
-2.011029123231046e-33,
0.0069749322719872,
0.06469305604696274,
-0.06708108633756638,
0.07548604160547256,
0.022008953616023064,
-0.044142358005046844,
0.03406950831413269,
0.11373201757669449,
-0.020420679822564125,
-0.06607263535261154,
0.00915622990578413,
-0.0551028847694397,
0.0033177672885358334,
0.03666206821799278,
0.009085237979888916,
-0.010111279785633087,
-0.0336165726184845,
0.05710052326321602,
-0.018245721235871315,
0.06114780530333519,
0.001986958086490631,
-0.02516583353281021,
-0.1161566749215126,
-0.008846661075949669,
0.026418237015604973,
0.017234621569514275,
0.01875942386686802,
0.013041272759437561,
-0.03159289434552193,
0.024035483598709106,
-0.08902086317539215,
0.05722751468420029,
0.01602892391383648,
0.07195590436458588,
-0.0883246660232544,
0.00894800666719675,
0.056338194757699966,
0.00028988660778850317,
0.0030883727595210075,
0.020294461399316788,
0.11199501901865005,
-0.05082467943429947,
-0.007651300635188818,
-0.04210725054144859,
0.01968519575893879,
0.04913332313299179,
-0.12574101984500885,
-0.014311851002275944,
0.015149573795497417,
0.04573431238532066,
0.013972585089504719,
-0.007082193158566952,
-0.052319977432489395,
-0.028038885444402695,
-0.05125363543629646,
-0.08395088464021683,
0.06221740320324898,
-0.0554523766040802,
-0.01587558351457119,
-0.0459749661386013,
-0.12081928551197052,
0.0006708303699269891,
0.022560345008969307,
0.021511277183890343,
0.003901873715221882,
-0.012253895401954651,
0.030038584023714066,
0.05435299128293991,
-0.0013254856457933784,
-0.0739642083644867,
0.02692507766187191,
0.0162480678409338,
0.06239049881696701,
0.014350958168506622,
-0.02289487235248089,
0.016693469136953354,
-0.06328076869249344,
-0.04345005750656128,
-0.030076272785663605,
-0.025705348700284958,
0.023217929527163506,
0.024590490385890007,
0.05051402375102043,
0.07476263493299484,
0.010905606672167778,
0.046453699469566345,
0.03258444368839264,
0.035254526883363724,
-0.02700328640639782,
0.03420691192150116,
-0.03977498412132263,
0.01901807077229023,
-0.00028735396335832775,
0.0788508877158165,
-0.012237954884767532,
-4.242751572292036e-8,
-0.11740220338106155,
0.0010615605860948563,
-0.027662841603159904,
0.04698340967297554,
-0.0637529045343399,
0.0114519614726305,
-0.013946001417934895,
0.029347725212574005,
0.07843853533267975,
0.025054601952433586,
0.054025158286094666,
0.026854630559682846,
-0.04915890097618103,
0.024219203740358353,
-0.0637037381529808,
0.009533313103020191,
0.01430209819227457,
0.025660520419478416,
0.002132824854925275,
-0.03375998139381409,
0.05599610134959221,
0.04773612320423126,
0.06876786053180695,
-0.005085915792733431,
0.00588658731430769,
-0.04808204248547554,
-0.15931469202041626,
0.06373952329158783,
-0.0012335157953202724,
-0.06883993744850159,
-0.03478319197893143,
0.05412156134843826,
-0.017775757238268852,
-0.032845236361026764,
0.073976531624794,
0.06373732537031174,
-0.04491773620247841,
-0.038734279572963715,
0.022813081741333008,
0.014685642905533314,
0.07300659269094467,
-0.022973254323005676,
-0.08346817642450333,
-0.024856669828295708,
0.12902683019638062,
-0.0649164468050003,
0.0005120948189869523,
-0.09975262731313705,
0.03779766708612442,
0.026978958398103714,
0.05066071078181267,
-0.03973732888698578,
0.04172513633966446,
-0.05822477489709854,
-0.008845075033605099,
0.09814001619815826,
-0.049193549901247025,
0.004343101289123297,
0.07200505584478378,
0.02414737641811371,
0.018402647227048874,
0.0967206060886383,
0.025842763483524323,
0.05918356031179428
] |
TheGoldenToaster/DialoGPT-medium-Bot | b9e2e669356dfda8108ccdf76d4db16cef38f227 | 2022-04-04T21:58:23.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | TheGoldenToaster | null | TheGoldenToaster/DialoGPT-medium-Bot | 7,888 | 1 | transformers | ---
tags:
- conversational
---
#Bot Chat | [
-0.07530517876148224,
0.0014849177096039057,
0.038555122911930084,
0.004969943314790726,
0.059507906436920166,
-0.08957493305206299,
0.13391733169555664,
0.011565092951059341,
0.04197738692164421,
-0.024990994483232498,
0.002872777171432972,
-0.029718788340687752,
-0.009749740362167358,
0.01016057375818491,
0.04832205921411514,
0.03794359788298607,
0.018439125269651413,
-0.03137333691120148,
0.026668541133403778,
0.012624911032617092,
-0.021219346672296524,
0.0582050122320652,
-0.009192624129354954,
0.0024404525756835938,
0.043706782162189484,
0.03867722675204277,
-0.04230164363980293,
-0.026875250041484833,
0.04128352925181389,
-0.009637192822992802,
0.015566280111670494,
0.08021735399961472,
0.020729174837470055,
0.08127300441265106,
0.016010750085115433,
0.01648479327559471,
0.02782372571527958,
-0.0093449167907238,
0.0013484442606568336,
0.01398143358528614,
-0.036394473165273666,
-0.06261210888624191,
-0.062274109572172165,
-0.007621243130415678,
-0.013197404332458973,
0.048389315605163574,
-0.09114134311676025,
-0.003247401909902692,
-0.02465977519750595,
0.04069092869758606,
-0.08723726123571396,
0.021173397079110146,
0.040887147188186646,
0.1041751503944397,
-0.024636035785079002,
0.019624335691332817,
-0.05710458382964134,
-0.04542887583374977,
0.07423530519008636,
0.002600543899461627,
-0.03426330164074898,
-0.039590854197740555,
0.018613774329423904,
0.025776349008083344,
-0.04179876297712326,
0.0018848231993615627,
-0.05105314031243324,
0.004325497895479202,
-0.003231565235182643,
0.10254696756601334,
-0.0027268489357084036,
0.01714271865785122,
0.00016122267697937787,
0.01731281913816929,
0.026613177731633186,
-0.006696905475109816,
-0.044964563101530075,
-0.03759448602795601,
-0.029330581426620483,
-0.010719318874180317,
-0.0356229692697525,
-0.06977149099111557,
0.005627271719276905,
0.0009955730056390166,
-0.04745873808860779,
-0.01627570576965809,
-0.05483921989798546,
0.0037329532206058502,
-0.030927106738090515,
0.07951422780752182,
-0.06393569707870483,
-0.050340063869953156,
0.0682327151298523,
0.06668134033679962,
-0.060806021094322205,
0.032136641442775726,
-0.006329706870019436,
-0.006735410075634718,
-0.025388512760400772,
0.10721662640571594,
-0.013619923032820225,
-0.004476356320083141,
-0.07215213030576706,
-0.07233936339616776,
0.011267469264566898,
0.017583610489964485,
-0.00535771856084466,
0.05000423640012741,
0.09363102167844772,
0.007603499107062817,
-0.058739759027957916,
-0.04693414643406868,
0.025970416143536568,
-0.05381613224744797,
0.08939238637685776,
0.015056456439197063,
0.11163540929555893,
0.04927181452512741,
0.05121608078479767,
-0.03449556231498718,
0.05909011512994766,
-0.016664888709783554,
-0.004795622546225786,
-0.06462319195270538,
0.04565572738647461,
-0.019194994121789932,
-0.026636628434062004,
-3.5001299384893654e-33,
0.08621242642402649,
-0.030881088227033615,
0.016490520909428596,
0.11210779845714569,
0.003366001881659031,
0.08437331765890121,
-0.034462086856365204,
-0.047563109546899796,
0.010022261179983616,
-0.019704625010490417,
-0.0017986465245485306,
-0.019366653636097908,
-0.03805451840162277,
0.03083636984229088,
0.007186064496636391,
-0.02881414256989956,
0.008495408110320568,
-0.008805072866380215,
-0.036066751927137375,
-0.01775388978421688,
-0.007105350028723478,
0.011804947629570961,
0.03830428048968315,
0.11497312039136887,
0.057176992297172546,
0.09582144021987915,
0.024089476093649864,
-0.14443421363830566,
0.05035378411412239,
0.037719424813985825,
-0.03157258406281471,
0.012963255867362022,
-0.023388996720314026,
0.0477890819311142,
0.018811507150530815,
0.03558514267206192,
-0.007657572627067566,
-0.03330060839653015,
-0.04612092301249504,
-0.07072441279888153,
-0.09331904351711273,
-0.0030053032096475363,
-0.06487749516963959,
-0.12098969519138336,
0.028105920180678368,
0.007766431197524071,
0.0035047237761318684,
0.00027617410523816943,
0.03303852304816246,
-0.0255503561347723,
-0.03842690959572792,
0.08510536700487137,
0.008030600845813751,
0.019594546407461166,
0.01347840204834938,
-0.0760294497013092,
-0.029482968151569366,
0.02936398983001709,
-0.012824513018131256,
-0.01198514923453331,
-0.010647358372807503,
-0.010107124224305153,
0.009406691417098045,
-0.11191394180059433,
0.06673755496740341,
-0.021560439839959145,
0.02057507634162903,
0.0369812436401844,
-0.005567880813032389,
-0.028779909014701843,
-0.051251962780952454,
0.12312253564596176,
-0.015671245753765106,
0.07776260375976562,
-0.10596850514411926,
0.04018309339880943,
-0.02694261074066162,
-0.013935538940131664,
0.032346151769161224,
0.08483409136533737,
-0.08037927746772766,
-0.0638015940785408,
-0.02174334228038788,
-0.03826911002397537,
-0.029527153819799423,
-0.004242825787514448,
0.009063324891030788,
-0.15407925844192505,
0.05037211626768112,
0.02111179567873478,
-0.05074916407465935,
0.024759838357567787,
-0.06255950033664703,
0.012873188592493534,
-0.13667577505111694,
1.0354510048176089e-33,
0.004597675986588001,
-0.018934940919280052,
-0.10758896917104721,
0.07672811299562454,
-0.03795194998383522,
-0.0390121266245842,
0.0694088488817215,
0.09497524797916412,
0.01802930235862732,
0.03726658225059509,
-0.0642460510134697,
-0.0021543053444474936,
-0.05372844636440277,
0.03256726637482643,
0.13540315628051758,
0.05099530518054962,
0.0021691343281418085,
-0.056011367589235306,
-0.0035446116235107183,
-0.008282961323857307,
-0.0008877123473212123,
0.014174060896039009,
-0.1149429902434349,
0.07718539983034134,
0.07000122219324112,
-0.0019534144084900618,
0.0002271840930916369,
0.051195576786994934,
0.0777047798037529,
-0.03974251449108124,
0.032327089458703995,
0.08644988387823105,
-0.005428000818938017,
-0.06858272105455399,
0.04362805187702179,
0.008972340263426304,
0.019578926265239716,
0.05324661731719971,
0.04074134677648544,
0.012622217647731304,
0.08219332993030548,
-0.003124780021607876,
-0.012133273296058178,
-0.05140835791826248,
0.022875772789120674,
-0.040365640074014664,
-0.08211509883403778,
-0.0388982780277729,
-0.0895741805434227,
0.04633219167590141,
0.05149606615304947,
-0.07387527823448181,
0.015043129213154316,
-0.13752493262290955,
-0.07781808078289032,
-0.058324892073869705,
0.028498373925685883,
0.039704132825136185,
-0.02772200107574463,
-0.0027508495841175318,
-0.008216489106416702,
-0.05109846591949463,
0.009084084071218967,
0.024593297392129898,
-0.009009302593767643,
-0.003586948150768876,
-0.01473392453044653,
-0.00746590131893754,
-0.02049102447926998,
-0.057055454701185226,
0.18158109486103058,
0.006171594373881817,
-0.08519522845745087,
0.030400030314922333,
0.04903324320912361,
0.001630412065424025,
0.018470386043190956,
0.008649184368550777,
0.06664823740720749,
0.00020832184236496687,
-0.061265572905540466,
0.009018381126224995,
0.025551866739988327,
0.08967306464910507,
0.021848857402801514,
0.020352786406874657,
0.0009892896050587296,
0.06757905334234238,
-0.049820080399513245,
0.0009132138220593333,
-0.010850182734429836,
-0.03501410037279129,
0.011050689965486526,
0.06176390126347542,
-0.05011816322803497,
-2.209804250696834e-8,
-0.053951606154441833,
-0.07110556960105896,
-0.0016981915105134249,
0.055762168020009995,
0.030598856508731842,
0.05703909322619438,
-0.010495242662727833,
-0.006850902456790209,
-0.017542347311973572,
-0.008507132530212402,
0.049028147011995316,
0.028252054005861282,
-0.005167693365365267,
0.009122870862483978,
0.018837254494428635,
0.02072981558740139,
-0.11293961107730865,
0.0009000507998280227,
0.001537991571240127,
-0.04739619046449661,
0.06626618653535843,
-0.031083159148693085,
-0.127959743142128,
0.04584699124097824,
0.009830690920352936,
-0.033858660608530045,
-0.021858569234609604,
0.09596505761146545,
-0.07293228060007095,
0.025772549211978912,
-0.028941811993718147,
0.024570167064666748,
-0.05919964611530304,
-0.02506346069276333,
-0.02943962812423706,
-0.021770285442471504,
-0.07744759321212769,
-0.0869990885257721,
0.028898781165480614,
-0.031879883259534836,
-0.01994910091161728,
0.08070796728134155,
0.007371838204562664,
-0.07319581508636475,
0.0469852089881897,
-0.006313567981123924,
-0.07333625108003616,
-0.0838964581489563,
-0.031141143292188644,
-0.06317746639251709,
-0.043780673295259476,
-0.042713988572359085,
0.040939535945653915,
0.06449098140001297,
0.04784620180726051,
0.017132069915533066,
0.06837417930364609,
-0.024817753583192825,
0.04540688544511795,
-0.002559294691309333,
0.08025839179754257,
0.09111698716878891,
0.010548381134867668,
-0.013505491428077221
] |
ctl/wav2vec2-large-xlsr-cantonese | 6a6119ab39ec2a0c8d16edfbf91db45334540315 | 2021-07-06T01:16:38.000Z | [
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"zh-HK",
"yue",
"dataset:common_voice",
"transformers",
"audio",
"speech",
"xlsr-fine-tuning-week",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | ctl | null | ctl/wav2vec2-large-xlsr-cantonese | 7,858 | 1 | transformers | ---
language:
- zh-HK
- yue
datasets:
- common_voice
metrics:
- cer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: wav2vec2-large-xlsr-cantonese
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice zh-HK
type: common_voice
args: zh-HK
metrics:
- name: Test CER
type: cer
value: 15.36
---
# Wav2Vec2-Large-XLSR-53-Cantonese
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Cantonese using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "zh-HK", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("ctl/wav2vec2-large-xlsr-cantonese")
model = Wav2Vec2ForCTC.from_pretrained("ctl/wav2vec2-large-xlsr-cantonese")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Chinese (Hong Kong) test data of Common Voice.
```python
!pip install jiwer
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import argparse
lang_id = "zh-HK"
model_id = "ctl/wav2vec2-large-xlsr-cantonese"
chars_to_ignore_regex = '[\,\?\.\!\-\;\:"\“\%\‘\”\�\.\⋯\!\-\:\–\。\》\,\)\,\?\;\~\~\…\︰\,\(\」\‧\《\﹔\、\—\/\,\「\﹖\·\']'
test_dataset = load_dataset("common_voice", f"{lang_id}", split="test")
cer = load_metric("cer")
processor = Wav2Vec2Processor.from_pretrained(f"{model_id}")
model = Wav2Vec2ForCTC.from_pretrained(f"{model_id}")
model.to("cuda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=16)
print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 15.51 %
## Training
The Common Voice `train`, `validation` were used for training.
The script used for training will be posted [here](https://github.com/chutaklee/CantoASR)
| [
-0.049578189849853516,
-0.01092930231243372,
0.0008256161236204207,
-0.062087658792734146,
-0.035977501422166824,
0.02412949688732624,
-0.03991124778985977,
-0.06375236064195633,
-0.042716655880212784,
-0.08002656698226929,
0.04797324538230896,
-0.17869171500205994,
-0.028254473581910133,
0.014972412027418613,
0.018434548750519753,
-0.04688282310962677,
0.0524132177233696,
-0.03417905420064926,
-0.08441941440105438,
-0.07541186362504959,
0.006061210297048092,
0.0716189369559288,
0.03901448845863342,
0.010532834567129612,
0.0025810229126363993,
-0.057904310524463654,
-0.0743100568652153,
0.06865350902080536,
0.10000526905059814,
-0.011907514184713364,
0.03784756362438202,
0.10293059796094894,
0.07889963686466217,
0.029941722750663757,
0.03764256462454796,
-0.01105083804577589,
-0.024783600121736526,
-0.06069508567452431,
-0.04114178195595741,
-0.0416349321603775,
0.04808284714818001,
0.018714262172579765,
0.01807381398975849,
-0.04183623567223549,
-0.024558790028095245,
-0.003379658330231905,
-0.054299067705869675,
-0.007473328150808811,
-0.03775576502084732,
0.07299598306417465,
-0.09908325225114822,
0.006297154817730188,
0.05070149526000023,
0.06970968097448349,
-0.05106271803379059,
-0.030750486999750137,
-0.010602978058159351,
0.0644870176911354,
0.046270087361335754,
-0.062377966940402985,
-0.11040745675563812,
-0.01553187146782875,
-0.04162190854549408,
0.008544591255486012,
-0.04226531460881233,
-0.0005447633448056877,
-0.026855485513806343,
-0.020535442978143692,
-0.016126977279782295,
0.03689182549715042,
-0.11496599018573761,
0.060529351234436035,
0.061308011412620544,
0.04696081206202507,
-0.014130123890936375,
-0.016103118658065796,
0.03473770618438721,
-0.061325881630182266,
0.059913668781518936,
-0.056984368711709976,
0.003472647862508893,
-0.023194799199700356,
-0.02787628211081028,
-0.04067107290029526,
0.1047392189502716,
-0.00950216967612505,
-0.02747761458158493,
-0.006997502874583006,
-0.012294036336243153,
-0.06688740104436874,
-0.004209163133054972,
-0.014533177018165588,
-0.03573988005518913,
0.057024404406547546,
0.02817496471107006,
0.0709545910358429,
0.06560874730348587,
0.0496150404214859,
-0.009599586017429829,
0.055806759744882584,
0.027782350778579712,
-0.005662188865244389,
0.04510604217648506,
0.025258857756853104,
-0.016281357035040855,
-0.052034974098205566,
0.00025342119624838233,
0.058091532438993454,
0.04127125069499016,
-0.006265429779887199,
0.022015633061528206,
0.011353046633303165,
-0.023842042312026024,
-0.05331699177622795,
0.03607345372438431,
0.031504616141319275,
-0.04295571520924568,
-0.05260415002703667,
-0.03844026103615761,
0.0014151850482448936,
-0.0749548152089119,
-0.035247549414634705,
-0.03246203064918518,
-0.06653722375631332,
0.012921680696308613,
-0.0018661973299458623,
0.010547647252678871,
2.9212050318521352e-33,
-0.0009056038106791675,
0.034647002816200256,
0.01146777905523777,
-0.03600325435400009,
0.028913289308547974,
-0.09691724926233292,
-0.021950766444206238,
0.0870041474699974,
-0.04582074284553528,
-0.007331086788326502,
0.00507505564019084,
0.002715456299483776,
-0.0828879103064537,
0.0008751975256018341,
0.008836333639919758,
0.08090702444314957,
0.025692541152238846,
-0.0019044105429202318,
-0.003329720115289092,
-0.0011516408994793892,
0.1804090291261673,
0.0032066425774246454,
0.06248810142278671,
-0.03263959288597107,
0.03610586002469063,
0.028993526473641396,
0.10069039463996887,
-0.06910275667905807,
-0.006540451664477587,
0.04132228344678879,
-0.0264955535531044,
-0.011053231544792652,
0.003068177727982402,
-0.03454810008406639,
0.003997388295829296,
0.003610502928495407,
0.052510421723127365,
0.029093019664287567,
-0.010240641422569752,
-0.08799900114536285,
0.07245393097400665,
0.01402826514095068,
0.04666450247168541,
-0.007727978751063347,
-0.011268598958849907,
-0.033076319843530655,
-0.02423524297773838,
-0.019221562892198563,
0.034133292734622955,
0.08871537446975708,
0.014723407104611397,
-0.009850849397480488,
-0.11525262147188187,
0.0614689439535141,
0.010702227242290974,
-0.05135020986199379,
0.07221026718616486,
0.011277942918241024,
-0.0265349093824625,
0.05399582162499428,
-0.05670291557908058,
-0.07034635543823242,
-0.01332884468138218,
0.045346226543188095,
0.04551461338996887,
-0.04511597380042076,
-0.032460130751132965,
-0.017440693452954292,
-0.02406608685851097,
-0.009832724928855896,
-0.0036028751637786627,
-0.05378556624054909,
0.100104421377182,
0.07377228140830994,
0.016570227220654488,
-0.03078312799334526,
0.016349701210856438,
-0.04395065829157829,
0.03055644780397415,
0.04697972163558006,
0.0002517295361030847,
0.09012403339147568,
-0.02704055793583393,
-0.013570030219852924,
-0.05322207883000374,
-0.07540871202945709,
0.017038244754076004,
-0.046053480356931686,
0.038928400725126266,
-0.023969395086169243,
-0.05369245633482933,
0.03178644925355911,
0.021294081583619118,
-0.01528637669980526,
-0.08590638637542725,
-4.428553376526055e-33,
-0.002704035257920623,
0.11993340402841568,
0.007575542200356722,
0.10065741091966629,
0.014569016173481941,
-0.043204229325056076,
0.13431473076343536,
0.048597805202007294,
0.014622877351939678,
-0.0635877251625061,
0.05528329685330391,
-0.06978451460599899,
0.07656306028366089,
0.008723565377295017,
0.09758169949054718,
0.007691002916544676,
-0.025561243295669556,
0.04215434193611145,
0.07625363767147064,
0.09012655913829803,
0.03914337232708931,
0.007616639137268066,
-0.06449154764413834,
0.07663815468549728,
-0.017786694690585136,
-0.012122033163905144,
-0.06157364323735237,
0.03414986655116081,
0.03571943938732147,
0.0071723563596606255,
-0.08168880641460419,
0.04155472666025162,
-0.11357307434082031,
-0.005657901056110859,
-0.05671756714582443,
-0.03694755211472511,
0.01247344072908163,
0.014753278344869614,
-0.04417891055345535,
0.10174954682588577,
0.06502792239189148,
0.034344837069511414,
-0.13086584210395813,
-0.0655922219157219,
0.020649831742048264,
-0.005614880472421646,
-0.01305684819817543,
-0.02347138710319996,
-0.003066930454224348,
-0.03754381462931633,
0.045066043734550476,
-0.031009027734398842,
-0.013442298397421837,
0.0351867638528347,
-0.06388797610998154,
0.02014049142599106,
0.00921417586505413,
-0.0673581138253212,
-0.05249972268939018,
-0.019098563119769096,
0.025320803746581078,
-0.019867749884724617,
-0.08897823095321655,
-0.06700871884822845,
0.021525558084249496,
0.021513883024454117,
0.03681008890271187,
-0.04092508926987648,
0.09860609471797943,
-0.03423849120736122,
-0.05588386580348015,
-0.02149205282330513,
0.030520927160978317,
-0.03773387521505356,
-0.06070513278245926,
0.011469465680420399,
-0.10059760510921478,
-0.046316202729940414,
0.015526403672993183,
-0.026127316057682037,
-0.02915233001112938,
0.08961028605699539,
0.0800924152135849,
0.00744402501732111,
0.04429830610752106,
0.10337723791599274,
-0.01235559955239296,
-0.005060190800577402,
-0.021147098392248154,
0.0003574215224944055,
-0.04066380858421326,
0.05600568279623985,
0.004708749242126942,
0.0982765480875969,
-0.001695364131592214,
-5.261467705963696e-8,
-0.0538882315158844,
0.011686146259307861,
-0.03024817630648613,
-0.02003960870206356,
-0.06320524960756302,
-0.09442907571792603,
-0.029661091044545174,
-0.012227339670062065,
0.06486937403678894,
0.014424758963286877,
0.05796246975660324,
-0.03772798180580139,
-0.07662806659936905,
0.0712873786687851,
0.009721699170768261,
-0.007743853144347668,
-0.022489095106720924,
0.07320419698953629,
-0.054106712341308594,
-0.09015335142612457,
0.01079085934907198,
0.05592287331819534,
0.03983645886182785,
0.006210910156369209,
-0.015374583192169666,
0.01577511429786682,
-0.045824725180864334,
0.10877363383769989,
-0.04762357845902443,
-0.006853661499917507,
-0.0383634977042675,
0.026980232447385788,
-0.031242109835147858,
-0.011653282679617405,
0.008831732906401157,
-0.015359711833298206,
-0.0451524518430233,
-0.030736979097127914,
0.04358191788196564,
0.08316104859113693,
0.08115553110837936,
0.046388570219278336,
-0.12700602412223816,
-0.014125734567642212,
0.10741854459047318,
-0.026368221268057823,
-0.013542641885578632,
-0.0792117640376091,
0.0546141043305397,
0.059940069913864136,
0.039120741188526154,
-0.0016357165295630693,
-0.012141362763941288,
-0.0532827153801918,
0.08771505951881409,
0.033308301120996475,
-0.02133217826485634,
-0.0012914183316752315,
0.016583247110247612,
0.0048806145787239075,
0.09465748071670532,
-0.022675802931189537,
-0.043521273881196976,
-0.011238180100917816
] |
pucpr/clinicalnerpt-disorder | 6a6597b35c51aeabfeedf828dff89de7a25f2b69 | 2021-10-13T09:32:51.000Z | [
"pytorch",
"bert",
"token-classification",
"pt",
"dataset:SemClinBr",
"transformers",
"autotrain_compatible"
] | token-classification | false | pucpr | null | pucpr/clinicalnerpt-disorder | 7,858 | 4 | transformers | ---
language: "pt"
widget:
- text: "PACIENTE DE 69 ANOS COM ICC DE ETIOLOGIA ISQUÊMICA "
- text: "Paciente com Sepse pulmonar em D8 tazocin (paciente não recebeu por 2 dias Atb)."
datasets:
- SemClinBr
thumbnail: "https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/images/logo-biobertpr1.png"
---
<img src="https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/images/logo-biobertpr1.png" alt="Logo BioBERTpt">
# Portuguese Clinical NER - Disorder
The Disorder NER model is part of the [BioBERTpt project](https://www.aclweb.org/anthology/2020.clinicalnlp-1.7/), where 13 models of clinical entities (compatible with UMLS) were trained. All NER model from "pucpr" user was trained from the Brazilian clinical corpus [SemClinBr](https://github.com/HAILab-PUCPR/SemClinBr), with 10 epochs and IOB2 format, from BioBERTpt(all) model.
## Acknowledgements
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
## Citation
```
@inproceedings{schneider-etal-2020-biobertpt,
title = "{B}io{BERT}pt - A {P}ortuguese Neural Language Model for Clinical Named Entity Recognition",
author = "Schneider, Elisa Terumi Rubel and
de Souza, Jo{\~a}o Vitor Andrioli and
Knafou, Julien and
Oliveira, Lucas Emanuel Silva e and
Copara, Jenny and
Gumiel, Yohan Bonescki and
Oliveira, Lucas Ferro Antunes de and
Paraiso, Emerson Cabrera and
Teodoro, Douglas and
Barra, Cl{\'a}udia Maria Cabral Moro",
booktitle = "Proceedings of the 3rd Clinical Natural Language Processing Workshop",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.clinicalnlp-1.7",
pages = "65--72",
abstract = "With the growing number of electronic health record data, clinical NLP tasks have become increasingly relevant to unlock valuable information from unstructured clinical text. Although the performance of downstream NLP tasks, such as named-entity recognition (NER), in English corpus has recently improved by contextualised language models, less research is available for clinical texts in low resource languages. Our goal is to assess a deep contextual embedding model for Portuguese, so called BioBERTpt, to support clinical and biomedical NER. We transfer learned information encoded in a multilingual-BERT model to a corpora of clinical narratives and biomedical-scientific papers in Brazilian Portuguese. To evaluate the performance of BioBERTpt, we ran NER experiments on two annotated corpora containing clinical narratives and compared the results with existing BERT models. Our in-domain model outperformed the baseline model in F1-score by 2.72{\%}, achieving higher performance in 11 out of 13 assessed entities. We demonstrate that enriching contextual embedding models with domain literature can play an important role in improving performance for specific NLP tasks. The transfer learning process enhanced the Portuguese biomedical NER model by reducing the necessity of labeled data and the demand for retraining a whole new model.",
}
```
## Questions?
Post a Github issue on the [BioBERTpt repo](https://github.com/HAILab-PUCPR/BioBERTpt).
| [
-0.09277816861867905,
-0.0460968054831028,
-0.033515773713588715,
-0.009988026693463326,
-0.001158019294962287,
-0.02695516310632229,
-0.04033723846077919,
0.08332420885562897,
0.07562761008739471,
-0.0391087643802166,
0.1227356567978859,
-0.07242214679718018,
0.02125549130141735,
0.08290810137987137,
-0.06832338869571686,
0.008691978640854359,
-0.018392635509371758,
-0.01624191738665104,
-0.017210086807608604,
0.04950971156358719,
0.005230745766311884,
0.0766429677605629,
0.0208234004676342,
0.0258688572794199,
-0.03528522700071335,
-0.04623179882764816,
-0.02803000435233116,
-0.009774906560778618,
-0.01644912175834179,
-0.06196034327149391,
0.01777508296072483,
-0.008008915930986404,
0.04687793552875519,
0.012355930171906948,
0.03714630752801895,
-0.002708711428567767,
-0.020970962941646576,
0.04458381608128548,
-0.007840145379304886,
0.05070892721414566,
0.004369152244180441,
-0.09544321894645691,
0.010539275594055653,
0.026384025812149048,
0.03336414694786072,
-0.03993947058916092,
-0.08623453974723816,
-0.0027820973191410303,
-0.0029369639232754707,
0.05759710073471069,
-0.08699256181716919,
-0.01581248641014099,
0.004303945228457451,
0.04006902873516083,
0.0035697086714208126,
-0.04094572737812996,
-0.048668310046195984,
-0.09540542215108871,
-0.06337518990039825,
-0.04736826941370964,
-0.006624260451644659,
0.012224627658724785,
-0.006136483512818813,
0.02204291895031929,
-0.008140487596392632,
0.01647115871310234,
-0.008414150215685368,
-0.022891461849212646,
0.015449495986104012,
0.012094127014279366,
-0.01757308654487133,
-0.10990044474601746,
0.021465308964252472,
0.062405046075582504,
0.014759724959731102,
0.027532538399100304,
0.05350717157125473,
0.10091987997293472,
0.04133211076259613,
-0.10548749566078186,
0.008423912338912487,
0.07357465475797653,
0.02272890694439411,
-0.010802049189805984,
0.09650208055973053,
0.029887858778238297,
0.020258069038391113,
-0.0008507344755344093,
-0.02111447975039482,
-0.0032548578456044197,
0.0005156008410267532,
0.03208409249782562,
0.042374346405267715,
0.003738720901310444,
0.018069379031658173,
-0.033690813928842545,
0.018662966787815094,
0.03987431526184082,
-0.030127327889204025,
0.012224840000271797,
-0.01745140552520752,
0.05185341835021973,
0.03971180319786072,
0.031272564083337784,
-0.051970772445201874,
-0.09936057031154633,
0.013424401171505451,
-0.029709696769714355,
0.0599946565926075,
-0.016549864783883095,
-0.02116389013826847,
0.07317481189966202,
-0.02960769087076187,
-0.000005302174031385221,
0.06980790942907333,
-0.03411508724093437,
-0.06917122006416321,
-0.03374376893043518,
0.08050481230020523,
0.015246197581291199,
-0.05089399963617325,
-0.08258439600467682,
-0.08157586306333542,
-0.050099439918994904,
0.05558682233095169,
0.025299614295363426,
-0.07340606302022934,
7.179086363201387e-33,
0.05899873748421669,
0.05109357461333275,
0.022540295496582985,
0.040672991424798965,
0.04770538955926895,
0.01382285263389349,
-0.10495083779096603,
-0.016571911051869392,
-0.013571522198617458,
-0.027176188305020332,
-0.1179216057062149,
-0.015001336112618446,
-0.04487224295735359,
0.07255370914936066,
-0.011499682441353798,
-0.0037132420111447573,
-0.047788579016923904,
-0.041809968650341034,
-0.03361501917243004,
-0.02534502185881138,
0.07246721535921097,
0.08858185261487961,
-0.025893647223711014,
-0.018031228333711624,
-0.06748291850090027,
0.13643407821655273,
-0.023182041943073273,
-0.010861900635063648,
-0.04051417112350464,
0.02810790203511715,
-0.08261563628911972,
-0.012142508290708065,
0.019827406853437424,
-0.025822848081588745,
-0.04338626563549042,
-0.01269596628844738,
0.05265115946531296,
-0.01260219793766737,
0.04302548989653587,
0.013155512511730194,
0.008605003356933594,
0.03148685768246651,
0.007369214668869972,
0.02011335827410221,
0.04527059942483902,
-0.02393571473658085,
-0.014039266854524612,
-0.012109849601984024,
-0.016719236969947815,
0.04755352810025215,
0.01305884588509798,
-0.06027793884277344,
-0.014207273721694946,
-0.09702993184328079,
0.001224653678946197,
-0.021609418094158173,
-0.12523430585861206,
0.071419358253479,
-0.015928268432617188,
0.029523972421884537,
0.14049172401428223,
-0.007791247684508562,
0.018507221713662148,
-0.015495319850742817,
0.03955576568841934,
0.014554830268025398,
-0.08993414044380188,
-0.061522312462329865,
0.12123977392911911,
0.01764690689742565,
-0.08058687299489975,
0.03893544524908066,
0.010327652096748352,
0.033115729689598083,
0.03553525730967522,
-0.053739968687295914,
-0.022313309833407402,
-0.010015053674578667,
-0.0005543639417737722,
0.049232885241508484,
-0.06156482920050621,
0.04274539649486542,
-0.05961894989013672,
0.017251864075660706,
-0.013762339949607849,
-0.0045360056683421135,
0.08377357572317123,
0.04746461287140846,
-0.05156490579247475,
-0.009334661066532135,
0.10748375952243805,
0.010899472050368786,
-0.024377403780817986,
0.006590147968381643,
0.014348558150231838,
-8.92575709250807e-33,
0.06878238171339035,
-0.054250575602054596,
0.030224701389670372,
-0.054142750799655914,
0.03885054215788841,
-0.003300857963040471,
0.013553363271057606,
0.09414225071668625,
0.048220209777355194,
-0.07389406859874725,
0.10233250260353088,
-0.037029337137937546,
0.001598705188371241,
-0.05193821340799332,
-0.015738019719719887,
0.04753328859806061,
-0.0827130526304245,
-0.011904391460120678,
-0.041252050548791885,
0.048318397253751755,
0.007283642888069153,
0.046843525022268295,
-0.05425158888101578,
0.06360837817192078,
-0.010302339680492878,
0.08829859644174576,
0.016613852232694626,
0.030727919191122055,
-0.011429415084421635,
-0.0012934774858877063,
-0.013245961628854275,
0.06414362788200378,
-0.06632102280855179,
0.0007645672303624451,
-0.08591926097869873,
-0.033560581505298615,
-0.043166548013687134,
-0.004952727351337671,
-0.0701301321387291,
-0.05520502105355263,
0.05246562883257866,
0.012423391453921795,
-0.12137142568826675,
0.027002090588212013,
0.047051869332790375,
0.012479346245527267,
0.002612106269225478,
-0.0172179713845253,
0.06448537856340408,
-0.049495093524456024,
0.05738965421915054,
-0.08651529997587204,
0.027994582429528236,
0.03096728026866913,
-0.043140023946762085,
-0.018923701718449593,
-0.012203783728182316,
-0.11832629144191742,
-0.0592329166829586,
0.02156628482043743,
-0.008586465381085873,
0.005184839479625225,
-0.07709745317697525,
0.013025239109992981,
0.026097316294908524,
-0.00869588553905487,
0.0037034412380307913,
0.08054479211568832,
0.006561249028891325,
-0.012112804688513279,
-0.0055043650791049,
-0.0012088025687262416,
-0.028967002406716347,
-0.06685592234134674,
0.058904316276311874,
-0.08474172651767731,
-0.12436927855014801,
-0.01528395526111126,
-0.0453733466565609,
-0.07468763738870621,
-0.14867423474788666,
-0.0851745679974556,
0.015414038673043251,
0.059206392616033554,
-0.019972924143075943,
0.023176709190011024,
0.013143530115485191,
-0.05866103619337082,
0.02617054618895054,
0.013077219016849995,
-0.004756345879286528,
0.05687488615512848,
-0.04641754552721977,
0.0997500792145729,
-0.03665700554847717,
-6.558623510954931e-8,
0.10664887726306915,
0.01716143824160099,
-0.029512876644730568,
-0.09724154323339462,
-0.0035195020027458668,
0.006935912184417248,
-0.11263985931873322,
0.02134384773671627,
0.01241487730294466,
0.10168983042240143,
-0.006282422691583633,
0.10350345075130463,
-0.06152462959289551,
-0.03260134905576706,
0.023259935900568962,
0.03534194454550743,
0.05083945766091347,
0.12386087328195572,
0.010878892615437508,
-0.062457870692014694,
-0.025565486401319504,
-0.027674322947859764,
0.038110096007585526,
-0.044093143194913864,
0.07407752424478531,
0.03598496690392494,
-0.047268737107515335,
0.02050180174410343,
-0.006324524525552988,
-0.05652410537004471,
0.07022955268621445,
0.009677812457084656,
0.032386310398578644,
0.0037203924730420113,
0.026962216943502426,
0.03168708458542824,
0.0625234916806221,
-0.10072118788957596,
-0.008018428459763527,
-0.014742014929652214,
0.08431169390678406,
-0.0591001957654953,
-0.11347407102584839,
0.01577841304242611,
0.05064885690808296,
-0.03508361428976059,
0.024187693372368813,
-0.10169630497694016,
0.015489155426621437,
-0.05276792496442795,
0.008906202390789986,
0.015902426093816757,
-0.006471578497439623,
-0.005380728747695684,
-0.08111109584569931,
0.02839255891740322,
0.02450435981154442,
-0.025211039930582047,
0.00539914146065712,
-0.01471700333058834,
0.12154792249202728,
-0.0014969897456467152,
0.04550913721323013,
0.01015253271907568
] |
rsvp-ai/bertserini-bert-base-squad | 1c93f9f29544f8ce8d6ee99133f91e5bd4dfed36 | 2022-06-23T14:13:40.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"question-answering",
"transformers",
"autotrain_compatible"
] | question-answering | false | rsvp-ai | null | rsvp-ai/bertserini-bert-base-squad | 7,828 | 2 | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
vblagoje/bert-english-uncased-finetuned-pos | 46ec120264b121e8d92bef19b45c107d06d2cb99 | 2021-05-20T08:51:26.000Z | [
"pytorch",
"jax",
"bert",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | vblagoje | null | vblagoje/bert-english-uncased-finetuned-pos | 7,819 | 2 | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
facebook/hubert-base-ls960 | dba3bb02fda4248b6e082697eee756de8fe8aa8a | 2021-11-05T12:43:12.000Z | [
"pytorch",
"tf",
"hubert",
"feature-extraction",
"en",
"dataset:librispeech_asr",
"arxiv:2106.07447",
"transformers",
"speech",
"license:apache-2.0"
] | feature-extraction | false | facebook | null | facebook/hubert-base-ls960 | 7,814 | 4 | transformers | ---
language: en
datasets:
- librispeech_asr
tags:
- speech
license: apache-2.0
---
# Hubert-Base
[Facebook's Hubert](https://ai.facebook.com/blog/hubert-self-supervised-representation-learning-for-speech-recognition-generation-and-compression)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
**Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model.
[Paper](https://arxiv.org/abs/2106.07447)
Authors: Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed
**Abstract**
Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets.
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/hubert .
# Usage
See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `HubertForCTC`. | [
-0.04352585971355438,
-0.09407538175582886,
-0.03377638757228851,
-0.04447558894753456,
-0.06588684022426605,
0.0702386423945427,
0.0009422205621376634,
-0.041706908494234085,
-0.06457708775997162,
-0.09763643145561218,
-0.02604658342897892,
-0.07805618643760681,
-0.02540084347128868,
-0.014117676764726639,
-0.028359845280647278,
-0.0034660028759390116,
0.09252616763114929,
0.0130730289965868,
-0.08273519575595856,
-0.09137291461229324,
0.07359925657510757,
0.06423857063055038,
0.03068121150135994,
0.03563579544425011,
0.046679794788360596,
0.016123119741678238,
-0.01722116209566593,
-0.042288124561309814,
0.08388189971446991,
-0.014562743715941906,
0.0916554406285286,
0.016544220969080925,
0.12957899272441864,
0.04637967050075531,
-0.020477550104260445,
-0.014539332129061222,
0.0008126051397994161,
-0.05485738441348076,
0.005864901002496481,
-0.009343861602246761,
0.049587421119213104,
-0.003744943533092737,
-0.05045109987258911,
-0.006009198259562254,
0.031483717262744904,
0.007690486032515764,
0.007136735133826733,
0.0012302373070269823,
-0.02065744251012802,
0.018157891929149628,
-0.05775446444749832,
0.010111620649695396,
0.045171383768320084,
0.03716374188661575,
-0.16968505084514618,
-0.021714910864830017,
0.02988135628402233,
0.03977762907743454,
0.04910828545689583,
0.010612848214805126,
-0.06321511417627335,
-0.02268325909972191,
0.0066196247935295105,
-0.00456081610172987,
-0.07554017007350922,
-0.032799433916807175,
0.01969793252646923,
0.019756989553570747,
0.03523062914609909,
0.017844634130597115,
0.017977196723222733,
0.06380967050790787,
0.03379351645708084,
0.06672601401805878,
0.01858547143638134,
0.01452014409005642,
0.08458930999040604,
0.03400573134422302,
0.09363892674446106,
-0.09653555601835251,
0.02142212726175785,
-0.055819302797317505,
0.10075221210718155,
-0.026274574920535088,
0.034595564007759094,
-0.01142138335853815,
0.02197958715260029,
-0.04462719336152077,
-0.00263572228141129,
0.00020058470545336604,
-0.024298712611198425,
-0.07659777998924255,
-0.0309657733887434,
0.011696182191371918,
-0.01980850286781788,
0.0422416590154171,
-0.005661110859364271,
0.007895748130977154,
0.008521300740540028,
0.056122325360774994,
-0.004971477668732405,
0.0034582088701426983,
-0.006925689987838268,
0.049572914838790894,
-0.04175865277647972,
-0.06223713234066963,
0.036435436457395554,
0.03099576197564602,
0.038838546723127365,
0.002517684828490019,
0.06920825690031052,
0.010755611583590508,
-0.004348902963101864,
-0.030545435845851898,
0.09125170111656189,
0.05049965903162956,
-0.07591145485639572,
-0.08613008260726929,
-0.0010058546904474497,
0.0533362478017807,
-0.11817539483308792,
-0.038320064544677734,
-0.05656987428665161,
0.03191861882805824,
0.011025283485651016,
-0.006141513120383024,
-0.0404030866920948,
3.1401003552389806e-34,
0.013102366589009762,
0.07889401912689209,
0.025345804169774055,
-0.06534146517515182,
-0.04309676215052605,
-0.08331922441720963,
-0.033437058329582214,
0.03064393810927868,
-0.044221632182598114,
-0.0038137866649776697,
0.025062037631869316,
-0.07247736304998398,
-0.040715139359235764,
0.0532735176384449,
-0.030569158494472504,
-0.005043387413024902,
-0.08129309862852097,
-0.005966383032500744,
0.0019792099483311176,
-0.045573800802230835,
0.09554579108953476,
0.03484524041414261,
0.019145868718624115,
-0.012013737112283707,
0.03513088449835777,
0.052153080701828,
0.05463927984237671,
-0.07780120521783829,
-0.008005860261619091,
0.04423029348254204,
-0.06244553253054619,
-0.06659523397684097,
0.0778803676366806,
-0.009986557997763157,
0.018843917176127434,
0.0017849960131570697,
0.04347736015915871,
0.03940311074256897,
-0.055347323417663574,
-0.13207575678825378,
0.037194639444351196,
0.025383353233337402,
0.05759622901678085,
-0.0888027623295784,
-0.09193704277276993,
-0.03482009097933769,
-0.011688929982483387,
-0.03399739786982536,
0.015395752154290676,
-0.005210531409829855,
0.011919950135052204,
0.040160566568374634,
-0.08989517390727997,
0.01786269247531891,
0.004589559510350227,
-0.021955018863081932,
0.03484436497092247,
0.04657277837395668,
0.060099098831415176,
-0.007010857108980417,
0.026130465790629387,
-0.03212200105190277,
0.05298155918717384,
0.01403153594583273,
0.0920909196138382,
-0.019840538501739502,
0.011202461086213589,
0.008107805624604225,
0.031364522874355316,
-0.07633000612258911,
-0.038752298802137375,
-0.04785337671637535,
0.03490288183093071,
0.050679609179496765,
-0.019662611186504364,
-0.006645806599408388,
0.051587171852588654,
-0.04629288613796234,
-0.05506474897265434,
0.07692422717809677,
0.002527274191379547,
-0.002646020147949457,
-0.0013679848052561283,
-0.05425392463803291,
-0.009833265095949173,
-0.044352930039167404,
0.04626740515232086,
-0.12025870382785797,
0.010453357361257076,
-0.027585366740822792,
0.030349837616086006,
0.039831262081861496,
-0.023094670847058296,
0.014796454459428787,
-0.06575943529605865,
-3.150725630308964e-33,
0.04167040437459946,
0.09927322715520859,
-0.036523573100566864,
0.05368949472904205,
-0.020847411826252937,
0.0060381111688911915,
0.11723660677671432,
0.13400225341320038,
-0.015384310856461525,
-0.06522369384765625,
0.03186360001564026,
-0.07615509629249573,
0.06821601092815399,
-0.026348799467086792,
0.01231829822063446,
-0.023486634716391563,
-0.029136771336197853,
0.014779623597860336,
0.0867561474442482,
0.08281449973583221,
-0.00019566553237382323,
0.04229411110281944,
-0.0744616910815239,
0.09434188902378082,
-0.03703312948346138,
-0.025350922718644142,
-0.07323338091373444,
0.08182772994041443,
0.045361533761024475,
0.036871038377285004,
-0.02153603546321392,
0.015474102459847927,
-0.02725205384194851,
-0.02176831290125847,
-0.06151983514428139,
-0.018382977694272995,
0.01451479084789753,
-0.005502466112375259,
0.026747846975922585,
0.03217237815260887,
0.06720578670501709,
0.05137444660067558,
-0.09421142935752869,
-0.07307294756174088,
0.025507254526019096,
-0.10552997887134552,
-0.11212022602558136,
0.005110517144203186,
-0.016111865639686584,
-0.03636306896805763,
0.02629932574927807,
0.017760498449206352,
0.009168937802314758,
-0.012459897436201572,
-0.038530271500349045,
-0.04043537750840187,
0.041604217141866684,
-0.07887063175439835,
-0.023828359320759773,
-0.0074513922445476055,
-0.07850255072116852,
-0.016900144517421722,
0.010386721231043339,
-0.12889894843101501,
0.005043758079409599,
-0.018816914409399033,
0.005860909353941679,
0.01921367458999157,
0.06795394420623779,
-0.02428068220615387,
-0.0324137806892395,
0.03528010845184326,
0.014715881086885929,
0.10900380462408066,
-0.049435805529356,
-0.05039571598172188,
-0.07240889221429825,
-0.0418536514043808,
-0.051513783633708954,
-0.049837712198495865,
-0.06118287891149521,
0.05555187165737152,
0.024757342413067818,
0.07786443829536438,
0.0860745906829834,
0.09912975877523422,
0.024338945746421814,
-0.017800074070692062,
-0.018457094207406044,
0.045820191502571106,
-0.014594215899705887,
0.0352531261742115,
0.03929738327860832,
0.11784984916448593,
-0.03423723578453064,
-5.7942109776831785e-8,
-0.0756186693906784,
0.021324802190065384,
0.014461884275078773,
0.020840026438236237,
-0.03135400637984276,
-0.10576986521482468,
0.00002101501013385132,
-0.02647588960826397,
0.0003180874336976558,
-0.03511366620659828,
0.009585406631231308,
-0.027141382917761803,
-0.06445081532001495,
0.024871494621038437,
0.014494163915514946,
0.0011081993579864502,
0.03171798214316368,
0.08311578631401062,
-0.016479169949889183,
-0.11018458753824234,
0.04994526132941246,
0.02343280054628849,
0.010667452588677406,
-0.03727584704756737,
0.07752697914838791,
-0.005133345723152161,
0.0028713238425552845,
0.052138276398181915,
-0.06087096780538559,
-0.0319550484418869,
-0.0742533877491951,
0.077149398624897,
-0.04000948742032051,
-0.033285144716501236,
0.03476611152291298,
0.045864492654800415,
-0.0032607163302600384,
-0.05104011669754982,
-0.019223185256123543,
0.06520659476518631,
0.023404592648148537,
0.1051812395453453,
-0.09432971477508545,
-0.06476926803588867,
0.060450490564107895,
0.057806603610515594,
-0.023549174889922142,
-0.11278233677148819,
0.02615884691476822,
0.026244189590215683,
0.06226247549057007,
0.06595601886510849,
-0.02860075980424881,
-0.006792963482439518,
0.08344090729951859,
0.032306771725416183,
-0.04902835190296173,
0.026950202882289886,
0.001391039346344769,
0.00679985573515296,
-0.002781663089990616,
0.00048665114445611835,
-0.020932316780090332,
-0.045151930302381516
] |
sahri/indonesiasentiment | 99f38e6c1b34109bbf4a6d7c6556c56f5d2eef6a | 2022-01-17T04:50:03.000Z | [
"pytorch",
"tf",
"roberta",
"text-classification",
"id",
"dataset:indonlu",
"arxiv:1907.11692",
"transformers",
"indonesian-roberta-base-sentiment-classifier",
"license:mit"
] | text-classification | false | sahri | null | sahri/indonesiasentiment | 7,791 | null | transformers | ---
language: id
tags:
- indonesian-roberta-base-sentiment-classifier
license: mit
datasets:
- indonlu
widget:
- text: "tidak jelek tapi keren"
---
## Indonesian RoBERTa Base Sentiment Classifier
Indonesian RoBERTa Base Sentiment Classifier is a sentiment-text-classification model based on the [RoBERTa](https://arxiv.org/abs/1907.11692) model. The model was originally the pre-trained [Indonesian RoBERTa Base](https://hf.co/flax-community/indonesian-roberta-base) model, which is then fine-tuned on [`indonlu`](https://hf.co/datasets/indonlu)'s `SmSA` dataset consisting of Indonesian comments and reviews.
After training, the model achieved an evaluation accuracy of 94.36% and F1-macro of 92.42%. On the benchmark test set, the model achieved an accuracy of 93.2% and F1-macro of 91.02%.
Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless.
## Model
| Model | #params | Arch. | Training/Validation data (text) |
| ---------------------------------------------- | ------- | ------------ | ------------------------------- |
| `indonesian-roberta-base-sentiment-classifier` | 124M | RoBERTa Base | `SmSA` |
## Evaluation Results
The model was trained for 5 epochs and the best model was loaded at the end.
| Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall |
| ----- | ------------- | --------------- | -------- | -------- | --------- | -------- |
| 1 | 0.342600 | 0.213551 | 0.928571 | 0.898539 | 0.909803 | 0.890694 |
| 2 | 0.190700 | 0.213466 | 0.934127 | 0.901135 | 0.925297 | 0.882757 |
| 3 | 0.125500 | 0.219539 | 0.942857 | 0.920901 | 0.927511 | 0.915193 |
| 4 | 0.083600 | 0.235232 | 0.943651 | 0.924227 | 0.926494 | 0.922048 |
| 5 | 0.059200 | 0.262473 | 0.942063 | 0.920583 | 0.924084 | 0.917351 |
## How to Use
### As Text Classifier
```python
from transformers import pipeline
pretrained_name = "sahri/sentiment"
nlp = pipeline(
"sentiment-analysis",
model=pretrained_name,
tokenizer=pretrained_name
)
nlp("tidak jelek tapi keren")
```
## Disclaimer
Do consider the biases which come from both the pre-trained RoBERTa model and the `SmSA` dataset that may be carried over into the results of this model.
## Author
Indonesian RoBERTa Base Sentiment Classifier was trained and evaluated by [sahri ramadhan] All computation and development are done on Google Colaboratory using their free GPU access.
| [
-0.14286072552204132,
-0.05692875385284424,
-0.044992443174123764,
0.020817043259739876,
-0.018705595284700394,
0.056229449808597565,
-0.013110709376633167,
0.01167660765349865,
0.04041985049843788,
0.013523361645638943,
0.059962619096040726,
-0.018433749675750732,
0.007898712530732155,
0.0022226409055292606,
0.038297031074762344,
0.006433452479541302,
0.11060821264982224,
-0.045806609094142914,
-0.11627406626939774,
-0.03529995307326317,
0.007250976748764515,
0.023120764642953873,
0.09072193503379822,
-0.016762474551796913,
0.04718242585659027,
0.018646085634827614,
-0.016144536435604095,
0.0595284029841423,
0.05603611841797829,
-0.006469756830483675,
-0.05875235050916672,
0.10063445568084717,
-0.012508746236562729,
0.0524277463555336,
-0.11103948950767517,
0.06779319047927856,
-0.04737555608153343,
0.012333711609244347,
0.04014066606760025,
0.02203819341957569,
-0.03899598866701126,
-0.054164040833711624,
-0.026652410626411438,
-0.0426177978515625,
0.11969950050115585,
-0.028034910559654236,
-0.04339610040187836,
0.019160347059369087,
-0.01979244314134121,
-0.06656598299741745,
-0.09277964383363724,
-0.002242265036329627,
-0.021712113171815872,
0.036906059831380844,
-0.07179521024227142,
-0.026746908202767372,
0.01938924938440323,
0.01690431497991085,
0.03288280963897705,
0.016414355486631393,
-0.008995234034955502,
-0.05705894157290459,
-0.06569504737854004,
0.010022120550274849,
-0.006105334497988224,
-0.10761218518018723,
-0.06951984018087387,
0.043238647282123566,
0.025137530639767647,
-0.017939509823918343,
-0.020639173686504364,
0.03373315930366516,
0.018853727728128433,
0.08609617501497269,
-0.032890867441892624,
0.012076867744326591,
0.0812591165304184,
0.05557691305875778,
0.06646300107240677,
-0.06515824049711227,
0.018597090616822243,
-0.01575838215649128,
0.08294972032308578,
-0.028945166617631912,
0.0592091865837574,
-0.007770567201077938,
0.027505898848176003,
0.07298757880926132,
-0.04703383520245552,
0.01809302531182766,
0.05459875613451004,
-0.011925313621759415,
0.025188768282532692,
-0.015407524071633816,
-0.060352616012096405,
0.06225418671965599,
-0.0728653073310852,
0.03134959191083908,
-0.04184716194868088,
0.10496284812688828,
-0.005544451996684074,
0.07341478019952774,
-0.011730902828276157,
-0.017891842871904373,
-0.004000581335276365,
-0.007972916588187218,
-0.002430552616715431,
0.008382327854633331,
0.12101393193006516,
-0.04234779253602028,
-0.040642835199832916,
-0.002635004697367549,
-0.1188993975520134,
-0.029843760654330254,
-0.00977683812379837,
-0.009228979237377644,
-0.02397117018699646,
0.008355421014130116,
0.012736782431602478,
0.06580875813961029,
0.022608455270528793,
-0.07756104320287704,
-0.0005579403950832784,
-0.0048090689815580845,
0.022934701293706894,
0.04880919307470322,
-0.06960701942443848,
8.006736507252005e-34,
0.06021437793970108,
0.06291510909795761,
0.04568924754858017,
-0.03686957061290741,
-0.042050912976264954,
-0.06101948767900467,
-0.06720469146966934,
-0.04769156873226166,
-0.05696672946214676,
0.00592422392219305,
-0.07827457040548325,
0.04732244461774826,
-0.05312785878777504,
0.04536650702357292,
0.015341338701546192,
-0.002280767075717449,
-0.086273193359375,
-0.037512216717004776,
0.004014179576188326,
0.007575465366244316,
0.1312776803970337,
0.07354719936847687,
0.029563242569565773,
-0.07158694416284561,
-0.04325735569000244,
0.05720171704888344,
0.069277822971344,
-0.028293881565332413,
-0.09303387999534607,
0.048864517360925674,
-0.06436020135879517,
0.030834011733531952,
-0.018002856522798538,
0.004522579722106457,
-0.045745160430669785,
-0.08314196020364761,
-0.025664402171969414,
-0.06078000366687775,
-0.007699328940361738,
-0.0666169673204422,
-0.032631780952215195,
0.056283410638570786,
0.021056681871414185,
0.019362106919288635,
-0.02984684705734253,
0.03186933696269989,
-0.011853821575641632,
-0.04798000678420067,
0.10285396873950958,
0.10302634537220001,
-0.027124419808387756,
-0.0056496914476156235,
0.0352926105260849,
0.05981465056538582,
-0.02602056972682476,
0.01479687262326479,
0.07469425350427628,
0.02596445381641388,
0.02722182869911194,
0.01831173710525036,
-0.013206387870013714,
-0.0014008164871484041,
0.04905441403388977,
-0.03501524031162262,
-0.010228490456938744,
-0.006153821013867855,
-0.026458287611603737,
-0.02528586983680725,
0.05336962267756462,
0.01751752942800522,
-0.02048472873866558,
0.026691369712352753,
0.02732631377875805,
0.03190809115767479,
0.013675110414624214,
-0.03523626923561096,
0.0544801689684391,
-0.02190103381872177,
-0.046812258660793304,
0.027114612981677055,
0.006280302535742521,
0.04180537164211273,
0.031060250476002693,
-0.06766562908887863,
-0.0332942008972168,
-0.06595370918512344,
-0.005360940936952829,
-0.08796385675668716,
-0.009494057856500149,
0.04912389814853668,
-0.020083002746105194,
0.11027011275291443,
0.00461040111258626,
0.051122259348630905,
-0.03082849644124508,
-1.652005597841072e-33,
0.02397395670413971,
0.05921636149287224,
-0.09803576022386551,
0.04230844974517822,
-0.052654534578323364,
-0.012366905808448792,
-0.003168406430631876,
0.08891666680574417,
-0.05307433009147644,
-0.007352580316364765,
0.07981891930103302,
-0.03795227035880089,
0.03983214497566223,
0.030522936955094337,
0.01068772841244936,
0.05195083096623421,
-0.019952403381466866,
-0.013165803626179695,
-0.04645621031522751,
-0.009830811992287636,
-0.023840652778744698,
0.09425334632396698,
-0.08100588619709015,
0.06249888241291046,
0.0034307949244976044,
-0.0031632944010198116,
0.022041799500584602,
0.025223344564437866,
-0.002363249659538269,
-0.07220058888196945,
0.05016065761446953,
-0.07134521007537842,
-0.06348813325166702,
0.07941000163555145,
-0.04005062207579613,
-0.02242053858935833,
0.005698473192751408,
-0.108918696641922,
-0.014400864019989967,
0.11759770661592484,
0.10933545231819153,
0.05903135985136032,
-0.09495324641466141,
0.021692773327231407,
-0.08507523685693741,
-0.03837602213025093,
-0.02687874063849449,
-0.021909840404987335,
0.004694167524576187,
-0.10394816845655441,
0.03456513211131096,
-0.013197341002523899,
-0.051341839134693146,
0.07305147498846054,
0.0173963513225317,
-0.07339274883270264,
0.061687882989645004,
-0.023088645190000534,
-0.11197599768638611,
0.05540549382567406,
-0.01103947777301073,
0.020250629633665085,
0.00860194955021143,
-0.018204109743237495,
0.032329659909009933,
-0.008593564853072166,
0.05246017128229141,
0.05660524591803551,
0.005762241315096617,
0.00870467722415924,
0.08541452139616013,
0.011930443346500397,
0.013707668520510197,
0.023290706798434258,
0.04567394778132439,
0.031937841325998306,
0.021645143628120422,
0.0041366019286215305,
-0.04055102542042732,
-0.08138889074325562,
-0.05438210442662239,
-0.0444401353597641,
-0.03535362705588341,
0.016246341168880463,
0.006059729959815741,
0.044247664511203766,
0.03729617968201637,
0.02916691266000271,
0.002810135018080473,
0.024997945874929428,
0.04427076503634453,
0.028775570914149284,
0.018432173877954483,
0.09289439767599106,
0.027812406420707703,
-4.919995788554843e-8,
-0.05768231302499771,
-0.08501268923282623,
-0.0618002787232399,
0.03240693360567093,
-0.061129894107580185,
-0.005032645072788,
0.032243434339761734,
-0.006929440423846245,
-0.10456987470388412,
0.03837449476122856,
0.04990697652101517,
0.06883198767900467,
-0.09411097317934036,
-0.005765307694673538,
-0.008643015287816525,
-0.03366222232580185,
0.025368977338075638,
0.13875898718833923,
-0.002106680301949382,
0.007726863492280245,
0.09066696465015411,
0.023185569792985916,
0.01506279967725277,
-0.08078353852033615,
0.010629773139953613,
-0.05477769300341606,
-0.06328266859054565,
0.08480436354875565,
-0.017511986196041107,
-0.045460715889930725,
-0.023268114775419235,
0.02314303070306778,
-0.043876852840185165,
-0.044539619237184525,
-0.017574917525053024,
0.06410231441259384,
0.015560791827738285,
-0.05553970858454704,
-0.022609896957874298,
0.08411131054162979,
0.05677790567278862,
-0.04576552286744118,
-0.12100977450609207,
-0.03825455531477928,
0.05680280551314354,
0.022302109748125076,
0.029732543975114822,
-0.12447436898946762,
0.02509882114827633,
0.0073685175739228725,
0.011740380898118019,
0.02304042875766754,
-0.08299390971660614,
-0.0071217711083590984,
-0.026215432211756706,
0.003451547585427761,
-0.09571179747581482,
-0.020730802789330482,
0.04468633234500885,
0.004377156961709261,
0.04595910385251045,
-0.018330130726099014,
-0.023706015199422836,
0.024896055459976196
] |
google/long-t5-local-base | e040d65029c54fb38eaefa4019bc3e2e31ba3c62 | 2022-06-22T09:04:55.000Z | [
"pytorch",
"jax",
"longt5",
"text2text-generation",
"en",
"arxiv:2112.07916",
"arxiv:1912.08777",
"arxiv:1910.10683",
"transformers",
"license:apache-2.0",
"autotrain_compatible"
] | text2text-generation | false | google | null | google/long-t5-local-base | 7,756 | 5 | transformers | ---
license: apache-2.0
language: en
---
# LongT5 (local attention, base-sized model)
LongT5 model pre-trained on English language. The model was introduced in the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/pdf/2112.07916.pdf) by Guo et al. and first released in [the LongT5 repository](https://github.com/google-research/longt5). All the model architecture and configuration can be found in [Flaxformer repository](https://github.com/google/flaxformer) which uses another Google research project repository [T5x](https://github.com/google-research/t5x).
Disclaimer: The team releasing LongT5 did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
LongT5 model is an encoder-decoder transformer pre-trained in a text-to-text denoising generative setting ([Pegasus-like generation pre-training](https://arxiv.org/pdf/1912.08777.pdf)). LongT5 model is an extension of [T5 model](https://arxiv.org/pdf/1910.10683.pdf), and it enables using one of the two different efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention. The usage of attention sparsity patterns allows the model to efficiently handle input sequence.
LongT5 is particularly effective when fine-tuned for text generation (summarization, question answering) which requires handling long input sequences (up to 16,384 tokens).
## Intended uses & limitations
The model is mostly meant to be fine-tuned on a supervised dataset. See the [model hub](https://huggingface.co/models?search=longt5) to look for fine-tuned versions on a task that interests you.
### How to use
```python
from transformers import AutoTokenizer, LongT5Model
tokenizer = AutoTokenizer.from_pretrained("google/long-t5-local-base")
model = LongT5Model.from_pretrained("google/long-t5-local-base")
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state
```
### BibTeX entry and citation info
```bibtex
@article{guo2021longt5,
title={LongT5: Efficient Text-To-Text Transformer for Long Sequences},
author={Guo, Mandy and Ainslie, Joshua and Uthus, David and Ontanon, Santiago and Ni, Jianmo and Sung, Yun-Hsuan and Yang, Yinfei},
journal={arXiv preprint arXiv:2112.07916},
year={2021}
}
``` | [
-0.14853155612945557,
-0.08370652794837952,
0.03366756811738014,
-0.005874714348465204,
0.02386505715548992,
-0.0014904160052537918,
-0.13787443935871124,
0.020675497129559517,
-0.01738435961306095,
-0.06558583676815033,
0.035798314958810806,
0.06598906219005585,
-0.016261259093880653,
0.03142940625548363,
0.01019395049661398,
-0.02178923599421978,
0.04360015690326691,
0.013356693089008331,
-0.08222725242376328,
-0.08157707005739212,
0.07628539204597473,
0.026315046474337578,
0.028062229976058006,
0.04401247575879097,
-0.008704964071512222,
-0.007509954273700714,
-0.011119731701910496,
-0.024508610367774963,
0.037648916244506836,
-0.031111745163798332,
0.02454765886068344,
0.07623934000730515,
0.01681789942085743,
-0.0005497339298017323,
-0.1496281772851944,
0.06660927087068558,
-0.021858274936676025,
-0.06965900212526321,
-0.01400034874677658,
-0.008867837488651276,
0.02109718509018421,
-0.07556165754795074,
0.023243213072419167,
-0.003433850361034274,
0.07825231552124023,
-0.08184987306594849,
-0.01384800486266613,
-0.03933969512581825,
-0.03953062370419502,
-0.007648316211998463,
-0.06280896812677383,
-0.04118233174085617,
0.006978735793381929,
0.04658232256770134,
-0.09011565893888474,
-0.06234939023852348,
-0.042275767773389816,
-0.038446709513664246,
-0.017921654507517815,
0.015561453066766262,
-0.024622172117233276,
0.05003156140446663,
-0.04290644824504852,
0.0197572261095047,
-0.07526049762964249,
0.011647037230432034,
0.04767995327711105,
-0.01541790459305048,
0.022646615281701088,
-0.09139788895845413,
-0.08703507483005524,
-0.007337911985814571,
0.031891386955976486,
0.029503900557756424,
0.03582509979605675,
0.012015409767627716,
0.10032622516155243,
0.016527678817510605,
0.042751215398311615,
-0.03952076658606529,
0.04717938229441643,
-0.003193750511854887,
0.07506560534238815,
0.028278129175305367,
-0.003771318355575204,
-0.021590057760477066,
-0.030304668471217155,
0.12461842596530914,
0.03589219972491264,
-0.03733433783054352,
-0.020920006558299065,
-0.06461037695407867,
-0.02995157241821289,
0.028471698984503746,
-0.08320239931344986,
0.030997609719634056,
-0.01903747022151947,
0.05224578455090523,
-0.09140898287296295,
0.016636501997709274,
0.013848085887730122,
-0.04981403425335884,
0.08768080919981003,
0.0033442149870097637,
-0.06977999210357666,
-0.1278022676706314,
-0.0054090023040771484,
0.1153608113527298,
0.03441958129405975,
-0.13092219829559326,
0.04005696251988411,
0.009550816379487514,
-0.051741745322942734,
-0.07315573841333389,
0.02217201702296734,
-0.019271310418844223,
-0.0707717314362526,
-0.08930900692939758,
0.03750315681099892,
0.02535211853682995,
-0.008954863995313644,
0.040913015604019165,
-0.021834509447216988,
-0.007633167318999767,
0.014098112471401691,
-0.009034874849021435,
-0.10498432070016861,
3.6420987993419886e-33,
0.008924932219088078,
0.12196097522974014,
0.06464435160160065,
0.1204376146197319,
0.013160347938537598,
0.005107289180159569,
-0.008128168992698193,
0.04138932749629021,
-0.02217852883040905,
-0.001939988462254405,
-0.022065721452236176,
0.07200302928686142,
-0.0709925964474678,
0.06450045108795166,
0.03108133375644684,
-0.07689836621284485,
-0.06697729229927063,
0.028516877442598343,
0.011969256214797497,
-0.011892375536262989,
0.09495531022548676,
0.04435954615473747,
0.051029887050390244,
-0.00010863939678529277,
0.004386915825307369,
0.08905619382858276,
0.058887045830488205,
-0.048566680401563644,
-0.04355224594473839,
0.02931787632405758,
-0.08157385140657425,
-0.024684887379407883,
0.014392485842108727,
0.004634495358914137,
0.059294942766427994,
-0.03674587607383728,
-0.013056610710918903,
-0.08344444632530212,
-0.03951358050107956,
-0.05555151402950287,
0.031154373660683632,
0.05969393625855446,
0.020261485129594803,
-0.013221175409853458,
-0.022646842524409294,
-0.0026329969987273216,
-0.016180258244276047,
0.029962310567498207,
0.04535827413201332,
-0.003173456061631441,
0.06981858611106873,
0.033391550183296204,
-0.06560950726270676,
-0.0024601048789918423,
0.0033052596263587475,
0.09900390356779099,
0.11172610521316528,
0.03921226039528847,
0.0013208396267145872,
0.06412533670663834,
-0.02005241997539997,
-0.016481781378388405,
0.006715934257954359,
0.012749239802360535,
0.013870327733457088,
0.00603870302438736,
-0.009180488996207714,
-0.048603273928165436,
0.06817922741174698,
-0.006420346908271313,
-0.005686726421117783,
0.043542202562093735,
0.007845520041882992,
0.07643850147724152,
0.027799343690276146,
-0.06337084621191025,
0.03140854090452194,
-0.0507810078561306,
-0.0387193039059639,
0.03676304966211319,
-0.056885976344347,
-0.009704982861876488,
0.01998741924762726,
-0.0019029686227440834,
-0.01443575881421566,
0.009344466961920261,
0.025002071633934975,
-0.009433608502149582,
0.05834308639168739,
-0.01365483645349741,
0.03848849609494209,
-0.010213176719844341,
0.01051302719861269,
-0.029546532779932022,
0.05294843763113022,
-3.418019454032521e-33,
-0.015841087326407433,
-0.08147416263818741,
-0.07867670804262161,
0.08146626502275467,
0.025362789630889893,
-0.06381349265575409,
0.03875904530286789,
0.17063328623771667,
0.010207295417785645,
-0.024078965187072754,
0.0655454769730568,
0.004948982037603855,
0.08326655626296997,
0.024009032174944878,
0.06982854008674622,
-0.04160310700535774,
0.02246679924428463,
-0.11738548427820206,
-0.005133067257702351,
0.006285005249083042,
0.04349822551012039,
0.039190683513879776,
-0.10496120154857635,
-0.026656728237867355,
0.016876159235835075,
0.048455722630023956,
-0.04015938192605972,
0.01694321446120739,
0.019058912992477417,
0.0175583828240633,
-0.08908114582300186,
-0.030080942437052727,
0.025889504700899124,
-0.01600647158920765,
-0.0778527706861496,
0.02186514064669609,
0.03429679572582245,
0.06448733806610107,
-0.006075461395084858,
0.026296371594071388,
0.047026172280311584,
-0.016480600461363792,
0.009814146906137466,
0.037721674889326096,
-0.056079793721437454,
0.012202461250126362,
-0.09943481534719467,
-0.05338751897215843,
0.042370811104774475,
0.05446018651127815,
0.024325108155608177,
0.006343749351799488,
-0.0882214903831482,
-0.034847065806388855,
-0.03532308340072632,
-0.12203840911388397,
-0.05174768716096878,
-0.022390315309166908,
-0.02032347396016121,
-0.016335967928171158,
-0.038345325738191605,
-0.012622978538274765,
0.049948979169130325,
-0.015603126958012581,
0.04359927028417587,
-0.03524845838546753,
-0.01372542418539524,
0.0011270949617028236,
0.026645714417099953,
0.009118674322962761,
0.02194797992706299,
-0.006300866138190031,
0.021043751388788223,
0.07645503431558609,
0.019882868975400925,
-0.057077500969171524,
-0.026638275012373924,
0.044011715799570084,
0.018449708819389343,
-0.032491497695446014,
-0.011034272611141205,
0.012746665626764297,
-0.0007146148127503693,
0.0401541031897068,
0.0561528280377388,
-0.044949598610401154,
0.05331689864397049,
0.10816967487335205,
0.04717686399817467,
0.005728576332330704,
0.0058948262594640255,
0.10566499084234238,
-0.005116672720760107,
0.04664046689867973,
-0.024660835042595863,
-5.620242760073779e-8,
-0.07138298451900482,
0.018115032464265823,
-0.08950695395469666,
-0.0026839282363653183,
-0.04099782183766365,
-0.0027409240137785673,
0.0037000863812863827,
0.03271424025297165,
0.04515761882066727,
0.003900812705978751,
0.044529203325510025,
0.020860981196165085,
-0.020553115755319595,
0.02484450489282608,
-0.056950945407152176,
0.017560966312885284,
0.03784523904323578,
0.0350436232984066,
-0.03186425566673279,
-0.022240208461880684,
-0.009245971217751503,
0.05100952088832855,
-0.024282129481434822,
-0.02661520056426525,
0.061313409358263016,
-0.01968781091272831,
-0.1365288645029068,
0.0645170584321022,
0.05626196786761284,
-0.1033783107995987,
-0.04682131111621857,
0.06629746407270432,
-0.04598710313439369,
-0.022924622520804405,
-0.027485981583595276,
0.03861629217863083,
-0.0038218258414417505,
0.015258565545082092,
0.0312360767275095,
0.06689979135990143,
0.07824292033910751,
0.04825887456536293,
-0.12581951916217804,
-0.023542048409581184,
0.09362930804491043,
0.03382990509271622,
-0.006655947770923376,
-0.1440436989068985,
0.02050679363310337,
0.07259517908096313,
-0.02480028197169304,
-0.0322098582983017,
-0.023022541776299477,
-0.025828933343291283,
-0.022229505702853203,
0.02809986099600792,
0.02704607881605625,
-0.025388870388269424,
0.056512512266635895,
-0.0075372615829110146,
-0.029186753556132317,
0.02391224168241024,
0.04606478288769722,
0.053235359489917755
] |
sbcBI/sentiment_analysis | 2e9e3afe68478a6168a11adb6c6f1b741e00ae83 | 2022-04-22T06:42:07.000Z | [
"pytorch",
"distilbert",
"text-classification",
"en",
"dataset:Confidential",
"arxiv:1810.04805",
"transformers",
"exbert",
"license:apache-2.0"
] | text-classification | false | sbcBI | null | sbcBI/sentiment_analysis | 7,739 | null | transformers | ---
language: en
tags:
- exbert
license: apache-2.0
datasets:
- Confidential
---
# BERT base model (uncased)
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
between english and English.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
## Model description [sbcBI/sentiment_analysis]
This is a fine-tuned downstream version of the bert-base-uncased model for sentiment analysis, this model is not intended for
further downstream fine-tuning for any other tasks. This model is trained on a classified dataset for text-classification. | [
-0.0985998660326004,
-0.08899679780006409,
0.05186743289232254,
0.035263340920209885,
0.05233854427933693,
0.03494033217430115,
0.020050641149282455,
-0.005732312332838774,
0.045652635395526886,
-0.02304491214454174,
0.03469158709049225,
-0.03239385783672333,
0.07250905781984329,
0.03543765842914581,
0.01832292042672634,
0.014708670787513256,
0.12330294400453568,
-0.053564976900815964,
-0.10248077660799026,
-0.07326045632362366,
0.08900061994791031,
0.08034401386976242,
0.0350264310836792,
-0.02389976754784584,
0.012055031955242157,
-0.037252604961395264,
-0.03390767052769661,
-0.05698595568537712,
0.08969607949256897,
0.029434524476528168,
0.06700492650270462,
-0.034496650099754333,
0.06589207798242569,
0.08076152205467224,
-0.04344259202480316,
0.02625085599720478,
-0.059521470218896866,
-0.02379642240703106,
0.020542079582810402,
-0.01705283671617508,
-0.07131770253181458,
-0.04138636589050293,
-0.06418191641569138,
-0.03346360847353935,
0.06686319410800934,
0.013735530897974968,
-0.05396370217204094,
-0.012919100932776928,
-0.12608446180820465,
-0.014393383637070656,
-0.09906540811061859,
-0.0329894945025444,
0.027701908722519875,
0.006757003255188465,
-0.06544765830039978,
-0.03212376683950424,
0.025833312422037125,
-0.020739125087857246,
-0.03350841999053955,
-0.04771660640835762,
-0.14282017946243286,
-0.03953077271580696,
-0.020640749484300613,
0.03987957909703255,
-0.05890152230858803,
0.03228657320141792,
-0.03172300010919571,
0.01498219184577465,
0.018713733181357384,
0.012324275448918343,
0.029225796461105347,
0.06479591131210327,
0.04127340763807297,
0.030207913368940353,
0.015304876491427422,
-0.020501790568232536,
0.05405070260167122,
0.015635935589671135,
0.026051290333271027,
-0.05109092965722084,
0.03593256697058678,
0.014814948663115501,
0.07027648389339447,
0.0308242030441761,
0.050939545035362244,
0.011814882047474384,
0.029659047722816467,
0.007800160441547632,
-0.017081020399928093,
0.009334356524050236,
-0.05047396197915077,
-0.13020434975624084,
0.06376892328262329,
0.05210269242525101,
-0.008699970319867134,
-0.009333211928606033,
0.01747274585068226,
0.028641246259212494,
0.005702123045921326,
0.061760466545820236,
-0.005167566239833832,
0.053731586784124374,
0.0007900349446572363,
-0.07873577624559402,
0.04011718928813934,
-0.006128978915512562,
0.01198536902666092,
-0.0015817061066627502,
0.06829825788736343,
-0.07134319841861725,
0.04916052147746086,
-0.029127925634384155,
-0.020660793408751488,
-0.036399200558662415,
-0.004555136431008577,
-0.049429621547460556,
0.030470047146081924,
-0.04380957409739494,
0.011998683214187622,
0.10989059507846832,
-0.013955389149487019,
0.06308093667030334,
0.062300797551870346,
0.00486895814538002,
-0.06496968865394592,
0.006949351169168949,
-0.019431080669164658,
6.6798302188491525e-34,
0.019907288253307343,
-0.030708052217960358,
-0.03238832578063011,
0.005071698222309351,
0.0264285821467638,
-0.018034977838397026,
0.021044332534074783,
0.02436615340411663,
0.04533504322171211,
-0.009578107856214046,
0.01847044751048088,
0.018291357904672623,
-0.07113967090845108,
0.08027169108390808,
-0.015595369040966034,
0.04405003786087036,
0.006622163578867912,
0.057941168546676636,
0.05414764583110809,
-0.01449365634471178,
0.07877585291862488,
0.07038816064596176,
0.04604044929146767,
-0.11465755105018616,
-0.03035401552915573,
0.06233710050582886,
0.059255242347717285,
-0.10362468659877777,
0.011193659156560898,
0.05761261284351349,
-0.1279458999633789,
0.03931695595383644,
0.007277428172528744,
0.022300206124782562,
0.006493018940091133,
0.020466972142457962,
0.049465619027614594,
-0.061647020280361176,
0.012574012391269207,
-0.04482395946979523,
0.015097481198608875,
0.034901514649391174,
0.032459843903779984,
-0.08336785435676575,
-0.0353914238512516,
-0.023101255297660828,
-0.03027692250907421,
0.009956586174666882,
-0.001953711034730077,
-0.005405935924500227,
0.06836733222007751,
0.05552508309483528,
-0.05951764062047005,
-0.04125801473855972,
0.015415654517710209,
0.017581764608621597,
0.06381279975175858,
0.012498803436756134,
0.021960541605949402,
0.018271252512931824,
-0.0361810103058815,
0.010452146641910076,
0.02545139752328396,
0.04135063290596008,
0.05864882841706276,
-0.040211502462625504,
0.006151082459837198,
-0.015957776457071304,
0.009510025382041931,
-0.006826652213931084,
-0.04333619773387909,
-0.025176523253321648,
-0.039954185485839844,
0.052669841796159744,
-0.0021624278742820024,
-0.06611312925815582,
0.03253868594765663,
-0.07387763261795044,
-0.0354517363011837,
0.05450943857431412,
0.013708855956792831,
0.05572302266955376,
-0.03888407349586487,
-0.0586378276348114,
-0.09101086854934692,
-0.008245290257036686,
0.0577809102833271,
-0.03358907625079155,
0.021624626591801643,
-0.0013053937582299113,
0.06510747969150543,
-0.06805859506130219,
-0.03296917304396629,
0.012297073379158974,
-0.01109443698078394,
-3.0805767192266978e-33,
-0.07864648848772049,
0.0673888698220253,
-0.12220140546560287,
0.046050578355789185,
-0.07654746621847153,
-0.10425398498773575,
0.05129677802324295,
0.1718011349439621,
0.010724869556725025,
-0.03344137221574783,
-0.04402368515729904,
-0.04831650108098984,
-0.017492368817329407,
0.0037832779344171286,
0.055230818688869476,
-0.03322305157780647,
0.0004974045441485941,
0.028959132730960846,
0.010312683880329132,
0.026880478486418724,
0.016850586980581284,
0.025086909532546997,
-0.1272304505109787,
0.05916939675807953,
-0.004833675455302,
0.06336698681116104,
-0.06738211214542389,
0.10584501922130585,
0.05142400413751602,
0.03161308169364929,
-0.029586033895611763,
0.05395776405930519,
-0.02031710371375084,
0.007146336138248444,
-0.11904952675104141,
0.03704574331641197,
0.014871307648718357,
-0.009687219746410847,
-0.0003847717889584601,
0.015010184608399868,
0.04191624000668526,
-0.012427615001797676,
-0.062448713928461075,
0.007197835016995668,
-0.030870899558067322,
0.008314434438943863,
-0.09857165068387985,
-0.08222401887178421,
0.05313508212566376,
-0.06911119073629379,
0.013369891792535782,
-0.0021904839668422937,
-0.10119731724262238,
-0.05126223340630531,
-0.11142545938491821,
-0.1147884726524353,
-0.04755600914359093,
-0.05880038067698479,
-0.03730122745037079,
0.03332408517599106,
0.019315972924232483,
0.028157640248537064,
0.019850395619869232,
-0.018538204953074455,
-0.013449043035507202,
-0.014401168562471867,
-0.019361328333616257,
0.024588989093899727,
-0.04187155142426491,
-0.045552853494882584,
0.03377204388380051,
-0.026014797389507294,
0.01867564395070076,
0.02542497217655182,
0.009174622595310211,
0.008488830178976059,
-0.037504855543375015,
-0.11148257553577423,
-0.05987963080406189,
-0.06219875067472458,
-0.004895022604614496,
-0.0652984157204628,
0.0050423420034348965,
0.06653717905282974,
0.020811721682548523,
0.020745456218719482,
-0.007900490425527096,
0.02627578005194664,
-0.02757924050092697,
0.027585167437791824,
0.015268447808921337,
0.013838413171470165,
-0.046380866318941116,
0.13701975345611572,
-0.032311249524354935,
-5.814580816831949e-8,
-0.0450042262673378,
0.011310051195323467,
-0.01970101147890091,
0.04924743250012398,
-0.04613123834133148,
-0.044424448162317276,
-0.048733796924352646,
0.003171002957969904,
-0.003115174826234579,
-0.050234705209732056,
0.007223647553473711,
0.02319995127618313,
-0.14320862293243408,
0.024129964411258698,
-0.03785031661391258,
0.08428585529327393,
-0.043292172253131866,
0.06559959053993225,
0.03131348639726639,
-0.023931466042995453,
-0.030134988948702812,
0.025695573538541794,
-0.030050678178668022,
-0.06295157223939896,
0.04148823022842407,
-0.03908321261405945,
-0.013900352641940117,
0.1153797134757042,
0.0009149096440523863,
0.06492120027542114,
-0.06420418620109558,
0.021614328026771545,
-0.04970254376530647,
0.053251493722200394,
0.03147546574473381,
0.0745449811220169,
-0.012663296423852444,
-0.06951076537370682,
-0.023257572203874588,
0.01936378702521324,
0.11895163357257843,
0.0675499439239502,
-0.08280932158231735,
-0.009073316119611263,
0.09317370504140854,
0.03475972265005112,
-0.0011362400837242603,
-0.12668383121490479,
0.04114825278520584,
0.013715262524783611,
0.01605415903031826,
-0.04467286169528961,
-0.022011635825037956,
0.04051113873720169,
0.0016826526261866093,
0.05149317905306816,
-0.045037295669317245,
-0.03213133662939072,
0.051955461502075195,
0.011462683789432049,
0.008657073602080345,
0.042074285447597504,
0.08521369099617004,
0.03091418370604515
] |
MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli | 35cdaef56ac000802c965e584bb2facaede17c4a | 2022-07-28T16:23:53.000Z | [
"pytorch",
"deberta-v2",
"text-classification",
"en",
"dataset:multi_nli",
"dataset:anli",
"dataset:fever",
"arxiv:2006.03654",
"transformers",
"zero-shot-classification",
"license:mit"
] | zero-shot-classification | false | MoritzLaurer | null | MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli | 7,723 | 10 | transformers | ---
language:
- en
license: mit
tags:
- text-classification
- zero-shot-classification
metrics:
- accuracy
datasets:
- multi_nli
- anli
- fever
pipeline_tag: zero-shot-classification
---
# DeBERTa-v3-base-mnli-fever-anli
## Model description
This model was trained on the MultiNLI, Fever-NLI and Adversarial-NLI (ANLI) datasets, which comprise 763 913 NLI hypothesis-premise pairs. This base model outperforms almost all large models on the [ANLI benchmark](https://github.com/facebookresearch/anli).
The base model is [DeBERTa-v3-base from Microsoft](https://huggingface.co/microsoft/deberta-v3-base). The v3 variant of DeBERTa substantially outperforms previous versions of the model by including a different pre-training objective, see annex 11 of the original [DeBERTa paper](https://arxiv.org/pdf/2006.03654.pdf).
For highest performance (but less speed), I recommend using https://huggingface.co/MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli.
## Intended uses & limitations
#### How to use the model
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model_name = "MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
premise = "I first thought that I liked the movie, but upon second thought it was actually disappointing."
hypothesis = "The movie was good."
input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu"
prediction = torch.softmax(output["logits"][0], -1).tolist()
label_names = ["entailment", "neutral", "contradiction"]
prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)}
print(prediction)
```
### Training data
DeBERTa-v3-base-mnli-fever-anli was trained on the MultiNLI, Fever-NLI and Adversarial-NLI (ANLI) datasets, which comprise 763 913 NLI hypothesis-premise pairs.
### Training procedure
DeBERTa-v3-base-mnli-fever-anli was trained using the Hugging Face trainer with the following hyperparameters.
```
training_args = TrainingArguments(
num_train_epochs=3, # total number of training epochs
learning_rate=2e-05,
per_device_train_batch_size=32, # batch size per device during training
per_device_eval_batch_size=32, # batch size for evaluation
warmup_ratio=0.1, # number of warmup steps for learning rate scheduler
weight_decay=0.06, # strength of weight decay
fp16=True # mixed precision training
)
```
### Eval results
The model was evaluated using the test sets for MultiNLI and ANLI and the dev set for Fever-NLI. The metric used is accuracy.
mnli-m | mnli-mm | fever-nli | anli-all | anli-r3
---------|----------|---------|----------|----------
0.903 | 0.903 | 0.777 | 0.579 | 0.495
## Limitations and bias
Please consult the original DeBERTa paper and literature on different NLI datasets for potential biases.
## Citation
If you use this model, please cite: Laurer, Moritz, Wouter van Atteveldt, Andreu Salleras Casas, and Kasper Welbers. 2022. ‘Less Annotating, More Classifying – Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT - NLI’. Preprint, June. Open Science Framework. https://osf.io/74b8k.
### Ideas for cooperation or questions?
If you have questions or ideas for cooperation, contact me at m{dot}laurer{at}vu{dot}nl or [LinkedIn](https://www.linkedin.com/in/moritz-laurer/)
### Debugging and issues
Note that DeBERTa-v3 was released on 06.12.21 and older versions of HF Transformers seem to have issues running the model (e.g. resulting in an issue with the tokenizer). Using Transformers>=4.13 might solve some issues.
| [
-0.049313612282276154,
-0.08974435180425644,
-0.019857410341501236,
0.00819606613367796,
0.05424134060740471,
-0.005011414177715778,
-0.055922020226716995,
0.04681232199072838,
0.018013034015893936,
-0.00929945893585682,
0.03942127898335457,
-0.05421833321452141,
-0.02055106870830059,
0.008229882456362247,
-0.01110457070171833,
0.011353257112205029,
0.07645189762115479,
0.0017368397675454617,
-0.11583410948514938,
-0.021366940811276436,
-0.017268531024456024,
0.05631248280405998,
0.03765285015106201,
0.04496006667613983,
0.04623570665717125,
-0.05526481196284294,
-0.03102334775030613,
0.02154884859919548,
-0.001541800331324339,
-0.07839764654636383,
0.014807233586907387,
0.059913501143455505,
0.04340377822518349,
0.048431336879730225,
-0.0013475243467837572,
0.041251763701438904,
-0.017949208617210388,
-0.03956570848822594,
0.047850970178842545,
0.062464162707328796,
0.03356793522834778,
0.009816566482186317,
0.02020612731575966,
-0.04270707443356514,
0.08619978278875351,
-0.01350493635982275,
-0.11274262517690659,
-0.01667172461748123,
0.009985624812543392,
-0.01043709646910429,
-0.11265671253204346,
-0.04253852739930153,
0.05883777514100075,
0.1073077991604805,
-0.06605510413646698,
-0.03752783313393593,
-0.04438311606645584,
-0.013996878638863564,
-0.011780086904764175,
-0.022594371810555458,
-0.01757894642651081,
-0.0426257848739624,
-0.0930296927690506,
-0.002047810237854719,
0.010260249488055706,
0.018829936161637306,
0.013498960994184017,
-0.07088083028793335,
0.01818397454917431,
0.0072169434279203415,
0.01824747957289219,
0.08269301801919937,
-0.0006525630014948547,
0.03806915506720543,
-0.007763612549751997,
0.07748905569314957,
0.06916753947734833,
0.022294756025075912,
0.02808503806591034,
-0.12472465634346008,
0.08052723854780197,
-0.015633927658200264,
0.06250660121440887,
-0.01460910215973854,
0.06996498256921768,
-0.030999818816781044,
-0.03002377599477768,
-0.0012395890662446618,
0.051811620593070984,
-0.007418935187160969,
-0.05185050144791603,
-0.0001974386686924845,
0.038591887801885605,
0.014109843410551548,
0.03445001319050789,
0.06981731206178665,
0.036180298775434494,
0.0184222012758255,
-0.02004963718354702,
0.11643475294113159,
-0.04664330184459686,
-0.011211717501282692,
-0.04273631051182747,
0.032204873859882355,
0.04354188218712807,
-0.05372028425335884,
0.0969371497631073,
-0.03401327505707741,
0.08292869478464127,
-0.09655667841434479,
0.025749441236257553,
-0.023802699521183968,
-0.03938290849328041,
-0.07235483825206757,
0.0023017670027911663,
-0.01342840027064085,
-0.026995576918125153,
0.037816647440195084,
0.006283306982368231,
0.019890734925866127,
-0.030827920883893967,
-0.04442187398672104,
-0.004677691496908665,
-0.04299849644303322,
0.022067541256546974,
-0.02235383912920952,
-0.10194652527570724,
4.514156181230796e-33,
0.08331605046987534,
0.09007955342531204,
0.00689935265108943,
0.03952309861779213,
-0.02811967022716999,
-0.044788289815187454,
-0.053198616951704025,
-0.005931380670517683,
-0.05116923898458481,
-0.07777640223503113,
-0.07531686127185822,
0.0402187742292881,
-0.06286703795194626,
0.04235358536243439,
0.0483076348900795,
-0.03074786067008972,
-0.013920662924647331,
0.0049399929121136665,
0.008975300006568432,
0.08753364533185959,
0.12172768265008926,
0.01616033911705017,
-0.01558591891080141,
-0.05133561044931412,
0.012338689528405666,
0.0786629393696785,
0.10284380614757538,
-0.03478977829217911,
-0.10996637493371964,
0.052515048533678055,
-0.10635875910520554,
0.04261137172579765,
0.026673253625631332,
0.0015190781559795141,
0.04198220372200012,
-0.04225422441959381,
-0.09296263009309769,
-0.04989492893218994,
0.02332565188407898,
-0.011918007396161556,
-0.040556129068136215,
0.0969841256737709,
-0.020222768187522888,
-0.06297412514686584,
-0.03417061269283295,
0.017278090119361877,
-0.06562494486570358,
-0.044229838997125626,
-0.010628046467900276,
-0.0039636543951928616,
0.0536891333758831,
0.029330790042877197,
-0.04892720654606819,
-0.0541730560362339,
-0.06997555494308472,
-0.019774185493588448,
0.014311525970697403,
0.0574134886264801,
0.07934185117483139,
0.0831238329410553,
0.0325094498693943,
0.012569019570946693,
-0.036302752792835236,
0.025520173832774162,
0.03736562281847,
0.06332461535930634,
-0.034360338002443314,
-0.03566734865307808,
0.06864523887634277,
-0.02965240553021431,
-0.023050734773278236,
-0.0010576983913779259,
-0.03543218970298767,
0.012919110246002674,
0.03580106422305107,
-0.0030572384130209684,
0.048653505742549896,
-0.08285107463598251,
0.01172604039311409,
0.015868578106164932,
-0.06314679980278015,
0.022064993157982826,
0.03596515208482742,
-0.03699762374162674,
-0.08980634063482285,
-0.07497605681419373,
-0.015127464197576046,
-0.03688376396894455,
0.008603829890489578,
-0.028990009799599648,
0.06067868322134018,
0.04950784146785736,
0.006755714304745197,
0.007941124029457569,
0.05822125822305679,
-3.274862241859613e-33,
0.012160385958850384,
0.0422559455037117,
-0.1155039519071579,
0.03433157503604889,
-0.053927943110466,
0.05587346479296684,
0.054445769637823105,
0.09896796196699142,
0.04102299362421036,
0.007104289717972279,
0.10259312391281128,
0.002706939820200205,
0.005323887802660465,
0.004523259121924639,
0.022319253534078598,
0.03967668116092682,
0.0484197698533535,
-0.023718856275081635,
0.010124974884092808,
0.0062158796936273575,
0.08331325650215149,
0.08038689196109772,
-0.11309022456407547,
0.05129269137978554,
-0.0345199890434742,
0.07762280851602554,
-0.06308714300394058,
0.0815560594201088,
-0.04989831522107124,
-0.06817390024662018,
-0.024769186973571777,
-0.006461471784859896,
-0.010866646654903889,
-0.045786917209625244,
-0.03410681337118149,
0.09260492771863937,
0.007429252844303846,
-0.015343288891017437,
0.02628854475915432,
0.07852314412593842,
0.043363697826862335,
0.0013594237389042974,
-0.03541157767176628,
0.01162960845977068,
-0.0170239619910717,
-0.03040473163127899,
-0.03280217945575714,
0.02182808518409729,
0.06381301581859589,
0.009510811418294907,
-0.005889976397156715,
-0.02963562309741974,
-0.05655621737241745,
0.0014930367469787598,
-0.0408487506210804,
-0.12002237886190414,
0.02681916579604149,
-0.11843562126159668,
-0.051172200590372086,
0.034976206719875336,
-0.015079992823302746,
0.02647850289940834,
0.01685764268040657,
0.060410335659980774,
-0.0618801973760128,
0.051104433834552765,
0.03321243077516556,
0.012319792062044144,
0.02873433567583561,
-0.006983258295804262,
0.03214641660451889,
0.0013108433922752738,
-0.01894480176270008,
0.033008214086294174,
-0.07576940208673477,
-0.006344771012663841,
-0.029508138075470924,
-0.02075696922838688,
-0.005540749058127403,
-0.08713385462760925,
-0.08573119342327118,
-0.051460206508636475,
-0.015336502343416214,
0.03789571300148964,
0.1445891112089157,
0.08988156169652939,
0.074948750436306,
-0.04107484966516495,
-0.010935374535620213,
-0.0013067916734144092,
0.025924596935510635,
-0.010914773680269718,
-0.006072761490941048,
0.06708374619483948,
-0.012864881195127964,
-5.539438774349037e-8,
0.0002499725087545812,
-0.022002751007676125,
-0.01807035319507122,
0.05310935154557228,
0.006959304679185152,
-0.06186520680785179,
-0.0033000034745782614,
0.12101452052593231,
0.045713961124420166,
-0.03925260528922081,
0.04874519258737564,
0.08401495963335037,
-0.06199612841010094,
-0.0157454963773489,
0.029957087710499763,
0.05755551904439926,
0.00501595763489604,
0.05457260087132454,
-0.02323167957365513,
-0.004965761676430702,
0.05561043322086334,
-0.023780975490808487,
0.04319443926215172,
-0.15025322139263153,
0.04301803559064865,
-0.06599045544862747,
-0.03926992788910866,
0.029395071789622307,
0.024393362924456596,
-0.054244350641965866,
-0.03994167596101761,
0.06228892505168915,
-0.06223764643073082,
-0.04900612309575081,
0.022709960117936134,
0.07026242464780807,
0.018811581656336784,
-0.020712122321128845,
-0.0602821446955204,
0.009069763123989105,
0.047606050968170166,
0.0735292062163353,
-0.0828927606344223,
-0.010571644641458988,
0.06879191845655441,
0.01715296506881714,
-0.039587076753377914,
-0.10456006228923798,
0.06296902149915695,
-0.022193223237991333,
-0.0022944037336856127,
0.0215850118547678,
-0.011503861285746098,
0.0998380109667778,
-0.014383966103196144,
-0.02758757211267948,
-0.006078640464693308,
-0.03523378074169159,
0.01587236300110817,
-0.01838209666311741,
0.08402486145496368,
-0.11165492236614227,
-0.023184649646282196,
0.039572861045598984
] |
google/muril-base-cased | afd9f36c7923d54e97903922ff1b260d091d202f | 2022-06-10T13:33:04.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"fill-mask",
"arxiv:2103.10730",
"arxiv:1810.04805",
"arxiv:1911.02116",
"arxiv:2003.11080",
"arxiv:2009.05166",
"transformers",
"license:apache-2.0",
"autotrain_compatible"
] | fill-mask | false | google | null | google/muril-base-cased | 7,640 | 9 | transformers | ---
thumbnail: https://huggingface.co/front/thumbnails/google.png
license: apache-2.0
---
MuRIL: Multilingual Representations for Indian Languages
===
MuRIL is a BERT model pre-trained on 17 Indian languages and their transliterated counterparts. We have released the pre-trained model (with the MLM layer intact, enabling masked word predictions) in this repository. We have also released the encoder on [TFHub](https://tfhub.dev/google/MuRIL/1) with an additional pre-processing module, that processes raw text into the expected input format for the encoder. You can find more details on MuRIL in this [paper](http://arxiv.org/abs/2103.10730).
## Overview
This model uses a BERT base architecture [1] pretrained from scratch using the
Wikipedia [2], Common Crawl [3], PMINDIA [4] and Dakshina [5] corpora for 17 [6]
Indian languages.
We use a training paradigm similar to multilingual bert, with a few
modifications as listed:
* We include translation and transliteration segment pairs in training as
well.
* We keep an exponent value of 0.3 and not 0.7 for upsampling, shown to
enhance low-resource performance. [7]
See the Training section for more details.
## Training
The MuRIL model is pre-trained on monolingual segments as well as parallel
segments as detailed below :
* Monolingual Data : We make use of publicly available corpora from Wikipedia
and Common Crawl for 17 Indian languages.
* Parallel Data : We have two types of parallel data :
* Translated Data : We obtain translations of the above monolingual
corpora using the Google NMT pipeline. We feed translated segment pairs
as input. We also make use of the publicly available PMINDIA corpus.
* Transliterated Data : We obtain transliterations of Wikipedia using the
IndicTrans [8] library. We feed transliterated segment pairs as input.
We also make use of the publicly available Dakshina dataset.
We keep an exponent value of 0.3 to calculate duplication multiplier values for
upsampling of lower resourced languages and set dupe factors accordingly. Note,
we limit transliterated pairs to Wikipedia only.
The model was trained using a self-supervised masked language modeling task. We
do whole word masking with a maximum of 80 predictions. The model was trained
for 1000K steps, with a batch size of 4096, and a max sequence length of 512.
### Trainable parameters
All parameters in the module are trainable, and fine-tuning all parameters is
the recommended practice.
## Uses & Limitations
This model is intended to be used for a variety of downstream NLP tasks for
Indian languages. This model is trained on transliterated data as well, a
phenomomenon commonly observed in the Indian context. This model is not expected
to perform well on languages other than the ones used in pretraining, i.e. 17
Indian languages.
## Evaluation
We provide the results of fine-tuning this model on a set of downstream tasks.<br/>
We choose these tasks from the XTREME benchmark, with evaluation done on Indian language test-sets.<br/>
We also transliterate the test-sets and evaluate on the same.<br/>
We use the same fine-tuning setting as is used by [9], except for TyDiQA, where we use additional SQuAD v1.1 English training data, similar to [10].<br/>
For Tatoeba, we do not fine-tune the model, and use the pooled_output of the last layer as the sentence embedding.<br/>
All results are computed in a zero-shot setting, with English being the high resource training set language.
* Shown below are results on datasets from the XTREME benchmark (in %)
<br/>
PANX (F1) | ml | ta | te | en | bn | hi | mr | ur | Average
:-------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ------:
mBERT | 54.77 | 51.24 | 50.16 | 84.40 | 68.59 | 65.13 | 58.44 | 31.36 | 58.01
MuRIL | 75.74 | 71.86 | 64.99 | 84.43 | 85.97 | 78.09 | 74.63 | 85.07 | 77.60
<br/>
UDPOS (F1) | en | hi | mr | ta | te | ur | Average
:--------- | ----: | ----: | ----: | ----: | ----: | ----: | ------:
mBERT | 95.35 | 66.09 | 71.27 | 59.58 | 76.98 | 57.85 | 71.19
MuRIL | 95.55 | 64.47 | 82.95 | 62.57 | 85.63 | 58.93 | 75.02
<br/>
XNLI (Accuracy) | en | hi | ur | Average
:-------------- | ----: | ----: | ----: | ------:
mBERT | 81.72 | 60.52 | 58.20 | 66.81
MuRIL | 83.85 | 70.66 | 67.70 | 74.07
<br/>
Tatoeba (Accuracy) | ml | ta | te | bn | hi | mr | ur | Average
:----------------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ------:
mBERT | 20.23 | 12.38 | 14.96 | 12.80 | 27.80 | 18.00 | 22.70 | 18.41
MuRIL | 26.35 | 36.81 | 17.52 | 20.20 | 31.50 | 26.60 | 17.10 | 25.15
<br/>
XQUAD (F1/EM) | en | hi | Average
:------------ | ----------: | ----------: | ----------:
mBERT | 83.85/72.86 | 58.46/43.53 | 71.15/58.19
MuRIL | 84.31/72.94 | 73.93/58.32 | 79.12/65.63
<br/>
MLQA (F1/EM) | en | hi | Average
:----------- | ----------: | ----------: | ----------:
mBERT | 80.39/67.30 | 50.28/35.18 | 65.34/51.24
MuRIL | 80.28/67.37 | 67.34/50.22 | 73.81/58.80
<br/>
TyDiQA (F1/EM) | en | bn | te | Average
:---------------- | ----------: | ----------: | ----------: | ----------:
mBERT | 75.21/65.00 | 60.62/45.13 | 53.55/44.54 | 63.13/51.66
MuRIL | 74.10/64.55 | 78.03/66.37 | 73.95/46.94 | 75.36/59.28
* Shown below are results on the transliterated versions of the above
test-sets.
PANX (F1) | ml_tr | ta_tr | te_tr | bn_tr | hi_tr | mr_tr | ur_tr | Average
:-------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ------:
mBERT | 7.53 | 1.04 | 8.24 | 41.77 | 25.46 | 8.34 | 7.30 | 14.24
MuRIL | 63.39 | 7.00 | 53.62 | 72.94 | 69.75 | 68.77 | 68.41 | 57.70
<br/>
UDPOS (F1) | hi_tr | mr_tr | ta_tr | te_tr | ur_tr | Average
:--------- | ----: | ----: | ----: | ----: | ----: | ------:
mBERT | 25.00 | 33.67 | 24.02 | 36.21 | 22.07 | 28.20
MuRIL | 63.09 | 67.19 | 58.40 | 65.30 | 56.49 | 62.09
<br/>
XNLI (Accuracy) | hi_tr | ur_tr | Average
:-------------- | ----: | ----: | ------:
mBERT | 39.6 | 38.86 | 39.23
MuRIL | 68.24 | 61.16 | 64.70
<br/>
Tatoeba (Accuracy) | ml_tr | ta_tr | te_tr | bn_tr | hi_tr | mr_tr | ur_tr | Average
:----------------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ------:
mBERT | 2.18 | 1.95 | 5.13 | 1.80 | 3.00 | 2.40 | 2.30 | 2.68
MuRIL | 10.33 | 11.07 | 11.54 | 8.10 | 14.90 | 7.20 | 13.70 | 10.98
<br/>
## References
\[1]: Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. [BERT:
Pre-training of Deep Bidirectional Transformers for Language
Understanding](https://arxiv.org/abs/1810.04805). arXiv preprint
arXiv:1810.04805, 2018.
\[2]: [Wikipedia](https://www.tensorflow.org/datasets/catalog/wikipedia)
\[3]: [Common Crawl](http://commoncrawl.org/the-data/)
\[4]:
[PMINDIA](http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/index.html)
\[5]: [Dakshina](https://github.com/google-research-datasets/dakshina)
\[6]: Assamese (as), Bengali (bn), English (en), Gujarati (gu), Hindi (hi),
Kannada (kn), Kashmiri (ks), Malayalam (ml), Marathi (mr), Nepali (ne), Oriya
(or), Punjabi (pa), Sanskrit (sa), Sindhi (sd), Tamil (ta), Telugu (te) and Urdu
(ur).
\[7]: Conneau, Alexis, et al.
[Unsupervised cross-lingual representation learning at scale](https://arxiv.org/pdf/1911.02116.pdf).
arXiv preprint arXiv:1911.02116 (2019).
\[8]: [IndicTrans](https://github.com/libindic/indic-trans)
\[9]: Hu, J., Ruder, S., Siddhant, A., Neubig, G., Firat, O., & Johnson, M.
(2020). [Xtreme: A massively multilingual multi-task benchmark for evaluating
cross-lingual generalization.](https://arxiv.org/pdf/2003.11080.pdf) arXiv
preprint arXiv:2003.11080.
\[10]: Fang, Y., Wang, S., Gan, Z., Sun, S., & Liu, J. (2020).
[FILTER: An Enhanced Fusion Method for Cross-lingual Language Understanding.](https://arxiv.org/pdf/2009.05166.pdf)
arXiv preprint arXiv:2009.05166.
## Citation
If you find MuRIL useful in your applications, please cite the following paper:
```
@misc{khanuja2021muril,
title={MuRIL: Multilingual Representations for Indian Languages},
author={Simran Khanuja and Diksha Bansal and Sarvesh Mehtani and Savya Khosla and Atreyee Dey and Balaji Gopalan and Dilip Kumar Margam and Pooja Aggarwal and Rajiv Teja Nagipogu and Shachi Dave and Shruti Gupta and Subhash Chandra Bose Gali and Vish Subramanian and Partha Talukdar},
year={2021},
eprint={2103.10730},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## Contact
Please mail your queries/feedback to muril-contact@google.com. | [
-0.1419440656900406,
-0.10690672695636749,
0.046251293271780014,
-0.001899879309348762,
-0.015651531517505646,
0.025571860373020172,
-0.03302827849984169,
-0.015630898997187614,
0.015291876159608364,
-0.04051760211586952,
-0.013755560852587223,
-0.1081051453948021,
0.053103066980838776,
0.0584678053855896,
0.02785298600792885,
0.056845687329769135,
0.050000350922346115,
0.0758933499455452,
-0.03866567835211754,
-0.1251494139432907,
0.0756361186504364,
0.03967469930648804,
0.06962067633867264,
-0.00015154854918364435,
0.06739966571331024,
-0.07312577962875366,
-0.02206522226333618,
-0.012732479721307755,
0.08895736187696457,
0.06295408308506012,
0.09004412591457367,
0.005656416993588209,
0.053703807294368744,
0.12623777985572815,
-0.053015805780887604,
0.04948877915740013,
-0.10119368135929108,
0.003887953469529748,
0.05262060835957527,
0.014107237569987774,
-0.043257299810647964,
0.010882055386900902,
-0.038706500083208084,
-0.013842717744410038,
0.0654713585972786,
-0.03284473717212677,
-0.015165860764682293,
0.024779383093118668,
-0.09788710623979568,
-0.004462678451091051,
-0.06753595173358917,
0.010753035545349121,
0.041733015328645706,
-0.0021451404318213463,
-0.02916119433939457,
-0.0788017064332962,
-0.037415068596601486,
-0.03148100897669792,
-0.027313515543937683,
-0.060877203941345215,
-0.11877021938562393,
-0.034293707460165024,
0.04015619307756424,
-0.015819262713193893,
-0.09167920798063278,
0.03653328865766525,
-0.0022793631069362164,
0.035424746572971344,
0.025304622948169708,
-0.07001762837171555,
0.010172778740525246,
0.024411888793110847,
-0.021442415192723274,
-0.00896470993757248,
-0.026689480990171432,
-0.014898478984832764,
0.09110741317272186,
0.029198534786701202,
-0.009775429032742977,
-0.021453766152262688,
0.0464608371257782,
0.01780344918370247,
0.13058963418006897,
-0.027987400069832802,
0.07451297342777252,
0.018158480525016785,
0.018667099997401237,
0.03603220358490944,
-0.0007566759595647454,
-0.0020729571115225554,
0.003733745776116848,
-0.11275649070739746,
0.03843880072236061,
-0.0002397982607362792,
0.05088595300912857,
0.03977122902870178,
0.011654759757220745,
-0.00422199722379446,
-0.007876599207520485,
0.0202310923486948,
-0.014193008653819561,
-0.012396221980452538,
-0.015378384850919247,
-0.07179483771324158,
-0.011353534646332264,
-0.04627639800310135,
0.10907720029354095,
-0.02992604300379753,
0.01194882020354271,
-0.09424985945224762,
0.061632126569747925,
0.029562991112470627,
-0.015562239103019238,
-0.024348193779587746,
0.00262278295122087,
0.01201268658041954,
-0.024375705048441887,
-0.01858789660036564,
0.07728496193885803,
0.0793086364865303,
-0.08258963376283646,
0.06235777586698532,
-0.01864081248641014,
0.001063545816577971,
-0.04916398599743843,
-0.037468504160642624,
0.008959171362221241,
2.756115712404524e-34,
-0.013935796916484833,
0.012021197937428951,
-0.012229996733367443,
-0.031071413308382034,
-0.04766050726175308,
-0.031585246324539185,
0.005620433483272791,
0.02391924150288105,
-0.07455669343471527,
-0.07197125256061554,
-0.002052193507552147,
0.01670175977051258,
-0.06459654867649078,
0.07246871292591095,
-0.07602980732917786,
-0.006440012715756893,
-0.0062354267574846745,
-0.029146337881684303,
0.06596902757883072,
0.01858929917216301,
0.05634012818336487,
0.09092430025339127,
0.03660786896944046,
-0.0641784518957138,
-0.042554572224617004,
0.053478240966796875,
0.061174120754003525,
-0.11167097091674805,
0.010568677447736263,
0.03517754748463631,
-0.15496115386486053,
-0.010856403037905693,
0.01153301540762186,
0.010041458532214165,
-0.042693231254816055,
-0.028895428404211998,
-0.014889423735439777,
0.02005258947610855,
-0.03742470219731331,
0.0017376862233504653,
-0.0005668401136063039,
0.06820648908615112,
-0.019077103585004807,
-0.04213322699069977,
-0.025931240990757942,
0.0020129040349274874,
-0.01174793392419815,
0.006778827402740717,
-0.0016501027857884765,
0.02628558687865734,
0.03244127333164215,
0.03709271177649498,
-0.09344711899757385,
-0.04188571870326996,
0.029760817065835,
0.021670378744602203,
0.12395408749580383,
-0.03126104548573494,
0.07069553434848785,
0.008264458738267422,
-0.02296951413154602,
-0.05221352353692055,
0.008682647719979286,
0.002824136521667242,
0.037228863686323166,
-0.05765780061483383,
-0.013400034978985786,
-0.002568050753325224,
0.02244710549712181,
0.002006332390010357,
-0.03618991747498512,
-0.005029800347983837,
-0.012589148245751858,
0.03998230770230293,
-0.025760645046830177,
0.02130541391670704,
0.003304380690678954,
-0.11436232924461365,
-0.018058810383081436,
0.03241584450006485,
0.07283785194158554,
0.03593755513429642,
-0.007969560101628304,
-0.045129161328077316,
-0.05043671280145645,
-0.016583461314439774,
0.037850845605134964,
-0.05979388952255249,
0.05176055431365967,
0.020953912287950516,
0.05340025573968887,
-0.05905430391430855,
0.0006035490077920258,
-0.000457061076303944,
0.0002682939521037042,
-4.511259873352965e-34,
-0.005082677584141493,
0.0464077852666378,
-0.07778571546077728,
0.06716709583997726,
-0.11190434545278549,
-0.0647231936454773,
0.08473558723926544,
0.1293727159500122,
-0.00029828352853655815,
0.012321695685386658,
-0.004566407762467861,
-0.06622163951396942,
0.04718371853232384,
-0.009155424311757088,
0.0583888404071331,
0.027921536937355995,
0.026955747976899147,
0.09735450893640518,
-0.01003924198448658,
0.02646481990814209,
0.012482577003538609,
0.0103483647108078,
-0.10233902186155319,
0.0436256043612957,
-0.01140927616506815,
0.11290838569402695,
-0.03192410245537758,
0.08052077889442444,
-0.015501320362091064,
0.021211016923189163,
-0.08023225516080856,
-0.014348575845360756,
-0.0074568865820765495,
0.02170942723751068,
-0.09359542280435562,
0.022233545780181885,
0.0348590612411499,
-0.00019053449796047062,
-0.004296126775443554,
-0.028585730120539665,
0.0397607758641243,
0.0223882794380188,
-0.04241729527711868,
0.07984046638011932,
-0.02270549163222313,
0.01756099984049797,
-0.10693490505218506,
-0.023207901045680046,
0.06343293935060501,
-0.06229094788432121,
0.0010374498087912798,
-0.02411704696714878,
-0.06609486043453217,
-0.08317410945892334,
-0.0031013258267194033,
-0.1239696741104126,
-0.007415927480906248,
-0.08377773314714432,
-0.022490838542580605,
-0.03908252343535423,
-0.018147500231862068,
-0.04384482279419899,
0.0647847130894661,
-0.012182013131678104,
-0.002755905734375119,
-0.016774436458945274,
0.0037220497615635395,
0.04900762811303139,
0.03475399315357208,
-0.06235986202955246,
0.008963308297097683,
-0.029165130108594894,
0.010877410881221294,
0.007609696127474308,
0.0330372229218483,
0.038217317312955856,
-0.04202875867486,
-0.054076701402664185,
-0.017218876630067825,
-0.015571655705571175,
-0.055259592831134796,
-0.05830976366996765,
0.007267382461577654,
0.005483710672706366,
0.06706181913614273,
0.07446787506341934,
0.03471561521291733,
0.01139830518513918,
0.059720348566770554,
0.003470238298177719,
-0.02190439961850643,
0.0905945897102356,
-0.03295186907052994,
0.10059048980474472,
0.02448413521051407,
-5.158088711709752e-8,
-0.05594668909907341,
-0.07301266491413116,
-0.06362230330705643,
0.040860019624233246,
-0.06462246924638748,
-0.0625363141298294,
-0.039853788912296295,
0.03100135549902916,
-0.00640304246917367,
0.002914585405960679,
0.06590728461742401,
-0.0014949711039662361,
-0.03187794238328934,
0.02258823625743389,
0.029217716306447983,
0.08493192493915558,
0.04261092469096184,
0.023941555991768837,
0.04340119659900665,
-0.0672907680273056,
0.030800333246588707,
0.10190834105014801,
0.02227635122835636,
-0.005051478743553162,
0.07282156497240067,
-0.042760517448186874,
-0.12454544752836227,
0.08850571513175964,
0.00011705354700097814,
0.0012788786552846432,
-0.02816845290362835,
0.0007344895857386291,
-0.023326575756072998,
-0.03168032318353653,
0.0153204882517457,
0.04737808555364609,
0.017873739823698997,
-0.008177921175956726,
0.033934179693460464,
0.0426996611058712,
0.1346438080072403,
0.015565339475870132,
-0.10931830108165741,
-0.009812862612307072,
0.05721929669380188,
0.002512418432161212,
-0.008782646618783474,
-0.07988060265779495,
0.026176728308200836,
-0.029027804732322693,
0.06297887116670609,
-0.028370020911097527,
0.001254549715667963,
0.10666951537132263,
0.013561313971877098,
-0.029923738911747932,
-0.1045476570725441,
0.0011187623022124171,
0.06774868816137314,
0.012324688024818897,
0.009894661605358124,
0.045155007392168045,
0.015179951675236225,
0.025977669283747673
] |
r3dhummingbird/DialoGPT-medium-joshua | ff22e98bcb70ae1e082f54640c5c3bafd3950125 | 2021-07-19T23:18:30.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational",
"license:mit"
] | conversational | false | r3dhummingbird | null | r3dhummingbird/DialoGPT-medium-joshua | 7,633 | 12 | transformers | ---
thumbnail: https://raw.githubusercontent.com/RuolinZheng08/twewy-discord-chatbot/main/gif-demo/icon.png
tags:
- conversational
license: mit
---
# DialoGPT Trained on the Speech of a Game Character
This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script).
I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/RuolinZheng08/twewy-discord-chatbot)
Chat with the model:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua")
model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua")
# Let's chat for 4 lines
for step in range(4):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# print(new_user_input_ids)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(
bot_input_ids, max_length=200,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
do_sample=True,
top_k=100,
top_p=0.7,
temperature=0.8
)
# pretty print last ouput tokens from bot
print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
``` | [
-0.07909061759710312,
-0.07169482856988907,
0.014899887144565582,
-0.028310146182775497,
0.02456045150756836,
-0.05610654503107071,
0.05983433872461319,
-0.003468582406640053,
0.04228248819708824,
-0.02380676008760929,
0.023029156029224396,
-0.07842514663934708,
-0.020067140460014343,
0.0071639432571828365,
0.04371437430381775,
0.03056887723505497,
0.009379870258271694,
-0.09056153893470764,
-0.044659554958343506,
-0.09991232305765152,
0.039748307317495346,
0.05572314187884331,
0.03786400333046913,
-0.04060369357466698,
0.06891411542892456,
-0.020661508664488792,
0.005016797222197056,
-0.016982264816761017,
0.02670864760875702,
-0.026570329442620277,
0.017784615978598595,
-0.01890581287443638,
0.036757417023181915,
0.058202169835567474,
-0.0024325193371623755,
0.08405989408493042,
-0.0516112819314003,
0.009606566280126572,
-0.01964530721306801,
0.009295107796788216,
0.015631651505827904,
-0.006833493709564209,
0.0006547850789502263,
-0.02043543942272663,
0.04464562609791756,
0.025499528273940086,
-0.13558998703956604,
-0.022156229242682457,
-0.0011874386109411716,
0.08345384895801544,
-0.09921111166477203,
-0.035413406789302826,
0.04614121839404106,
0.1289176195859909,
-0.010890379548072815,
0.01349035743623972,
-0.00012582198542077094,
0.07472439855337143,
0.06697821617126465,
-0.027987390756607056,
-0.03175995871424675,
-0.02702186442911625,
-0.0018804310820996761,
-0.01726892590522766,
0.03560807183384895,
0.016893738880753517,
-0.031526852399110794,
0.02780717983841896,
0.030209871008992195,
-0.0777936652302742,
-0.04738449677824974,
-0.051311198621988297,
-0.04509533569216728,
-0.005345153156667948,
0.0015635591698810458,
-0.029641594737768173,
0.007998598739504814,
-0.008578663691878319,
0.01666976511478424,
-0.012130352668464184,
0.03721524402499199,
-0.044442348182201385,
0.08351975679397583,
0.031953029334545135,
0.048772815614938736,
0.008431140333414078,
0.003509066067636013,
0.011846155859529972,
-0.009375480934977531,
0.019144056364893913,
-0.07865796238183975,
-0.048112183809280396,
0.03165047615766525,
0.10136758536100388,
0.029615726321935654,
0.07710820436477661,
-0.04949647933244705,
-0.04950627312064171,
-0.03517790511250496,
0.07868731021881104,
-0.056138720363378525,
-0.04780581220984459,
0.015607892535626888,
-0.03338100388646126,
0.04486243426799774,
-0.008300499059259892,
0.02318526990711689,
-0.00594847509637475,
0.06086260825395584,
-0.010218405164778233,
-0.08085273951292038,
-0.03466884419322014,
-0.029047470539808273,
-0.006018316838890314,
0.125337615609169,
0.007876850664615631,
-0.0026442953385412693,
0.03249775990843773,
0.04269450902938843,
0.052574895322322845,
0.11830873042345047,
-0.016311056911945343,
-0.0891680121421814,
0.06767164170742035,
0.02977190911769867,
0.03653234243392944,
0.00020962560665793717,
2.5824646614855998e-33,
0.0547797791659832,
-0.025545820593833923,
-0.004717433359473944,
0.07687694579362869,
0.058913037180900574,
-0.025132808834314346,
-0.0632346123456955,
-0.03594203293323517,
-0.12170691788196564,
0.02446780353784561,
-0.13792230188846588,
0.018100406974554062,
-0.06127694621682167,
0.02965691313147545,
0.0014192432863637805,
-0.06586287170648575,
-0.03166523948311806,
0.016573380678892136,
0.06655073165893555,
0.0017209799261763692,
0.06986923515796661,
0.055747874081134796,
0.009630980901420116,
0.016768665984272957,
0.03086990863084793,
0.08638981729745865,
0.016825450584292412,
-0.06419441848993301,
0.07523728162050247,
0.030553020536899567,
-0.09047024697065353,
0.0364491306245327,
-0.02396610751748085,
-0.019827550277113914,
0.038158316165208817,
-0.050225164741277695,
-0.027937084436416626,
-0.03873498737812042,
-0.08381973206996918,
-0.003777037840336561,
-0.006686290260404348,
-0.0400075763463974,
-0.024301765486598015,
-0.0913388580083847,
-0.05681488662958145,
-0.09829466789960861,
0.012520956806838512,
-0.047289036214351654,
-0.02683684043586254,
0.02307317964732647,
-0.03219248354434967,
0.045432236045598984,
0.0047103771939873695,
-0.03353720158338547,
-0.015712644904851913,
-0.10229301452636719,
0.046770572662353516,
0.008099779486656189,
0.01754508540034294,
-0.03658514842391014,
0.031224805861711502,
-0.02469540759921074,
0.07347042113542557,
0.013496807776391506,
0.06275229901075363,
0.030847787857055664,
-0.09124261140823364,
-0.02424296736717224,
0.04377223178744316,
-0.002352895447984338,
-0.010464560240507126,
0.05085005983710289,
0.010907536372542381,
-0.006570950150489807,
-0.043182507157325745,
-0.0316469743847847,
-0.0369991809129715,
-0.04336371645331383,
-0.016656333580613136,
0.049307603389024734,
0.024554505944252014,
-0.034896522760391235,
-0.06916380673646927,
-0.09873123466968536,
0.026261039078235626,
-0.04584374278783798,
0.037914030253887177,
-0.13111673295497894,
-0.04424823075532913,
-0.0019325572066009045,
-0.09509094059467316,
0.024711893871426582,
-0.038426320999860764,
0.052992239594459534,
-0.06429682672023773,
-3.1992496697689234e-33,
0.037012770771980286,
0.057011112570762634,
-0.021159259602427483,
0.06003196910023689,
0.010410482063889503,
0.012430031783878803,
0.07343479990959167,
0.12468723207712173,
0.03895637392997742,
0.06847070902585983,
0.057328566908836365,
0.004161213058978319,
-0.013741993345320225,
-0.05029309168457985,
0.11396349966526031,
-0.005626999773085117,
0.03196804225444794,
-0.05002037063241005,
0.02244611270725727,
-0.04928501695394516,
0.006532675586640835,
0.005174641963094473,
-0.13634352385997772,
0.03235597163438797,
-0.03828032314777374,
0.038368359208106995,
-0.010067278519272804,
0.024192461743950844,
0.03236369416117668,
-0.023546652868390083,
-0.023056183010339737,
0.008359110914170742,
-0.09453342854976654,
0.026338845491409302,
-0.04802853241562843,
0.05243956297636032,
0.03536912798881531,
-0.02050773985683918,
-0.04402992129325867,
-0.06446472555398941,
0.16086699068546295,
-0.006119747646152973,
-0.11407173424959183,
0.01261606253683567,
-0.005450245458632708,
-0.013925095088779926,
-0.0746469497680664,
0.028746725991368294,
0.013968795537948608,
-0.021673396229743958,
0.11475643515586853,
-0.022207310423254967,
0.046895455569028854,
-0.047629814594984055,
-0.0991324707865715,
-0.005155183374881744,
0.023682424798607826,
0.028820594772696495,
-0.035938624292612076,
-0.03986983373761177,
-0.030995801091194153,
-0.13465921580791473,
-0.0022030228283256292,
-0.025097832083702087,
0.03407086431980133,
-0.023296678438782692,
-0.03394239768385887,
0.0698428675532341,
0.02122780866920948,
-0.059670452028512955,
0.09123452752828598,
0.0547817163169384,
0.07179442793130875,
0.009714738465845585,
0.04024650901556015,
0.006028222851455212,
-0.030653566122055054,
-0.04171881824731827,
0.008517292328178883,
-0.02713070996105671,
-0.05701630562543869,
-0.03535968065261841,
0.07877468317747116,
0.12688322365283966,
0.03983069956302643,
0.04324745014309883,
-0.0014782198704779148,
0.08187597244977951,
0.015055022202432156,
-0.002001384040340781,
-0.044780246913433075,
0.04929124563932419,
0.032021548599004745,
0.07345885038375854,
0.015848049893975258,
-5.6633183476151316e-8,
-0.04972173646092415,
-0.032492779195308685,
-0.03783857449889183,
-0.006559472065418959,
-0.004863436333835125,
0.005083349533379078,
0.019174208864569664,
-0.018128274008631706,
-0.010631885379552841,
-0.005502759944647551,
0.017955278977751732,
0.03459833934903145,
-0.0024847371969372034,
0.04355860874056816,
0.015391141176223755,
0.04193546995520592,
-0.025494392961263657,
0.03834820166230202,
0.03256501629948616,
-0.013686679303646088,
0.07473441958427429,
-0.02133123017847538,
-0.010247169062495232,
0.016900697723031044,
-0.07058544456958771,
0.01580211892724037,
-0.06617513298988342,
0.12200601398944855,
-0.1471979022026062,
-0.028600294142961502,
-0.010489794425666332,
-0.002009846968576312,
0.00682865222916007,
-0.008613753132522106,
-0.04467105492949486,
0.08016421645879745,
-0.024957964196801186,
-0.07140239328145981,
-0.02891700342297554,
0.008511022664606571,
0.04226163029670715,
-0.010244486853480339,
-0.07839322090148926,
-0.03531812131404877,
0.03233368322253227,
0.03723716735839844,
0.047897059470415115,
-0.09416960179805756,
0.016250940039753914,
0.046206943690776825,
-0.01016580406576395,
0.025246409699320793,
-0.030698228627443314,
0.05424205958843231,
0.09500648081302643,
-0.09048561006784439,
0.03582930564880371,
0.007513940799981356,
0.04554126039147377,
0.09411555528640747,
-0.004796226974576712,
0.06527790427207947,
-0.06904345750808716,
-0.029064761474728584
] |
valhalla/distilbart-mnli-12-9 | 66a037d826920a2f84a9d83edcbeb23a0951ed2e | 2021-06-14T10:34:58.000Z | [
"pytorch",
"jax",
"bart",
"text-classification",
"dataset:mnli",
"transformers",
"distilbart",
"distilbart-mnli",
"zero-shot-classification"
] | zero-shot-classification | false | valhalla | null | valhalla/distilbart-mnli-12-9 | 7,612 | null | transformers | ---
datasets:
- mnli
tags:
- distilbart
- distilbart-mnli
pipeline_tag: zero-shot-classification
---
# DistilBart-MNLI
distilbart-mnli is the distilled version of bart-large-mnli created using the **No Teacher Distillation** technique proposed for BART summarisation by Huggingface, [here](https://github.com/huggingface/transformers/tree/master/examples/seq2seq#distilbart).
We just copy alternating layers from `bart-large-mnli` and finetune more on the same data.
| | matched acc | mismatched acc |
| ------------------------------------------------------------------------------------ | ----------- | -------------- |
| [bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) (baseline, 12-12) | 89.9 | 90.01 |
| [distilbart-mnli-12-1](https://huggingface.co/valhalla/distilbart-mnli-12-1) | 87.08 | 87.5 |
| [distilbart-mnli-12-3](https://huggingface.co/valhalla/distilbart-mnli-12-3) | 88.1 | 88.19 |
| [distilbart-mnli-12-6](https://huggingface.co/valhalla/distilbart-mnli-12-6) | 89.19 | 89.01 |
| [distilbart-mnli-12-9](https://huggingface.co/valhalla/distilbart-mnli-12-9) | 89.56 | 89.52 |
This is a very simple and effective technique, as we can see the performance drop is very little.
Detailed performace trade-offs will be posted in this [sheet](https://docs.google.com/spreadsheets/d/1dQeUvAKpScLuhDV1afaPJRRAE55s2LpIzDVA5xfqxvk/edit?usp=sharing).
## Fine-tuning
If you want to train these models yourself, clone the [distillbart-mnli repo](https://github.com/patil-suraj/distillbart-mnli) and follow the steps below
Clone and install transformers from source
```bash
git clone https://github.com/huggingface/transformers.git
pip install -qqq -U ./transformers
```
Download MNLI data
```bash
python transformers/utils/download_glue_data.py --data_dir glue_data --tasks MNLI
```
Create student model
```bash
python create_student.py \
--teacher_model_name_or_path facebook/bart-large-mnli \
--student_encoder_layers 12 \
--student_decoder_layers 6 \
--save_path student-bart-mnli-12-6 \
```
Start fine-tuning
```bash
python run_glue.py args.json
```
You can find the logs of these trained models in this [wandb project](https://wandb.ai/psuraj/distilbart-mnli). | [
-0.0767815113067627,
-0.005045149940997362,
0.10137208551168442,
-0.0044491710141301155,
-0.08543753623962402,
-0.054864756762981415,
-0.06274072825908661,
0.012675730511546135,
-0.03593569993972778,
-0.08640600740909576,
0.03498023375868797,
-0.07564754039049149,
0.0690762847661972,
-0.0610877089202404,
-0.046785857528448105,
0.05104174092411995,
0.028052769601345062,
0.09785567969083786,
-0.05170653015375137,
-0.060567598789930344,
0.03995198383927345,
-0.022290252149105072,
-0.09244251996278763,
-0.06067223474383354,
0.09808770567178726,
0.047727249562740326,
-0.01658770628273487,
0.029006067663431168,
0.09776600450277328,
-0.10244078934192657,
-0.0028460563626140356,
0.07235880196094513,
-0.020018339157104492,
0.06568291783332825,
-0.044974781572818756,
0.06746651977300644,
-0.019294703379273415,
0.07021629810333252,
0.02579837664961815,
0.06399714946746826,
-0.012396133504807949,
0.07800400257110596,
0.0227931160479784,
-0.02665669098496437,
0.04234572499990463,
-0.022182896733283997,
-0.028434351086616516,
-0.04063444212079048,
-0.06003865972161293,
0.009507354348897934,
-0.08415741473436356,
0.010048385709524155,
-0.0500495620071888,
0.14912155270576477,
0.051255855709314346,
-0.054202962666749954,
-0.022428520023822784,
-0.04847889021039009,
-0.015821943059563637,
-0.007190416567027569,
-0.04452242702245712,
0.0058232140727341175,
-0.06979000568389893,
-0.0012598938774317503,
0.014183558523654938,
0.03617691248655319,
-0.007330997381359339,
0.0837174654006958,
0.03333631902933121,
0.0645025223493576,
-0.010203788988292217,
0.018953343853354454,
-0.009336219169199467,
0.04017625004053116,
0.03381216526031494,
0.05760408565402031,
0.014060202986001968,
-0.02102029137313366,
-0.024469716474413872,
-0.0877574160695076,
0.007063415367156267,
-0.009142602793872356,
-0.015914155170321465,
-0.025935495272278786,
0.04056229442358017,
0.016499945893883705,
-0.04458371177315712,
-0.06333156675100327,
-0.008403812535107136,
-0.045225754380226135,
-0.022347629070281982,
0.007968302816152573,
-0.03212856128811836,
-0.03708358108997345,
0.012606917880475521,
0.024189477786421776,
-0.02368820644915104,
0.08558915555477142,
0.037809234112501144,
0.12403428554534912,
0.008935045450925827,
0.09989213198423386,
-0.041716184467077255,
-0.10627475380897522,
-0.08851621299982071,
-0.06304454058408737,
0.013067075982689857,
0.04083980619907379,
0.0249935332685709,
-0.12289563566446304,
0.06919759511947632,
-0.0025798510760068893,
-0.04025065526366234,
-0.058922719210386276,
0.00015560918836854398,
-0.028440384194254875,
0.09661183506250381,
0.003834149334579706,
-0.00969686545431614,
-0.03129370138049126,
0.000536079634912312,
-0.017582865431904793,
-0.04716869443655014,
0.009810728020966053,
-0.02743525616824627,
-0.006783218588680029,
-0.02704089693725109,
-1.4630172384620458e-33,
0.053285326808691025,
0.018324704840779305,
-0.033428847789764404,
0.019562112167477608,
-0.0220967847853899,
-0.0013729751808568835,
-0.0018031332874670625,
-0.03879893198609352,
-0.05650191009044647,
0.04209383577108383,
0.006533854641020298,
0.04592471942305565,
-0.09864119440317154,
0.045096829533576965,
-0.023077480494976044,
-0.03214011713862419,
0.006669767666608095,
0.013386169448494911,
-0.05791906639933586,
-0.011714897118508816,
0.0758633017539978,
0.009316379204392433,
0.009382789023220539,
-0.03336862102150917,
-0.0023586165625602007,
0.0034330906346440315,
0.08433985710144043,
-0.045872434973716736,
-0.004454141948372126,
0.019613509997725487,
-0.044850729405879974,
-0.021258467808365822,
0.03355702757835388,
-0.02673829346895218,
0.024974025785923004,
-0.019648950546979904,
-0.0497371107339859,
-0.03578510135412216,
0.019175242632627487,
-0.08018089085817337,
-0.04349534213542938,
0.050593383610248566,
-0.015311322174966335,
-0.0856371596455574,
0.001076463027857244,
-0.0018353838240727782,
0.0021285114344209433,
-0.003430422628298402,
0.009966498240828514,
-0.03494483232498169,
0.026690833270549774,
0.0011444756528362632,
-0.03320598229765892,
-0.031072460114955902,
0.02234228141605854,
-0.03993012383580208,
0.04651537910103798,
0.05708778277039528,
0.05417051911354065,
0.13875603675842285,
-0.01576828956604004,
0.06394842267036438,
-0.043853726238012314,
0.06431519985198975,
0.04141898453235626,
0.08570852875709534,
-0.03079988621175289,
-0.014374148100614548,
0.04084530472755432,
0.005379911046475172,
-0.05014820769429207,
-0.05076320096850395,
-0.060227952897548676,
0.005773168057203293,
0.06642469763755798,
-0.10142625123262405,
-0.028562448918819427,
-0.036998286843299866,
0.021608751267194748,
-0.04643029719591141,
-0.08000226318836212,
0.006857797037810087,
-0.012847047299146652,
-0.02246827818453312,
-0.12678085267543793,
-0.012917131185531616,
0.06271792203187943,
-0.030651045963168144,
-0.056430891156196594,
-0.0638161301612854,
-0.016785161569714546,
0.05494395270943642,
0.03498547151684761,
-0.050370123237371445,
0.003911232575774193,
-2.466599673073901e-33,
-0.026949215680360794,
0.033414676785469055,
-0.03184600919485092,
0.06707832217216492,
-0.029502734541893005,
-0.04471907392144203,
0.029926244169473648,
0.06678727269172668,
0.053618453443050385,
0.020848942920565605,
0.03252744674682617,
-0.04809747263789177,
-0.03680878505110741,
-0.055415112525224686,
0.03236900642514229,
0.018822606652975082,
0.030418911948800087,
0.035048868507146835,
-0.026816528290510178,
0.05740377679467201,
0.05658189579844475,
0.12214214354753494,
-0.0444430448114872,
0.13569645583629608,
0.036815207451581955,
0.039636000990867615,
0.004394856747239828,
0.019108669832348824,
-0.04029763117432594,
-0.021898698061704636,
-0.02646884322166443,
-0.09418247640132904,
0.006943551357835531,
-0.06562818586826324,
-0.17879949510097504,
-0.020729800686240196,
0.02640305832028389,
0.015508840791881084,
-0.02863900363445282,
0.06339447945356369,
-0.015776829794049263,
0.0027525974437594414,
-0.05993105471134186,
0.05178961530327797,
-0.08371946215629578,
-0.03857094421982765,
-0.09312964230775833,
-0.03249377757310867,
0.017500273883342743,
-0.0006800484261475503,
0.03901268169283867,
0.037584464997053146,
-0.08199256658554077,
-0.002262008609250188,
-0.013236095197498798,
-0.007532639894634485,
0.006590660195797682,
0.000053272546210791916,
-0.07475974410772324,
-0.035572443157434464,
-0.09583654999732971,
-0.044240012764930725,
0.004243591334670782,
-0.02923855185508728,
0.07177302241325378,
-0.0023171596694737673,
0.0018788966117426753,
-0.06011837348341942,
-0.09349808841943741,
-0.003909876104444265,
0.06256081908941269,
0.04475225880742073,
0.01600184477865696,
-0.037098877131938934,
0.001692989724688232,
-0.0461791530251503,
-0.0354120098054409,
0.01902857981622219,
-0.0053421626798808575,
0.0026411593426018953,
-0.08593318611383438,
-0.0923093855381012,
0.1052526906132698,
0.12623611092567444,
0.022033946588635445,
0.03745124116539955,
-0.0010945937829092145,
0.04524775967001915,
0.042622145265340805,
0.0219398383051157,
-0.007301623933017254,
-0.053762368857860565,
0.0373677983880043,
-0.005867007654160261,
0.05365058407187462,
-5.613467024545571e-8,
-0.10462640970945358,
-0.09903829544782639,
-0.08861693739891052,
0.018358761444687843,
-0.01780962571501732,
-0.05712876841425896,
0.00703537417575717,
0.09831090271472931,
-0.04108460247516632,
0.02001749351620674,
0.04958808049559593,
0.05996160954236984,
-0.0813656598329544,
-0.0396958626806736,
0.021076209843158722,
0.05858385190367699,
0.08538670837879181,
0.060572266578674316,
-0.07532405853271484,
-0.011323077604174614,
0.010265096090734005,
0.010166347026824951,
0.0072681112214922905,
0.009417678229510784,
0.053829796612262726,
-0.07288163155317307,
-0.05059315636754036,
0.05134722217917442,
0.0781339481472969,
-0.032354068011045456,
0.01289219781756401,
-0.0281311497092247,
-0.009984290227293968,
-0.073845274746418,
-0.004037102684378624,
0.09758598357439041,
-0.015424194745719433,
0.021933939307928085,
-0.055853649973869324,
0.028199952095746994,
-0.05354028195142746,
0.02542063780128956,
-0.050997231155633926,
0.06675545871257782,
0.04457443952560425,
-0.027089815586805344,
-0.04858119413256645,
-0.024627121165394783,
0.05660860612988472,
0.021420078352093697,
0.01965075172483921,
-0.0936293825507164,
0.005240863189101219,
-0.03021339140832424,
0.010899053886532784,
-0.002887217327952385,
-0.030063236132264137,
-0.0005999044515192509,
0.07657020539045334,
-0.04108860343694687,
0.08600360155105591,
-0.01794903352856636,
0.020642343908548355,
0.015315297991037369
] |
sentence-transformers/roberta-large-nli-stsb-mean-tokens | 768fca01ac32ae924414f7128af28ea1d9dfcada | 2022-06-15T20:56:01.000Z | [
"pytorch",
"tf",
"jax",
"roberta",
"feature-extraction",
"arxiv:1908.10084",
"sentence-transformers",
"sentence-similarity",
"transformers",
"license:apache-2.0"
] | sentence-similarity | false | sentence-transformers | null | sentence-transformers/roberta-large-nli-stsb-mean-tokens | 7,575 | 1 | sentence-transformers | ---
pipeline_tag: sentence-similarity
license: apache-2.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
**⚠️ This model is deprecated. Please don't use it as it produces sentence embeddings of low quality. You can find recommended sentence embedding models here: [SBERT.net - Pretrained Models](https://www.sbert.net/docs/pretrained_models.html)**
# sentence-transformers/roberta-large-nli-stsb-mean-tokens
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/roberta-large-nli-stsb-mean-tokens')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/roberta-large-nli-stsb-mean-tokens')
model = AutoModel.from_pretrained('sentence-transformers/roberta-large-nli-stsb-mean-tokens')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/roberta-large-nli-stsb-mean-tokens)
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': True}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
This model was trained by [sentence-transformers](https://www.sbert.net/).
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
``` | [
-0.05386015400290489,
-0.06863757222890854,
-0.010540490970015526,
0.04522981494665146,
0.009709744714200497,
0.08176402002573013,
-0.027924794703722,
0.06319715082645416,
0.022827759385108948,
-0.06955612450838089,
0.037037938833236694,
0.02703072875738144,
0.0585457980632782,
0.07199236750602722,
0.05444813892245293,
0.06970106065273285,
0.04331585019826889,
0.06848907470703125,
-0.0892859622836113,
-0.13053259253501892,
0.12122128903865814,
0.11575376987457275,
0.039690446108579636,
0.017401548102498055,
0.013920426368713379,
0.07625183463096619,
-0.059108857065439224,
-0.01635950803756714,
0.026619574055075645,
0.02156808413565159,
0.016992008313536644,
-0.00389969814568758,
-0.01280746329575777,
0.07367124408483505,
0.012689216062426567,
0.07673962414264679,
0.0007589713204652071,
0.008879485540091991,
-0.007759357802569866,
-0.07432515174150467,
0.008258468471467495,
-0.024574879556894302,
-0.04169146716594696,
0.01000964641571045,
0.03842157498002052,
-0.07999040931463242,
-0.0873369574546814,
-0.0348331481218338,
-0.010864373296499252,
-0.028055064380168915,
-0.12356285750865936,
-0.003919207490980625,
0.022757869213819504,
0.08669506758451462,
-0.022646073251962662,
0.01970842108130455,
0.003714120713993907,
-0.028225263580679893,
0.02660078927874565,
-0.1280643343925476,
-0.06728745996952057,
-0.04493311420083046,
0.004908012691885233,
0.007079143077135086,
-0.05061925947666168,
-0.01295925211161375,
-0.0060928273014724255,
0.015395225025713444,
0.03968121111392975,
0.03721442446112633,
-0.06606849282979965,
0.035840511322021484,
-0.07685979455709457,
-0.018506741151213646,
-0.054474201053380966,
0.017743084579706192,
0.10294870287179947,
0.016787700355052948,
0.06284354627132416,
-0.0009132865234278142,
-0.008124238811433315,
-0.07765498012304306,
0.0707860067486763,
0.05038776248693466,
0.023626763373613358,
-0.03217034786939621,
0.014961703680455685,
-0.019434193149209023,
-0.008909337222576141,
-0.02042684145271778,
-0.06397160142660141,
-0.11452171206474304,
0.047769054770469666,
-0.031775444746017456,
-0.016543444246053696,
0.02196250855922699,
-0.03892926126718521,
-0.047993253916502,
0.016321023926138878,
0.0808967798948288,
0.03138606622815132,
0.04703546315431595,
0.059440407902002335,
-0.05789181962609291,
-0.045376040041446686,
0.008798938244581223,
-0.03296723961830139,
0.025174090638756752,
0.041045114398002625,
-0.10308559238910675,
0.022150851786136627,
-0.012372782453894615,
-0.05322977900505066,
-0.019909778609871864,
0.06830921024084091,
-0.0272101741284132,
0.04820805788040161,
-0.021422255784273148,
-0.009722749702632427,
0.09907568991184235,
-0.0008076043450273573,
0.052009016275405884,
-0.06075383722782135,
0.017099440097808838,
0.011206661351025105,
-0.04368780925869942,
0.0008430363959632814,
1.2104479508504767e-33,
0.0040269880555570126,
0.0061059026047587395,
0.012012525461614132,
-0.003034955123439431,
0.024937184527516365,
0.01866208389401436,
0.025180790573358536,
0.07669316232204437,
-0.10251155495643616,
-0.008215900510549545,
-0.036348775029182434,
0.017123503610491753,
-0.04179005324840546,
0.08175694197416306,
0.019268276169896126,
-0.019208170473575592,
-0.047828201204538345,
-0.04667981341481209,
0.08579732477664948,
0.00183337542694062,
0.03162864223122597,
0.021226108074188232,
-0.0010171547764912248,
-0.0450943298637867,
-0.07595574855804443,
-0.03794090822339058,
0.08607006072998047,
-0.08906655013561249,
-0.05364184081554413,
0.014894996769726276,
-0.07439685612916946,
0.023177726194262505,
-0.01766742579638958,
-0.018245046958327293,
-0.001936245709657669,
-0.013608944602310658,
0.012084901332855225,
-0.012141283601522446,
-0.023725250735878944,
-0.09497725963592529,
-0.04046602174639702,
0.0039769187569618225,
-0.026463450863957405,
-0.06820163875818253,
-0.00027965876506641507,
-0.019296862185001373,
0.04204270988702774,
0.008874552324414253,
0.09765587747097015,
0.03645259886980057,
0.07807042449712753,
0.0202956460416317,
0.011824018321931362,
-0.004093144554644823,
0.028973015025258064,
0.02189994975924492,
0.06522976607084274,
0.05599345266819,
0.07643686980009079,
-0.02680862694978714,
0.043553274124860764,
-0.039085060358047485,
0.05653413385152817,
0.014088456518948078,
0.09993579238653183,
-0.021794751286506653,
0.05150391161441803,
0.05392385274171829,
0.03804891183972359,
0.08181522786617279,
-0.04373488575220108,
0.012081396766006947,
-0.05272142216563225,
0.03186643123626709,
0.007402376737445593,
-0.01045581791549921,
0.018699096515774727,
-0.067813940346241,
-0.022380424663424492,
0.09442783147096634,
-0.04224526137113571,
-0.0748099610209465,
0.06653442978858948,
-0.05883960425853729,
-0.006148422136902809,
-0.039874330163002014,
0.03957713395357132,
-0.0899738147854805,
0.03238729014992714,
-0.06941967457532883,
0.03472461923956871,
0.05962420254945755,
0.010113883763551712,
0.07298973947763443,
0.04055173695087433,
-2.4382862385954152e-33,
0.040339451283216476,
0.0336550697684288,
-0.07294479757547379,
0.05672101303935051,
-0.012971102260053158,
-0.07188744097948074,
0.027440743520855904,
0.08311878889799118,
0.007279485929757357,
-0.0238038320094347,
-0.04084596782922745,
-0.03809167444705963,
0.05459104850888252,
-0.06517582386732101,
0.10558877140283585,
0.05760890617966652,
-0.03410055488348007,
0.03201662003993988,
0.04468996077775955,
0.05580877512693405,
-0.027425577864050865,
0.08188312500715256,
-0.09191439300775528,
0.05686091259121895,
-0.03664746880531311,
-0.006553529761731625,
-0.01358975749462843,
-0.009047925472259521,
-0.04619741439819336,
-0.049569178372621536,
-0.02280159294605255,
-0.0030011218041181564,
-0.02961517684161663,
-0.052625223994255066,
-0.1327073574066162,
0.006787822116166353,
-0.003031326225027442,
-0.043913379311561584,
0.042047545313835144,
0.01670992001891136,
0.04762522131204605,
0.0823512077331543,
-0.04256053268909454,
-0.002587561495602131,
-0.020646575838327408,
-0.014636064879596233,
-0.07595432549715042,
-0.08936851471662521,
0.024823078885674477,
0.012953232042491436,
-0.04741333797574043,
0.012771672569215298,
-0.1334201544523239,
0.021336836740374565,
-0.05456150695681572,
-0.09503836184740067,
-0.014175819233059883,
-0.046046677976846695,
-0.10067319869995117,
-0.0726722925901413,
-0.05428624525666237,
0.0013748115161433816,
0.013984686695039272,
-0.07972736656665802,
0.062181293964385986,
-0.09420189261436462,
-0.006311093457043171,
0.028522860258817673,
-0.04511307552456856,
-0.023001257330179214,
0.003293490968644619,
-0.021294238045811653,
0.024858886376023293,
0.07373232394456863,
0.021229350939393044,
-0.03678726777434349,
0.016978958621621132,
0.018750593066215515,
-0.031083043664693832,
-0.05552288517355919,
0.030277984216809273,
-0.01162034086883068,
-0.007562793791294098,
-0.006372377742081881,
0.03974427655339241,
0.00952804833650589,
0.05251865088939667,
0.09355134516954422,
-0.008393324911594391,
0.04573550447821617,
-0.022714005783200264,
-0.005858798511326313,
-0.004579442553222179,
0.07732676714658737,
0.013100181706249714,
-5.058004504121527e-8,
-0.076202392578125,
-0.0044294181279838085,
-0.10593686997890472,
0.05893801897764206,
-0.08357694745063782,
-0.046835046261548996,
0.05746159330010414,
0.059936221688985825,
-0.08018136024475098,
-0.024622460827231407,
-0.011694029904901981,
0.02083399146795273,
-0.10539493709802628,
0.010245999321341515,
-0.04690125212073326,
0.10593672841787338,
-0.050718847662210464,
0.03821748122572899,
0.02601786144077778,
-0.036786038428545,
0.038157060742378235,
0.005603875033557415,
0.0022609250154346228,
0.04237322509288788,
0.010853060521185398,
0.03100518137216568,
-0.03139951080083847,
0.04655073955655098,
-0.006184559315443039,
0.018678873777389526,
0.012935777194797993,
0.023369476199150085,
-0.03154665604233742,
-0.07071268558502197,
0.01539417915046215,
0.05624370649456978,
0.05598950386047363,
-0.07715263217687607,
0.0021500871516764164,
0.056363530457019806,
0.04864155128598213,
0.059715576469898224,
-0.09544043987989426,
-0.015586606226861477,
0.10426411777734756,
0.03135733678936958,
-0.013666699640452862,
-0.053172629326581955,
0.03166043013334274,
0.007787034846842289,
0.09098806977272034,
-0.0661909356713295,
-0.047551028430461884,
-0.012243730947375298,
0.03848397731781006,
0.04015454649925232,
0.011713557876646519,
-0.009337847121059895,
0.08069085329771042,
-0.05051947012543678,
0.052811622619628906,
0.06305568665266037,
0.08065587282180786,
-0.08055412024259567
] |
charsiu/g2p_multilingual_byT5_small | 834df67c125a811e1a60fbf9f0f39503115437ea | 2022-05-19T05:02:14.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | charsiu | null | charsiu/g2p_multilingual_byT5_small | 7,545 | null | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
microsoft/unixcoder-base | 02583b53b9290e674a43b6b74e89f98a71b2d22a | 2022-03-23T06:05:18.000Z | [
"pytorch",
"roberta",
"feature-extraction",
"transformers",
"license:apache-2.0"
] | feature-extraction | false | microsoft | null | microsoft/unixcoder-base | 7,437 | 4 | transformers | ---
license: apache-2.0
---
| [
0.04086383432149887,
0.04840587452054024,
-0.01111048087477684,
-0.0822305753827095,
0.03046034276485443,
-0.024620788171887398,
-0.00873124971985817,
-0.032080959528684616,
-0.009516960941255093,
0.014524046331644058,
0.06244279816746712,
-0.03306293115019798,
-0.057087719440460205,
-0.025479083880782127,
-0.028286920860409737,
0.04527172073721886,
0.0007952158339321613,
-0.02646484412252903,
0.030830679461359978,
0.06214693561196327,
-0.008390036411583424,
0.05744132772088051,
-0.002480674535036087,
-0.010977217927575111,
0.009470616467297077,
0.0797617956995964,
-0.09990306943655014,
0.11023685336112976,
0.022690800949931145,
-0.06104202941060066,
0.05159701779484749,
-0.019915884360671043,
-0.00976925902068615,
-0.005862012505531311,
0.004294265061616898,
-0.03832729160785675,
0.054929979145526886,
-0.030386287719011307,
-0.061263855546712875,
0.019454684108495712,
0.055512331426143646,
0.040904633700847626,
-0.016510233283042908,
0.02431938238441944,
-0.06671348959207535,
-0.04664967954158783,
0.0764942318201065,
-0.04755227640271187,
0.045489829033613205,
-0.011948741041123867,
-0.06481502950191498,
0.00708911893889308,
0.01836567372083664,
-0.0736827477812767,
0.01719287782907486,
-0.06928896903991699,
-0.04548629745841026,
0.10192789882421494,
-0.011379510164260864,
0.04054282605648041,
0.03039979748427868,
0.03916573151946068,
-0.0420873649418354,
0.08219251036643982,
-0.07289455085992813,
-0.05502115562558174,
0.07812796533107758,
-0.07191383093595505,
-0.027952512726187706,
-0.04416782036423683,
-0.1002880111336708,
0.0021310399752110243,
0.005993927828967571,
-0.005357716698199511,
0.004581758286803961,
-0.04734741896390915,
0.005140302702784538,
0.06445731967687607,
0.037501826882362366,
-0.06215705722570419,
-0.0067078773863613605,
-0.08710041642189026,
-0.0017763959476724267,
-0.03041382133960724,
-0.08768444508314133,
0.009428261779248714,
0.05102497711777687,
0.0651923343539238,
0.05492326244711876,
0.0038272670935839415,
-0.02271469123661518,
-0.004543584771454334,
0.06997063010931015,
0.06902375817298889,
-0.0437687411904335,
0.018496816977858543,
0.03355922922492027,
0.055978525429964066,
-0.019899403676390648,
0.08203592151403427,
-0.046239253133535385,
-0.011095680296421051,
-0.027967501431703568,
-0.0663614273071289,
-0.011746261268854141,
-0.010658636689186096,
-0.07343403249979019,
0.11521477997303009,
0.06504379212856293,
-0.12221095710992813,
0.07797162979841232,
-0.04259897768497467,
0.011925377883017063,
-0.01929086446762085,
-0.0243387408554554,
0.04144561290740967,
0.0065368167124688625,
0.017630096524953842,
0.037881236523389816,
-0.0321974977850914,
-0.0027186733204871416,
-0.059684935957193375,
-0.037846386432647705,
-0.029731804504990578,
-0.05463898554444313,
-0.052102960646152496,
0.018625808879733086,
-8.458476047537133e-33,
-0.05726663023233414,
-0.030553756281733513,
-0.010136313736438751,
0.08036761730909348,
0.0504671186208725,
-0.10089337825775146,
-0.003009843872860074,
0.03193015232682228,
-0.028974829241633415,
-0.0162995383143425,
0.15862448513507843,
-0.08715403825044632,
-0.010327734053134918,
0.09050659090280533,
0.07082153856754303,
-0.009214639663696289,
0.033658407628536224,
-0.06326624751091003,
0.0889962837100029,
-0.03957844898104668,
-0.04567139968276024,
-0.0175765473395586,
0.002138499403372407,
0.06752902269363403,
-0.05593829229474068,
0.035671334713697433,
0.04131495952606201,
-0.05757121741771698,
0.029018985107541084,
0.03438492491841316,
0.10674167424440384,
0.01418459601700306,
-0.0839473232626915,
-0.03249482437968254,
0.010836601257324219,
0.028543522581458092,
-0.013021882623434067,
0.05093173310160637,
0.005829038098454475,
-0.033914171159267426,
-0.03590375930070877,
-0.0028863875195384026,
-0.04249422997236252,
-0.06967272609472275,
0.06883776932954788,
-0.08314331620931625,
-0.004775456618517637,
0.03525598347187042,
0.011093193665146828,
0.02932099439203739,
-0.07545318454504013,
-0.036583300679922104,
0.00847073644399643,
0.035197511315345764,
-0.04487315192818642,
0.08098748326301575,
-0.04277149215340614,
0.01990867778658867,
-0.051087602972984314,
-0.015243749134242535,
-0.05380517244338989,
-0.00559606309980154,
-0.06810655444860458,
-0.012403861619532108,
0.034006454050540924,
-0.028797466307878494,
-0.06238166615366936,
-0.02881370671093464,
0.0762869343161583,
0.07937002182006836,
-0.0048245154321193695,
0.026494629681110382,
0.029248930513858795,
0.0678822472691536,
-0.07336728274822235,
0.016343867406249046,
0.041710805147886276,
-0.05204152315855026,
0.07509411871433258,
0.05875450745224953,
-0.10986164957284927,
0.05971355363726616,
0.02316984534263611,
-0.06793419271707535,
-0.039087701588869095,
0.010523645207285881,
0.008675295859575272,
0.046444859355688095,
0.04673733189702034,
0.07676859945058823,
-0.020646460354328156,
0.10145976394414902,
-0.053480103611946106,
-0.06644884496927261,
0.007121579255908728,
2.4028033906028676e-33,
-0.04949740320444107,
0.03743857517838478,
-0.0931180939078331,
0.03916250914335251,
0.041534461081027985,
0.027951736003160477,
0.0006822179420851171,
-0.023384269326925278,
-0.06653190404176712,
0.02042173594236374,
0.06831778585910797,
0.0668642446398735,
0.07642818987369537,
-0.006391731556504965,
0.08090892434120178,
-0.07919944077730179,
-0.08032321184873581,
-0.06198880821466446,
-0.041154149919748306,
0.012533090077340603,
-0.01640341244637966,
0.09302489459514618,
0.016791535541415215,
0.09071087092161179,
0.012559558264911175,
-0.08019092679023743,
-0.006206050049513578,
0.04393893480300903,
-0.0021561295725405216,
0.026531947776675224,
0.08056236058473587,
0.03237386420369148,
-0.07317337393760681,
0.015421418473124504,
0.022762354463338852,
-0.04419252276420593,
0.007943877950310707,
-0.045058880001306534,
-0.02033928968012333,
0.0537981241941452,
0.02085738256573677,
-0.012263739481568336,
0.0616234615445137,
-0.04289292171597481,
-0.03223911300301552,
-0.07995370030403137,
0.012440904974937439,
-0.03786804527044296,
-0.0586836040019989,
-0.026248490437865257,
-0.027562465518712997,
-0.014028924517333508,
0.0340006984770298,
-0.08997685462236404,
0.02632269449532032,
0.03201325982809067,
0.010450996458530426,
0.1298767477273941,
-0.052974916994571686,
0.03689022362232208,
-0.010948192328214645,
0.021460693329572678,
-0.13612516224384308,
0.044842641800642014,
0.035028256475925446,
-0.0006318502710200846,
-0.052152588963508606,
0.03482209891080856,
-0.004341613035649061,
-0.02875332348048687,
0.03357474133372307,
0.03612764552235603,
-0.02903340384364128,
-0.04113863781094551,
-0.01487200427800417,
-0.07546208798885345,
-0.027435602620244026,
0.13145016133785248,
-0.0077450331300497055,
0.013636607676744461,
0.04587781801819801,
0.030711619183421135,
0.0139425965026021,
0.02618064545094967,
0.026924805715680122,
-0.1350959986448288,
-0.02208348549902439,
-0.018808722496032715,
-0.08828888833522797,
-0.05375444144010544,
-0.005047246813774109,
0.057149745523929596,
-0.0723225548863411,
0.06977029144763947,
0.05663835629820824,
-2.032509094362922e-8,
-0.03769330680370331,
-0.04096750169992447,
-0.026556704193353653,
0.01870686002075672,
0.09396970272064209,
0.026712149381637573,
-0.021069684997200966,
0.03596176207065582,
-0.011828601360321045,
-0.012725473381578922,
0.005226623732596636,
-0.043451204895973206,
-0.06320654600858688,
0.05469439923763275,
-0.03664302080869675,
0.018557637929916382,
-0.06396906077861786,
0.10090905427932739,
-0.02570085972547531,
-0.012235090136528015,
-0.039639733731746674,
-0.09401217848062515,
-0.048236947506666183,
-0.06762222945690155,
-0.03177247568964958,
-0.0174162145704031,
-0.02726285345852375,
-0.011669112369418144,
-0.052263520658016205,
0.0003639291971921921,
0.0012880207505077124,
0.07716639339923859,
-0.07935985177755356,
-0.11808878928422928,
0.026723483577370644,
-0.039038948714733124,
-0.08141179382801056,
0.03566005453467369,
0.016751304268836975,
-0.0003708995063789189,
0.02778676338493824,
0.11362683027982712,
0.04149229824542999,
0.008247996680438519,
0.047466881573200226,
-0.013555622659623623,
0.0328713096678257,
0.014873182401061058,
0.008699513971805573,
0.01822579652070999,
0.03597720339894295,
-0.009275169111788273,
0.04144097864627838,
-0.055113889276981354,
-0.01725275255739689,
0.06673163920640945,
0.00988246500492096,
0.027364559471607208,
-0.004598941653966904,
-0.031014928594231606,
0.08529432117938995,
0.05356218293309212,
0.04482312127947807,
-0.039598479866981506
] |
allenai/macaw-large | 57fd83e05c764b04c36650fac1458e9816f2d355 | 2021-09-21T15:59:44.000Z | [
"pytorch",
"tf",
"jax",
"t5",
"text2text-generation",
"en",
"transformers",
"license:apache-2.0",
"autotrain_compatible"
] | text2text-generation | false | allenai | null | allenai/macaw-large | 7,429 | 8 | transformers | ---
language: en
widget:
- text: $answer$ ; $mcoptions$ ; $question$ = What is the color of a cloudy sky?
license: apache-2.0
---
# macaw-large
## Model description
Macaw (<b>M</b>ulti-<b>a</b>ngle <b>c</b>(q)uestion <b>a</b>ns<b>w</b>ering) is a ready-to-use model capable of
general question answering,
showing robustness outside the domains it was trained on. It has been trained in "multi-angle" fashion,
which means it can handle a flexible set of input and output "slots"
(question, answer, multiple-choice options, context, and explanation) .
Macaw was built on top of [T5](https://github.com/google-research/text-to-text-transfer-transformer) and comes in
three sizes: [macaw-11b](https://huggingface.co/allenai/macaw-11b), [macaw-3b](https://huggingface.co/allenai/macaw-3b),
and [macaw-large](https://huggingface.co/allenai/macaw-large), as well as an answer-focused version featured on
various leaderboards [macaw-answer-11b](https://huggingface.co/allenai/macaw-answer-11b).
See https://github.com/allenai/macaw for more details. | [
-0.08597929775714874,
0.01489941030740738,
0.006830783560872078,
0.031845081597566605,
0.019177068024873734,
-0.011971067637205124,
0.05538540706038475,
-0.01818736456334591,
0.045247260481119156,
-0.035805828869342804,
-0.008018245920538902,
-0.09603692591190338,
0.06987427920103073,
-0.015682416036725044,
0.08056414127349854,
0.07705607265233994,
0.10920879989862442,
-0.04477385804057121,
-0.08579275757074356,
-0.07499109953641891,
0.028110723942518234,
0.017734572291374207,
0.018507899716496468,
0.0011222106404602528,
-0.06535713374614716,
0.06525909155607224,
0.05649692192673683,
-0.0034894731361418962,
-0.02893132157623768,
-0.020139914005994797,
-0.013313553296029568,
0.04009709134697914,
-0.0034109605476260185,
0.09346888959407806,
-0.039396967738866806,
0.0585060641169548,
-0.01239878311753273,
-0.005606567021459341,
-0.10626763105392456,
-0.04845178872346878,
-0.09329603612422943,
-0.009820924140512943,
0.008745607919991016,
-0.016224732622504234,
0.052450455725193024,
-0.1360924392938614,
-0.05527692660689354,
-0.03068382479250431,
-0.054308876395225525,
-0.004626137670129538,
-0.07675664126873016,
-0.12795571982860565,
-0.005816890858113766,
0.052826859056949615,
0.0436713732779026,
0.05757775530219078,
-0.0682801902294159,
-0.02152453362941742,
-0.012713205069303513,
-0.006992804352194071,
-0.02207653596997261,
0.012692151591181755,
-0.039292965084314346,
0.05411209911108017,
0.009295608848333359,
0.002804316347464919,
-0.04382074624300003,
0.016234084963798523,
-0.0066350470297038555,
-0.026755081489682198,
-0.07024018466472626,
-0.02441570907831192,
0.03968290612101555,
0.00704931328073144,
0.02901127003133297,
-0.014810343272984028,
0.05028645694255829,
-0.030381420627236366,
0.017651185393333435,
-0.018836118280887604,
0.010175928473472595,
-0.02202228084206581,
0.02274826541543007,
0.07177960127592087,
0.10518692433834076,
0.055166032165288925,
0.007416142150759697,
0.10732977092266083,
-0.0487002432346344,
0.04094604030251503,
-0.005002486985176802,
-0.07971259206533432,
0.034107308834791183,
0.006324530113488436,
-0.002447637962177396,
0.014418749138712883,
0.05381897836923599,
-0.054649751633405685,
-0.08445890992879868,
0.08153576403856277,
0.059516746550798416,
0.02227533422410488,
0.0815800279378891,
-0.07737776637077332,
-0.006778942886739969,
-0.055697958916425705,
0.02593737654387951,
0.006296808831393719,
0.044287774711847305,
-0.09691688418388367,
-0.029991479590535164,
-0.021773507818579674,
-0.05220535770058632,
-0.014163082465529442,
0.00566394766792655,
-0.012766200117766857,
0.02396324649453163,
-0.0008358191698789597,
-0.002738955896347761,
-0.0016347960336133838,
0.031824447214603424,
0.07585132122039795,
-0.038924261927604675,
0.04925129935145378,
0.08924413472414017,
-0.0026205522008240223,
-0.01776723377406597,
2.505754104202845e-33,
0.10130017250776291,
0.006097149569541216,
0.0619104839861393,
0.058523863554000854,
0.06512725353240967,
-0.003900759154930711,
-0.05148440599441528,
0.049228549003601074,
-0.018215196207165718,
0.024905076250433922,
0.025849223136901855,
0.053809572011232376,
-0.07182426750659943,
0.030019555240869522,
0.08934888243675232,
-0.049602266401052475,
-0.12470603734254837,
0.03595616668462753,
0.008242040872573853,
0.006459197495132685,
-0.014911453239619732,
0.03145506605505943,
0.006339037325233221,
-0.020116262137889862,
0.009716819040477276,
0.04508458077907562,
0.08267564326524734,
-0.04691196605563164,
-0.00016565085388720036,
0.016058217734098434,
-0.09598226845264435,
-0.06339190900325775,
0.009287090040743351,
-0.046104926615953445,
-0.008661183528602123,
-0.04105940833687782,
-0.034776631742715836,
-0.10369851440191269,
0.003821850987151265,
-0.0023017602507025003,
-0.008614686317741871,
-0.02434675581753254,
0.018348952755331993,
-0.015050170943140984,
-0.03306517377495766,
0.0068510123528540134,
-0.02746313065290451,
-0.03332817181944847,
-0.08546421676874161,
-0.0006280821980908513,
-0.011126160621643066,
0.0056355721317231655,
0.014581250958144665,
-0.05002637580037117,
0.03550615906715393,
0.005059235729277134,
0.04859935864806175,
0.030784813687205315,
0.015944652259349823,
0.07739315181970596,
-0.01732250489294529,
-0.03394018113613129,
0.06312118470668793,
0.014180034399032593,
0.06775841861963272,
0.027727285400032997,
-0.021763615310192108,
-0.008907357230782509,
0.043637391179800034,
0.023107491433620453,
-0.06295950710773468,
0.03567273169755936,
-0.011874387040734291,
-0.02127807028591633,
0.00687860744073987,
-0.040929071605205536,
-0.05489988625049591,
-0.08850917220115662,
-0.017033513635396957,
0.046526651829481125,
-0.005413006991147995,
-0.030749676749110222,
0.01675543561577797,
-0.028103528544306755,
-0.03450841084122658,
0.059835921972990036,
0.094386987388134,
-0.06338933855295181,
-0.025904042646288872,
-0.05244218558073044,
-0.035743508487939835,
0.0464380644261837,
-0.014138738624751568,
-0.118841752409935,
0.05040615424513817,
-3.526698314869857e-33,
0.0401620976626873,
-0.05933256447315216,
-0.1348186433315277,
0.10723643749952316,
-0.02816956117749214,
-0.016251331195235252,
0.06961376219987869,
0.08962878584861755,
-0.011245816946029663,
-0.07045713812112808,
-0.043099720031023026,
0.06507847458124161,
0.020688626915216446,
-0.04287280514836311,
0.016294894739985466,
0.027735598385334015,
-0.08628356456756592,
-0.04004881531000137,
0.033936500549316406,
0.0031208833679556847,
-0.021684424951672554,
0.013484911061823368,
-0.03277731314301491,
0.0166469793766737,
-0.04638158902525902,
0.0512140616774559,
0.020536109805107117,
0.04144732654094696,
0.021548813208937645,
0.028350718319416046,
-0.06583947688341141,
-0.004075993318110704,
0.0656512975692749,
0.011621721088886261,
-0.06933660805225372,
0.07151853293180466,
0.029661772772669792,
-0.001558625721372664,
-0.028662657365202904,
0.14197629690170288,
0.034629542380571365,
-0.046469178050756454,
-0.052178796380758286,
0.018703008070588112,
-0.10801650583744049,
0.06040950119495392,
-0.09778522700071335,
0.025177912786602974,
0.010208431631326675,
-0.02443527989089489,
0.00005889795647817664,
-0.0425051711499691,
-0.07720494270324707,
-0.007445862051099539,
-0.001840877695940435,
0.0015859389677643776,
-0.04198898747563362,
-0.039508309215307236,
0.01722818799316883,
0.012984665110707283,
-0.10548265278339386,
0.02911730483174324,
0.07857511192560196,
-0.02827022224664688,
0.08183391392230988,
-0.010203990153968334,
-0.011528822593390942,
-0.012793945148587227,
0.0054404959082603455,
-0.0783228874206543,
0.09522920101881027,
-0.04560564458370209,
0.053109463304281235,
-0.0006151670822873712,
0.11373991519212723,
-0.005017962772399187,
0.06985986232757568,
-0.024737190455198288,
-0.038482364267110825,
-0.020642219111323357,
-0.036463312804698944,
0.018622519448399544,
0.07801336795091629,
0.09166524559259415,
0.00550797488540411,
-0.035138893872499466,
0.029691779986023903,
0.08675916492938995,
0.046462856233119965,
0.017055312171578407,
0.008698730729520321,
0.08672735095024109,
-0.018544776365160942,
0.07437147200107574,
-0.07477623969316483,
-6.053564760577501e-8,
-0.1396142840385437,
-0.030041398480534554,
-0.051540080457925797,
0.033747512847185135,
-0.04976927489042282,
-0.0019900412298738956,
-0.0006574978469870985,
-0.0005527051980607212,
0.013270282186567783,
0.009170948527753353,
-0.013493563048541546,
0.0017072617774829268,
-0.12155735492706299,
0.02550194226205349,
0.011576810851693153,
0.05611318722367287,
-0.0034810309298336506,
0.026556912809610367,
-0.00973293837159872,
-0.09932561963796616,
0.03829873353242874,
0.045832596719264984,
-0.040027596056461334,
0.0575287826359272,
0.000007934002496767789,
0.10366886109113693,
-0.15115752816200256,
0.10368607938289642,
0.03199060261249542,
0.011372999288141727,
0.016866136342287064,
-0.038990627974271774,
-0.04205024614930153,
0.03973518684506416,
0.020504087209701538,
0.020008660852909088,
-0.12953920662403107,
-0.004813730716705322,
0.03317730501294136,
0.0019933907315135,
-0.006941814906895161,
-0.0166776180267334,
-0.10908830165863037,
-0.01367118488997221,
0.03814953193068504,
0.04127835854887962,
-0.003591140964999795,
-0.09583158791065216,
-0.04779412969946861,
-0.03092239610850811,
-0.02285427413880825,
-0.02211475372314453,
0.023979978635907173,
0.04159105196595192,
-0.03277723118662834,
0.04075722396373749,
0.07847865670919418,
-0.039329662919044495,
0.008688831701874733,
0.014529718086123466,
0.009552491828799248,
0.01959715224802494,
-0.012801628559827805,
0.05939849466085434
] |
microsoft/wavlm-large | c1423ed94bb01d80a3f5ce5bc39f6026a0f4828c | 2022-02-02T21:21:50.000Z | [
"pytorch",
"wavlm",
"feature-extraction",
"en",
"arxiv:1912.07875",
"arxiv:2106.06909",
"arxiv:2101.00390",
"arxiv:2110.13900",
"transformers",
"speech"
] | feature-extraction | false | microsoft | null | microsoft/wavlm-large | 7,408 | 6 | transformers | ---
language:
- en
tags:
- speech
inference: false
---
# WavLM-Large
[Microsoft's WavLM](https://github.com/microsoft/unilm/tree/master/wavlm)
The large model pretrained on 16kHz sampled speech audio. When using the model, make sure that your speech input is also sampled at 16kHz.
**Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model.
The model was pre-trained on:
- 60,000 hours of [Libri-Light](https://arxiv.org/abs/1912.07875)
- 10,000 hours of [GigaSpeech](https://arxiv.org/abs/2106.06909)
- 24,000 hours of [VoxPopuli](https://arxiv.org/abs/2101.00390)
[Paper: WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900)
Authors: Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei
**Abstract**
*Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks. As speech signal contains multi-faceted information including speaker identity, paralinguistics, spoken content, etc., learning universal representations for all speech tasks is challenging. In this paper, we propose a new pre-trained model, WavLM, to solve full-stack downstream speech tasks. WavLM is built based on the HuBERT framework, with an emphasis on both spoken content modeling and speaker identity preservation. We first equip the Transformer structure with gated relative position bias to improve its capability on recognition tasks. For better speaker discrimination, we propose an utterance mixing training strategy, where additional overlapped utterances are created unsupervisely and incorporated during model training. Lastly, we scale up the training dataset from 60k hours to 94k hours. WavLM Large achieves state-of-the-art performance on the SUPERB benchmark, and brings significant improvements for various speech processing tasks on their representative benchmarks.*
The original model can be found under https://github.com/microsoft/unilm/tree/master/wavlm.
# Usage
This is an English pre-trained speech model that has to be fine-tuned on a downstream task like speech recognition or audio classification before it can be
used in inference. The model was pre-trained in English and should therefore perform well only in English. The model has been shown to work well on the [SUPERB benchmark](https://superbbenchmark.org/).
**Note**: The model was pre-trained on phonemes rather than characters. This means that one should make sure that the input text is converted to a sequence
of phonemes before fine-tuning.
## Speech Recognition
To fine-tune the model for speech recognition, see [the official speech recognition example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/speech-recognition).
## Speech Classification
To fine-tune the model for speech classification, see [the official audio classification example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/audio-classification).
## Speaker Verification
TODO
## Speaker Diarization
TODO
# Contribution
The model was contributed by [cywang](https://huggingface.co/cywang) and [patrickvonplaten](https://huggingface.co/patrickvonplaten).
# License
The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE)
 | [
-0.03570942580699921,
-0.0924510806798935,
-0.026479028165340424,
-0.013604486361145973,
-0.04561544954776764,
-0.0009414275409653783,
-0.006420349236577749,
-0.05708598718047142,
-0.06575790792703629,
-0.0591592974960804,
-0.010695355013012886,
-0.040921926498413086,
-0.018516870215535164,
0.004126513376832008,
-0.010971779003739357,
0.031132357195019722,
0.09006692469120026,
-0.022181972861289978,
-0.09123914688825607,
-0.04394267126917839,
0.12396180629730225,
0.0500309094786644,
0.06478238105773926,
0.015150862745940685,
0.025101738050580025,
0.03441694378852844,
-0.05637304484844208,
-0.02338775247335434,
0.059228166937828064,
-0.026395905762910843,
0.02468973770737648,
0.055346500128507614,
0.10459084808826447,
0.018539320677518845,
0.012928945012390614,
-0.003527358639985323,
-0.0034569203853607178,
-0.004528168123215437,
0.024136319756507874,
-0.028705168515443802,
0.01614396646618843,
-0.01327025331556797,
-0.03379930928349495,
0.0059807877987623215,
0.03824467584490776,
-0.008042304776608944,
0.03585772588849068,
-0.009796541184186935,
-0.020837560296058655,
0.025363095104694366,
-0.06234810873866081,
-0.03140997886657715,
0.06318522244691849,
0.03510149195790291,
-0.16233521699905396,
-0.03231722116470337,
0.007016374729573727,
0.035951804369688034,
0.0673668161034584,
-0.013329803012311459,
-0.09011649340391159,
0.011500297114253044,
-0.020940901711583138,
-0.010806776583194733,
-0.0685451477766037,
-0.0036099504213780165,
-0.029451826587319374,
0.0167731624096632,
0.03904995694756508,
0.012291591614484787,
0.007288117427378893,
0.08408793061971664,
0.04409738630056381,
0.045178867876529694,
0.011433138512074947,
0.01260423194617033,
0.11664704978466034,
-0.015331456437706947,
0.08309298008680344,
-0.10155370086431503,
0.032552093267440796,
-0.07664435356855392,
0.08022768795490265,
-0.03536585718393326,
0.10306195914745331,
-0.009379803203046322,
0.0074885254725813866,
0.0015222696820273995,
-0.006628762930631638,
-0.03307328373193741,
-0.03483966737985611,
-0.07183191180229187,
0.009988651610910892,
0.03231893852353096,
-0.010719279758632183,
0.06771289557218552,
-0.0008379342616535723,
0.011335020884871483,
0.00457620806992054,
0.07231611758470535,
0.012681478634476662,
-0.045369356870651245,
0.0021590811666101217,
0.033698949962854385,
-0.023374877870082855,
-0.09777882695198059,
0.06852705776691437,
0.09551108628511429,
0.024403495714068413,
-0.03411469608545303,
0.07964704930782318,
0.059783630073070526,
-0.014429588802158833,
0.027059951797127724,
0.04284145310521126,
0.03987881541252136,
-0.0525125190615654,
-0.07118692994117737,
-0.04051954299211502,
0.05198043957352638,
-0.10695096105337143,
-0.020647283643484116,
-0.04873480275273323,
-0.03249421343207359,
0.007263730280101299,
0.01501886360347271,
0.010856060311198235,
2.550295605536417e-33,
-0.006092834286391735,
0.07126524299383163,
-0.02589556574821472,
-0.05521491542458534,
-0.006562903989106417,
-0.0702328309416771,
-0.016094978898763657,
0.0056249531917274,
-0.02883976139128208,
0.022480478510260582,
0.0006620911881327629,
-0.0239653829485178,
-0.033282797783613205,
0.06751731783151627,
-0.01433526910841465,
-0.023387575522065163,
-0.047116197645664215,
0.03365229815244675,
-0.011840298771858215,
-0.011108324863016605,
0.09080450236797333,
-0.031843774020671844,
0.017187345772981644,
-0.00487170135602355,
0.034334659576416016,
0.0538947619497776,
0.08444875478744507,
-0.06545307487249374,
0.006148644257336855,
0.05134619027376175,
-0.07689786702394485,
-0.08514753729104996,
0.10106383264064789,
0.004141395911574364,
0.01687193289399147,
0.01054322998970747,
-0.0024259407073259354,
0.01716635748744011,
-0.018178194761276245,
-0.13424120843410492,
0.018580486997961998,
0.04938172921538353,
0.049729954451322556,
-0.08680561929941177,
-0.08452855795621872,
-0.02821836620569229,
-0.039409976452589035,
0.011907892301678658,
-0.01961362361907959,
0.04424155876040459,
0.04687957838177681,
0.011420484632253647,
-0.0802919939160347,
0.040975283831357956,
-0.03355865553021431,
-0.027158496901392937,
0.07150936126708984,
0.054842691868543625,
0.06137842684984207,
0.023236336186528206,
0.023706961423158646,
-0.04610951617360115,
0.07537891715765,
0.02074897661805153,
0.07146821916103363,
-0.021365467458963394,
-0.03025476075708866,
-0.013699796050786972,
-0.006173210684210062,
-0.0597367100417614,
-0.027508430182933807,
-0.05970899015665054,
0.04825817421078682,
0.0404062457382679,
0.0022915538866072893,
-0.0303783155977726,
0.0476236417889595,
-0.05600988119840622,
-0.06492563337087631,
0.07013649493455887,
-0.00472997734323144,
0.005782905034720898,
-0.01143578626215458,
-0.04829011484980583,
-0.024702785536646843,
-0.05291278287768364,
0.008133353665471077,
-0.12319119274616241,
-0.033298686146736145,
-0.03728436678647995,
-0.00010395774006610736,
0.05168823152780533,
-0.019764216616749763,
-0.040058575570583344,
-0.06247992813587189,
-3.7451444708449935e-33,
0.07053939253091812,
0.05724690482020378,
0.03998315706849098,
0.07663329690694809,
-0.05239969119429588,
0.006594281643629074,
0.07939472049474716,
0.13475148379802704,
-0.02000867761671543,
-0.07251903414726257,
0.07431660592556,
-0.06440666317939758,
0.049890752881765366,
0.011060960590839386,
-0.0006389507325366139,
-0.03060242533683777,
0.03784937411546707,
0.03208059445023537,
0.13500939309597015,
0.08704518526792526,
0.028035877272486687,
0.0008954185177572072,
-0.06904224306344986,
0.05374827980995178,
-0.06687311083078384,
-0.008275373838841915,
-0.08517404645681381,
0.05723857134580612,
0.024051722139120102,
0.0009337396477349102,
-0.06812813133001328,
0.026847010478377342,
-0.01922667771577835,
-0.02802233025431633,
-0.04574749618768692,
0.018792742863297462,
0.07976551353931427,
-0.03298616036772728,
-0.004408247768878937,
0.03990073874592781,
0.08542942255735397,
0.05126596987247467,
-0.11711782217025757,
-0.09951962530612946,
-0.014877158217132092,
-0.04072403907775879,
-0.08131081610918045,
-0.03481438755989075,
-0.014816192910075188,
-0.022327734157443047,
0.05774457007646561,
-0.005173166282474995,
0.011968208476901054,
0.02207290194928646,
-0.039707086980342865,
-0.0645366907119751,
0.010352189652621746,
-0.08341287821531296,
-0.04478216543793678,
-0.039907749742269516,
-0.06881643831729889,
-0.0069064488634467125,
-0.014637548476457596,
-0.09486093372106552,
0.027270996943116188,
0.04012768343091011,
0.05544418469071388,
0.013067328371107578,
0.0545291043817997,
-0.03076542355120182,
0.0009338150266557932,
0.004302625544369221,
-0.032034147530794144,
0.08591420948505402,
-0.07393202185630798,
-0.04625486955046654,
-0.0673132911324501,
-0.08289364725351334,
-0.039584919810295105,
-0.07185114175081253,
-0.03357527777552605,
0.022613923996686935,
0.03206896781921387,
0.05569078400731087,
0.06785935908555984,
0.10606081038713455,
0.020020583644509315,
-0.02666573040187359,
-0.018457874655723572,
0.040791843086481094,
-0.017319560050964355,
0.02818051539361477,
0.050744760781526566,
0.06040465459227562,
-0.015997152775526047,
-5.5998764736386875e-8,
-0.06658688932657242,
0.04498126730322838,
-0.018597997725009918,
0.012784227728843689,
-0.04283365607261658,
-0.07603973150253296,
-0.041676949709653854,
0.022451620548963547,
-0.013594193384051323,
-0.016099413856863976,
0.06522709876298904,
-0.017376378178596497,
-0.06162106990814209,
-0.007466512266546488,
0.010299000889062881,
0.01553584635257721,
0.00962572917342186,
0.0568600632250309,
-0.012395016849040985,
-0.08401652425527573,
0.034896429628133774,
0.06010299175977707,
0.033791083842515945,
-0.015672361478209496,
0.09713662415742874,
-0.006173432804644108,
0.0015321867540478706,
0.05744268372654915,
0.0017801462672650814,
-0.0737309455871582,
-0.05669476091861725,
0.06561511754989624,
-0.07317843288183212,
-0.01602221094071865,
-0.006994375493377447,
-0.01058101188391447,
-0.05109002813696861,
-0.026189511641860008,
-0.0009971398394554853,
0.08205445110797882,
0.031252652406692505,
0.11915043741464615,
-0.13743160665035248,
-0.046288542449474335,
0.08288607746362686,
0.03747866302728653,
-0.06614858657121658,
-0.12824319303035736,
0.015419995412230492,
0.012838712893426418,
0.06779109686613083,
0.08467043936252594,
-0.0026843470986932516,
-0.008338168263435364,
0.0047126649878919125,
0.07419469952583313,
-0.024385664612054825,
0.001842482015490532,
-0.003435971215367317,
0.020896172150969505,
0.024002021178603172,
-0.01481620129197836,
-0.05959925055503845,
-0.04356447607278824
] |
cross-encoder/stsb-distilroberta-base | 2a387f03597b030ff3dadcef7d73456ce23e3bb7 | 2021-08-05T08:41:53.000Z | [
"pytorch",
"jax",
"roberta",
"text-classification",
"transformers",
"license:apache-2.0"
] | text-classification | false | cross-encoder | null | cross-encoder/stsb-distilroberta-base | 7,400 | null | transformers | ---
license: apache-2.0
---
# Cross-Encoder for Quora Duplicate Questions Detection
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
## Training Data
This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.
## Usage and Performance
Pre-trained models can be used like this:
```
from sentence_transformers import CrossEncoder
model = CrossEncoder('model_name')
scores = model.predict([('Sentence 1', 'Sentence 2'), ('Sentence 3', 'Sentence 4')])
```
The model will predict scores for the pairs `('Sentence 1', 'Sentence 2')` and `('Sentence 3', 'Sentence 4')`.
You can use this model also without sentence_transformers and by just using Transformers ``AutoModel`` class | [
-0.05867493897676468,
-0.10378813743591309,
-0.054619889706373215,
0.01839994080364704,
-0.024363433942198753,
0.05517164617776871,
-0.018026946112513542,
-0.010603397153317928,
0.005246789660304785,
-0.09420166909694672,
0.07769262790679932,
-0.08185577392578125,
0.055262017995119095,
0.01562817580997944,
0.03906587138772011,
0.03693121671676636,
0.017974741756916046,
0.016621755436062813,
-0.08132658898830414,
-0.11582551896572113,
0.08363852649927139,
0.06307857483625412,
0.030506178736686707,
0.06288772076368332,
0.01771395467221737,
0.013484686613082886,
-0.019184693694114685,
0.07147561013698578,
-0.02040865086019039,
0.001028915517963469,
0.06454110890626907,
-0.06114928424358368,
-0.03912298008799553,
0.09132492542266846,
-0.0022073204163461924,
0.030090996995568275,
-0.03425338864326477,
-0.03397412970662117,
0.05963956192135811,
-0.04748335853219032,
-0.06616570055484772,
-0.04833066090941429,
-0.03215296193957329,
-0.030814681202173233,
0.030882716178894043,
-0.02564235031604767,
-0.1125865951180458,
0.037866175174713135,
0.037381239235401154,
-0.03497219830751419,
-0.06986620277166367,
0.005776858422905207,
0.02703530341386795,
0.06518398970365524,
0.0005582755547948182,
0.02490657940506935,
-0.019569940865039825,
0.038669027388095856,
-0.061529383063316345,
-0.05670744925737381,
-0.09084899723529816,
-0.08959189057350159,
0.0006314253550954163,
0.031091544777154922,
-0.020172571763396263,
-0.03297467529773712,
-0.0057743508368730545,
-0.013057424686849117,
-0.011393625289201736,
0.015413422137498856,
-0.05987144261598587,
0.07006169110536575,
-0.02911006286740303,
0.01625772751867771,
-0.052546560764312744,
0.027390535920858383,
0.0218029972165823,
0.02583593688905239,
-0.01121661625802517,
-0.0036008558236062527,
-0.007360280957072973,
-0.11208494007587433,
0.07059723138809204,
0.06671340018510818,
0.04653378203511238,
-0.03981465846300125,
0.0896725282073021,
0.0339667946100235,
-0.0035024804528802633,
-0.031143471598625183,
-0.0563540980219841,
-0.051743507385253906,
0.047235157340765,
-0.016986500471830368,
0.05158024653792381,
0.056596558541059494,
-0.03734126314520836,
0.04482631757855415,
0.00851831678301096,
0.03869779407978058,
0.0601237490773201,
0.03920214623212814,
0.004315746482461691,
-0.06130211055278778,
0.027669524773955345,
0.04077957943081856,
0.04016803950071335,
0.0026260223239660263,
0.10445592552423477,
-0.11510973423719406,
0.025368578732013702,
0.03801637142896652,
-0.001120240893214941,
0.024144761264324188,
0.025802357122302055,
0.04544024541974068,
0.04964694380760193,
0.033840637654066086,
0.05505862087011337,
0.03820367157459259,
-0.029262078925967216,
0.024822423234581947,
0.02843690849840641,
-0.019714780151844025,
0.036049917340278625,
-0.09736815840005875,
-0.030883457511663437,
3.697027078962022e-33,
-0.017532914876937866,
0.04017169773578644,
0.011339370161294937,
-0.05907173454761505,
-0.03486120328307152,
-0.02255396544933319,
-0.05045441538095474,
0.09817531704902649,
-0.05723236873745918,
-0.05760518088936806,
-0.07770692557096481,
0.017609402537345886,
-0.0030708983540534973,
0.03571859747171402,
0.016363998875021935,
-0.0045541212894022465,
-0.055932823568582535,
-0.08803161978721619,
0.017252765595912933,
0.00905628502368927,
0.0708085373044014,
0.03847620636224747,
0.03918103501200676,
0.029467590153217316,
-0.03162831813097,
-0.041665252298116684,
0.024384506046772003,
-0.07729917019605637,
-0.023706797510385513,
-0.00916442833840847,
-0.10595706850290298,
-0.018256912007927895,
-0.026189468801021576,
0.005704023875296116,
0.054166246205568314,
0.023286061361432076,
0.08964590728282928,
0.015541194938123226,
-0.10717766731977463,
-0.06361123919487,
-0.004719595890492201,
0.03128383308649063,
0.018274616450071335,
-0.04562177509069443,
-0.00292791286483407,
-0.08162780851125717,
-0.07568120211362839,
0.020259175449609756,
0.0858285054564476,
0.05254649743437767,
0.024521926417946815,
-0.004140149801969528,
-0.0576760470867157,
-0.021859649568796158,
-0.011216838844120502,
0.016779964789748192,
0.05049433186650276,
-0.0031238896772265434,
0.08198227733373642,
0.049707360565662384,
-0.0007727292831987143,
-0.05099877342581749,
0.04916466772556305,
0.010751963593065739,
0.0503898561000824,
-0.024980397894978523,
0.01628575474023819,
0.038604144006967545,
0.03170974925160408,
0.04348049312829971,
-0.01589846983551979,
-0.01491216104477644,
-0.04037681967020035,
-0.015963919460773468,
0.018765078857541084,
-0.02519848756492138,
-0.05247420445084572,
-0.07712569087743759,
0.03926317021250725,
0.06610672175884247,
-0.03410615772008896,
-0.05498969554901123,
0.04196866601705551,
-0.13359832763671875,
-0.08513694256544113,
-0.011492961086332798,
0.052853092551231384,
-0.06575924158096313,
0.0024118167348206043,
-0.025628408417105675,
0.05723715201020241,
0.09331295639276505,
-0.02364184334874153,
-0.035237208008766174,
0.0845714583992958,
-5.635989949622015e-33,
0.005851607769727707,
0.017838044092059135,
-0.02754674293100834,
0.0850386768579483,
-0.023708220571279526,
-0.0669281855225563,
-0.01853301003575325,
0.0679437518119812,
-0.029319722205400467,
-0.057329196482896805,
0.019383501261472702,
-0.018331188708543777,
0.11660148203372955,
-0.02160412259399891,
0.0422491654753685,
0.06772158294916153,
-0.019694380462169647,
0.09729687124490738,
-0.010918480344116688,
0.08283583074808121,
0.05285977944731712,
0.10083214938640594,
-0.06997954845428467,
0.05956520140171051,
-0.04429370164871216,
-0.011953660286962986,
0.02514280565083027,
-0.04195190593600273,
-0.00982426106929779,
-0.07677170634269714,
-0.0054405792616307735,
-0.001960760448127985,
-0.013248391449451447,
-0.0031787455081939697,
-0.05575243756175041,
0.023682499304413795,
0.010286092758178711,
-0.11762116104364395,
-0.023870892822742462,
0.0916384905576706,
0.02424141950905323,
0.07219578325748444,
-0.12776492536067963,
0.0038632128853350878,
-0.03718852251768112,
0.006012219004333019,
-0.11726618558168411,
-0.016016259789466858,
0.03665190190076828,
0.0024469136260449886,
-0.008340849541127682,
0.03513205796480179,
-0.13175195455551147,
0.00642070546746254,
0.003346614772453904,
-0.13171802461147308,
-0.08877646923065186,
0.014997819438576698,
-0.07409180700778961,
0.02966967597603798,
0.020830847322940826,
0.02225439064204693,
0.020607169717550278,
0.0004593365883920342,
0.10110218077898026,
-0.09328356385231018,
-0.06663104146718979,
0.0693870559334755,
0.002976364456117153,
0.03656688332557678,
-0.059152960777282715,
-0.005104508250951767,
0.012346331961452961,
-0.01174376904964447,
0.017815737053751945,
-0.05462699383497238,
-0.0112965889275074,
0.0009278649231418967,
-0.05282074585556984,
-0.03831935301423073,
0.022299906238913536,
-0.02543053589761257,
0.005381298717111349,
0.020402146503329277,
-0.036063000559806824,
0.07285410910844803,
0.05168403312563896,
0.033609580248594284,
-0.022621294483542442,
0.015100739896297455,
-0.01221871841698885,
0.023965835571289062,
0.020615961402654648,
0.05601101741194725,
-0.014462507329881191,
-5.458599261487507e-8,
-0.025829801335930824,
-0.014570826664566994,
-0.09870534390211105,
0.08639418333768845,
-0.0956488773226738,
-0.053666338324546814,
-0.037311650812625885,
0.011618697084486485,
-0.10026136785745621,
0.00643803458660841,
0.02711229957640171,
0.06454584002494812,
-0.06338423490524292,
0.03766903653740883,
-0.04582413658499718,
0.07433228939771652,
0.015307645313441753,
0.07612131536006927,
0.04511244595050812,
-0.019379211589694023,
0.07697134464979172,
-0.0007861059857532382,
-0.0006217106129042804,
0.06036820635199547,
-0.0244965348392725,
0.0445592887699604,
-0.07470093667507172,
0.04682496190071106,
-0.013106434606015682,
-0.006334743928164244,
0.005991121754050255,
-0.02533784694969654,
0.009336506016552448,
-0.09194353967905045,
0.04406038299202919,
0.06531979888677597,
0.00004152494148002006,
0.018785608932375908,
0.028135469183325768,
0.07984134554862976,
0.011680757626891136,
-0.04177096113562584,
-0.10831189155578613,
-0.008624741807579994,
0.12618465721607208,
0.026366010308265686,
0.00621608505025506,
-0.07273192703723907,
0.023119736462831497,
-0.03096705861389637,
0.05718128755688667,
-0.04151573032140732,
0.0010746144689619541,
-0.0009361053816974163,
0.056739047169685364,
0.008738481439650059,
-0.015720702707767487,
0.06403397023677826,
0.06282826513051987,
-0.05014368146657944,
0.06904750317335129,
0.01902722381055355,
0.04094229266047478,
-0.024734793230891228
] |
microsoft/BiomedVLP-CXR-BERT-general | 93af83cefc6d3f7d0ef9a0b78b0d579452c6a546 | 2022-07-11T14:52:52.000Z | [
"pytorch",
"bert",
"fill-mask",
"en",
"arxiv:2204.09817",
"arxiv:2103.00020",
"transformers",
"exbert",
"license:mit",
"autotrain_compatible"
] | fill-mask | false | microsoft | null | microsoft/BiomedVLP-CXR-BERT-general | 7,374 | 5 | transformers | ---
language: en
tags:
- exbert
license: mit
widget:
- text: "Left pleural effusion with adjacent [MASK]."
example_title: "Radiology 1"
- text: "Heart size normal and lungs are [MASK]."
example_title: "Radiology 2"
- text: "[MASK] is a tumor suppressor gene."
example_title: "Biomedical"
- text: "The patient was on [MASK] for chronic atrial fibrillation"
example_title: "Medication"
---
# CXR-BERT-general
[CXR-BERT](https://arxiv.org/abs/2204.09817) is a chest X-ray (CXR) domain-specific language model that makes use of an improved vocabulary, novel pretraining procedure, weight regularization, and text augmentations. The resulting model demonstrates improved performance on radiology natural language inference, radiology masked language model token prediction, and downstream vision-language processing tasks such as zero-shot phrase grounding and image classification.
First, we pretrain **CXR-BERT-general** from a randomly initialized BERT model via Masked Language Modeling (MLM) on abstracts [PubMed](https://pubmed.ncbi.nlm.nih.gov/) and clinical notes from the publicly-available [MIMIC-III](https://physionet.org/content/mimiciii/1.4/) and [MIMIC-CXR](https://physionet.org/content/mimic-cxr/). In that regard, the general model is expected be applicable for research in clinical domains other than the chest radiology through domain specific fine-tuning.
**CXR-BERT-specialized** is continually pretrained from CXR-BERT-general to further specialize in the chest X-ray domain. At the final stage, CXR-BERT is trained in a multi-modal contrastive learning framework, similar to the [CLIP](https://arxiv.org/abs/2103.00020) framework. The latent representation of [CLS] token is utilized to align text/image embeddings.
## Model variations
| Model | Model identifier on HuggingFace | Vocabulary | Note |
| ------------------------------------------------- | ----------------------------------------------------------------------------------------------------------- | -------------- | --------------------------------------------------------- |
| CXR-BERT-general | [microsoft/BiomedVLP-CXR-BERT-general](https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-general) | PubMed & MIMIC | Pretrained for biomedical literature and clinical domains |
| CXR-BERT-specialized (after multi-modal training) | [microsoft/BiomedVLP-CXR-BERT-specialized](https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-specialized) | PubMed & MIMIC | Pretrained for chest X-ray domain |
## Citation
The corresponding manuscript is accepted to be presented at the [**European Conference on Computer Vision (ECCV) 2022**](https://eccv2022.ecva.net/)
```bibtex
@misc{https://doi.org/10.48550/arxiv.2204.09817,
doi = {10.48550/ARXIV.2204.09817},
url = {https://arxiv.org/abs/2204.09817},
author = {Boecking, Benedikt and Usuyama, Naoto and Bannur, Shruthi and Castro, Daniel C. and Schwaighofer, Anton and Hyland, Stephanie and Wetscherek, Maria and Naumann, Tristan and Nori, Aditya and Alvarez-Valle, Javier and Poon, Hoifung and Oktay, Ozan},
title = {Making the Most of Text Semantics to Improve Biomedical Vision-Language Processing},
publisher = {arXiv},
year = {2022},
}
```
## Model Use
### Intended Use
This model is intended to be used solely for (I) future research on visual-language processing and (II) reproducibility of the experimental results reported in the reference paper.
#### Primary Intended Use
The primary intended use is to support AI researchers building on top of this work. CXR-BERT and its associated models should be helpful for exploring various clinical NLP & VLP research questions, especially in the radiology domain.
#### Out-of-Scope Use
**Any** deployed use case of the model --- commercial or otherwise --- is currently out of scope. Although we evaluated the models using a broad set of publicly-available research benchmarks, the models and evaluations are not intended for deployed use cases. Please refer to [the associated paper](https://arxiv.org/abs/2204.09817) for more details.
## Data
This model builds upon existing publicly-available datasets:
- [PubMed](https://pubmed.ncbi.nlm.nih.gov/)
- [MIMIC-III](https://physionet.org/content/mimiciii/)
- [MIMIC-CXR](https://physionet.org/content/mimic-cxr/)
These datasets reflect a broad variety of sources ranging from biomedical abstracts to intensive care unit notes to chest X-ray radiology notes. The radiology notes are accompanied with their associated chest x-ray DICOM images in MIMIC-CXR dataset.
## Performance
We demonstrate that this language model achieves state-of-the-art results in radiology natural language inference through its improved vocabulary and novel language pretraining objective leveraging semantics and discourse characteristics in radiology reports.
A highlight of comparison to other common models, including [ClinicalBERT](https://aka.ms/clinicalbert) and [PubMedBERT](https://aka.ms/pubmedbert):
| | RadNLI accuracy (MedNLI transfer) | Mask prediction accuracy | Avg. # tokens after tokenization | Vocabulary size |
| ----------------------------------------------- | :-------------------------------: | :----------------------: | :------------------------------: | :-------------: |
| RadNLI baseline | 53.30 | - | - | - |
| ClinicalBERT | 47.67 | 39.84 | 78.98 (+38.15%) | 28,996 |
| PubMedBERT | 57.71 | 35.24 | 63.55 (+11.16%) | 28,895 |
| CXR-BERT (after Phase-III) | 60.46 | 77.72 | 58.07 (+1.59%) | 30,522 |
| **CXR-BERT (after Phase-III + Joint Training)** | **65.21** | **81.58** | **58.07 (+1.59%)** | 30,522 |
CXR-BERT also contributes to better vision-language representation learning through its improved text encoding capability. Below is the zero-shot phrase grounding performance on the **MS-CXR** dataset, which evaluates the quality of image-text latent representations.
| Vision–Language Pretraining Method | Text Encoder | MS-CXR Phrase Grounding (Avg. CNR Score) |
| ---------------------------------- | ------------ | :--------------------------------------: |
| Baseline | ClinicalBERT | 0.769 |
| Baseline | PubMedBERT | 0.773 |
| ConVIRT | ClinicalBERT | 0.818 |
| GLoRIA | ClinicalBERT | 0.930 |
| **BioViL** | **CXR-BERT** | **1.027** |
| **BioViL-L** | **CXR-BERT** | **1.142** |
Additional details about performance can be found in the corresponding paper, [Making the Most of Text Semantics to Improve Biomedical Vision-Language Processing](https://arxiv.org/abs/2204.09817).
## Limitations
This model was developed using English corpora, and thus can be considered English-only.
## Further information
Please refer to the corresponding paper, ["Making the Most of Text Semantics to Improve Biomedical Vision-Language Processing", ECCV'22](https://arxiv.org/abs/2204.09817) for additional details on the model training and evaluation.
For additional inference pipelines with CXR-BERT, please refer to the [HI-ML GitHub](https://aka.ms/biovil-code) repository. The associated source files will soon be accessible through this link.
| [
-0.0701243132352829,
-0.0383235402405262,
0.05087171494960785,
0.0055551836267113686,
0.017142485827207565,
0.06022603437304497,
0.044871166348457336,
0.05579875782132149,
0.023235656321048737,
-0.05574702471494675,
-0.021382983773946762,
-0.05434630438685417,
0.04933801293373108,
0.10630960762500763,
0.0022768029011785984,
0.014374498277902603,
0.00024428925826214254,
-0.03357589617371559,
-0.05819039046764374,
-0.005525646265596151,
0.06423406302928925,
0.12333161383867264,
0.06626744568347931,
-0.062380351126194,
0.004063674248754978,
-0.024524647742509842,
-0.09154132008552551,
-0.11987064778804779,
0.07099933177232742,
0.07103786617517471,
0.05518053472042084,
0.017113618552684784,
0.06554454565048218,
0.03806370869278908,
0.006997124291956425,
0.05099182948470116,
-0.009226914495229721,
0.10185087472200394,
0.006745828315615654,
0.046337150037288666,
-0.024169553071260452,
-0.025531938299536705,
-0.04359406977891922,
0.033202677965164185,
0.06984157115221024,
-0.058701712638139725,
-0.038765788078308105,
-0.012334158644080162,
-0.06259652227163315,
0.04497160762548447,
-0.08711012452840805,
-0.02400883473455906,
-0.021168529987335205,
0.04454899579286575,
0.00693737156689167,
0.02427515760064125,
-0.033899348229169846,
-0.07107941806316376,
0.007615069393068552,
-0.1046130359172821,
-0.09009154886007309,
-0.07265626639127731,
0.025217510759830475,
0.04494946822524071,
-0.03354182466864586,
-0.01142039056867361,
-0.011135019361972809,
0.015920892357826233,
-0.014759605750441551,
0.10312564671039581,
-0.03669147565960884,
0.050185274332761765,
0.08463411033153534,
0.05511149391531944,
-0.0035631260834634304,
-0.04671766236424446,
0.10201261937618256,
-0.0001136927239713259,
0.021585950627923012,
-0.05822383239865303,
0.0056990631856024265,
0.014067467302083969,
0.06537342816591263,
0.005690190941095352,
0.08586270362138748,
0.040482085198163986,
0.018053214997053146,
-0.04182232543826103,
-0.07746293395757675,
0.012230142019689083,
-0.007929843850433826,
-0.09973298758268356,
0.05814465507864952,
0.004839511122554541,
0.0644865334033966,
-0.03639010339975357,
0.03324047848582268,
-0.0556345134973526,
0.0026945665013045073,
0.044038839638233185,
0.06639222055673599,
-0.027195394039154053,
0.015339081175625324,
-0.046166881918907166,
0.05614236369729042,
0.00615669647231698,
-0.016218991950154305,
-0.030207043513655663,
0.03709559142589569,
-0.033804770559072495,
0.007984647527337074,
0.03310617804527283,
0.005208468995988369,
-0.09848174452781677,
0.01174100674688816,
0.06285619735717773,
0.003931721206754446,
-0.03869186341762543,
0.041955266147851944,
0.10606600344181061,
0.02990599349141121,
-0.06682725250720978,
-0.0026134727522730827,
-0.01501578651368618,
-0.004727615509182215,
-0.055353667587041855,
0.0033880341798067093,
2.202421460393e-33,
-0.013518650084733963,
0.010753878392279148,
0.027709029614925385,
0.02257905900478363,
0.009928802028298378,
0.017948221415281296,
-0.035201530903577805,
0.020562488585710526,
-0.053179770708084106,
-0.043101079761981964,
-0.010571104474365711,
0.024914706125855446,
-0.061228007078170776,
0.10784752666950226,
-0.04313759133219719,
0.030573947355151176,
-0.06978147476911545,
0.1054665818810463,
0.012765510939061642,
-0.0160590298473835,
0.1144743263721466,
0.022648504003882408,
-0.028424039483070374,
-0.032779011875391006,
-0.0406544990837574,
0.05080929026007652,
0.04658845067024231,
-0.09234998375177383,
-0.035501666367053986,
0.018235277384519577,
-0.18317054212093353,
0.05896933376789093,
0.03079610876739025,
0.010619902983307838,
-0.029450658708810806,
-0.04232843592762947,
0.0036257191095501184,
-0.04721872881054878,
0.024233629927039146,
0.014400075189769268,
-0.04033033922314644,
0.04958132281899452,
-0.07828981429338455,
-0.09129258245229721,
0.01795440912246704,
-0.06693536043167114,
-0.012496422044932842,
-0.00978002417832613,
-0.03590923175215721,
-0.023427121341228485,
0.06549752503633499,
-0.01010553352534771,
-0.04746982827782631,
0.0023551308549940586,
0.04194442555308342,
-0.0025933925062417984,
-0.01915709115564823,
0.026434259489178658,
0.01181792002171278,
-0.0017392718000337481,
0.05647803470492363,
-0.010396563448011875,
0.026634886860847473,
0.06832430511713028,
0.02352897822856903,
-0.04484160616993904,
-0.04298000782728195,
-0.031037412583827972,
-0.0019993861205875874,
0.041683170944452286,
-0.055313512682914734,
0.022703301161527634,
0.013497263193130493,
-0.01680869422852993,
0.04027113318443298,
-0.03711787238717079,
-0.02499230019748211,
-0.01234485488384962,
-0.08505246788263321,
0.02851683273911476,
-0.021944701671600342,
-0.016190871596336365,
-0.09732849150896072,
-0.02083946205675602,
-0.07879532128572464,
-0.06307682394981384,
0.05114853382110596,
-0.0617557056248188,
0.0026957520749419928,
-0.013559873215854168,
0.05176105722784996,
-0.06735101342201233,
-0.03019867278635502,
0.009693537838757038,
-0.09028380364179611,
-2.504706628533667e-33,
-0.07910501211881638,
0.06078305095434189,
-0.031607262790203094,
0.02182597666978836,
-0.04744447395205498,
-0.06667675077915192,
0.0779995545744896,
0.11884447187185287,
0.06369582563638687,
-0.06211436539888382,
0.021599307656288147,
-0.011059023439884186,
-0.08057952672243118,
-0.0048926156014204025,
0.011465705931186676,
0.06294003874063492,
0.018375219777226448,
0.028294440358877182,
-0.06339272111654282,
0.021747494116425514,
0.06993301957845688,
-0.02092193067073822,
-0.11059112101793289,
0.07584333419799805,
-0.03126908093690872,
0.10552774369716644,
-0.010573985055088997,
0.04422107711434364,
0.03284105286002159,
-0.051139719784259796,
-0.06391460448503494,
0.05112801492214203,
-0.03150399029254913,
0.061570245772600174,
-0.02882855385541916,
0.0192246176302433,
0.025112468749284744,
0.03048907034099102,
-0.0521400049328804,
-0.039431773126125336,
0.11924707889556885,
0.03308975324034691,
-0.06225092336535454,
0.03766121715307236,
-0.01827455870807171,
-0.038620274513959885,
-0.06329593062400818,
-0.0634743794798851,
0.07251812517642975,
-0.0360114760696888,
-0.020930064842104912,
-0.051873162388801575,
-0.07509849220514297,
-0.010438792407512665,
-0.100680410861969,
-0.08139881491661072,
0.009306182153522968,
-0.05765783041715622,
-0.0452786386013031,
0.017267292365431786,
-0.012930488213896751,
0.018739450722932816,
0.02072840929031372,
0.0007186962757259607,
0.026974258944392204,
-0.04218290373682976,
-0.005497942212969065,
0.07979901880025864,
-0.025803280994296074,
0.007736348081380129,
0.023164566606283188,
0.0077587394043803215,
-0.008797595277428627,
0.019311843439936638,
0.05674830451607704,
0.09041054546833038,
0.054162442684173584,
-0.11390125006437302,
-0.08528432250022888,
-0.02928636409342289,
-0.039657533168792725,
-0.06635190546512604,
0.07586927711963654,
0.0461280532181263,
-0.019473616033792496,
0.11269278824329376,
0.026015162467956543,
0.009029356762766838,
0.02545551024377346,
-0.002386419801041484,
-0.008118106052279472,
0.024641791358590126,
-0.011123714037239552,
0.02940523251891136,
-0.002152712782844901,
-4.325220714918032e-8,
-0.07975323498249054,
-0.03885553404688835,
-0.04588550329208374,
0.008528077974915504,
-0.08061011880636215,
-0.057401735335588455,
-0.048574987798929214,
-0.004718649201095104,
-0.010756322182714939,
-0.06953026354312897,
0.0569431371986866,
0.07169918715953827,
-0.04528890550136566,
-0.05355938896536827,
0.05925380066037178,
0.017925670370459557,
-0.06712205708026886,
0.0489623136818409,
0.03302254527807236,
-0.09055570513010025,
-0.029935041442513466,
0.024577336385846138,
0.04437798634171486,
-0.016648421064019203,
-0.009716810658574104,
-0.04811430349946022,
0.013531828299164772,
0.10599657148122787,
0.038289397954940796,
0.006219145841896534,
-0.016882887110114098,
0.04955453798174858,
-0.05060775578022003,
0.06975358724594116,
0.028780518099665642,
0.01533749420195818,
0.0026381725911051035,
-0.05354943871498108,
-0.03879857808351517,
0.07609787583351135,
0.12041382491588593,
0.031269799917936325,
-0.03709600493311882,
-0.024850590154528618,
0.048507653176784515,
-0.015272578224539757,
0.0027800174430012703,
-0.11202359199523926,
0.08121341466903687,
-0.07203996926546097,
0.042567186057567596,
-0.01762539893388748,
-0.003436416620388627,
-0.0050295330584049225,
-0.04402598738670349,
0.069290392100811,
-0.05705093592405319,
0.03138197958469391,
0.01984354294836521,
-0.006765387486666441,
-0.003900988958775997,
0.051543671637773514,
0.047452833503484726,
0.0410580150783062
] |
kykim/electra-kor-base | 8599418d72f5dcb21ae3972ba2405f88c819b195 | 2021-01-22T00:28:50.000Z | [
"pytorch",
"tf",
"electra",
"pretraining",
"ko",
"transformers"
] | null | false | kykim | null | kykim/electra-kor-base | 7,372 | 1 | transformers | ---
language: ko
---
# Electra base model for Korean
* 70GB Korean text dataset and 42000 lower-cased subwords are used
* Check the model performance and other language models for Korean in [github](https://github.com/kiyoungkim1/LM-kor)
```python
from transformers import ElectraTokenizerFast, ElectraModel
tokenizer_electra = ElectraTokenizerFast.from_pretrained("kykim/electra-kor-base")
model = ElectraModel.from_pretrained("kykim/electra-kor-base")
``` | [
-0.07287156581878662,
0.0035638681147247553,
0.004675906151533127,
0.008773989044129848,
0.014719270169734955,
-0.019980445504188538,
0.015259988605976105,
-0.02824963629245758,
-0.021806946024298668,
-0.03495234623551369,
0.08799552172422409,
-0.046033311635255814,
0.06217537447810173,
-0.029079372063279152,
0.034425992518663406,
0.030368339270353317,
-0.015818506479263306,
0.039132390171289444,
-0.07352828979492188,
-0.10537374764680862,
0.09011158347129822,
-0.008969795890152454,
0.027087170630693436,
-0.03562029451131821,
0.09080711007118225,
-0.015933196991682053,
0.015248638577759266,
0.07772137224674225,
0.03919166699051857,
-0.04082128405570984,
0.049920838326215744,
0.06699640303850174,
0.06600777804851532,
0.025390053167939186,
0.02668829821050167,
0.038306064903736115,
-0.10207540541887283,
-0.029769448563456535,
-0.024392981082201004,
0.031440649181604385,
0.015714578330516815,
-0.052587464451789856,
0.030850034207105637,
-0.00530932517722249,
0.08764664828777313,
-0.02232256717979908,
-0.06279347836971283,
-0.047558385878801346,
-0.015391684137284756,
-0.03982583433389664,
-0.0007942987722344697,
-0.012637178413569927,
0.02216709963977337,
0.08133652061223984,
-0.06795182824134827,
-0.07466685771942139,
-0.031965479254722595,
0.06473009288311005,
0.07030888646841049,
-0.024070240557193756,
-0.08895215392112732,
0.016652433201670647,
-0.007795295678079128,
0.01486336998641491,
-0.11097875982522964,
-0.01506253145635128,
0.08129944652318954,
0.0015130833489820361,
0.01619734801352024,
-0.006249179597944021,
0.00201188656501472,
0.030083727091550827,
0.030782682821154594,
0.08240585029125214,
-0.05546216294169426,
-0.042844053357839584,
0.11799094080924988,
-0.0003015344263985753,
0.025926152244210243,
-0.04935654625296593,
0.005057896953076124,
-0.06441196799278259,
-0.016519954428076744,
-0.001181308412924409,
0.020781632512807846,
-0.04697979986667633,
-0.02244134247303009,
-0.050313275307416916,
-0.04768437147140503,
0.026003573089838028,
-0.00519406795501709,
-0.06399918347597122,
0.06594785302877426,
-0.028581414371728897,
-0.09174244850873947,
0.021214986220002174,
-0.04574419930577278,
0.06217777356505394,
-0.006306890398263931,
0.03655568137764931,
0.002044559922069311,
0.06809774786233902,
0.01554865948855877,
-0.01152907032519579,
-0.1479181945323944,
-0.13640327751636505,
0.05403626337647438,
0.021712204441428185,
0.014150046743452549,
0.027769550681114197,
0.05556607246398926,
-0.0050616697408258915,
-0.014080297201871872,
-0.03462759405374527,
0.03595900535583496,
-0.013924410566687584,
-0.010031800717115402,
-0.03359537944197655,
0.037852756679058075,
0.10169712454080582,
-0.021979136392474174,
-0.0305023156106472,
-0.03264708071947098,
-0.030837366357445717,
-0.023675668984651566,
0.007969006896018982,
0.013753537088632584,
4.359282963800036e-33,
0.0297540370374918,
0.05069343373179436,
0.02011682838201523,
-0.01946347765624523,
-0.0841216892004013,
-0.0447152778506279,
0.0030395144131034613,
0.04342595115303993,
-0.09653832763433456,
-0.00501743471249938,
-0.10295287519693375,
0.11438485980033875,
-0.06141754239797592,
0.043476205319166183,
-0.009878942742943764,
-0.02810676209628582,
-0.029000522568821907,
0.0074334642849862576,
-0.005070623941719532,
0.02428239770233631,
0.08142109960317612,
0.011714368127286434,
0.03213905915617943,
-0.013531990349292755,
-0.04804939031600952,
-0.03619414195418358,
0.06845215708017349,
-0.11865083873271942,
-0.04411068186163902,
0.04694812744855881,
-0.044467587023973465,
-0.02007238194346428,
0.03999677672982216,
0.06980811804533005,
-0.05278172716498375,
-0.03063291870057583,
-0.01402778085321188,
-0.007075336761772633,
-0.011387605220079422,
-0.11524307727813721,
0.011483992449939251,
0.042530715465545654,
0.013889734633266926,
0.030505482107400894,
-0.020367810502648354,
0.0715366080403328,
-0.035417523235082626,
-0.024942312389612198,
0.084213025867939,
0.04302743822336197,
0.050788965076208115,
-0.018403297290205956,
-0.03396067023277283,
0.09457731992006302,
0.06224207580089569,
0.08004961162805557,
0.03079313412308693,
-0.019473500549793243,
0.07236657291650772,
-0.02200871892273426,
-0.07936590909957886,
0.09127447754144669,
0.07283437252044678,
0.027580836787819862,
0.07982702553272247,
-0.03737593814730644,
0.0002464119461365044,
-0.06154222413897514,
-0.07235036790370941,
-0.04621618241071701,
-0.007613210938870907,
-0.06352628022432327,
0.03466140851378441,
0.033983223140239716,
0.01579226925969124,
-0.04233798757195473,
0.0008854868356138468,
-0.03276599571108818,
-0.07218223065137863,
0.008519618771970272,
0.006157598923891783,
-0.08867514133453369,
0.00353956688195467,
-0.048761770129203796,
0.038314756006002426,
-0.0385790579020977,
0.005935794673860073,
-0.0417153537273407,
-0.0032823742367327213,
-0.019377874210476875,
-0.0075928084552288055,
0.008056736551225185,
-0.04184277355670929,
-0.059417709708213806,
-0.0214920062571764,
-4.546978187557662e-33,
0.04864942282438278,
0.0030266926623880863,
0.008031507954001427,
0.07440181821584702,
-0.02303924970328808,
-0.043390460312366486,
0.047227222472429276,
0.1490616798400879,
0.001716139609925449,
0.006089956499636173,
0.02171507477760315,
-0.05253990739583969,
0.10833166539669037,
-0.06528405845165253,
0.10766569525003433,
-0.0062555549666285515,
-0.00515064038336277,
0.09957517683506012,
0.0916081890463829,
0.1033894419670105,
-0.08027001470327377,
0.05567910522222519,
-0.10352448374032974,
0.04909922555088997,
-0.030789781361818314,
0.04193083569407463,
-0.05289440602064133,
0.042772430926561356,
0.0264846570789814,
-0.0000756962108425796,
-0.0732269287109375,
-0.013260476291179657,
-0.05855274200439453,
0.01650100387632847,
-0.08254621177911758,
-0.08019761741161346,
-0.005838638637214899,
-0.010805921629071236,
0.017963485792279243,
0.015046173706650734,
0.012290606275200844,
0.05000189319252968,
-0.06590761244297028,
0.02100347727537155,
0.024419089779257774,
-0.07915367931127548,
-0.055341046303510666,
-0.033750832080841064,
0.04310521483421326,
-0.06571074575185776,
0.04398954287171364,
0.015994004905223846,
-0.07873998582363129,
0.006512795574963093,
-0.008472493849694729,
-0.054424602538347244,
-0.011891841888427734,
-0.0457666777074337,
-0.052972108125686646,
-0.06463229656219482,
-0.01763896271586418,
-0.10913713276386261,
0.09087204188108444,
-0.033205751329660416,
-0.007963228970766068,
-0.042466096580028534,
0.13906347751617432,
0.012887272983789444,
0.02485339343547821,
-0.02224542200565338,
-0.003422848880290985,
-0.023636097088456154,
0.02648763544857502,
0.036479197442531586,
-0.04586094245314598,
0.02073628641664982,
-0.08161408454179764,
0.04050496965646744,
0.039582282304763794,
-0.06093679741024971,
-0.02888585813343525,
0.08660174161195755,
0.024296574294567108,
0.008808706887066364,
0.026650097221136093,
0.02670995146036148,
-0.029780004173517227,
0.04353097081184387,
0.06701669096946716,
-0.04169566184282303,
0.01802247203886509,
0.047306034713983536,
0.04944339767098427,
0.08007845282554626,
-0.008457575924694538,
-4.2358021090649345e-8,
0.030071310698986053,
-0.02733701653778553,
0.00021939919679425657,
0.03752416372299194,
-0.011051928624510765,
-0.04505518823862076,
-0.016655761748552322,
0.0054325261153280735,
0.006438645999878645,
-0.08643238246440887,
0.10033725947141647,
0.03949831798672676,
-0.06165815144777298,
0.002289922907948494,
0.012863843701779842,
0.01799248903989792,
0.038981273770332336,
0.14853863418102264,
-0.01666879653930664,
0.0422663539648056,
0.029596099629998207,
0.05578111484646797,
0.004172260407358408,
-0.05518582835793495,
-0.007388736121356487,
0.04913172870874405,
-0.02124260552227497,
0.06017427146434784,
0.003020877717062831,
-0.13613109290599823,
-0.05698677524924278,
-0.009222528897225857,
-0.05784563347697258,
-0.012279889546334743,
-0.0036192508414387703,
0.03976453095674515,
-0.005167318508028984,
-0.08050897717475891,
-0.01744483970105648,
0.031592026352882385,
0.036179542541503906,
-0.07527460902929306,
-0.0593469962477684,
-0.005912500899285078,
-0.013235250487923622,
-0.034817252308130264,
0.00009517440776107833,
-0.062375638633966446,
0.02674114517867565,
0.03899248689413071,
0.011406343430280685,
-0.04380572959780693,
-0.1497616469860077,
-0.034454502165317535,
0.02608492784202099,
0.022471090778708458,
-0.03116588108241558,
-0.013816926628351212,
0.01583302952349186,
-0.017767438665032387,
0.010908393189311028,
0.022598443552851677,
-0.024740325286984444,
0.0363856703042984
] |
google/bert_uncased_L-6_H-768_A-12 | c132ecc85d3d73b460b741cc50aa9ed18446c335 | 2021-05-19T17:34:36.000Z | [
"pytorch",
"jax",
"bert",
"arxiv:1908.08962",
"transformers",
"license:apache-2.0"
] | null | false | google | null | google/bert_uncased_L-6_H-768_A-12 | 7,350 | null | transformers | ---
thumbnail: https://huggingface.co/front/thumbnails/google.png
license: apache-2.0
---
BERT Miniatures
===
This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking).
We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher.
Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity.
You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below:
| |H=128|H=256|H=512|H=768|
|---|:---:|:---:|:---:|:---:|
| **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]|
| **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]|
| **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]|
| **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]|
| **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]|
| **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]|
Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model.
Here are the corresponding GLUE scores on the test set:
|Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX|
|---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0|
|BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1|
|BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6|
|BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5|
For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs:
- batch sizes: 8, 16, 32, 64, 128
- learning rates: 3e-4, 1e-4, 5e-5, 3e-5
If you use these models, please cite the following paper:
```
@article{turc2019,
title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models},
author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
journal={arXiv preprint arXiv:1908.08962v2 },
year={2019}
}
```
[2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2
[2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4
[2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8
[2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12
[4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2
[4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4
[4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8
[4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12
[6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2
[6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4
[6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8
[6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12
[8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2
[8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4
[8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8
[8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12
[10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2
[10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4
[10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8
[10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12
[12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2
[12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4
[12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8
[12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
| [
-0.02777470275759697,
-0.02693094126880169,
0.07438826560974121,
0.03228488564491272,
-0.0023304771166294813,
0.018128493800759315,
-0.06253628432750702,
0.0994548574090004,
-0.014644814655184746,
0.018868697807192802,
-0.015814494341611862,
0.03585591912269592,
0.03645862638950348,
0.04551365599036217,
-0.014007769525051117,
0.02179890125989914,
0.07545263320207596,
0.024630775675177574,
-0.08102796226739883,
-0.038678135722875595,
0.04442288726568222,
0.004127463325858116,
0.035637278109788895,
-0.06602323800325394,
-0.0036878888495266438,
-0.04231955111026764,
-0.10835908353328705,
-0.10179445147514343,
0.1127767413854599,
0.017838995903730392,
0.01322801411151886,
-0.0231491569429636,
0.060954611748456955,
0.10242877900600433,
0.0375167578458786,
0.07160431146621704,
-0.007885153405368328,
0.06596683710813522,
0.08308044821023941,
0.037167150527238846,
-0.012698134407401085,
0.05730978772044182,
-0.046946585178375244,
-0.020251978188753128,
0.08908210694789886,
-0.059475671499967575,
-0.03805408999323845,
-0.05272062495350838,
-0.04246129095554352,
-0.06516197323799133,
-0.08722401410341263,
-0.0465037040412426,
-0.00350557011552155,
-0.006868511438369751,
-0.012093286029994488,
-0.017656998708844185,
-0.018602291122078896,
-0.08509580790996552,
-0.048703644424676895,
-0.05522743612527847,
-0.1006460189819336,
-0.05546271428465843,
-0.03855401650071144,
-0.02299017831683159,
-0.08375518023967743,
0.010514002293348312,
-0.0332985445857048,
0.020559493452310562,
0.02245338261127472,
0.017550311982631683,
0.02086251601576805,
0.07695921510457993,
-0.002593731041997671,
0.04768828675150871,
0.0177034679800272,
-0.08130199462175369,
0.08254873752593994,
0.01259934064000845,
0.05082662031054497,
-0.056801896542310715,
0.003977705724537373,
-0.011792338453233242,
0.061928100883960724,
-0.027844129130244255,
0.03977213054895401,
-0.01979219727218151,
0.050365421921014786,
-0.03929493576288223,
0.0031530733685940504,
-0.041712965816259384,
-0.025899091735482216,
-0.02879168465733528,
0.0234839990735054,
0.01508942898362875,
0.041859906166791916,
-0.013815062120556831,
0.07762707024812698,
-0.06824886798858643,
-0.035266585648059845,
0.06303618848323822,
0.08460132032632828,
0.05870901793241501,
0.11230025440454483,
-0.0903414711356163,
0.07434411346912384,
0.05187731981277466,
0.025597769767045975,
0.017762847244739532,
0.06019540876150131,
-0.07116957008838654,
0.025501219555735588,
0.0264898668974638,
-0.03993377089500427,
-0.02484058029949665,
0.033353839069604874,
-0.04111992195248604,
-0.012459754012525082,
-0.032413944602012634,
0.04432254657149315,
0.08561859279870987,
0.0311464574187994,
0.010137348435819149,
0.009034326300024986,
-0.013844281435012817,
-0.037362899631261826,
0.022949982434511185,
-0.04159504920244217,
3.0798436882963647e-33,
0.010033472441136837,
0.08980696648359299,
-0.015826981514692307,
0.0021228354889899492,
0.04828347638249397,
-0.012724562548100948,
0.07859385013580322,
0.013289345428347588,
-0.04710506275296211,
0.0008750183042138815,
-0.024205293506383896,
0.040203407406806946,
-0.08776650577783585,
0.1084313839673996,
0.05108625441789627,
-0.0076477923430502415,
-0.03032587841153145,
0.09285354614257812,
0.04229235649108887,
0.02342383936047554,
0.012891994789242744,
-0.03050696663558483,
0.021354084834456444,
-0.08490459620952606,
-0.04626283422112465,
-0.004968647845089436,
0.06569510698318481,
0.006347084417939186,
-0.05621005594730377,
0.04938972741365433,
-0.09828261286020279,
0.04791073501110077,
0.005325495731085539,
0.0073667350225150585,
-0.009293892420828342,
-0.030588563531637192,
-0.025204559788107872,
-0.03599413484334946,
0.06201314181089401,
-0.055159613490104675,
0.015916872769594193,
0.08668506890535355,
0.01913357712328434,
-0.03226336091756821,
0.019701041281223297,
0.016111237928271294,
0.07878092676401138,
0.027088068425655365,
-0.03437655791640282,
-0.04213705286383629,
0.038557808846235275,
0.018548857420682907,
-0.09642824530601501,
-0.02115079015493393,
0.014828594401478767,
-0.014169528149068356,
0.052391670644283295,
-0.021084407344460487,
0.018860751762986183,
0.0188959501683712,
-0.018108483403921127,
-0.017935508862137794,
-0.0007771972450427711,
0.0875239372253418,
0.05831224471330643,
-0.01666453666985035,
-0.03579762578010559,
0.019875947386026382,
-0.03154779225587845,
0.024714933708310127,
-0.04408795386552811,
-0.017733389511704445,
0.031613849103450775,
-0.034551091492176056,
0.019006161019206047,
-0.09389360249042511,
0.0749051496386528,
-0.06782030314207077,
-0.060423046350479126,
-0.0027907630428671837,
0.036781832575798035,
0.03104851022362709,
-0.06610022485256195,
-0.07133632153272629,
-0.09378468245267868,
-0.05997026711702347,
0.06689010560512543,
-0.027257995679974556,
0.019673382863402367,
0.02110666036605835,
0.0042736465111374855,
-0.07312818616628647,
0.004901031032204628,
0.009528765454888344,
-0.08911892771720886,
-2.745649909673619e-33,
0.0021529693622142076,
0.03855104371905327,
-0.10308390855789185,
0.050320789217948914,
-0.04681287705898285,
-0.04624652862548828,
0.04134273901581764,
0.15953823924064636,
-0.05114345625042915,
-0.06880908459424973,
-0.03467176482081413,
-0.01697215437889099,
-0.02391764335334301,
-0.08151818066835403,
-0.013180517591536045,
0.008677455596625805,
-0.00866649392992258,
0.0117244403809309,
0.06523464620113373,
-0.031274884939193726,
0.06625952571630478,
-0.050342388451099396,
-0.05482276901602745,
0.08445682376623154,
-0.0037109581753611565,
0.08581460267305374,
-0.1056312620639801,
-0.006267915479838848,
0.0016805074410513043,
0.03180089220404625,
-0.037861187011003494,
-0.026890192180871964,
0.029224365949630737,
0.041481297463178635,
-0.05287330225110054,
0.028274059295654297,
-0.004168998915702105,
-0.04711843654513359,
0.028253236785531044,
0.026713063940405846,
0.05356067046523094,
-0.07454729825258255,
0.01215335913002491,
0.008674802258610725,
0.002732679480686784,
-0.005528884474188089,
-0.1011095717549324,
-0.08269007503986359,
-0.00893216859549284,
-0.028915394097566605,
0.01280263438820839,
-0.03088524378836155,
-0.10103844851255417,
-0.027487996965646744,
-0.09202675521373749,
-0.08071903884410858,
-0.011788311414420605,
-0.010570026002824306,
0.040800344198942184,
0.03534208983182907,
-0.03600774705410004,
-0.08346249163150787,
-0.04663081839680672,
0.0144363883882761,
-0.0611286535859108,
-0.01945393905043602,
-0.0429740846157074,
0.06830962002277374,
-0.04516363888978958,
0.03358118236064911,
-0.04700200632214546,
-0.03670932725071907,
0.06817365437746048,
0.030344508588314056,
-0.10013546049594879,
0.05196927860379219,
-0.004978442098945379,
-0.04802384972572327,
-0.029270552098751068,
0.011249368079006672,
-0.035611048340797424,
-0.04569050669670105,
-0.007384720258414745,
0.06185262277722359,
-0.003068223362788558,
0.07179275900125504,
0.042144566774368286,
0.042808420956134796,
-0.043737392872571945,
0.1017121970653534,
-0.03529709577560425,
0.015136893838644028,
0.06037892401218414,
0.0446556992828846,
0.020039809867739677,
-5.7391801533412945e-8,
-0.020838076248764992,
0.05167875811457634,
-0.0003159099433105439,
0.032759685069322586,
-0.08053361624479294,
-0.07808814197778702,
-0.0645233765244484,
0.073664091527462,
-0.03812188282608986,
0.0739324614405632,
0.05438229441642761,
0.0640188530087471,
-0.051926061511039734,
0.03982805460691452,
0.06603474169969559,
0.08508943021297455,
-0.04874661564826965,
-0.007028104271739721,
-0.0013886261731386185,
-0.043596457690000534,
0.01172784436494112,
0.03845464810729027,
0.012406852096319199,
-0.03461853042244911,
0.06254647672176361,
-0.07115825265645981,
-0.016401374712586403,
0.15517796576023102,
-0.07044593244791031,
0.03150911629199982,
-0.028944045305252075,
0.0592564232647419,
-0.0842917189002037,
0.004482691176235676,
0.12364226579666138,
0.051830366253852844,
-0.1016145721077919,
-0.02944220043718815,
-0.0042844912968575954,
0.026145359501242638,
0.04261724650859833,
-0.0030251643620431423,
-0.05400453135371208,
-0.009814517572522163,
0.12240474671125412,
0.01839965581893921,
-0.012614627368748188,
-0.005961736664175987,
0.022503379732370377,
0.0739760547876358,
0.024917954578995705,
-0.027219194918870926,
-0.0398184210062027,
0.008865961804986,
-0.036761652678251266,
0.03012857772409916,
-0.07172215729951859,
-0.008826298639178276,
0.015618893317878246,
0.011758017353713512,
-0.004138866905122995,
0.05558526888489723,
-0.027862677350640297,
0.07714439183473587
] |
allenai/unifiedqa-t5-base | 85413ec7c7b86263cade67192224aa5fc95838ac | 2021-06-23T11:17:21.000Z | [
"pytorch",
"jax",
"t5",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | allenai | null | allenai/unifiedqa-t5-base | 7,312 | 2 | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
facebook/wmt19-en-de | b33976783993b11baabc19313275865ee87931e3 | 2020-12-11T21:39:55.000Z | [
"pytorch",
"fsmt",
"text2text-generation",
"en",
"de",
"dataset:wmt19",
"arxiv:1907.06616",
"transformers",
"translation",
"wmt19",
"facebook",
"license:apache-2.0",
"autotrain_compatible"
] | translation | false | facebook | null | facebook/wmt19-en-de | 7,310 | null | transformers | ---
language:
- en
- de
tags:
- translation
- wmt19
- facebook
license: apache-2.0
datasets:
- wmt19
metrics:
- bleu
thumbnail: https://huggingface.co/front/thumbnails/facebook.png
---
# FSMT
## Model description
This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for en-de.
For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).
The abbreviation FSMT stands for FairSeqMachineTranslation
All four models are available:
* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)
* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)
* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)
* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)
## Intended uses & limitations
#### How to use
```python
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = "facebook/wmt19-en-de"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
input = "Machine learning is great, isn't it?"
input_ids = tokenizer.encode(input, return_tensors="pt")
outputs = model.generate(input_ids)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded) # Maschinelles Lernen ist großartig, oder?
```
#### Limitations and bias
- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)
## Training data
Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).
## Eval results
pair | fairseq | transformers
-------|---------|----------
en-de | [43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862) | 42.83
The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:
- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).
- re-ranking
The score was calculated using this code:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
export PAIR=en-de
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=15
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
```
note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.
## Data Sources
- [training, etc.](http://www.statmt.org/wmt19/)
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)
### BibTeX entry and citation info
```bibtex
@inproceedings{...,
year={2020},
title={Facebook FAIR's WMT19 News Translation Task Submission},
author={Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey},
booktitle={Proc. of WMT},
}
```
## TODO
- port model ensemble (fairseq uses 4 model checkpoints)
| [
-0.08782295882701874,
-0.016733264550566673,
-0.03767985850572586,
-0.011975746601819992,
0.036806050688028336,
-0.027734335511922836,
0.011203650385141373,
0.06087851524353027,
-0.03000461682677269,
-0.039158303290605545,
0.08723749965429306,
-0.09838131070137024,
0.02246216870844364,
0.0029171386267989874,
-0.01949751377105713,
-0.004354056436568499,
0.019777778536081314,
-0.0024147226940840483,
-0.05202275514602661,
-0.023850128054618835,
0.027387050911784172,
0.047435957938432693,
0.04675665497779846,
0.006877597887068987,
0.040844399482011795,
0.004007041919976473,
-0.07671167701482773,
0.038604140281677246,
0.0400552824139595,
-0.05890890583395958,
0.04809700325131416,
0.09672138094902039,
-0.006693309172987938,
0.06414614617824554,
0.045593876391649246,
0.04875725135207176,
0.01669267751276493,
-0.11367594450712204,
-0.041243430227041245,
-0.04054935649037361,
-0.00012235915346536785,
-0.011918256990611553,
0.024396289139986038,
0.01823253184556961,
0.030844442546367645,
0.011892832815647125,
0.0016825947677716613,
-0.0027617134619504213,
-0.09649652987718582,
0.05911120027303696,
-0.0355091318488121,
-0.07180023938417435,
-0.026813622564077377,
0.12075193971395493,
0.07662138342857361,
0.013673794455826283,
-0.008241347037255764,
0.013861043378710747,
-0.03592013940215111,
-0.009647049941122532,
-0.04225455969572067,
0.0023466316051781178,
-0.11341772228479385,
0.0002722477074712515,
-0.015196644701063633,
-0.006224773358553648,
0.00044999123201705515,
0.014857351779937744,
0.006224268581718206,
-0.06344705820083618,
-0.05988522619009018,
0.0008246799116022885,
-0.0500788539648056,
0.07609119266271591,
0.013714374043047428,
0.038870666176080704,
0.054750148206949234,
-0.007262200582772493,
0.027891647070646286,
-0.09786155074834824,
0.07209862023591995,
0.019849395379424095,
0.10033397376537323,
-0.019615719094872475,
0.063386470079422,
-0.037617333233356476,
-0.05022528022527695,
0.03008902817964554,
0.05830271542072296,
-0.0055658770725131035,
-0.055211037397384644,
-0.010184244252741337,
-0.040295206010341644,
0.06347216665744781,
-0.039743755012750626,
0.034930501133203506,
0.05356002599000931,
0.07049992680549622,
0.04000493139028549,
0.12693816423416138,
0.02929750643670559,
0.03811123967170715,
-0.0005466819275170565,
0.035124026238918304,
-0.04263537749648094,
-0.07610902935266495,
0.05932445824146271,
0.10679808259010315,
-0.01644274592399597,
-0.0924321785569191,
0.02112276665866375,
-0.003964192699640989,
0.033319346606731415,
-0.09769178926944733,
-0.04349130392074585,
-0.03947983309626579,
-0.00699540926143527,
-0.02234666422009468,
0.06207108870148659,
-0.09507731348276138,
-0.03583582490682602,
0.014614050276577473,
-0.02053261548280716,
-0.03917599469423294,
-0.022361351177096367,
0.004789056722074747,
-0.06199774891138077,
4.995550137909308e-33,
0.09426940232515335,
0.07467521727085114,
0.00911564752459526,
0.011285005137324333,
0.022554907947778702,
-0.00023204620811156929,
-0.018027039244771004,
-0.028645645827054977,
-0.07606250792741776,
-0.026815732941031456,
-0.0032690237276256084,
0.03613180294632912,
-0.06100126728415489,
-0.036574721336364746,
0.01811986416578293,
-0.06464538723230362,
-0.02111242339015007,
0.06225740164518356,
0.012334808707237244,
0.0034104916267096996,
0.06301872432231903,
-0.0017526280134916306,
-0.03779931366443634,
-0.04463983327150345,
-0.026051701977849007,
0.06908493489027023,
0.051657784730196,
0.025740396231412888,
0.014809820801019669,
0.045190002769231796,
-0.034020889550447464,
0.027019530534744263,
-0.001697165542282164,
0.006344081833958626,
-0.004017244093120098,
-0.036339208483695984,
-0.05252942442893982,
-0.11761874705553055,
-0.04228181019425392,
-0.10123282670974731,
0.03722221776843071,
0.036267366260290146,
-0.05929303169250488,
-0.04055633768439293,
0.019387515261769295,
0.009417221881449223,
0.006881239358335733,
-0.04378121346235275,
0.11292799562215805,
-0.03604288026690483,
0.0036851041950285435,
0.027566077187657356,
-0.016373630613088608,
-0.06373682618141174,
0.018145421519875526,
0.06283162534236908,
0.07966583967208862,
0.030125318095088005,
0.004416679032146931,
0.09989991784095764,
-0.02939496375620365,
0.008528396487236023,
0.028069691732525826,
0.007336192298680544,
0.05676869675517082,
-0.031958043575286865,
0.023150859400629997,
-0.004332534968852997,
0.023014215752482414,
0.04748424515128136,
-0.033636920154094696,
-0.031063858419656754,
0.04668962582945824,
0.06110091134905815,
0.04039604216814041,
-0.04197784885764122,
0.0369645431637764,
-0.04476511478424072,
-0.055375922471284866,
0.0032617785036563873,
-0.061909690499305725,
0.03509689122438431,
-0.05333343520760536,
-0.01802787557244301,
-0.03656307980418205,
-0.022358696907758713,
0.011530593037605286,
-0.06640572845935822,
-0.03074526973068714,
-0.047496676445007324,
-0.00865001231431961,
0.04836174473166466,
-0.04832125082612038,
0.010677915066480637,
-0.06568558514118195,
-3.583837258553405e-33,
-0.004596505779772997,
0.08257460594177246,
-0.031713370233774185,
0.08950438350439072,
-0.03599376603960991,
-0.06465541571378708,
0.05930415913462639,
0.09354401379823685,
0.1167459711432457,
-0.019304482266306877,
0.11751840263605118,
-0.10363488644361496,
-0.04418371245265007,
-0.10008846968412399,
0.05682742968201637,
-0.02004239894449711,
0.01078322995454073,
-0.12168145179748535,
-0.05896099656820297,
0.09543203562498093,
0.027955984696745872,
0.10575737804174423,
-0.12463156878948212,
-0.0003987684322055429,
-0.005156210158020258,
0.01987680234014988,
0.055704306811094284,
0.024266673251986504,
-0.0038461743388324976,
-0.01382150687277317,
-0.039881084114313126,
-0.08897960186004639,
-0.029720472171902657,
0.010575022548437119,
-0.07008378952741623,
-0.03075091540813446,
0.066256083548069,
0.0013694617664441466,
-0.07151054590940475,
0.054852310568094254,
0.03843884542584419,
0.0870986133813858,
-0.041578590869903564,
0.05052216351032257,
0.010815363377332687,
0.1034630686044693,
-0.08307856321334839,
-0.07435688376426697,
0.025386307388544083,
-0.03301569074392319,
0.06239545717835426,
-0.009528476744890213,
-0.08484268188476562,
0.04586676135659218,
-0.015858719125390053,
-0.04754890128970146,
0.0005922780255787075,
0.002110959030687809,
-0.06293092668056488,
-0.050132643431425095,
0.031159600242972374,
-0.05541372671723366,
-0.02000887505710125,
0.014342902228236198,
-0.011321878992021084,
-0.04761200025677681,
-0.022132253274321556,
-0.02605135180056095,
0.013454616069793701,
0.04022407531738281,
0.0771087184548378,
-0.013222988694906235,
-0.008955459110438824,
-0.014918548986315727,
0.01137109287083149,
-0.04664155840873718,
0.03390517458319664,
0.04838518053293228,
-0.0019815268460661173,
-0.01867133006453514,
-0.0556432381272316,
0.034779347479343414,
0.06989507377147675,
0.036039549857378006,
0.07157640159130096,
-0.03263779357075691,
-0.05256372317671776,
0.058331117033958435,
-0.005930767394602299,
0.033556461334228516,
-0.03840644657611847,
-0.007416867185384035,
0.008453105576336384,
0.12154600024223328,
-0.021325761452317238,
-5.96298193045186e-8,
-0.09565237164497375,
-0.0448358915746212,
-0.1609400510787964,
0.018166514113545418,
-0.07116402685642242,
0.01115940697491169,
-0.018317095935344696,
-0.016698237508535385,
0.024937400594353676,
0.04054506495594978,
-0.004912992939352989,
0.01869884319603443,
-0.10024958103895187,
0.011300580576062202,
-0.04213523864746094,
-0.03611558675765991,
-0.00019873933342751116,
0.10197573155164719,
-0.040652479976415634,
0.034298595041036606,
-0.02363954484462738,
0.10034157335758209,
0.07024551182985306,
-0.03829723969101906,
0.01277667935937643,
0.0293204877525568,
-0.04490432143211365,
0.061440326273441315,
0.056049950420856476,
-0.09040664881467819,
-0.027292678132653236,
0.023231294006109238,
0.02576172538101673,
-0.041042156517505646,
0.007565523497760296,
0.07129079848527908,
-0.0832400843501091,
0.025640055537223816,
0.01887698285281658,
0.09008386731147766,
0.10715408623218536,
-0.017098888754844666,
-0.057764288038015366,
0.05020875856280327,
0.04029844328761101,
0.01428744662553072,
-0.01138632744550705,
0.027002371847629547,
0.0021425688173621893,
-0.045843660831451416,
0.0420076884329319,
-0.07332146912813187,
-0.00527447834610939,
-0.036529868841171265,
-0.02908521704375744,
0.07602481544017792,
0.02429855242371559,
-0.03022306226193905,
0.020828276872634888,
0.02906326949596405,
0.10052748024463654,
-0.022488964721560478,
-0.012369457632303238,
-0.00839987862855196
] |
google/bigbird-base-trivia-itc | 29c5c29e0297ad7eb9b90ef69fecba71508f5ca4 | 2021-06-02T14:53:34.000Z | [
"pytorch",
"jax",
"big_bird",
"question-answering",
"en",
"dataset:trivia_qa",
"arxiv:2007.14062",
"transformers",
"license:apache-2.0",
"autotrain_compatible"
] | question-answering | false | google | null | google/bigbird-base-trivia-itc | 7,286 | 1 | transformers | ---
language: en
license: apache-2.0
datasets:
- trivia_qa
---
# BigBird base trivia-itc
This model is a fine-tune checkpoint of `bigbird-roberta-base`, fine-tuned on `trivia_qa` with `BigBirdForQuestionAnsweringHead` on its top.
Check out [this](https://colab.research.google.com/drive/1DVOm1VHjW0eKCayFq1N2GpY6GR9M4tJP?usp=sharing) to see how well `google/bigbird-base-trivia-itc` performs on question answering.
## How to use
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BigBirdForQuestionAnswering
# by default its in `block_sparse` mode with num_random_blocks=3, block_size=64
model = BigBirdForQuestionAnswering.from_pretrained("google/bigbird-base-trivia-itc")
# you can change `attention_type` to full attention like this:
model = BigBirdForQuestionAnswering.from_pretrained("google/bigbird-base-trivia-itc", attention_type="original_full")
# you can change `block_size` & `num_random_blocks` like this:
model = BigBirdForQuestionAnswering.from_pretrained("google/bigbird-base-trivia-itc", block_size=16, num_random_blocks=2)
question = "Replace me by any text you'd like."
context = "Put some context for answering"
encoded_input = tokenizer(question, context, return_tensors='pt')
output = model(**encoded_input)
```
# Fine-tuning config & hyper-parameters
- No. of global token = 128
- Window length = 192
- No. of random token = 192
- Max. sequence length = 4096
- No. of heads = 12
- No. of hidden layers = 12
- Hidden layer size = 768
- Batch size = 32
- Loss = cross-entropy noisy spans
## BibTeX entry and citation info
```tex
@misc{zaheer2021big,
title={Big Bird: Transformers for Longer Sequences},
author={Manzil Zaheer and Guru Guruganesh and Avinava Dubey and Joshua Ainslie and Chris Alberti and Santiago Ontanon and Philip Pham and Anirudh Ravula and Qifan Wang and Li Yang and Amr Ahmed},
year={2021},
eprint={2007.14062},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
| [
-0.07812393456697464,
-0.03843126818537712,
-0.04080774635076523,
0.006781372707337141,
-0.0025240425020456314,
-0.008470644243061543,
0.027732327580451965,
0.00809802021831274,
-0.07931428402662277,
-0.045450177043676376,
-0.036874476820230484,
-0.0020581819117069244,
-0.01221038494259119,
-0.07014434784650803,
-0.010431776754558086,
0.053697604686021805,
0.10323911905288696,
-0.055494509637355804,
-0.09936894476413727,
-0.1117837205529213,
-0.03258446976542473,
0.07203350961208344,
0.09219051897525787,
0.0686153843998909,
-0.008230963721871376,
-0.012062259949743748,
-0.06622550636529922,
0.014760815538465977,
0.0296007189899683,
-0.012742639519274235,
-0.02549530379474163,
0.07315118610858917,
0.013134581036865711,
0.08196604996919632,
0.00954420119524002,
0.04221717640757561,
-0.02469189651310444,
-0.038895267993211746,
0.01764627732336521,
-0.062266696244478226,
0.06714140623807907,
-0.07353369146585464,
-0.06549189984798431,
-0.019336415454745293,
0.022279862314462662,
-0.04162735864520073,
-0.04778129607439041,
0.010618732310831547,
0.08166828751564026,
-0.05668989196419716,
-0.08085962384939194,
-0.013065936043858528,
-0.0464908741414547,
0.051309604197740555,
0.037287164479494095,
0.062054213136434555,
-0.015467755496501923,
-0.035651352256536484,
-0.05157867446541786,
-0.021326063200831413,
-0.08357545733451843,
-0.04214895889163017,
-0.031912416219711304,
0.032535891979932785,
-0.013856339268386364,
-0.06022666394710541,
-0.001775005366653204,
-0.021733790636062622,
0.0490482822060585,
-0.07290620356798172,
-0.0678570494055748,
0.04438506066799164,
-0.03181454911828041,
0.11138813942670822,
0.04242422804236412,
-0.04083150252699852,
0.003113333135843277,
-0.01876205950975418,
0.048094749450683594,
-0.010793105699121952,
-0.1053825169801712,
-0.09077984094619751,
0.041103895753622055,
0.021001553162932396,
0.052197642624378204,
-0.06990981847047806,
0.0034345632884651423,
0.07330036908388138,
0.003077656961977482,
-0.052845172584056854,
0.016542483121156693,
-0.09524381905794144,
0.0905625969171524,
-0.013220950029790401,
-0.01879759691655636,
0.10730548202991486,
0.032526224851608276,
-0.07365258783102036,
-0.024311117827892303,
0.05828919634222984,
0.027605263516306877,
-0.005836868193000555,
-0.01678447797894478,
-0.03669699281454086,
-0.005056016147136688,
-0.006745166145265102,
0.049578431993722916,
0.07247384637594223,
0.07526396214962006,
-0.0468355156481266,
0.016957644373178482,
0.03773530200123787,
0.014676550403237343,
-0.02729925699532032,
0.012383760884404182,
-0.036782510578632355,
-0.0272613987326622,
0.021202607080340385,
0.01849420554935932,
0.03279168903827667,
0.022414129227399826,
-0.009016888216137886,
0.00386605691164732,
-0.006856560241430998,
-0.0030738492496311665,
0.024448135867714882,
-0.09522233158349991,
9.134139914814214e-33,
0.07480626553297043,
0.02570267952978611,
0.06328952312469482,
0.02695818431675434,
-0.011087375693023205,
0.048384346067905426,
-0.0397970974445343,
0.09246223419904709,
-0.013415643014013767,
0.05055921897292137,
-0.05745924264192581,
0.008413262665271759,
-0.0497514046728611,
-0.0276767760515213,
0.061803676187992096,
-0.00881112739443779,
-0.07183998078107834,
-0.03629251569509506,
0.0161763746291399,
0.008078290149569511,
0.12209906429052353,
0.012407983653247356,
0.011784316971898079,
-0.035708073526620865,
0.061751898378133774,
0.022592416033148766,
0.02112187072634697,
-0.09116648882627487,
-0.08950668573379517,
0.06826704740524292,
-0.11033475399017334,
-0.07601835578680038,
-0.061795737594366074,
0.011008083820343018,
0.035581812262535095,
-0.0354912243783474,
-0.03770453482866287,
-0.08290650695562363,
-0.056474898010492325,
-0.0728173702955246,
-0.04009770229458809,
-0.04046531021595001,
-0.051556024700403214,
-0.08632807433605194,
-0.08981882035732269,
-0.013872760348021984,
0.0004926263354718685,
0.03441423922777176,
0.0032080928795039654,
0.020824888721108437,
0.057802047580480576,
-0.010854754596948624,
-0.016856906935572624,
0.017588650807738304,
-0.0039452421478927135,
0.05763466656208038,
0.1068049818277359,
0.023326346650719643,
0.08128256350755692,
0.027423230931162834,
0.0003937364963348955,
-0.021991420537233353,
0.0652058869600296,
0.017590356990695,
0.09454279392957687,
0.002202791627496481,
-0.001842241152189672,
0.05606483295559883,
-0.02338399738073349,
0.08739221841096878,
-0.0017886034911498427,
-0.020582305267453194,
-0.020371252670884132,
-0.015406140126287937,
0.009112642146646976,
-0.01941751129925251,
0.009669700637459755,
-0.04680329188704491,
-0.020247405394911766,
-0.024710625410079956,
0.06333275139331818,
-0.021473579108715057,
0.020808836445212364,
-0.09368821978569031,
-0.050138674676418304,
-0.01984521374106407,
0.10279509425163269,
-0.07318244874477386,
-0.031885500997304916,
-0.07042916119098663,
-0.02410374954342842,
0.036467693746089935,
0.012893210165202618,
-0.056585319340229034,
-0.032981012016534805,
-9.266039931868075e-33,
-0.0038102830294519663,
-0.03996793180704117,
-0.054874077439308167,
0.04612251743674278,
0.051892586052417755,
-0.10049163550138474,
0.025011559948325157,
0.014479640871286392,
0.003928016871213913,
-0.030286135151982307,
-0.02695227973163128,
0.01536252349615097,
0.023228036239743233,
-0.05846824124455452,
0.0715717002749443,
0.04828546568751335,
-0.0628986805677414,
-0.03224555402994156,
-0.023674191907048225,
0.06224590912461281,
-0.15405814349651337,
0.08398789912462234,
-0.11274579912424088,
-0.004537889733910561,
-0.0770706757903099,
-0.044594500213861465,
-0.019285017624497414,
0.021353911608457565,
0.04887549579143524,
-0.0073979017324745655,
-0.0208929181098938,
0.04246889427304268,
-0.038290947675704956,
-0.00936953816562891,
-0.09416687488555908,
0.012811304070055485,
0.062312450259923935,
-0.10555154830217361,
-0.0037056701257824898,
0.0855625569820404,
0.1083630621433258,
0.05903046578168869,
-0.07700425386428833,
-0.031759217381477356,
-0.020319463685154915,
0.03984256088733673,
-0.08917776495218277,
0.019127024337649345,
-0.031026052311062813,
0.04620152711868286,
0.10121016949415207,
-0.04229570925235748,
-0.008872759528458118,
0.0922480896115303,
0.00872537400573492,
0.014864448457956314,
-0.03923974558711052,
0.04737018793821335,
0.020178865641355515,
-0.041021913290023804,
-0.09459832310676575,
0.003215316217392683,
-0.02160736918449402,
0.00907144509255886,
0.05851954594254494,
-0.02933473140001297,
-0.03835398703813553,
0.0077178641222417355,
-0.02513621374964714,
-0.05311978980898857,
-0.06776715815067291,
-0.02084648422896862,
0.06593303382396698,
0.026837242767214775,
-0.04104049503803253,
0.10965118557214737,
0.0033246963284909725,
-0.031031258404254913,
0.04001648351550102,
-0.0018310958985239267,
-0.041456595063209534,
-0.036524102091789246,
0.013663480058312416,
0.09038589894771576,
0.01314198412001133,
-0.007279957644641399,
0.02650032937526703,
0.14939217269420624,
0.0036303901579231024,
-0.039058368653059006,
0.005460237618535757,
0.07049573957920074,
-0.008977381512522697,
0.10614585876464844,
0.012129107490181923,
-6.745798941665271e-8,
-0.061500731855630875,
0.03626561909914017,
-0.07110599428415298,
0.0841367244720459,
0.07171989977359772,
0.011042718775570393,
0.03502916172146797,
0.07543401420116425,
-0.00482987891882658,
-0.006250008009374142,
0.002696430776268244,
-0.0625595822930336,
-0.07599299401044846,
-0.019903434440493584,
0.03625167906284332,
0.0656050592660904,
-0.01587214320898056,
0.047125194221735,
-0.04421074315905571,
-0.06300246715545654,
0.0756782665848732,
0.015907257795333862,
-0.004832063801586628,
0.011011512018740177,
-0.054512910544872284,
0.0003589702828321606,
-0.04295581951737404,
0.07479676604270935,
-0.0008181072771549225,
-0.029498228803277016,
0.001974055077880621,
0.0005713291466236115,
-0.015649938955903053,
-0.06582134962081909,
0.04367297142744064,
0.06692152470350266,
0.030479442328214645,
-0.005889218766242266,
0.09822636842727661,
0.06169556453824043,
0.03336089104413986,
0.03662130609154701,
-0.07817577570676804,
0.0009239437058568001,
-0.0016415163408964872,
-0.007192743476480246,
-0.045671749860048294,
-0.07916916906833649,
0.04786238819360733,
0.038773562759160995,
0.026809394359588623,
-0.0082168560475111,
0.01032014936208725,
0.017505979165434837,
0.028909195214509964,
0.031983938068151474,
-0.017987703904509544,
-0.015633877366781235,
0.026763631030917168,
-0.03260817006230354,
0.08869443833827972,
0.030112899839878082,
0.01416131854057312,
0.02535226009786129
] |
Harveenchadha/vakyansh-wav2vec2-hindi-him-4200 | e2568c3f7868d8aa3aaabcf28fa100d10d54c170 | 2022-01-29T06:03:43.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"hi",
"arxiv:2107.07402",
"transformers",
"audio",
"speech",
"license:mit",
"model-index"
] | automatic-speech-recognition | false | Harveenchadha | null | Harveenchadha/vakyansh-wav2vec2-hindi-him-4200 | 7,235 | 0 | transformers | ---
language: hi
#datasets:
#- Interspeech 2021
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
license: mit
model-index:
- name: Wav2Vec2 Vakyansh Hindi Model by Harveen Chadha
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice hi
type: common_voice
args: hi
metrics:
- name: Test WER
type: wer
value: 33.17
---
## Spaces Demo
Check the spaces demo [here](https://huggingface.co/spaces/Harveenchadha/wav2vec2-vakyansh-hindi/tree/main)
## Pretrained Model
Fine-tuned on Multilingual Pretrained Model [CLSRIL-23](https://arxiv.org/abs/2107.07402). The original fairseq checkpoint is present [here](https://github.com/Open-Speech-EkStep/vakyansh-models). When using this model, make sure that your speech input is sampled at 16kHz.
**Note: The result from this model is without a language model so you may witness a higher WER in some cases.**
## Dataset
This model was trained on 4200 hours of Hindi Labelled Data. The labelled data is not present in public domain as of now.
## Training Script
Models were trained using experimental platform setup by Vakyansh team at Ekstep. Here is the [training repository](https://github.com/Open-Speech-EkStep/vakyansh-wav2vec2-experimentation).
In case you want to explore training logs on wandb they are [here](https://wandb.ai/harveenchadha/hindi_finetuning_multilingual?workspace=user-harveenchadha).
## [Colab Demo](https://colab.research.google.com/github/harveenchadha/bol/blob/main/demos/hf/hindi/hf_hindi_him_4200_demo.ipynb)
## Usage
The model can be used directly (without a language model) as follows:
```python
import soundfile as sf
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import argparse
def parse_transcription(wav_file):
# load pretrained model
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200")
# load audio
audio_input, sample_rate = sf.read(wav_file)
# pad input values and return pt tensor
input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values
# INFERENCE
# retrieve logits & take argmax
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
# transcribe
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
print(transcription)
```
## Evaluation
The model can be evaluated as follows on the hindi test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "hi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200")
model.to("cuda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 33.17 %
[**Colab Evaluation**](https://colab.research.google.com/github/harveenchadha/bol/blob/main/demos/hf/hindi/hf_vakyansh_hindi_him_4200_evaluation_common_voice.ipynb)
## Credits
Thanks to Ekstep Foundation for making this possible. The vakyansh team will be open sourcing speech models in all the Indic Languages. | [
-0.10541097819805145,
-0.08041687309741974,
-0.006981979124248028,
-0.04557544365525246,
-0.016843710094690323,
-0.004770498722791672,
0.014415543526411057,
-0.06555183231830597,
-0.0005171556840650737,
-0.04524217173457146,
0.05830507352948189,
-0.1093701720237732,
-0.010401604697108269,
-0.02649780549108982,
0.011356323957443237,
-0.060373660176992416,
0.027873605489730835,
-0.05631473660469055,
-0.09501364082098007,
-0.09765339642763138,
0.03109472058713436,
0.09697382152080536,
0.03481175750494003,
0.021264202892780304,
0.02671043761074543,
-0.032965853810310364,
-0.03482339531183243,
0.05011900141835213,
0.05415927246212959,
-0.06709283590316772,
0.07068107277154922,
0.06334729492664337,
0.020646078512072563,
0.02392401546239853,
0.03221326321363449,
0.06845422089099884,
-0.04914272204041481,
-0.0505698136985302,
-0.0035654031671583652,
-0.05782654508948326,
-0.006554150488227606,
-0.042470093816518784,
0.0012622443027794361,
-0.026104126125574112,
0.04338538646697998,
-0.017136717215180397,
-0.12113288789987564,
-0.005058711394667625,
0.015470506623387337,
-0.008373101241886616,
-0.08843614161014557,
0.0038061568047851324,
0.04362557828426361,
0.059730663895606995,
-0.04974672943353653,
-0.011999616399407387,
0.039177652448415756,
0.030807262286543846,
0.025657862424850464,
-0.07463030517101288,
-0.0948902890086174,
-0.016899598762392998,
-0.04907921329140663,
-0.01199431624263525,
0.01438374724239111,
-0.055127307772636414,
-0.03553590178489685,
-0.019379999488592148,
-0.008313719183206558,
0.04907994717359543,
-0.05159468948841095,
0.0689830482006073,
-0.008707555010914803,
0.0328730084002018,
0.0027870982885360718,
0.043274831026792526,
0.06961249560117722,
0.030905209481716156,
0.06223994866013527,
-0.1116868183016777,
0.031142842024564743,
-0.028478045016527176,
0.045254651457071304,
-0.03595928102731705,
0.005786092486232519,
-0.015341194346547127,
-0.03658319637179375,
-0.07152870297431946,
0.05472762510180473,
-0.10365669429302216,
0.03807910904288292,
-0.007757125422358513,
-0.03232266753911972,
0.05289103090763092,
0.0039289407432079315,
0.0439627431333065,
0.04432401433587074,
0.1000567153096199,
0.04880288988351822,
0.09423474222421646,
0.004003128968179226,
-0.0662025734782219,
0.02735714055597782,
0.031052088364958763,
-0.031994886696338654,
-0.016904981806874275,
0.06260687112808228,
0.02499249204993248,
0.04984999820590019,
-0.039792660623788834,
0.02479284070432186,
0.014567251317203045,
0.04016551002860069,
0.016724899411201477,
0.03924836218357086,
0.027356775477528572,
-0.06534111499786377,
-0.04873647913336754,
0.000911443610675633,
-0.014084435068070889,
-0.09256315231323242,
-0.02103426679968834,
0.03326152265071869,
-0.05210128799080849,
-0.01887638494372368,
-0.008426502346992493,
-0.013594984076917171,
6.446895911329139e-33,
0.02828962355852127,
0.012321704998612404,
0.05971270427107811,
-0.06715257465839386,
0.017870943993330002,
-0.0463017076253891,
-0.05491926521062851,
0.03342816233634949,
-0.04806384816765785,
-0.025302434340119362,
-0.03133102506399155,
-0.036851849406957626,
-0.0731617659330368,
-0.010041636414825916,
-0.018969951197504997,
0.016198307275772095,
-0.04793616384267807,
0.023723741993308067,
-0.05269584059715271,
0.017556028440594673,
0.1389460414648056,
-0.023845650255680084,
-0.002123372396454215,
-0.02428138256072998,
0.015350551344454288,
0.06252633035182953,
0.0967552661895752,
-0.016264451667666435,
-0.07253827154636383,
0.06313503533601761,
-0.08249276131391525,
0.013791211880743504,
0.02516048029065132,
-0.0019934624433517456,
-0.062157608568668365,
0.025240277871489525,
0.008368391543626785,
0.021174823865294456,
-0.06906066834926605,
-0.12213088572025299,
0.03749996796250343,
0.04323609918355942,
0.01389886811375618,
-0.0819576233625412,
-0.06961279362440109,
-0.0719437375664711,
0.012796144001185894,
0.04187978431582451,
0.038486648350954056,
0.03351425379514694,
-0.052046600729227066,
0.013356581330299377,
-0.085160993039608,
-0.033236607909202576,
-0.04754342511296272,
0.007820907980203629,
0.12766459584236145,
-0.00224891840480268,
0.0244323518127203,
0.07380520552396774,
0.04390722140669823,
-0.023267550393939018,
0.012726926244795322,
-0.007941082119941711,
0.08057030290365219,
-0.03904873505234718,
-0.0326533317565918,
-0.02149902656674385,
0.0786079540848732,
0.03471341356635094,
-0.012377575971186161,
-0.07780206203460693,
0.026686370372772217,
0.09762012958526611,
0.05452015623450279,
-0.04199164733290672,
0.0251784510910511,
-0.018222175538539886,
-0.008488346822559834,
0.025187363848090172,
-0.0380592942237854,
0.06667070835828781,
-0.06440520286560059,
-0.06006306782364845,
-0.021593116223812103,
-0.101296067237854,
0.02639472670853138,
-0.08368530124425888,
-0.030731378123164177,
-0.0026213652454316616,
0.05257073789834976,
0.07587799429893494,
0.017318032681941986,
0.023225383833050728,
-0.0536632165312767,
-8.219647186860722e-33,
0.03106415830552578,
0.11237195134162903,
-0.035101745277643204,
0.09860344976186752,
0.025149384513497353,
-0.029082022607326508,
0.09878535568714142,
0.117414191365242,
-0.004825455602258444,
-0.06952538341283798,
0.0560186430811882,
-0.03507812321186066,
0.03824139013886452,
0.003149297321215272,
0.09639006108045578,
0.003250554669648409,
0.045740485191345215,
0.007096461486071348,
0.051682788878679276,
0.12419956177473068,
0.07787655293941498,
0.056067999452352524,
-0.11681821942329407,
0.024275584146380424,
-0.035522058606147766,
-0.03922624513506889,
-0.029167434200644493,
0.05980445444583893,
-0.028357047587633133,
0.049500707536935806,
-0.03661847487092018,
-0.0268241036683321,
-0.1350175142288208,
0.049624744802713394,
-0.028068799525499344,
-0.06682407110929489,
0.03920126333832741,
-0.015271983109414577,
0.005154332146048546,
0.08388087153434753,
0.04641692340373993,
0.05420057103037834,
-0.12199341505765915,
-0.018883056938648224,
0.012227769009768963,
-0.007835052907466888,
-0.047081109136343,
-0.0066607678309082985,
-0.016297880560159683,
-0.10142182558774948,
0.06508435308933258,
-0.029844840988516808,
0.02799977920949459,
0.02995292842388153,
-0.03876034542918205,
0.0009145161602646112,
0.02141994796693325,
-0.07056168466806412,
-0.04710309952497482,
-0.023851271718740463,
-0.028044765815138817,
-0.0024963326286524534,
-0.04095107316970825,
-0.08231347054243088,
0.045898426324129105,
-0.021340584382414818,
0.02538980171084404,
-0.007527768611907959,
0.0902155190706253,
-0.0621383860707283,
-0.053280726075172424,
-0.03400346264243126,
-0.02493220381438732,
0.0017803587252274156,
-0.029078561812639236,
0.008816209621727467,
-0.06720202416181564,
-0.025461822748184204,
0.01869242452085018,
-0.060977548360824585,
-0.07530857622623444,
-0.0004128280852455646,
0.023322928696870804,
0.014286980964243412,
0.004170273430645466,
0.11130724102258682,
-0.004812164697796106,
0.015319056808948517,
-0.024687575176358223,
0.04595472291111946,
-0.013017896562814713,
0.03510669991374016,
0.005437337793409824,
0.1036057323217392,
-0.03726726770401001,
-5.6606587861551816e-8,
-0.07500962913036346,
-0.0424581915140152,
-0.037098053842782974,
0.019290974363684654,
-0.03809460252523422,
-0.08649247884750366,
-0.036287225782871246,
0.010014085099101067,
0.011035515926778316,
0.012640519998967648,
0.01872898079454899,
0.03176816552877426,
-0.046218905597925186,
0.04795252904295921,
-0.040480535477399826,
0.002075694501399994,
-0.0017950917826965451,
0.15371441841125488,
-0.06319776177406311,
-0.07282181829214096,
0.03377813845872879,
0.05006905272603035,
0.03178486227989197,
-0.013128223828971386,
0.010209696367383003,
-0.005394468083977699,
0.01696089096367359,
0.07937649637460709,
0.01751050353050232,
-0.039088424295186996,
-0.03826601803302765,
0.06223055720329285,
-0.020081069320440292,
-0.051763866096735,
0.018793901428580284,
0.057660121470689774,
-0.01184337493032217,
-0.014298103749752045,
0.042355380952358246,
0.0784735456109047,
0.05963997542858124,
0.04308466985821724,
-0.07241468131542206,
-0.025986576452851295,
0.06546789407730103,
0.028614187613129616,
-0.04528305307030678,
-0.04770899564027786,
-0.024876464158296585,
-0.032313186675310135,
-0.00390956737101078,
-0.03170185163617134,
-0.024868028238415718,
-0.005463931709527969,
0.07337061315774918,
0.032832905650138855,
-0.0094368364661932,
0.004434745293110609,
0.055746424943208694,
0.00006753116031177342,
0.12448900192975998,
-0.023666510358452797,
-0.03698130324482918,
-0.029928693547844887
] |
moussaKam/frugalscore_tiny_bert-base_bert-score | a487e5a875e63ef1f9cf6015a3a11be2d80aa550 | 2022-02-01T10:50:21.000Z | [
"pytorch",
"bert",
"text-classification",
"arxiv:2110.08559",
"transformers"
] | text-classification | false | moussaKam | null | moussaKam/frugalscore_tiny_bert-base_bert-score | 7,234 | null | transformers | # FrugalScore
FrugalScore is an approach to learn a fixed, low cost version of any expensive NLG metric, while retaining most of its original performance
Paper: https://arxiv.org/abs/2110.08559?context=cs
Project github: https://github.com/moussaKam/FrugalScore
The pretrained checkpoints presented in the paper :
| FrugalScore | Student | Teacher | Method |
|----------------------------------------------------|-------------|----------------|------------|
| [moussaKam/frugalscore_tiny_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_bert-score) | BERT-tiny | BERT-Base | BERTScore |
| [moussaKam/frugalscore_small_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_bert-score) | BERT-small | BERT-Base | BERTScore |
| [moussaKam/frugalscore_medium_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_bert-score) | BERT-medium | BERT-Base | BERTScore |
| [moussaKam/frugalscore_tiny_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_roberta_bert-score) | BERT-tiny | RoBERTa-Large | BERTScore |
| [moussaKam/frugalscore_small_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_roberta_bert-score) | BERT-small | RoBERTa-Large | BERTScore |
| [moussaKam/frugalscore_medium_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_roberta_bert-score) | BERT-medium | RoBERTa-Large | BERTScore |
| [moussaKam/frugalscore_tiny_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_deberta_bert-score) | BERT-tiny | DeBERTa-XLarge | BERTScore |
| [moussaKam/frugalscore_small_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_deberta_bert-score) | BERT-small | DeBERTa-XLarge | BERTScore |
| [moussaKam/frugalscore_medium_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_deberta_bert-score) | BERT-medium | DeBERTa-XLarge | BERTScore |
| [moussaKam/frugalscore_tiny_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_mover-score) | BERT-tiny | BERT-Base | MoverScore |
| [moussaKam/frugalscore_small_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_mover-score) | BERT-small | BERT-Base | MoverScore |
| [moussaKam/frugalscore_medium_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_mover-score) | BERT-medium | BERT-Base | MoverScore | | [
-0.042448315769433975,
-0.03151621297001839,
-0.04763283580541611,
0.07655563205480576,
0.02725154161453247,
-0.0008655411656945944,
-0.01697634719312191,
0.11361992359161377,
-0.013541421853005886,
0.03203555569052696,
0.038515813648700714,
0.010016776621341705,
0.025363873690366745,
-0.03715556859970093,
-0.0457979291677475,
-0.004274119157344103,
0.07047975063323975,
0.009774554520845413,
-0.04726894199848175,
-0.0385175421833992,
0.022227080538868904,
-0.03807548061013222,
0.01407244335860014,
-0.01127575896680355,
0.11232899129390717,
-0.028749538585543633,
-0.10803697258234024,
-0.011029619723558426,
0.06518993526697159,
0.053777582943439484,
-0.04651414602994919,
0.0659492090344429,
0.0315454863011837,
0.07911946624517441,
0.005294636357575655,
0.1045369803905487,
0.07757006585597992,
0.0030679425690323114,
-0.036197371780872345,
0.029842201620340347,
-0.07316718250513077,
0.04388048127293587,
-0.02196739986538887,
-0.013553444296121597,
0.02975296787917614,
-0.06960437446832657,
-0.10511460155248642,
-0.035868410021066666,
-0.08869768679141998,
-0.01011075172573328,
-0.10215126723051071,
-0.01433496456593275,
-0.05909430980682373,
-0.016572970896959305,
0.03493262827396393,
0.05471997708082199,
0.028338996693491936,
-0.027079205960035324,
-0.04188026860356331,
-0.024638928472995758,
-0.10811317712068558,
-0.08866221457719803,
-0.10047437250614166,
-0.0034746513701975346,
0.04527231678366661,
0.010831574909389019,
-0.013728928752243519,
0.019680876284837723,
-0.005238788202404976,
0.05350734293460846,
-0.06666802614927292,
-0.00907298643141985,
-0.008124209940433502,
0.0030891860369592905,
0.0025733874645084143,
0.05753065645694733,
0.07646676898002625,
-0.009141756221652031,
-0.0021243442315608263,
-0.07423555105924606,
-0.013745488598942757,
-0.021118832752108574,
0.038475580513477325,
-0.019293634220957756,
0.06259725987911224,
-0.047553714364767075,
0.05529984459280968,
-0.03682275861501694,
0.12458672374486923,
-0.05833599343895912,
0.05036920681595802,
0.026760954409837723,
0.007833383046090603,
-0.03863545134663582,
-0.0413534939289093,
0.001366105512715876,
-0.010314407758414745,
-0.03848722204566002,
0.035365112125873566,
0.0691627636551857,
0.027721544727683067,
0.04402622953057289,
0.08429072797298431,
-0.0665772557258606,
-0.05570182576775551,
-0.05067368969321251,
0.03316735476255417,
0.08328792452812195,
-0.008995954878628254,
-0.08349552005529404,
0.03799981623888016,
0.014445706270635128,
-0.026774076744914055,
0.016693569719791412,
0.010083161294460297,
-0.03979988023638725,
-0.019906194880604744,
-0.10076648741960526,
0.07263778150081635,
0.08575062453746796,
-0.009335593320429325,
0.015255147591233253,
0.0755893886089325,
-0.021648410707712173,
-0.10475675016641617,
-0.016634810715913773,
-0.0043745338916778564,
-4.521947872066824e-33,
0.01689550094306469,
0.0674668550491333,
0.033118292689323425,
-0.13480845093727112,
0.010036546736955643,
-0.0461733341217041,
0.009015114977955818,
0.058130886405706406,
-0.05741995573043823,
0.030690312385559082,
-0.003871302818879485,
0.07358638942241669,
-0.03222465142607689,
0.009389671497046947,
0.09270669519901276,
-0.05914562568068504,
-0.13073843717575073,
0.0758235827088356,
-0.035237301141023636,
-0.0031536552123725414,
0.07305935770273209,
0.04938318207859993,
0.053162895143032074,
-0.07658477872610092,
0.03768456354737282,
-0.004495627246797085,
0.05483274534344673,
-0.04476082697510719,
-0.05411841347813606,
0.04054585471749306,
-0.006305599585175514,
0.04010714218020439,
-0.0606660433113575,
-0.02035638503730297,
-0.011506834998726845,
-0.011851761490106583,
-0.03274599835276604,
-0.03796832635998726,
-0.04942318797111511,
-0.08030132949352264,
-0.03932061418890953,
0.009519848972558975,
0.04759775847196579,
-0.07063651084899902,
-0.019340332597494125,
-0.01571263000369072,
-0.002683724043890834,
-0.0033842057455331087,
0.05867230147123337,
-0.007936540991067886,
-0.017579669132828712,
-0.01439950056374073,
-0.10477699339389801,
-0.0006702006794512272,
-0.04343947768211365,
0.00597351836040616,
0.06690847128629684,
-0.014088035561144352,
0.04835507273674011,
0.03694227337837219,
-0.02874649502336979,
-0.075615294277668,
-0.041422612965106964,
-0.06265520304441452,
-0.025692682713270187,
0.009190288372337818,
-0.048950642347335815,
0.007083989679813385,
0.08273086696863174,
0.03465203195810318,
-0.0022012912668287754,
-0.03640986606478691,
0.007120232097804546,
-0.0027703659143298864,
0.08261584490537643,
-0.008817092515528202,
0.03480701148509979,
-0.04633989930152893,
-0.08453307300806046,
-0.046425960958004,
-0.0519915409386158,
0.00019045706721954048,
-0.0479903444647789,
-0.1260644495487213,
-0.043440088629722595,
-0.02700689807534218,
0.016762377694249153,
-0.0249395202845335,
-0.027582859620451927,
-0.0012599823530763388,
-0.024793971329927444,
-0.005380746442824602,
-0.05878922715783119,
0.012121506966650486,
-0.05314387008547783,
2.002053764685037e-34,
-0.030650824308395386,
0.033652953803539276,
0.010112200863659382,
0.08386129140853882,
0.04777427017688751,
-0.06366874277591705,
-0.02395581640303135,
0.015969937667250633,
-0.03014320135116577,
-0.05737000331282616,
-0.06907844543457031,
-0.04399874433875084,
0.019083108752965927,
0.0493110716342926,
0.05195075646042824,
-0.031074918806552887,
-0.05891555920243263,
-0.01147516816854477,
0.012530921027064323,
0.04055286571383476,
0.051447104662656784,
0.025112643837928772,
-0.03508986532688141,
0.08686244487762451,
0.038458626717329025,
0.019033126533031464,
-0.05750954523682594,
0.0352831594645977,
-0.036824777722358704,
-0.047063592821359634,
0.035075120627880096,
-0.0431009866297245,
-0.037461940199136734,
0.01445670798420906,
-0.059226736426353455,
-0.0047871083952486515,
0.04237916320562363,
0.00045166409108787775,
-0.04689858853816986,
0.09817291796207428,
0.09641624987125397,
-0.007697888650000095,
-0.05279184505343437,
-0.03591440990567207,
0.041878171265125275,
0.07635288685560226,
-0.06705712527036667,
-0.10439139604568481,
0.016814203932881355,
-0.02054358460009098,
0.05524623766541481,
0.006256510969251394,
-0.07048510760068893,
0.041787680238485336,
-0.08155173063278198,
-0.02628401108086109,
0.034431908279657364,
-0.08808790892362595,
-0.06903528422117233,
-0.010048175230622292,
-0.00811890047043562,
-0.04524068161845207,
0.022178079932928085,
0.010348590090870857,
0.09817374497652054,
-0.06054041162133217,
0.02923312410712242,
0.022614561021327972,
-0.10920947790145874,
0.03862787410616875,
-0.0445089191198349,
0.03336402401328087,
0.04404779151082039,
-0.016037074849009514,
-0.03077738732099533,
0.04029148444533348,
0.009042957797646523,
-0.007183164358139038,
-0.04093146324157715,
-0.0572810173034668,
0.003458497580140829,
-0.04132445156574249,
0.08622293919324875,
0.04522424191236496,
-0.05488872528076172,
0.04310173913836479,
0.05749017372727394,
0.009082479402422905,
0.010614784434437752,
0.036775145679712296,
-0.07831654697656631,
-0.014896610751748085,
0.011128442361950874,
0.027570024132728577,
0.03417837247252464,
-5.6720800500897894e-8,
-0.03604718670248985,
-0.026371587067842484,
-0.06676557660102844,
0.0558953657746315,
0.05291331186890602,
-0.005351290572434664,
-0.07684551179409027,
0.08449990302324295,
-0.05467887595295906,
-0.006063522771000862,
0.05210030451416969,
0.02112364023923874,
-0.0800979807972908,
0.0075261821039021015,
-0.016596615314483643,
0.011930019594728947,
-0.029157770797610283,
0.024098286405205727,
-0.03398548439145088,
-0.05539494752883911,
0.031206555664539337,
0.0698133334517479,
0.00861899834126234,
0.028272777795791626,
-0.06324686855077744,
-0.0008459158707410097,
-0.01319881621748209,
0.1375151127576828,
0.03243003413081169,
-0.031141191720962524,
-0.01874362677335739,
0.07828403264284134,
0.02385309338569641,
-0.041840896010398865,
0.045690834522247314,
0.09348189830780029,
0.0038082178216427565,
0.022756217047572136,
-0.006928649265319109,
0.07496796548366547,
0.009119957685470581,
-0.006006404757499695,
-0.07375568896532059,
0.04249471053481102,
0.11475586891174316,
-0.0079074427485466,
-0.14243535697460175,
-0.04059561714529991,
0.01460984442383051,
0.030844353139400482,
-0.003224607789888978,
-0.03739124536514282,
-0.06991492956876755,
0.0214607622474432,
0.0009760814136825502,
-0.06251374632120132,
-0.05299389734864235,
-0.08514637500047684,
-0.024456284940242767,
-0.002784121548756957,
0.07562661170959473,
-0.033105991780757904,
0.09184657782316208,
0.12156632542610168
] |
digitalepidemiologylab/covid-twitter-bert-v2 | b113bc3c2590d7b32ed62603fe1ebe32e1e5beee | 2021-09-22T08:20:06.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"en",
"transformers",
"Twitter",
"COVID-19",
"license:mit"
] | null | false | digitalepidemiologylab | null | digitalepidemiologylab/covid-twitter-bert-v2 | 7,203 | 2 | transformers | ---
language: en
thumbnail: https://raw.githubusercontent.com/digitalepidemiologylab/covid-twitter-bert/master/images/COVID-Twitter-BERT_small.png
tags:
- Twitter
- COVID-19
license: mit
---
# COVID-Twitter-BERT v2
## Model description
BERT-large-uncased model, pretrained on a corpus of messages from Twitter about COVID-19. This model is identical to [covid-twitter-bert](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert) - but trained on more data, resulting in higher downstream performance.
Find more info on our [GitHub page](https://github.com/digitalepidemiologylab/covid-twitter-bert).
## Intended uses & limitations
The model can e.g. be used in the `fill-mask` task (see below). You can also use the model without the MLM/NSP heads and train a classifier with it.
#### How to use
```python
from transformers import pipeline
import json
pipe = pipeline(task='fill-mask', model='digitalepidemiologylab/covid-twitter-bert-v2')
out = pipe(f"In places with a lot of people, it's a good idea to wear a {pipe.tokenizer.mask_token}")
print(json.dumps(out, indent=4))
[
{
"sequence": "[CLS] in places with a lot of people, it's a good idea to wear a mask [SEP]",
"score": 0.9998226761817932,
"token": 7308,
"token_str": "mask"
},
...
]
```
## Training procedure
This model was trained on 97M unique tweets (1.2B training examples) collected between January 12 and July 5, 2020 containing at least one of the keywords "wuhan", "ncov", "coronavirus", "covid", or "sars-cov-2". These tweets were filtered and preprocessed to reach a final sample of 22.5M tweets (containing 40.7M sentences and 633M tokens) which were used for training.
## Eval results
The model was evaluated based on downstream Twitter text classification tasks from previous SemEval challenges.
### BibTeX entry and citation info
```bibtex
@article{muller2020covid,
title={COVID-Twitter-BERT: A Natural Language Processing Model to Analyse COVID-19 Content on Twitter},
author={M{\"u}ller, Martin and Salath{\'e}, Marcel and Kummervold, Per E},
journal={arXiv preprint arXiv:2005.07503},
year={2020}
}
```
or
```Martin Müller, Marcel Salathé, and Per E. Kummervold.
COVID-Twitter-BERT: A Natural Language Processing Model to Analyse COVID-19 Content on Twitter.
arXiv preprint arXiv:2005.07503 (2020).
```
| [
-0.07665276527404785,
-0.06651245057582855,
0.02727682515978813,
0.010750196874141693,
0.057945188134908676,
0.013190199621021748,
-0.006109526846557856,
0.06689181178808212,
0.05522686243057251,
-0.0054182554595172405,
0.000586212903726846,
0.011817611753940582,
0.0006026944029144943,
0.05567381903529167,
0.0496608205139637,
0.012023737654089928,
0.10789865255355835,
-0.07649341225624084,
-0.06806270778179169,
-0.0936119332909584,
0.04257796332240105,
0.01769666187465191,
0.053478654474020004,
-0.04451444372534752,
0.057090964168310165,
-0.05618869885802269,
-0.08897805213928223,
-0.09155102074146271,
0.10386916249990463,
0.03177709877490997,
0.012633194215595722,
-0.0223072599619627,
-0.011918156407773495,
0.08979932963848114,
-0.07177713513374329,
0.06436384469270706,
-0.009722153656184673,
0.01052139326930046,
0.024638691917061806,
0.050789739936590195,
-0.014912727288901806,
-0.030351977795362473,
-0.02245143987238407,
-0.0067255995236337185,
0.06924141198396683,
0.028659392148256302,
-0.031245514750480652,
0.014161258935928345,
-0.10405956953763962,
-0.06319086998701096,
-0.044757742434740067,
-0.045810818672180176,
0.019933706149458885,
0.04679309204220772,
-0.026110097765922546,
0.034851111471652985,
-0.007446665316820145,
-0.04168960079550743,
0.011042377911508083,
-0.046027738600969315,
-0.06204669177532196,
-0.03168322145938873,
0.02217368222773075,
0.04509871080517769,
-0.046207837760448456,
-0.02703155018389225,
-0.023145437240600586,
0.018452836200594902,
0.059944234788417816,
0.03171982988715172,
0.048578016459941864,
0.061472516506910324,
-0.004878581967204809,
-0.0016871812986209989,
-0.004317106679081917,
-0.09261118620634079,
0.13500544428825378,
-0.04709877818822861,
0.004600195214152336,
-0.05121292918920517,
0.05338079482316971,
0.019100269302725792,
0.12625032663345337,
-0.02379382774233818,
0.08762386441230774,
-0.02635275386273861,
0.032591190189123154,
-0.017223652452230453,
-0.06232989579439163,
-0.014555674046278,
-0.00585703831166029,
-0.03964715078473091,
0.029385121539235115,
0.0004370611859485507,
0.03752470761537552,
-0.003926499281078577,
0.028988027945160866,
-0.05516599863767624,
-0.06389786303043365,
0.05337827652692795,
-0.004754130262881517,
-0.007140231318771839,
0.03816228732466698,
-0.025689588859677315,
0.06851842999458313,
0.057406771928071976,
0.03283495083451271,
0.05012963339686394,
0.09287768602371216,
-0.00966042373329401,
0.03034357540309429,
0.024456609040498734,
-0.04980688542127609,
-0.0639992356300354,
0.009878135286271572,
-0.030836213380098343,
-0.022411910817027092,
-0.011428897269070148,
0.051632340997457504,
0.063773512840271,
-0.013560215942561626,
0.0019963982049375772,
-0.06571151316165924,
-0.04671414569020271,
-0.012775398790836334,
0.028526781126856804,
-0.004639176651835442,
3.21649049847564e-33,
0.025233624503016472,
0.003156406106427312,
-0.028750093653798103,
-0.09801287204027176,
0.014699434861540794,
0.02724788337945938,
0.04456624388694763,
0.008198595605790615,
-0.009994374588131905,
-0.02575329877436161,
-0.08620917052030563,
0.010735445655882359,
-0.08276975899934769,
0.12775735557079315,
-0.02015450969338417,
-0.017031563445925713,
-0.05653853714466095,
0.07580386847257614,
0.018215414136648178,
0.042224835604429245,
0.1140105277299881,
0.0849825069308281,
0.0009650369174778461,
-0.0202792976051569,
-0.02057730406522751,
0.00529487244784832,
0.07901333272457123,
-0.08013803511857986,
-0.01261482760310173,
0.04851523041725159,
-0.11767853051424026,
0.09125640243291855,
0.0056251767091453075,
-0.010208185762166977,
0.03913753107190132,
-0.010939465835690498,
0.029538579285144806,
-0.05413617566227913,
0.026839405298233032,
-0.0441880039870739,
0.03759699687361717,
0.09836867451667786,
0.00674107251688838,
-0.10371138155460358,
-0.06797366589307785,
-0.004368833266198635,
-0.0027271523140370846,
-0.020275887101888657,
-0.09390532970428467,
0.018438443541526794,
0.09065579622983932,
0.04616784676909447,
-0.11111047118902206,
0.0207708477973938,
0.021958202123641968,
-0.015615704469382763,
0.04638970270752907,
0.014557304792106152,
0.09656793624162674,
-0.0016944234957918525,
-0.020498445257544518,
-0.058138903230428696,
0.03293716907501221,
0.046992652118206024,
0.06785963475704193,
-0.032948028296232224,
0.0034363558515906334,
-0.014163540676236153,
-0.038099151104688644,
0.0011669570812955499,
-0.034589704126119614,
0.019031649455428123,
-0.046507347375154495,
-0.022661613300442696,
0.04509711638092995,
-0.0899733379483223,
0.014320487156510353,
-0.09271704405546188,
-0.054635725915431976,
0.050789907574653625,
0.016163188964128494,
0.020245935767889023,
0.007740754168480635,
-0.13220296800136566,
-0.01696360483765602,
0.01141164917498827,
0.015160875394940376,
-0.06466712802648544,
0.0039203716441988945,
0.003934497479349375,
-0.011731513775885105,
-0.003549430752173066,
0.01361133810132742,
0.004034729674458504,
-0.09605487436056137,
-3.196911170694756e-33,
-0.01791686750948429,
0.02344723604619503,
-0.08602362871170044,
0.0699806660413742,
-0.05862073227763176,
-0.019578881561756134,
0.07129115611314774,
0.1257259100675583,
-0.003371699946001172,
-0.025301618501544,
0.0038773033302277327,
-0.004650600720196962,
-0.10864533483982086,
-0.06455106288194656,
0.03783350810408592,
-0.04989362880587578,
0.0034617565106600523,
0.030718529596924782,
-0.026246318593621254,
-0.014818866737186909,
-0.011645868420600891,
-0.0419476293027401,
-0.06612825393676758,
0.05256769806146622,
-0.03759660944342613,
0.09813222289085388,
-0.0393364280462265,
0.03656337037682533,
0.024236105382442474,
0.006214556284248829,
-0.043755024671554565,
0.031618908047676086,
-0.03443912789225578,
0.0370723195374012,
-0.07394127547740936,
0.07830864936113358,
-0.005790816619992256,
-0.022907746955752373,
0.008112414740025997,
0.02446563169360161,
0.13235533237457275,
-0.03077625297009945,
0.024089328944683075,
0.04166074097156525,
-0.03510424494743347,
0.05578101426362991,
-0.1414644718170166,
-0.045639678835868835,
0.0049557872116565704,
-0.011651549488306046,
0.027593187987804413,
-0.021007467061281204,
-0.1124274730682373,
0.036741796880960464,
-0.11344460397958755,
-0.12692603468894958,
-0.0058421059511601925,
-0.07191316038370132,
-0.08682326227426529,
-0.017089782282710075,
-0.002002645516768098,
-0.0022386496420949697,
-0.04031569883227348,
-0.0214090459048748,
0.02226393297314644,
-0.020933443680405617,
-0.03544913977384567,
0.04376639798283577,
0.035200849175453186,
0.018480857834219933,
-0.020098010078072548,
-0.007258242927491665,
0.08128243684768677,
0.012407977133989334,
-0.0300197321921587,
0.017127977684140205,
0.006573210936039686,
-0.03680231049656868,
0.01609121635556221,
-0.01971842348575592,
-0.07968603819608688,
-0.030086254701018333,
0.0450727716088295,
0.038813259452581406,
0.007640171330422163,
0.11480220407247543,
0.01034598983824253,
-0.019778629764914513,
0.0018585888901725411,
0.03612988442182541,
-0.01646868698298931,
0.019812725484371185,
0.054749514907598495,
0.062005285173654556,
0.04673485830426216,
-5.719509488244512e-8,
-0.024730075150728226,
-0.019513659179210663,
-0.019730783998966217,
0.01853226125240326,
-0.05958166718482971,
0.0008065317524597049,
-0.059077564626932144,
0.06064270809292793,
0.021343549713492393,
0.01358096394687891,
0.03149380162358284,
0.03739113360643387,
-0.11073624342679977,
0.02691337652504444,
0.023123065009713173,
0.06334133446216583,
-0.045620836317539215,
0.00085541169391945,
0.017466727644205093,
-0.05995825678110123,
-0.07520519942045212,
0.01107908133417368,
-0.0366729199886322,
-0.017994845286011696,
0.04743564501404762,
-0.013375419192016125,
-0.015375274233520031,
0.1273881494998932,
-0.02088882587850094,
-0.020916389301419258,
-0.0685083195567131,
0.041053902357816696,
-0.1017424687743187,
0.06531079113483429,
0.07323969155550003,
0.03388092294335365,
0.008006160147488117,
-0.05547034740447998,
-0.02812707982957363,
0.009160028770565987,
0.09774168580770493,
0.030627183616161346,
-0.03285420686006546,
-0.05404706299304962,
0.06023137643933296,
0.023295771330595016,
0.026779185980558395,
-0.09519955515861511,
-0.017353100702166557,
0.021152161061763763,
-0.009858028031885624,
-0.036386772990226746,
-0.07390791177749634,
0.09367134422063828,
-0.023740017786622047,
-0.011160118505358696,
-0.024495605379343033,
-0.07820898294448853,
0.04564346745610237,
0.02206171303987503,
0.001648742356337607,
-0.01859678141772747,
0.048478905111551285,
0.07867516577243805
] |
vinai/bertweet-large | 67477168d449ccc8abb725e2123a0d6e44f27f4b | 2022-06-08T04:43:57.000Z | [
"pytorch",
"tf",
"roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | vinai | null | vinai/bertweet-large | 7,183 | 2 | transformers | # <a name="introduction"></a> BERTweet: A pre-trained language model for English Tweets
BERTweet is the first public large-scale language model pre-trained for English Tweets. BERTweet is trained based on the [RoBERTa](https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.md) pre-training procedure. The corpus used to pre-train BERTweet consists of 850M English Tweets (16B word tokens ~ 80GB), containing 845M Tweets streamed from 01/2012 to 08/2019 and 5M Tweets related to the **COVID-19** pandemic. The general architecture and experimental results of BERTweet can be found in our [paper](https://aclanthology.org/2020.emnlp-demos.2/):
@inproceedings{bertweet,
title = {{BERTweet: A pre-trained language model for English Tweets}},
author = {Dat Quoc Nguyen and Thanh Vu and Anh Tuan Nguyen},
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
pages = {9--14},
year = {2020}
}
**Please CITE** our paper when BERTweet is used to help produce published results or is incorporated into other software.
For further information or requests, please go to [BERTweet's homepage](https://github.com/VinAIResearch/BERTweet)!
### Main results
<p float="left">
<img width="275" alt="postagging" src="https://user-images.githubusercontent.com/2412555/135724590-01d8d435-262d-44fe-a383-cd39324fe190.png" />
<img width="275" alt="ner" src="https://user-images.githubusercontent.com/2412555/135724598-1e3605e7-d8ce-4c5e-be4a-62ae8501fae7.png" />
</p>
<p float="left">
<img width="275" alt="sentiment" src="https://user-images.githubusercontent.com/2412555/135724597-f1981f1e-fe73-4c03-b1ff-0cae0cc5f948.png" />
<img width="275" alt="irony" src="https://user-images.githubusercontent.com/2412555/135724595-15f4f2c8-bbb6-4ee6-82a0-034769dec183.png" />
</p>
| [
-0.06569212675094604,
-0.08119648694992065,
0.05748256295919418,
0.04152612015604973,
0.0379173643887043,
0.05656646192073822,
-0.01779285818338394,
0.11296234279870987,
0.08408951014280319,
0.024929603561758995,
0.013933742418885231,
0.029724139720201492,
0.01992405392229557,
0.038322269916534424,
-0.001320195966400206,
0.010611164383590221,
0.01879488304257393,
-0.08430259674787521,
-0.07148133218288422,
-0.08324845135211945,
0.04026639088988304,
0.03585994988679886,
0.03443777933716774,
-0.01555987261235714,
0.07634078711271286,
-0.06165512651205063,
-0.07925619184970856,
-0.06557587534189224,
0.0219611544162035,
0.11073648929595947,
-0.01464417390525341,
-0.018718991428613663,
0.03833281993865967,
0.08044550567865372,
-0.09554323554039001,
0.047261059284210205,
-0.03351805359125137,
-0.03797098994255066,
0.05117029324173927,
0.026851585134863853,
-0.02113546058535576,
-0.05110286921262741,
-0.044463541358709335,
-0.014411632902920246,
0.07624436914920807,
0.02841271460056305,
-0.007104149088263512,
0.02031910978257656,
-0.13563457131385803,
0.007347656413912773,
-0.0683659240603447,
0.004541540052741766,
0.05085528641939163,
0.0548073835670948,
-0.03995097801089287,
0.005474668927490711,
-0.010050141252577305,
0.007968335412442684,
0.049124907702207565,
-0.060764554888010025,
-0.0959559977054596,
-0.056987468153238297,
-0.04649609699845314,
0.002319833729416132,
-0.0059761470183730125,
0.021372072398662567,
-0.08386250585317612,
0.09306877851486206,
0.054581254720687866,
-0.00003876670598401688,
-0.010812494903802872,
0.11739546060562134,
-0.0010482381330803037,
0.11929304897785187,
-0.029494602233171463,
-0.021509941667318344,
0.11997392028570175,
0.03083798475563526,
-0.0010506993858143687,
-0.02684074081480503,
0.07126861065626144,
0.020989064127206802,
0.11702410131692886,
-0.04261890798807144,
0.06976097822189331,
-0.008916881866753101,
0.05683032050728798,
0.050410691648721695,
-0.01441443432122469,
0.019306384027004242,
-0.02148311957716942,
-0.07434552907943726,
0.10112421214580536,
0.029091008007526398,
-0.0329454243183136,
0.03822840750217438,
-0.024754127487540245,
-0.09368715435266495,
-0.011627549305558205,
0.03126969188451767,
0.01218472421169281,
0.018238123506307602,
0.07454240322113037,
0.018574094399809837,
-0.005271514877676964,
0.02008860744535923,
-0.011822675354778767,
0.04727829620242119,
0.052177246659994125,
-0.0280036311596632,
0.0056356750428676605,
0.027508951723575592,
-0.007916848175227642,
-0.05626046285033226,
0.05046062171459198,
-0.010187570936977863,
-0.02583579532802105,
-0.01314578764140606,
0.038067515939474106,
0.08438660204410553,
0.03236665576696396,
-0.00041315238922834396,
0.02295459620654583,
-0.034551817923784256,
-0.005602253135293722,
0.056758224964141846,
-0.009327747859060764,
5.864853189597345e-33,
0.0816117525100708,
0.017431503161787987,
0.0005713088903576136,
0.01009928435087204,
-0.00965630542486906,
-0.027485201135277748,
0.02926786057651043,
0.03190092369914055,
-0.0005216413992457092,
-0.06464485824108124,
-0.06275907903909683,
-0.04737994819879532,
-0.041328802704811096,
0.06984861195087433,
-0.04437470808625221,
-0.033311877399683,
-0.06650079786777496,
0.05932183563709259,
0.02422143518924713,
0.02388920821249485,
0.03979234769940376,
0.03674472123384476,
0.033619027584791183,
-0.027870889753103256,
0.013305905275046825,
-0.01096434984356165,
0.08011570572853088,
-0.11340844631195068,
-0.02991344779729843,
0.03628548979759216,
-0.1259949505329132,
0.0486929789185524,
-0.037250012159347534,
-0.06098735332489014,
0.04695935547351837,
-0.03114616684615612,
-0.014419524930417538,
-0.0758737251162529,
0.021677980199456215,
-0.04238071292638779,
0.044450949877500534,
0.07424191385507584,
0.027339162304997444,
-0.07216903567314148,
-0.004792125895619392,
-0.032633062452077866,
0.002741277916356921,
-0.016787268221378326,
-0.022384734824299812,
0.008549930527806282,
0.02302389219403267,
0.03513168916106224,
-0.08029522746801376,
0.02699943073093891,
0.06388038396835327,
0.04344189167022705,
0.06686709076166153,
0.015185382217168808,
0.10493945330381393,
0.03316504880785942,
0.030115492641925812,
-0.02247614786028862,
0.029856009408831596,
0.03418935090303421,
0.038628630340099335,
-0.03940964490175247,
-0.027499420568346977,
-0.01382684987038374,
-0.0019412563415244222,
-0.027080239728093147,
-0.0011606424814090133,
-0.05074517801403999,
-0.012821033596992493,
-0.00634722737595439,
0.0034110182896256447,
-0.03726097568869591,
0.08273155987262726,
-0.10205641388893127,
0.003998778760433197,
0.02667071856558323,
0.01823645830154419,
-0.05333612486720085,
0.06924660503864288,
-0.10153834521770477,
-0.0584065318107605,
-0.017021458595991135,
0.01827229931950569,
-0.08305411040782928,
-0.04175949841737747,
-0.009934510104358196,
-0.0031832121312618256,
0.01570521481335163,
0.0010300739668309689,
0.035162415355443954,
-0.07962284982204437,
-4.1422999309496886e-33,
-0.044101111590862274,
0.013442117720842361,
-0.10289882123470306,
0.0653197318315506,
-0.08686080574989319,
-0.04720645025372505,
0.03558123856782913,
0.13270017504692078,
0.03361155465245247,
0.008507076650857925,
0.00214904872700572,
-0.0754256322979927,
-0.03990485146641731,
-0.041513919830322266,
0.058079157024621964,
-0.06651260703802109,
0.07870525866746902,
-0.0012180135818198323,
0.004633540753275156,
0.03431655094027519,
-0.03690765053033829,
-0.08451207727193832,
-0.07433879375457764,
0.037643857300281525,
0.0009818528778851032,
0.05577525869011879,
0.001447834074497223,
0.06838510185480118,
-0.019853970035910606,
-0.008278517052531242,
-0.0473024919629097,
0.023175040259957314,
0.017567399889230728,
0.0424671471118927,
-0.05414488539099693,
0.0679173395037651,
0.03618534281849861,
-0.04492391273379326,
0.03169894590973854,
0.006031423341482878,
0.1658094823360443,
-0.01948799192905426,
-0.0004346991772763431,
-0.03854704648256302,
-0.07409145683050156,
0.042333994060754776,
-0.15487591922283173,
-0.03122701123356819,
-0.004407052882015705,
-0.027699438855051994,
0.05584506317973137,
0.0010480512864887714,
-0.10185138136148453,
0.0022919659968465567,
-0.053722646087408066,
-0.1746205985546112,
0.04307863861322403,
-0.10027474164962769,
-0.05228465795516968,
-0.05686040595173836,
-0.00405916478484869,
0.0036201660986989737,
0.00003194373857695609,
-0.010239707306027412,
0.020617201924324036,
-0.08740116655826569,
-0.02561761997640133,
0.09707118570804596,
0.001346279983408749,
-0.014971776865422726,
0.019068729132413864,
-0.03306932747364044,
0.03447544574737549,
-0.04872754588723183,
-0.02913469448685646,
-0.0285104438662529,
0.010396637953817844,
-0.05525966361165047,
0.025832416489720345,
-0.06351031363010406,
-0.05312027037143707,
0.0218134056776762,
0.023238463327288628,
-0.043480489403009415,
0.005557960830628872,
0.07331936061382294,
0.04071659967303276,
-0.00467180460691452,
-0.001555980066768825,
0.08260609209537506,
0.0020249434746801853,
0.013204305432736874,
0.007930082269012928,
0.023964829742908478,
0.0012635349994525313,
-5.049090390230049e-8,
-0.02425684966146946,
-0.011898637749254704,
-0.025570545345544815,
0.11535772681236267,
-0.004041269887238741,
-0.020565615966916084,
-0.028453784063458443,
0.07696645706892014,
-0.007107971701771021,
-0.011189403012394905,
0.006613912992179394,
0.03451073542237282,
-0.05817720293998718,
-0.001344227814115584,
-0.004957136232405901,
0.028771860525012016,
-0.0979418084025383,
-0.014130199328064919,
-0.026818683370947838,
-0.008092330768704414,
0.026558155193924904,
0.07079870998859406,
0.017445102334022522,
-0.036353278905153275,
0.09635143727064133,
0.017636066302657127,
-0.04741707444190979,
0.08545330166816711,
0.004613918252289295,
-0.07160729169845581,
-0.09858079999685287,
-0.005159205291420221,
-0.11398109793663025,
0.0028011389076709747,
0.049432650208473206,
0.08678171783685684,
-0.01508126687258482,
-0.028826674446463585,
-0.02111956663429737,
0.04316280782222748,
0.0509752482175827,
0.03211217001080513,
-0.04331453517079353,
-0.017350951209664345,
0.04250972718000412,
0.001164462068118155,
-0.09540586173534393,
-0.049023378640413284,
0.031009871512651443,
-0.03422458469867706,
0.015579700469970703,
0.02122141793370247,
-0.01027730293571949,
0.04006857052445412,
-0.019897375255823135,
0.04216376692056656,
-0.0392812043428421,
-0.03723736107349396,
0.01331288181245327,
-0.011572648771107197,
0.012814485467970371,
-0.011649709194898605,
0.0015060326550155878,
0.05814133584499359
] |
ai4bharat/indic-bert | 97ae2d6440dbd1a2698540223dc00b43075c69c9 | 2021-04-12T09:06:47.000Z | [
"pytorch",
"albert",
"en",
"dataset:AI4Bharat IndicNLP Corpora",
"transformers",
"license:mit"
] | null | false | ai4bharat | null | ai4bharat/indic-bert | 7,147 | 12 | transformers | ---
language: en
license: mit
datasets:
- AI4Bharat IndicNLP Corpora
---
# IndicBERT
IndicBERT is a multilingual ALBERT model pretrained exclusively on 12 major Indian languages. It is pre-trained on our novel monolingual corpus of around 9 billion tokens and subsequently evaluated on a set of diverse tasks. IndicBERT has much fewer parameters than other multilingual models (mBERT, XLM-R etc.) while it also achieves a performance on-par or better than these models.
The 12 languages covered by IndicBERT are: Assamese, Bengali, English, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu.
The code can be found [here](https://github.com/divkakwani/indic-bert). For more information, checkout our [project page](https://indicnlp.ai4bharat.org/) or our [paper](https://indicnlp.ai4bharat.org/papers/arxiv2020_indicnlp_corpus.pdf).
## Pretraining Corpus
We pre-trained indic-bert on AI4Bharat's monolingual corpus. The corpus has the following distribution of languages:
| Language | as | bn | en | gu | hi | kn | |
| ----------------- | ------ | ------ | ------ | ------ | ------ | ------ | ------- |
| **No. of Tokens** | 36.9M | 815M | 1.34B | 724M | 1.84B | 712M | |
| **Language** | **ml** | **mr** | **or** | **pa** | **ta** | **te** | **all** |
| **No. of Tokens** | 767M | 560M | 104M | 814M | 549M | 671M | 8.9B |
## Evaluation Results
IndicBERT is evaluated on IndicGLUE and some additional tasks. The results are summarized below. For more details about the tasks, refer our [official repo](https://github.com/divkakwani/indic-bert)
#### IndicGLUE
Task | mBERT | XLM-R | IndicBERT
-----| ----- | ----- | ------
News Article Headline Prediction | 89.58 | 95.52 | **95.87**
Wikipedia Section Title Prediction| **73.66** | 66.33 | 73.31
Cloze-style multiple-choice QA | 39.16 | 27.98 | **41.87**
Article Genre Classification | 90.63 | 97.03 | **97.34**
Named Entity Recognition (F1-score) | **73.24** | 65.93 | 64.47
Cross-Lingual Sentence Retrieval Task | 21.46 | 13.74 | **27.12**
Average | 64.62 | 61.09 | **66.66**
#### Additional Tasks
Task | Task Type | mBERT | XLM-R | IndicBERT
-----| ----- | ----- | ------ | -----
BBC News Classification | Genre Classification | 60.55 | **75.52** | 74.60
IIT Product Reviews | Sentiment Analysis | 74.57 | **78.97** | 71.32
IITP Movie Reviews | Sentiment Analaysis | 56.77 | **61.61** | 59.03
Soham News Article | Genre Classification | 80.23 | **87.6** | 78.45
Midas Discourse | Discourse Analysis | 71.20 | **79.94** | 78.44
iNLTK Headlines Classification | Genre Classification | 87.95 | 93.38 | **94.52**
ACTSA Sentiment Analysis | Sentiment Analysis | 48.53 | 59.33 | **61.18**
Winograd NLI | Natural Language Inference | 56.34 | 55.87 | **56.34**
Choice of Plausible Alternative (COPA) | Natural Language Inference | 54.92 | 51.13 | **58.33**
Amrita Exact Paraphrase | Paraphrase Detection | **93.81** | 93.02 | 93.75
Amrita Rough Paraphrase | Paraphrase Detection | 83.38 | 82.20 | **84.33**
Average | | 69.84 | **74.42** | 73.66
\* Note: all models have been restricted to a max_seq_length of 128.
## Downloads
The model can be downloaded [here](https://storage.googleapis.com/ai4bharat-public-indic-nlp-corpora/models/indic-bert-v1.tar.gz). Both tf checkpoints and pytorch binaries are included in the archive. Alternatively, you can also download it from [Huggingface](https://huggingface.co/ai4bharat/indic-bert).
## Citing
If you are using any of the resources, please cite the following article:
```
@inproceedings{kakwani2020indicnlpsuite,
title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},
author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},
year={2020},
booktitle={Findings of EMNLP},
}
```
We would like to hear from you if:
- You are using our resources. Please let us know how you are putting these resources to use.
- You have any feedback on these resources.
## License
The IndicBERT code (and models) are released under the MIT License.
## Contributors
- Divyanshu Kakwani
- Anoop Kunchukuttan
- Gokul NC
- Satish Golla
- Avik Bhattacharyya
- Mitesh Khapra
- Pratyush Kumar
This work is the outcome of a volunteer effort as part of [AI4Bharat initiative](https://ai4bharat.org).
## Contact
- Anoop Kunchukuttan ([anoop.kunchukuttan@gmail.com](mailto:anoop.kunchukuttan@gmail.com))
- Mitesh Khapra ([miteshk@cse.iitm.ac.in](mailto:miteshk@cse.iitm.ac.in))
- Pratyush Kumar ([pratyush@cse.iitm.ac.in](mailto:pratyush@cse.iitm.ac.in))
| [
-0.04687028005719185,
-0.11748872697353363,
0.0018463223241269588,
-0.06609062850475311,
-0.04719531908631325,
0.07390031218528748,
-0.05439862608909607,
0.03235790878534317,
0.018545880913734436,
-0.025129908695816994,
0.01932387240231037,
-0.05290902033448219,
-0.00007568294677184895,
-0.013955610804259777,
0.06523178517818451,
0.030115127563476562,
0.04535515233874321,
0.08021420985460281,
-0.06399650871753693,
-0.09503403306007385,
0.04305444285273552,
0.023843485862016678,
0.028874702751636505,
-0.06490688025951385,
0.10542307794094086,
0.0018493562238290906,
0.04046400636434555,
-0.07322702556848526,
0.055672500282526016,
-0.02499864064157009,
0.04143810644745827,
0.028829582035541534,
0.0273886788636446,
0.06439007818698883,
-0.001986588118597865,
-0.04708094522356987,
-0.08673102408647537,
-0.001616773777641356,
0.06894596666097641,
-0.01363572757691145,
-0.05811785161495209,
0.033871229737997055,
-0.01578393578529358,
-0.029352491721510887,
0.10765412449836731,
-0.01102414820343256,
-0.08222106099128723,
0.04472697898745537,
-0.04184474050998688,
0.006449217442423105,
-0.10089171677827835,
0.04159969463944435,
0.08824040740728378,
0.013973635621368885,
-0.03864943981170654,
-0.18742744624614716,
-0.04393552616238594,
-0.026479626074433327,
0.01751675456762314,
-0.0005902547272853553,
-0.021114008501172066,
-0.07672401517629623,
-0.01981409639120102,
0.10904560983181,
-0.07234630733728409,
0.021993979811668396,
-0.02356109395623207,
0.029769711196422577,
-0.003973097540438175,
-0.027510054409503937,
-0.013983773067593575,
-0.015158258378505707,
0.00705744931474328,
0.07487589865922928,
-0.008306456729769707,
-0.042395345866680145,
0.04976768419146538,
0.013975501991808414,
0.007803348358720541,
-0.09626055508852005,
0.0327838696539402,
0.05663568526506424,
0.09183913469314575,
-0.020778171718120575,
0.025605345144867897,
-0.025581296533346176,
0.06742681562900543,
0.04261360689997673,
-0.03686727583408356,
-0.0017459852388128638,
0.03141606226563454,
0.02016965113580227,
0.06946029514074326,
-0.020735379308462143,
0.02871689200401306,
0.050148461014032364,
0.011953713372349739,
-0.03753935545682907,
-0.02610139548778534,
0.05533113330602646,
-0.03673013672232628,
-0.003918730653822422,
0.011109810322523117,
-0.005808031652122736,
-0.12846557796001434,
-0.05936572328209877,
0.0784464031457901,
-0.04547597095370293,
0.04512231424450874,
-0.05472707375884056,
0.05189603567123413,
-0.024654565379023552,
-0.05916924029588699,
0.022966263815760612,
0.0730072483420372,
-0.021835975348949432,
0.03730250149965286,
0.0045834737829864025,
0.12130079418420792,
0.052894335240125656,
-0.12470468878746033,
-0.0018168874084949493,
0.016548646613955498,
0.0488726869225502,
-0.032082900404930115,
0.020280877128243446,
-0.04159577935934067,
3.576217483766184e-33,
0.002034070435911417,
0.018311545252799988,
-0.03132852166891098,
-0.04939788207411766,
-0.036009155213832855,
-0.07719937711954117,
-0.016061414033174515,
-0.01764250360429287,
-0.08999433368444443,
-0.02736094407737255,
0.007670539431273937,
0.06799939274787903,
-0.06458808481693268,
0.05416170507669449,
-0.018195433542132378,
0.03148633614182472,
0.024726862087845802,
0.0551244281232357,
0.034200798720121384,
0.0066757807508111,
0.10737863183021545,
0.0713118463754654,
0.08681368082761765,
0.019678758457303047,
-0.027312755584716797,
0.046138789504766464,
0.13749979436397552,
-0.09900278598070145,
0.014840256422758102,
0.04421970248222351,
-0.04690916836261749,
-0.012452821247279644,
-0.046769093722105026,
0.025582225993275642,
-0.03169826418161392,
-0.010868353769183159,
-0.05312400683760643,
-0.0070833913050591946,
-0.015481672249734402,
0.018206991255283356,
-0.010258562862873077,
0.017560839653015137,
-0.04249390587210655,
-0.012168530374765396,
-0.04188020899891853,
0.004255504813045263,
0.0041644517332315445,
0.03722240403294563,
0.01018697302788496,
-0.016482319682836533,
-0.026050589978694916,
0.01995738223195076,
-0.035570595413446426,
-0.00031200231751427054,
0.056517016142606735,
0.04791349917650223,
0.03389735519886017,
0.015369809232652187,
0.01600177399814129,
-0.009557647630572319,
-0.009286532178521156,
-0.01845303736627102,
0.023929396644234657,
-0.0213498342782259,
0.1010335385799408,
-0.02853849157691002,
-0.05523280054330826,
-0.00019728639745153487,
0.08018230646848679,
-0.034716177731752396,
-0.04367857053875923,
-0.02891843393445015,
0.02377508208155632,
0.04417340084910393,
-0.00828413013368845,
0.05126583203673363,
-0.005594673100858927,
-0.046596746891736984,
0.035150282084941864,
0.07024350762367249,
-0.016016367822885513,
0.018079856410622597,
-0.017580710351467133,
-0.06917569786310196,
0.016695788130164146,
-0.036063238978385925,
-0.04068231210112572,
-0.008436385542154312,
0.0493873693048954,
-0.004553735721856356,
0.0992996022105217,
-0.023655207827687263,
0.017696326598525047,
0.03324978053569794,
-0.03089815191924572,
-4.6985243886336096e-33,
-0.006506514735519886,
0.00432997802272439,
-0.07844609022140503,
0.09450149536132812,
-0.0021475660614669323,
-0.029682345688343048,
0.045643150806427,
0.13865743577480316,
0.054923318326473236,
0.04836384207010269,
0.04780275747179985,
-0.06507477164268494,
0.07002756744623184,
0.014361550100147724,
0.07023753225803375,
-0.005008403677493334,
0.027983492240309715,
0.05579850450158119,
0.02281879261136055,
0.04663873836398125,
-0.037372373044490814,
0.01020495593547821,
-0.08770637959241867,
0.007818025536835194,
-0.02790841832756996,
0.09268803894519806,
-0.10096531361341476,
0.019893474876880646,
-0.11439480632543564,
-0.0012723718537017703,
0.01016892958432436,
0.02884759195148945,
-0.06589729338884354,
0.012294946238398552,
-0.06575780361890793,
0.02976546436548233,
0.0005327041144482791,
-0.010121846571564674,
-0.030147165060043335,
0.11762610822916031,
0.005343799013644457,
0.04711305350065231,
-0.05068182200193405,
-0.037793997675180435,
0.05343766137957573,
-0.07362611591815948,
-0.0886145532131195,
-0.008519391529262066,
0.0033569324295967817,
-0.07960176467895508,
0.023537112399935722,
0.0016134557081386447,
-0.022631900385022163,
-0.060232989490032196,
0.007248229347169399,
-0.09284631162881851,
0.05340771749615669,
-0.0595923475921154,
-0.07466474920511246,
-0.0051326146349310875,
-0.07316479086875916,
-0.05687987059354782,
0.11975345015525818,
0.011384766548871994,
-0.024619167670607567,
0.0054331389255821705,
-0.0012353422353044152,
0.005974271800369024,
-0.004474021028727293,
-0.09782733023166656,
0.027355631813406944,
-0.08945367485284805,
-0.05314727500081062,
-0.024891480803489685,
-0.05318345129489899,
0.06847900152206421,
0.026666687801480293,
-0.09634824097156525,
-0.0338091179728508,
-0.07119986414909363,
-0.04902190342545509,
-0.013693692162632942,
-0.026730852201581,
-0.0026746720541268587,
0.01226689014583826,
0.06693178415298462,
0.026412833482027054,
-0.007397579029202461,
0.062423717230558395,
0.04614789038896561,
0.01039032731205225,
0.08053670823574066,
0.03327039256691933,
0.06360748410224915,
-0.018905334174633026,
-4.985671253621149e-8,
-0.05907728895545006,
-0.031911544501781464,
-0.04734344035387039,
0.05056213214993477,
-0.00964326225221157,
-0.08237966895103455,
-0.06947999447584152,
-0.004232574719935656,
-0.036006540060043335,
-0.04236280918121338,
-0.0029968954622745514,
0.019803978502750397,
-0.06495018303394318,
0.010076861828565598,
0.03685276210308075,
0.007570960558950901,
0.030494043603539467,
0.008581251837313175,
0.018867477774620056,
-0.03934556990861893,
0.062179990112781525,
0.002384218154475093,
0.05883011966943741,
-0.01947016827762127,
-0.03662065416574478,
-0.026658417657017708,
-0.0625435933470726,
-0.02050202712416649,
0.04699994623661041,
-0.04128440469503403,
-0.035249706357717514,
0.08896733075380325,
-0.04093794897198677,
-0.056703418493270874,
0.014726645313203335,
0.03370799869298935,
0.01999635621905327,
-0.02107539214193821,
-0.002931556198745966,
0.09598209708929062,
0.09634406119585037,
0.023259498178958893,
-0.07643789798021317,
-0.012343605048954487,
0.05703948065638542,
0.0008047671290114522,
-0.033890824764966965,
-0.08402480185031891,
0.0014230264350771904,
-0.09397802501916885,
-0.06821493059396744,
-0.03011271543800831,
-0.07180894911289215,
0.07563667744398117,
0.04000048711895943,
0.024042997509241104,
-0.11110539734363556,
-0.030305420979857445,
0.09537854790687561,
0.029816007241606712,
0.025097157806158066,
0.0004642983840312809,
0.023000845685601234,
-0.021018357947468758
] |
svalabs/twitter-xlm-roberta-bitcoin-sentiment | 34915a8cf74b0ad061a6f383eded7aecd293f3e5 | 2022-05-12T09:28:14.000Z | [
"pytorch",
"xlm-roberta",
"text-classification",
"transformers"
] | text-classification | false | svalabs | null | svalabs/twitter-xlm-roberta-bitcoin-sentiment | 7,139 | null | transformers | This model is mainly focussed on extracting the sentiment on tweets regarding bitcoin. The model was trained on manually on labeled data with rubrix (https://www.rubrix.ml/). The training set approximately contained 500 samples and 500 test samples. The cardiffnlp/twitter-xlm-roberta-base-sentiment (https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment) was used as weak classifier and also as base-model for finetuning.
| [
-0.05423995479941368,
-0.09167225658893585,
-0.08425907790660858,
0.04418861120939255,
0.040418367832899094,
0.05595405399799347,
-0.0268994327634573,
0.04370150342583656,
0.015512010082602501,
0.003817172721028328,
0.0047922320663928986,
0.04018882289528847,
0.060718975961208344,
-0.044405899941921234,
-0.02196892909705639,
0.06565310806035995,
0.08640799671411514,
-0.07942093908786774,
-0.07308890670537949,
-0.015641052275896072,
-0.02660243771970272,
0.05045807734131813,
0.021594233810901642,
0.03129957988858223,
-0.0017972019268199801,
0.018454333767294884,
0.009008452296257019,
0.026415899395942688,
0.07133134454488754,
-0.020001357421278954,
-0.035593532025814056,
0.1052609533071518,
0.041407037526369095,
0.05571652576327324,
-0.09457781165838242,
0.03839242085814476,
-0.03238231688737869,
0.0034066929947584867,
0.0053969318978488445,
0.023817474022507668,
0.014699258841574192,
-0.06014285981655121,
-0.036958131939172745,
-0.027813848108053207,
0.08634684979915619,
-0.007616476621478796,
0.06642905622720718,
0.0181130301207304,
-0.052089985460042953,
-0.028630830347537994,
-0.05843852832913399,
-0.004773927386850119,
-0.028425132855772972,
0.01730193756520748,
-0.09410790354013443,
-0.057223301380872726,
-0.011009604670107365,
-0.0015836526872590184,
0.03810613602399826,
-0.035301219671964645,
0.029049692675471306,
-0.04436111077666283,
-0.056016288697719574,
0.011768865399062634,
0.06503740698099136,
-0.08016292750835419,
-0.09734652936458588,
0.07625343650579453,
0.0040067085064947605,
-0.0760878473520279,
0.031305138021707535,
-0.029043102636933327,
-0.02888619340956211,
0.08614467829465866,
-0.022865820676088333,
0.005982418544590473,
0.10876340419054031,
-0.009838925674557686,
0.03435242548584938,
-0.003253492759540677,
-0.05530484393239021,
-0.03103063628077507,
0.05656889081001282,
0.019447200000286102,
0.053281258791685104,
-0.02532077208161354,
0.02561972476541996,
0.08867435157299042,
-0.06566493213176727,
-0.006992037408053875,
0.04488067328929901,
0.02814486436545849,
0.032180458307266235,
-0.019901392981410027,
-0.08658477663993835,
-0.010139752179384232,
-0.03136802092194557,
-0.0009643231169320643,
-0.029420722275972366,
0.10628597438335419,
0.007055421359837055,
0.09251981228590012,
0.019927579909563065,
-0.02530517242848873,
-0.003975443542003632,
-0.042964957654476166,
0.04520526900887489,
0.07521121203899384,
0.09942646324634552,
-0.08318472653627396,
-0.057042211294174194,
0.023317305371165276,
-0.10391353070735931,
-0.06608832627534866,
0.06294853985309601,
-0.059440020471811295,
-0.018922295421361923,
-0.028527265414595604,
0.0358005091547966,
0.08141443878412247,
0.016185233369469643,
-0.019692834466695786,
-0.0023826644755899906,
-0.035323839634656906,
0.006775469984859228,
0.04541243240237236,
-0.0962599664926529,
1.0582026979777742e-33,
0.04995517060160637,
0.08120862394571304,
0.00031408865470439196,
-0.006860038265585899,
0.027327189221978188,
0.029167229309678078,
-0.04722907394170761,
0.03368860110640526,
-0.04384787008166313,
0.02634168043732643,
-0.018132420256733894,
0.036546558141708374,
0.0038695598486810923,
0.09016847610473633,
-0.024244841188192368,
-0.08342569321393967,
-0.1052553653717041,
-0.05713445320725441,
0.05233372002840042,
0.018023798242211342,
0.04977452754974365,
0.11458547413349152,
0.012621899135410786,
-0.04922160506248474,
-0.015421474352478981,
0.06815200299024582,
0.11936277151107788,
0.011015304364264011,
-0.01981384865939617,
0.04415258392691612,
-0.04114793241024017,
0.0778948962688446,
-0.04430072754621506,
-0.06416840106248856,
0.06308430433273315,
0.015359672717750072,
-0.07840012013912201,
0.00021461483265738934,
0.030202031135559082,
-0.12936782836914062,
-0.0041146609000861645,
0.0194382406771183,
0.059973035007715225,
-0.00701464107260108,
-0.06510422378778458,
0.10666836053133011,
-0.01463184505701065,
-0.06827259808778763,
0.09979117661714554,
-0.015646236017346382,
0.04202938452363014,
-0.009678501635789871,
-0.014983084984123707,
0.04725383222103119,
-0.06133182719349861,
0.0427098348736763,
-0.0012609102996066213,
0.03802681341767311,
0.042908404022455215,
-0.0037712245248258114,
0.012995353899896145,
0.009953332133591175,
0.008686240762472153,
-0.023839423432946205,
0.013232430443167686,
0.06540107727050781,
-0.07039688527584076,
-0.03553248941898346,
0.013099227100610733,
0.006341748870909214,
0.00651093665510416,
0.019290780648589134,
0.00879688747227192,
-0.05331704393029213,
-0.03713098168373108,
-0.0511833056807518,
0.01780327409505844,
0.0006458037532866001,
0.028009388595819473,
-0.007169611752033234,
-0.0006084534106776118,
-0.0774211511015892,
0.11422863602638245,
-0.09238451719284058,
-0.08945569396018982,
-0.01088501513004303,
0.018095146864652634,
-0.07413075119256973,
-0.02383575029671192,
0.04100625962018967,
-0.049355506896972656,
0.020235853269696236,
-0.042144495993852615,
0.02883773297071457,
-0.03675233572721481,
-1.0591365731382049e-33,
-0.050491176545619965,
0.0006503514596261084,
-0.09599433839321136,
0.10207822173833847,
-0.03346213325858116,
-0.048919469118118286,
-0.041615840047597885,
0.07655807584524155,
-0.010151538997888565,
0.08534244447946548,
0.12416978925466537,
-0.038814105093479156,
-0.006632170174270868,
0.026915812864899635,
0.014552507549524307,
-0.049652956426143646,
0.003467034315690398,
-0.0921112522482872,
-0.04741254076361656,
-0.05610686168074608,
-0.078646220266819,
0.05332452431321144,
-0.08562169224023819,
-0.004105907399207354,
-0.0018357525113970041,
0.06592511385679245,
-0.021997245028614998,
0.022679954767227173,
0.04549434408545494,
0.0018574893474578857,
-0.040921878069639206,
-0.022537853568792343,
-0.019895318895578384,
0.059887032955884933,
-0.0888889953494072,
0.06663327664136887,
-0.022788815200328827,
-0.0397687703371048,
0.05367724597454071,
0.04899419844150543,
0.07713589817285538,
0.01507212407886982,
-0.10090777277946472,
0.024807918816804886,
-0.03028159961104393,
0.035571373999118805,
-0.05650333687663078,
-0.011010092683136463,
0.011192042380571365,
-0.04231254756450653,
0.026473216712474823,
0.07389311492443085,
-0.014489216729998589,
0.0915510430932045,
-0.017497718334197998,
-0.08546753227710724,
-0.02234322763979435,
-0.06023166701197624,
-0.03854115307331085,
0.01444832794368267,
-0.05474786087870598,
0.04190392792224884,
-0.04318227991461754,
-0.009730265475809574,
0.0346694178879261,
-0.10294917970895767,
-0.033264197409152985,
0.0011141123250126839,
-0.004086153581738472,
0.03225943446159363,
0.06126523017883301,
0.052093103528022766,
0.03000328317284584,
-0.00912354327738285,
-0.0051624830812215805,
-0.026456868276000023,
-0.031090453267097473,
-0.02475711889564991,
-0.08404449373483658,
-0.08077491074800491,
-0.019058706238865852,
-0.05378653481602669,
-0.016245778650045395,
0.046694058924913406,
0.028746578842401505,
-0.013034817762672901,
0.05385329946875572,
0.024462541565299034,
-0.03213734179735184,
0.016543373465538025,
0.05894637480378151,
0.015989702194929123,
-0.006798917427659035,
0.054950810968875885,
-0.04124642536044121,
-4.157880795219171e-8,
-0.108495332300663,
-0.046515773981809616,
-0.006809172686189413,
0.06502737104892731,
0.04325436055660248,
0.006917104125022888,
0.0760689303278923,
0.05461863800883293,
-0.01590750925242901,
0.11512048542499542,
0.0015176869928836823,
0.0037921180482953787,
-0.14799684286117554,
-0.04610464721918106,
0.004403275437653065,
0.005607115104794502,
-0.017949510365724564,
0.028580401092767715,
0.024084825068712234,
0.05038507282733917,
0.11046091467142105,
0.024158591404557228,
0.017061829566955566,
-0.03598307445645332,
0.07777867466211319,
-0.042298074811697006,
-0.04299188032746315,
0.08452200144529343,
-0.04839986190199852,
-0.018973683938384056,
-0.013729400001466274,
0.04853610321879387,
-0.0628332868218422,
-0.0025187514256685972,
-0.007372941356152296,
0.1539674997329712,
-0.038469281047582626,
-0.034768786281347275,
-0.01646226830780506,
-0.0032284746412187815,
-0.01940855197608471,
0.011226837523281574,
-0.06653278321027756,
-0.02973795495927334,
0.029902001842856407,
-0.01362642366439104,
-0.051088061183691025,
-0.0739070326089859,
0.04320308566093445,
-0.004270486533641815,
0.019535189494490623,
0.07032188773155212,
0.007335994392633438,
0.045563049614429474,
0.02083452418446541,
0.005950649734586477,
-0.017582638189196587,
-0.047364503145217896,
-0.014283006079494953,
0.03687392175197601,
0.028255213052034378,
-0.04649187624454498,
-0.01127739530056715,
-0.017659911885857582
] |
jonatasgrosman/wav2vec2-large-xlsr-53-german | 934c45f3e6939b6b6d261b4c71ed2755810e7fe6 | 2022-07-27T23:37:37.000Z | [
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:common_voice",
"dataset:mozilla-foundation/common_voice_6_0",
"transformers",
"audio",
"hf-asr-leaderboard",
"mozilla-foundation/common_voice_6_0",
"robust-speech-event",
"speech",
"xlsr-fine-tuning-week",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/wav2vec2-large-xlsr-53-german | 7,115 | 5 | transformers | ---
language: de
license: apache-2.0
datasets:
- common_voice
- mozilla-foundation/common_voice_6_0
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- de
- hf-asr-leaderboard
- mozilla-foundation/common_voice_6_0
- robust-speech-event
- speech
- xlsr-fine-tuning-week
model-index:
- name: XLSR Wav2Vec2 German by Jonatas Grosman
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice de
type: common_voice
args: de
metrics:
- name: Test WER
type: wer
value: 12.06
- name: Test CER
type: cer
value: 2.92
- name: Test WER (+LM)
type: wer
value: 8.74
- name: Test CER (+LM)
type: cer
value: 2.28
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: de
metrics:
- name: Dev WER
type: wer
value: 32.75
- name: Dev CER
type: cer
value: 13.64
- name: Dev WER (+LM)
type: wer
value: 26.6
- name: Dev CER (+LM)
type: cer
value: 12.58
---
# Fine-tuned XLSR-53 large model for speech recognition in German
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on German using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
## Usage
The model can be used directly (without a language model) as follows...
Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:
```python
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-german")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
```
Writing your own inference script:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "de"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-german"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
```
| Reference | Prediction |
| ------------- | ------------- |
| ZIEHT EUCH BITTE DRAUSSEN DIE SCHUHE AUS. | ZIEHT EUCH BITTE DRAUSSEN DIE SCHUHE AUS |
| ES KOMMT ZUM SHOWDOWN IN GSTAAD. | ES KOMMT ZUG STUNDEDAUTENESTERKT |
| IHRE FOTOSTRECKEN ERSCHIENEN IN MODEMAGAZINEN WIE DER VOGUE, HARPER’S BAZAAR UND MARIE CLAIRE. | IHRE FOTELSTRECKEN ERSCHIENEN MIT MODEMAGAZINEN WIE DER VALG AT DAS BASIN MA RIQUAIR |
| FELIPE HAT EINE AUCH FÜR MONARCHEN UNGEWÖHNLICH LANGE TITELLISTE. | FELIPPE HAT EINE AUCH FÜR MONACHEN UNGEWÖHNLICH LANGE TITELLISTE |
| ER WURDE ZU EHREN DES REICHSKANZLERS OTTO VON BISMARCK ERRICHTET. | ER WURDE ZU EHREN DES REICHSKANZLERS OTTO VON BISMARCK ERRICHTET M |
| WAS SOLLS, ICH BIN BEREIT. | WAS SOLL'S ICH BIN BEREIT |
| DAS INTERNET BESTEHT AUS VIELEN COMPUTERN, DIE MITEINANDER VERBUNDEN SIND. | DAS INTERNET BESTEHT AUS VIELEN COMPUTERN DIE MITEINANDER VERBUNDEN SIND |
| DER URANUS IST DER SIEBENTE PLANET IN UNSEREM SONNENSYSTEM. | DER URANUS IST DER SIEBENTE PLANET IN UNSEREM SONNENSYSTEM |
| DIE WAGEN ERHIELTEN EIN EINHEITLICHES ERSCHEINUNGSBILD IN WEISS MIT ROTEM FENSTERBAND. | DIE WAGEN ERHIELTEN EIN EINHEITLICHES ERSCHEINUNGSBILD IN WEISS MIT ROTEM FENSTERBAND |
| SIE WAR DIE COUSINE VON CARL MARIA VON WEBER. | SIE WAR DIE COUSINE VON KARL-MARIA VON WEBER |
## Evaluation
1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test`
```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-german --dataset mozilla-foundation/common_voice_6_0 --config de --split test
```
2. To evaluate on `speech-recognition-community-v2/dev_data`
```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-german --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```
## Citation
If you want to cite this model you can use this:
```bibtex
@misc{grosman2021xlsr53-large-german,
title={Fine-tuned {XLSR}-53 large model for speech recognition in {G}erman},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german}},
year={2021}
}
```
| [
-0.08388983458280563,
-0.07693295180797577,
-0.04375056177377701,
-0.0904199481010437,
0.012585571967065334,
0.02896086685359478,
-0.01367014367133379,
0.0063398354686796665,
-0.019788114354014397,
-0.0690489113330841,
-0.009659511968493462,
-0.16389170289039612,
-0.021237393841147423,
-0.017578044906258583,
-0.014991323463618755,
-0.08741956204175949,
-0.006081943865865469,
-0.06614448130130768,
-0.03162659704685211,
-0.055840712040662766,
0.03355018422007561,
0.08565961569547653,
0.03087444417178631,
-0.013487397693097591,
0.06483107805252075,
0.0025659706443548203,
-0.07694687694311142,
0.019224997609853745,
0.034300629049539566,
-0.03856522589921951,
0.08856144547462463,
0.03866400942206383,
0.14096017181873322,
0.021771475672721863,
0.0020383179653435946,
-0.0014829167630523443,
0.01974516175687313,
-0.06448408961296082,
-0.02759820595383644,
-0.04336283728480339,
-0.05832537263631821,
-0.020722275599837303,
0.005132516846060753,
-0.0759940966963768,
-0.005515113472938538,
-0.03761903941631317,
-0.08793438225984573,
-0.020166359841823578,
-0.03876405581831932,
0.09052278846502304,
-0.05293961614370346,
-0.024880127981305122,
0.06158748269081116,
0.046084605157375336,
-0.03205762431025505,
0.03291124850511551,
-0.018817808479070663,
0.04836804047226906,
0.07345787435770035,
0.025077471509575844,
-0.030259987339377403,
-0.03139287605881691,
-0.0499625988304615,
0.020693300291895866,
-0.0782502293586731,
-0.024806663393974304,
-0.016849687322974205,
-0.06503521651029587,
0.011112883687019348,
0.011932196095585823,
-0.12597249448299408,
0.05859527736902237,
0.030416270717978477,
0.05558440461754799,
0.03369220346212387,
-0.017079025506973267,
-0.027530953288078308,
-0.05921708792448044,
0.06822682172060013,
-0.06591948121786118,
-0.023016691207885742,
-0.02620076574385166,
-0.015982121229171753,
0.02528480812907219,
0.09497665613889694,
-0.01799982413649559,
0.021807340905070305,
-0.011186700314283371,
-0.005556745454668999,
-0.03935446962714195,
-0.05931130051612854,
-0.05160536989569664,
0.0037185430992394686,
0.084432452917099,
-0.008463951759040356,
0.075902558863163,
0.06530362367630005,
0.09169706702232361,
0.00816426519304514,
0.06514152139425278,
-0.02669534832239151,
-0.05037449672818184,
0.021314824000000954,
-0.016718167811632156,
-0.0012873378582298756,
-0.04856499284505844,
-0.007840096950531006,
0.07225469499826431,
0.027090730145573616,
-0.06411532312631607,
-0.04187885299324989,
-0.01715194247663021,
-0.025617120787501335,
-0.07628089189529419,
0.02191675268113613,
0.02303837239742279,
-0.023090550675988197,
-0.06284593790769577,
0.025903448462486267,
0.014878149144351482,
-0.008982665836811066,
-0.013874870724976063,
-0.02732015587389469,
-0.031963132321834564,
0.05052200332283974,
0.023808211088180542,
0.016202569007873535,
6.772514458662636e-33,
0.0006010694778524339,
0.009009944275021553,
0.009434231556952,
0.008771459572017193,
-0.012460892088711262,
-0.08911649137735367,
-0.07236027717590332,
0.03713911399245262,
-0.00989079661667347,
-0.03562786802649498,
-0.013936293311417103,
0.0006594476872123778,
-0.11612091958522797,
0.0750068724155426,
0.04042019322514534,
0.03497418761253357,
0.036965273320674896,
-0.0017304343637079,
-0.01581406034529209,
-0.029850797727704048,
0.15206503868103027,
0.006290198303759098,
0.056031931191682816,
-0.01860785484313965,
0.1025487631559372,
0.06819384545087814,
0.11023720353841782,
-0.04493015259504318,
0.0029849230777472258,
0.018134547397494316,
-0.033769410103559494,
-0.06115732714533806,
0.024708189070224762,
-0.02313333749771118,
0.04140577092766762,
0.03558182716369629,
-0.019990626722574234,
0.06387638300657272,
-0.06109243631362915,
-0.0638694241642952,
0.041987888514995575,
0.00875097792595625,
-0.04157095402479172,
-0.05573544651269913,
0.019583923742175102,
-0.04513431712985039,
-0.020050091668963432,
0.027579573914408684,
0.049817148596048355,
-0.002441944321617484,
-0.03730679675936699,
0.006477372720837593,
-0.03769376501441002,
0.034098874777555466,
0.01993461139500141,
0.0325954295694828,
0.0696055069565773,
0.07814978063106537,
-0.028412381187081337,
-0.004892130848020315,
-0.033112164586782455,
0.001203092746436596,
0.01796494983136654,
-0.03185242787003517,
0.07538842409849167,
-0.05529121682047844,
0.000003112171725661028,
-0.00792098231613636,
-0.004439041018486023,
0.013648593798279762,
-0.0129083301872015,
-0.03389362618327141,
0.11121749132871628,
0.050708841532468796,
0.01496414840221405,
0.04144817590713501,
-0.004129243548959494,
-0.05302904173731804,
-0.014444362372159958,
0.02943163365125656,
-0.03665073588490486,
0.02817484363913536,
0.016387104988098145,
-0.05631221458315849,
-0.01733112335205078,
-0.05153067037463188,
0.004659316036850214,
-0.05434749647974968,
-0.037977781146764755,
0.015278715640306473,
-0.05114606022834778,
0.08767750859260559,
-0.06654118001461029,
0.003222245955839753,
-0.09371046721935272,
-8.672240429918135e-33,
-0.039408087730407715,
0.0747162476181984,
-0.006912069860845804,
0.12775717675685883,
0.02736649475991726,
0.016159776598215103,
0.09080608934164047,
0.06666572391986847,
0.024576257914304733,
-0.01899685151875019,
0.030868858098983765,
-0.06224803254008293,
0.07950860261917114,
-0.01690627634525299,
0.08886043727397919,
0.028263915330171585,
-0.04149434715509415,
0.004658736754208803,
-0.017091087996959686,
0.07837574183940887,
0.0043481746688485146,
0.0984293594956398,
-0.03730600327253342,
0.049590837210416794,
-0.048817746341228485,
-0.049962449818849564,
-0.06434960663318634,
0.04427877813577652,
-0.012061526998877525,
-0.02123643085360527,
-0.049281712621450424,
0.01361225824803114,
-0.1344919055700302,
0.03474527224898338,
0.009448516182601452,
-0.05527428537607193,
0.01346694864332676,
0.002701682271435857,
-0.01587713696062565,
0.03673205524682999,
0.07068999111652374,
0.07578293234109879,
-0.07161632180213928,
-0.09218063950538635,
0.07239315658807755,
-0.0390734001994133,
-0.015666570514440536,
-0.00184475420974195,
-0.018990539014339447,
-0.037228964269161224,
0.03179511800408363,
-0.029350485652685165,
-0.018984496593475342,
0.034580521285533905,
0.01765410788357258,
0.00934691447764635,
0.0006650238647125661,
-0.06165122240781784,
-0.03781585022807121,
0.01635236106812954,
-0.021052587777376175,
-0.023851364850997925,
-0.08928675949573517,
-0.027280088514089584,
0.06633817404508591,
0.036914024502038956,
-0.06221356615424156,
0.012517712078988552,
0.027399379760026932,
-0.018570242449641228,
-0.006288852542638779,
-0.02113925665616989,
-0.008831935003399849,
-0.04217095673084259,
-0.054533276706933975,
-0.028210967779159546,
-0.11247443407773972,
-0.06236344948410988,
-0.03255118802189827,
-0.10051725059747696,
0.005013055633753538,
0.04544040560722351,
0.08055229485034943,
0.032877366989851,
0.021644987165927887,
0.09941741824150085,
-0.014612985774874687,
0.009970368817448616,
0.011340048164129257,
0.04551301896572113,
-0.04248451814055443,
0.06926526874303818,
-0.05795852094888687,
0.08405671268701553,
0.013617557473480701,
-5.904209032792096e-8,
-0.06791980564594269,
0.00035861655487678945,
-0.028864523395895958,
-0.06889347732067108,
0.04530223831534386,
-0.1265021562576294,
-0.04390357807278633,
-0.017458908259868622,
0.04222768917679787,
-0.01704028993844986,
0.04447589069604874,
-0.044195741415023804,
-0.08195788413286209,
0.0484774149954319,
0.016965718939900398,
-0.023697225376963615,
-0.04379543289542198,
0.16487577557563782,
-0.040138814598321915,
-0.10666300356388092,
0.07028882205486298,
0.006787215359508991,
0.043855540454387665,
0.02772756852209568,
0.05485657602548599,
-0.03147799149155617,
-0.01268015056848526,
0.10304215550422668,
0.024297775700688362,
0.027494966983795166,
-0.05239829793572426,
0.06824605911970139,
-0.0218307264149189,
-0.06317976117134094,
0.07246702164411545,
0.0500391460955143,
-0.04094817489385605,
-0.02660342864692211,
-0.016224266961216927,
0.060770269483327866,
0.07987792044878006,
0.10795625299215317,
-0.10980831831693649,
0.005217801779508591,
0.04207678884267807,
-0.015356834046542645,
-0.04193076491355896,
-0.07833471894264221,
0.04931071773171425,
0.014422954991459846,
0.026821395382285118,
0.005992359481751919,
0.022418182343244553,
-0.001935370615683496,
0.05489407852292061,
0.06633865833282471,
-0.011074312031269073,
-0.010457966476678848,
0.06196141615509987,
-0.025986531749367714,
0.08270707726478577,
-0.02076224610209465,
-0.029367772862315178,
-0.01905122399330139
] |
deepset/bert-small-mm_retrieval-question_encoder | a34edf571667cc1ba38cec55c56f2905f13336a2 | 2021-10-19T15:51:37.000Z | [
"pytorch",
"dpr",
"feature-extraction",
"transformers"
] | feature-extraction | false | deepset | null | deepset/bert-small-mm_retrieval-question_encoder | 7,099 | null | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large | 160deb78aca30f63754e512a93337ce8013a32ca | 2021-06-20T19:03:02.000Z | [
"pytorch",
"xlm-roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | nreimers | null | nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large | 7,093 | 6 | transformers | # MiniLMv2
This is a MiniLMv2 model from: [https://github.com/microsoft/unilm](https://github.com/microsoft/unilm/tree/master/minilm) | [
-0.04895520955324173,
0.02276579663157463,
-0.07000173628330231,
0.036097876727581024,
0.042695432901382446,
0.02520260028541088,
-0.0600503534078598,
-0.0007676688255742192,
0.0047691743820905685,
0.015759311616420746,
0.06056235358119011,
0.00046843758900649846,
0.00011801968503277749,
0.01050148531794548,
-0.08721819519996643,
0.08599226176738739,
0.01498068030923605,
-0.033648423850536346,
0.018567850813269615,
-0.00535806268453598,
0.018649930134415627,
0.06277196109294891,
-0.09240960329771042,
-0.007299271412193775,
0.040097471326589584,
-0.004971580114215612,
0.0006423594313673675,
0.1038576066493988,
0.04481102153658867,
-0.06379807740449905,
0.0007346547790803015,
0.03916702792048454,
0.054420169442892075,
0.06359685957431793,
0.06703665852546692,
0.017612049356102943,
0.018825411796569824,
-0.02627837099134922,
-0.06136196479201317,
-0.06859486550092697,
-0.03151470422744751,
0.012728261761367321,
-0.00036808030563406646,
-0.0049248202703893185,
-0.003028493607416749,
0.03204696625471115,
-0.06138736382126808,
-0.06638938933610916,
-0.02506941929459572,
-0.03726499527692795,
0.02621067315340042,
-0.016988463699817657,
-0.04025539383292198,
0.022876180708408356,
0.0062387920916080475,
-0.05012645944952965,
-0.04382697120308876,
-0.07776421308517456,
0.0261690653860569,
-0.004900501109659672,
0.0404387004673481,
0.01664581522345543,
-0.033247388899326324,
0.022963257506489754,
0.0005878026131540537,
0.04971107095479965,
-0.002978444565087557,
-0.0770753026008606,
0.00504093524068594,
-0.1170683279633522,
-0.06406883895397186,
-0.042548276484012604,
-0.013686327263712883,
0.01435297355055809,
0.05689704790711403,
-0.0041104028932750225,
0.057125676423311234,
-0.0020104823634028435,
0.06368602812290192,
-0.022806983441114426,
-0.05479602515697479,
-0.014698090963065624,
-0.05923996493220329,
0.055565617978572845,
0.005362731870263815,
0.009084606543183327,
-0.053686242550611496,
0.006340047810226679,
0.13758905231952667,
-0.03288983926177025,
-0.13095535337924957,
0.03352827578783035,
0.06479422748088837,
0.0464354082942009,
-0.04781796410679817,
-0.03083430416882038,
0.06145505607128143,
-0.039485786110162735,
-0.04700921103358269,
0.06165080890059471,
-0.028451289981603622,
0.008284357376396656,
0.09092967957258224,
-0.0435781255364418,
0.02283267304301262,
-0.09361627697944641,
0.0875069722533226,
0.0037490196991711855,
0.04307965189218521,
-0.034554027020931244,
0.022966425865888596,
0.04025290161371231,
-0.060006674379110336,
-0.03719509020447731,
0.020583711564540863,
-0.08092869818210602,
-0.004847933538258076,
-0.03384304791688919,
-0.0035581530537456274,
-0.004073707852512598,
-0.012737107463181019,
-0.08114377409219742,
-0.06092020124197006,
-0.04482210427522659,
-0.019749078899621964,
0.015877695754170418,
-0.03853707015514374,
-2.6795005722022776e-34,
0.023562079295516014,
0.002345276065170765,
0.041187796741724014,
0.04818432778120041,
0.12321080267429352,
0.03126312419772148,
0.037290722131729126,
-0.028969576582312584,
-0.03538160398602486,
-0.009504184126853943,
-0.06577702611684799,
-0.04173797369003296,
-0.04687798023223877,
0.05348403751850128,
0.042434483766555786,
-0.1564864069223404,
0.005376838613301516,
0.056475166231393814,
0.00615740055218339,
0.01097516156733036,
-0.002388580935075879,
0.062372997403144836,
0.01149376668035984,
-0.12392240017652512,
0.09175445139408112,
0.09208182245492935,
0.06229568272829056,
-0.05160153657197952,
0.12363734096288681,
0.030484914779663086,
0.018321994692087173,
0.025407403707504272,
-0.041776224970817566,
0.004930829629302025,
0.010072944685816765,
-0.003038248745724559,
-0.07549645006656647,
-0.04250333458185196,
0.012249883264303207,
0.043215200304985046,
0.04041370376944542,
-0.03334071859717369,
0.02563297562301159,
-0.09244126826524734,
-0.04262537136673927,
-0.03287732973694801,
0.08154769241809845,
0.030890565365552902,
0.033896904438734055,
-0.10368799418210983,
-0.00709743145853281,
0.10551934689283371,
-0.0580039918422699,
-0.03281163424253464,
-0.05456491559743881,
-0.0006596371531486511,
0.03529633954167366,
0.07184820622205734,
-0.018682057037949562,
0.025925563648343086,
-0.02375112846493721,
0.04552971199154854,
-0.015816742554306984,
-0.019376982003450394,
0.05819624289870262,
-0.06790648400783539,
0.02873656339943409,
-0.10556823015213013,
0.026395810768008232,
0.033373210579156876,
-0.03833993524312973,
0.061588555574417114,
0.1160840168595314,
-0.014380334876477718,
0.0328463539481163,
-0.02532363310456276,
-0.00008932945638662204,
-0.05958889052271843,
-0.03185178339481354,
-0.01603260450065136,
-0.08207481354475021,
0.02502184361219406,
-0.014883361756801605,
-0.06546608358621597,
-0.021300610154867172,
-0.049747999757528305,
0.011992932297289371,
-0.05155694857239723,
-0.059855710715055466,
-0.040341176092624664,
-0.04414317384362221,
0.004887729417532682,
-0.03620303422212601,
0.052660148590803146,
0.05261489376425743,
-7.799672258999697e-34,
0.01805131323635578,
-0.07870244234800339,
0.035833582282066345,
0.013918714597821236,
0.017147144302725792,
-0.017809318378567696,
0.0013737345580011606,
0.09485296905040741,
-0.06044799089431763,
0.06761103123426437,
0.1251000165939331,
0.029214991256594658,
0.021908491849899292,
0.03323373198509216,
0.07918522506952286,
0.0647868663072586,
0.04299990087747574,
-0.08083342760801315,
0.0648777186870575,
-0.0031687230803072453,
0.06792683899402618,
0.11291144043207169,
-0.06576183438301086,
0.0022100606001913548,
-0.0003265137493144721,
-0.0211471039801836,
0.02950330637395382,
0.027035577222704887,
0.017098354175686836,
0.007303563877940178,
-0.013109011575579643,
0.013264812529087067,
-0.0040221912786364555,
-0.06251870840787888,
-0.05056912451982498,
0.03122297301888466,
0.010912477970123291,
-0.07608149200677872,
0.0013252729550004005,
0.03418628126382828,
0.012108595110476017,
-0.004260566551238298,
-0.037589266896247864,
-0.0010901553323492408,
0.00019804549810942262,
0.0039751529693603516,
0.051719773560762405,
0.01840861514210701,
0.036358222365379333,
-0.047623198479413986,
-0.001962418667972088,
-0.04082280769944191,
-0.06246257573366165,
0.01947067119181156,
-0.018930351361632347,
0.004109586589038372,
-0.029708394780755043,
0.022892946377396584,
0.10597699135541916,
-0.05200570076704025,
0.0059000710025429726,
-0.062312737107276917,
-0.06801187247037888,
-0.029168201610445976,
0.0023561923298984766,
0.08286891877651215,
-0.02780498005449772,
-0.04260875657200813,
-0.10295811295509338,
-0.023439185693860054,
0.08337375521659851,
0.015961965546011925,
-0.005081993993371725,
-0.04153130203485489,
0.01835375279188156,
-0.12168727815151215,
-0.007396259345114231,
0.004637852776795626,
0.007763034198433161,
-0.052417416125535965,
0.018932530656456947,
-0.06141224876046181,
0.056934766471385956,
0.0359552837908268,
0.06223267316818237,
-0.07546088099479675,
0.0016263349680230021,
0.07306613773107529,
-0.0722530335187912,
0.07526092976331711,
-0.08512663096189499,
0.04277236387133598,
0.06524386256933212,
0.047329675406217575,
-0.0568804070353508,
-3.3755057415874035e-8,
-0.05509170889854431,
-0.04316028580069542,
-0.006609188858419657,
-0.07148507237434387,
-0.01681501232087612,
-0.017823873087763786,
-0.010312178172171116,
0.005743416957557201,
0.006658314261585474,
0.01432848908007145,
0.02297535538673401,
-0.06807417422533035,
-0.019999925047159195,
0.040754903107881546,
-0.003140736371278763,
0.09019815921783447,
-0.01887335069477558,
0.10077892988920212,
0.014269710518419743,
-0.010625546798110008,
0.007593395188450813,
0.04507836326956749,
0.04207226634025574,
-0.016287516802549362,
0.018933238461613655,
-0.01261296309530735,
0.015273381024599075,
0.05510784685611725,
0.017163868993520737,
-0.05784009024500847,
-0.07543112337589264,
0.13375404477119446,
0.003285897197201848,
0.01842893287539482,
-0.08964250236749649,
0.14244233071804047,
0.004471041262149811,
0.0770513042807579,
0.01102218497544527,
-0.03233208879828453,
0.06936565786600113,
-0.0030374638736248016,
-0.09949064999818802,
0.023456064984202385,
0.014719266444444656,
0.08689513057470322,
-0.03110765665769577,
-0.11027206480503082,
-0.0014900248497724533,
-0.053888194262981415,
-0.013822948560118675,
0.01076432317495346,
0.04855505749583244,
0.06610007584095001,
-0.07260602712631226,
-0.005500246770679951,
-0.0011934731155633926,
-0.06526650488376617,
0.07483870536088943,
0.04716981574892998,
0.04062175750732422,
0.06567289680242538,
0.018383987247943878,
0.061560697853565216
] |
nvidia/segformer-b0-finetuned-ade-512-512 | 677af011c308b27a94d3ec6098c86c31c4fb6e7d | 2022-07-20T09:52:37.000Z | [
"pytorch",
"tf",
"segformer",
"dataset:scene_parse_150",
"arxiv:2105.15203",
"transformers",
"vision",
"image-segmentation",
"license:apache-2.0"
] | image-segmentation | false | nvidia | null | nvidia/segformer-b0-finetuned-ade-512-512 | 7,091 | 7 | transformers | ---
license: apache-2.0
tags:
- vision
- image-segmentation
datasets:
- scene_parse_150
widget:
- src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg
example_title: House
- src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg
example_title: Castle
---
# SegFormer (b0-sized) model fine-tuned on ADE20k
SegFormer model fine-tuned on ADE20k at resolution 512x512. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer).
Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset.
## Intended uses & limitations
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from PIL import Image
import requests
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
```
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#).
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2105-15203,
author = {Enze Xie and
Wenhai Wang and
Zhiding Yu and
Anima Anandkumar and
Jose M. Alvarez and
Ping Luo},
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
Transformers},
journal = {CoRR},
volume = {abs/2105.15203},
year = {2021},
url = {https://arxiv.org/abs/2105.15203},
eprinttype = {arXiv},
eprint = {2105.15203},
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
| [
-0.07330463081598282,
0.03187301754951477,
0.05381572246551514,
-0.03394179046154022,
0.04922076314687729,
-0.16568075120449066,
-0.016254644840955734,
0.03506134822964668,
-0.08561974763870239,
-0.08930863440036774,
0.020988473668694496,
-0.06830696761608124,
-0.0075541045516729355,
-0.004237691406160593,
0.03179432824254036,
0.039204370230436325,
0.0029101865366101265,
0.07650459557771683,
-0.0951201543211937,
0.010236061178147793,
0.013277968391776085,
-0.0015319801168516278,
-0.025367502123117447,
-0.056561198085546494,
0.019193420186638832,
-0.009625363163650036,
-0.042852241545915604,
0.005240676458925009,
0.019863655790686607,
-0.05480184778571129,
0.09741988778114319,
0.07787046581506729,
0.007009241729974747,
0.06307666748762131,
0.03205405920743942,
0.06388058513402939,
0.023095760494470596,
-0.036836374551057816,
-0.053716227412223816,
0.007566370535641909,
-0.0010723049053922296,
0.010546830482780933,
-0.030051052570343018,
-0.04952585697174072,
0.022387035191059113,
-0.03410767763853073,
0.023321224376559258,
-0.047657161951065063,
-0.06635262817144394,
-0.023134900256991386,
-0.06807973235845566,
-0.008877945132553577,
-0.02810128778219223,
0.05710313841700554,
-0.030030816793441772,
0.061127692461013794,
0.015854716300964355,
-0.02581738866865635,
0.0570247657597065,
0.06715377420186996,
-0.025247354060411453,
0.025997422635555267,
-0.00996343232691288,
-0.0033711777068674564,
-0.06139808148145676,
-0.01929093711078167,
0.10179024934768677,
-0.10017305612564087,
0.018761983141303062,
-0.03243393823504448,
-0.05746274068951607,
0.016325633972883224,
0.011393620632588863,
-0.025827579200267792,
-0.03281277045607567,
0.04255311191082001,
-0.00513442000374198,
-0.017966948449611664,
0.0904160887002945,
-0.17727601528167725,
0.012569485232234001,
-0.05563568323850632,
0.02091049589216709,
0.029129713773727417,
0.04941660165786743,
0.021910805255174637,
-0.006153039168566465,
-0.036140523850917816,
-0.009139467030763626,
0.057903558015823364,
0.020274817943572998,
-0.04932428151369095,
-0.07555028051137924,
0.05092398077249527,
0.007996229454874992,
-0.04561232402920723,
0.03224051371216774,
-0.05262039974331856,
-0.013002000749111176,
0.12947328388690948,
-0.046804770827293396,
-0.0029089932795614004,
0.05691089481115341,
0.08558186888694763,
0.008968822658061981,
-0.046283647418022156,
0.005573057569563389,
0.10097651928663254,
0.034872040152549744,
-0.042979076504707336,
0.06260529160499573,
0.03668419271707535,
-0.0011385442921891809,
-0.10554132610559464,
0.02240230143070221,
-0.01132116001099348,
-0.02468692697584629,
-0.014573824591934681,
0.07369150221347809,
-0.043668653815984726,
0.006071190349757671,
0.03444787859916687,
-0.0890604555606842,
-0.014032477512955666,
0.07159915566444397,
0.016349898651242256,
-0.10728748887777328,
5.455190469599901e-33,
0.06009615212678909,
0.0563676543533802,
0.059407398104667664,
0.007412361446768045,
-0.002525714924558997,
-0.0038453589659184217,
-0.043507274240255356,
0.03831269592046738,
-0.06237876042723656,
-0.035699717700481415,
-0.013572661206126213,
-0.05521398037672043,
-0.01939256675541401,
0.05900554358959198,
0.04931899532675743,
-0.13845711946487427,
-0.0030969162471592426,
0.053807131946086884,
-0.07939741015434265,
0.05740414187312126,
0.04908696934580803,
-0.006899103056639433,
-0.04621703550219536,
0.04685508459806442,
-0.07479777187108994,
-0.011080900207161903,
0.039325326681137085,
-0.00012618713662959635,
-0.01563512720167637,
0.04534394294023514,
-0.060431160032749176,
-0.0261662807315588,
0.07915686070919037,
0.023087352514266968,
0.0013475489104166627,
-0.06033705174922943,
-0.026017751544713974,
-0.032597437500953674,
-0.07132077217102051,
-0.06606607139110565,
0.01649545133113861,
0.05998414754867554,
0.04795210435986519,
-0.05284835398197174,
-0.06134238839149475,
0.008643020875751972,
0.016291743144392967,
0.07513751834630966,
0.011637155897915363,
0.009692694991827011,
0.056747306138277054,
0.012752044014632702,
-0.0070710983127355576,
-0.04095230996608734,
0.007072064094245434,
0.0050182887353003025,
0.019430043175816536,
-0.021801039576530457,
0.03510618209838867,
0.08161759376525879,
-0.005095546133816242,
-0.010757377371191978,
-0.01163262128829956,
0.026412343606352806,
-0.02222541905939579,
0.021745679900050163,
0.032150622457265854,
-0.037625961005687714,
-0.08179228752851486,
-0.01727001927793026,
-0.07143396139144897,
0.07393798977136612,
0.02145499363541603,
-0.0057660313323140144,
0.06613665819168091,
-0.04121541231870651,
-0.005497124046087265,
0.042511168867349625,
-0.07802649587392807,
-0.015436378307640553,
-0.14188311994075775,
0.0862603411078453,
0.06855547428131104,
-0.0668051540851593,
-0.02839822508394718,
-0.07335839420557022,
0.057265497744083405,
0.0019136022310703993,
-0.02464910037815571,
-0.05783091485500336,
0.0026684682816267014,
-0.021834133192896843,
-0.023115510120987892,
-0.042571909725666046,
-0.0324823260307312,
-4.055943707834468e-33,
0.05341361463069916,
-0.011429433710873127,
-0.03153381124138832,
0.05130583792924881,
-0.051413215696811676,
-0.0016192842740565538,
0.09708373993635178,
0.15194416046142578,
0.006689206697046757,
-0.0811949148774147,
0.055016279220581055,
0.06802807003259659,
-0.036685120314359665,
-0.0966901183128357,
0.010996421799063683,
-0.004831262864172459,
-0.0040577552281320095,
-0.11866261810064316,
0.008394455537199974,
0.07102460414171219,
0.03199765086174011,
0.13629867136478424,
-0.03425566852092743,
0.054108358919620514,
-0.02379169501364231,
0.03570925071835518,
-0.043531764298677444,
0.04788826033473015,
-0.032734740525484085,
-0.0008922096458263695,
0.01111113466322422,
-0.06409547477960587,
-0.025441020727157593,
0.01599366031587124,
-0.0341109074652195,
0.008356607519090176,
0.03438977152109146,
-0.01082595530897379,
-0.060604531317949295,
0.0035879984498023987,
-0.03773209825158119,
-0.010220982134342194,
-0.030760668218135834,
0.11054160445928574,
-0.0329757034778595,
-0.023931914940476418,
0.010135766118764877,
0.021666232496500015,
-0.028535330668091774,
0.03127732127904892,
-0.06358732283115387,
0.028062421828508377,
-0.05377516523003578,
-0.01912236399948597,
-0.050473861396312714,
-0.0126792686060071,
-0.007237324025481939,
-0.03815140202641487,
-0.06302454322576523,
0.03606719151139259,
0.03250947967171669,
0.007098856382071972,
-0.047995954751968384,
-0.013689997605979443,
0.017971524968743324,
0.02631847932934761,
-0.05957339331507683,
-0.04215957596898079,
0.010529322549700737,
0.000766612181905657,
0.0440606027841568,
0.0071241650730371475,
-0.0034810621291399,
0.03207974508404732,
0.030017351731657982,
-0.044669050723314285,
0.03458124399185181,
0.04876641556620598,
0.08383502066135406,
0.005556734744459391,
-0.0818883404135704,
0.005706198047846556,
0.06261314451694489,
0.12019873410463333,
0.036336205899715424,
0.023000162094831467,
-0.01008488517254591,
0.07146855443716049,
0.02151333913207054,
-0.026007892563939095,
-0.06629790365695953,
-0.03124256059527397,
0.049151062965393066,
0.1416461020708084,
0.08110208809375763,
-6.254969520114173e-8,
-0.055247507989406586,
0.0547037273645401,
-0.05945194885134697,
-0.047412533313035965,
-0.03106701746582985,
-0.06721051037311554,
0.026267768815159798,
0.07445778697729111,
-0.0151745630428195,
-0.02400515042245388,
0.039576467126607895,
0.02880197763442993,
-0.11710218340158463,
0.055363841354846954,
-0.00685976492241025,
-0.03810649365186691,
0.04483101889491081,
0.057503536343574524,
-0.09527388960123062,
-0.0026662442833185196,
-0.07355722784996033,
0.013105157762765884,
-0.001573317451402545,
-0.03144306689500809,
0.06377188861370087,
-0.024245373904705048,
-0.02055959589779377,
0.0363665409386158,
0.04811675846576691,
-0.02022630348801613,
0.0020931833423674107,
0.018730593845248222,
0.019720274955034256,
-0.004065424203872681,
0.07166089117527008,
0.08621419221162796,
-0.10733781009912491,
0.010908545926213264,
0.02784518525004387,
0.0013266962487250566,
0.054994117468595505,
-0.04415049031376839,
0.006047199945896864,
-0.005796622019261122,
0.12828096747398376,
0.042785048484802246,
0.033223409205675125,
-0.03820769488811493,
0.018691012635827065,
0.039908986538648605,
0.04208311066031456,
0.013395033776760101,
-0.07079480588436127,
0.05097254738211632,
0.01343887485563755,
-0.07356471568346024,
0.02149231918156147,
-0.004842586815357208,
0.07156412303447723,
0.06508129835128784,
0.06339309364557266,
0.010056096129119396,
-0.0419551320374012,
0.028568977490067482
] |
flaubert/flaubert_small_cased | 21a2d6f46294ad07a0b692d96af443990c07f790 | 2021-05-19T16:56:07.000Z | [
"pytorch",
"flaubert",
"fill-mask",
"fr",
"dataset:flaubert",
"transformers",
"bert",
"language-model",
"flue",
"french",
"flaubert-small",
"cased",
"license:mit",
"autotrain_compatible"
] | fill-mask | false | flaubert | null | flaubert/flaubert_small_cased | 7,078 | 1 | transformers | ---
language: fr
license: mit
datasets:
- flaubert
metrics:
- flue
tags:
- bert
- language-model
- flaubert
- flue
- french
- flaubert-small
- cased
---
# FlauBERT: Unsupervised Language Model Pre-training for French
**FlauBERT** is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the new CNRS (French National Centre for Scientific Research) [Jean Zay](http://www.idris.fr/eng/jean-zay/ ) supercomputer.
Along with FlauBERT comes [**FLUE**](https://github.com/getalp/Flaubert/tree/master/flue): an evaluation setup for French NLP systems similar to the popular GLUE benchmark. The goal is to enable further reproducible experiments in the future and to share models and progress on the French language.For more details please refer to the [official website](https://github.com/getalp/Flaubert).
## FlauBERT models
| Model name | Number of layers | Attention Heads | Embedding Dimension | Total Parameters |
| :------: | :---: | :---: | :---: | :---: |
| `flaubert-small-cased` | 6 | 8 | 512 | 54 M |
| `flaubert-base-uncased` | 12 | 12 | 768 | 137 M |
| `flaubert-base-cased` | 12 | 12 | 768 | 138 M |
| `flaubert-large-cased` | 24 | 16 | 1024 | 373 M |
**Note:** `flaubert-small-cased` is partially trained so performance is not guaranteed. Consider using it for debugging purpose only.
## Using FlauBERT with Hugging Face's Transformers
```python
import torch
from transformers import FlaubertModel, FlaubertTokenizer
# Choose among ['flaubert/flaubert_small_cased', 'flaubert/flaubert_base_uncased',
# 'flaubert/flaubert_base_cased', 'flaubert/flaubert_large_cased']
modelname = 'flaubert/flaubert_base_cased'
# Load pretrained model and tokenizer
flaubert, log = FlaubertModel.from_pretrained(modelname, output_loading_info=True)
flaubert_tokenizer = FlaubertTokenizer.from_pretrained(modelname, do_lowercase=False)
# do_lowercase=False if using cased models, True if using uncased ones
sentence = "Le chat mange une pomme."
token_ids = torch.tensor([flaubert_tokenizer.encode(sentence)])
last_layer = flaubert(token_ids)[0]
print(last_layer.shape)
# torch.Size([1, 8, 768]) -> (batch size x number of tokens x embedding dimension)
# The BERT [CLS] token correspond to the first hidden state of the last layer
cls_embedding = last_layer[:, 0, :]
```
**Notes:** if your `transformers` version is <=2.10.0, `modelname` should take one
of the following values:
```
['flaubert-small-cased', 'flaubert-base-uncased', 'flaubert-base-cased', 'flaubert-large-cased']
```
## References
If you use FlauBERT or the FLUE Benchmark for your scientific publication, or if you find the resources in this repository useful, please cite one of the following papers:
[LREC paper](http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.302.pdf)
```
@InProceedings{le2020flaubert,
author = {Le, Hang and Vial, Lo\"{i}c and Frej, Jibril and Segonne, Vincent and Coavoux, Maximin and Lecouteux, Benjamin and Allauzen, Alexandre and Crabb\'{e}, Beno\^{i}t and Besacier, Laurent and Schwab, Didier},
title = {FlauBERT: Unsupervised Language Model Pre-training for French},
booktitle = {Proceedings of The 12th Language Resources and Evaluation Conference},
month = {May},
year = {2020},
address = {Marseille, France},
publisher = {European Language Resources Association},
pages = {2479--2490},
url = {https://www.aclweb.org/anthology/2020.lrec-1.302}
}
```
[TALN paper](https://hal.archives-ouvertes.fr/hal-02784776/)
```
@inproceedings{le2020flaubert,
title = {FlauBERT: des mod{\`e}les de langue contextualis{\'e}s pr{\'e}-entra{\^\i}n{\'e}s pour le fran{\c{c}}ais},
author = {Le, Hang and Vial, Lo{\"\i}c and Frej, Jibril and Segonne, Vincent and Coavoux, Maximin and Lecouteux, Benjamin and Allauzen, Alexandre and Crabb{\'e}, Beno{\^\i}t and Besacier, Laurent and Schwab, Didier},
booktitle = {Actes de la 6e conf{\'e}rence conjointe Journ{\'e}es d'{\'E}tudes sur la Parole (JEP, 31e {\'e}dition), Traitement Automatique des Langues Naturelles (TALN, 27e {\'e}dition), Rencontre des {\'E}tudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (R{\'E}CITAL, 22e {\'e}dition). Volume 2: Traitement Automatique des Langues Naturelles},
pages = {268--278},
year = {2020},
organization = {ATALA}
}
``` | [
-0.11573060601949692,
-0.11729912459850311,
-0.002388942753896117,
-0.0051825628615915775,
0.035848814994096756,
0.025654267519712448,
-0.02048722468316555,
0.11406595259904861,
0.027327295392751694,
-0.007826564833521843,
-0.023103196173906326,
0.016238121315836906,
0.026047026738524437,
0.02532278560101986,
-0.026047928258776665,
-0.028784682974219322,
0.0175053421407938,
-0.005477051716297865,
-0.08711784332990646,
-0.0918729230761528,
0.03537236526608467,
-0.0036781823728233576,
0.062007732689380646,
-0.05483132228255272,
0.03268856555223465,
-0.06672435998916626,
-0.09303825348615646,
-0.07140738517045975,
0.08082251995801926,
0.01213380228728056,
0.06496311724185944,
0.0820956751704216,
-0.039172880351543427,
0.07018645107746124,
-0.04901775345206261,
0.04038611426949501,
0.03934606909751892,
-0.06988953053951263,
0.05754727125167847,
0.021625777706503868,
-0.06691262871026993,
-0.004099797923117876,
-0.01331301685422659,
-0.04492306336760521,
0.11905132234096527,
-0.010977694764733315,
-0.054449815303087234,
0.02326693758368492,
-0.07040417939424515,
0.004058451857417822,
-0.1246088445186615,
0.00033947278279811144,
0.02468465268611908,
0.053674470633268356,
0.0062331994995474815,
0.0335751436650753,
0.0510985441505909,
-0.04584842920303345,
0.021393559873104095,
-0.009992687031626701,
-0.06315144151449203,
-0.056041229516267776,
-0.05131383612751961,
0.031028609722852707,
-0.02414637990295887,
0.0028110509738326073,
-0.058536648750305176,
0.029195992276072502,
0.004329386167228222,
0.01287788525223732,
-0.0660993754863739,
0.02655056118965149,
0.0042603109031915665,
0.07608114182949066,
0.05193449556827545,
0.006252747029066086,
0.00825672596693039,
0.02724577859044075,
0.04419197142124176,
-0.0706213116645813,
0.028176961466670036,
-0.04076065868139267,
0.10076254606246948,
0.026939082890748978,
0.07220294326543808,
-0.010330017656087875,
0.06527777016162872,
0.041431814432144165,
0.03593575209379196,
-0.009918991476297379,
-0.024673189967870712,
-0.026548143476247787,
0.037303026765584946,
0.045032110065221786,
-0.04286383092403412,
0.01091960072517395,
0.05607615038752556,
-0.039624784141778946,
-0.05756010115146637,
0.09388598054647446,
-0.01206932682543993,
-0.025894010439515114,
0.15802763402462006,
-0.028085922822356224,
-0.04943768307566643,
-0.03900166228413582,
0.028451094403862953,
0.020922303199768066,
0.0638049989938736,
-0.10565977543592453,
0.023314842954277992,
-0.02190767042338848,
-0.03947634994983673,
-0.06749746203422546,
-0.002118480857461691,
-0.0029700258746743202,
-0.023901361972093582,
-0.06375636905431747,
0.04814834147691727,
0.016739407554268837,
-0.005220023915171623,
0.06270154565572739,
-0.011042548343539238,
0.008680322207510471,
0.017452329397201538,
0.024075595661997795,
-0.031517304480075836,
3.318824261212428e-33,
0.025099167600274086,
0.11854638159275055,
0.04321824386715889,
-0.015505998395383358,
0.0036811649333685637,
-0.07403947412967682,
0.009113111533224583,
0.029198044911026955,
-0.07385039329528809,
-0.014362710528075695,
-0.007312010042369366,
0.09065306186676025,
-0.08863092213869095,
0.09117439389228821,
0.03783799707889557,
-0.03265293315052986,
-0.0001021105344989337,
-0.0004996223142370582,
0.04421854764223099,
-0.025630593299865723,
0.1527508944272995,
0.04013689234852791,
0.07717039436101913,
0.03849049657583237,
0.059762224555015564,
-0.006995229981839657,
0.032228678464889526,
-0.05770750343799591,
-0.0563729926943779,
0.04762015864253044,
-0.10917744040489197,
0.011359985917806625,
-0.014784867875277996,
0.024550436064600945,
-0.010594167746603489,
-0.06375210732221603,
-0.055047307163476944,
-0.0977085530757904,
0.015226999297738075,
0.0021062272135168314,
0.039343249052762985,
0.009356203489005566,
-0.019212083891034126,
-0.033784329891204834,
-0.03982134535908699,
-0.04256952553987503,
0.014973901212215424,
-0.019374385476112366,
0.09273971617221832,
-0.05362963676452637,
0.004788943566381931,
-0.012488552369177341,
-0.08343174308538437,
0.0198660921305418,
0.02218140847980976,
0.06250401586294174,
-0.0038379018660634756,
-0.011968978680670261,
0.05155761167407036,
0.04985066503286362,
0.017574988305568695,
-0.0233613308519125,
0.01370908785611391,
0.024207502603530884,
-0.014585168100893497,
-0.030665826052427292,
-0.01564565859735012,
0.017620708793401718,
0.10551102459430695,
-0.02047373354434967,
-0.06527448445558548,
-0.027313919737935066,
0.08710312098264694,
0.029585938900709152,
0.08087703585624695,
0.027420254424214363,
-0.003463536500930786,
-0.11648833006620407,
-0.034969229251146317,
-0.002774461405351758,
-0.05783574655652046,
-0.03714541345834732,
-0.03598102182149887,
0.011655543930828571,
-0.10399778187274933,
-0.05928291380405426,
0.00955628976225853,
0.012143353931605816,
0.008448922075331211,
-0.03149951621890068,
0.006530015263706446,
-0.0762108638882637,
0.03968840837478638,
-0.0032273295801132917,
-0.08091934770345688,
-3.7940700150941556e-33,
-0.06494083255529404,
0.020309319719672203,
-0.0866859182715416,
0.10766813904047012,
0.019828658550977707,
-0.04435944929718971,
0.03913721814751625,
0.06939969956874847,
0.027389299124479294,
-0.07506346702575684,
-0.04452483728528023,
-0.06653722375631332,
0.08197936415672302,
-0.020865194499492645,
0.035972971469163895,
0.0498245507478714,
-0.0259444210678339,
-0.03241255506873131,
0.08799564838409424,
0.05125472694635391,
0.025566061958670616,
-0.017521072179079056,
-0.06285116821527481,
0.01713951863348484,
-0.0013562350068241358,
0.05291840434074402,
-0.046666279435157776,
-0.027806337922811508,
-0.021343661472201347,
0.03355595842003822,
-0.03865114226937294,
0.02465059421956539,
-0.03220169618725777,
0.02130419947206974,
-0.05270136520266533,
0.02667309157550335,
0.07160341739654541,
0.02725956402719021,
-0.0043775709345936775,
0.02681034617125988,
0.07353714108467102,
-0.024472283199429512,
-0.019091779366135597,
-0.008547506295144558,
0.053525906056165695,
0.043078627437353134,
-0.12980443239212036,
-0.08794768154621124,
0.00262071774341166,
-0.05578385293483734,
0.03287943825125694,
0.045565444976091385,
-0.07519985735416412,
-0.06589464098215103,
-0.10055752098560333,
-0.06644335389137268,
0.034636251628398895,
-0.06686171144247055,
-0.07641196995973587,
0.00967817846685648,
-0.016714230179786682,
-0.023315247148275375,
0.017109282314777374,
0.014223462902009487,
0.032319698482751846,
-0.06184544414281845,
-0.06055949255824089,
0.11280349642038345,
-0.025693314149975777,
-0.024667253717780113,
0.08115377277135849,
-0.013934125192463398,
0.04211875796318054,
0.08191314339637756,
-0.0539875328540802,
0.049401238560676575,
0.004404990002512932,
-0.06518898904323578,
-0.03481965512037277,
-0.004206603392958641,
-0.03529340401291847,
0.025170307606458664,
0.03792764991521835,
-0.007211057469248772,
-0.02030850201845169,
0.057433951646089554,
0.023012228310108185,
-0.031088808551430702,
0.03737901151180267,
-0.036072444170713425,
-0.009334133937954903,
0.03551413491368294,
0.011610325425863266,
0.03907322138547897,
0.016800325363874435,
-4.7614179266020074e-8,
-0.014705571345984936,
0.001105583505704999,
-0.03784675896167755,
0.034986142069101334,
-0.029265590012073517,
-0.11316419392824173,
-0.035091400146484375,
0.041459839791059494,
-0.007433055434376001,
-0.02921457029879093,
-0.0022114748135209084,
0.021158065646886826,
-0.04580295830965042,
-0.01526676956564188,
0.04219881445169449,
0.046747706830501556,
-0.0017738159513100982,
0.05492744967341423,
-0.012240075506269932,
-0.024766791611909866,
0.02834988385438919,
0.07281830906867981,
0.0248330719769001,
-0.08351076394319534,
-0.015457564033567905,
-0.07318852096796036,
-0.04964756965637207,
0.040967486798763275,
-0.03311930224299431,
-0.05343857780098915,
-0.02856656350195408,
0.05488331988453865,
-0.01705094426870346,
-0.04104823246598244,
0.06745123118162155,
0.04456281661987305,
-0.04218461364507675,
-0.051017165184020996,
-0.01059089507907629,
0.06370507180690765,
0.08103278279304504,
0.07552233338356018,
-0.07142656296491623,
-0.02480374276638031,
0.09650436043739319,
-0.021937882527709007,
-0.03271986171603203,
-0.10937491804361343,
0.09117836505174637,
0.024459054693579674,
0.035103436559438705,
0.03084857389330864,
-0.07306520640850067,
0.02146781235933304,
0.024311773478984833,
0.07780211418867111,
-0.10985948145389557,
-0.027879789471626282,
0.022478407248854637,
-0.030456438660621643,
-0.040475983172655106,
0.05426253750920296,
0.06840022653341293,
0.03688892349600792
] |
esiebomajeremiah/autonlp-email-classification-657119381 | 484ba1babc3906d77331d95c1587aea7f3683637 | 2022-03-22T13:57:29.000Z | [
"pytorch",
"bert",
"text-classification",
"en",
"dataset:esiebomajeremiah/autonlp-data-email-classification",
"transformers",
"autonlp",
"co2_eq_emissions"
] | text-classification | false | esiebomajeremiah | null | esiebomajeremiah/autonlp-email-classification-657119381 | 7,026 | null | transformers | ---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- esiebomajeremiah/autonlp-data-email-classification
co2_eq_emissions: 3.516233232503715
---
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 657119381
- CO2 Emissions (in grams): 3.516233232503715
## Validation Metrics
- Loss: 0.00037395773688331246
- Accuracy: 1.0
- Precision: 1.0
- Recall: 1.0
- AUC: 1.0
- F1: 1.0
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/esiebomajeremiah/autonlp-email-classification-657119381
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("esiebomajeremiah/autonlp-email-classification-657119381", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("esiebomajeremiah/autonlp-email-classification-657119381", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` | [
-0.10065767914056778,
0.04212992638349533,
-0.023528600111603737,
-0.006394938565790653,
0.06634734570980072,
0.023258021101355553,
0.044618431478738785,
0.011422238312661648,
0.010949777439236641,
-0.03354537859559059,
-0.019860055297613144,
-0.1500413864850998,
-0.03853297606110573,
0.00861433520913124,
0.04344503954052925,
0.04286153241991997,
0.018051154911518097,
-0.05590328946709633,
-0.0766444131731987,
-0.08115234225988388,
-0.0011279784375801682,
0.07754570245742798,
0.007228186819702387,
0.01219883095473051,
0.0034962871577590704,
-0.07157852500677109,
-0.006860688794404268,
0.04415395110845566,
-0.028436969965696335,
-0.044594522565603256,
0.03032449074089527,
-0.01689753122627735,
-0.044413529336452484,
0.01660699024796486,
0.017168959602713585,
0.044708117842674255,
-0.007149083539843559,
-0.04602847248315811,
0.012824823148548603,
-0.02327987365424633,
0.012891413643956184,
-0.09402261674404144,
-0.07028687000274658,
-0.05836617574095726,
0.0958908200263977,
-0.01390010304749012,
-0.055645834654569626,
0.02147332951426506,
-0.024888943880796432,
-0.013560795225203037,
-0.021259736269712448,
-0.059839095920324326,
-0.009519161656498909,
0.018219495192170143,
-0.03078104741871357,
0.008520107716321945,
-0.05216073617339134,
0.02676508203148842,
-0.0313284657895565,
-0.02401437796652317,
0.04963945969939232,
-0.056692373007535934,
-0.025984162464737892,
-0.018210308626294136,
-0.041035689413547516,
-0.04993893951177597,
-0.055604707449674606,
-0.0193601306527853,
0.07396019250154495,
0.03325589373707771,
-0.00447760010138154,
-0.02846616320312023,
-0.11495283991098404,
-0.012201870791614056,
0.01967834308743477,
0.012947759591042995,
-0.032315708696842194,
0.010603341273963451,
0.0701911672949791,
-0.027283377945423126,
-0.06490465253591537,
0.05998356267809868,
0.04840271547436714,
0.0671711266040802,
0.03143780678510666,
0.05853595957159996,
-0.0033829803578555584,
0.06202838197350502,
-0.02579387277364731,
-0.01855664700269699,
-0.0018538394942879677,
-0.04774705693125725,
0.0009110033279284835,
0.063237264752388,
0.007009746506810188,
0.0345739983022213,
0.01357521116733551,
-0.019523918628692627,
-0.08358513563871384,
0.10884224623441696,
0.005792223382741213,
0.08158744871616364,
-0.04575969651341438,
0.015689652413129807,
0.029816970229148865,
-0.004666872788220644,
0.006470832973718643,
0.06753090769052505,
0.026831261813640594,
-0.036624349653720856,
-0.02692081406712532,
0.04633856564760208,
-0.05808159336447716,
-0.08877801895141602,
0.028192555531859398,
0.11550065129995346,
-0.025255471467971802,
0.014701226726174355,
0.0643492043018341,
0.10860691219568253,
-0.029139786958694458,
-0.03519472852349281,
-0.02732236683368683,
0.01890862174332142,
0.04266422986984253,
-0.06195283308625221,
0.0470019169151783,
8.373584049572655e-33,
0.05927353352308273,
0.06725489348173141,
-0.003328914288431406,
-0.03192621469497681,
-0.026061609387397766,
-0.0074247815646231174,
-0.04916628077626228,
0.029681505635380745,
-0.024206455796957016,
-0.028165776282548904,
-0.11399775743484497,
0.05011819675564766,
-0.019951917231082916,
-0.001581235439516604,
-0.049773845821619034,
0.01157311536371708,
-0.08094583451747894,
0.013463904149830341,
0.1065300926566124,
-0.003706761170178652,
0.03994806110858917,
-0.01379760168492794,
0.017169123515486717,
0.0023871674202382565,
-0.003689961275085807,
0.0621536560356617,
0.04517170786857605,
0.013081546872854233,
-0.08344590663909912,
0.06009627878665924,
0.021901901811361313,
-0.022229274734854698,
0.019831113517284393,
-0.008213357999920845,
0.0026111439801752567,
-0.033680714666843414,
-0.037381626665592194,
0.0175466388463974,
-0.09257352352142334,
-0.03311673551797867,
0.028556523844599724,
0.04745829850435257,
-0.024893226101994514,
-0.06526430696249008,
-0.05172855406999588,
-0.04292907193303108,
0.027120741084218025,
-0.0236553642898798,
0.017545117065310478,
0.0014547912869602442,
-0.0162220299243927,
-0.02809281274676323,
-0.014105759561061859,
-0.001366032869555056,
-0.024503441527485847,
0.015236853621900082,
0.038157906383275986,
0.05226796492934227,
0.06452543288469315,
-0.03541850671172142,
-0.004196575842797756,
0.02391541190445423,
0.050591547042131424,
-0.039902519434690475,
0.0767003670334816,
0.0023231515660881996,
-0.022881729528307915,
-0.037250034511089325,
0.023620115593075752,
0.03347105532884598,
0.012799507938325405,
-0.013693415559828281,
0.04341105371713638,
0.036637187004089355,
0.03766956552863121,
-0.14269933104515076,
0.06286715716123581,
-0.032790038734674454,
-0.019837381318211555,
0.08041736483573914,
0.019389502704143524,
-0.03736216574907303,
-0.009146320633590221,
-0.050363656133413315,
-0.029464129358530045,
0.013809174299240112,
0.06006992235779762,
-0.052114274352788925,
-0.0060768635012209415,
0.059104081243276596,
-0.030020294710993767,
0.04181904345750809,
-0.0014397192280739546,
-0.02500479482114315,
-0.06584271788597107,
-7.648650805948796e-33,
0.06118607893586159,
-0.00670079467818141,
-0.06982062011957169,
0.06523653119802475,
0.03892478719353676,
-0.027236424386501312,
0.040937867015600204,
0.10270804166793823,
0.02190520614385605,
0.024531539529561996,
0.057028427720069885,
0.0077209509909152985,
0.008851482532918453,
0.01886115036904812,
0.025595208629965782,
-0.03100806474685669,
-0.1256963312625885,
-0.0255145113915205,
0.0459587424993515,
0.0993981659412384,
-0.042229410260915756,
0.014335108920931816,
-0.05855584517121315,
0.04414372891187668,
-0.004349893890321255,
0.003982436377555132,
0.038586508482694626,
0.06754332780838013,
-0.03587144613265991,
-0.06031617522239685,
0.024645749479532242,
0.05257100239396095,
-0.14486299455165863,
0.06899002939462662,
-0.06900552660226822,
-0.031239263713359833,
-0.001441136933863163,
0.13636653125286102,
-0.02841743268072605,
0.05997239798307419,
0.10203870385885239,
0.019136201590299606,
-0.14747563004493713,
-0.0481548011302948,
-0.03463498502969742,
-0.03420330584049225,
-0.042889174073934555,
0.03063896670937538,
-0.01863853633403778,
-0.03592045605182648,
0.07113727182149887,
0.012042732909321785,
-0.04079001024365425,
0.08015186339616776,
0.04136273264884949,
0.023651618510484695,
0.07582119107246399,
-0.033238425850868225,
-0.08622787147760391,
0.06413590908050537,
-0.0716683492064476,
-0.023055685684084892,
0.0320042185485363,
0.057186491787433624,
0.08689474314451218,
-0.09418562054634094,
-0.03243900090456009,
0.016347819939255714,
-0.005602938123047352,
0.014223597012460232,
-0.023260651156306267,
0.01829005405306816,
0.057800211012363434,
0.03868027776479721,
0.0012433314695954323,
-0.07937360554933548,
-0.037285879254341125,
-0.012388981878757477,
0.0736442506313324,
-0.04398796334862709,
-0.08513166755437851,
-0.03381183370947838,
0.08636420965194702,
0.09310729801654816,
-0.02458437718451023,
0.021922249346971512,
-0.022746384143829346,
0.10326126962900162,
0.03946074843406677,
0.06894165277481079,
0.03727160766720772,
0.10840201377868652,
-0.049269381910562515,
0.032536305487155914,
0.0029443353414535522,
-5.934846925015336e-8,
-0.04969126358628273,
-0.038491617888212204,
0.04652663320302963,
0.08232922852039337,
-0.02901248075067997,
-0.015586192719638348,
0.013907344080507755,
-0.015304974280297756,
0.01151747815310955,
-0.015398252755403519,
0.021170232445001602,
0.04120953381061554,
-0.08397015184164047,
-0.02890637330710888,
-0.04851491376757622,
-0.0003628802951425314,
0.056749578565359116,
0.08940934389829636,
-0.011705446057021618,
-0.019050732254981995,
-0.00856689177453518,
0.020431967452168465,
0.053853657096624374,
-0.14649420976638794,
0.15296867489814758,
-0.03165411576628685,
-0.017294403165578842,
0.15695607662200928,
-0.03532901406288147,
-0.023579593747854233,
-0.040129683911800385,
-0.016302701085805893,
0.015745671465992928,
-0.08261042833328247,
-0.015183595009148121,
0.056739408522844315,
-0.016815049573779106,
-0.07027581334114075,
-0.08077879995107651,
-0.04734291508793831,
0.024246685206890106,
0.051403194665908813,
-0.07952287793159485,
-0.07628089934587479,
0.008387532085180283,
0.005455506965517998,
0.08336137980222702,
-0.06891952455043793,
0.021615296602249146,
-0.00803024135529995,
0.002669006586074829,
-0.08450845628976822,
-0.01753111183643341,
0.04846758395433426,
-0.02834879420697689,
-0.0023427854757755995,
-0.05343751981854439,
-0.09415005892515182,
0.03942914679646492,
-0.012201348319649696,
0.043059539049863815,
-0.0006551602273248136,
-0.006369470153003931,
-0.03378693759441376
] |
HooshvareLab/bert-fa-base-uncased | a04aa40c97bcdde570ae11986a534542c2995a62 | 2021-05-18T21:02:21.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"fill-mask",
"fa",
"arxiv:2005.12515",
"transformers",
"bert-fa",
"bert-persian",
"persian-lm",
"license:apache-2.0",
"autotrain_compatible"
] | fill-mask | false | HooshvareLab | null | HooshvareLab/bert-fa-base-uncased | 7,008 | 2 | transformers | ---
language: fa
tags:
- bert-fa
- bert-persian
- persian-lm
license: apache-2.0
---
# ParsBERT (v2.0)
A Transformer-based Model for Persian Language Understanding
We reconstructed the vocabulary and fine-tuned the ParsBERT v1.1 on the new Persian corpora in order to provide some functionalities for using ParsBERT in other scopes!
Please follow the [ParsBERT](https://github.com/hooshvare/parsbert) repo for the latest information about previous and current models.
## Introduction
ParsBERT is a monolingual language model based on Google’s BERT architecture. This model is pre-trained on large Persian corpora with various writing styles from numerous subjects (e.g., scientific, novels, news) with more than `3.9M` documents, `73M` sentences, and `1.3B` words.
Paper presenting ParsBERT: [arXiv:2005.12515](https://arxiv.org/abs/2005.12515)
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?search=bert-fa) to look for
fine-tuned versions on a task that interests you.
### How to use
#### TensorFlow 2.0
```python
from transformers import AutoConfig, AutoTokenizer, TFAutoModel
config = AutoConfig.from_pretrained("HooshvareLab/bert-fa-base-uncased")
tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/bert-fa-base-uncased")
model = TFAutoModel.from_pretrained("HooshvareLab/bert-fa-base-uncased")
text = "ما در هوشواره معتقدیم با انتقال صحیح دانش و آگاهی، همه افراد میتوانند از ابزارهای هوشمند استفاده کنند. شعار ما هوش مصنوعی برای همه است."
tokenizer.tokenize(text)
>>> ['ما', 'در', 'هوش', '##واره', 'معتقدیم', 'با', 'انتقال', 'صحیح', 'دانش', 'و', 'اگاهی', '،', 'همه', 'افراد', 'میتوانند', 'از', 'ابزارهای', 'هوشمند', 'استفاده', 'کنند', '.', 'شعار', 'ما', 'هوش', 'مصنوعی', 'برای', 'همه', 'است', '.']
```
#### Pytorch
```python
from transformers import AutoConfig, AutoTokenizer, AutoModel
config = AutoConfig.from_pretrained("HooshvareLab/bert-fa-base-uncased")
tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/bert-fa-base-uncased")
model = AutoModel.from_pretrained("HooshvareLab/bert-fa-base-uncased")
```
## Training
ParsBERT trained on a massive amount of public corpora ([Persian Wikidumps](https://dumps.wikimedia.org/fawiki/), [MirasText](https://github.com/miras-tech/MirasText)) and six other manually crawled text data from a various type of websites ([BigBang Page](https://bigbangpage.com/) `scientific`, [Chetor](https://www.chetor.com/) `lifestyle`, [Eligasht](https://www.eligasht.com/Blog/) `itinerary`, [Digikala](https://www.digikala.com/mag/) `digital magazine`, [Ted Talks](https://www.ted.com/talks) `general conversational`, Books `novels, storybooks, short stories from old to the contemporary era`).
As a part of ParsBERT methodology, an extensive pre-processing combining POS tagging and WordPiece segmentation was carried out to bring the corpora into a proper format.
## Goals
Objective goals during training are as below (after 300k steps).
``` bash
***** Eval results *****
global_step = 300000
loss = 1.4392426
masked_lm_accuracy = 0.6865794
masked_lm_loss = 1.4469004
next_sentence_accuracy = 1.0
next_sentence_loss = 6.534152e-05
```
## Derivative models
### Base Config
#### ParsBERT v2.0 Model
- [HooshvareLab/bert-fa-base-uncased](https://huggingface.co/HooshvareLab/bert-fa-base-uncased)
#### ParsBERT v2.0 Sentiment Analysis
- [HooshvareLab/bert-fa-base-uncased-sentiment-digikala](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-sentiment-digikala)
- [HooshvareLab/bert-fa-base-uncased-sentiment-snappfood](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-sentiment-snappfood)
- [HooshvareLab/bert-fa-base-uncased-sentiment-deepsentipers-binary](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-sentiment-deepsentipers-binary)
- [HooshvareLab/bert-fa-base-uncased-sentiment-deepsentipers-multi](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-sentiment-deepsentipers-multi)
#### ParsBERT v2.0 Text Classification
- [HooshvareLab/bert-fa-base-uncased-clf-digimag](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-clf-digimag)
- [HooshvareLab/bert-fa-base-uncased-clf-persiannews](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-clf-persiannews)
#### ParsBERT v2.0 NER
- [HooshvareLab/bert-fa-base-uncased-ner-peyma](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-ner-peyma)
- [HooshvareLab/bert-fa-base-uncased-ner-arman](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-ner-arman)
## Eval results
ParsBERT is evaluated on three NLP downstream tasks: Sentiment Analysis (SA), Text Classification, and Named Entity Recognition (NER). For this matter and due to insufficient resources, two large datasets for SA and two for text classification were manually composed, which are available for public use and benchmarking. ParsBERT outperformed all other language models, including multilingual BERT and other hybrid deep learning models for all tasks, improving the state-of-the-art performance in Persian language modeling.
### Sentiment Analysis (SA) Task
| Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | DeepSentiPers |
|:------------------------:|:-----------:|:-----------:|:-----:|:-------------:|
| Digikala User Comments | 81.72 | 81.74* | 80.74 | - |
| SnappFood User Comments | 87.98 | 88.12* | 87.87 | - |
| SentiPers (Multi Class) | 71.31* | 71.11 | - | 69.33 |
| SentiPers (Binary Class) | 92.42* | 92.13 | - | 91.98 |
### Text Classification (TC) Task
| Dataset | ParsBERT v2 | ParsBERT v1 | mBERT |
|:-----------------:|:-----------:|:-----------:|:-----:|
| Digikala Magazine | 93.65* | 93.59 | 90.72 |
| Persian News | 97.44* | 97.19 | 95.79 |
### Named Entity Recognition (NER) Task
| Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | MorphoBERT | Beheshti-NER | LSTM-CRF | Rule-Based CRF | BiLSTM-CRF |
|:-------:|:-----------:|:-----------:|:-----:|:----------:|:------------:|:--------:|:--------------:|:----------:|
| PEYMA | 93.40* | 93.10 | 86.64 | - | 90.59 | - | 84.00 | - |
| ARMAN | 99.84* | 98.79 | 95.89 | 89.9 | 84.03 | 86.55 | - | 77.45 |
### BibTeX entry and citation info
Please cite in publications as the following:
```bibtex
@article{ParsBERT,
title={ParsBERT: Transformer-based Model for Persian Language Understanding},
author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri},
journal={ArXiv},
year={2020},
volume={abs/2005.12515}
}
```
## Questions?
Post a Github issue on the [ParsBERT Issues](https://github.com/hooshvare/parsbert/issues) repo.
| [
-0.1138458251953125,
-0.10975673049688339,
0.037766698747873306,
-0.01900535263121128,
-0.01892690919339657,
-0.01897917315363884,
-0.020216507837176323,
0.048232510685920715,
-0.009319653734564781,
-0.023134777322411537,
0.031493332237005234,
0.04040331393480301,
0.04310895502567291,
0.006154291331768036,
-0.018689528107643127,
-0.010967135429382324,
0.006068720947951078,
-0.038085997104644775,
-0.026040134951472282,
-0.039753880351781845,
0.05105822905898094,
0.04844595864415169,
0.032251663506031036,
-0.02201051451265812,
0.08548738062381744,
0.002295537618920207,
-0.05896918848156929,
-0.009930221363902092,
0.0492403618991375,
0.004088368732482195,
0.04164469242095947,
0.028876615688204765,
0.06317640841007233,
0.12003866583108902,
-0.03862404823303223,
0.07543705403804779,
0.02220938354730606,
0.00428417231887579,
0.05181169509887695,
0.044040288776159286,
-0.024899085983633995,
-0.04960893839597702,
-0.053093161433935165,
-0.018354278057813644,
0.07141938805580139,
0.011103021912276745,
-0.023597178980708122,
0.05130612477660179,
-0.12221527844667435,
0.052150923758745193,
-0.09224432706832886,
0.014816137962043285,
0.05256229639053345,
0.04114198684692383,
-0.02575799636542797,
-0.03593464568257332,
-0.013135363347828388,
-0.02661040984094143,
-0.05021386593580246,
-0.07651279121637344,
-0.097477987408638,
0.010204682126641273,
-0.10287929326295853,
-0.003164284862577915,
-0.08463424444198608,
0.004573296755552292,
0.00462073041126132,
-0.0036717525217682123,
0.008753420785069466,
0.03917305916547775,
-0.09480829536914825,
0.11542743444442749,
0.017018422484397888,
0.03145338594913483,
-0.05677017942070961,
-0.08557195961475372,
0.06791819632053375,
-0.06722473353147507,
0.041555255651474,
-0.12215796113014221,
0.021660134196281433,
-0.0018803641432896256,
0.07550042122602463,
-0.006058270111680031,
0.02169473096728325,
-0.014883581548929214,
0.02364403009414673,
0.021673941984772682,
-0.024489933624863625,
0.021429957821965218,
0.01479408796876669,
-0.06500557065010071,
0.07308577001094818,
0.017422903329133987,
0.045345891267061234,
0.09648532420396805,
0.0638328418135643,
-0.08939242362976074,
0.0334697924554348,
0.08214510232210159,
0.04962383583188057,
0.008521257899701595,
0.04709002003073692,
-0.06840471923351288,
-0.022491734474897385,
-0.03576304763555527,
-0.05647626519203186,
-0.016975481063127518,
-0.013024086132645607,
-0.059502966701984406,
-0.0011406356934458017,
0.04278123006224632,
-0.03550875931978226,
-0.12387686222791672,
0.006313428282737732,
-0.02557491324841976,
-0.007120206952095032,
-0.053762003779411316,
0.057430900633335114,
-0.013624708168208599,
-0.07574646919965744,
0.08724962919950485,
-0.03775656968355179,
0.03302709013223648,
-0.02663179114460945,
-0.031491003930568695,
-0.03649163246154785,
2.420570804044554e-33,
-0.009612888097763062,
0.08991581946611404,
-0.006347968243062496,
-0.02070857770740986,
-0.06734582036733627,
0.006388457026332617,
-0.036497559398412704,
0.04260694235563278,
-0.04164972901344299,
-0.029822513461112976,
0.025970855727791786,
0.017500799149274826,
-0.07649709284305573,
0.05107695981860161,
0.030912574380636215,
0.03894598037004471,
0.0081455884501338,
0.048921093344688416,
0.025512242689728737,
-0.01890435256063938,
0.07477439939975739,
0.025486471131443977,
0.016162095591425896,
-0.0737798884510994,
-0.02747802995145321,
0.05772143974900246,
0.1124337762594223,
-0.0686475858092308,
-0.06913261115550995,
0.04282105341553688,
-0.07683984190225601,
-0.022585809230804443,
-0.01344336848706007,
-0.01690513826906681,
0.006532490253448486,
-0.10205857455730438,
-0.03760654851794243,
-0.09103748947381973,
-0.045567866414785385,
-0.051773250102996826,
-0.012387198396027088,
0.061956048011779785,
-0.005350232589989901,
-0.024485236033797264,
0.0031376846600323915,
0.02405385859310627,
0.08122474700212479,
-0.005316929426044226,
0.07914771884679794,
0.026612278074026108,
0.040835220366716385,
0.017312828451395035,
-0.05467129126191139,
0.01703530177474022,
-0.011653905734419823,
0.03143025562167168,
0.06639358401298523,
-0.00584013108164072,
0.04117570444941521,
0.033377040177583694,
0.05261649191379547,
0.04713365063071251,
0.0764557346701622,
0.004224395379424095,
0.04717382416129112,
-0.028740979731082916,
-0.06494325399398804,
0.047362279146909714,
0.02869447134435177,
0.052350252866744995,
-0.08518855273723602,
-0.024365684017539024,
-0.03997425734996796,
0.052343565970659256,
-0.019394248723983765,
-0.001698769861832261,
0.027024246752262115,
-0.11522042751312256,
0.009128210134804249,
0.007931002415716648,
-0.07697010785341263,
0.021375581622123718,
0.04072222113609314,
-0.08915425091981888,
-0.0640198215842247,
0.007807923946529627,
0.055920135229825974,
-0.08150506019592285,
0.011605915613472462,
-0.003755994373932481,
0.058501798659563065,
-0.06429767608642578,
0.011009467765688896,
-0.012896786443889141,
0.001012263586744666,
-3.207745922531476e-33,
-0.05083531141281128,
-0.014122406020760536,
-0.12832023203372955,
0.0502193309366703,
-0.052652984857559204,
-0.07357693463563919,
0.017303502187132835,
0.17284254729747772,
0.047747839242219925,
-0.0630137026309967,
-0.02591005340218544,
-0.029477426782250404,
0.041305944323539734,
-0.015064784325659275,
0.11832042038440704,
0.003495775628834963,
0.009885580278933048,
-0.01273600198328495,
-0.020685231313109398,
0.07454840838909149,
-0.007848505862057209,
0.009652707725763321,
-0.031769514083862305,
0.05056988075375557,
-0.005527787376195192,
0.038704197853803635,
-0.005262675695121288,
0.03161053732037544,
-0.035997506231069565,
0.021924695000052452,
0.04217846319079399,
-0.03216925263404846,
-0.040003422647714615,
0.06661184132099152,
-0.06588640064001083,
-0.0058449069038033485,
-0.010925167240202427,
-0.003236489137634635,
-0.026247438043355942,
0.0014962578425183892,
0.06903500854969025,
0.020710989832878113,
0.0005633555701933801,
0.03864194080233574,
-0.025944894179701805,
0.022784465923905373,
-0.09266574680805206,
-0.03575386106967926,
0.04104774072766304,
-0.09169057756662369,
0.016606613993644714,
-0.02071121335029602,
-0.06019601598381996,
-0.042053330689668655,
-0.012600054033100605,
-0.08446654677391052,
0.014608833007514477,
-0.05011916160583496,
-0.08881627023220062,
-0.031683918088674545,
-0.06499113142490387,
-0.016245728358626366,
0.05515541881322861,
0.014797603711485863,
0.04855859652161598,
-0.07359114289283752,
-0.011235577054321766,
0.05104793235659599,
-0.020518889650702477,
-0.013745944015681744,
0.04275788366794586,
-0.0035803390201181173,
-0.029100611805915833,
0.013661535456776619,
-0.011496173217892647,
0.04335688427090645,
0.02580862119793892,
-0.0217453483492136,
-0.04175816848874092,
0.005253758747130632,
-0.0028053580317646265,
0.0018068940844386816,
0.02608129382133484,
0.029714571312069893,
0.00018860684940591455,
0.03081469051539898,
-0.01984860561788082,
0.08955889940261841,
-0.026330551132559776,
0.00951284822076559,
-0.0034636103082448244,
0.04004230350255966,
0.01015543658286333,
0.05562273785471916,
-0.015227396972477436,
-5.275814274341428e-8,
-0.09696018695831299,
-0.021291915327310562,
-0.05597235634922981,
0.015303587540984154,
-0.09122122824192047,
-0.027829041704535484,
-0.0313425213098526,
-0.025952545925974846,
-0.10044780373573303,
-0.059835050255060196,
0.05663148686289787,
0.02491326443850994,
-0.025089675560593605,
0.05012653023004532,
-0.012349260039627552,
0.04229910671710968,
0.040952082723379135,
0.04167519509792328,
-0.028609076514840126,
-0.01871952787041664,
-0.034980617463588715,
0.06313824653625488,
0.0012010909849777818,
-0.018899543210864067,
0.0430426299571991,
0.030517123639583588,
-0.04063627868890762,
0.02947356551885605,
0.03723432123661041,
0.019567372277379036,
0.04068100079894066,
0.07135899364948273,
-0.073271244764328,
-0.013287230394780636,
0.049089327454566956,
0.09943509846925735,
0.005634878762066364,
-0.007863948121666908,
-0.02617233619093895,
0.08229284733533859,
0.16957993805408478,
0.0498182438313961,
-0.09573716670274734,
0.04435604438185692,
0.04163162410259247,
0.02602214179933071,
-0.013825562782585621,
-0.11368813365697861,
0.08764680474996567,
-0.03705050051212311,
0.054755762219429016,
-0.015129136852920055,
-0.023086197674274445,
0.047989875078201294,
0.0023613448720425367,
0.03899602219462395,
-0.13030102849006653,
-0.028852205723524094,
0.04274257272481918,
-0.007042382378131151,
0.0874180942773819,
0.05402697995305061,
0.06957684457302094,
0.0848914384841919
] |
cross-encoder/nli-roberta-base | 1c9dadfb1d7bcaac49176fd3a5de914f6ae2bd42 | 2021-08-05T08:41:05.000Z | [
"pytorch",
"jax",
"roberta",
"text-classification",
"en",
"dataset:multi_nli",
"dataset:snli",
"transformers",
"roberta-base",
"license:apache-2.0",
"zero-shot-classification"
] | zero-shot-classification | false | cross-encoder | null | cross-encoder/nli-roberta-base | 6,989 | 3 | transformers | ---
language: en
pipeline_tag: zero-shot-classification
tags:
- roberta-base
datasets:
- multi_nli
- snli
metrics:
- accuracy
license: apache-2.0
---
# Cross-Encoder for Natural Language Inference
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
## Training Data
The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
## Performance
For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).
## Usage
Pre-trained models can be used like this:
```python
from sentence_transformers import CrossEncoder
model = CrossEncoder('cross-encoder/nli-roberta-base')
scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')])
#Convert scores to labels
label_mapping = ['contradiction', 'entailment', 'neutral']
labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
```
## Usage with Transformers AutoModel
You can use the model also directly with Transformers library (without SentenceTransformers library):
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-roberta-base')
tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-roberta-base')
features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt")
model.eval()
with torch.no_grad():
scores = model(**features).logits
label_mapping = ['contradiction', 'entailment', 'neutral']
labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
print(labels)
```
## Zero-Shot Classification
This model can also be used for zero-shot-classification:
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-roberta-base')
sent = "Apple just announced the newest iPhone X"
candidate_labels = ["technology", "sports", "politics"]
res = classifier(sent, candidate_labels)
print(res)
``` | [
-0.05067457631230354,
-0.10063932836055756,
-0.04871303215622902,
-0.03833722323179245,
0.057528261095285416,
0.09458030015230179,
-0.05522534251213074,
0.0060033309273421764,
-0.017189867794513702,
-0.07683423161506653,
0.014681501314043999,
-0.09541838616132736,
-0.008427686989307404,
-0.01347618643194437,
-0.02563900128006935,
0.04851842671632767,
0.026042301207780838,
0.06038251519203186,
-0.08138521760702133,
-0.08564258366823196,
0.08032599091529846,
0.06983301788568497,
0.06393067538738251,
-0.006162229925394058,
0.06247851252555847,
0.010521913878619671,
-0.08021391928195953,
0.006553272716701031,
0.009182380512356758,
-0.01793881505727768,
0.050046954303979874,
0.013841170817613602,
-0.055115316063165665,
0.08978012204170227,
0.036230042576789856,
0.018420035019516945,
0.005218160338699818,
-0.006382293533533812,
0.054274898022413254,
0.013506974093616009,
0.03194677457213402,
0.005350747145712376,
0.015473916195333004,
-0.04094114527106285,
0.08528517931699753,
-0.0203093234449625,
-0.13770729303359985,
-0.061374202370643616,
-0.013434816151857376,
-0.011708656325936317,
-0.06811126321554184,
0.009449116885662079,
0.023396017029881477,
0.08259598165750504,
-0.044861484318971634,
0.0007527796551585197,
0.006107181776314974,
-0.00023135005903895944,
-0.05011528357863426,
-0.03416144475340843,
-0.03960419446229935,
-0.09879730641841888,
-0.05690213665366173,
0.03424597159028053,
0.008206294849514961,
0.011572093702852726,
0.008458917960524559,
-0.03530282899737358,
-0.03353756293654442,
0.002314335899427533,
-0.03600890934467316,
0.058491602540016174,
-0.05847826600074768,
0.04098958894610405,
-0.029149416834115982,
0.025309594348073006,
0.09441453963518143,
0.04356161504983902,
0.04856697469949722,
-0.08622270822525024,
-0.014565805904567242,
0.004739790689200163,
0.0198785662651062,
0.013076876290142536,
0.07574579119682312,
-0.050214286893606186,
-0.015817265957593918,
0.019928066059947014,
0.01316121593117714,
0.05540376156568527,
-0.04621220752596855,
-0.055614106357097626,
0.042119912803173065,
-0.010756165720522404,
0.038599442690610886,
0.05371325463056564,
-0.05066756159067154,
-0.008041942492127419,
-0.0024128002114593983,
0.06106770038604736,
0.001898720394819975,
0.051036182790994644,
0.019383225589990616,
-0.0756576806306839,
-0.0036091285292059183,
0.034848328679800034,
0.03162679076194763,
0.028528016060590744,
0.07315903902053833,
-0.08058039098978043,
0.05067881941795349,
0.000982128083705902,
0.025554927065968513,
-0.015143890865147114,
0.04167261719703674,
0.042311858385801315,
-0.009770667180418968,
0.028906408697366714,
0.12918919324874878,
0.035139817744493484,
-0.10816986858844757,
0.029897313565015793,
0.020170290023088455,
-0.022778626531362534,
0.01627071388065815,
-0.06940875202417374,
-0.0209130197763443,
6.536681639212884e-34,
0.08195704966783524,
0.015530036762356758,
0.004019971936941147,
-0.04483002424240112,
-0.02327973023056984,
-0.048611171543598175,
-0.03731028735637665,
0.05017813667654991,
-0.12633047997951508,
0.01019580103456974,
-0.06078123301267624,
0.00645878491923213,
-0.020289160311222076,
0.05741173028945923,
0.05130914971232414,
0.035142432898283005,
-0.01886904053390026,
-0.039357058703899384,
0.03905607387423515,
0.04560573026537895,
0.08627333492040634,
0.014095976017415524,
0.018003251403570175,
-0.05163583531975746,
-0.04140019044280052,
0.008045893162488937,
0.06466065347194672,
-0.04712357372045517,
-0.07820190489292145,
0.02437160536646843,
-0.06133236736059189,
0.0033342752140015364,
0.04111484810709953,
0.025272728875279427,
0.07271304726600647,
-0.05802469700574875,
0.016561241820454597,
0.03239385411143303,
-0.01113169826567173,
-0.013147593475878239,
-0.06073272228240967,
0.044081635773181915,
0.012567827478051186,
-0.06543787568807602,
-0.005009525455534458,
-0.07314159721136093,
-0.05088623985648155,
-0.004397656302899122,
0.06503451615571976,
0.034863829612731934,
0.014765581116080284,
0.009219976142048836,
-0.033998604863882065,
-0.0025923890061676502,
-0.01452580839395523,
0.0246278103441,
0.06289315223693848,
0.06015217304229736,
0.06471721827983856,
0.047141797840595245,
-0.026142070069909096,
0.029080165550112724,
0.022568494081497192,
-0.04790835082530975,
0.038449306041002274,
0.04941617324948311,
-0.050936706364154816,
-0.05082680284976959,
0.058529939502477646,
0.003936553839594126,
-0.08029825240373611,
0.0018159574829041958,
-0.007205595262348652,
-0.0009632192668505013,
0.08958140760660172,
-0.024275749921798706,
-0.0505208894610405,
-0.08527851104736328,
0.03012732043862343,
0.0727933794260025,
0.0045005809515714645,
0.024835685268044472,
0.022462381049990654,
-0.04922938346862793,
-0.05800403282046318,
-0.01644805073738098,
-0.004466261714696884,
-0.07771290093660355,
0.012183857150375843,
-0.009383088909089565,
0.07262808084487915,
0.04344932734966278,
-0.04302480071783066,
-0.021757906302809715,
0.025621769949793816,
-1.5971456438301806e-33,
-0.002720641205087304,
0.07822249084711075,
-0.06642819941043854,
0.06985273212194443,
-0.017850926145911217,
-0.01602753810584545,
-0.010106831789016724,
0.08516797423362732,
0.01734456606209278,
-0.002768461126834154,
0.0424300953745842,
-0.05809236317873001,
0.03314642980694771,
-0.016853904351592064,
0.11486884951591492,
-0.000041767623770283535,
-0.035690028220415115,
0.05994696542620659,
0.025057360529899597,
0.07747025787830353,
0.10716244578361511,
0.1377713829278946,
-0.07077755779027939,
0.08743064850568771,
0.0026596644893288612,
0.006407331209629774,
0.03291155397891998,
0.01452971063554287,
-0.048352569341659546,
-0.08064287900924683,
0.05300910398364067,
-0.05245762690901756,
-0.07018012553453445,
-0.019272787496447563,
-0.0694337710738182,
0.026658471673727036,
0.00643459428101778,
-0.041061755269765854,
-0.013997972011566162,
0.054343920201063156,
0.08003289252519608,
0.06548815965652466,
-0.06853547692298889,
0.035367924720048904,
-0.05482936277985573,
-0.0037689711898565292,
-0.19885098934173584,
-0.025036511942744255,
0.032358646392822266,
0.00632352102547884,
-0.03954223170876503,
-0.005917496979236603,
-0.09349662810564041,
0.02856052853167057,
0.014761623926460743,
-0.1839083433151245,
0.010556443594396114,
-0.06931980699300766,
-0.06975999474525452,
0.009768313728272915,
-0.04056844487786293,
0.052909430116415024,
0.006487775128334761,
0.012839008122682571,
0.08668609708547592,
-0.0015679115895181894,
-0.05260557681322098,
0.0036885151639580727,
-0.018081707879900932,
-0.009698974899947643,
-0.005937716457992792,
-0.05912042781710625,
0.0261553805321455,
0.0040910858660936356,
-0.013608635403215885,
-0.01402999460697174,
-0.061142146587371826,
0.04462563619017601,
-0.02612946182489395,
-0.0545349158346653,
0.008837650530040264,
-0.03455760329961777,
0.009827982634305954,
0.09309893101453781,
0.08298246562480927,
0.05826647952198982,
0.06885991245508194,
0.03902095928788185,
0.01450561173260212,
-0.004365862347185612,
0.024396130815148354,
0.05302095040678978,
-0.02848695032298565,
0.06639526784420013,
0.03358863666653633,
-5.227386523642963e-8,
-0.04915972426533699,
-0.04761601984500885,
-0.14248345792293549,
0.08386651426553726,
-0.11255843192338943,
-0.03481290489435196,
0.008767119608819485,
0.03666233643889427,
-0.07470295578241348,
-0.009273895062506199,
0.06484705954790115,
0.043774865567684174,
-0.10841292142868042,
-0.014666370116174221,
-0.019272331148386,
0.022027837112545967,
0.030303526669740677,
0.09888514876365662,
0.011882667429745197,
-0.011018551886081696,
0.05888141319155693,
0.0315808430314064,
-0.016313767060637474,
-0.02422144077718258,
0.007147590164095163,
-0.018917446956038475,
-0.012117274105548859,
0.06875535845756531,
0.014072010293602943,
-0.03342146798968315,
0.0050538028590381145,
0.006011547986418009,
-0.015778644010424614,
-0.0645119845867157,
0.031668759882450104,
0.08001995831727982,
-0.03432627394795418,
-0.006491803098469973,
0.05610864609479904,
0.04892095550894737,
0.0014984672889113426,
0.05869359150528908,
-0.14653250575065613,
-0.01925700344145298,
0.08725392818450928,
-0.02203313261270523,
-0.03293493390083313,
-0.024147063493728638,
0.002629390684887767,
-0.03834308311343193,
0.007783384062349796,
-0.06264667212963104,
-0.05357712134718895,
0.04860146716237068,
0.03777160122990608,
-0.029001900926232338,
-0.035856328904628754,
-0.034112706780433655,
0.03516006097197533,
0.0110515421256423,
0.06933034211397171,
-0.02015681564807892,
-0.02176072634756565,
-0.023933282122015953
] |
klue/roberta-base | 67dd433d36ebc66a42c9aaa85abcf8d2620e41d9 | 2021-10-20T16:10:25.000Z | [
"pytorch",
"roberta",
"fill-mask",
"ko",
"arxiv:2105.09680",
"transformers",
"korean",
"klue",
"autotrain_compatible"
] | fill-mask | false | klue | null | klue/roberta-base | 6,986 | null | transformers | ---
language: ko
tags:
- korean
- klue
mask_token: "[MASK]"
widget:
- text: 대한민국의 수도는 [MASK] 입니다.
---
# KLUE RoBERTa base
Pretrained RoBERTa Model on Korean Language. See [Github](https://github.com/KLUE-benchmark/KLUE) and [Paper](https://arxiv.org/abs/2105.09680) for more details.
## How to use
_NOTE:_ Use `BertTokenizer` instead of RobertaTokenizer. (`AutoTokenizer` will load `BertTokenizer`)
```python
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained("klue/roberta-base")
tokenizer = AutoTokenizer.from_pretrained("klue/roberta-base")
```
## BibTeX entry and citation info
```bibtex
@misc{park2021klue,
title={KLUE: Korean Language Understanding Evaluation},
author={Sungjoon Park and Jihyung Moon and Sungdong Kim and Won Ik Cho and Jiyoon Han and Jangwon Park and Chisung Song and Junseong Kim and Yongsook Song and Taehwan Oh and Joohong Lee and Juhyun Oh and Sungwon Lyu and Younghoon Jeong and Inkwon Lee and Sangwoo Seo and Dongjun Lee and Hyunwoo Kim and Myeonghwa Lee and Seongbo Jang and Seungwon Do and Sunkyoung Kim and Kyungtae Lim and Jongwon Lee and Kyumin Park and Jamin Shin and Seonghyun Kim and Lucy Park and Alice Oh and Jungwoo Ha and Kyunghyun Cho},
year={2021},
eprint={2105.09680},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
| [
-0.15588511526584625,
-0.023237166926264763,
0.0621400810778141,
0.01157368067651987,
-0.047475218772888184,
0.06339114904403687,
0.023674119263887405,
0.034490447491407394,
0.0009868412744253874,
-0.018254712224006653,
-0.014493593946099281,
-0.06607455760240555,
0.0264532919973135,
0.05188581719994545,
0.05380142852663994,
0.06403136998414993,
0.005744010675698519,
0.019410718232393265,
-0.09092744439840317,
-0.046283259987831116,
0.0966942310333252,
0.016639558598399162,
0.09152335673570633,
-0.026582768186926842,
0.06125767529010773,
-0.04529112949967384,
-0.03810947388410568,
-0.02019392140209675,
0.05277436599135399,
0.089893639087677,
-0.0263784509152174,
0.03897804021835327,
0.02331027202308178,
0.04013056308031082,
0.04147430509328842,
0.09041411429643631,
-0.045335687696933746,
0.04539031535387039,
0.04988015070557594,
0.021717801690101624,
-0.029201555997133255,
0.01552770659327507,
-0.06747294962406158,
-0.0670655369758606,
0.032577402889728546,
-0.05927479639649391,
-0.032998330891132355,
-0.004231652710586786,
-0.07734981179237366,
0.008603783324360847,
-0.052769023925065994,
0.0035894587635993958,
0.031138230115175247,
-0.028064440935850143,
-0.06778998672962189,
0.006102370098233223,
0.022195246070623398,
0.00009133804269367829,
0.06875073164701462,
-0.0780455470085144,
-0.06438598036766052,
-0.06911826878786087,
-0.02875814400613308,
-0.024560151621699333,
-0.06247549504041672,
-0.015654845163226128,
-0.043779242783784866,
0.0760827288031578,
0.04280264303088188,
0.04492124542593956,
0.001971901161596179,
-0.026731768622994423,
0.0211175624281168,
0.05870235711336136,
0.01714084856212139,
-0.09056687355041504,
0.05209444835782051,
0.014881329610943794,
-0.012968059629201889,
-0.0895274356007576,
0.0472448468208313,
-0.017363427206873894,
0.058450352400541306,
0.04125914350152016,
0.07170102000236511,
0.0015218554763123393,
-0.022615518420934677,
-0.00366340228356421,
-0.016332166269421577,
-0.008052763529121876,
0.017631279304623604,
-0.09611264616250992,
0.041931621730327606,
-0.022455213591456413,
-0.028668196871876717,
0.040296122431755066,
0.00946346390992403,
0.05016401782631874,
-0.02813696675002575,
0.07546371221542358,
0.054672855883836746,
0.030234334990382195,
0.04251419007778168,
-0.008345698937773705,
0.017157241702079773,
-0.02642269805073738,
0.028101151809096336,
-0.028885286301374435,
0.04181480407714844,
-0.035631656646728516,
0.0047898367047309875,
-0.012838771566748619,
-0.012056774459779263,
-0.031471267342567444,
0.007882563397288322,
0.004675425589084625,
0.060505352914333344,
-0.07543464004993439,
0.021102093160152435,
0.11236763745546341,
0.05070053040981293,
-0.056208740919828415,
-0.06026482582092285,
0.04764261469244957,
-0.0467095784842968,
0.03055679053068161,
0.04826689884066582,
4.648225720045893e-33,
0.045147862285375595,
0.018982982262969017,
0.06908836960792542,
-0.0043981256894767284,
-0.07513602077960968,
-0.02344955876469612,
-0.04122075438499451,
-0.007307649590075016,
-0.10889539867639542,
-0.08114303648471832,
-0.02789551019668579,
0.044948577880859375,
-0.0727044865489006,
0.01881226897239685,
-0.133805513381958,
0.023234372958540916,
-0.07178935408592224,
0.04444972425699234,
0.07899212092161179,
0.0332394614815712,
0.1427459716796875,
0.02430211938917637,
-0.05770614743232727,
-0.017281152307987213,
-0.024699682369828224,
0.014567142352461815,
0.055795133113861084,
-0.10172867774963379,
-0.04246029630303383,
0.04318995773792267,
-0.07074898481369019,
0.004327866714447737,
-0.018100060522556305,
0.008267855271697044,
-0.11414486169815063,
-0.08038727939128876,
-0.041786856949329376,
-0.0248656515032053,
-0.02124924026429653,
-0.08951031416654587,
-0.018952205777168274,
0.024811983108520508,
-0.09161175787448883,
-0.027910251170396805,
-0.00017499942623544484,
-0.014905102550983429,
0.034697577357292175,
0.019438253715634346,
0.08704710751771927,
0.04146081954240799,
0.017196256667375565,
-0.003734154161065817,
-0.035018131136894226,
0.05328808352351189,
0.02680300921201706,
0.02309693582355976,
0.12017784267663956,
-0.00748123973608017,
0.08591488003730774,
-0.08080865442752838,
0.006907166447490454,
-0.018444102257490158,
0.02829531766474247,
0.041347045451402664,
0.10977757722139359,
-0.025872765108942986,
-0.02433287724852562,
-0.0016775355907157063,
0.004262842237949371,
0.021959153935313225,
-0.09773712605237961,
-0.03440438210964203,
0.010363612323999405,
0.02780432440340519,
-0.02756671980023384,
-0.06852608174085617,
-0.0027949779760092497,
-0.0306251123547554,
-0.09753739833831787,
0.05344736576080322,
0.002684782724827528,
0.0005418801447376609,
-0.0573575384914875,
-0.029255524277687073,
-0.043623100966215134,
-0.055061742663383484,
0.0934794619679451,
-0.1050085499882698,
-0.054838877171278,
-0.03391481190919876,
0.02019423060119152,
-0.015517668798565865,
-0.06772361695766449,
0.0332622267305851,
-0.07962170988321304,
-5.447336697968469e-33,
0.09343418478965759,
0.07444354146718979,
0.04387309029698372,
0.016571160405874252,
-0.01694500260055065,
-0.0334174670279026,
0.07989901304244995,
0.14879891276359558,
0.033895447850227356,
0.009130021557211876,
0.015582065097987652,
-0.0759580135345459,
0.014889529906213284,
-0.003923484589904547,
0.09161932021379471,
0.022426705807447433,
-0.013255522586405277,
0.10260850191116333,
0.05541602522134781,
0.02272244542837143,
-0.04124538227915764,
-0.042900145053863525,
-0.06224103644490242,
0.08547031879425049,
-0.023628346621990204,
0.0396871417760849,
0.002635445911437273,
0.016351455822587013,
-0.01049309503287077,
0.0029646309558302164,
0.007197590544819832,
0.04243486002087593,
-0.05259699001908302,
0.07365106046199799,
-0.029479801654815674,
-0.019652752205729485,
-0.026107078418135643,
-0.0009199136402457952,
-0.03279893472790718,
-0.04346457123756409,
0.0967116430401802,
0.04115542769432068,
-0.01591513305902481,
0.02904004417359829,
0.011097013019025326,
-0.05274609476327896,
-0.06285020709037781,
0.005594372283667326,
-0.020599106326699257,
-0.11152802407741547,
0.05679774284362793,
-0.0506405234336853,
-0.092009998857975,
-0.03665885701775551,
-0.05309520289301872,
-0.032586608082056046,
0.07694725692272186,
-0.04028285667300224,
-0.07451338320970535,
-0.01873570866882801,
-0.08159632235765457,
-0.03439410775899887,
0.03254665806889534,
-0.03005249984562397,
-0.009904974140226841,
-0.09852196276187897,
0.05907304957509041,
0.08191505819559097,
0.027863113209605217,
0.006602165289223194,
0.010921956039965153,
0.031579650938510895,
0.07635486125946045,
0.009780661202967167,
0.07727033644914627,
0.05804704874753952,
-0.010137347504496574,
-0.016641467809677124,
-0.005300585180521011,
-0.03985890746116638,
-0.07818666100502014,
0.010219823569059372,
0.0534377321600914,
0.04438098147511482,
-0.06288155168294907,
0.029658474028110504,
-0.0364396795630455,
0.1064576655626297,
0.030346514657139778,
-0.0009379771654494107,
-0.007260272279381752,
0.0065285805612802505,
0.011568134650588036,
0.07792707532644272,
0.007005088031291962,
-4.866469538455931e-8,
-0.020407015457749367,
-0.02229163609445095,
-0.037789925932884216,
0.016294309869408607,
-0.09252888709306717,
-0.04622362181544304,
-0.04313823953270912,
-0.03958564251661301,
-0.025224579498171806,
-0.025545721873641014,
0.050050247460603714,
0.01695976033806801,
-0.08789699524641037,
0.012855401262640953,
-0.06639593839645386,
0.0014423788525164127,
-0.015828650444746017,
0.08813044428825378,
0.009677442722022533,
0.02448474057018757,
0.031015632674098015,
0.019640473648905754,
0.049736760556697845,
-0.057371266186237335,
-0.02155548706650734,
0.029931139200925827,
-0.0683993399143219,
0.060046833008527756,
-0.023527657613158226,
-0.038391780108213425,
0.010280954651534557,
-0.014422453939914703,
-0.034872811287641525,
0.04273013398051262,
-0.020483920350670815,
0.022451600059866905,
-0.036152902990579605,
-0.06070469692349434,
-0.045586783438920975,
0.05759761855006218,
0.09714321792125702,
-0.017632683739066124,
-0.10534685105085373,
-0.03268440440297127,
0.024546775966882706,
-0.0024576548021286726,
0.03802352026104927,
-0.06264651566743851,
0.046594325453042984,
0.0023031809832900763,
0.002493857638910413,
-0.0906900092959404,
-0.07537051290273666,
-0.02308296225965023,
-0.05200478062033653,
0.02859201654791832,
-0.044513169676065445,
-0.004159622825682163,
0.05337849259376526,
-0.046028196811676025,
0.0023169349879026413,
0.05790293216705322,
0.030567452311515808,
0.04101203754544258
] |
facebook/wmt19-de-en | 80d366f635721148ffa2a0a58591cb672c9b4982 | 2020-12-11T21:39:51.000Z | [
"pytorch",
"fsmt",
"text2text-generation",
"de",
"en",
"dataset:wmt19",
"arxiv:1907.06616",
"transformers",
"translation",
"wmt19",
"facebook",
"license:apache-2.0",
"autotrain_compatible"
] | translation | false | facebook | null | facebook/wmt19-de-en | 6,979 | null | transformers | ---
language:
- de
- en
tags:
- translation
- wmt19
- facebook
license: apache-2.0
datasets:
- wmt19
metrics:
- bleu
thumbnail: https://huggingface.co/front/thumbnails/facebook.png
---
# FSMT
## Model description
This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for de-en.
For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).
The abbreviation FSMT stands for FairSeqMachineTranslation
All four models are available:
* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)
* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)
* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)
* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)
## Intended uses & limitations
#### How to use
```python
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = "facebook/wmt19-de-en"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
input = "Maschinelles Lernen ist großartig, oder?"
input_ids = tokenizer.encode(input, return_tensors="pt")
outputs = model.generate(input_ids)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded) # Machine learning is great, isn't it?
```
#### Limitations and bias
- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)
## Training data
Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).
## Eval results
pair | fairseq | transformers
-------|---------|----------
de-en | [42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750) | 41.35
The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:
- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).
- re-ranking
The score was calculated using this code:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
export PAIR=de-en
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=15
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
```
note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.
## Data Sources
- [training, etc.](http://www.statmt.org/wmt19/)
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)
### BibTeX entry and citation info
```bibtex
@inproceedings{...,
year={2020},
title={Facebook FAIR's WMT19 News Translation Task Submission},
author={Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey},
booktitle={Proc. of WMT},
}
```
## TODO
- port model ensemble (fairseq uses 4 model checkpoints)
| [
-0.08737433701753616,
-0.014936153776943684,
-0.03332792595028877,
-0.014402315020561218,
0.03474336862564087,
-0.033070676028728485,
0.013921699486672878,
0.06004323810338974,
-0.032337263226509094,
-0.03714103624224663,
0.08474110811948776,
-0.09947549551725388,
0.01866295374929905,
0.0032557458616793156,
-0.014833664521574974,
-0.0021712284069508314,
0.02219920977950096,
-0.0022868190426379442,
-0.053045522421598434,
-0.023382028564810753,
0.029869146645069122,
0.050010696053504944,
0.039849281311035156,
0.006549574434757233,
0.04265430197119713,
0.005270832218229771,
-0.0706365630030632,
0.04585741460323334,
0.03807572275400162,
-0.0595240481197834,
0.050834305584430695,
0.09492389112710953,
-0.004887102171778679,
0.0673479288816452,
0.04915892705321312,
0.0502694770693779,
0.013162631541490555,
-0.11584016680717468,
-0.0386379212141037,
-0.03875688090920448,
0.0003117390733677894,
-0.007288477849215269,
0.021014677360653877,
0.014751417562365532,
0.034293580800294876,
0.009326115250587463,
-0.002171038882806897,
0.0001443038636352867,
-0.09756786376237869,
0.053722918033599854,
-0.029126742854714394,
-0.06585516035556793,
-0.024427713826298714,
0.11856067180633545,
0.07493338733911514,
0.01078279409557581,
-0.0054208082146942616,
0.017296195030212402,
-0.04129079729318619,
-0.011856925673782825,
-0.04213873669505119,
0.0019328197231516242,
-0.11184155941009521,
1.7751422376477421e-7,
-0.015305565670132637,
-0.003261597827076912,
0.005083627998828888,
0.017615651711821556,
0.010844030417501926,
-0.06181829422712326,
-0.06246894598007202,
-0.00018842586723621935,
-0.05103917047381401,
0.07167763262987137,
0.009957900270819664,
0.039573896676301956,
0.05210176482796669,
-0.007816808298230171,
0.024766916409134865,
-0.10070758312940598,
0.07535919547080994,
0.01933959499001503,
0.10403861850500107,
-0.016767792403697968,
0.06563357263803482,
-0.03765229508280754,
-0.05035857856273651,
0.02525787241756916,
0.06246887147426605,
-0.004538081586360931,
-0.060043949633836746,
-0.013028299435973167,
-0.03836074471473694,
0.06626322120428085,
-0.03748461604118347,
0.03568492457270622,
0.054951172322034836,
0.07262709736824036,
0.035973116755485535,
0.12757883965969086,
0.0256868377327919,
0.03602161630988121,
-0.0028445639181882143,
0.032664090394973755,
-0.040876854211091995,
-0.07931210100650787,
0.06382501125335693,
0.10708914697170258,
-0.013719214126467705,
-0.09469541162252426,
0.018463509157299995,
-0.0009587389067746699,
0.03536468371748924,
-0.0976029634475708,
-0.039760343730449677,
-0.03596525266766548,
-0.002021221676841378,
-0.020326631143689156,
0.06746157258749008,
-0.09659465402364731,
-0.03531327098608017,
0.015306838788092136,
-0.021192165091633797,
-0.03925523906946182,
-0.020872363820672035,
0.005692890379577875,
-0.0658225417137146,
4.9280506808912e-33,
0.09242063760757446,
0.07058003544807434,
0.009724234230816364,
0.014586268924176693,
0.020944202318787575,
-0.0007700766436755657,
-0.018203558400273323,
-0.026972338557243347,
-0.07869728654623032,
-0.028873801231384277,
-0.0018365478608757257,
0.043392956256866455,
-0.059632688760757446,
-0.033407751470804214,
0.017892146483063698,
-0.06109427660703659,
-0.01832708902657032,
0.0638231560587883,
0.014310694299638271,
0.004586247261613607,
0.0670735165476799,
-0.0021927733905613422,
-0.041244469583034515,
-0.04611413553357124,
-0.024293750524520874,
0.06874090433120728,
0.05328274890780449,
0.025316057726740837,
0.01220911368727684,
0.044008828699588776,
-0.040311455726623535,
0.021898604929447174,
0.0006409716443158686,
0.00875348225235939,
0.0009335231734439731,
-0.03601896017789841,
-0.05506385117769241,
-0.11498020589351654,
-0.041644223034381866,
-0.10004909336566925,
0.03770007565617561,
0.033113181591033936,
-0.05817756429314613,
-0.04370205104351044,
0.020119348540902138,
0.012384560890495777,
0.009621218778192997,
-0.0454862080514431,
0.10715644061565399,
-0.03717122972011566,
0.005586856976151466,
0.029650337994098663,
-0.01650455966591835,
-0.06955952197313309,
0.016380824148654938,
0.05740184336900711,
0.08157423883676529,
0.02861829660832882,
0.007098299451172352,
0.10039512068033218,
-0.024697527289390564,
0.007684544660151005,
0.025826964527368546,
0.005844066385179758,
0.0608762763440609,
-0.035730764269828796,
0.01790194772183895,
-0.002197018126025796,
0.02314387820661068,
0.04373794049024582,
-0.03762289881706238,
-0.03455881401896477,
0.04806509241461754,
0.06209937110543251,
0.04032936319708824,
-0.040722865611314774,
0.036922626197338104,
-0.04407709464430809,
-0.051040906459093094,
0.0057432930916547775,
-0.06068211793899536,
0.03306597098708153,
-0.05640261620283127,
-0.021832186728715897,
-0.035951267927885056,
-0.01989077590405941,
0.009039395488798618,
-0.07085136324167252,
-0.025383902713656425,
-0.04906488209962845,
-0.012607992626726627,
0.04881051182746887,
-0.050366103649139404,
0.007968739606440067,
-0.061043038964271545,
-3.594431034048206e-33,
-0.005332940258085728,
0.08310189843177795,
-0.03594622015953064,
0.08682519942522049,
-0.03706083446741104,
-0.06183953583240509,
0.05820304527878761,
0.09412400424480438,
0.12172356992959976,
-0.02024931088089943,
0.11845032870769501,
-0.10154838114976883,
-0.04169958457350731,
-0.09988312423229218,
0.05201084166765213,
-0.0170279610902071,
0.009428371675312519,
-0.12104690074920654,
-0.05767420306801796,
0.09281305223703384,
0.031072834506630898,
0.10938414931297302,
-0.12161453813314438,
0.0006701663369312882,
-0.005324166268110275,
0.016949573531746864,
0.05878894776105881,
0.027721183374524117,
-0.003501617582514882,
-0.013488714583218098,
-0.039023589342832565,
-0.08656349033117294,
-0.028498494997620583,
0.014079668559134007,
-0.07638810575008392,
-0.03356316313147545,
0.06509622186422348,
0.0009030115325003862,
-0.07366183400154114,
0.05361737310886383,
0.03504432737827301,
0.0818895474076271,
-0.03960118442773819,
0.0548461489379406,
0.01106415968388319,
0.10334304720163345,
-0.0813962072134018,
-0.07312462478876114,
0.027987608686089516,
-0.030434580519795418,
0.0664210096001625,
-0.010292903520166874,
-0.08551162481307983,
0.04243602231144905,
-0.017311984673142433,
-0.05076390504837036,
0.0023569308687001467,
0.0015811317134648561,
-0.06196378171443939,
-0.046830616891384125,
0.030274519696831703,
-0.05160561203956604,
-0.017185477539896965,
0.012823405675590038,
-0.013662057928740978,
-0.04592783749103546,
-0.024455713108181953,
-0.023073161020874977,
0.01392320729792118,
0.03338524326682091,
0.07799534499645233,
-0.012581568211317062,
-0.017469685524702072,
-0.017990389838814735,
0.008279654197394848,
-0.04622283950448036,
0.03141424432396889,
0.04831327870488167,
-0.00259494804777205,
-0.021481530740857124,
-0.06015514209866524,
0.029420439153909683,
0.06709171086549759,
0.03481053560972214,
0.07192107290029526,
-0.03208195045590401,
-0.05665384232997894,
0.06029580533504486,
-0.007936578243970871,
0.0348571315407753,
-0.041919659823179245,
-0.01014264952391386,
0.007016649469733238,
0.12746143341064453,
-0.02269238792359829,
-5.880881559505724e-8,
-0.09796351194381714,
-0.04121043160557747,
-0.1606246381998062,
0.01912790909409523,
-0.07055055350065231,
0.011191248893737793,
-0.015504768118262291,
-0.01947791688144207,
0.026748420670628548,
0.0397132970392704,
-0.007113203871995211,
0.022551696747541428,
-0.10314121097326279,
0.015567600727081299,
-0.047281429171562195,
-0.03282572701573372,
0.00199747527949512,
0.10355096310377121,
-0.03910261392593384,
0.03259162977337837,
-0.0178754273802042,
0.09608720988035202,
0.06826011091470718,
-0.03828878328204155,
0.014725221320986748,
0.02835833467543125,
-0.042477067559957504,
0.06041606515645981,
0.058925360441207886,
-0.08955192565917969,
-0.027234038338065147,
0.024043437093496323,
0.025956537574529648,
-0.04127473756670952,
0.006156055722385645,
0.0695689246058464,
-0.08235583454370499,
0.025403445586562157,
0.018559055402874947,
0.0887594074010849,
0.10470963269472122,
-0.015123012475669384,
-0.05824783444404602,
0.04850530996918678,
0.035472605377435684,
0.01316280197352171,
-0.007420580834150314,
0.02992747351527214,
0.002484639175236225,
-0.045287251472473145,
0.04622529074549675,
-0.0742969959974289,
-0.0050049335695803165,
-0.032754525542259216,
-0.028977839276194572,
0.07880675792694092,
0.022014502435922623,
-0.030532484874129295,
0.022202441468834877,
0.03253752365708351,
0.09880911558866501,
-0.027163710445165634,
-0.010301044210791588,
-0.009448826313018799
] |
HooshvareLab/bert-fa-zwnj-base | 3880fac085e1a338e9564907cba0adeb9e14bc72 | 2021-05-18T21:05:42.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"fill-mask",
"fa",
"arxiv:2005.12515",
"transformers",
"license:apache-2.0",
"autotrain_compatible"
] | fill-mask | false | HooshvareLab | null | HooshvareLab/bert-fa-zwnj-base | 6,937 | 3 | transformers | ---
language: fa
license: apache-2.0
---
# ParsBERT (v3.0)
A Transformer-based Model for Persian Language Understanding
The new version of BERT v3.0 for Persian is available today and can tackle the zero-width non-joiner character for Persian writing. Also, the model was trained on new multi-types corpora with a new set of vocabulary.
## Introduction
ParsBERT is a monolingual language model based on Google’s BERT architecture. This model is pre-trained on large Persian corpora with various writing styles from numerous subjects (e.g., scientific, novels, news).
Paper presenting ParsBERT: [arXiv:2005.12515](https://arxiv.org/abs/2005.12515)
### BibTeX entry and citation info
Please cite in publications as the following:
```bibtex
@article{ParsBERT,
title={ParsBERT: Transformer-based Model for Persian Language Understanding},
author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri},
journal={ArXiv},
year={2020},
volume={abs/2005.12515}
}
```
## Questions?
Post a Github issue on the [ParsBERT Issues](https://github.com/hooshvare/parsbert/issues) repo. | [
-0.11249449849128723,
-0.02549499273300171,
0.014047556556761265,
-0.015234151855111122,
-0.04962414503097534,
-0.022687125951051712,
-0.042220745235681534,
0.04880340397357941,
0.01373323518782854,
-0.041855983436107635,
0.015459089539945126,
0.06377378106117249,
0.03782154247164726,
-0.01325613260269165,
-0.006815867964178324,
0.03628126531839371,
-0.03812061995267868,
-0.008368318900465965,
0.025796016678214073,
-0.028562143445014954,
0.017332972958683968,
0.03527547046542168,
0.023814667016267776,
-0.01773422583937645,
0.09522175043821335,
-0.005851972382515669,
-0.06021207943558693,
-0.03304119035601616,
0.04728138446807861,
-0.003626781515777111,
0.01661726087331772,
0.0650315061211586,
0.059540070593357086,
0.08346523344516754,
-0.009282474406063557,
0.059819545596838,
0.050760235637426376,
0.04081083834171295,
0.07392983138561249,
0.051956720650196075,
-0.01089929137378931,
-0.026889411732554436,
-0.061493169516325,
-0.04808882623910904,
0.044402215629816055,
0.021182430908083916,
-0.04387039318680763,
0.045817580074071884,
-0.11422304064035416,
0.06554106622934341,
-0.08473788946866989,
0.011896766722202301,
0.08222618699073792,
0.011451163329184055,
-0.02095033787190914,
-0.06971877813339233,
0.022347979247570038,
0.043001938611269,
-0.06217893585562706,
-0.08039572834968567,
-0.03951823711395264,
0.019999098032712936,
-0.06184360757470131,
-0.033366408199071884,
-0.08312167972326279,
0.0009263522806577384,
-0.015315660275518894,
0.0019438420422375202,
-0.025005752220749855,
-0.03780258074402809,
-0.06801125407218933,
0.0844724103808403,
-0.0036619456950575113,
0.02376355230808258,
-0.051785215735435486,
-0.08499220758676529,
0.04833963140845299,
-0.06002872437238693,
0.018649203702807426,
-0.09894679486751556,
-0.003349988255649805,
-0.002972580259665847,
0.0668225884437561,
0.002860529348254204,
0.021114710718393326,
0.008423453196883202,
-0.0014450829476118088,
0.002855169354006648,
-0.013439932838082314,
0.03390071913599968,
0.023810546845197678,
-0.04422960802912712,
0.048703886568546295,
0.016005003824830055,
0.05171569064259529,
0.05682345852255821,
0.0668746754527092,
-0.04368402808904648,
0.04629465937614441,
0.04308439418673515,
0.09269587695598602,
0.023958472535014153,
0.07878396660089493,
-0.05682176724076271,
-0.03462313860654831,
-0.033565863966941833,
-0.02614583633840084,
-0.007893748581409454,
0.0017857254715636373,
-0.0708775743842125,
-0.011884599924087524,
0.03718835115432739,
0.002229908248409629,
-0.1376335769891739,
-0.05433569476008415,
0.003926007077097893,
-0.005353888962417841,
-0.0613480843603611,
0.03483796864748001,
-0.0018578903982415795,
-0.10175289958715439,
0.08509088307619095,
-0.050593070685863495,
0.04075559973716736,
-0.037153176963329315,
-0.027109386399388313,
-0.016474420204758644,
5.081714975850536e-33,
-0.0036381350364536047,
0.08507117629051208,
-0.024924295023083687,
-0.021155769005417824,
-0.0690130814909935,
0.00006123098137322813,
-0.02851034514605999,
0.018391162157058716,
-0.09105861932039261,
-0.09536127746105194,
0.04489812254905701,
0.0165153369307518,
-0.011031280271708965,
0.0290375929325819,
-0.027221189811825752,
0.027540426701307297,
0.0057355063036084175,
0.044701993465423584,
0.04906374588608742,
-0.0631011575460434,
0.08319578319787979,
-0.009661167860031128,
-0.013799924403429031,
-0.030787287279963493,
0.002360329497605562,
0.07854029536247253,
0.12582145631313324,
-0.05291008576750755,
-0.08261176198720932,
0.03769122436642647,
-0.06604239344596863,
0.01793006621301174,
-0.07038294523954391,
-0.08097270876169205,
0.03544127941131592,
-0.10879024118185043,
-0.008417603559792042,
-0.05394013971090317,
-0.0842474177479744,
-0.0273508969694376,
-0.0023179620038717985,
0.048918139189481735,
-0.016794878989458084,
-0.03674834966659546,
0.005182599648833275,
0.030869880691170692,
0.08271752297878265,
0.025751987472176552,
0.11165425926446915,
0.024614796042442322,
-0.023520486429333687,
0.03194747865200043,
-0.05897551029920578,
0.026923436671495438,
0.02593752183020115,
0.03355361893773079,
0.057036418467760086,
0.0016037414316087961,
0.0120515376329422,
0.02079404890537262,
0.051325079053640366,
0.08240718394517899,
0.023645326495170593,
0.01862453669309616,
0.05117345228791237,
-0.023289650678634644,
-0.07846666127443314,
0.018556350842118263,
0.05729495361447334,
0.0541316419839859,
-0.04644941911101341,
-0.011504586786031723,
-0.032061029225587845,
0.06827501952648163,
-0.05853179097175598,
-0.03454216569662094,
-0.031132496893405914,
-0.07013756781816483,
0.04243658110499382,
0.009775197133421898,
-0.02684386633336544,
0.07833436876535416,
0.08035916090011597,
-0.10707145929336548,
-0.09344007074832916,
0.015167374163866043,
0.05950816720724106,
-0.06417769938707352,
-0.05065414682030678,
-0.020130986347794533,
0.0950109213590622,
-0.041471756994724274,
-0.03024624101817608,
0.02207597903907299,
0.0026457486674189568,
-5.242037344281326e-33,
-0.03578762710094452,
-0.038765955716371536,
-0.08202888816595078,
0.00818590633571148,
-0.02177339419722557,
-0.0443158857524395,
-0.006967467721551657,
0.1321781426668167,
0.06618525832891464,
-0.013378728181123734,
0.03140992671251297,
-0.056476376950740814,
0.043537214398384094,
0.006116465665400028,
0.11879585683345795,
0.0014359678607434034,
-0.003586484119296074,
-0.00815742276608944,
-0.04038906469941139,
0.08184583485126495,
0.007594762835651636,
-0.010563317686319351,
-0.012229572050273418,
0.06968314945697784,
-0.049649447202682495,
0.041451554745435715,
0.010015660896897316,
-0.014052167534828186,
-0.019896602258086205,
0.05627802759408951,
0.04655442386865616,
-0.013455400243401527,
-0.08646705001592636,
0.0847988948225975,
-0.033205967396497726,
-0.019815051928162575,
-0.04403209313750267,
0.03982415795326233,
0.011145694181323051,
-0.018317824229598045,
0.015744253993034363,
0.03595566377043724,
-0.0027672587893903255,
0.006647018250077963,
-0.0023373072035610676,
-0.00831463560461998,
-0.05781012400984764,
0.007558649405837059,
0.010184608399868011,
-0.10023268312215805,
-0.0023164807353168726,
-0.021219320595264435,
-0.014268063940107822,
-0.05577804148197174,
-0.020037926733493805,
-0.08281102776527405,
-0.0007196502410806715,
-0.02471349947154522,
-0.09850902855396271,
-0.028434669598937035,
-0.060311414301395416,
0.029279008507728577,
0.030566047877073288,
0.02186945267021656,
0.02204079180955887,
-0.0941401869058609,
0.0010360950836911798,
0.0749114379286766,
0.050483930855989456,
-0.055373601615428925,
0.06631596386432648,
-0.022612055763602257,
-0.010154662653803825,
-0.012193165719509125,
0.0158823411911726,
0.054106809198856354,
0.037506889551877975,
0.01499638520181179,
-0.05193031579256058,
0.016558760777115822,
-0.02321580797433853,
0.014741688966751099,
0.020623736083507538,
0.042899951338768005,
0.023795906454324722,
-0.027408545836806297,
-0.0727984681725502,
0.0517289899289608,
-0.027784323319792747,
0.015645235776901245,
0.014585871249437332,
-0.0007734844111837447,
-0.02726583741605282,
0.07994575053453445,
0.03062787465751171,
-5.106589995307331e-8,
-0.09291502088308334,
-0.012203173711895943,
-0.1160418912768364,
0.013323730789124966,
-0.08641776442527771,
-0.02609308809041977,
-0.034686896950006485,
-0.032059092074632645,
-0.11103854328393936,
0.010568741708993912,
0.036183129996061325,
-0.005477357655763626,
-0.042920757085084915,
0.04462948441505432,
0.0002672378032002598,
0.013493101112544537,
0.05991068109869957,
0.00894820038229227,
0.0032072870526462793,
0.005424866918474436,
0.024623455479741096,
-0.008925015106797218,
0.007495560217648745,
-0.06390339136123657,
-0.0028690462931990623,
0.06866119801998138,
-0.06669627875089645,
-0.03736814484000206,
0.01610698737204075,
0.013041408732533455,
0.04223433881998062,
0.09225694090127945,
-0.06586059182882309,
-0.03775888681411743,
0.0799698457121849,
0.09228044748306274,
0.009622568264603615,
0.038620904088020325,
-0.031808558851480484,
0.12313710898160934,
0.16858983039855957,
0.042352095246315,
-0.09991329908370972,
0.04658636078238487,
0.025870900601148605,
-0.01623287983238697,
-0.010886208154261112,
-0.06713128834962845,
0.09986292570829391,
-0.02670084312558174,
0.09241165220737457,
-0.06428337097167969,
0.010793754830956459,
0.04411271959543228,
-0.028797069564461708,
0.03517685458064079,
-0.10580933094024658,
-0.048420943319797516,
0.05463975667953491,
-0.027345696464180946,
0.09578133374452591,
-0.0074191028252244,
0.06769586354494095,
0.06637955456972122
] |
gogamza/kobart-base-v2 | d9a1f640896cef8dcfd693b1bc57510a2b09a18f | 2021-11-11T07:43:35.000Z | [
"pytorch",
"bart",
"feature-extraction",
"ko",
"transformers",
"license:mit"
] | feature-extraction | false | gogamza | null | gogamza/kobart-base-v2 | 6,910 | 3 | transformers | ---
language: ko
tags:
- bart
license: mit
---
## KoBART-base-v2
With the addition of chatting data, the model is trained to handle the semantics of sequences longer than KoBART.
```python
from transformers import PreTrainedTokenizerFast, BartModel
tokenizer = PreTrainedTokenizerFast.from_pretrained('gogamza/kobart-base-v2')
model = BartModel.from_pretrained('gogamza/kobart-base-v2')
```
### Performance
NSMC
- acc. : 0.901
| [
-0.11324606090784073,
-0.014094129204750061,
0.02366548217833042,
-0.033351730555295944,
-0.05986827611923218,
-0.022683126851916313,
-0.03376873955130577,
0.04126504063606262,
0.0318809375166893,
-0.07791490107774734,
0.04523751884698868,
-0.04740383103489876,
-0.021599793806672096,
0.006135301664471626,
0.0847996324300766,
-0.0019204089185222983,
0.015076239593327045,
0.011627227999269962,
-0.009998978115618229,
-0.0828157514333725,
0.09146790206432343,
0.057379350066185,
0.03912067413330078,
0.029047925025224686,
0.05310871824622154,
0.005015031434595585,
0.0006905347108840942,
-0.011381464079022408,
0.07769473642110825,
0.022593246772885323,
0.05080905929207802,
0.071858711540699,
0.023055177181959152,
0.06709884107112885,
-0.049215272068977356,
0.03628021106123924,
-0.032955434173345566,
-0.05364695563912392,
0.03818183019757271,
0.023634541779756546,
0.03137035667896271,
0.04333244264125824,
0.02299351617693901,
0.02490399219095707,
0.03376675769686699,
0.01355254277586937,
-0.047068629413843155,
-0.019543327391147614,
-0.03953293338418007,
-0.03483901172876358,
-0.06408380717039108,
-0.021986648440361023,
0.03858450800180435,
0.10669144243001938,
0.031158525496721268,
0.013318000361323357,
-0.07499657571315765,
-0.0007565731066279113,
0.11387350410223007,
-0.02788339927792549,
-0.0428726002573967,
0.009595546871423721,
-0.03411732614040375,
0.028317537158727646,
-0.0471317432820797,
-0.04794676601886749,
0.04307577759027481,
0.03294627368450165,
0.05179815739393234,
0.07807797938585281,
-0.031211433932185173,
-0.01575612835586071,
0.046259693801403046,
0.10815178602933884,
0.05457101762294769,
-0.06487276405096054,
0.10038568079471588,
-0.01759457215666771,
-0.008793712593615055,
-0.12135964632034302,
-0.020709138363599777,
-0.08135510236024857,
0.006862492300570011,
0.056397002190351486,
-0.009785658679902554,
-0.06329496949911118,
-0.029740657657384872,
0.009348793886601925,
0.005366861820220947,
0.018886925652623177,
-0.028038490563631058,
-0.07213230431079865,
0.06181403622031212,
-0.01437438279390335,
-0.10092546045780182,
0.04555005207657814,
0.01803947426378727,
0.061318155378103256,
-0.04413916543126106,
0.07536786049604416,
0.03774286434054375,
0.03890194371342659,
0.02425236441195011,
-0.008973454125225544,
-0.01862713322043419,
-0.06752796471118927,
0.01669958233833313,
0.014209184795618057,
-0.02204109914600849,
0.07274312525987625,
0.04734591394662857,
-0.05234465003013611,
0.0020816551987081766,
-0.033920999616384506,
0.012802389450371265,
0.07869099825620651,
-0.031150732189416885,
0.009613548405468464,
-0.03829630836844444,
0.0888771340250969,
0.053059883415699005,
-0.0249024610966444,
-0.026448531076312065,
0.04143620282411575,
-0.06801951676607132,
-0.036815889179706573,
0.025946464389562607,
4.614229688736143e-33,
-0.036195430904626846,
-0.028860360383987427,
0.041267767548561096,
0.02582521364092827,
-0.052956514060497284,
-0.03159600496292114,
-0.013978731818497181,
-0.007012373302131891,
-0.11433148384094238,
-0.044279370456933975,
-0.05805843695998192,
0.07431603223085403,
-0.10654786229133606,
0.03628756105899811,
-0.0015085444319993258,
-0.020315920934081078,
-0.06753138452768326,
0.037937816232442856,
0.08446149528026581,
0.038505591452121735,
0.11520317941904068,
-0.04472912475466728,
-0.023128822445869446,
-0.012697257101535797,
0.020674457773566246,
0.01377868838608265,
0.05938146263360977,
-0.13000817596912384,
-0.021177442744374275,
0.05402045696973801,
-0.05736023187637329,
0.04160471260547638,
-0.012481406331062317,
-0.0030761167872697115,
-0.026213588193058968,
-0.040428295731544495,
0.014803293161094189,
-0.07709447294473648,
-0.03621403127908707,
-0.12176666408777237,
-0.051981668919324875,
0.008334459736943245,
-0.054885219782590866,
-0.03490067273378372,
-0.05482851341366768,
-0.025739846751093864,
-0.010999174788594246,
0.018027568235993385,
0.04095448553562164,
0.08567189425230026,
0.02613656036555767,
-0.023879917338490486,
-0.048751458525657654,
0.08214255422353745,
0.016236422583460808,
0.015145656652748585,
0.09443149715662003,
0.029198965057730675,
0.04425837844610214,
-0.005786271765828133,
-0.022157985717058182,
0.011783663183450699,
0.031229157000780106,
0.03546993061900139,
0.06793881207704544,
-0.00986525509506464,
-0.02883772738277912,
-0.02177116461098194,
0.0024683913215994835,
-0.031099144369363785,
-0.0722857341170311,
-0.040975023061037064,
-0.048625580966472626,
0.005671638064086437,
-0.017522962763905525,
-0.05509144812822342,
-0.036703988909721375,
-0.06583438068628311,
-0.13678495585918427,
0.024146469309926033,
-0.03711223974823952,
-0.015068947337567806,
-0.031341321766376495,
-0.003889307612553239,
0.04764286428689957,
-0.05275965854525566,
0.06411149352788925,
-0.014378371648490429,
-0.07332334667444229,
-0.01937359757721424,
-0.012540634721517563,
-0.042255159467458725,
-0.0005911745247431099,
0.02226112224161625,
-0.039316341280937195,
-5.3316118505239075e-33,
0.018991872668266296,
0.047639042139053345,
-0.01874418742954731,
0.06067673861980438,
-0.013329713605344296,
-0.046562306582927704,
0.037992410361766815,
0.13404881954193115,
-0.05009222403168678,
-0.0024814303033053875,
0.024823779240250587,
-0.11722452938556671,
0.006395004689693451,
-0.05296027660369873,
0.14586634933948517,
0.0015636780299246311,
-0.020880959928035736,
0.002738030394539237,
0.027897441759705544,
0.0007944884710013866,
0.03462112322449684,
0.029402365908026695,
-0.156863272190094,
0.05221596360206604,
-0.04227597638964653,
0.06881183385848999,
-0.014533605426549911,
0.10266872495412827,
0.0553211085498333,
0.007675396744161844,
-0.05329928547143936,
-0.018120311200618744,
-0.06571562588214874,
0.026593107730150223,
-0.029352352023124695,
-0.00726125156506896,
0.04363948851823807,
0.07826562225818634,
-0.027002708986401558,
0.007707413751631975,
0.08615501970052719,
0.04409334808588028,
-0.099372997879982,
0.033099427819252014,
0.004180592484772205,
-0.011266620829701424,
-0.026256656274199486,
-0.029322616755962372,
0.07316812872886658,
-0.0692116841673851,
0.08813704550266266,
0.013316870667040348,
-0.07523548603057861,
-0.02062225714325905,
-0.06586901843547821,
-0.005015620496124029,
0.021149514243006706,
-0.004963451065123081,
-0.03384781628847122,
-0.11854185909032822,
-0.05277973413467407,
-0.10488279163837433,
0.06133955717086792,
-0.051774390041828156,
0.006535670254379511,
-0.06679826229810715,
-0.043372806161642075,
0.017896786332130432,
0.040359415113925934,
-0.031049292534589767,
-0.0024530990049242973,
0.021504992619156837,
0.03103034384548664,
-0.010453013703227043,
-0.04112151265144348,
0.004229938145726919,
-0.030160391703248024,
-0.01953016221523285,
0.027215559035539627,
-0.005051829386502504,
-0.10191495716571808,
0.026433009654283524,
0.10965990275144577,
0.12383420765399933,
-0.0232872162014246,
0.05451205372810364,
0.08244842290878296,
0.08778893947601318,
0.07477374374866486,
-0.0012308824807405472,
0.015702905133366585,
0.05086228996515274,
0.02338418737053871,
0.06718144565820694,
-0.023597976192831993,
-4.6208608495135195e-8,
-0.04423122853040695,
-0.10770437866449356,
-0.03650777041912079,
0.043410927057266235,
0.010603566654026508,
0.03030487336218357,
-0.06887209415435791,
0.022165458649396896,
-0.004204371478408575,
-0.03531120344996452,
0.02571238949894905,
0.02825504168868065,
-0.0534353032708168,
0.029408421367406845,
0.02906043455004692,
0.05966987833380699,
-0.01440621167421341,
0.05496999993920326,
-0.041966766119003296,
-0.0647704154253006,
-0.03548278287053108,
-0.007424808572977781,
0.0020603432785719633,
0.007367477286607027,
-0.07386638969182968,
0.028763337060809135,
-0.026847729459404945,
0.11567652225494385,
-0.005224061664193869,
-0.0696333721280098,
-0.05867595598101616,
0.008772918954491615,
-0.06204153969883919,
0.0055183772929012775,
-0.014882921241223812,
0.024939995259046555,
0.005832701455801725,
-0.03828354552388191,
0.020391028374433517,
0.07376816868782043,
-0.020115870982408524,
-0.04126879200339317,
-0.13788770139217377,
0.025299547240138054,
0.05945182219147682,
0.0248153954744339,
-0.012005233205854893,
-0.048312630504369736,
0.034493185579776764,
0.0004138326330576092,
-0.03645884618163109,
-0.00869049597531557,
-0.07021579891443253,
-0.04422415792942047,
-0.022656500339508057,
0.030209170654416084,
-0.05017491802573204,
-0.06679964065551758,
-0.029638314619660378,
0.03262944892048836,
0.004950991831719875,
0.01067334320396185,
0.0494840107858181,
0.0365888886153698
] |
Helsinki-NLP/opus-mt-tr-en | 3252b40d8b9dead8012364425fd00db1a26abf85 | 2021-09-11T10:49:35.000Z | [
"pytorch",
"marian",
"text2text-generation",
"tr",
"en",
"transformers",
"translation",
"license:apache-2.0",
"autotrain_compatible"
] | translation | false | Helsinki-NLP | null | Helsinki-NLP/opus-mt-tr-en | 6,901 | 9 | transformers | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-tr-en
* source languages: tr
* target languages: en
* OPUS readme: [tr-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tr-en/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tr-en/opus-2020-01-16.zip)
* test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tr-en/opus-2020-01-16.test.txt)
* test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tr-en/opus-2020-01-16.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| newsdev2016-entr.tr.en | 27.6 | 0.548 |
| newstest2016-entr.tr.en | 25.2 | 0.532 |
| newstest2017-entr.tr.en | 24.7 | 0.530 |
| newstest2018-entr.tr.en | 27.0 | 0.547 |
| Tatoeba.tr.en | 63.5 | 0.760 |
| [
-0.053958091884851456,
-0.03019360825419426,
0.022831706330180168,
-0.007792068179696798,
0.0034690347965806723,
0.09389012306928635,
-0.04958104342222214,
0.02943223901093006,
0.014684055931866169,
-0.014786768704652786,
0.012111724354326725,
-0.04121154174208641,
-0.07839208841323853,
-0.030858291313052177,
-0.036629751324653625,
-0.001647817436605692,
-0.026695916429162025,
0.08465816080570221,
-0.06997352838516235,
-0.02699391171336174,
0.044714588671922684,
0.03274264559149742,
0.02783116325736046,
-0.014273305423557758,
0.10544531047344208,
0.07588203996419907,
-0.10153180360794067,
-0.008170668967068195,
0.09304410219192505,
-0.04199938476085663,
-0.013272852636873722,
0.0002619537990540266,
0.05136410892009735,
0.08117428421974182,
0.04322080686688423,
0.07004589587450027,
-0.017792565748095512,
-0.0657154992222786,
-0.022152436897158623,
0.0472373440861702,
0.04677952453494072,
0.04690689966082573,
-0.04147619381546974,
-0.009929316118359566,
0.04256286099553108,
0.003462724620476365,
-0.08623554557561874,
0.03274025022983551,
0.011562788859009743,
0.004170925822108984,
-0.11285781860351562,
-0.010597922839224339,
0.02115415595471859,
0.07728235423564911,
-0.08580807596445084,
0.044663310050964355,
0.05157611519098282,
-0.010032851248979568,
0.07100072503089905,
-0.030372241511940956,
-0.12707194685935974,
-0.028368789702653885,
-0.0961078479886055,
-0.004096981603652239,
0.00006470637890743092,
-0.015088330022990704,
0.008633267134428024,
0.06077134981751442,
-0.05425761640071869,
0.06015995889902115,
-0.018202677369117737,
-0.005979212000966072,
0.0044235181994736195,
0.05955551564693451,
-0.010512461885809898,
0.0399198904633522,
0.0020028220023959875,
-0.06450692564249039,
-0.011182708665728569,
-0.07244008034467697,
-0.00019495529704727232,
-0.058644555509090424,
0.07072439789772034,
-0.003650445956736803,
0.07744088768959045,
-0.0006300883833318949,
0.02053636685013771,
0.005035813897848129,
-0.02612721361219883,
0.04270520806312561,
-0.07184670865535736,
-0.037706613540649414,
0.0027215727604925632,
0.022683870047330856,
0.002265495015308261,
0.0648575872182846,
0.010266697034239769,
0.055409859865903854,
0.02042282000184059,
0.05794919654726982,
0.022106556221842766,
0.014792014844715595,
0.07092057913541794,
-0.040392789989709854,
-0.11137790232896805,
-0.02685612440109253,
0.06494466960430145,
0.042459581047296524,
0.0075197345577180386,
-0.09053957462310791,
0.02198377437889576,
-0.021596239879727364,
-0.01343417726457119,
-0.0803133100271225,
0.040379010140895844,
-0.05574757978320122,
0.005508916452527046,
-0.016145052388310432,
-0.01691828854382038,
0.049604207277297974,
-0.032538753002882004,
-0.008143147453665733,
-0.03046508878469467,
0.005022142082452774,
-0.04727199301123619,
-0.057782821357250214,
0.029993440955877304,
1.0192968655369297e-33,
0.05934947729110718,
-0.02283727191388607,
-0.013633562251925468,
-0.002572686644271016,
-0.0608772411942482,
-0.011050903238356113,
-0.034805040806531906,
0.03391460329294205,
-0.1148509830236435,
0.0046172975562512875,
-0.010482692159712315,
-0.013509904965758324,
-0.09201754629611969,
0.008671215735375881,
-0.01966261863708496,
0.014199648052453995,
0.06427410244941711,
0.020138854160904884,
0.04890015721321106,
0.034084077924489975,
0.06758609414100647,
0.05363345146179199,
-0.007715662010014057,
-0.03651060163974762,
-0.049203090369701385,
0.05512072145938873,
0.02133062481880188,
-0.11090406030416489,
-0.11365581303834915,
0.0215651523321867,
-0.09855075180530548,
0.03210246190428734,
-0.019397860392928123,
0.002958505181595683,
-0.009797842241823673,
-0.031170018017292023,
-0.012178314849734306,
-0.007327461149543524,
-0.041535019874572754,
-0.08402061462402344,
0.002139025367796421,
0.012205430306494236,
-0.011217479594051838,
-0.058191534131765366,
0.026260681450366974,
0.014437459409236908,
0.005217886529862881,
0.009298757649958134,
0.10311278700828552,
0.012241492047905922,
0.011421484872698784,
0.056870389729738235,
-0.06547874957323074,
0.0034905828069895506,
0.03742150589823723,
0.10618480294942856,
0.07238307595252991,
0.01757080666720867,
0.03512408956885338,
0.04335285350680351,
0.0750536248087883,
0.02673627808690071,
0.019383937120437622,
0.02034870721399784,
0.09426093846559525,
-0.009966542944312096,
-0.0449862964451313,
-0.07674325257539749,
0.07548580318689346,
0.042699817568063736,
-0.14905276894569397,
-0.054037198424339294,
0.06566620618104935,
0.08682845532894135,
0.06157592311501503,
-0.025720618665218353,
-0.0272750873118639,
-0.0317285992205143,
-0.02055954374372959,
-0.028237568214535713,
-0.06280709058046341,
0.01927999220788479,
-0.008020295761525631,
-0.018681764602661133,
-0.030811216682195663,
-0.008004549890756607,
0.04958437755703926,
-0.07220978289842606,
-0.041099246591329575,
0.00020864448742941022,
0.036581579595804214,
0.053795505315065384,
-0.1067257821559906,
-0.005929799284785986,
-0.0028010231908410788,
-1.554784684517384e-33,
0.09609338641166687,
0.01710772141814232,
-0.045413315296173096,
0.0727747231721878,
-0.027631426230072975,
-0.07882731407880783,
0.0014890623278915882,
0.10482214391231537,
0.06350275874137878,
0.05201094225049019,
0.07510187476873398,
-0.14445237815380096,
0.02136753499507904,
-0.0715884119272232,
0.07560940831899643,
-0.0471782423555851,
-0.007007405161857605,
0.04074057936668396,
0.02599751204252243,
0.020599452778697014,
0.009843233041465282,
0.07533559948205948,
-0.026027580723166466,
0.09351964294910431,
-0.01106024719774723,
-0.023218795657157898,
-0.020692193880677223,
0.0732632428407669,
0.007387564051896334,
0.0037954263389110565,
0.008546221069991589,
0.010740881785750389,
-0.11294740438461304,
-0.010895167477428913,
-0.0849272757768631,
0.04369117319583893,
0.03298432007431984,
0.03869891166687012,
0.0472976379096508,
0.06221242621541023,
0.06572473049163818,
0.06091702729463577,
-0.04035799205303192,
-0.03998064622282982,
0.02031197026371956,
-0.0274425707757473,
0.012374447658658028,
0.0037278649397194386,
-0.004918386694043875,
-0.08602271974086761,
0.03101634420454502,
0.005340179894119501,
-0.08079231530427933,
-0.02202734351158142,
-0.009740174748003483,
-0.070271797478199,
-0.015482474118471146,
-0.13723988831043243,
-0.04999276623129845,
-0.02890045754611492,
-0.013960652984678745,
0.03339965641498566,
-0.0431445948779583,
-0.07954065501689911,
0.030321506783366203,
-0.006076295394450426,
0.04699896648526192,
0.013126707635819912,
0.015214822255074978,
0.06580007076263428,
-0.0248930174857378,
-0.05967037007212639,
0.07425054162740707,
0.09650183469057083,
0.006070265080779791,
-0.04131113737821579,
-0.0459991991519928,
0.0317477248609066,
0.05090821161866188,
-0.08043873310089111,
-0.029206974431872368,
0.015471258200705051,
0.01008063554763794,
0.022444339469075203,
0.10499366372823715,
0.11308848857879639,
0.02216191776096821,
0.0052296011708676815,
-0.006985860876739025,
0.07640177011489868,
0.023603633046150208,
0.02161535806953907,
0.020928973332047462,
0.10435674339532852,
-0.014323464594781399,
-4.905158945689436e-8,
-0.10236134380102158,
0.006599030457437038,
-0.10449068993330002,
0.049650393426418304,
-0.04720298945903778,
-0.06361652910709381,
-0.05558605492115021,
-0.021235177293419838,
-0.03285448998212814,
-0.02822968177497387,
-0.003952368628233671,
0.012063197791576385,
-0.07341189682483673,
-0.00008934648940339684,
-0.042999040335416794,
0.024599088355898857,
-0.02425423637032509,
0.07654325664043427,
-0.02412092313170433,
-0.036021143198013306,
0.053076811134815216,
0.05073266848921776,
0.03590546175837517,
-0.06789108365774155,
-0.003414998995140195,
0.005084050819277763,
-0.04109634459018707,
0.03861395642161369,
0.006885700859129429,
0.014381551183760166,
0.05195089802145958,
0.03601853549480438,
-0.015156388282775879,
-0.09031399339437485,
0.05306541547179222,
0.06316912174224854,
-0.0009517865837551653,
-0.03296366333961487,
-0.01315896213054657,
0.06762443482875824,
0.0928315594792366,
0.046726956963539124,
-0.11312732100486755,
0.02255917713046074,
0.03194115310907364,
-0.031933464109897614,
-0.05672420188784599,
-0.027973689138889313,
0.03626255691051483,
-0.06613995134830475,
0.07666172832250595,
-0.06920892000198364,
-0.0619896836578846,
0.024562597274780273,
0.03427600860595703,
0.010109484195709229,
0.0678345188498497,
-0.01088975090533495,
0.0029804029036313295,
-0.020524295046925545,
0.04200030863285065,
-0.02625676430761814,
-0.02387848123908043,
-0.01581491343677044
] |
google/bigbird-pegasus-large-bigpatent | 623321f538339e475269fdf79a258a5a7b796f4c | 2021-06-03T18:26:21.000Z | [
"pytorch",
"bigbird_pegasus",
"text2text-generation",
"en",
"dataset:big_patent",
"arxiv:2007.14062",
"transformers",
"summarization",
"license:apache-2.0",
"autotrain_compatible"
] | summarization | false | google | null | google/bigbird-pegasus-large-bigpatent | 6,873 | 7 | transformers | ---
language: en
license: apache-2.0
datasets:
- big_patent
tags:
- summarization
---
# BigBirdPegasus model (large)
BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle.
BigBird was introduced in this [paper](https://arxiv.org/abs/2007.14062) and first released in this [repository](https://github.com/google-research/bigbird).
Disclaimer: The team releasing BigBird did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
BigBird relies on **block sparse attention** instead of normal attention (i.e. BERT's attention) and can handle sequences up to a length of 4096 at a much lower compute cost compared to BERT. It has achieved SOTA on various tasks involving very long sequences such as long documents summarization, question-answering with long contexts.
## How to use
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BigBirdPegasusForConditionalGeneration, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-bigpatent")
# by default encoder-attention is `block_sparse` with num_random_blocks=3, block_size=64
model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-bigpatent")
# decoder attention type can't be changed & will be "original_full"
# you can change `attention_type` (encoder only) to full attention like this:
model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-bigpatent", attention_type="original_full")
# you can change `block_size` & `num_random_blocks` like this:
model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-bigpatent", block_size=16, num_random_blocks=2)
text = "Replace me by any text you'd like."
inputs = tokenizer(text, return_tensors='pt')
prediction = model.generate(**inputs)
prediction = tokenizer.batch_decode(prediction)
```
## Training Procedure
This checkpoint is obtained after fine-tuning `BigBirdPegasusForConditionalGeneration` for **summarization** on [big_patent](https://huggingface.co/datasets/big_patent) dataset.
## BibTeX entry and citation info
```tex
@misc{zaheer2021big,
title={Big Bird: Transformers for Longer Sequences},
author={Manzil Zaheer and Guru Guruganesh and Avinava Dubey and Joshua Ainslie and Chris Alberti and Santiago Ontanon and Philip Pham and Anirudh Ravula and Qifan Wang and Li Yang and Amr Ahmed},
year={2021},
eprint={2007.14062},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
| [
-0.10371853411197662,
0.01022668369114399,
-0.00922483205795288,
-0.03300868347287178,
-0.01656779646873474,
0.002154112793505192,
-0.10391688346862793,
0.0386798121035099,
0.03212219849228859,
-0.00821114331483841,
-0.05011751130223274,
0.05463859811425209,
-0.04795999079942703,
-0.004013733007013798,
-0.018286066129803658,
0.008008848875761032,
0.09114012122154236,
-0.03290842846035957,
-0.0670597180724144,
-0.036817751824855804,
0.026161201298236847,
0.06533559411764145,
0.06833802908658981,
0.004406336694955826,
-0.04536004737019539,
-0.01146087609231472,
-0.06529027968645096,
-0.09064511209726334,
0.049461450427770615,
-0.027446430176496506,
0.009867032989859581,
0.04950536787509918,
0.04563567042350769,
0.10055369883775711,
-0.0960279256105423,
0.0601235069334507,
-0.045097336173057556,
0.020412079989910126,
-0.005642023868858814,
-0.05319022014737129,
0.04312127083539963,
-0.008737824857234955,
-0.03553382307291031,
-0.015143787488341331,
0.04976573958992958,
-0.07719328999519348,
0.033912185579538345,
-0.00967191718518734,
-0.003474389435723424,
-0.055103596299886703,
-0.10752903670072556,
-0.06582212448120117,
-0.0045967623591423035,
0.09472446143627167,
0.019974352791905403,
0.036895751953125,
-0.07216740399599075,
-0.09036813676357269,
-0.0801156684756279,
-0.020741993561387062,
-0.05173560604453087,
-0.016565091907978058,
0.011593276634812355,
-0.00018444110173732042,
-0.031614989042282104,
0.023873912170529366,
0.010769812390208244,
-0.03492506965994835,
0.03192637488245964,
-0.06609471142292023,
-0.0021747585851699114,
0.022098343819379807,
-0.0290317814797163,
0.061507776379585266,
0.05136799439787865,
-0.05495906248688698,
0.09187911450862885,
0.01429305411875248,
0.12137271463871002,
-0.022870177403092384,
-0.024483071640133858,
-0.0808052197098732,
0.02703508362174034,
-0.027331629768013954,
0.004230037797242403,
-0.02014744281768799,
-0.022817278280854225,
0.08571639657020569,
-0.07270864397287369,
-0.034992847591638565,
0.009541621431708336,
-0.09495912492275238,
0.0505107082426548,
-0.04721428453922272,
-0.02611757442355156,
0.0062660644762218,
0.03551338240504265,
-0.05511755496263504,
-0.027697080746293068,
0.046003490686416626,
0.0660814642906189,
0.016313547268509865,
0.056880928575992584,
-0.0637478455901146,
0.028014298528432846,
-0.06755750626325607,
0.04247765615582466,
0.05394284427165985,
0.004105081781744957,
-0.06994476169347763,
0.007579341996461153,
0.023567283526062965,
-0.024995142593979836,
-0.023152800276875496,
-0.01708492822945118,
-0.09835272282361984,
-0.026415817439556122,
0.010971342213451862,
0.03109569475054741,
0.04887361824512482,
0.06365793198347092,
0.018897298723459244,
0.011627121828496456,
0.023076998069882393,
-0.00821983814239502,
0.06361068785190582,
-0.1292574554681778,
4.189974675741179e-33,
0.02205120399594307,
0.06647246330976486,
0.08076388388872147,
0.026725005358457565,
0.02200886234641075,
0.013255546800792217,
-0.003285205690190196,
0.05661676079034805,
-0.028464587405323982,
0.05378551781177521,
-0.052233923226594925,
0.06683549284934998,
0.0000648760687909089,
0.09152873605489731,
0.08183910697698593,
-0.014146867208182812,
-0.08800425380468369,
0.04362034425139427,
0.03645656630396843,
-0.05739271268248558,
0.06793852895498276,
0.0016266988823190331,
0.046991098672151566,
-0.029559960588812828,
0.061136115342378616,
0.02189987525343895,
0.07037607580423355,
-0.08477090299129486,
-0.04134300723671913,
0.041537247598171234,
-0.09758558869361877,
0.015041111037135124,
-0.04539875313639641,
0.0016964166425168514,
0.04427967965602875,
-0.04335988312959671,
-0.05185924097895622,
-0.1802971363067627,
0.03575289994478226,
-0.0462777204811573,
-0.023792285472154617,
0.028756804764270782,
-0.08237970620393753,
-0.040084172040224075,
-0.04191361740231514,
-0.02221323736011982,
0.07159359008073807,
0.07821666449308395,
-0.003256092546507716,
0.047919731587171555,
0.08415455371141434,
-0.033663298934698105,
-0.0910661369562149,
-0.020416248589754105,
-0.012465852312743664,
0.06379483640193939,
0.10764367133378983,
0.04217173531651497,
0.0730779841542244,
0.09231117367744446,
-0.06914201378822327,
-0.03871525451540947,
0.035051677376031876,
0.03489943593740463,
0.10364995151758194,
-0.04069536551833153,
-0.03719634562730789,
0.06780954450368881,
-0.05232052877545357,
0.0027965421322733164,
0.03892599791288376,
-0.0010157981887459755,
0.004232984967529774,
-0.08707277476787567,
-0.02462588995695114,
-0.02892335131764412,
0.05718180164694786,
-0.005854759365320206,
-0.06744664162397385,
0.02898128516972065,
-0.038993243128061295,
0.03876554220914841,
0.031328123062849045,
-0.08229788392782211,
-0.04946587234735489,
0.03871701657772064,
0.07904736697673798,
-0.011379783973097801,
-0.025121407583355904,
-0.054658230394124985,
0.015620867721736431,
0.04297879710793495,
-0.014568627811968327,
-0.03584172576665878,
-0.02225307933986187,
-3.965828474190508e-33,
-0.04635703191161156,
-0.05547863245010376,
-0.09478164464235306,
0.04065848886966705,
0.05592317879199982,
-0.0970408171415329,
0.004265798255801201,
0.09997934848070145,
-0.055044613778591156,
-0.06075567379593849,
-0.015608632937073708,
0.00033185575739480555,
0.10348047316074371,
-0.050055865198373795,
0.05109015479683876,
-0.05465317144989967,
0.0385492704808712,
-0.08259575814008713,
-0.02790874056518078,
0.02328585833311081,
0.04797147214412689,
0.03258981555700302,
-0.0660981610417366,
0.022998550906777382,
-0.048457711935043335,
-0.017669042572379112,
-0.07524824142456055,
0.009823993779718876,
0.018042799085378647,
-0.014046809636056423,
0.004278145730495453,
-0.03016454167664051,
-0.002917854581028223,
-0.006390747148543596,
-0.09351476281881332,
-0.0021204245276749134,
0.06233997270464897,
-0.00401641009375453,
0.00988645851612091,
0.030924102291464806,
0.026377584785223007,
-0.020997406914830208,
-0.015294297598302364,
0.00030640102340839803,
-0.014042345806956291,
-0.012446067295968533,
-0.10414552688598633,
-0.04894119128584862,
-0.015462934039533138,
0.03811119496822357,
-0.00024570626555942,
-0.04034543037414551,
-0.044406626373529434,
0.024762295186519623,
-0.043778371065855026,
-0.04723447933793068,
-0.024607734754681587,
-0.01744789630174637,
0.03540883958339691,
-0.08225309103727341,
-0.05410689115524292,
0.000029161199563532136,
-0.002802494913339615,
-0.013632701709866524,
0.048097606748342514,
-0.024552220478653908,
-0.004276611842215061,
-0.09298602491617203,
-0.0033392072655260563,
-0.02532224729657173,
0.027999214828014374,
-0.035030972212553024,
0.005989233031868935,
0.09359025955200195,
-0.012668698094785213,
0.06718423962593079,
-0.007327723782509565,
-0.06768333166837692,
0.022240223363041878,
-0.03400585427880287,
-0.08555881679058075,
-0.03994673490524292,
0.04979798570275307,
0.06327732652425766,
0.028417129069566727,
-0.0009358135866932571,
0.060768011957407,
0.07348863780498505,
-0.011967917904257774,
0.029060302302241325,
-0.0374072901904583,
0.08555002510547638,
0.016900137066841125,
0.0652032122015953,
-0.01571955718100071,
-5.39200222249292e-8,
-0.06497223675251007,
0.05848812311887741,
-0.03741348534822464,
0.006909340154379606,
0.04209821671247482,
-0.06317473202943802,
0.031426407396793365,
0.09529497474431992,
0.0013717362890020013,
0.04578498378396034,
0.021839100867509842,
-0.022329986095428467,
-0.018788781017065048,
0.004737307783216238,
0.06592603772878647,
0.05738226696848869,
0.025490278378129005,
-0.023900555446743965,
-0.031795620918273926,
-0.031818144023418427,
-0.01037608552724123,
0.05800384655594826,
0.0017945015570148826,
-0.00004164524216321297,
0.07145306468009949,
-0.008187390863895416,
-0.06005315110087395,
0.06921853125095367,
-0.0008557330002076924,
-0.04937564954161644,
-0.04494718834757805,
0.07458007335662842,
-0.0353844128549099,
-0.0167227815836668,
0.05592043697834015,
0.03011350892484188,
0.03780174255371094,
0.018732570111751556,
0.05858790501952171,
0.0346950888633728,
0.07479514926671982,
0.043556179851293564,
-0.06462151557207108,
0.02785942517220974,
0.07218354940414429,
0.0090315081179142,
-0.017075149342417717,
-0.11273244768381119,
0.020283065736293793,
0.05560215562582016,
0.07278947532176971,
-0.020455962046980858,
-0.022259075194597244,
0.0320085734128952,
-0.04097554460167885,
0.07964086532592773,
-0.003933228086680174,
-0.06166557967662811,
0.07440498471260071,
0.009855275973677635,
0.1159382089972496,
0.03734680637717247,
-0.03887384384870529,
0.08465686440467834
] |
dmis-lab/biobert-large-cased-v1.1-squad | 2b17f30cda1efcbe0d6ab3b977856c7898f934b1 | 2021-05-19T16:01:47.000Z | [
"pytorch",
"jax",
"bert",
"question-answering",
"transformers",
"autotrain_compatible"
] | question-answering | false | dmis-lab | null | dmis-lab/biobert-large-cased-v1.1-squad | 6,856 | 2 | transformers | Entry not found | [
0.0461147278547287,
-0.038838207721710205,
-0.01049656979739666,
-0.03682169318199158,
0.011261860840022564,
0.013094935566186905,
0.0019101888174191117,
-0.013979103416204453,
0.027092741802334785,
-0.015212527476251125,
0.017284274101257324,
-0.08189476281404495,
0.03817418962717056,
-0.04920130595564842,
0.021389011293649673,
-0.015245908871293068,
-0.03203780576586723,
-0.1245758980512619,
0.03150877356529236,
0.032381657510995865,
-0.060957908630371094,
0.05409295856952667,
-0.025087490677833557,
0.01568586938083172,
0.028129950165748596,
-0.04710396006703377,
-0.018688226118683815,
0.013785239309072495,
-0.04001208767294884,
0.01173911802470684,
-0.04317743331193924,
0.05500618368387222,
0.004543041344732046,
0.02973111905157566,
0.14852192997932434,
0.02658126689493656,
0.02907961793243885,
-0.05169107764959335,
0.05803573504090309,
-0.07732241600751877,
-0.017637968063354492,
-0.04219653457403183,
0.041807834059000015,
0.023620979860424995,
0.021563321352005005,
0.016478516161441803,
-0.0021814992651343346,
-0.06400240957736969,
0.06393089145421982,
0.019599027931690216,
-0.08565037697553635,
0.00934905931353569,
-0.008718925528228283,
-0.028583496809005737,
-0.07310017943382263,
0.09416428208351135,
0.001759322709403932,
0.06184990331530571,
0.011840506456792355,
-0.035997264087200165,
0.08358278125524521,
-0.02619801089167595,
0.03736566752195358,
-0.028206506744027138,
-0.07454850524663925,
-0.08883563429117203,
-0.06279942393302917,
-0.008695344440639019,
0.014119276776909828,
-0.0825355276465416,
0.0649217739701271,
-0.00223911227658391,
-0.14716917276382446,
0.07743025571107864,
-0.03548373281955719,
-0.055201586335897446,
0.006981803569942713,
-0.012166670523583889,
0.055111464112997055,
-0.007116836030036211,
-0.023175746202468872,
-0.005835152696818113,
-0.09185640513896942,
0.055196937173604965,
0.034148022532463074,
0.03835180774331093,
0.038685429841279984,
-0.025987252593040466,
0.017804903909564018,
0.022428328171372414,
0.025005368515849113,
-0.10761535167694092,
-0.048001550137996674,
-0.04343584179878235,
0.012374646961688995,
-0.019502125680446625,
0.029218152165412903,
0.0842173621058464,
-0.011719699949026108,
0.09283553808927536,
-0.007015465293079615,
-0.03543110564351082,
-0.06936459988355637,
0.09425332397222519,
-0.010958523489534855,
-0.00805904995650053,
0.004974212497472763,
-0.0031528924591839314,
0.06105927750468254,
-0.03964288905262947,
-0.03619541600346565,
-0.019901901483535767,
0.07134733349084854,
0.039514873176813126,
-0.012729483656585217,
-0.006646515801548958,
-0.04746140539646149,
-0.014432490803301334,
-0.05157482624053955,
0.09506245702505112,
-0.049747664481401443,
-0.04591796174645424,
-0.008965466171503067,
-0.0325421579182148,
-0.08626784384250641,
-0.06624380499124527,
0.02538885548710823,
-4.303924894057984e-33,
0.01133066974580288,
0.0033434738870710135,
-0.002155609894543886,
0.04871906340122223,
-0.023564351722598076,
-0.07933273911476135,
0.0600903145968914,
0.02335330657660961,
-0.03844716399908066,
-0.020433755591511726,
-0.06952055543661118,
-0.03235611692070961,
0.0062485747039318085,
0.064804308116436,
-0.03201229125261307,
0.061689723283052444,
0.0417000837624073,
-0.00761845987290144,
0.03340127319097519,
-0.047770582139492035,
0.00887306872755289,
-0.04066338762640953,
-0.010506896302103996,
0.0106519665569067,
0.021333497017621994,
0.12854498624801636,
-0.009705503471195698,
0.010055632330477238,
-0.017507633194327354,
0.006515394430607557,
0.06334009766578674,
-0.057817306369543076,
0.013668818399310112,
-0.020286159589886665,
0.05430467426776886,
-0.023184705525636673,
0.0828516036272049,
0.0005449643940664828,
-0.10372652113437653,
-0.07634282112121582,
-0.005381610710173845,
-0.039263784885406494,
0.0006114727002568543,
-0.013281986117362976,
0.07119110971689224,
0.043696220964193344,
0.03168422728776932,
0.04338686540722847,
0.05728672817349434,
0.0832006186246872,
-0.07961414009332657,
0.015234283171594143,
0.017002005130052567,
0.047004107385873795,
-0.09794387966394424,
0.004990279674530029,
-0.07062993198633194,
-0.028000490739941597,
-0.04018733277916908,
-0.0702052190899849,
0.011351344175636768,
0.06020182743668556,
-0.03297270089387894,
0.09396500885486603,
0.03417910635471344,
-0.019825750961899757,
-0.034690454602241516,
-0.013036907650530338,
0.05896938592195511,
-0.012359356507658958,
-0.017275206744670868,
-0.07982361316680908,
0.02059139870107174,
0.06737419217824936,
0.04176458343863487,
-0.04978838190436363,
-0.05877475067973137,
-0.06289287656545639,
-0.03354167565703392,
-0.03871942684054375,
0.009898529388010502,
-0.05514208599925041,
-0.11629002541303635,
-0.011855563148856163,
0.10663620382547379,
0.037354156374931335,
-0.0065480442717671394,
-0.051189567893743515,
0.06663123518228531,
0.01874656230211258,
0.032841797918081284,
0.041593004018068314,
-0.06879369914531708,
0.04216769337654114,
-0.01628219522535801,
5.4139394340936695e-34,
0.05697013810276985,
-0.006972255185246468,
0.015711724758148193,
-0.17956365644931793,
0.02320219948887825,
0.007923615165054798,
-0.008062449283897877,
0.0074974060989916325,
0.07391711324453354,
0.0309313777834177,
0.060510627925395966,
0.058605875819921494,
0.09515274316072464,
-0.002282935893163085,
0.001603541080839932,
0.07024981826543808,
0.012629246339201927,
0.07425693422555923,
-0.038426291197538376,
0.01861148327589035,
0.030608950182795525,
-0.02449394389986992,
0.021528491750359535,
-0.003039651783183217,
-0.03676343336701393,
0.03130284696817398,
0.07998586446046829,
0.010451192036271095,
-0.07930229604244232,
-0.013543923385441303,
0.018781835213303566,
0.05168003588914871,
-0.07191970944404602,
0.15783067047595978,
0.026191607117652893,
0.01262354850769043,
0.08218053728342056,
-0.029807550832629204,
-0.07528624683618546,
-0.04250097647309303,
0.017244765534996986,
0.04411793500185013,
0.03708017244935036,
0.009233047254383564,
-0.040271829813718796,
0.022496428340673447,
0.02495843544602394,
0.07633638381958008,
0.005147108342498541,
0.013892097398638725,
0.05610476806759834,
-0.06684739887714386,
0.05862557515501976,
-0.020688841119408607,
0.05377643182873726,
0.06718500703573227,
0.005329249892383814,
-0.01388032827526331,
0.029931528493762016,
0.009508464485406876,
-0.045173756778240204,
0.11534366756677628,
-0.06510116159915924,
0.05117698386311531,
-0.0026125339791178703,
-0.08554837852716446,
-0.03784770518541336,
0.0804959163069725,
0.011298024095594883,
-0.07695550471544266,
-0.04868878796696663,
0.02515520341694355,
0.06252261996269226,
-0.04509226232767105,
-0.01246943511068821,
0.028559505939483643,
-0.030573077499866486,
0.05066261067986488,
-0.08187384903430939,
0.04469604790210724,
0.0034051244147121906,
0.04145054519176483,
-0.021858664229512215,
-0.06112268194556236,
-0.00908052921295166,
-0.05903250351548195,
0.0259539932012558,
0.059690944850444794,
-0.07613514363765717,
-0.03720718249678612,
-0.036316655576229095,
0.07058046013116837,
-0.008224100805819035,
0.041961874812841415,
-0.0285952128469944,
-1.496900736697171e-8,
-0.0014124972512945533,
0.03401879221200943,
-0.040338415652513504,
0.04116074740886688,
0.0935964286327362,
-0.05115952715277672,
0.0008746005478315055,
-0.03389839455485344,
-0.00567849725484848,
-0.010686947964131832,
-0.04789939522743225,
-0.04820054769515991,
-0.02011880651116371,
-0.03209094703197479,
-0.04211259260773659,
-0.10229527950286865,
-0.07819421589374542,
-0.031228765845298767,
-0.02154778689146042,
-0.04960230365395546,
0.08087796717882156,
-0.07801242172718048,
0.06919731199741364,
-0.04999840259552002,
0.03687043860554695,
0.03889009356498718,
-0.049989692866802216,
-0.04254625365138054,
-0.04606937617063522,
0.08682432025671005,
-0.031148413196206093,
0.11826753616333008,
0.034102488309144974,
-0.0208592489361763,
-0.0205202866345644,
0.027134142816066742,
0.09741277992725372,
0.051608603447675705,
0.013477512635290623,
-0.13649295270442963,
-0.022304272279143333,
0.02385953813791275,
0.038732077926397324,
-0.09249968826770782,
-0.04549082741141319,
0.054220106452703476,
0.01160438358783722,
0.051190607249736786,
0.07713303714990616,
-0.022097084671258926,
-0.06127818301320076,
-0.01857956498861313,
0.006740490905940533,
-0.00496308971196413,
0.024095389991998672,
0.0736224576830864,
-0.003481915919110179,
-0.0699305310845375,
-0.006629763171076775,
-0.0598808117210865,
0.05297163128852844,
-0.02902800403535366,
-0.027858933433890343,
-0.01287526823580265
] |
naver-clova-ocr/bros-base-uncased | 0f0e83a58cde75af72e331e6a018cd5bc7ccab31 | 2022-04-05T13:56:46.000Z | [
"pytorch",
"bros",
"arxiv:2108.04539",
"transformers"
] | null | false | naver-clova-ocr | null | naver-clova-ocr/bros-base-uncased | 6,843 | 1 | transformers | # BROS
GitHub: https://github.com/clovaai/bros
## Introduction
BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents.<br>
Given the OCR results of the document image, which are text and bounding box pairs, it can perform various key information extraction tasks, such as extracting an ordered item list from receipts.<br>
For more details, please refer to our paper:
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents<br>
Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park<br>
AAAI 2022 - Main Technical Track
[[arXiv]](https://arxiv.org/abs/2108.04539)
## Pre-trained models
| name | # params | Hugging Face - Models |
|---------------------|---------:|-------------------------------------------------------------------------------------------------|
| bros-base-uncased (**this**) | < 110M | [naver-clova-ocr/bros-base-uncased](https://huggingface.co/naver-clova-ocr/bros-base-uncased) |
| bros-large-uncased | < 340M | [naver-clova-ocr/bros-large-uncased](https://huggingface.co/naver-clova-ocr/bros-large-uncased) | | [
-0.09032468497753143,
0.06349515914916992,
0.07526274025440216,
-0.0024768831208348274,
0.03415302187204361,
0.04946291446685791,
0.0275509562343359,
0.015108099207282066,
0.0287735927850008,
-0.02269292064011097,
0.010489358566701412,
0.08855713158845901,
0.02995944768190384,
0.042754460126161575,
0.026114825159311295,
0.013092434965074062,
0.03566689044237137,
0.02221876196563244,
-0.06607238203287125,
-0.03346109017729759,
0.03686309605836868,
0.02912086434662342,
0.07036512345075607,
-0.08280780911445618,
0.02147664688527584,
0.05255318060517311,
-0.02409190684556961,
-0.018897002562880516,
0.07649818807840347,
-0.014623804949223995,
0.035518623888492584,
-0.018924864009022713,
0.12005883455276489,
0.13007937371730804,
0.045095641165971756,
0.056705743074417114,
-0.0009763218695297837,
0.03740464523434639,
0.06873998045921326,
0.014745930209755898,
-0.048047419637441635,
0.00007678270048927516,
-0.03847074881196022,
0.008322464302182198,
0.1567581743001938,
0.019614005461335182,
-0.06265119463205338,
-0.05786329507827759,
-0.0422053299844265,
0.008190620690584183,
-0.1366073191165924,
0.014555043540894985,
0.016359707340598106,
0.013183696195483208,
-0.06770782172679901,
0.09321853518486023,
0.04967823252081871,
-0.05517364293336868,
0.02216004952788353,
-0.09788382798433304,
-0.06846320629119873,
-0.03531711921095848,
-0.034526027739048004,
-0.00460565323010087,
-0.08321409672498703,
0.0688442513346672,
-0.06367319822311401,
0.025102492421865463,
0.0013070977292954922,
-0.017827361822128296,
0.042665962129831314,
0.0623152069747448,
0.041969168931245804,
-0.07861126959323883,
0.011427493765950203,
-0.06471015512943268,
-0.0426296591758728,
-0.09555909782648087,
0.011356008239090443,
-0.10034763067960739,
0.0020187441259622574,
-0.01560748741030693,
0.0826205313205719,
0.07101476937532425,
0.012777755968272686,
-0.019170407205820084,
-0.009435711428523064,
-0.043312933295965195,
-0.03384063020348549,
0.05047564208507538,
-0.03755166381597519,
-0.1390659511089325,
0.07305578887462616,
0.008240850642323494,
0.009442525915801525,
0.03398166596889496,
0.029281482100486755,
-0.05949021875858307,
-0.03685345500707626,
0.05464062839746475,
0.030823417007923126,
0.01305751409381628,
0.03972427174448967,
-0.06849433481693268,
0.050108619034290314,
0.020892171189188957,
0.031934626400470734,
-0.06762265413999557,
0.05483100190758705,
-0.07490174472332001,
0.034623607993125916,
-0.04401513934135437,
-0.07890322804450989,
-0.06683562695980072,
-0.03299269080162048,
-0.04735017567873001,
0.046140313148498535,
0.02091028168797493,
0.024868300184607506,
-0.015355071984231472,
0.010261831805109978,
-0.014241738244891167,
-0.0342298224568367,
0.01708661951124668,
-0.09641391038894653,
-0.025191547349095345,
0.025910954922437668,
5.61596246461988e-33,
-0.00760837784036994,
0.012517928145825863,
-0.016566801816225052,
-0.02892301231622696,
0.0006822131690569222,
0.006775188259780407,
-0.02523317001760006,
-0.06278346478939056,
-0.04502030834555626,
-0.02048119716346264,
-0.07930810004472733,
-0.016904795542359352,
-0.05368143320083618,
0.035987626761198044,
0.011873713694512844,
0.02605707198381424,
-0.07747963070869446,
0.08377539366483688,
-0.005928206257522106,
0.051027022302150726,
-0.009514073841273785,
-0.032887473702430725,
0.025274604558944702,
-0.03579425811767578,
-0.011210770346224308,
0.029811637476086617,
0.07990851998329163,
-0.06985305994749069,
-0.049409329891204834,
0.011974002234637737,
-0.0933380275964737,
0.04381323233246803,
0.014419550076127052,
-0.036167874932289124,
0.00341967074200511,
0.0019216337241232395,
-0.004288211464881897,
-0.06903615593910217,
-0.004753453191369772,
0.0008315981831401587,
0.003860844997689128,
0.034897271543741226,
0.025177476927638054,
-0.07684282213449478,
-0.032971255481243134,
-0.005563531536608934,
-0.0006225032266229391,
0.09208530932664871,
0.08499496430158615,
0.025366270914673805,
-0.007202403619885445,
0.03319473937153816,
-0.07588360458612442,
-0.02965952642261982,
0.0306606013327837,
-0.07580388337373734,
0.08578012138605118,
0.05784719064831734,
0.08691871166229248,
0.030341792851686478,
0.05263611674308777,
0.03465849161148071,
0.09282291680574417,
0.05841807648539543,
0.027052318677306175,
-0.08043447136878967,
-0.042725637555122375,
-0.0117111811414361,
-0.003481305204331875,
-0.01205434836447239,
-0.014621538110077381,
0.0014998834813013673,
-0.006099761463701725,
-0.04092329740524292,
0.036436472088098526,
0.006652499549090862,
-0.009499668143689632,
-0.07917831838130951,
-0.008181015029549599,
-0.047663744539022446,
-0.008478577248752117,
-0.006808373611420393,
0.04980265349149704,
-0.051829610019922256,
-0.102344810962677,
0.05123437941074371,
0.0636519193649292,
-0.0927271619439125,
0.026735320687294006,
0.030482901260256767,
-0.00610493216663599,
-0.037375278770923615,
-0.06690998375415802,
-0.008991464972496033,
-0.03466206416487694,
-5.578344808683644e-33,
0.06821359694004059,
0.032029081135988235,
-0.02721989154815674,
-0.023328065872192383,
-0.043679360300302505,
-0.027220342308282852,
0.006823848932981491,
0.09014973044395447,
0.06187852844595909,
-0.012633495032787323,
-0.0760497972369194,
-0.03159189224243164,
0.020717529579997063,
-0.08123108744621277,
0.07795698940753937,
0.002549529541283846,
0.0031475841533392668,
0.043921250849962234,
-0.003316542599350214,
0.010538717731833458,
0.025601448491215706,
-0.07587969303131104,
-0.10971222072839737,
0.09893038123846054,
-0.07941626757383347,
0.0963657945394516,
0.029477059841156006,
0.006454269867390394,
-0.0639270544052124,
0.05761638283729553,
-0.03661533072590828,
0.01683511584997177,
-0.05145129933953285,
0.08930519968271255,
-0.05770403519272804,
-0.005163632798939943,
0.009434747509658337,
0.007642433047294617,
-0.0657275840640068,
0.006720078177750111,
0.08101251721382141,
0.010594498366117477,
-0.06483697146177292,
-0.03421846032142639,
-0.050445254892110825,
-0.04060988128185272,
-0.08255930244922638,
0.07154902070760727,
0.006654605735093355,
0.00733227888122201,
0.023279039189219475,
0.026911340653896332,
-0.08202286064624786,
-0.07011431455612183,
-0.11639977991580963,
-0.026906857267022133,
-0.036830347031354904,
-0.006507847923785448,
-0.004211419261991978,
-0.041330572217702866,
-0.0306770708411932,
-0.0004592887999024242,
-0.006512351334095001,
0.07827270030975342,
0.05085938051342964,
-0.05472663417458534,
-0.009687731973826885,
-0.01587943732738495,
-0.06068188324570656,
-0.04645881429314613,
-0.020651059225201607,
-0.06707817316055298,
0.04208650439977646,
0.011986256577074528,
0.05818599835038185,
0.10170399397611618,
-0.004796030931174755,
-0.02706756256520748,
-0.028312603011727333,
-0.01346178911626339,
0.00610398780554533,
-0.029565557837486267,
0.02595408633351326,
0.10495078563690186,
0.01117855403572321,
0.1019262969493866,
-0.06509947031736374,
-0.0045675975270569324,
0.03764808177947998,
0.03413347527384758,
-0.035622868686914444,
0.013119837269186974,
0.009791521355509758,
0.05255977064371109,
0.031447622925043106,
-5.624540833082392e-8,
-0.08862297236919403,
-0.031375445425510406,
-0.06768576055765152,
0.010925139300525188,
-0.1022903174161911,
-0.014287708327174187,
-0.0069129629991948605,
0.04079698026180267,
-0.02073003351688385,
-0.037359561771154404,
0.030515694990754128,
-0.0009145399671979249,
-0.10922563076019287,
-0.032428886741399765,
0.011710008606314659,
0.09168311953544617,
0.035712968558073044,
0.020226290449500084,
-0.00440508546307683,
-0.006287913769483566,
0.0603695772588253,
-0.039247989654541016,
0.06922399252653122,
0.01218954287469387,
-0.028317438438534737,
-0.010179867036640644,
-0.06303773820400238,
0.12312889099121094,
0.009003023616969585,
-0.019480302929878235,
0.07401041686534882,
0.02634831890463829,
-0.000007180150532803964,
0.010170363821089268,
0.13177207112312317,
0.02982996590435505,
0.015511443838477135,
-0.027846256271004677,
-0.0055485800839960575,
0.05734546482563019,
0.04039302468299866,
-0.028100010007619858,
-0.08529616892337799,
0.008264741860330105,
0.04198407009243965,
0.01370981615036726,
0.07009147852659225,
-0.05326257646083832,
0.013573665171861649,
0.0038148374296724796,
-0.0211959108710289,
-0.10843557119369507,
-0.03826618567109108,
0.025906836614012718,
-0.09083496034145355,
0.01117798499763012,
0.022015228867530823,
0.021359864622354507,
0.07641024887561798,
-0.016568072140216827,
0.018632814288139343,
0.07867561280727386,
-0.021129468455910683,
0.046242520213127136
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.