text
stringlengths
0
15.3k
def higher_is_better(self):
return {metric.replace('metrics.', ''): True for metric in self.metrics}
# File: lm-evaluation-harness-main/lm_eval/tasks/webqs/utils.py
from typing import Dict, List
def doc_to_choice(doc: Dict) -> List[str]:
return _remove_prefixes(doc['answers'])
def doc_to_target(doc: Dict) -> List[int]:
remaining = _remove_prefixes(doc['answers'])
return list(range(len(remaining)))
def _remove_prefixes(aliases):
aliases.sort()
ret = [aliases[0]]
for alias in aliases[1:]:
if not alias.startswith(ret[-1]):
ret.append(alias)
return ret
# File: lm-evaluation-harness-main/lm_eval/tasks/wikitext/preprocess_wikitext.py
import re
def wikitext_detokenizer(doc):
string = doc['page']
string = string.replace("s '", "s'")
string = re.sub("/' [0-9]/", "/'[0-9]/", string)
string = string.replace(' @-@ ', '-')
string = string.replace(' @,@ ', ',')
string = string.replace(' @.@ ', '.')
string = string.replace(' : ', ': ')
string = string.replace(' ; ', '; ')
string = string.replace(' . ', '. ')
string = string.replace(' ! ', '! ')
string = string.replace(' ? ', '? ')
string = string.replace(' , ', ', ')
string = re.sub('\\(\\s*([^\\)]*?)\\s*\\)', '(\\1)', string)
string = re.sub('\\[\\s*([^\\]]*?)\\s*\\]', '[\\1]', string)
string = re.sub('{\\s*([^}]*?)\\s*}', '{\\1}', string)
string = re.sub('\\"\\s*([^\\"]*?)\\s*\\"', '"\\1"', string)
string = re.sub("'\\s*([^']*?)\\s*'", "'\\1'", string)
string = string.replace('= = = =', '====')
string = string.replace('= = =', '===')
string = string.replace('= =', '==')
string = string.replace(' ' + chr(176) + ' ', chr(176))
string = string.replace(' \n', '\n')
string = string.replace('\n ', '\n')
string = string.replace(' N ', ' 1 ')
string = string.replace(" 's", "'s")
return string
def process_results(doc, results):
(loglikelihood,) = results
_words = len(re.split('\\s+', doc['page']))
_bytes = len(doc['page'].encode('utf-8'))
return {'word_perplexity': (loglikelihood, _words), 'byte_perplexity': (loglikelihood, _bytes), 'bits_per_byte': (loglikelihood, _bytes)}
# File: lm-evaluation-harness-main/lm_eval/tasks/winogrande/preprocess_winogrande.py
def doc_to_text(doc):
answer_to_num = {'1': 0, '2': 1}
return answer_to_num[doc['answer']]
def doc_to_target(doc):
idx = doc['sentence'].index('_') + 1
return doc['sentence'][idx:].strip()
def doc_to_choice(doc):
idx = doc['sentence'].index('_')
options = [doc['option1'], doc['option2']]
return [doc['sentence'][:idx] + opt for opt in options]
# File: lm-evaluation-harness-main/lm_eval/tasks/wsc273/utils.py
upper_pronouns = ['A', 'An', 'The', 'She', 'He', 'It', 'They', 'My', 'His', 'Her', 'Their']
def process_doc(dataset):
def process_fn(doc):
doc['text'] = doc['text'].replace(' ', ' ')
doc['options'][0] = __normalize_option(doc, doc['options'][0])
doc['options'][1] = __normalize_option(doc, doc['options'][1])
return doc
return dataset.map(process_fn)
def __normalize_option(doc, option):
if doc['pronoun'].lower() in ['my', 'his', 'her', 'our', 'their']:
option += "'s"
pronoun = option.split()[0]
start_of_sentence = doc['text'][doc['pronoun_loc'] - 2] == '.'
if not start_of_sentence and pronoun in upper_pronouns:
return option.replace(pronoun, pronoun.lower())
return option
# File: lm-evaluation-harness-main/lm_eval/tasks/xcopa/utils.py
from functools import partial
def convert_choice(choice):
return choice[0].lower() + choice[1:]