id
int64
0
7.97k
query
stringlengths
1.29k
1.31k
answer
stringclasses
2 values
choices
sequence
gold
int64
0
1
text
stringlengths
374
399
300
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.051, V2: 0.854, V3: 0.293, V4: -0.582, V5: 0.373, V6: -1.139, V7: 0.986, V8: -0.189, V9: 0.006, V10: -0.400, V11: -0.976, V12: -0.039, V13: -0.329, V14: 0.179, V15: -0.367, V16: -0.080, V17: -0.386, V18: -0.711, V19: -0.085, V20: -0.067, V21: -0.266, V22: -0.597, V23: 0.069, V24: 0.030, V25: -0.503, V26: 0.139, V27: 0.246, V28: 0.097, Amount: 0.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.051, V2: 0.854, V3: 0.293, V4: -0.582, V5: 0.373, V6: -1.139, V7: 0.986, V8: -0.189, V9: 0.006, V10: -0.400, V11: -0.976, V12: -0.039, V13: -0.329, V14: 0.179, V15: -0.367, V16: -0.080, V17: -0.386, V18: -0.711, V19: -0.085, V20: -0.067, V21: -0.266, V22: -0.597, V23: 0.069, V24: 0.030, V25: -0.503, V26: 0.139, V27: 0.246, V28: 0.097, Amount: 0.990.
301
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.454, V2: -1.382, V3: 0.675, V4: -2.910, V5: 0.135, V6: -0.680, V7: 0.015, V8: -0.253, V9: -2.076, V10: 1.016, V11: 0.042, V12: -0.694, V13: 0.198, V14: -0.501, V15: -1.632, V16: -0.196, V17: -0.307, V18: 0.623, V19: -0.358, V20: -0.025, V21: 0.005, V22: 0.271, V23: 0.125, V24: -0.529, V25: -0.441, V26: -0.362, V27: -0.040, V28: -0.037, Amount: 94.140.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.454, V2: -1.382, V3: 0.675, V4: -2.910, V5: 0.135, V6: -0.680, V7: 0.015, V8: -0.253, V9: -2.076, V10: 1.016, V11: 0.042, V12: -0.694, V13: 0.198, V14: -0.501, V15: -1.632, V16: -0.196, V17: -0.307, V18: 0.623, V19: -0.358, V20: -0.025, V21: 0.005, V22: 0.271, V23: 0.125, V24: -0.529, V25: -0.441, V26: -0.362, V27: -0.040, V28: -0.037, Amount: 94.140.
302
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.566, V2: 1.709, V3: 0.315, V4: -1.490, V5: 0.577, V6: 0.225, V7: 0.605, V8: -0.133, V9: 1.815, V10: 1.129, V11: 1.000, V12: 0.071, V13: -0.535, V14: -2.090, V15: 0.049, V16: 0.635, V17: -0.272, V18: 0.869, V19: -0.092, V20: 0.803, V21: -0.460, V22: -0.720, V23: -0.087, V24: 0.048, V25: 0.018, V26: -0.346, V27: 0.062, V28: -0.038, Amount: 7.590.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.566, V2: 1.709, V3: 0.315, V4: -1.490, V5: 0.577, V6: 0.225, V7: 0.605, V8: -0.133, V9: 1.815, V10: 1.129, V11: 1.000, V12: 0.071, V13: -0.535, V14: -2.090, V15: 0.049, V16: 0.635, V17: -0.272, V18: 0.869, V19: -0.092, V20: 0.803, V21: -0.460, V22: -0.720, V23: -0.087, V24: 0.048, V25: 0.018, V26: -0.346, V27: 0.062, V28: -0.038, Amount: 7.590.
303
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.997, V2: 0.041, V3: -1.696, V4: 1.198, V5: 0.506, V6: -0.593, V7: 0.400, V8: -0.151, V9: 0.209, V10: 0.457, V11: 0.145, V12: 0.170, V13: -1.627, V14: 0.953, V15: -1.003, V16: -0.312, V17: -0.463, V18: 0.126, V19: 0.225, V20: -0.352, V21: 0.028, V22: 0.191, V23: -0.019, V24: -0.505, V25: 0.372, V26: -0.524, V27: -0.025, V28: -0.076, Amount: 13.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.997, V2: 0.041, V3: -1.696, V4: 1.198, V5: 0.506, V6: -0.593, V7: 0.400, V8: -0.151, V9: 0.209, V10: 0.457, V11: 0.145, V12: 0.170, V13: -1.627, V14: 0.953, V15: -1.003, V16: -0.312, V17: -0.463, V18: 0.126, V19: 0.225, V20: -0.352, V21: 0.028, V22: 0.191, V23: -0.019, V24: -0.505, V25: 0.372, V26: -0.524, V27: -0.025, V28: -0.076, Amount: 13.990.
304
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.136, V2: -1.032, V3: 1.764, V4: -1.188, V5: -2.124, V6: -0.335, V7: -1.387, V8: 0.119, V9: 4.907, V10: -2.320, V11: 0.104, V12: -1.022, V13: 1.326, V14: 0.342, V15: -1.135, V16: -1.660, V17: 1.508, V18: 0.434, V19: 1.196, V20: -0.144, V21: -0.012, V22: 0.857, V23: -0.192, V24: 0.751, V25: 0.681, V26: -0.557, V27: 0.131, V28: 0.037, Amount: 26.310.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.136, V2: -1.032, V3: 1.764, V4: -1.188, V5: -2.124, V6: -0.335, V7: -1.387, V8: 0.119, V9: 4.907, V10: -2.320, V11: 0.104, V12: -1.022, V13: 1.326, V14: 0.342, V15: -1.135, V16: -1.660, V17: 1.508, V18: 0.434, V19: 1.196, V20: -0.144, V21: -0.012, V22: 0.857, V23: -0.192, V24: 0.751, V25: 0.681, V26: -0.557, V27: 0.131, V28: 0.037, Amount: 26.310.
305
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.010, V2: 0.581, V3: 2.177, V4: 0.675, V5: -0.416, V6: 0.069, V7: 0.223, V8: 0.173, V9: 1.169, V10: -0.642, V11: -1.811, V12: -0.117, V13: -1.748, V14: -0.740, V15: -2.473, V16: -0.665, V17: 0.279, V18: -0.663, V19: -0.015, V20: -0.380, V21: -0.306, V22: -0.692, V23: -0.029, V24: 0.342, V25: -0.250, V26: -0.781, V27: -0.255, V28: 0.215, Amount: 16.240.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.010, V2: 0.581, V3: 2.177, V4: 0.675, V5: -0.416, V6: 0.069, V7: 0.223, V8: 0.173, V9: 1.169, V10: -0.642, V11: -1.811, V12: -0.117, V13: -1.748, V14: -0.740, V15: -2.473, V16: -0.665, V17: 0.279, V18: -0.663, V19: -0.015, V20: -0.380, V21: -0.306, V22: -0.692, V23: -0.029, V24: 0.342, V25: -0.250, V26: -0.781, V27: -0.255, V28: 0.215, Amount: 16.240.
306
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.563, V2: 0.540, V3: 1.604, V4: -0.064, V5: 0.674, V6: -0.444, V7: 0.739, V8: -0.112, V9: -0.372, V10: -0.216, V11: 0.692, V12: 0.126, V13: -0.632, V14: 0.214, V15: -0.239, V16: 0.505, V17: -1.167, V18: 0.834, V19: -0.575, V20: -0.030, V21: 0.274, V22: 0.837, V23: -0.312, V24: 0.008, V25: 0.019, V26: -0.431, V27: -0.047, V28: -0.089, Amount: 12.370.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.563, V2: 0.540, V3: 1.604, V4: -0.064, V5: 0.674, V6: -0.444, V7: 0.739, V8: -0.112, V9: -0.372, V10: -0.216, V11: 0.692, V12: 0.126, V13: -0.632, V14: 0.214, V15: -0.239, V16: 0.505, V17: -1.167, V18: 0.834, V19: -0.575, V20: -0.030, V21: 0.274, V22: 0.837, V23: -0.312, V24: 0.008, V25: 0.019, V26: -0.431, V27: -0.047, V28: -0.089, Amount: 12.370.
307
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.024, V2: -1.156, V3: -1.819, V4: -1.150, V5: -0.170, V6: -0.335, V7: -0.345, V8: -0.203, V9: -0.687, V10: 0.986, V11: 0.140, V12: -0.288, V13: 0.295, V14: 0.170, V15: -0.195, V16: 1.390, V17: -0.454, V18: -0.471, V19: 0.991, V20: 0.239, V21: 0.503, V22: 1.189, V23: -0.255, V24: -1.090, V25: 0.246, V26: 0.116, V27: -0.060, V28: -0.066, Amount: 129.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.024, V2: -1.156, V3: -1.819, V4: -1.150, V5: -0.170, V6: -0.335, V7: -0.345, V8: -0.203, V9: -0.687, V10: 0.986, V11: 0.140, V12: -0.288, V13: 0.295, V14: 0.170, V15: -0.195, V16: 1.390, V17: -0.454, V18: -0.471, V19: 0.991, V20: 0.239, V21: 0.503, V22: 1.189, V23: -0.255, V24: -1.090, V25: 0.246, V26: 0.116, V27: -0.060, V28: -0.066, Amount: 129.000.
308
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.538, V2: 0.283, V3: 0.744, V4: -0.042, V5: -1.421, V6: 2.693, V7: -0.103, V8: -2.011, V9: 1.259, V10: -1.035, V11: -0.677, V12: 0.560, V13: -0.776, V14: -0.164, V15: 0.388, V16: -1.137, V17: 0.999, V18: -1.622, V19: -0.760, V20: -0.860, V21: 2.043, V22: -0.913, V23: 0.188, V24: -1.066, V25: 0.468, V26: -0.240, V27: 0.531, V28: 0.147, Amount: 286.960.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.538, V2: 0.283, V3: 0.744, V4: -0.042, V5: -1.421, V6: 2.693, V7: -0.103, V8: -2.011, V9: 1.259, V10: -1.035, V11: -0.677, V12: 0.560, V13: -0.776, V14: -0.164, V15: 0.388, V16: -1.137, V17: 0.999, V18: -1.622, V19: -0.760, V20: -0.860, V21: 2.043, V22: -0.913, V23: 0.188, V24: -1.066, V25: 0.468, V26: -0.240, V27: 0.531, V28: 0.147, Amount: 286.960.
309
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.175, V2: -2.558, V3: -1.210, V4: -0.419, V5: -1.335, V6: -0.170, V7: -0.204, V8: -0.188, V9: 0.070, V10: 0.394, V11: -0.953, V12: -0.232, V13: 0.375, V14: -0.453, V15: -0.366, V16: 1.038, V17: 0.321, V18: -1.699, V19: 0.803, V20: 1.045, V21: 0.090, V22: -0.867, V23: -0.010, V24: 0.656, V25: -0.631, V26: -0.657, V27: -0.093, V28: 0.053, Amount: 528.330.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.175, V2: -2.558, V3: -1.210, V4: -0.419, V5: -1.335, V6: -0.170, V7: -0.204, V8: -0.188, V9: 0.070, V10: 0.394, V11: -0.953, V12: -0.232, V13: 0.375, V14: -0.453, V15: -0.366, V16: 1.038, V17: 0.321, V18: -1.699, V19: 0.803, V20: 1.045, V21: 0.090, V22: -0.867, V23: -0.010, V24: 0.656, V25: -0.631, V26: -0.657, V27: -0.093, V28: 0.053, Amount: 528.330.
310
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.031, V2: 1.629, V3: 0.382, V4: -0.393, V5: 0.690, V6: 0.782, V7: -0.207, V8: -2.186, V9: -0.077, V10: -0.340, V11: -1.294, V12: -0.357, V13: 0.117, V14: -0.373, V15: 1.216, V16: 0.526, V17: -0.023, V18: -0.070, V19: 0.032, V20: -0.382, V21: 1.958, V22: -1.628, V23: 0.182, V24: -1.427, V25: 0.005, V26: 0.208, V27: 0.370, V28: 0.101, Amount: 8.920.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.031, V2: 1.629, V3: 0.382, V4: -0.393, V5: 0.690, V6: 0.782, V7: -0.207, V8: -2.186, V9: -0.077, V10: -0.340, V11: -1.294, V12: -0.357, V13: 0.117, V14: -0.373, V15: 1.216, V16: 0.526, V17: -0.023, V18: -0.070, V19: 0.032, V20: -0.382, V21: 1.958, V22: -1.628, V23: 0.182, V24: -1.427, V25: 0.005, V26: 0.208, V27: 0.370, V28: 0.101, Amount: 8.920.
311
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.107, V2: -0.133, V3: -1.657, V4: -0.067, V5: 0.705, V6: 0.149, V7: 0.002, V8: -0.024, V9: 0.338, V10: 0.236, V11: -0.019, V12: 0.747, V13: 0.223, V14: 0.386, V15: -0.541, V16: 0.432, V17: -0.957, V18: 0.009, V19: 0.854, V20: -0.147, V21: -0.314, V22: -0.839, V23: 0.231, V24: -0.351, V25: -0.164, V26: 0.211, V27: -0.081, V28: -0.074, Amount: 0.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.107, V2: -0.133, V3: -1.657, V4: -0.067, V5: 0.705, V6: 0.149, V7: 0.002, V8: -0.024, V9: 0.338, V10: 0.236, V11: -0.019, V12: 0.747, V13: 0.223, V14: 0.386, V15: -0.541, V16: 0.432, V17: -0.957, V18: 0.009, V19: 0.854, V20: -0.147, V21: -0.314, V22: -0.839, V23: 0.231, V24: -0.351, V25: -0.164, V26: 0.211, V27: -0.081, V28: -0.074, Amount: 0.890.
312
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.457, V2: -2.516, V3: -2.538, V4: 0.953, V5: 1.515, V6: 3.536, V7: 0.763, V8: 0.588, V9: -0.280, V10: -0.820, V11: 0.240, V12: -0.160, V13: 0.111, V14: -0.606, V15: 1.429, V16: 1.090, V17: -0.005, V18: 0.998, V19: -0.527, V20: 1.844, V21: 0.346, V22: -1.158, V23: -0.843, V24: 0.918, V25: 0.334, V26: -0.528, V27: -0.128, V28: 0.204, Amount: 899.040.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.457, V2: -2.516, V3: -2.538, V4: 0.953, V5: 1.515, V6: 3.536, V7: 0.763, V8: 0.588, V9: -0.280, V10: -0.820, V11: 0.240, V12: -0.160, V13: 0.111, V14: -0.606, V15: 1.429, V16: 1.090, V17: -0.005, V18: 0.998, V19: -0.527, V20: 1.844, V21: 0.346, V22: -1.158, V23: -0.843, V24: 0.918, V25: 0.334, V26: -0.528, V27: -0.128, V28: 0.204, Amount: 899.040.
313
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.185, V2: 1.664, V3: -1.978, V4: 4.501, V5: 1.015, V6: 0.078, V7: 1.781, V8: -0.037, V9: -2.699, V10: 1.752, V11: -1.361, V12: -0.236, V13: 1.031, V14: 1.048, V15: -0.340, V16: -0.861, V17: 0.349, V18: -0.120, V19: 1.092, V20: 0.484, V21: 0.628, V22: 1.750, V23: 0.465, V24: 0.728, V25: -1.369, V26: 0.430, V27: 0.428, V28: 0.381, Amount: 172.820.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.185, V2: 1.664, V3: -1.978, V4: 4.501, V5: 1.015, V6: 0.078, V7: 1.781, V8: -0.037, V9: -2.699, V10: 1.752, V11: -1.361, V12: -0.236, V13: 1.031, V14: 1.048, V15: -0.340, V16: -0.861, V17: 0.349, V18: -0.120, V19: 1.092, V20: 0.484, V21: 0.628, V22: 1.750, V23: 0.465, V24: 0.728, V25: -1.369, V26: 0.430, V27: 0.428, V28: 0.381, Amount: 172.820.
314
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.940, V2: -0.354, V3: -0.243, V4: 0.246, V5: -0.725, V6: -0.499, V7: -0.604, V8: 0.101, V9: 1.161, V10: -0.045, V11: 0.989, V12: 0.880, V13: -0.695, V14: 0.416, V15: 0.480, V16: 0.366, V17: -0.782, V18: 0.473, V19: 0.044, V20: -0.288, V21: -0.063, V22: -0.104, V23: 0.367, V24: -0.060, V25: -0.447, V26: -0.941, V27: 0.054, V28: -0.038, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.940, V2: -0.354, V3: -0.243, V4: 0.246, V5: -0.725, V6: -0.499, V7: -0.604, V8: 0.101, V9: 1.161, V10: -0.045, V11: 0.989, V12: 0.880, V13: -0.695, V14: 0.416, V15: 0.480, V16: 0.366, V17: -0.782, V18: 0.473, V19: 0.044, V20: -0.288, V21: -0.063, V22: -0.104, V23: 0.367, V24: -0.060, V25: -0.447, V26: -0.941, V27: 0.054, V28: -0.038, Amount: 1.000.
315
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.274, V2: 0.094, V3: 2.009, V4: -0.715, V5: -0.391, V6: -0.489, V7: 0.325, V8: -0.303, V9: -1.663, V10: 0.501, V11: 0.568, V12: -0.163, V13: 1.303, V14: -0.536, V15: 1.246, V16: 0.181, V17: 0.849, V18: -2.071, V19: 1.306, V20: 0.487, V21: 0.001, V22: 0.043, V23: 0.118, V24: 0.405, V25: -0.448, V26: -0.428, V27: -0.033, V28: -0.093, Amount: 44.350.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.274, V2: 0.094, V3: 2.009, V4: -0.715, V5: -0.391, V6: -0.489, V7: 0.325, V8: -0.303, V9: -1.663, V10: 0.501, V11: 0.568, V12: -0.163, V13: 1.303, V14: -0.536, V15: 1.246, V16: 0.181, V17: 0.849, V18: -2.071, V19: 1.306, V20: 0.487, V21: 0.001, V22: 0.043, V23: 0.118, V24: 0.405, V25: -0.448, V26: -0.428, V27: -0.033, V28: -0.093, Amount: 44.350.
316
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.567, V2: 0.726, V3: 2.048, V4: -0.057, V5: -0.216, V6: -0.045, V7: 0.025, V8: 0.097, V9: 0.765, V10: -0.562, V11: 2.681, V12: -2.073, V13: 1.176, V14: 1.833, V15: 0.461, V16: -0.262, V17: 0.881, V18: 0.182, V19: 0.843, V20: 0.019, V21: -0.091, V22: -0.077, V23: -0.035, V24: 0.211, V25: -0.608, V26: 0.976, V27: -0.106, V28: 0.087, Amount: 9.100.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.567, V2: 0.726, V3: 2.048, V4: -0.057, V5: -0.216, V6: -0.045, V7: 0.025, V8: 0.097, V9: 0.765, V10: -0.562, V11: 2.681, V12: -2.073, V13: 1.176, V14: 1.833, V15: 0.461, V16: -0.262, V17: 0.881, V18: 0.182, V19: 0.843, V20: 0.019, V21: -0.091, V22: -0.077, V23: -0.035, V24: 0.211, V25: -0.608, V26: 0.976, V27: -0.106, V28: 0.087, Amount: 9.100.
317
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.632, V2: -4.507, V3: -2.518, V4: -1.688, V5: -0.133, V6: 4.370, V7: -1.064, V8: 0.853, V9: -0.718, V10: 0.970, V11: -0.620, V12: -0.316, V13: 0.334, V14: -0.664, V15: -0.901, V16: -0.839, V17: 0.833, V18: -0.511, V19: -0.050, V20: 1.288, V21: -0.056, V22: -1.450, V23: -0.233, V24: 0.691, V25: -0.780, V26: -0.540, V27: -0.081, V28: 0.099, Amount: 835.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.632, V2: -4.507, V3: -2.518, V4: -1.688, V5: -0.133, V6: 4.370, V7: -1.064, V8: 0.853, V9: -0.718, V10: 0.970, V11: -0.620, V12: -0.316, V13: 0.334, V14: -0.664, V15: -0.901, V16: -0.839, V17: 0.833, V18: -0.511, V19: -0.050, V20: 1.288, V21: -0.056, V22: -1.450, V23: -0.233, V24: 0.691, V25: -0.780, V26: -0.540, V27: -0.081, V28: 0.099, Amount: 835.000.
318
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -5.376, V2: 3.165, V3: -4.868, V4: -1.345, V5: -0.457, V6: -1.129, V7: -1.000, V8: 2.656, V9: 0.050, V10: 0.914, V11: -0.765, V12: 1.288, V13: 0.084, V14: 2.325, V15: -0.693, V16: 0.526, V17: 0.065, V18: 0.447, V19: 0.339, V20: -0.711, V21: 0.013, V22: 0.739, V23: 0.620, V24: -0.173, V25: 0.432, V26: 0.101, V27: -0.404, V28: -0.132, Amount: 8.780.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -5.376, V2: 3.165, V3: -4.868, V4: -1.345, V5: -0.457, V6: -1.129, V7: -1.000, V8: 2.656, V9: 0.050, V10: 0.914, V11: -0.765, V12: 1.288, V13: 0.084, V14: 2.325, V15: -0.693, V16: 0.526, V17: 0.065, V18: 0.447, V19: 0.339, V20: -0.711, V21: 0.013, V22: 0.739, V23: 0.620, V24: -0.173, V25: 0.432, V26: 0.101, V27: -0.404, V28: -0.132, Amount: 8.780.
319
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -5.871, V2: -1.348, V3: -4.448, V4: -0.936, V5: -0.052, V6: 3.080, V7: 0.114, V8: 2.586, V9: -0.169, V10: -0.665, V11: -1.086, V12: 0.705, V13: 0.364, V14: 1.460, V15: -0.207, V16: 1.171, V17: -0.041, V18: -0.066, V19: 0.005, V20: -0.556, V21: -0.280, V22: -0.307, V23: 0.230, V24: 1.185, V25: 0.056, V26: 0.890, V27: 0.886, V28: -0.998, Amount: 213.680.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -5.871, V2: -1.348, V3: -4.448, V4: -0.936, V5: -0.052, V6: 3.080, V7: 0.114, V8: 2.586, V9: -0.169, V10: -0.665, V11: -1.086, V12: 0.705, V13: 0.364, V14: 1.460, V15: -0.207, V16: 1.171, V17: -0.041, V18: -0.066, V19: 0.005, V20: -0.556, V21: -0.280, V22: -0.307, V23: 0.230, V24: 1.185, V25: 0.056, V26: 0.890, V27: 0.886, V28: -0.998, Amount: 213.680.
320
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.135, V2: 0.955, V3: -0.572, V4: -0.758, V5: 1.157, V6: -0.271, V7: 0.841, V8: 0.081, V9: -0.232, V10: -0.656, V11: 0.565, V12: 0.269, V13: -0.297, V14: -0.788, V15: -0.875, V16: 0.670, V17: -0.027, V18: 0.459, V19: 0.228, V20: 0.024, V21: -0.322, V22: -0.827, V23: 0.031, V24: 0.083, V25: -0.403, V26: 0.123, V27: 0.216, V28: 0.069, Amount: 2.690.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.135, V2: 0.955, V3: -0.572, V4: -0.758, V5: 1.157, V6: -0.271, V7: 0.841, V8: 0.081, V9: -0.232, V10: -0.656, V11: 0.565, V12: 0.269, V13: -0.297, V14: -0.788, V15: -0.875, V16: 0.670, V17: -0.027, V18: 0.459, V19: 0.228, V20: 0.024, V21: -0.322, V22: -0.827, V23: 0.031, V24: 0.083, V25: -0.403, V26: 0.123, V27: 0.216, V28: 0.069, Amount: 2.690.
321
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.078, V2: -0.525, V3: 1.082, V4: 0.302, V5: -1.211, V6: -0.353, V7: -0.513, V8: -0.005, V9: 1.093, V10: -0.504, V11: -0.674, V12: 0.946, V13: 0.675, V14: -0.677, V15: -0.371, V16: -0.144, V17: 0.108, V18: -0.711, V19: 0.438, V20: 0.106, V21: -0.184, V22: -0.391, V23: 0.011, V24: 0.482, V25: 0.134, V26: 0.933, V27: -0.042, V28: 0.028, Amount: 77.510.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.078, V2: -0.525, V3: 1.082, V4: 0.302, V5: -1.211, V6: -0.353, V7: -0.513, V8: -0.005, V9: 1.093, V10: -0.504, V11: -0.674, V12: 0.946, V13: 0.675, V14: -0.677, V15: -0.371, V16: -0.144, V17: 0.108, V18: -0.711, V19: 0.438, V20: 0.106, V21: -0.184, V22: -0.391, V23: 0.011, V24: 0.482, V25: 0.134, V26: 0.933, V27: -0.042, V28: 0.028, Amount: 77.510.
322
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.399, V2: 0.975, V3: 1.843, V4: -0.042, V5: 0.169, V6: -0.545, V7: 0.935, V8: -0.230, V9: -0.435, V10: -0.183, V11: 0.381, V12: 0.601, V13: 0.964, V14: -0.223, V15: 0.993, V16: -0.319, V17: -0.160, V18: -1.059, V19: -0.473, V20: 0.212, V21: -0.213, V22: -0.310, V23: 0.017, V24: 0.408, V25: -0.298, V26: 0.048, V27: 0.122, V28: -0.099, Amount: 11.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.399, V2: 0.975, V3: 1.843, V4: -0.042, V5: 0.169, V6: -0.545, V7: 0.935, V8: -0.230, V9: -0.435, V10: -0.183, V11: 0.381, V12: 0.601, V13: 0.964, V14: -0.223, V15: 0.993, V16: -0.319, V17: -0.160, V18: -1.059, V19: -0.473, V20: 0.212, V21: -0.213, V22: -0.310, V23: 0.017, V24: 0.408, V25: -0.298, V26: 0.048, V27: 0.122, V28: -0.099, Amount: 11.980.
323
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.028, V2: -0.004, V3: 0.299, V4: 1.233, V5: 0.398, V6: 1.358, V7: -0.255, V8: 0.496, V9: 0.414, V10: -0.244, V11: 0.044, V12: 0.341, V13: -1.082, V14: 0.335, V15: 0.841, V16: -1.655, V17: 1.239, V18: -2.364, V19: -1.552, V20: -0.361, V21: -0.023, V22: 0.254, V23: 0.049, V24: -0.985, V25: 0.393, V26: -0.210, V27: 0.090, V28: 0.002, Amount: 4.360.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.028, V2: -0.004, V3: 0.299, V4: 1.233, V5: 0.398, V6: 1.358, V7: -0.255, V8: 0.496, V9: 0.414, V10: -0.244, V11: 0.044, V12: 0.341, V13: -1.082, V14: 0.335, V15: 0.841, V16: -1.655, V17: 1.239, V18: -2.364, V19: -1.552, V20: -0.361, V21: -0.023, V22: 0.254, V23: 0.049, V24: -0.985, V25: 0.393, V26: -0.210, V27: 0.090, V28: 0.002, Amount: 4.360.
324
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.014, V2: 0.411, V3: 0.145, V4: -1.079, V5: -0.061, V6: -1.035, V7: 0.750, V8: -0.297, V9: -1.136, V10: 0.419, V11: -1.190, V12: -0.400, V13: 0.327, V14: 0.229, V15: 0.409, V16: -1.892, V17: -0.228, V18: 1.574, V19: -0.687, V20: -0.329, V21: 0.001, V22: 0.679, V23: -0.092, V24: -0.029, V25: -0.511, V26: -0.142, V27: 0.478, V28: 0.286, Amount: 33.630.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.014, V2: 0.411, V3: 0.145, V4: -1.079, V5: -0.061, V6: -1.035, V7: 0.750, V8: -0.297, V9: -1.136, V10: 0.419, V11: -1.190, V12: -0.400, V13: 0.327, V14: 0.229, V15: 0.409, V16: -1.892, V17: -0.228, V18: 1.574, V19: -0.687, V20: -0.329, V21: 0.001, V22: 0.679, V23: -0.092, V24: -0.029, V25: -0.511, V26: -0.142, V27: 0.478, V28: 0.286, Amount: 33.630.
325
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.048, V2: 1.021, V3: -1.057, V4: -0.751, V5: 1.025, V6: 0.219, V7: 0.205, V8: 0.538, V9: -0.297, V10: -1.122, V11: 0.098, V12: 0.733, V13: 0.884, V14: -1.027, V15: -0.818, V16: 1.080, V17: -0.028, V18: 0.972, V19: 0.085, V20: -0.172, V21: 0.036, V22: 0.088, V23: 0.035, V24: -0.425, V25: -0.873, V26: 0.245, V27: -0.020, V28: 0.052, Amount: 2.360.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.048, V2: 1.021, V3: -1.057, V4: -0.751, V5: 1.025, V6: 0.219, V7: 0.205, V8: 0.538, V9: -0.297, V10: -1.122, V11: 0.098, V12: 0.733, V13: 0.884, V14: -1.027, V15: -0.818, V16: 1.080, V17: -0.028, V18: 0.972, V19: 0.085, V20: -0.172, V21: 0.036, V22: 0.088, V23: 0.035, V24: -0.425, V25: -0.873, V26: 0.245, V27: -0.020, V28: 0.052, Amount: 2.360.
326
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.739, V2: 1.416, V3: 1.620, V4: 4.316, V5: -0.272, V6: 1.207, V7: -0.227, V8: 0.871, V9: -1.903, V10: 1.440, V11: -0.008, V12: -0.449, V13: -0.686, V14: 0.642, V15: 0.275, V16: 0.643, V17: -0.100, V18: 0.915, V19: 1.557, V20: 0.326, V21: -0.070, V22: -0.369, V23: 0.175, V24: -0.426, V25: -0.688, V26: 0.098, V27: 0.296, V28: 0.146, Amount: 58.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.739, V2: 1.416, V3: 1.620, V4: 4.316, V5: -0.272, V6: 1.207, V7: -0.227, V8: 0.871, V9: -1.903, V10: 1.440, V11: -0.008, V12: -0.449, V13: -0.686, V14: 0.642, V15: 0.275, V16: 0.643, V17: -0.100, V18: 0.915, V19: 1.557, V20: 0.326, V21: -0.070, V22: -0.369, V23: 0.175, V24: -0.426, V25: -0.688, V26: 0.098, V27: 0.296, V28: 0.146, Amount: 58.980.
327
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.981, V2: -1.156, V3: -0.141, V4: -0.384, V5: -1.287, V6: 0.105, V7: -1.278, V8: 0.185, V9: 0.317, V10: 0.802, V11: 0.087, V12: 0.461, V13: -0.016, V14: -0.104, V15: 0.122, V16: -0.745, V17: -0.798, V18: 2.269, V19: -0.597, V20: -0.539, V21: -0.278, V22: -0.296, V23: 0.262, V24: -0.563, V25: -0.504, V26: -0.430, V27: 0.065, V28: -0.030, Amount: 50.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.981, V2: -1.156, V3: -0.141, V4: -0.384, V5: -1.287, V6: 0.105, V7: -1.278, V8: 0.185, V9: 0.317, V10: 0.802, V11: 0.087, V12: 0.461, V13: -0.016, V14: -0.104, V15: 0.122, V16: -0.745, V17: -0.798, V18: 2.269, V19: -0.597, V20: -0.539, V21: -0.278, V22: -0.296, V23: 0.262, V24: -0.563, V25: -0.504, V26: -0.430, V27: 0.065, V28: -0.030, Amount: 50.990.
328
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.167, V2: -0.240, V3: 1.127, V4: 2.971, V5: -0.300, V6: 1.083, V7: 0.800, V8: 0.360, V9: -1.088, V10: 0.676, V11: -1.225, V12: -1.319, V13: -0.906, V14: 0.500, V15: 2.082, V16: 0.368, V17: 0.021, V18: 0.077, V19: 0.761, V20: 0.325, V21: -0.228, V22: -0.754, V23: -0.165, V24: -0.803, V25: -0.092, V26: 0.087, V27: 0.154, V28: -0.407, Amount: 324.570.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.167, V2: -0.240, V3: 1.127, V4: 2.971, V5: -0.300, V6: 1.083, V7: 0.800, V8: 0.360, V9: -1.088, V10: 0.676, V11: -1.225, V12: -1.319, V13: -0.906, V14: 0.500, V15: 2.082, V16: 0.368, V17: 0.021, V18: 0.077, V19: 0.761, V20: 0.325, V21: -0.228, V22: -0.754, V23: -0.165, V24: -0.803, V25: -0.092, V26: 0.087, V27: 0.154, V28: -0.407, Amount: 324.570.
329
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.570, V2: -0.023, V3: 1.334, V4: -3.730, V5: -0.546, V6: -0.884, V7: -0.004, V8: 0.546, V9: 1.965, V10: -2.753, V11: -1.597, V12: 0.391, V13: -0.345, V14: -0.046, V15: 0.577, V16: 0.055, V17: -0.716, V18: 0.761, V19: -0.227, V20: 0.030, V21: 0.186, V22: 0.472, V23: -0.421, V24: -0.441, V25: 1.026, V26: -0.815, V27: 0.195, V28: 0.003, Amount: 57.200.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.570, V2: -0.023, V3: 1.334, V4: -3.730, V5: -0.546, V6: -0.884, V7: -0.004, V8: 0.546, V9: 1.965, V10: -2.753, V11: -1.597, V12: 0.391, V13: -0.345, V14: -0.046, V15: 0.577, V16: 0.055, V17: -0.716, V18: 0.761, V19: -0.227, V20: 0.030, V21: 0.186, V22: 0.472, V23: -0.421, V24: -0.441, V25: 1.026, V26: -0.815, V27: 0.195, V28: 0.003, Amount: 57.200.
330
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.469, V2: 0.410, V3: -0.073, V4: -0.274, V5: 2.920, V6: 3.797, V7: -0.221, V8: 0.001, V9: -0.328, V10: 0.295, V11: -0.822, V12: -0.241, V13: -0.306, V14: -0.312, V15: -1.173, V16: 0.755, V17: -1.003, V18: -0.367, V19: -0.581, V20: -0.245, V21: 0.500, V22: -0.881, V23: 0.217, V24: 1.003, V25: -1.177, V26: 0.392, V27: 0.073, V28: -0.012, Amount: 9.480.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.469, V2: 0.410, V3: -0.073, V4: -0.274, V5: 2.920, V6: 3.797, V7: -0.221, V8: 0.001, V9: -0.328, V10: 0.295, V11: -0.822, V12: -0.241, V13: -0.306, V14: -0.312, V15: -1.173, V16: 0.755, V17: -1.003, V18: -0.367, V19: -0.581, V20: -0.245, V21: 0.500, V22: -0.881, V23: 0.217, V24: 1.003, V25: -1.177, V26: 0.392, V27: 0.073, V28: -0.012, Amount: 9.480.
331
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.372, V2: -1.746, V3: -0.830, V4: -0.436, V5: -1.370, V6: -0.917, V7: -0.197, V8: -0.134, V9: 1.677, V10: -0.522, V11: -0.784, V12: -0.273, V13: -1.313, V14: 0.382, V15: 1.416, V16: 0.345, V17: -0.343, V18: -0.139, V19: 0.091, V20: 0.427, V21: 0.021, V22: -0.671, V23: 0.133, V24: -0.026, V25: -0.837, V26: 0.306, V27: -0.111, V28: 0.010, Amount: 350.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.372, V2: -1.746, V3: -0.830, V4: -0.436, V5: -1.370, V6: -0.917, V7: -0.197, V8: -0.134, V9: 1.677, V10: -0.522, V11: -0.784, V12: -0.273, V13: -1.313, V14: 0.382, V15: 1.416, V16: 0.345, V17: -0.343, V18: -0.139, V19: 0.091, V20: 0.427, V21: 0.021, V22: -0.671, V23: 0.133, V24: -0.026, V25: -0.837, V26: 0.306, V27: -0.111, V28: 0.010, Amount: 350.000.
332
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.897, V2: -0.644, V3: 1.703, V4: 1.687, V5: -1.189, V6: 1.287, V7: -1.126, V8: 0.606, V9: 1.473, V10: -0.277, V11: 0.391, V12: 1.350, V13: -0.703, V14: -0.755, V15: -2.015, V16: -0.608, V17: 0.376, V18: -0.151, V19: 0.113, V20: -0.101, V21: 0.019, V22: 0.413, V23: -0.115, V24: 0.062, V25: 0.417, V26: -0.235, V27: 0.106, V28: 0.034, Amount: 65.410.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.897, V2: -0.644, V3: 1.703, V4: 1.687, V5: -1.189, V6: 1.287, V7: -1.126, V8: 0.606, V9: 1.473, V10: -0.277, V11: 0.391, V12: 1.350, V13: -0.703, V14: -0.755, V15: -2.015, V16: -0.608, V17: 0.376, V18: -0.151, V19: 0.113, V20: -0.101, V21: 0.019, V22: 0.413, V23: -0.115, V24: 0.062, V25: 0.417, V26: -0.235, V27: 0.106, V28: 0.034, Amount: 65.410.
333
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.899, V2: -0.065, V3: 1.185, V4: 0.196, V5: 2.435, V6: 4.041, V7: -0.932, V8: 1.238, V9: -0.059, V10: -0.390, V11: -0.619, V12: -0.076, V13: -0.016, V14: -0.225, V15: 0.794, V16: -0.106, V17: -0.318, V18: 0.700, V19: 1.360, V20: 0.366, V21: -0.009, V22: -0.155, V23: -0.191, V24: 1.008, V25: 0.388, V26: -0.213, V27: 0.121, V28: 0.100, Amount: 9.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.899, V2: -0.065, V3: 1.185, V4: 0.196, V5: 2.435, V6: 4.041, V7: -0.932, V8: 1.238, V9: -0.059, V10: -0.390, V11: -0.619, V12: -0.076, V13: -0.016, V14: -0.225, V15: 0.794, V16: -0.106, V17: -0.318, V18: 0.700, V19: 1.360, V20: 0.366, V21: -0.009, V22: -0.155, V23: -0.191, V24: 1.008, V25: 0.388, V26: -0.213, V27: 0.121, V28: 0.100, Amount: 9.990.
334
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.118, V2: 0.306, V3: 1.523, V4: 0.202, V5: -0.002, V6: 0.151, V7: -0.416, V8: 0.504, V9: -1.731, V10: 0.039, V11: -1.700, V12: 0.157, V13: 1.629, V14: -0.068, V15: 0.614, V16: -1.429, V17: -0.051, V18: 1.478, V19: 0.133, V20: -0.224, V21: -0.505, V22: -1.202, V23: -0.172, V24: -0.786, V25: 0.290, V26: -0.636, V27: 0.030, V28: -0.057, Amount: 14.800.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.118, V2: 0.306, V3: 1.523, V4: 0.202, V5: -0.002, V6: 0.151, V7: -0.416, V8: 0.504, V9: -1.731, V10: 0.039, V11: -1.700, V12: 0.157, V13: 1.629, V14: -0.068, V15: 0.614, V16: -1.429, V17: -0.051, V18: 1.478, V19: 0.133, V20: -0.224, V21: -0.505, V22: -1.202, V23: -0.172, V24: -0.786, V25: 0.290, V26: -0.636, V27: 0.030, V28: -0.057, Amount: 14.800.
335
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.579, V2: -3.653, V3: -0.624, V4: 1.270, V5: -1.662, V6: 0.811, V7: 0.468, V8: -0.030, V9: -0.411, V10: 0.300, V11: -1.689, V12: -0.987, V13: -1.064, V14: 0.322, V15: 0.824, V16: -1.296, V17: 0.052, V18: 1.445, V19: -1.413, V20: 1.335, V21: 0.167, V22: -1.168, V23: -0.894, V24: -0.804, V25: 0.070, V26: -0.353, V27: -0.109, V28: 0.189, Amount: 987.120.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.579, V2: -3.653, V3: -0.624, V4: 1.270, V5: -1.662, V6: 0.811, V7: 0.468, V8: -0.030, V9: -0.411, V10: 0.300, V11: -1.689, V12: -0.987, V13: -1.064, V14: 0.322, V15: 0.824, V16: -1.296, V17: 0.052, V18: 1.445, V19: -1.413, V20: 1.335, V21: 0.167, V22: -1.168, V23: -0.894, V24: -0.804, V25: 0.070, V26: -0.353, V27: -0.109, V28: 0.189, Amount: 987.120.
336
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.178, V2: 1.430, V3: 0.129, V4: 0.531, V5: 0.290, V6: -0.570, V7: -0.517, V8: -2.818, V9: -0.992, V10: -1.641, V11: 0.734, V12: 0.649, V13: 0.459, V14: -0.982, V15: 0.948, V16: 0.272, V17: 1.516, V18: -0.342, V19: -1.057, V20: 0.642, V21: -1.356, V22: 0.174, V23: -0.211, V24: 0.309, V25: 0.912, V26: 0.425, V27: 0.047, V28: 0.249, Amount: 0.760.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.178, V2: 1.430, V3: 0.129, V4: 0.531, V5: 0.290, V6: -0.570, V7: -0.517, V8: -2.818, V9: -0.992, V10: -1.641, V11: 0.734, V12: 0.649, V13: 0.459, V14: -0.982, V15: 0.948, V16: 0.272, V17: 1.516, V18: -0.342, V19: -1.057, V20: 0.642, V21: -1.356, V22: 0.174, V23: -0.211, V24: 0.309, V25: 0.912, V26: 0.425, V27: 0.047, V28: 0.249, Amount: 0.760.
337
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.209, V2: -0.100, V3: 0.634, V4: 0.861, V5: -0.814, V6: -0.689, V7: -0.230, V8: 0.007, V9: 0.809, V10: -0.158, V11: -0.964, V12: -0.489, V13: -1.870, V14: 0.252, V15: 0.065, V16: -0.099, V17: 0.103, V18: -0.497, V19: 0.231, V20: -0.223, V21: -0.316, V22: -0.847, V23: 0.094, V24: 0.365, V25: 0.272, V26: 0.186, V27: -0.029, V28: 0.014, Amount: 12.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.209, V2: -0.100, V3: 0.634, V4: 0.861, V5: -0.814, V6: -0.689, V7: -0.230, V8: 0.007, V9: 0.809, V10: -0.158, V11: -0.964, V12: -0.489, V13: -1.870, V14: 0.252, V15: 0.065, V16: -0.099, V17: 0.103, V18: -0.497, V19: 0.231, V20: -0.223, V21: -0.316, V22: -0.847, V23: 0.094, V24: 0.365, V25: 0.272, V26: 0.186, V27: -0.029, V28: 0.014, Amount: 12.950.
338
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.418, V2: 1.087, V3: 1.405, V4: 0.092, V5: 0.080, V6: -0.703, V7: 0.648, V8: 0.036, V9: -0.446, V10: -0.561, V11: 0.330, V12: 0.204, V13: 0.211, V14: -0.414, V15: 1.104, V16: -0.013, V17: 0.396, V18: -0.714, V19: -0.574, V20: 0.088, V21: -0.211, V22: -0.502, V23: 0.058, V24: 0.353, V25: -0.270, V26: 0.081, V27: 0.263, V28: 0.099, Amount: 4.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.418, V2: 1.087, V3: 1.405, V4: 0.092, V5: 0.080, V6: -0.703, V7: 0.648, V8: 0.036, V9: -0.446, V10: -0.561, V11: 0.330, V12: 0.204, V13: 0.211, V14: -0.414, V15: 1.104, V16: -0.013, V17: 0.396, V18: -0.714, V19: -0.574, V20: 0.088, V21: -0.211, V22: -0.502, V23: 0.058, V24: 0.353, V25: -0.270, V26: 0.081, V27: 0.263, V28: 0.099, Amount: 4.490.
339
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.768, V2: 0.824, V3: 0.771, V4: -0.089, V5: 0.126, V6: -0.415, V7: 0.886, V8: 0.016, V9: -0.452, V10: 0.169, V11: 1.407, V12: 0.129, V13: -1.308, V14: 0.691, V15: 0.176, V16: -0.229, V17: -0.170, V18: -0.194, V19: -0.130, V20: -0.138, V21: 0.124, V22: 0.444, V23: 0.106, V24: 0.222, V25: -0.636, V26: 0.218, V27: 0.146, V28: 0.207, Amount: 52.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.768, V2: 0.824, V3: 0.771, V4: -0.089, V5: 0.126, V6: -0.415, V7: 0.886, V8: 0.016, V9: -0.452, V10: 0.169, V11: 1.407, V12: 0.129, V13: -1.308, V14: 0.691, V15: 0.176, V16: -0.229, V17: -0.170, V18: -0.194, V19: -0.130, V20: -0.138, V21: 0.124, V22: 0.444, V23: 0.106, V24: 0.222, V25: -0.636, V26: 0.218, V27: 0.146, V28: 0.207, Amount: 52.000.
340
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.457, V2: -1.077, V3: 0.102, V4: -1.428, V5: -1.340, V6: -0.615, V7: -0.956, V8: 0.046, V9: -1.993, V10: 1.668, V11: 1.239, V12: -1.287, V13: -2.027, V14: 0.557, V15: 0.149, V16: -0.694, V17: 0.849, V18: 0.062, V19: -0.282, V20: -0.530, V21: -0.144, V22: -0.111, V23: 0.048, V24: 0.149, V25: 0.355, V26: -0.137, V27: 0.009, V28: -0.006, Amount: 5.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.457, V2: -1.077, V3: 0.102, V4: -1.428, V5: -1.340, V6: -0.615, V7: -0.956, V8: 0.046, V9: -1.993, V10: 1.668, V11: 1.239, V12: -1.287, V13: -2.027, V14: 0.557, V15: 0.149, V16: -0.694, V17: 0.849, V18: 0.062, V19: -0.282, V20: -0.530, V21: -0.144, V22: -0.111, V23: 0.048, V24: 0.149, V25: 0.355, V26: -0.137, V27: 0.009, V28: -0.006, Amount: 5.950.
341
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.497, V2: 0.325, V3: 0.290, V4: -0.786, V5: 1.124, V6: -1.019, V7: 0.724, V8: -0.042, V9: -0.259, V10: -0.534, V11: 0.225, V12: -0.234, V13: -1.488, V14: 0.885, V15: -0.240, V16: 0.106, V17: -0.886, V18: 0.885, V19: 0.048, V20: -0.129, V21: 0.398, V22: 1.002, V23: -0.305, V24: -0.338, V25: -0.054, V26: -0.182, V27: 0.122, V28: 0.162, Amount: 4.510.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.497, V2: 0.325, V3: 0.290, V4: -0.786, V5: 1.124, V6: -1.019, V7: 0.724, V8: -0.042, V9: -0.259, V10: -0.534, V11: 0.225, V12: -0.234, V13: -1.488, V14: 0.885, V15: -0.240, V16: 0.106, V17: -0.886, V18: 0.885, V19: 0.048, V20: -0.129, V21: 0.398, V22: 1.002, V23: -0.305, V24: -0.338, V25: -0.054, V26: -0.182, V27: 0.122, V28: 0.162, Amount: 4.510.
342
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.171, V2: -0.325, V3: 1.592, V4: -2.068, V5: -0.893, V6: -0.245, V7: -0.369, V8: 0.076, V9: -2.748, V10: 1.123, V11: 1.464, V12: -0.232, V13: 0.516, V14: -0.197, V15: -0.188, V16: -0.697, V17: 0.604, V18: 0.101, V19: -0.220, V20: -0.277, V21: 0.001, V22: 0.376, V23: 0.000, V24: 0.202, V25: -0.514, V26: -0.300, V27: 0.173, V28: 0.138, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.171, V2: -0.325, V3: 1.592, V4: -2.068, V5: -0.893, V6: -0.245, V7: -0.369, V8: 0.076, V9: -2.748, V10: 1.123, V11: 1.464, V12: -0.232, V13: 0.516, V14: -0.197, V15: -0.188, V16: -0.697, V17: 0.604, V18: 0.101, V19: -0.220, V20: -0.277, V21: 0.001, V22: 0.376, V23: 0.000, V24: 0.202, V25: -0.514, V26: -0.300, V27: 0.173, V28: 0.138, Amount: 15.000.
343
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.159, V2: -0.850, V3: -1.396, V4: -1.035, V5: -0.511, V6: -0.901, V7: -0.457, V8: -0.237, V9: -0.683, V10: 1.046, V11: 0.727, V12: -0.212, V13: -0.144, V14: 0.247, V15: -0.278, V16: 1.225, V17: -0.216, V18: -0.617, V19: 0.805, V20: 0.012, V21: 0.487, V22: 1.333, V23: -0.081, V24: -0.281, V25: 0.183, V26: 0.074, V27: -0.046, V28: -0.075, Amount: 35.850.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.159, V2: -0.850, V3: -1.396, V4: -1.035, V5: -0.511, V6: -0.901, V7: -0.457, V8: -0.237, V9: -0.683, V10: 1.046, V11: 0.727, V12: -0.212, V13: -0.144, V14: 0.247, V15: -0.278, V16: 1.225, V17: -0.216, V18: -0.617, V19: 0.805, V20: 0.012, V21: 0.487, V22: 1.333, V23: -0.081, V24: -0.281, V25: 0.183, V26: 0.074, V27: -0.046, V28: -0.075, Amount: 35.850.
344
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.079, V2: -0.193, V3: -1.707, V4: 0.027, V5: 0.643, V6: 0.115, V7: -0.071, V8: -0.023, V9: 0.292, V10: 0.359, V11: -0.025, V12: 0.331, V13: -0.065, V14: 0.560, V15: 0.141, V16: 0.686, V17: -1.200, V18: 0.684, V19: 0.384, V20: -0.133, V21: 0.121, V22: 0.347, V23: -0.007, V24: -0.317, V25: 0.099, V26: 0.398, V27: -0.073, V28: -0.073, Amount: 17.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.079, V2: -0.193, V3: -1.707, V4: 0.027, V5: 0.643, V6: 0.115, V7: -0.071, V8: -0.023, V9: 0.292, V10: 0.359, V11: -0.025, V12: 0.331, V13: -0.065, V14: 0.560, V15: 0.141, V16: 0.686, V17: -1.200, V18: 0.684, V19: 0.384, V20: -0.133, V21: 0.121, V22: 0.347, V23: -0.007, V24: -0.317, V25: 0.099, V26: 0.398, V27: -0.073, V28: -0.073, Amount: 17.490.
345
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.010, V2: -0.090, V3: -3.073, V4: 0.258, V5: 2.931, V6: 3.303, V7: 0.015, V8: 0.671, V9: 0.044, V10: 0.279, V11: -0.255, V12: 0.326, V13: -0.403, V14: 0.724, V15: -0.147, V16: -0.752, V17: -0.270, V18: -0.693, V19: -0.278, V20: -0.201, V21: 0.046, V22: 0.221, V23: 0.024, V24: 0.708, V25: 0.508, V26: -0.473, V27: 0.000, V28: -0.067, Amount: 15.750.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.010, V2: -0.090, V3: -3.073, V4: 0.258, V5: 2.931, V6: 3.303, V7: 0.015, V8: 0.671, V9: 0.044, V10: 0.279, V11: -0.255, V12: 0.326, V13: -0.403, V14: 0.724, V15: -0.147, V16: -0.752, V17: -0.270, V18: -0.693, V19: -0.278, V20: -0.201, V21: 0.046, V22: 0.221, V23: 0.024, V24: 0.708, V25: 0.508, V26: -0.473, V27: 0.000, V28: -0.067, Amount: 15.750.
346
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.635, V2: -1.071, V3: 3.011, V4: 1.933, V5: -1.394, V6: 1.480, V7: 0.148, V8: 0.403, V9: 2.391, V10: -1.502, V11: -0.994, V12: -2.462, V13: 1.210, V14: 0.284, V15: -1.820, V16: -0.714, V17: 1.172, V18: 0.861, V19: 0.637, V20: 0.862, V21: 0.230, V22: 0.629, V23: 0.473, V24: -0.085, V25: 0.640, V26: -0.215, V27: 0.025, V28: 0.123, Amount: 364.290.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.635, V2: -1.071, V3: 3.011, V4: 1.933, V5: -1.394, V6: 1.480, V7: 0.148, V8: 0.403, V9: 2.391, V10: -1.502, V11: -0.994, V12: -2.462, V13: 1.210, V14: 0.284, V15: -1.820, V16: -0.714, V17: 1.172, V18: 0.861, V19: 0.637, V20: 0.862, V21: 0.230, V22: 0.629, V23: 0.473, V24: -0.085, V25: 0.640, V26: -0.215, V27: 0.025, V28: 0.123, Amount: 364.290.
347
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.749, V2: 0.849, V3: 2.473, V4: 1.697, V5: -0.198, V6: 0.445, V7: 0.109, V8: 0.184, V9: 0.473, V10: -0.777, V11: -0.105, V12: 0.049, V13: -0.122, V14: -2.405, V15: 0.100, V16: -0.788, V17: 1.879, V18: 0.336, V19: 0.332, V20: 0.347, V21: 0.052, V22: 0.814, V23: -0.383, V24: 0.345, V25: 0.413, V26: 0.064, V27: 0.256, V28: -0.037, Amount: 22.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.749, V2: 0.849, V3: 2.473, V4: 1.697, V5: -0.198, V6: 0.445, V7: 0.109, V8: 0.184, V9: 0.473, V10: -0.777, V11: -0.105, V12: 0.049, V13: -0.122, V14: -2.405, V15: 0.100, V16: -0.788, V17: 1.879, V18: 0.336, V19: 0.332, V20: 0.347, V21: 0.052, V22: 0.814, V23: -0.383, V24: 0.345, V25: 0.413, V26: 0.064, V27: 0.256, V28: -0.037, Amount: 22.000.
348
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.900, V2: -0.283, V3: -0.851, V4: 1.065, V5: 0.083, V6: 0.407, V7: -0.411, V8: 0.200, V9: 0.667, V10: 0.363, V11: 0.210, V12: 0.422, V13: -0.779, V14: 0.407, V15: -0.206, V16: 0.484, V17: -0.920, V18: 0.657, V19: -0.101, V20: -0.202, V21: 0.075, V22: 0.217, V23: 0.139, V24: 0.169, V25: -0.062, V26: -0.694, V27: 0.025, V28: -0.039, Amount: 38.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.900, V2: -0.283, V3: -0.851, V4: 1.065, V5: 0.083, V6: 0.407, V7: -0.411, V8: 0.200, V9: 0.667, V10: 0.363, V11: 0.210, V12: 0.422, V13: -0.779, V14: 0.407, V15: -0.206, V16: 0.484, V17: -0.920, V18: 0.657, V19: -0.101, V20: -0.202, V21: 0.075, V22: 0.217, V23: 0.139, V24: 0.169, V25: -0.062, V26: -0.694, V27: 0.025, V28: -0.039, Amount: 38.000.
349
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.819, V2: -1.396, V3: 2.226, V4: -0.502, V5: 0.020, V6: -0.863, V7: -0.008, V8: 0.191, V9: 0.666, V10: -1.263, V11: -1.095, V12: 0.224, V13: -0.278, V14: -0.597, V15: -0.936, V16: 0.098, V17: -0.126, V18: -0.427, V19: -0.223, V20: 0.611, V21: 0.053, V22: -0.379, V23: 0.534, V24: 0.427, V25: -0.030, V26: 0.776, V27: -0.089, V28: 0.128, Amount: 193.910.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.819, V2: -1.396, V3: 2.226, V4: -0.502, V5: 0.020, V6: -0.863, V7: -0.008, V8: 0.191, V9: 0.666, V10: -1.263, V11: -1.095, V12: 0.224, V13: -0.278, V14: -0.597, V15: -0.936, V16: 0.098, V17: -0.126, V18: -0.427, V19: -0.223, V20: 0.611, V21: 0.053, V22: -0.379, V23: 0.534, V24: 0.427, V25: -0.030, V26: 0.776, V27: -0.089, V28: 0.128, Amount: 193.910.
350
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.961, V2: 3.716, V3: -3.717, V4: 1.455, V5: -0.502, V6: -1.937, V7: -0.569, V8: 1.484, V9: -0.367, V10: -0.188, V11: 2.316, V12: 1.354, V13: 0.989, V14: -2.683, V15: 0.185, V16: 1.282, V17: 3.206, V18: 1.872, V19: -0.373, V20: 0.353, V21: -0.011, V22: -0.087, V23: 0.379, V24: 0.192, V25: -0.151, V26: -0.429, V27: 0.006, V28: 0.059, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.961, V2: 3.716, V3: -3.717, V4: 1.455, V5: -0.502, V6: -1.937, V7: -0.569, V8: 1.484, V9: -0.367, V10: -0.188, V11: 2.316, V12: 1.354, V13: 0.989, V14: -2.683, V15: 0.185, V16: 1.282, V17: 3.206, V18: 1.872, V19: -0.373, V20: 0.353, V21: -0.011, V22: -0.087, V23: 0.379, V24: 0.192, V25: -0.151, V26: -0.429, V27: 0.006, V28: 0.059, Amount: 1.000.
351
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.369, V2: 1.333, V3: 0.350, V4: -1.264, V5: -0.162, V6: 0.229, V7: -0.372, V8: 1.047, V9: 0.424, V10: -1.120, V11: -2.082, V12: -0.288, V13: -0.523, V14: 0.470, V15: 0.461, V16: 0.637, V17: -0.467, V18: 0.245, V19: 0.156, V20: -0.225, V21: -0.128, V22: -0.632, V23: -0.022, V24: -0.141, V25: -0.158, V26: -0.258, V27: -0.172, V28: 0.067, Amount: 1.460.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.369, V2: 1.333, V3: 0.350, V4: -1.264, V5: -0.162, V6: 0.229, V7: -0.372, V8: 1.047, V9: 0.424, V10: -1.120, V11: -2.082, V12: -0.288, V13: -0.523, V14: 0.470, V15: 0.461, V16: 0.637, V17: -0.467, V18: 0.245, V19: 0.156, V20: -0.225, V21: -0.128, V22: -0.632, V23: -0.022, V24: -0.141, V25: -0.158, V26: -0.258, V27: -0.172, V28: 0.067, Amount: 1.460.
352
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.768, V2: -1.671, V3: 1.197, V4: 1.072, V5: -1.514, V6: 1.578, V7: -1.241, V8: 0.450, V9: 0.714, V10: 0.276, V11: -2.259, V12: 0.186, V13: 0.038, V14: -1.170, V15: -1.384, V16: -2.032, V17: 0.564, V18: 1.022, V19: -0.700, V20: -0.121, V21: -0.320, V22: -0.442, V23: -0.290, V24: -0.750, V25: 0.394, V26: -0.166, V27: 0.105, V28: 0.072, Amount: 241.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.768, V2: -1.671, V3: 1.197, V4: 1.072, V5: -1.514, V6: 1.578, V7: -1.241, V8: 0.450, V9: 0.714, V10: 0.276, V11: -2.259, V12: 0.186, V13: 0.038, V14: -1.170, V15: -1.384, V16: -2.032, V17: 0.564, V18: 1.022, V19: -0.700, V20: -0.121, V21: -0.320, V22: -0.442, V23: -0.290, V24: -0.750, V25: 0.394, V26: -0.166, V27: 0.105, V28: 0.072, Amount: 241.500.
353
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.994, V2: -0.432, V3: 2.941, V4: 1.891, V5: -0.765, V6: 1.212, V7: -0.427, V8: 0.531, V9: 0.848, V10: -0.760, V11: -1.189, V12: 0.748, V13: 0.312, V14: -1.189, V15: -0.964, V16: -1.277, V17: 0.966, V18: -0.391, V19: 0.919, V20: 0.434, V21: 0.117, V22: 0.532, V23: 0.088, V24: 0.130, V25: 0.435, V26: -0.017, V27: 0.067, V28: 0.023, Amount: 135.050.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.994, V2: -0.432, V3: 2.941, V4: 1.891, V5: -0.765, V6: 1.212, V7: -0.427, V8: 0.531, V9: 0.848, V10: -0.760, V11: -1.189, V12: 0.748, V13: 0.312, V14: -1.189, V15: -0.964, V16: -1.277, V17: 0.966, V18: -0.391, V19: 0.919, V20: 0.434, V21: 0.117, V22: 0.532, V23: 0.088, V24: 0.130, V25: 0.435, V26: -0.017, V27: 0.067, V28: 0.023, Amount: 135.050.
354
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.893, V2: 0.308, V3: 0.016, V4: 3.671, V5: 0.029, V6: 0.612, V7: -0.490, V8: 0.236, V9: -0.324, V10: 1.390, V11: -1.558, V12: -0.684, V13: -0.684, V14: 0.025, V15: -0.260, V16: 1.439, V17: -1.013, V18: -0.154, V19: -1.490, V20: -0.298, V21: -0.228, V22: -0.727, V23: 0.459, V24: 0.460, V25: -0.550, V26: -0.402, V27: -0.001, V28: -0.022, Amount: 5.290.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.893, V2: 0.308, V3: 0.016, V4: 3.671, V5: 0.029, V6: 0.612, V7: -0.490, V8: 0.236, V9: -0.324, V10: 1.390, V11: -1.558, V12: -0.684, V13: -0.684, V14: 0.025, V15: -0.260, V16: 1.439, V17: -1.013, V18: -0.154, V19: -1.490, V20: -0.298, V21: -0.228, V22: -0.727, V23: 0.459, V24: 0.460, V25: -0.550, V26: -0.402, V27: -0.001, V28: -0.022, Amount: 5.290.
355
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.202, V2: 0.716, V3: 1.931, V4: 0.876, V5: -0.261, V6: 1.500, V7: 0.177, V8: 0.038, V9: 0.493, V10: 0.701, V11: 0.331, V12: -0.372, V13: -1.174, V14: -0.295, V15: 0.795, V16: -0.109, V17: -0.392, V18: 0.889, V19: 0.954, V20: -0.208, V21: 0.207, V22: 0.781, V23: -0.441, V24: -0.805, V25: -0.177, V26: -0.154, V27: -0.737, V28: -0.070, Amount: 87.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.202, V2: 0.716, V3: 1.931, V4: 0.876, V5: -0.261, V6: 1.500, V7: 0.177, V8: 0.038, V9: 0.493, V10: 0.701, V11: 0.331, V12: -0.372, V13: -1.174, V14: -0.295, V15: 0.795, V16: -0.109, V17: -0.392, V18: 0.889, V19: 0.954, V20: -0.208, V21: 0.207, V22: 0.781, V23: -0.441, V24: -0.805, V25: -0.177, V26: -0.154, V27: -0.737, V28: -0.070, Amount: 87.000.
356
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.329, V2: -0.895, V3: 1.311, V4: -0.661, V5: -1.726, V6: -0.106, V7: -1.526, V8: 0.271, V9: 0.070, V10: 0.592, V11: -0.395, V12: -1.398, V13: -1.241, V14: -0.277, V15: 1.742, V16: 1.484, V17: 0.321, V18: -0.891, V19: -0.243, V20: -0.059, V21: 0.438, V22: 1.209, V23: -0.023, V24: 0.073, V25: 0.191, V26: -0.006, V27: 0.066, V28: 0.024, Amount: 0.020.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.329, V2: -0.895, V3: 1.311, V4: -0.661, V5: -1.726, V6: -0.106, V7: -1.526, V8: 0.271, V9: 0.070, V10: 0.592, V11: -0.395, V12: -1.398, V13: -1.241, V14: -0.277, V15: 1.742, V16: 1.484, V17: 0.321, V18: -0.891, V19: -0.243, V20: -0.059, V21: 0.438, V22: 1.209, V23: -0.023, V24: 0.073, V25: 0.191, V26: -0.006, V27: 0.066, V28: 0.024, Amount: 0.020.
357
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.064, V2: -0.214, V3: -2.323, V4: 0.211, V5: 0.552, V6: -1.199, V7: 0.686, V8: -0.465, V9: 0.403, V10: 0.165, V11: -1.695, V12: -0.622, V13: -1.176, V14: 0.783, V15: -0.140, V16: -0.364, V17: -0.276, V18: -0.407, V19: 0.435, V20: -0.174, V21: 0.067, V22: 0.219, V23: -0.155, V24: -0.654, V25: 0.392, V26: 0.870, V27: -0.141, V28: -0.087, Amount: 59.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.064, V2: -0.214, V3: -2.323, V4: 0.211, V5: 0.552, V6: -1.199, V7: 0.686, V8: -0.465, V9: 0.403, V10: 0.165, V11: -1.695, V12: -0.622, V13: -1.176, V14: 0.783, V15: -0.140, V16: -0.364, V17: -0.276, V18: -0.407, V19: 0.435, V20: -0.174, V21: 0.067, V22: 0.219, V23: -0.155, V24: -0.654, V25: 0.392, V26: 0.870, V27: -0.141, V28: -0.087, Amount: 59.950.
358
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.369, V2: -1.317, V3: -0.171, V4: -1.918, V5: -0.206, V6: 1.981, V7: -1.443, V8: 0.631, V9: -1.885, V10: 1.450, V11: 0.957, V12: -0.755, V13: -0.498, V14: 0.147, V15: 1.156, V16: -1.081, V17: 1.097, V18: -0.981, V19: -1.059, V20: -0.480, V21: -0.131, V22: 0.083, V23: 0.017, V24: -2.225, V25: 0.163, V26: -0.020, V27: 0.089, V28: -0.018, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.369, V2: -1.317, V3: -0.171, V4: -1.918, V5: -0.206, V6: 1.981, V7: -1.443, V8: 0.631, V9: -1.885, V10: 1.450, V11: 0.957, V12: -0.755, V13: -0.498, V14: 0.147, V15: 1.156, V16: -1.081, V17: 1.097, V18: -0.981, V19: -1.059, V20: -0.480, V21: -0.131, V22: 0.083, V23: 0.017, V24: -2.225, V25: 0.163, V26: -0.020, V27: 0.089, V28: -0.018, Amount: 15.000.
359
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.048, V2: 0.174, V3: -1.678, V4: 0.430, V5: 0.691, V6: -0.260, V7: -0.060, V8: -0.101, V9: 1.602, V10: -0.575, V11: 1.785, V12: -1.975, V13: 1.249, V14: 0.858, V15: -1.117, V16: 0.534, V17: 0.925, V18: 0.523, V19: 0.185, V20: -0.212, V21: -0.483, V22: -1.085, V23: 0.314, V24: 0.054, V25: -0.300, V26: 0.141, V27: -0.093, V28: -0.052, Amount: 1.290.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.048, V2: 0.174, V3: -1.678, V4: 0.430, V5: 0.691, V6: -0.260, V7: -0.060, V8: -0.101, V9: 1.602, V10: -0.575, V11: 1.785, V12: -1.975, V13: 1.249, V14: 0.858, V15: -1.117, V16: 0.534, V17: 0.925, V18: 0.523, V19: 0.185, V20: -0.212, V21: -0.483, V22: -1.085, V23: 0.314, V24: 0.054, V25: -0.300, V26: 0.141, V27: -0.093, V28: -0.052, Amount: 1.290.
360
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.236, V2: 0.271, V3: 0.180, V4: 0.502, V5: -0.179, V6: -0.565, V7: -0.044, V8: -0.018, V9: -0.157, V10: -0.104, V11: 1.281, V12: 0.647, V13: -0.113, V14: -0.049, V15: 0.452, V16: 0.787, V17: -0.360, V18: 0.344, V19: 0.219, V20: -0.078, V21: -0.261, V22: -0.805, V23: 0.079, V24: -0.051, V25: 0.220, V26: 0.099, V27: -0.029, V28: 0.017, Amount: 2.180.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.236, V2: 0.271, V3: 0.180, V4: 0.502, V5: -0.179, V6: -0.565, V7: -0.044, V8: -0.018, V9: -0.157, V10: -0.104, V11: 1.281, V12: 0.647, V13: -0.113, V14: -0.049, V15: 0.452, V16: 0.787, V17: -0.360, V18: 0.344, V19: 0.219, V20: -0.078, V21: -0.261, V22: -0.805, V23: 0.079, V24: -0.051, V25: 0.220, V26: 0.099, V27: -0.029, V28: 0.017, Amount: 2.180.
361
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.807, V2: 0.738, V3: -0.591, V4: -0.607, V5: 1.050, V6: -0.841, V7: 1.481, V8: -0.574, V9: 0.888, V10: 0.523, V11: -0.461, V12: -0.356, V13: -0.149, V14: -1.634, V15: -0.058, V16: 0.173, V17: 0.109, V18: -0.294, V19: -0.286, V20: 0.448, V21: -0.590, V22: -0.881, V23: 0.103, V24: 0.555, V25: -0.282, V26: 0.075, V27: 0.176, V28: 0.058, Amount: 89.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.807, V2: 0.738, V3: -0.591, V4: -0.607, V5: 1.050, V6: -0.841, V7: 1.481, V8: -0.574, V9: 0.888, V10: 0.523, V11: -0.461, V12: -0.356, V13: -0.149, V14: -1.634, V15: -0.058, V16: 0.173, V17: 0.109, V18: -0.294, V19: -0.286, V20: 0.448, V21: -0.590, V22: -0.881, V23: 0.103, V24: 0.555, V25: -0.282, V26: 0.075, V27: 0.176, V28: 0.058, Amount: 89.990.
362
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -4.049, V2: 3.415, V3: -0.505, V4: 0.666, V5: -1.165, V6: 2.311, V7: -5.590, V8: -12.423, V9: -0.706, V10: -2.971, V11: -2.223, V12: 1.040, V13: -2.655, V14: 2.105, V15: -1.772, V16: 0.433, V17: 0.881, V18: -0.435, V19: -0.694, V20: 2.777, V21: -6.733, V22: 0.743, V23: 1.096, V24: -0.228, V25: -0.524, V26: -1.178, V27: -0.290, V28: 0.355, Amount: 13.620.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -4.049, V2: 3.415, V3: -0.505, V4: 0.666, V5: -1.165, V6: 2.311, V7: -5.590, V8: -12.423, V9: -0.706, V10: -2.971, V11: -2.223, V12: 1.040, V13: -2.655, V14: 2.105, V15: -1.772, V16: 0.433, V17: 0.881, V18: -0.435, V19: -0.694, V20: 2.777, V21: -6.733, V22: 0.743, V23: 1.096, V24: -0.228, V25: -0.524, V26: -1.178, V27: -0.290, V28: 0.355, Amount: 13.620.
363
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.326, V2: -0.640, V3: 1.257, V4: -1.678, V5: -0.861, V6: 1.566, V7: 0.391, V8: -2.248, V9: 1.537, V10: 0.527, V11: 1.287, V12: -3.722, V13: 0.755, V14: 0.351, V15: 0.539, V16: 0.296, V17: 1.418, V18: -2.139, V19: -1.364, V20: -1.027, V21: 1.528, V22: 0.971, V23: 0.125, V24: -0.634, V25: -0.278, V26: -0.098, V27: -0.455, V28: -0.709, Amount: 263.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.326, V2: -0.640, V3: 1.257, V4: -1.678, V5: -0.861, V6: 1.566, V7: 0.391, V8: -2.248, V9: 1.537, V10: 0.527, V11: 1.287, V12: -3.722, V13: 0.755, V14: 0.351, V15: 0.539, V16: 0.296, V17: 1.418, V18: -2.139, V19: -1.364, V20: -1.027, V21: 1.528, V22: 0.971, V23: 0.125, V24: -0.634, V25: -0.278, V26: -0.098, V27: -0.455, V28: -0.709, Amount: 263.000.
364
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.489, V2: 1.039, V3: 1.413, V4: 0.110, V5: 0.206, V6: -0.722, V7: 0.677, V8: -0.007, V9: -0.568, V10: -0.586, V11: 0.470, V12: 0.649, V13: 1.043, V14: -0.575, V15: 1.017, V16: -0.052, V17: 0.349, V18: -0.810, V19: -0.581, V20: 0.181, V21: -0.190, V22: -0.440, V23: 0.084, V24: 0.375, V25: -0.235, V26: 0.078, V27: 0.262, V28: 0.103, Amount: 12.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.489, V2: 1.039, V3: 1.413, V4: 0.110, V5: 0.206, V6: -0.722, V7: 0.677, V8: -0.007, V9: -0.568, V10: -0.586, V11: 0.470, V12: 0.649, V13: 1.043, V14: -0.575, V15: 1.017, V16: -0.052, V17: 0.349, V18: -0.810, V19: -0.581, V20: 0.181, V21: -0.190, V22: -0.440, V23: 0.084, V24: 0.375, V25: -0.235, V26: 0.078, V27: 0.262, V28: 0.103, Amount: 12.990.
365
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -4.643, V2: 3.804, V3: -1.674, V4: -0.812, V5: 0.045, V6: 7.069, V7: -8.148, V8: -13.489, V9: -1.632, V10: -3.833, V11: -1.461, V12: 1.694, V13: -1.302, V14: 2.634, V15: -0.315, V16: 1.570, V17: 0.549, V18: 0.711, V19: -0.443, V20: 3.809, V21: -7.566, V22: 2.077, V23: 1.123, V24: 0.911, V25: -0.003, V26: 0.273, V27: -0.293, V28: 0.217, Amount: 15.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -4.643, V2: 3.804, V3: -1.674, V4: -0.812, V5: 0.045, V6: 7.069, V7: -8.148, V8: -13.489, V9: -1.632, V10: -3.833, V11: -1.461, V12: 1.694, V13: -1.302, V14: 2.634, V15: -0.315, V16: 1.570, V17: 0.549, V18: 0.711, V19: -0.443, V20: 3.809, V21: -7.566, V22: 2.077, V23: 1.123, V24: 0.911, V25: -0.003, V26: 0.273, V27: -0.293, V28: 0.217, Amount: 15.990.
366
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.147, V2: -0.871, V3: 0.750, V4: -1.933, V5: -1.577, V6: -0.913, V7: -0.748, V8: 0.085, V9: 2.355, V10: -1.444, V11: 1.376, V12: 1.173, V13: -1.139, V14: 0.267, V15: 1.065, V16: -0.676, V17: -0.123, V18: 0.976, V19: 1.216, V20: -0.078, V21: 0.224, V22: 0.795, V23: -0.170, V24: 0.563, V25: 0.572, V26: -0.671, V27: 0.088, V28: 0.028, Amount: 44.960.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.147, V2: -0.871, V3: 0.750, V4: -1.933, V5: -1.577, V6: -0.913, V7: -0.748, V8: 0.085, V9: 2.355, V10: -1.444, V11: 1.376, V12: 1.173, V13: -1.139, V14: 0.267, V15: 1.065, V16: -0.676, V17: -0.123, V18: 0.976, V19: 1.216, V20: -0.078, V21: 0.224, V22: 0.795, V23: -0.170, V24: 0.563, V25: 0.572, V26: -0.671, V27: 0.088, V28: 0.028, Amount: 44.960.
367
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.466, V2: -0.208, V3: 3.069, V4: 0.226, V5: 0.498, V6: -0.466, V7: 0.305, V8: -0.447, V9: 1.075, V10: 0.167, V11: -0.122, V12: -0.551, V13: -1.475, V14: -0.823, V15: 0.444, V16: -0.173, V17: -0.490, V18: -0.442, V19: -1.495, V20: -0.341, V21: -0.065, V22: 0.433, V23: -0.246, V24: 0.585, V25: -0.183, V26: -0.674, V27: -0.725, V28: -0.415, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.466, V2: -0.208, V3: 3.069, V4: 0.226, V5: 0.498, V6: -0.466, V7: 0.305, V8: -0.447, V9: 1.075, V10: 0.167, V11: -0.122, V12: -0.551, V13: -1.475, V14: -0.823, V15: 0.444, V16: -0.173, V17: -0.490, V18: -0.442, V19: -1.495, V20: -0.341, V21: -0.065, V22: 0.433, V23: -0.246, V24: 0.585, V25: -0.183, V26: -0.674, V27: -0.725, V28: -0.415, Amount: 1.000.
368
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.218, V2: 0.115, V3: 0.458, V4: 0.581, V5: -0.402, V6: -0.550, V7: -0.101, V8: 0.004, V9: 0.230, V10: -0.073, V11: -0.211, V12: -0.208, V13: -0.947, V14: 0.515, V15: 1.420, V16: 0.070, V17: -0.075, V18: -0.837, V19: -0.467, V20: -0.206, V21: -0.245, V22: -0.732, V23: 0.181, V24: 0.029, V25: 0.104, V26: 0.129, V27: -0.021, V28: 0.013, Amount: 0.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.218, V2: 0.115, V3: 0.458, V4: 0.581, V5: -0.402, V6: -0.550, V7: -0.101, V8: 0.004, V9: 0.230, V10: -0.073, V11: -0.211, V12: -0.208, V13: -0.947, V14: 0.515, V15: 1.420, V16: 0.070, V17: -0.075, V18: -0.837, V19: -0.467, V20: -0.206, V21: -0.245, V22: -0.732, V23: 0.181, V24: 0.029, V25: 0.104, V26: 0.129, V27: -0.021, V28: 0.013, Amount: 0.890.
369
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.754, V2: 0.801, V3: 0.968, V4: -1.506, V5: 0.138, V6: -0.258, V7: 0.423, V8: 0.162, V9: 0.130, V10: -0.142, V11: 0.944, V12: -0.117, V13: -1.495, V14: 0.414, V15: 0.139, V16: 0.518, V17: -0.664, V18: -0.142, V19: -0.641, V20: -0.134, V21: 0.026, V22: -0.106, V23: -0.065, V24: -0.298, V25: -0.357, V26: 0.764, V27: -0.226, V28: 0.061, Amount: 0.770.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.754, V2: 0.801, V3: 0.968, V4: -1.506, V5: 0.138, V6: -0.258, V7: 0.423, V8: 0.162, V9: 0.130, V10: -0.142, V11: 0.944, V12: -0.117, V13: -1.495, V14: 0.414, V15: 0.139, V16: 0.518, V17: -0.664, V18: -0.142, V19: -0.641, V20: -0.134, V21: 0.026, V22: -0.106, V23: -0.065, V24: -0.298, V25: -0.357, V26: 0.764, V27: -0.226, V28: 0.061, Amount: 0.770.
370
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.277, V2: 0.904, V3: -0.846, V4: -0.775, V5: 0.649, V6: 0.158, V7: -0.274, V8: -2.531, V9: 0.097, V10: -0.199, V11: 0.094, V12: 1.020, V13: 0.624, V14: 0.561, V15: -0.264, V16: 0.445, V17: -1.139, V18: 0.745, V19: -0.070, V20: -0.609, V21: 2.520, V22: -0.044, V23: -0.185, V24: -1.019, V25: 1.219, V26: -0.004, V27: 0.149, V28: 0.111, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.277, V2: 0.904, V3: -0.846, V4: -0.775, V5: 0.649, V6: 0.158, V7: -0.274, V8: -2.531, V9: 0.097, V10: -0.199, V11: 0.094, V12: 1.020, V13: 0.624, V14: 0.561, V15: -0.264, V16: 0.445, V17: -1.139, V18: 0.745, V19: -0.070, V20: -0.609, V21: 2.520, V22: -0.044, V23: -0.185, V24: -1.019, V25: 1.219, V26: -0.004, V27: 0.149, V28: 0.111, Amount: 1.000.
371
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.010, V2: 1.515, V3: -0.304, V4: -0.462, V5: 0.571, V6: -0.462, V7: 0.170, V8: 0.876, V9: -0.711, V10: -1.538, V11: 0.800, V12: 0.849, V13: 0.194, V14: -1.173, V15: -1.413, V16: 0.483, V17: 1.280, V18: 0.856, V19: 0.171, V20: -0.087, V21: 0.082, V22: 0.129, V23: -0.484, V24: 0.715, V25: 0.971, V26: 0.708, V27: -0.274, V28: -0.017, Amount: 9.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.010, V2: 1.515, V3: -0.304, V4: -0.462, V5: 0.571, V6: -0.462, V7: 0.170, V8: 0.876, V9: -0.711, V10: -1.538, V11: 0.800, V12: 0.849, V13: 0.194, V14: -1.173, V15: -1.413, V16: 0.483, V17: 1.280, V18: 0.856, V19: 0.171, V20: -0.087, V21: 0.082, V22: 0.129, V23: -0.484, V24: 0.715, V25: 0.971, V26: 0.708, V27: -0.274, V28: -0.017, Amount: 9.990.
372
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.122, V2: 0.208, V3: 0.541, V4: 1.477, V5: -0.292, V6: -0.364, V7: 0.112, V8: -0.059, V9: 0.219, V10: -0.139, V11: -0.189, V12: 0.811, V13: 0.137, V14: 0.024, V15: -0.153, V16: -0.833, V17: 0.365, V18: -1.123, V19: -0.496, V20: -0.160, V21: -0.070, V22: 0.026, V23: -0.035, V24: 0.418, V25: 0.626, V26: -0.335, V27: 0.041, V28: 0.022, Amount: 18.560.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.122, V2: 0.208, V3: 0.541, V4: 1.477, V5: -0.292, V6: -0.364, V7: 0.112, V8: -0.059, V9: 0.219, V10: -0.139, V11: -0.189, V12: 0.811, V13: 0.137, V14: 0.024, V15: -0.153, V16: -0.833, V17: 0.365, V18: -1.123, V19: -0.496, V20: -0.160, V21: -0.070, V22: 0.026, V23: -0.035, V24: 0.418, V25: 0.626, V26: -0.335, V27: 0.041, V28: 0.022, Amount: 18.560.
373
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.443, V2: -1.151, V3: -0.572, V4: 1.551, V5: -1.014, V6: -0.402, V7: -0.300, V8: 0.031, V9: 1.243, V10: 0.165, V11: -1.347, V12: -1.024, V13: -2.231, V14: 0.542, V15: 1.125, V16: 0.569, V17: -0.613, V18: 0.627, V19: -0.876, V20: 0.129, V21: 0.358, V22: 0.482, V23: -0.068, V24: -0.152, V25: -0.273, V26: -0.574, V27: -0.005, V28: 0.010, Amount: 270.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.443, V2: -1.151, V3: -0.572, V4: 1.551, V5: -1.014, V6: -0.402, V7: -0.300, V8: 0.031, V9: 1.243, V10: 0.165, V11: -1.347, V12: -1.024, V13: -2.231, V14: 0.542, V15: 1.125, V16: 0.569, V17: -0.613, V18: 0.627, V19: -0.876, V20: 0.129, V21: 0.358, V22: 0.482, V23: -0.068, V24: -0.152, V25: -0.273, V26: -0.574, V27: -0.005, V28: 0.010, Amount: 270.000.
374
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.132, V2: -0.016, V3: -2.371, V4: 0.114, V5: 0.797, V6: -1.116, V7: 0.713, V8: -0.492, V9: 0.144, V10: 0.229, V11: -1.653, V12: -0.446, V13: -0.371, V14: 0.779, V15: 0.404, V16: -0.018, V17: -0.652, V18: -0.278, V19: 0.349, V20: -0.162, V21: 0.023, V22: 0.085, V23: -0.114, V24: -0.953, V25: 0.347, V26: 0.676, V27: -0.126, V28: -0.086, Amount: 36.290.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.132, V2: -0.016, V3: -2.371, V4: 0.114, V5: 0.797, V6: -1.116, V7: 0.713, V8: -0.492, V9: 0.144, V10: 0.229, V11: -1.653, V12: -0.446, V13: -0.371, V14: 0.779, V15: 0.404, V16: -0.018, V17: -0.652, V18: -0.278, V19: 0.349, V20: -0.162, V21: 0.023, V22: 0.085, V23: -0.114, V24: -0.953, V25: 0.347, V26: 0.676, V27: -0.126, V28: -0.086, Amount: 36.290.
375
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.519, V2: -0.901, V3: 0.695, V4: -1.343, V5: -1.599, V6: -0.897, V7: -1.009, V8: -0.246, V9: -1.892, V10: 1.397, V11: -0.285, V12: -0.314, V13: 1.575, V14: -0.597, V15: 0.605, V16: -0.290, V17: 0.378, V18: -0.111, V19: -0.292, V20: -0.270, V21: -0.246, V22: -0.264, V23: 0.090, V24: 0.390, V25: 0.290, V26: -0.285, V27: 0.049, V28: 0.028, Amount: 7.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.519, V2: -0.901, V3: 0.695, V4: -1.343, V5: -1.599, V6: -0.897, V7: -1.009, V8: -0.246, V9: -1.892, V10: 1.397, V11: -0.285, V12: -0.314, V13: 1.575, V14: -0.597, V15: 0.605, V16: -0.290, V17: 0.378, V18: -0.111, V19: -0.292, V20: -0.270, V21: -0.246, V22: -0.264, V23: 0.090, V24: 0.390, V25: 0.290, V26: -0.285, V27: 0.049, V28: 0.028, Amount: 7.000.
376
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.716, V2: -0.643, V3: 0.603, V4: -1.703, V5: 0.378, V6: 2.322, V7: 1.010, V8: 0.080, V9: 0.495, V10: -0.288, V11: 0.871, V12: 0.064, V13: -0.303, V14: -0.334, V15: 0.924, V16: 0.170, V17: -0.521, V18: -0.534, V19: -0.697, V20: -0.662, V21: 0.072, V22: 0.963, V23: 0.032, V24: -0.835, V25: -0.456, V26: 1.308, V27: -0.432, V28: 0.039, Amount: 254.080.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.716, V2: -0.643, V3: 0.603, V4: -1.703, V5: 0.378, V6: 2.322, V7: 1.010, V8: 0.080, V9: 0.495, V10: -0.288, V11: 0.871, V12: 0.064, V13: -0.303, V14: -0.334, V15: 0.924, V16: 0.170, V17: -0.521, V18: -0.534, V19: -0.697, V20: -0.662, V21: 0.072, V22: 0.963, V23: 0.032, V24: -0.835, V25: -0.456, V26: 1.308, V27: -0.432, V28: 0.039, Amount: 254.080.
377
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.645, V2: 0.579, V3: 1.059, V4: 0.851, V5: -0.204, V6: -0.361, V7: 0.987, V8: 0.063, V9: -0.654, V10: 0.080, V11: 0.972, V12: -0.114, V13: -1.275, V14: 0.771, V15: 0.467, V16: -0.055, V17: -0.379, V18: 0.805, V19: 0.667, V20: 0.378, V21: 0.231, V22: 0.485, V23: 0.164, V24: 0.294, V25: -0.208, V26: -0.335, V27: 0.357, V28: 0.224, Amount: 134.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.645, V2: 0.579, V3: 1.059, V4: 0.851, V5: -0.204, V6: -0.361, V7: 0.987, V8: 0.063, V9: -0.654, V10: 0.080, V11: 0.972, V12: -0.114, V13: -1.275, V14: 0.771, V15: 0.467, V16: -0.055, V17: -0.379, V18: 0.805, V19: 0.667, V20: 0.378, V21: 0.231, V22: 0.485, V23: 0.164, V24: 0.294, V25: -0.208, V26: -0.335, V27: 0.357, V28: 0.224, Amount: 134.950.
378
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.781, V2: -3.547, V3: -0.704, V4: 1.456, V5: 2.997, V6: -2.110, V7: -2.220, V8: -0.474, V9: 0.110, V10: 2.382, V11: 0.253, V12: 0.369, V13: -0.107, V14: -0.094, V15: -0.035, V16: -3.135, V17: 0.516, V18: 1.883, V19: 2.277, V20: -0.801, V21: -0.223, V22: 0.907, V23: -0.281, V24: -0.274, V25: -1.957, V26: 0.013, V27: 0.300, V28: -0.520, Amount: 11.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.781, V2: -3.547, V3: -0.704, V4: 1.456, V5: 2.997, V6: -2.110, V7: -2.220, V8: -0.474, V9: 0.110, V10: 2.382, V11: 0.253, V12: 0.369, V13: -0.107, V14: -0.094, V15: -0.035, V16: -3.135, V17: 0.516, V18: 1.883, V19: 2.277, V20: -0.801, V21: -0.223, V22: 0.907, V23: -0.281, V24: -0.274, V25: -1.957, V26: 0.013, V27: 0.300, V28: -0.520, Amount: 11.500.
379
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.238, V2: 0.245, V3: 0.173, V4: 0.505, V5: -0.215, V6: -0.575, V7: -0.074, V8: 0.006, V9: -0.094, V10: -0.092, V11: 1.210, V12: 0.427, V13: -0.527, V14: 0.033, V15: 0.497, V16: 0.806, V17: -0.336, V18: 0.394, V19: 0.222, V20: -0.107, V21: -0.267, V22: -0.838, V23: 0.085, V24: -0.062, V25: 0.206, V26: 0.100, V27: -0.032, V28: 0.016, Amount: 0.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.238, V2: 0.245, V3: 0.173, V4: 0.505, V5: -0.215, V6: -0.575, V7: -0.074, V8: 0.006, V9: -0.094, V10: -0.092, V11: 1.210, V12: 0.427, V13: -0.527, V14: 0.033, V15: 0.497, V16: 0.806, V17: -0.336, V18: 0.394, V19: 0.222, V20: -0.107, V21: -0.267, V22: -0.838, V23: 0.085, V24: -0.062, V25: 0.206, V26: 0.100, V27: -0.032, V28: 0.016, Amount: 0.890.
380
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.365, V2: -1.174, V3: -1.156, V4: -1.664, V5: -0.814, V6: -0.548, V7: -0.908, V8: -0.335, V9: -1.442, V10: 1.529, V11: -1.338, V12: -0.103, V13: 2.228, V14: -0.769, V15: -0.309, V16: -0.551, V17: 0.209, V18: -0.209, V19: 0.073, V20: -0.341, V21: -0.199, V22: 0.075, V23: 0.131, V24: -0.746, V25: -0.020, V26: -0.115, V27: 0.024, V28: -0.058, Amount: 5.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.365, V2: -1.174, V3: -1.156, V4: -1.664, V5: -0.814, V6: -0.548, V7: -0.908, V8: -0.335, V9: -1.442, V10: 1.529, V11: -1.338, V12: -0.103, V13: 2.228, V14: -0.769, V15: -0.309, V16: -0.551, V17: 0.209, V18: -0.209, V19: 0.073, V20: -0.341, V21: -0.199, V22: 0.075, V23: 0.131, V24: -0.746, V25: -0.020, V26: -0.115, V27: 0.024, V28: -0.058, Amount: 5.000.
381
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.079, V2: 1.825, V3: 0.499, V4: 0.895, V5: -0.493, V6: -0.890, V7: 0.094, V8: 0.674, V9: -0.869, V10: -0.365, V11: -0.730, V12: 0.419, V13: 0.551, V14: 0.824, V15: 0.901, V16: -0.125, V17: 0.118, V18: 0.117, V19: 0.391, V20: -0.086, V21: 0.213, V22: 0.502, V23: -0.067, V24: 0.409, V25: -0.147, V26: -0.327, V27: 0.033, V28: 0.100, Amount: 1.080.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.079, V2: 1.825, V3: 0.499, V4: 0.895, V5: -0.493, V6: -0.890, V7: 0.094, V8: 0.674, V9: -0.869, V10: -0.365, V11: -0.730, V12: 0.419, V13: 0.551, V14: 0.824, V15: 0.901, V16: -0.125, V17: 0.118, V18: 0.117, V19: 0.391, V20: -0.086, V21: 0.213, V22: 0.502, V23: -0.067, V24: 0.409, V25: -0.147, V26: -0.327, V27: 0.033, V28: 0.100, Amount: 1.080.
382
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.739, V2: 1.305, V3: 1.028, V4: 0.039, V5: -0.366, V6: -0.840, V7: 0.226, V8: 0.513, V9: -0.771, V10: -0.554, V11: 1.448, V12: 0.607, V13: -0.374, V14: 0.182, V15: 0.187, V16: 0.662, V17: 0.025, V18: 0.382, V19: 0.120, V20: -0.017, V21: -0.161, V22: -0.586, V23: 0.060, V24: 0.471, V25: -0.208, V26: 0.046, V27: 0.114, V28: 0.026, Amount: 4.480.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.739, V2: 1.305, V3: 1.028, V4: 0.039, V5: -0.366, V6: -0.840, V7: 0.226, V8: 0.513, V9: -0.771, V10: -0.554, V11: 1.448, V12: 0.607, V13: -0.374, V14: 0.182, V15: 0.187, V16: 0.662, V17: 0.025, V18: 0.382, V19: 0.120, V20: -0.017, V21: -0.161, V22: -0.586, V23: 0.060, V24: 0.471, V25: -0.208, V26: 0.046, V27: 0.114, V28: 0.026, Amount: 4.480.
383
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.109, V2: -0.562, V3: 1.071, V4: 0.298, V5: -1.300, V6: -0.380, V7: -0.620, V8: 0.072, V9: 1.283, V10: -0.460, V11: -0.887, V12: 0.285, V13: -0.568, V14: -0.434, V15: -0.236, V16: -0.088, V17: 0.178, V18: -0.561, V19: 0.452, V20: -0.006, V21: -0.208, V22: -0.486, V23: 0.041, V24: 0.460, V25: 0.098, V26: 0.938, V27: -0.047, V28: 0.022, Amount: 61.180.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.109, V2: -0.562, V3: 1.071, V4: 0.298, V5: -1.300, V6: -0.380, V7: -0.620, V8: 0.072, V9: 1.283, V10: -0.460, V11: -0.887, V12: 0.285, V13: -0.568, V14: -0.434, V15: -0.236, V16: -0.088, V17: 0.178, V18: -0.561, V19: 0.452, V20: -0.006, V21: -0.208, V22: -0.486, V23: 0.041, V24: 0.460, V25: 0.098, V26: 0.938, V27: -0.047, V28: 0.022, Amount: 61.180.
384
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.363, V2: 0.763, V3: 0.234, V4: 0.119, V5: 1.509, V6: -0.285, V7: 1.554, V8: -0.233, V9: -0.658, V10: -0.163, V11: 0.385, V12: -0.176, V13: -1.704, V14: 0.679, V15: -1.416, V16: -0.592, V17: -0.495, V18: 0.168, V19: 0.008, V20: -0.096, V21: 0.140, V22: 0.508, V23: -0.312, V24: 0.674, V25: 0.279, V26: -0.602, V27: -0.061, V28: -0.081, Amount: 29.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.363, V2: 0.763, V3: 0.234, V4: 0.119, V5: 1.509, V6: -0.285, V7: 1.554, V8: -0.233, V9: -0.658, V10: -0.163, V11: 0.385, V12: -0.176, V13: -1.704, V14: 0.679, V15: -1.416, V16: -0.592, V17: -0.495, V18: 0.168, V19: 0.008, V20: -0.096, V21: 0.140, V22: 0.508, V23: -0.312, V24: 0.674, V25: 0.279, V26: -0.602, V27: -0.061, V28: -0.081, Amount: 29.900.
385
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.134, V2: 0.081, V3: 1.325, V4: 1.345, V5: -0.609, V6: 0.384, V7: -0.701, V8: 0.129, V9: 1.807, V10: -0.430, V11: 1.707, V12: -0.980, V13: 2.524, V14: 1.077, V15: -1.331, V16: 0.301, V17: 0.062, V18: 0.708, V19: -0.006, V20: -0.096, V21: -0.172, V22: -0.038, V23: -0.058, V24: -0.029, V25: 0.435, V26: -0.448, V27: 0.047, V28: 0.021, Amount: 11.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.134, V2: 0.081, V3: 1.325, V4: 1.345, V5: -0.609, V6: 0.384, V7: -0.701, V8: 0.129, V9: 1.807, V10: -0.430, V11: 1.707, V12: -0.980, V13: 2.524, V14: 1.077, V15: -1.331, V16: 0.301, V17: 0.062, V18: 0.708, V19: -0.006, V20: -0.096, V21: -0.172, V22: -0.038, V23: -0.058, V24: -0.029, V25: 0.435, V26: -0.448, V27: 0.047, V28: 0.021, Amount: 11.000.
386
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.067, V2: 0.407, V3: 0.649, V4: -0.065, V5: 1.366, V6: -0.479, V7: 0.086, V8: -0.007, V9: 2.486, V10: 0.057, V11: -0.692, V12: -2.172, V13: 1.432, V14: 0.707, V15: -2.580, V16: -0.836, V17: 0.815, V18: -0.683, V19: 0.402, V20: 0.021, V21: -0.715, V22: -0.970, V23: -0.264, V24: 0.557, V25: 0.107, V26: 0.060, V27: 0.499, V28: 0.692, Amount: 0.010.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.067, V2: 0.407, V3: 0.649, V4: -0.065, V5: 1.366, V6: -0.479, V7: 0.086, V8: -0.007, V9: 2.486, V10: 0.057, V11: -0.692, V12: -2.172, V13: 1.432, V14: 0.707, V15: -2.580, V16: -0.836, V17: 0.815, V18: -0.683, V19: 0.402, V20: 0.021, V21: -0.715, V22: -0.970, V23: -0.264, V24: 0.557, V25: 0.107, V26: 0.060, V27: 0.499, V28: 0.692, Amount: 0.010.
387
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.151, V2: -0.942, V3: 0.101, V4: 2.822, V5: -0.330, V6: 0.933, V7: 0.141, V8: 0.326, V9: -0.746, V10: 0.085, V11: 1.825, V12: 0.283, V13: -0.467, V14: -0.634, V15: 0.802, V16: 1.005, V17: 0.480, V18: 0.312, V19: -1.951, V20: 0.731, V21: 0.418, V22: 0.183, V23: -0.395, V24: -0.370, V25: 0.041, V26: 0.054, V27: -0.032, V28: 0.117, Amount: 456.400.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.151, V2: -0.942, V3: 0.101, V4: 2.822, V5: -0.330, V6: 0.933, V7: 0.141, V8: 0.326, V9: -0.746, V10: 0.085, V11: 1.825, V12: 0.283, V13: -0.467, V14: -0.634, V15: 0.802, V16: 1.005, V17: 0.480, V18: 0.312, V19: -1.951, V20: 0.731, V21: 0.418, V22: 0.183, V23: -0.395, V24: -0.370, V25: 0.041, V26: 0.054, V27: -0.032, V28: 0.117, Amount: 456.400.
388
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.159, V2: -0.046, V3: -0.080, V4: 1.542, V5: 1.717, V6: 4.414, V7: -1.123, V8: 1.162, V9: -0.022, V10: 0.549, V11: -0.729, V12: -0.010, V13: -0.011, V14: -0.270, V15: -0.113, V16: 0.949, V17: -0.914, V18: 0.248, V19: -0.473, V20: -0.016, V21: -0.133, V22: -0.406, V23: -0.000, V24: 0.993, V25: 0.453, V26: -0.029, V27: 0.043, V28: 0.031, Amount: 11.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.159, V2: -0.046, V3: -0.080, V4: 1.542, V5: 1.717, V6: 4.414, V7: -1.123, V8: 1.162, V9: -0.022, V10: 0.549, V11: -0.729, V12: -0.010, V13: -0.011, V14: -0.270, V15: -0.113, V16: 0.949, V17: -0.914, V18: 0.248, V19: -0.473, V20: -0.016, V21: -0.133, V22: -0.406, V23: -0.000, V24: 0.993, V25: 0.453, V26: -0.029, V27: 0.043, V28: 0.031, Amount: 11.990.
389
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.727, V2: 1.100, V3: 0.778, V4: 0.882, V5: -0.216, V6: -0.485, V7: 0.709, V8: 0.268, V9: -0.862, V10: -0.540, V11: -1.000, V12: -0.171, V13: 0.061, V14: 0.664, V15: 1.042, V16: -0.081, V17: -0.137, V18: 0.308, V19: 0.562, V20: 0.080, V21: 0.209, V22: 0.367, V23: -0.019, V24: 0.031, V25: 0.002, V26: -0.284, V27: 0.000, V28: 0.080, Amount: 85.250.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.727, V2: 1.100, V3: 0.778, V4: 0.882, V5: -0.216, V6: -0.485, V7: 0.709, V8: 0.268, V9: -0.862, V10: -0.540, V11: -1.000, V12: -0.171, V13: 0.061, V14: 0.664, V15: 1.042, V16: -0.081, V17: -0.137, V18: 0.308, V19: 0.562, V20: 0.080, V21: 0.209, V22: 0.367, V23: -0.019, V24: 0.031, V25: 0.002, V26: -0.284, V27: 0.000, V28: 0.080, Amount: 85.250.
390
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.670, V2: -1.023, V3: -0.769, V4: 0.456, V5: -0.759, V6: -0.272, V7: -0.459, V8: 0.045, V9: 1.500, V10: -0.135, V11: -1.234, V12: -0.627, V13: -1.512, V14: 0.352, V15: 1.258, V16: 0.448, V17: -0.635, V18: 0.611, V19: -0.368, V20: 0.063, V21: 0.288, V22: 0.485, V23: 0.028, V24: 0.636, V25: -0.230, V26: -0.286, V27: -0.016, V28: -0.003, Amount: 183.750.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.670, V2: -1.023, V3: -0.769, V4: 0.456, V5: -0.759, V6: -0.272, V7: -0.459, V8: 0.045, V9: 1.500, V10: -0.135, V11: -1.234, V12: -0.627, V13: -1.512, V14: 0.352, V15: 1.258, V16: 0.448, V17: -0.635, V18: 0.611, V19: -0.368, V20: 0.063, V21: 0.288, V22: 0.485, V23: 0.028, V24: 0.636, V25: -0.230, V26: -0.286, V27: -0.016, V28: -0.003, Amount: 183.750.
391
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.315, V2: 0.330, V3: 0.030, V4: -0.799, V5: 1.305, V6: -0.849, V7: 0.830, V8: -0.295, V9: 0.097, V10: 0.206, V11: 0.287, V12: 0.452, V13: -0.335, V14: 0.165, V15: -1.139, V16: 0.133, V17: -0.982, V18: -0.069, V19: 0.372, V20: -0.082, V21: -0.200, V22: -0.235, V23: 0.051, V24: -0.491, V25: -1.412, V26: -0.041, V27: 0.218, V28: 0.060, Amount: 7.230.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.315, V2: 0.330, V3: 0.030, V4: -0.799, V5: 1.305, V6: -0.849, V7: 0.830, V8: -0.295, V9: 0.097, V10: 0.206, V11: 0.287, V12: 0.452, V13: -0.335, V14: 0.165, V15: -1.139, V16: 0.133, V17: -0.982, V18: -0.069, V19: 0.372, V20: -0.082, V21: -0.200, V22: -0.235, V23: 0.051, V24: -0.491, V25: -1.412, V26: -0.041, V27: 0.218, V28: 0.060, Amount: 7.230.
392
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -7.680, V2: 4.102, V3: -2.443, V4: 0.776, V5: -5.885, V6: 0.534, V7: -5.068, V8: 5.638, V9: 0.061, V10: 0.554, V11: -3.448, V12: 2.508, V13: 1.832, V14: 1.431, V15: -1.644, V16: -0.979, V17: 2.556, V18: 1.892, V19: -0.261, V20: -0.273, V21: -0.077, V22: -0.074, V23: -0.050, V24: -0.003, V25: 1.194, V26: -0.113, V27: -0.094, V28: -0.074, Amount: 20.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -7.680, V2: 4.102, V3: -2.443, V4: 0.776, V5: -5.885, V6: 0.534, V7: -5.068, V8: 5.638, V9: 0.061, V10: 0.554, V11: -3.448, V12: 2.508, V13: 1.832, V14: 1.431, V15: -1.644, V16: -0.979, V17: 2.556, V18: 1.892, V19: -0.261, V20: -0.273, V21: -0.077, V22: -0.074, V23: -0.050, V24: -0.003, V25: 1.194, V26: -0.113, V27: -0.094, V28: -0.074, Amount: 20.000.
393
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.235, V2: 1.121, V3: -1.021, V4: -0.261, V5: 0.496, V6: -0.876, V7: 0.457, V8: 0.332, V9: -0.243, V10: -0.925, V11: 0.569, V12: -0.280, V13: -1.425, V14: -0.162, V15: 0.187, V16: 0.479, V17: 0.448, V18: 1.462, V19: 0.168, V20: -0.319, V21: 0.381, V22: 0.961, V23: -0.201, V24: -0.504, V25: -0.432, V26: -0.157, V27: -0.111, V28: 0.032, Amount: 12.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.235, V2: 1.121, V3: -1.021, V4: -0.261, V5: 0.496, V6: -0.876, V7: 0.457, V8: 0.332, V9: -0.243, V10: -0.925, V11: 0.569, V12: -0.280, V13: -1.425, V14: -0.162, V15: 0.187, V16: 0.479, V17: 0.448, V18: 1.462, V19: 0.168, V20: -0.319, V21: 0.381, V22: 0.961, V23: -0.201, V24: -0.504, V25: -0.432, V26: -0.157, V27: -0.111, V28: 0.032, Amount: 12.990.
394
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.220, V2: 2.268, V3: -1.712, V4: -1.040, V5: 0.105, V6: -0.417, V7: 0.032, V8: 1.001, V9: 0.613, V10: 0.765, V11: -1.724, V12: 0.524, V13: 0.749, V14: 0.316, V15: -0.286, V16: 0.265, V17: -0.335, V18: -0.612, V19: -0.000, V20: 0.298, V21: -0.404, V22: -0.816, V23: 0.263, V24: -0.042, V25: -0.054, V26: 0.150, V27: 0.142, V28: -0.020, Amount: 9.260.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.220, V2: 2.268, V3: -1.712, V4: -1.040, V5: 0.105, V6: -0.417, V7: 0.032, V8: 1.001, V9: 0.613, V10: 0.765, V11: -1.724, V12: 0.524, V13: 0.749, V14: 0.316, V15: -0.286, V16: 0.265, V17: -0.335, V18: -0.612, V19: -0.000, V20: 0.298, V21: -0.404, V22: -0.816, V23: 0.263, V24: -0.042, V25: -0.054, V26: 0.150, V27: 0.142, V28: -0.020, Amount: 9.260.
395
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.559, V2: 1.151, V3: 1.758, V4: -0.045, V5: -0.138, V6: -1.072, V7: 0.895, V8: -0.292, V9: -0.070, V10: 0.211, V11: -0.006, V12: -0.060, V13: -0.124, V14: -0.103, V15: 0.877, V16: 0.002, V17: -0.383, V18: -0.495, V19: -0.135, V20: 0.277, V21: -0.290, V22: -0.536, V23: -0.014, V24: 0.687, V25: -0.216, V26: 0.027, V27: 0.209, V28: -0.040, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.559, V2: 1.151, V3: 1.758, V4: -0.045, V5: -0.138, V6: -1.072, V7: 0.895, V8: -0.292, V9: -0.070, V10: 0.211, V11: -0.006, V12: -0.060, V13: -0.124, V14: -0.103, V15: 0.877, V16: 0.002, V17: -0.383, V18: -0.495, V19: -0.135, V20: 0.277, V21: -0.290, V22: -0.536, V23: -0.014, V24: 0.687, V25: -0.216, V26: 0.027, V27: 0.209, V28: -0.040, Amount: 1.980.
396
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.200, V2: 0.461, V3: -1.002, V4: 1.928, V5: 2.470, V6: 3.981, V7: -0.666, V8: 0.903, V9: 0.917, V10: -0.250, V11: 0.488, V12: -2.739, V13: 1.381, V14: 0.267, V15: -1.328, V16: 0.756, V17: 0.955, V18: 0.694, V19: -0.616, V20: -0.058, V21: -0.344, V22: -0.700, V23: -0.124, V24: 0.859, V25: 0.760, V26: 0.055, V27: -0.003, V28: 0.032, Amount: 7.740.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.200, V2: 0.461, V3: -1.002, V4: 1.928, V5: 2.470, V6: 3.981, V7: -0.666, V8: 0.903, V9: 0.917, V10: -0.250, V11: 0.488, V12: -2.739, V13: 1.381, V14: 0.267, V15: -1.328, V16: 0.756, V17: 0.955, V18: 0.694, V19: -0.616, V20: -0.058, V21: -0.344, V22: -0.700, V23: -0.124, V24: 0.859, V25: 0.760, V26: 0.055, V27: -0.003, V28: 0.032, Amount: 7.740.
397
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.244, V2: 0.004, V3: 0.472, V4: 0.200, V5: -0.785, V6: -1.270, V7: -0.025, V8: -0.254, V9: 0.207, V10: -0.126, V11: -0.014, V12: 0.246, V13: 0.023, V14: 0.224, V15: 1.025, V16: 0.148, V17: -0.191, V18: -0.424, V19: -0.202, V20: -0.057, V21: 0.091, V22: 0.282, V23: -0.042, V24: 0.812, V25: 0.355, V26: 1.093, V27: -0.084, V28: 0.007, Amount: 16.810.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.244, V2: 0.004, V3: 0.472, V4: 0.200, V5: -0.785, V6: -1.270, V7: -0.025, V8: -0.254, V9: 0.207, V10: -0.126, V11: -0.014, V12: 0.246, V13: 0.023, V14: 0.224, V15: 1.025, V16: 0.148, V17: -0.191, V18: -0.424, V19: -0.202, V20: -0.057, V21: 0.091, V22: 0.282, V23: -0.042, V24: 0.812, V25: 0.355, V26: 1.093, V27: -0.084, V28: 0.007, Amount: 16.810.
398
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.573, V2: -1.023, V3: -0.170, V4: -1.702, V5: -0.665, V6: 0.252, V7: -1.004, V8: -0.032, V9: -1.780, V10: 1.393, V11: -1.478, V12: -1.161, V13: 0.900, V14: -0.398, V15: 0.902, V16: -0.294, V17: 0.268, V18: -0.055, V19: -0.077, V20: -0.301, V21: -0.276, V22: -0.353, V23: -0.112, V24: -1.334, V25: 0.507, V26: -0.091, V27: 0.045, V28: 0.004, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.573, V2: -1.023, V3: -0.170, V4: -1.702, V5: -0.665, V6: 0.252, V7: -1.004, V8: -0.032, V9: -1.780, V10: 1.393, V11: -1.478, V12: -1.161, V13: 0.900, V14: -0.398, V15: 0.902, V16: -0.294, V17: 0.268, V18: -0.055, V19: -0.077, V20: -0.301, V21: -0.276, V22: -0.353, V23: -0.112, V24: -1.334, V25: 0.507, V26: -0.091, V27: 0.045, V28: 0.004, Amount: 15.000.
399
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.162, V2: 0.366, V3: 0.119, V4: 0.069, V5: 2.231, V6: -1.979, V7: 1.471, V8: -0.434, V9: -1.160, V10: -0.617, V11: -0.928, V12: 0.131, V13: 0.336, V14: 0.645, V15: -0.608, V16: -0.362, V17: -0.691, V18: -0.355, V19: -1.010, V20: 0.103, V21: 0.333, V22: 0.650, V23: -0.304, V24: 0.063, V25: 0.878, V26: -0.496, V27: 0.014, V28: 0.124, Amount: 36.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.162, V2: 0.366, V3: 0.119, V4: 0.069, V5: 2.231, V6: -1.979, V7: 1.471, V8: -0.434, V9: -1.160, V10: -0.617, V11: -0.928, V12: 0.131, V13: 0.336, V14: 0.645, V15: -0.608, V16: -0.362, V17: -0.691, V18: -0.355, V19: -1.010, V20: 0.103, V21: 0.333, V22: 0.650, V23: -0.304, V24: 0.063, V25: 0.878, V26: -0.496, V27: 0.014, V28: 0.124, Amount: 36.000.