text
stringlengths 1
636
| code
stringlengths 8
1.89k
|
---|---|
N must be odd at this point . So we can skip one element | for i in range ( 3 , int ( math . sqrt ( n ) ) + 1 , 2 ) : NEW_LINE |
While i divides n , print i and divide n | while ( n % i == 0 ) : NEW_LINE INDENT if ( ( int ( N / i ) - 1 ) % i != 0 ) : NEW_LINE INDENT return False NEW_LINE DEDENT n = int ( n / i ) NEW_LINE DEDENT |
This condition is to handle the case when n is a prime number > 2 | if ( n > 2 ) : NEW_LINE INDENT if ( ( int ( N / n ) - 1 ) % n != 0 ) : NEW_LINE INDENT return False NEW_LINE DEDENT DEDENT return True NEW_LINE |
Given Number N | n = 30 NEW_LINE |
Function Call | if ( isGiugaNum ( n ) ) : NEW_LINE INDENT print ( " Yes " ) NEW_LINE DEDENT else : NEW_LINE INDENT print ( " No " ) NEW_LINE DEDENT |
Python3 program for the above approach | import math ; NEW_LINE |
Function to check droll numbers | def isDroll ( n ) : NEW_LINE INDENT if ( n == 1 ) : NEW_LINE INDENT return False ; NEW_LINE DEDENT DEDENT |
To store sum of even prime factors | sum_even = 0 ; NEW_LINE |
To store sum of odd prime factors | sum_odd = 0 ; NEW_LINE |
Add the number of 2 s that divide n in sum_even | while ( n % 2 == 0 ) : NEW_LINE INDENT sum_even += 2 ; NEW_LINE n = n // 2 ; NEW_LINE DEDENT |
N must be odd at this point . So we can skip one element ( Note i = i + 2 ) | for i in range ( 3 , int ( math . sqrt ( n ) ) + 1 , 2 ) : NEW_LINE |
While i divides n , print i and divide n | while ( n % i == 0 ) : NEW_LINE INDENT sum_odd += i ; NEW_LINE n = n // i ; NEW_LINE DEDENT |
This condition is to handle the case when n is a prime number greater than 2 | if ( n > 2 ) : NEW_LINE INDENT sum_odd += n ; NEW_LINE DEDENT |
Condition to check droll number | return sum_even == sum_odd ; NEW_LINE |
Given Number N | N = 72 ; NEW_LINE |
Function Call | if ( isDroll ( N ) ) : NEW_LINE INDENT print ( " Yes " ) ; NEW_LINE DEDENT else : NEW_LINE INDENT print ( " No " ) ; NEW_LINE DEDENT |
Python3 program to count all pairs of divisors such that their sum is coprime with N | import math as m NEW_LINE |
Function to count all valid pairs | def CountPairs ( n ) : NEW_LINE |
initialize count | cnt = 0 NEW_LINE i = 1 NEW_LINE while i * i <= n : NEW_LINE INDENT if ( n % i == 0 ) : NEW_LINE INDENT div1 = i NEW_LINE div2 = n // i NEW_LINE sum = div1 + div2 ; NEW_LINE DEDENT DEDENT |
Check if sum of pair and n are coprime | if ( m . gcd ( sum , n ) == 1 ) : NEW_LINE INDENT cnt += 1 NEW_LINE DEDENT i += 1 NEW_LINE |
Return the result | return cnt NEW_LINE |
Driver code | n = 24 NEW_LINE print ( CountPairs ( n ) ) NEW_LINE |
Function to find if it is possible to make A equal to B | def isPossible ( A , B ) : NEW_LINE INDENT return ( A - B > 1 ) ; NEW_LINE DEDENT |
Driver Code | A = 10 ; B = 4 ; NEW_LINE |
Function Call | if ( isPossible ( A , B ) ) : NEW_LINE INDENT print ( " Yes " ) ; NEW_LINE DEDENT else : NEW_LINE INDENT print ( " No " ) ; NEW_LINE DEDENT |
Python3 program to maximize the sum of minimum difference of divisors of nodes in an n - ary tree | import math NEW_LINE |
Array to store the result at each node | sub = [ 0 for i in range ( 100005 ) ] NEW_LINE |
Function to get minimum difference between the divisors of a number | def minDivisorDifference ( n ) : NEW_LINE INDENT num1 = 0 NEW_LINE num2 = 0 NEW_LINE DEDENT |
Iterate from square root of N to N | for i in range ( int ( math . sqrt ( n ) ) , n + 1 ) : NEW_LINE INDENT if ( n % i == 0 ) : NEW_LINE INDENT num1 = i NEW_LINE num2 = n // i NEW_LINE break NEW_LINE DEDENT DEDENT |
Return absolute difference | return abs ( num1 - num2 ) NEW_LINE |
DFS function to calculate the maximum sum | def dfs ( g , u , par ) : NEW_LINE |
Store the min difference | sub [ u ] = minDivisorDifference ( u ) NEW_LINE mx = 0 NEW_LINE for c in g [ u ] : NEW_LINE INDENT if ( c != par ) : NEW_LINE INDENT ans = dfs ( g , c , u ) NEW_LINE mx = max ( mx , ans ) NEW_LINE DEDENT DEDENT |
Add the maximum of all children to sub [ u ] | sub [ u ] += mx NEW_LINE |
Return maximum sum of node ' u ' to its parent | return sub [ u ] NEW_LINE |
Driver code | if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT g = [ [ ] for i in range ( 100005 ) ] NEW_LINE edges = 6 NEW_LINE g [ 18 ] . append ( 7 ) NEW_LINE g [ 7 ] . append ( 18 ) NEW_LINE g [ 18 ] . append ( 15 ) NEW_LINE g [ 15 ] . append ( 18 ) NEW_LINE g [ 15 ] . append ( 2 ) NEW_LINE g [ 2 ] . append ( 15 ) NEW_LINE g [ 7 ] . append ( 4 ) NEW_LINE g [ 4 ] . append ( 7 ) NEW_LINE g [ 7 ] . append ( 12 ) NEW_LINE g [ 12 ] . append ( 7 ) NEW_LINE g [ 12 ] . append ( 9 ) NEW_LINE g [ 9 ] . append ( 12 ) NEW_LINE root = 18 NEW_LINE print ( dfs ( g , root , - 1 ) ) NEW_LINE DEDENT |
Function to check if N is a centered cubic number | def isCenteredcube ( N ) : NEW_LINE |
Iterating from 1 | i = 1 ; NEW_LINE |
Infinite loop | while ( True ) : NEW_LINE |
Finding ith_term | ith_term = ( ( 2 * i + 1 ) * ( i * i + i + 1 ) ) ; NEW_LINE |
Checking if the number N is a centered cube number | if ( ith_term == N ) : NEW_LINE INDENT return True ; NEW_LINE DEDENT |
If ith_term > N then N is not a centered cube number | if ( ith_term > N ) : NEW_LINE INDENT return False ; NEW_LINE DEDENT |
Incrementing i | i += 1 ; NEW_LINE |
Driver code | N = 9 ; NEW_LINE |
Function call | if ( isCenteredcube ( N ) ) : NEW_LINE INDENT print ( " Yes " ) ; NEW_LINE DEDENT else : NEW_LINE INDENT print ( " No " ) ; NEW_LINE DEDENT |
Function to calculate product of geometric series | def productOfGP ( a , r , n ) : NEW_LINE |
Initialise final product with 1 | product = 1 ; NEW_LINE for i in range ( 0 , n ) : NEW_LINE |
Multiply product with each term stored in a | product = product * a ; NEW_LINE a = a * r ; NEW_LINE |
Return the final product | return product ; NEW_LINE |
Given first term and common ratio | a = 1 NEW_LINE r = 2 ; NEW_LINE |
Number of terms | N = 4 ; NEW_LINE |
Function Call | print ( productOfGP ( a , r , N ) ) NEW_LINE |
Function to find GCD of a & b using Euclid Lemma | def gcd ( a , b ) : NEW_LINE |
Base Case | if ( b == 0 ) : NEW_LINE INDENT return a NEW_LINE DEDENT return gcd ( b , a % b ) NEW_LINE |
Function to find the LCM of all elements in arr [ ] | def findlcm ( arr , n ) : NEW_LINE |
Initialize result | ans = arr [ 0 ] NEW_LINE |
Iterate arr [ ] to find LCM | for i in range ( 1 , n ) : NEW_LINE INDENT ans = ( ( ( arr [ i ] * ans ) ) // ( gcd ( arr [ i ] , ans ) ) ) NEW_LINE DEDENT |
Return the final LCM | return ans NEW_LINE |
Function to find the sum of N fraction in reduced form | def addReduce ( n , num , den ) : NEW_LINE |
To store the sum of all final numerators | final_numerator = 0 NEW_LINE |
Find the LCM of all denominator | final_denominator = findlcm ( den , n ) NEW_LINE |
Find the sum of all N numerators & denominators | for i in range ( n ) : NEW_LINE |
Add each fraction one by one | final_numerator = ( final_numerator + ( num [ i ] ) * ( final_denominator // den [ i ] ) ) NEW_LINE |
Find GCD of final numerator and denominator | GCD = gcd ( final_numerator , final_denominator ) NEW_LINE |
Convert into reduced form by dividing from GCD | final_numerator //= GCD NEW_LINE final_denominator //= GCD NEW_LINE |
Print the final fraction | print ( final_numerator , " / " , final_denominator ) NEW_LINE |
Given N | N = 3 NEW_LINE |
Given Numerator | arr1 = [ 1 , 2 , 5 ] NEW_LINE |
Given Denominator | arr2 = [ 2 , 1 , 6 ] NEW_LINE |
Function call | addReduce ( N , arr1 , arr2 ) NEW_LINE |
Python3 program to find minimum possible lcm from any pair | import sys NEW_LINE |
Function to compute GCD of two numbers | def gcd ( a , b ) : NEW_LINE INDENT if ( b == 0 ) : NEW_LINE INDENT return a ; NEW_LINE DEDENT return gcd ( b , a % b ) ; NEW_LINE DEDENT |
Function that return minimum possible lcm from any pair | def minLCM ( arr , n ) : NEW_LINE INDENT ans = 1000000000 ; NEW_LINE for i in range ( n ) : NEW_LINE DEDENT |
Fix the ith element and iterate over all the array to find minimum LCM | for j in range ( i + 1 , n ) : NEW_LINE INDENT g = gcd ( arr [ i ] , arr [ j ] ) ; NEW_LINE lcm = arr [ i ] / g * arr [ j ] ; NEW_LINE ans = min ( ans , lcm ) ; NEW_LINE DEDENT return ans ; NEW_LINE |
Driver code | arr = [ 2 , 4 , 3 , 6 , 5 ] ; NEW_LINE print ( minLCM ( arr , 5 ) ) NEW_LINE |
Python3 implementation to find the values of x and y for the given equation with integer N | from math import pow , ceil NEW_LINE |
Function which find required x & y | def solve ( n ) : NEW_LINE |
Upper limit of x & y , if such x & y exists | upper_limit = ceil ( pow ( n , 1.0 / 4 ) ) ; NEW_LINE for x in range ( upper_limit + 1 ) : NEW_LINE INDENT for y in range ( upper_limit + 1 ) : NEW_LINE DEDENT |
num1 stores x ^ 4 | num1 = x * x * x * x ; NEW_LINE |
num2 stores y ^ 4 | num2 = y * y * y * y ; NEW_LINE |
If condition is satisfied the print and return | if ( num1 - num2 == n ) : NEW_LINE INDENT print ( " x ▁ = " , x , " , ▁ y ▁ = " , y ) ; NEW_LINE return ; NEW_LINE DEDENT |
If no such pair exists | print ( - 1 ) ; NEW_LINE |
Driver code | if __name__ == " _ _ main _ _ " : NEW_LINE INDENT n = 15 ; NEW_LINE solve ( n ) ; NEW_LINE DEDENT |
Python3 program for the above approach | import math NEW_LINE |
Function to check if count of even and odd divisors are equal | def divisorsSame ( n ) : NEW_LINE |
To store the count of even factors and odd factors | even_div = 0 ; odd_div = 0 ; NEW_LINE |
Loop till [ 1 , sqrt ( N ) ] | for i in range ( 1 , int ( math . sqrt ( n ) ) ) : NEW_LINE INDENT if ( n % i == 0 ) : NEW_LINE DEDENT |
If divisors are equal add only one | if ( n // i == i ) : NEW_LINE |
Check for even divisor | if ( i % 2 == 0 ) : NEW_LINE INDENT even_div += 1 ; NEW_LINE DEDENT |
Odd divisor | else : NEW_LINE INDENT odd_div += 1 ; NEW_LINE DEDENT |
Check for both divisor i . e . , i and N / i | else : NEW_LINE |
Check if i is odd or even | if ( i % 2 == 0 ) : NEW_LINE INDENT even_div += 1 ; NEW_LINE DEDENT else : NEW_LINE INDENT odd_div += 1 ; NEW_LINE DEDENT |
Check if N / i is odd or even | if ( n // ( i % 2 ) == 0 ) : NEW_LINE INDENT even_div += 1 ; NEW_LINE DEDENT else : NEW_LINE INDENT odd_div += 1 ; NEW_LINE DEDENT |
Return true if count of even_div and odd_div are equals | return ( even_div == odd_div ) ; NEW_LINE |
Given Number | N = 6 ; NEW_LINE |
Function Call | if ( divisorsSame ( N ) == 0 ) : NEW_LINE INDENT print ( " Yes " ) ; NEW_LINE DEDENT else : NEW_LINE INDENT print ( " No " ) ; NEW_LINE DEDENT |
Utility function to check if a number is prime or not | def isPrime ( n ) : NEW_LINE |
Corner cases | if n <= 1 : NEW_LINE INDENT return False NEW_LINE DEDENT if n <= 3 : NEW_LINE INDENT return True NEW_LINE DEDENT |
This is checked so that we can skip middle five numbers in below loop | if n % 2 == 0 or n % 3 == 0 : NEW_LINE INDENT return False NEW_LINE DEDENT i = 5 NEW_LINE while i * i <= n : NEW_LINE INDENT if ( n % i == 0 or n % ( i + 2 ) == 0 ) : NEW_LINE INDENT return False NEW_LINE DEDENT i += 6 NEW_LINE DEDENT return True NEW_LINE |
Function that returns true if n is a Balanced prime | def isBalancedPrime ( n ) : NEW_LINE |
If n is not a prime number or n is the first prime then return false | if not isPrime ( n ) or n == 2 : NEW_LINE INDENT return False NEW_LINE DEDENT |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.