text
stringlengths 1
636
| code
stringlengths 8
1.89k
|
|---|---|
Stores largest element of the array
|
max_value = - sys . maxsize - 1 NEW_LINE
|
Traverse the array , arr [ ]
|
for i in range ( 1 , N ) : NEW_LINE
|
Update max_value
|
max_value = max ( arr ) NEW_LINE
|
Stores GCD of array
|
GCDArr = arr [ 0 ] NEW_LINE
|
Update GCDArr
|
GCDArr = gcd ( GCDArr , arr [ i ] ) NEW_LINE
|
Stores distinct elements in the array by repeatedely inserting absolute difference of all possible pairs
|
answer = max_value // GCDArr NEW_LINE return answer + 1 NEW_LINE
|
Given array arr [ ]
|
arr = [ 4 , 12 , 16 , 24 ] NEW_LINE N = len ( arr ) NEW_LINE print ( DistinctValues ( arr , N ) ) NEW_LINE
|
Function to return number of moves to convert matrix into chessboard
|
def minSwaps ( b ) : NEW_LINE
|
Size of the matrix
|
n = len ( b ) NEW_LINE
|
Traverse the matrix
|
for i in range ( n ) : NEW_LINE INDENT for j in range ( n ) : NEW_LINE INDENT if ( b [ 0 ] [ 0 ] ^ b [ 0 ] [ j ] ^ b [ i ] [ 0 ] ^ b [ i ] [ j ] ) : NEW_LINE INDENT return - 1 NEW_LINE DEDENT DEDENT DEDENT
|
Initialize rowSum to count 1 s in row
|
rowSum = 0 NEW_LINE
|
Initialize colSum to count 1 s in column
|
colSum = 0 NEW_LINE
|
To store no . of rows to be corrected
|
rowSwap = 0 NEW_LINE
|
To store no . of columns to be corrected
|
colSwap = 0 NEW_LINE
|
Traverse in the range [ 0 , N - 1 ]
|
for i in range ( n ) : NEW_LINE INDENT rowSum += b [ i ] [ 0 ] NEW_LINE colSum += b [ 0 ] [ i ] NEW_LINE rowSwap += b [ i ] [ 0 ] == i % 2 NEW_LINE colSwap += b [ 0 ] [ i ] == i % 2 NEW_LINE DEDENT
|
Check if rows is either N / 2 or ( N + 1 ) / 2 and return - 1
|
if ( rowSum != n // 2 and rowSum != ( n + 1 ) // 2 ) : NEW_LINE INDENT return - 1 NEW_LINE DEDENT
|
Check if rows is either N / 2 or ( N + 1 ) / 2 and return - 1
|
if ( colSum != n // 2 and colSum != ( n + 1 ) // 2 ) : NEW_LINE INDENT return - 1 NEW_LINE DEDENT
|
Check if N is odd
|
if ( n % 2 == 1 ) : NEW_LINE
|
Check if column required to be corrected is odd and then assign N - colSwap to colSwap
|
if ( colSwap % 2 ) : NEW_LINE INDENT colSwap = n - colSwap NEW_LINE DEDENT
|
Check if rows required to be corrected is odd and then assign N - rowSwap to rowSwap
|
if ( rowSwap % 2 ) : NEW_LINE INDENT rowSwap = n - rowSwap NEW_LINE DEDENT else : NEW_LINE
|
Take min of colSwap and N - colSwap
|
colSwap = min ( colSwap , n - colSwap ) NEW_LINE
|
Take min of rowSwap and N - rowSwap
|
rowSwap = min ( rowSwap , n - rowSwap ) NEW_LINE
|
Finally return answer
|
return ( rowSwap + colSwap ) // 2 NEW_LINE
|
Driver Code
|
if __name__ == " _ _ main _ _ " : NEW_LINE
|
Given matrix
|
M = [ [ 0 , 1 , 1 , 0 ] , [ 0 , 1 , 1 , 0 ] , [ 1 , 0 , 0 , 1 ] , [ 1 , 0 , 0 , 1 ] ] NEW_LINE
|
Function Call
|
ans = minSwaps ( M ) NEW_LINE
|
Print answer
|
print ( ans ) NEW_LINE
|
Function to count of set bit in N
|
def count_setbit ( N ) : NEW_LINE
|
Stores count of set bit in N
|
result = 0 NEW_LINE
|
Iterate over the range [ 0 , 31 ]
|
for i in range ( 32 ) : NEW_LINE
|
If current bit is set
|
if ( ( 1 << i ) & N ) : NEW_LINE
|
Update result
|
result = result + 1 NEW_LINE print ( result ) NEW_LINE
|
Driver Code
|
if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT N = 43 NEW_LINE count_setbit ( N ) NEW_LINE DEDENT
|
Python 3 program to implement the above approach
|
mod = 1000000007 NEW_LINE
|
Function to find the value of the expression ( N ^ 1 * ( N 1 ) ^ 2 * ... * 1 ^ N ) % ( 109 + 7 ) .
|
def ValOfTheExpression ( n ) : NEW_LINE INDENT global mod NEW_LINE DEDENT
|
factorial [ i ] : Stores factorial of i
|
factorial = [ 0 for i in range ( n + 1 ) ] NEW_LINE
|
Base Case for factorial
|
factorial [ 0 ] = 1 NEW_LINE factorial [ 1 ] = 1 NEW_LINE
|
Precompute the factorial
|
for i in range ( 2 , n + 1 , 1 ) : NEW_LINE INDENT factorial [ i ] = ( ( factorial [ i - 1 ] % mod ) * ( i % mod ) ) % mod NEW_LINE DEDENT
|
dp [ N ] : Stores the value of the expression ( N ^ 1 * ( N 1 ) ^ 2 * ... * 1 ^ N ) % ( 109 + 7 ) .
|
dp = [ 0 for i in range ( n + 1 ) ] NEW_LINE dp [ 1 ] = 1 NEW_LINE for i in range ( 2 , n + 1 , 1 ) : NEW_LINE
|
Update dp [ i ]
|
dp [ i ] = ( ( dp [ i - 1 ] % mod ) * ( factorial [ i ] % mod ) ) % mod NEW_LINE
|
Return the answer .
|
return dp [ n ] NEW_LINE
|
Driver Code
|
if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT n = 4 NEW_LINE DEDENT
|
Function call
|
print ( ValOfTheExpression ( n ) ) NEW_LINE
|
Function to print minimum number of candies required
|
def minChocolates ( A , N ) : NEW_LINE
|
Distribute 1 chocolate to each
|
B = [ 1 for i in range ( N ) ] NEW_LINE
|
Traverse from left to right
|
for i in range ( 1 , N ) : NEW_LINE INDENT if ( A [ i ] > A [ i - 1 ] ) : NEW_LINE INDENT B [ i ] = B [ i - 1 ] + 1 NEW_LINE DEDENT else : NEW_LINE INDENT B [ i ] = 1 NEW_LINE DEDENT DEDENT
|
Traverse from right to left
|
for i in range ( N - 2 , - 1 , - 1 ) : NEW_LINE INDENT if ( A [ i ] > A [ i + 1 ] ) : NEW_LINE INDENT B [ i ] = max ( B [ i + 1 ] + 1 , B [ i ] ) NEW_LINE DEDENT else : NEW_LINE INDENT B [ i ] = max ( B [ i ] , 1 ) NEW_LINE DEDENT DEDENT
|
Initialize sum
|
sum = 0 NEW_LINE
|
Find total sum
|
for i in range ( N ) : NEW_LINE INDENT sum += B [ i ] NEW_LINE DEDENT
|
Return sum
|
print ( sum ) NEW_LINE
|
Driver Code
|
if __name__ == ' _ _ main _ _ ' : NEW_LINE
|
Given array
|
A = [ 23 , 14 , 15 , 14 , 56 , 29 , 14 ] NEW_LINE
|
Size of the given array
|
N = len ( A ) NEW_LINE minChocolates ( A , N ) NEW_LINE
|
Python3 program to implement the above approach
|
from math import sqrt , ceil , floor NEW_LINE
|
Function to construct an array of unique elements whose LCM is N
|
def constructArrayWithGivenLCM ( N ) : NEW_LINE
|
Stores array elements whose LCM is N
|
newArr = [ ] NEW_LINE
|
Iterate over the range [ 1 , sqrt ( N ) ]
|
for i in range ( 1 , ceil ( sqrt ( N + 1 ) ) ) : NEW_LINE
|
If N is divisible by i
|
if ( N % i == 0 ) : NEW_LINE
|
Insert i into newArr [ ]
|
newArr . append ( i ) NEW_LINE
|
If N is not perfect square
|
if ( N // i != i ) : NEW_LINE INDENT newArr . append ( N // i ) NEW_LINE DEDENT
|
Sort the array newArr [ ]
|
newArr = sorted ( newArr ) NEW_LINE
|
Print array elements
|
for i in newArr : NEW_LINE INDENT print ( i , end = " ▁ " ) NEW_LINE DEDENT
|
Driver Code
|
if __name__ == ' _ _ main _ _ ' : NEW_LINE
|
Given N
|
N = 12 NEW_LINE
|
Function Call
|
constructArrayWithGivenLCM ( N ) NEW_LINE
|
Function to calculate 5 ^ p
|
def getPower ( p ) : NEW_LINE
|
Stores the result
|
res = 1 NEW_LINE
|
Multiply 5 p times
|
while ( p ) : NEW_LINE INDENT res *= 5 NEW_LINE p -= 1 NEW_LINE DEDENT
|
Return the result
|
return res NEW_LINE
|
Function to count anumbers upto N having odd digits at odd places and even digits at even places
|
def countNumbersUtil ( N ) : NEW_LINE
|
Stores the count
|
count = 0 NEW_LINE
|
Stores the digits of N
|
digits = [ ] NEW_LINE
|
Insert the digits of N
|
while ( N ) : NEW_LINE INDENT digits . append ( N % 10 ) NEW_LINE N //= 10 NEW_LINE DEDENT
|
Reverse the vector to arrange the digits from first to last
|
digits . reverse ( ) NEW_LINE
|
Stores count of digits of n
|
D = len ( digits ) NEW_LINE for i in range ( 1 , D + 1 , 1 ) : NEW_LINE
|
Stores the count of numbers with i digits
|
res = getPower ( i ) NEW_LINE
|
If the last digit is reached , subtract numbers eceeding range
|
if ( i == D ) : NEW_LINE
|
Iterate over athe places
|
for p in range ( 1 , D + 1 , 1 ) : NEW_LINE
|
Stores the digit in the pth place
|
x = digits [ p - 1 ] NEW_LINE
|
Stores the count of numbers having a digit greater than x in the p - th position
|
tmp = 0 NEW_LINE
|
Calculate the count of numbers exceeding the range if p is even
|
if ( p % 2 == 0 ) : NEW_LINE INDENT tmp = ( ( 5 - ( x // 2 + 1 ) ) * getPower ( D - p ) ) NEW_LINE DEDENT
|
Calculate the count of numbers exceeding the range if p is odd
|
else : NEW_LINE INDENT tmp = ( ( 5 - ( x + 1 ) // 2 ) * getPower ( D - p ) ) NEW_LINE DEDENT
|
Subtract the count of numbers exceeding the range from total count
|
res -= tmp NEW_LINE
|
If the parity of p and the parity of x are not same
|
if ( p % 2 != x % 2 ) : NEW_LINE INDENT break NEW_LINE DEDENT
|
Add count of numbers having i digits and satisfies the given conditions
|
count += res NEW_LINE
|
Return the total count of numbers tin
|
return count NEW_LINE
|
Function to calculate the count of numbers from given range having odd digits places and even digits at even places
|
def countNumbers ( L , R ) : NEW_LINE
|
Driver Code
|
L = 128 NEW_LINE R = 162 NEW_LINE countNumbers ( L , R ) NEW_LINE
|
Function to find the sum of First N natural numbers with alternate signs
|
def alternatingSumOfFirst_N ( N ) : NEW_LINE
|
Stores sum of alternate sign of First N natural numbers
|
alternateSum = 0 NEW_LINE for i in range ( 1 , N + 1 ) : NEW_LINE
|
If is an even number
|
if ( i % 2 == 0 ) : NEW_LINE
|
Update alternateSum
|
alternateSum += - i NEW_LINE
|
If i is an odd number
|
else : NEW_LINE
|
Update alternateSum
|
alternateSum += i NEW_LINE return alternateSum NEW_LINE
|
Driver Code
|
if __name__ == " _ _ main _ _ " : NEW_LINE INDENT N = 6 NEW_LINE print ( alternatingSumOfFirst_N ( N ) ) NEW_LINE DEDENT
|
Function to return gcd of a and b
|
def gcd ( a , b ) : NEW_LINE
|
Base Case
|
if ( a == 0 ) : NEW_LINE INDENT return b ; NEW_LINE DEDENT
|
Recursive GCD
|
return gcd ( b % a , a ) ; NEW_LINE
|
Function to calculate the sum of all numbers till N that are coprime with N
|
def findSum ( N ) : NEW_LINE
|
Stores the resultant sum
|
sum = 0 ; NEW_LINE
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.