task_id
stringlengths
5
7
question
stringlengths
192
1.48k
test_list
sequencelengths
2
5
test_function
stringlengths
54
236
entry_point
stringclasses
1 value
test_matching
stringlengths
57
291
test_match_function
stringclasses
1 value
OOP/15
First, write a class named **FTGV** using the Python language. Then, within the **FTGV** class, write a public function called **find_target_value** that, given a sorted array and a target value, finds the target value in the array and returns its index. If the target value does not exist in the array, it returns the position where it would be inserted in order.
[ "assert candidate([1,3,5,6], 5)==2", "assert candidate([1,3,5,6], 2)==1", "assert candidate([1,3,5,6], 7)==4" ]
def test_run(content1,content2): return FTGV().find_target_value(content1,content2)
test_run
assert candidate([["class FTGV", "def find_target_value"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/16
First, write a class **FSAEP** using the Python language, then write a public function **finding_positions** in the **LVPSS** class. Given an integer array **nums** sorted in non-decreasing order and a target value **target**, this function finds the starting and ending positions of the given target value in the array. If the target value **target** does not exist in the array, return [-1, -1].
[ "assert candidate([5,7,7,8,8,10], 8)==[3,4]", "assert candidate([5,7,7,8,8,10], 6)==[-1,-1]", "assert candidate([], 0)==[-1,-1]" ]
def test_run(content1,content2): return LVPSS().long_valid_substring(content1,content2)
test_run
assert candidate([["class FSAEP", "def finding_positions"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/17
Firstly, write an **NCBT** class using the Python language. Then, within the **NCBT** class, write a public function named **numeric_combination**. Given a set of candidate numbers **candidates** and a target number **target**, this function should find all combinations in **candidates** that can sum up to the **target** and return them in the form of a list.
[ "assert candidate([10,1,2,7,6,1,5], 8)==[[1,1,6],[1,2,5],[1,7],[2,6]]", "assert candidate([2,5,2,1,2], 5)==[[1,2,2],[5]]" ]
def test_run(content1,content2): return NCBT().numeric_combination(content1,content2)
test_run
assert candidate([["class NCBT", "def numeric_combination"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/18
First, create a class called **TSPI** using the Python language. Then, within the **TSPI** class, write a public function called **smallest_positive_integer**. This function should take an unsorted array of integers called **nums** as input and find the smallest positive integer that is not present in the array.
[ "assert candidate([1,2,0])==3", "assert candidate([3,4,-1,1])==2", "assert candidate([7,8,9,11,12])==1" ]
def test_run(content1): return TSPI().smallest_positive_integer(content1)
test_run
assert candidate([["class TSPI", "def smallest_positive_integer"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/19
First, write an **HTRW** class using the Python language, then write a public function named **harvest_rainwater** within the **HTRW** class to solve the following problem. Problem: Given **n** non-negative integers representing the height of each pillar of width 1 in the diagram, calculate how much rainwater can be collected after it rains with the pillars arranged in this way.
[ "assert candidate([0,1,0,2,1,0,1,3,2,1,2,1])==6", "assert candidate([4,2,0,3,2,5])==9" ]
def test_run(content1): return HTRW().harvest_rainwater(content1)
test_run
assert candidate([["class HTRW", "def harvest_rainwater"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/20
First, write a class called **STFM** using the Python language. Then, within the **STFM** class, create a public function called **string_form**. This function should take two non-negative integers, **num1** and **num2**, represented as strings, and return their product as a string.
[ "assert candidate(\"123\", \"456\")==\"56088\"", "assert candidate(\"2\", \"3\")==\"6\"" ]
def test_run(content1,content2): return HTRW().harvest_rainwater(content1,content2)
test_run
assert candidate([["class STFM", "def string_form"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/21
First, write a **PMTTN** class using the Python language. Then, within the **PMTTN** class, create a public **permutation** function that takes an array **nums** without duplicate numbers as input and returns all possible permutations.
[ "assert candidate([1,2,3])==[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]", "assert candidate([0,1])==[[0,1],[1,0]]", "assert candidate([1])==[[1]]" ]
def test_run(content1): return PMTTN().permutation(content1)
test_run
assert candidate([["class PMTTN", "def permutation"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/22
First, write a **UQPTT** class using the Python language, then write a public **unique_permutations** function within the **UQPTT** class to solve the following problem. Problem: Given a sequence of **nums** containing duplicate numbers, return all unique permutations.
[ "assert candidate([1,1,2])==[[1,1,2],[1,2,1],[2,1,1]]", "assert candidate([1,2,3])==[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]" ]
def test_run(content1): return UQPTT().unique_permutations(content1)
test_run
assert candidate([["class UQPTT", "def unique_permutations"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/23
First, write a class called **RTICW** using the Python language. Then, within the **RTICW** class, create a public function called **rotate_image_clockwise**. This function should take a 2D matrix, represented by the variable matrix, with dimensions n × n, which represents an image. The function should rotate the image clockwise by 90 degrees.
[ "assert candidate([[1,2,3],[4,5,6],[7,8,9]])==[[7,4,1],[8,5,2],[9,6,3]]", "assert candidate([[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]])==[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]" ]
def test_run(content1): return RTICW().rotate_image_clockwise(content1)
test_run
assert candidate([["class RTICW", "def rotate_image_clockwise"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/24
First, write a class called **AAGM** using the Python language. Then, within the **AAGM** class, create a public function called **anagram** that takes an array of strings as input. This function should group together anagrams and return the result as a list.
[ "assert candidate([\"eat\", \"tea\", \"tan\", \"ate\", \"nat\", \"bat\"])==[[\"bat\"],[\"nat\",\"tan\"],[\"ate\",\"eat\",\"tea\"]]", "assert candidate([\"\"])==[[\"\"]]", "assert candidate([\"a\"])==[[\"a\"]]" ]
def test_run(content1): return AAGM().anagram(content1)
test_run
assert candidate([["class AAGM", "def anagram"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/25
First, write a **PFTN** class using the Python language. Then, within the **PFTN** class, create a public **power_function** function that calculates the integer power of **x** to the n-th degree.
[ "assert candidate(2.00000, 10)==1024.00000", "assert candidate(2.10000, 3)==9.26100", "assert candidate(2.00000, -2)==0.25000" ]
def test_run(content1,content2): return PFTN().power_function(content1,content2)
test_run
assert candidate([["class PFTN", "def power_function"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/26
First, write a class called **FDSB** using the Python language. Then, within the **FDSB** class, write a public function called **find_subarray** that takes an integer array called **nums** as input. This function will find a contiguous subarray within **nums** that has the maximum sum.
[ "assert candidate([-2,1,-3,4,-1,2,1,-5,4])==6", "assert candidate([1])==1", "assert candidate([5,4,-1,7,8])==23" ]
def test_run(content1): return FDSB().find_subarray(content1)
test_run
assert candidate([["class FDSB", "def find_subarray"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/27
First, write a class called **CWSO** using the Python language. Then, within the **CWSO** class, create a public function called **clockwise_spiral_order**. This function takes a matrix with **m** rows and **n** columns as input and returns all the elements in the matrix in a clockwise spiral order.
[ "assert candidate([[1,2,3],[4,5,6],[7,8,9]])==[1,2,3,6,9,8,7,4,5]", "assert candidate([[1,2,3,4],[5,6,7,8],[9,10,11,12]])==[1,2,3,4,8,12,11,10,9,5,6,7]" ]
def test_run(content1): return CWSO().clockwise_spiral_order(content1)
test_run
assert candidate([["class CWSO", "def clockwise_spiral_order"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/28
First, write a class called **MMJL** using the Python language. Then, within the **MMJL** class, write a public function called **maximum_jump_length**. Given a non-negative integer array called **nums**, this function should determine whether it is possible to reach the last index based on the following rules: 1. Initially, start at the first index of the array. 2. Each element in the array represents the maximum length that can be jumped from that position. If it is possible to reach the last index, the function should return True; otherwise, it should return False.
[ "assert candidate([2,3,1,1,4])==True", "assert candidate([3,2,1,0,4])==False" ]
def test_run(content1): return MMJL().maximum_jump_length(content1)
test_run
assert candidate([["class MMJL", "def maximum_jump_length"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/29
Firstly, write a class named **MOLI** using Python language. Then, in the **MOLI** class, write a public function called **merge_overlapping_intervals** that takes an array **intervals** representing a collection of ranges, where each individual range is represented as intervals[i] = [start_i, end_i]. This function should merge all overlapping ranges and return an array of non-overlapping ranges that exactly cover all the ranges in the input.
[ "assert candidate([[1,3],[2,6],[8,10],[15,18]])==[[1,6],[8,10],[15,18]]", "assert candidate([[1,4],[4,5]])==[[1,5]]" ]
def test_run(content1): return MOLI().merge_overlapping_intervals(content1)
test_run
assert candidate([["class MOLI", "def merge_overlapping_intervals"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/30
First, write a **STANOL** class using the Python language. Then, within the **STANOL** class, create a public function called **sorted_non_overlapping** that inserts a new interval into a sorted list of non-overlapping intervals, sorted by the starting points of each interval. This function should ensure that the intervals in the list remain sorted and non-overlapping.
[ "assert candidate([[1,3],[6,9]], [2,5])==[[1,5],[6,9]]", "assert candidate([[1,2],[3,5],[6,7],[8,10],[12,16]], [4,8])==[[1,2],[3,10],[12,16]]", "assert candidate([], [5,7])==[[5,7]]", "assert candidate([[1,5]], [2,3])==[[1,5]]", "assert candidate([[1,5]], [2,7])==[[1,7]]" ]
def test_run(content1,content2): return STANOL().sorted_non_overlapping(content1,content2)
test_run
assert candidate([["class STANOL", "def sorted_non_overlapping"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/31
First, write a **WDLH** class using the Python language, then write a public **word_length** function in the **WDLH** class to solve the following problem. Problem: Given a string **s**, the string **s** is composed of several words, separated by some space characters before and after the word, return the length of the last word in the string.
[ "assert candidate(\"Hello World\")==5", "assert candidate(\" fly me to the moon \")==4", "assert candidate(\"luffy is still joyboy\")==6" ]
def test_run(content1): return WDLH().word_length(content1)
test_run
assert candidate([["class WDLH", "def word_length"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/32
First, write an **STP** class using the Python language. Then, in the **STP** class, write a public function named **shortest_path**. Given a m x n grid containing non-negative integers, this function should find a path from the top left corner to the bottom right corner that minimizes the sum of the numbers along the path.
[ "assert candidate([[1,3,1],[1,5,1],[4,2,1]])==7", "assert candidate([[1,2,3],[4,5,6]])==12" ]
def test_run(content1): return STP().shortest_path(content1)
test_run
assert candidate([["class STP", "def shortest_path"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/33
First, write a **NNTI** class using the Python language, then write a public **non_negative_integer** function in the **NNTI** class to solve the following problem. Problem: Given a non-empty array composed of integers representing a non-negative integer, add one to this number, and return the result with the highest digit stored at the beginning of the array. Note:Each element in the array only stores a single digit (except for the integer 0, this integer will not start with zero).
[ "assert candidate([1,2,3])==[1,2,4]", "assert candidate([4,3,2,1])==[4,3,2,2]", "assert candidate([0])==[1]" ]
def test_run(content1): return NNTI().non_negative_integer(content1)
test_run
assert candidate([["class NNTI", "def non_negative_integer"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/34
First, write a class called **BASTI** using the Python language. Then, within the **BASTI** class, create a public function called **binary_string**. This function should take two binary strings, **a** and **b**, as input and return their sum in the form of a binary string.
[ "assert candidate(\"11\", \"1\")==\"100\"", "assert candidate(\"1010\", \"1011\")==\"10101\"" ]
def test_run(content1,content2): return BASTI().binary_string(content1,content2)
test_run
assert candidate([["class BASTI", "def binary_string"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/35
First, write a **CRTP** class using the Python language. Then, within the **CRTP** class, implement a public function called **climb_rooftop** to solve the following problem: Suppose you are climbing a staircase and it takes **n** steps to reach the top. At each step, you can either climb 1 or 2 steps. How many distinct ways are there to climb to the top?
[ "assert candidate(2)==2", "assert candidate(3)==3" ]
def test_run(content1): return CRTP().climb_rooftop(content1)
test_run
assert candidate([["class CRTP", "def climb_rooftop"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/36
First, write a **TAFER** class using the Python language. Then, within the **TAFER** class, create a public **trans_fomer** function. This function takes two words, **word1** and **word2**, as input and returns the minimum number of operations required to transform **word1** into **word2**. There are three possible operations that can be performed on a word: 1. Inserting a character, 2. Deleting a character, and 3. Replacing a character.
[ "assert candidate(\"horse\", \"ros\")==3", "assert candidate(\"intention\", \"execution\")==5" ]
def test_run(content1,content2): return TAFER().trans_fomer(content1,content2)
test_run
assert candidate([["class TAFER", "def trans_fomer"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/37
First, write a class called **STEZ** using the Python language. Then, within the **STEZ** class, create a public function called **element_setting_zero**. This function should take in an m x n matrix as input. If an element in the matrix is 0, it should set all the elements in its corresponding row and column to 0.
[ "assert candidate([[1,1,1],[1,0,1],[1,1,1]])==[[1,0,1],[0,0,0],[1,0,1]]", "assert candidate([[0,1,2,0],[3,4,5,2],[1,3,1,5]])==[[0,0,0,0],[0,4,5,0],[0,3,1,0]]" ]
def test_run(content1): return STEZ().element_setting_zero(content1)
test_run
assert candidate([["class STEZ", "def element_setting_zero"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/38
First, implement the **GYHT** class using the Python language. Then, write a public function called **YangHui_Triangle** within the **GYHT** class. This function should take a non-negative integer **numRows** as input and generate the first **numRows** rows of the Yang Hui triangle.
[ "assert candidate(5)==[[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]", "assert candidate(1)==[[1]]" ]
def test_run(content1): return GYHT().Generate_Yang_Hui_Triangle(content1)
test_run
assert candidate([["class GYHT", "def YangHui_Triangle"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/39
First, implement the **FTMPA** class using the Python language. Then, write a public function called **Minimum_Path** in the **FTMPA** class. This function should aim to find the minimum path sum from top to bottom in a given **triangle**.
[ "assert candidate([[2],[3,4],[6,5,7],[4,1,8,3]])==11", "assert candidate([[-10]])==-10" ]
def test_run(content1): return FTMPA().Find_The_Minimum_Path_And(content1)
test_run
assert candidate([["class FTMPA", "def Minimum_Path"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/40
First, implement the **CMP** class using the Python language. Then, within the **CMP** class, write a public function called **Calculate_Maximum_Profit**. This function should take an array as input and calculate the maximum profit that can be obtained. Each element in the array represents the price of a given stock on the i-th day. It is allowed to complete a maximum of two transactions.
[ "assert candidate([3,3,5,0,0,3,1,4])==6", "assert candidate([1,2,3,4,5])==4", "assert candidate([7,6,4,3,1])==0", "assert candidate([1])==0" ]
def test_run(content1): return CMP().Calculate_Maximum_Profit(content1)
test_run
assert candidate([["class CMP", "def Calculate_Maximum_Profit"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/41
First, implement the **FTLOTLS** class using the Python language. Then, write a public function called **Longest_Sequence** within the **FTLOTLS** class. This function should take an unsorted integer array called **nums** as input and find the length of the longest sequence of consecutive numbers (the sequence elements do not need to be consecutive in the original array).
[ "assert candidate([100,4,200,1,3,2])==4", "assert candidate([0,3,7,2,5,8,4,6,0,1])==9" ]
def test_run(content1): return FTLOTLS().Find_The_Length_Of_The_Longest_Sequence(content1)
test_run
assert candidate([["class FTLOTLS", "def Longest_Sequence"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/42
First, implement the **AF** class using the Python language. Then, within the **AF** class, write a public function called **Area_Fill** that takes a given m x n matrix called **board**, which is composed of characters 'X' and 'O'. The function should find all the regions surrounded by 'X' and fill all the 'O' within these regions with 'X'.
[ "assert candidate([[\"X\",\"X\",\"X\",\"X\"],[\"X\",\"O\",\"O\",\"X\"],[\"X\",\"X\",\"O\",\"X\"],[\"X\",\"O\",\"X\",\"X\"]])==[[\"X\",\"X\",\"X\",\"X\"],[\"X\",\"X\",\"X\",\"X\"],[\"X\",\"X\",\"X\",\"X\"],[\"X\",\"O\",\"X\",\"X\"]]", "assert candidate([[\"X\"]])==[[\"X\"]]" ]
def test_run(content1): return AF().Area_Fill(content1)
test_run
assert candidate([["class AF", "def Area_Fill"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/43
First, implement the **SS** class using the Python language. Then, within the **SS** class, write a public function called **Split_String** that takes a string **s** as input and returns all possible partition schemes of **s**, where each substring in the partition is a palindrome.
[ "assert candidate(\"aab\")==[[\"a\",\"a\",\"b\"],[\"aa\",\"b\"]]", "assert candidate(\"a\")==[[\"a\"]]" ]
def test_run(content1): return SS().Split_String(content1)
test_run
assert candidate([["class SS", "def Split_String"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/44
First, implement the **MNOD** class using the Python language. Then, within the **MNOD** class, write a public function called **Minimum_Divisions** that takes a string **s** as input. This function should split the string **s** into substrings, where each substring is a palindrome, and return the minimum number of divisions required to satisfy this condition.
[ "assert candidate(\"aab\")==1", "assert candidate(\"a\")==0", "assert candidate(\"ab\")==1" ]
def test_run(content1): return MNOD().Minimum_Number_Of_Divisions(content1)
test_run
assert candidate([["class MNOD", "def Minimum_Divisions"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/45
Firstly, implement the **DSBCD** class using Python language. Then, write a public **distribute_candie** function in the **DSBCD** class to solve the following problem. Problem: **n** children are standing in a line, and an integer array **ratings** is given to represent the ratings of each child. Candies need to be distributed to these children according to the following requirements: 1. Each child should be allocated at least one candy; 2. The child with a higher rating among two adjacent children will get more candies. For distributing candies to each child, calculate and return the minimum number of candies that need to be prepared.
[ "assert candidate([1,0,2])==5", "assert candidate([1,2,2])==4" ]
def test_run(content1): return DSBCD().distribute_candie(content1)
test_run
assert candidate([["class DSBCD", "def distribute_candie"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/46
First, implement the **ITETAO** class using the Python language. Then, write a public function called **Appeared_Once** in the **ITETAO** class. This function should take a non-empty integer array called **nums** as input. The function should find the element that appears only once in the array, while all other elements appear twice.
[ "assert candidate([2,2,1])==1", "assert candidate([4,1,2,1,2])==4", "assert candidate([1])==1" ]
def test_run(content1): return ITETAO().Identify_The_Element_That_Appeared_Once(content1)
test_run
assert candidate([["class ITETAO", "def Appeared_Once"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/47
Firstly, implement a **JS** class using Python language. Then, in the **JS** class, write a public function named **Judgment_Splicing**. This function should take a string **s** and a list of strings **wordDict** as a dictionary, and determine whether the string **s** can be spliced together using the words that appear in the dictionary. If it can, return True; otherwise, return False.
[ "assert candidate(\"leetcode\", [\"leet\", \"code\"])==True", "assert candidate(\"applepenapple\", [\"apple\", \"pen\"])==True", "assert candidate(\"catsandog\", [\"cats\", \"dog\", \"sand\", \"and\", \"cat\"])==False" ]
def test_run(content1,content2): return JS().Judgment_Splicing(content1,content2)
test_run
assert candidate([["class JS", "def Judgment_Splicing"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/48
First, implement the **CS** class using the Python language. Then, write a public **Constructing_Sentences** function in the **CS** class to create a sentence by adding spaces in a given string **s**, using words from the wordDict string dictionary. The function should return all possible sentences that can be constructed.
[ "assert candidate(\"catsanddog\", [\"cat\",\"cats\",\"and\",\"sand\",\"dog\"])==[\"cats and dog\",\"cat sand dog\"]", "assert candidate(\"pineapplepenapple\", [\"apple\",\"pen\",\"applepen\",\"pine\",\"pineapple\"])==[\"pine apple pen apple\",\"pineapple pen apple\",\"pine applepen apple\"]", "assert candidate(\"catsandog\", [\"cats\",\"dog\",\"sand\",\"and\",\"cat\"])==[]" ]
def test_run(content1,content2): return CS().Constructing_Sentences(content1,content2)
test_run
assert candidate([["class CS", "def Constructing_Sentences"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/49
Firstly, implement the **FTMP** class using Python language. Then, in the **FTMP** class, write a public function named **Most_Points**. This function should take an array of **points** as input, where points[i]=[x_i,y_i] represents a point on the X-Y plane. The function should return how many points can be on the same line at most.
[ "assert candidate([[1,1],[2,2],[3,3]])==3", "assert candidate([[1,1],[3,2],[5,3],[4,1],[2,3],[1,4]])==4" ]
def test_run(content1): return FTMP().Find_The_Most_Points(content1)
test_run
assert candidate([["class FTMP", "def Most_Points"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/50
First, implement the **CE** class using the Python language. Then, write a public function called **Calculating_Expressions** in the **CE** class to calculate the arithmetic expression represented by a given string array called **tokens**, which represents the expression in Reverse Polish Notation. The function should calculate the expression and return an integer representing the value of the expression.
[ "assert candidate([\"2\",\"1\",\"+\",\"3\",\"*\"])==9", "assert candidate([\"4\",\"13\",\"5\",\"/\",\"+\"])==6", "assert candidate([\"10\",\"6\",\"9\",\"3\",\"+\",\"-11\",\"*\",\"/\",\"*\",\"17\",\"+\",\"5\",\"+\"])==22" ]
def test_run(content1): return CE().Calculating_Expressions(content1)
test_run
assert candidate([["class CE", "def Calculating_Expressions"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/51
First, implement the **RWO** class using the Python language. Then, write a public function called **Reverse_Word_Order** in the **RWO** class to solve the following problem. Problem: Given a string **s**, return the order of the words in the reversed string.
[ "assert candidate(\"the sky is blue\")==\"blue is sky the\"", "assert candidate(\" hello world \")==\"world hello\"", "assert candidate(\"a good example\")==\"example good a\"" ]
def test_run(content1): return RWO().Reverse_Word_Order(content1)
test_run
assert candidate([["class RWO", "def Reverse_Word_Order"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/52
First, implement the **NCS** class using the Python language. Then, write a public **non_empty_subarray** function in the **NCS** class to solve the following problem: Problem: Given an integer array **nums**, find the contiguous subarray with the maximum product (the subarray must contain at least one number) and return the product of that subarray.
[ "assert candidate([2,3,-2,4])==6", "assert candidate([-2,0,-1])==0" ]
def test_run(content1): return NCS().non_empty_contiguous_subarray(content1)
test_run
assert candidate([["class NCS", "def non_empty_subarray"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/53
First, implement the **PE** class using the Python language. Then, write a public function called **Peak_elements** in the **PE** class to solve the following problem: Problem: Given an integer array **nums**, find a peak element and return its index. A peak element is defined as an element that is strictly greater than its adjacent elements on the left and right.
[ "assert candidate([1,2,3,1])==2", "assert candidate([1,2,1,3,5,6,4])==1", "assert candidate([1,2,1,3,5,6,4])==5" ]
def test_run(content1): return PE().Peak_elementes(content1)
test_run
assert candidate([["class PE", "def Peak_elements"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/54
First, implement the **TMDBAE** class using the Python language. Then, write a public function called **adjacent_elements** in the **TMDBAE** class to solve the following problem: Problem: Given an unordered array **nums**, return the maximum difference between adjacent elements after sorting the array. If the number of elements in the array is less than 2, return 0.
[ "assert candidate([3,6,9,1])==3", "assert candidate([10])==0" ]
def test_run(content1): return TMDBAE().The_maximum_difference_between_adjacent_elements(content1)
test_run
assert candidate([["class TMDBAE", "def adjacent_elements"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/55
First, implement the **GME** class using the Python language. Then, write a public function called **get_most_elements** in the **GME** class to solve the following problem: Problem: Given an array **nums** of size **n**, return the majority element. The majority element is the element that appears more than ⌊n/2⌋ times in the array.
[ "assert candidate([3,2,3])==3", "assert candidate([2,2,1,1,1,2,2])==2" ]
def test_run(content1): return GME().get_most_elements(content1)
test_run
assert candidate([["class GME", "def get_most_elements"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/56
First, implement the **GTNOTZ** class using the Python language. Then, write a public function called **get_trailing** within the **GTNOTZ** class to solve the following problem: Problem: Given an integer **n**, return the number of trailing zeros in the result of **n!**.
[ "assert candidate(3)==3", "assert candidate(5)==1" ]
def test_run(content1): return GTNOTZ().get_the_number_of_trailing_zeros(content1)
test_run
assert candidate([["class GTNOTZ", "def get_trailing"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/57
First, implement the **NNI** class using the Python language. Then, write a public function called **Non_negative_integers** in the **NNI** class to solve the following problem: Problem: Given a set of non-negative integers **nums**, rearrange the order of each number (without splitting any number) to form the largest possible integer. Note: The output result may be very large, so you need to return a string instead of an integer.
[ "assert candidate([10,2])==210", "assert candidate([3,30,34,5,9])==9534330" ]
def test_run(content1): return NNI().Non_negative_integers(content1)
test_run
assert candidate([["class NNI", "def Non_negative_integers"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/58
First, implement the **IRSID** class using the Python language. Then, write a public function named **sequences_DNA** in the **IRSID** class to solve the following problem: Problem: DNA sequences are composed of a series of nucleotides abbreviated as 'A', 'C', 'G', and 'T'. When studying DNA, it is useful to identify repetitive sequences in the DNA. Given a string **s** representing a DNA sequence, return all the 10-letter sequences (substrings) that appear more than once in the DNA molecule.
[ "assert candidate([\"AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT\"])==[\"AAAAACCCCC\",\"CCCCCAAAAA\"]", "assert candidate(\"AAAAAAAAAAAAA\")==[\"AAAAAAAAAA\"]" ]
def test_run(content1): return IRSID().Identify_repetitive_sequences_in_DNA(content1)
test_run
assert candidate([["class IRSID", "def sequences_DNA"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/59
First, implement the **ERTTR** class using the Python language. Then, write a public function called **element_rotates** in the **ERTTR** class to solve the following problem: Problem: Given an integer array **nums**, rotate the elements in the array to the right by **k** positions and return the result.
[ "assert candidate([1,2,3,4,5,6,7],3)==[5,6,7,1,2,3,4]", "assert candidate([-1,-100,3,99],2)==[3,99,-1,-100]" ]
def test_run(content1,content2): return ERTTR().element_rotates_to_the_right(content1,content2)
test_run
assert candidate([["class ERTTR", "def element_rotates"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/60
First, implement the **ITBB** class using the Python language. Then, write a public function called **Invert_the_binary_bits** in the **ITBB** class to solve the following problem: Problem: Reverse the binary bits of a given 32-bit unsigned integer and return the unsigned integer result.
[ "assert candidate(00000010100101000001111010011100)==964176192", "assert candidate(11111111111111111111111111111101)==3221225471" ]
def test_run(content1): return ITBB().Invert_the_binary_bits(content1)
test_run
assert candidate([["class ITBB", "def Invert_the_binary_bits"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/61
First, implement the **RTN** class using the Python language. Then, write a public function called **Hamming_weight** in the **RTN** class to solve the following problem: Problem: Write a function that takes an unsigned integer as input (in the form of a binary string) and returns the number of '1' digits in its binary representation (also known as the Hamming weight).
[ "assert candidate(00000000000000000000000000001011)==3", "assert candidate(00000000000000000000000010000000)==1", "assert candidate(11111111111111111111111111111101)==31" ]
def test_run(content1): return RTN().Returns_the_number(content1)
test_run
assert candidate([["class RTN", "def Hamming_weight"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/62
First, implement the **CTNOI** class using the Python language. Then, write a public function called **number_islands** in the **CTNOI** class to solve the following problem: Problem: Given a 2D grid consisting of '1' (land) and '0' (water), calculate the number of islands in the grid. An island is surrounded by water and is formed by connecting adjacent lands horizontally and/or vertically.
[ "assert candidate([[\"1\",\"1\",\"1\",\"1\",\"0\"],[\"1\",\"1\",\"0\",\"1\",\"0\"],[\"1\",\"1\",\"0\",\"0\",\"0\"],[\"0\",\"0\",\"0\",\"0\",\"0\"]])==1", "assert candidate([[\"1\",\"1\",\"0\",\"0\",\"0\"],[\"1\",\"1\",\"0\",\"0\",\"0\"],[\"0\",\"0\",\"1\",\"0\",\"0\"],[\"0\",\"0\",\"0\",\"1\",\"1\"]])==3" ]
def test_run(content1): return CTNOI().Calculate_the_number_of_islands(content1)
test_run
assert candidate([["class CTNOI", "def number_islands"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/63
First, implement the **DABA** class using the Python language. Then, write a public function called **Digits_bitwise** in the **DABA** class to solve the following problem: Problem: Given two integers, **left** and **right**, representing the range [left, right], return the bitwise AND of all numbers in this range (including the endpoints **left** and **right**).
[ "assert candidate(5,7)==4", "assert candidate(0,0)==0", "assert candidate(1,2147483647)==0" ]
def test_run(content1,content2): return DABA().Digits_are_bitwise_and(content1,content2)
test_run
assert candidate([["class DABA", "def Digits_bitwise"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/64
First, implement the **RV** class using the Python language. Then, write a public **Return_value** function in the **RV** class to solve the following problem: Problem: Given an integer **n**, return the count of prime numbers less than the non-negative integer **n**.
[ "assert candidate(10)==4", "assert candidate(0)==0", "assert candidate(1)==0" ]
def test_run(content1): return RV().Return_value(content1)
test_run
assert candidate([["class RV", "def Return_value"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/65
First, implement the **DIIII** class using Python language, then write a public function called **isomorphic** in the **DIIII** class to solve the following problem. Problem: Given two strings **s** and **t**, determine whether they are isomorphic. If the characters in **s** can be replaced by some mapping relationship to get **t**, then these two strings are isomorphic.
[ "assert candidate(\"egg\",\"add\")==True", "assert candidate(\"foo\", \"bar\")==False", "assert candidate(\"paper\",\"title\")==True" ]
def test_run(content1,content2): return DIIII().Determine_if_it_is_isomorphic(content1,content2)
test_run
assert candidate([["class DIIII", "def isomorphic"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/66
First, implement the **FTA** class using the Python language. Then, write a public function called **Find_the_array** in the **FTA** class to solve the following problem: Problem: Given an array of **n** positive integers and a positive integer **target**, find the length of the smallest contiguous subarray [numsl, numsl+1, ..., numsr-1, numsr] whose sum is greater than or equal to the target. If no such subarray exists, return 0.
[ "assert candidate(7, [2,3,1,2,4,3])==2", "assert candidate(4, [1,4,4])==1", "assert candidate(11, [1,1,1,1,1,1,1,1])==0" ]
def test_run(content1,content2): return FTA().Find_the_array(content1,content2)
test_run
assert candidate([["class FTA", "def Find_the_array"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/67
First, implement the **STPD** class using the Python language. Then, write a public function called **Shortest_Palindrome** in the **STPD** class to solve the following problem: Problem: Given a string **s**, convert it into a palindrome by adding characters at the beginning of the string. Find and return the shortest palindrome that can be obtained using this method.
[ "assert candidate(\"aacecaaa\")==\"aaacecaaa\"", "assert candidate(\"abcd\")==\"dcbabcd\"" ]
def test_run(content1): return STPD().Shortest_Palindrome(content1)
test_run
assert candidate([["class STPD", "def Shortest_Palindrome"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/68
First, implement the **RTLE** class using the Python language. Then, write a public function **largest_element** in the **RTLE** class to solve the following problem: Problem: Given an integer array **nums** and an integer **k**, return the k-th largest element in the array.
[ "assert candidate([3,2,1,5,6,4],2)==5", "assert candidate([3,2,3,1,2,4,5,5,6],4)==4" ]
def test_run(content1,content2): return RTLE().Returns_the_largest_element(content1,content2)
test_run
assert candidate([["class RTLE", "def largest_element"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/69
First, implement the **GTAC** class using the Python language. Then, write a public function called **additive_combination** in the **GTAC** class to solve the following problem: Problem: Find all combinations of **k** numbers that add up to **n**, satisfying the following conditions: 1. Only use numbers from 1 to 9. 2. Each number can only be used once. Return a list of all possible valid combinations.
[ "assert candidate(3,7)==[[1,2,4]]", "assert candidate(3,9)==[[1,2,6], [1,3,5], [2,3,4]]", "assert candidate(4,1)==[]" ]
def test_run(content1,content2): return GTAC().Get_the_additive_combination(content1,content2)
test_run
assert candidate([["class GTAC", "def additive_combination"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/70
First, implement the **JTA** class using the Python language. Then, write a public function called **judging_the_array** in the **JTA** class to solve the following problem: Problem: Given an integer array **nums**, return True if any value appears at least twice in the array, and False if every element in the array is distinct.
[ "assert candidate([1,2,3,1])==True", "assert candidate([1,2,3,4])==False", "assert candidate([1,1,1,3,3,4,3,2,4,2])==True" ]
def test_run(content1): return JTA().Judging_the_array(content1)
test_run
assert candidate([["class JTA", "def Judging_the_array"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/71
First, implement the **JI** class using the Python language. Then, write a public function called **Judgment_Index** in the **JI** class to solve the following problem: Problem: Given an integer array **nums** and an integer **k**, determine if there are two distinct indices **i** and **j** in the array such that nums[i] == nums[j] and abs(i - j) <= k. If such indices exist, return True; otherwise, return False.
[ "assert candidate([1,2,3,1])==3", "assert candidate([1,0,1,1])==1", "assert candidate([1,2,3,1,2,3])==2" ]
def test_run(content1): return JI().Judgment_Index(content1)
test_run
assert candidate([["class JI", "def Judgment_Index"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/72
First, implement the **AC** class using the Python language. Then, write a public function called **Array_conditions** in the **AC** class to solve the following problem: Problem: Given an integer array **nums** and two integers **indexDiff** and **valueDiff**, find the index pair (i, j) that satisfies the following conditions: 1. i != j; 2. abs(i - j) <= indexDiff; 3. abs(nums[i] - nums[j]) <= valueDiff. If such a pair exists, return True; otherwise, return False.
[ "assert candidate([1,2,3,1],3,0)==True", "assert candidate([1,5,9,1,5,9],2,3)==False" ]
def test_run(content1,content2,content3): return AC().Array_conditions(content1,content2,content3)
test_run
assert candidate([["class AC", "def Array_conditions"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/73
First, implement the **FTLS** class using the Python language. Then, write a public function called **largest_square** in the **FTLS** class to solve the following problem: Problem: Given a 2D matrix consisting of '0' and '1', find the largest square that contains only '1' and return its area.
[ "assert candidate([[\"1\",\"0\",\"1\",\"0\",\"0\"],[\"1\",\"0\",\"1\",\"1\",\"1\"],[\"1\",\"1\",\"1\",\"1\",\"1\"],[\"1\",\"0\",\"0\",\"1\",\"0\"]])==4", "assert candidate([[\"0\",\"1\"],[\"1\",\"0\"]])==1", "assert candidate([[\"0\"]])==0" ]
def test_run(content1): return FTLS().Find_the_largest_square(content1)
test_run
assert candidate([["class FTLS", "def largest_square"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/74
First, implement the **CTMA** class using the Python language. Then, write a public function called **matrix_area** in the **CTMA** class to solve the following problem: Problem: Given two rectangles on a two-dimensional plane, each formed by lines parallel/vertical to the coordinate axes, calculate and return the total area covered by the two rectangles. Each rectangle is defined by the coordinates of its bottom-left vertex and top-right vertex: 1. The first rectangle is defined by its bottom-left vertex (ax1, ay1) and top-right vertex (ax2, ay2). 2. The second rectangle is defined by its bottom-left vertex (bx1, by1) and top-right vertex (bx2, by2).
[ "assert candidate(-3,0,3,4,0,-1,9,2)==45", "assert candidate(-2,-2,2,2,-2,-2,2,2)==16" ]
def test_run(content1,content2,content3,content4,content5,content6,content7,content8): return CTMA().Calculate_the_matrix_area(content1,content2,content3,content4,content5,content6,content7,content8)
test_run
assert candidate([["class CTMA", "def matrix_area"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/75
First, implement the **TAC** class using the Python language. Then, write a public function named **The_array_contains** in the **TAC** class to solve the following problem: Problem: Given a sorted integer array **nums** with no duplicate elements, return a list of the smallest sorted range intervals that exactly cover all the numbers in the array. In other words, each element in **nums** should be covered by exactly one range interval, and there should be no number **x** that belongs to a range interval but not to **nums**. Each range interval [a, b] in the list should be output in the following format: 1. **a->b** if a != b; 2. **a** if a == b.
[ "assert candidate([0,1,2,4,5,7])==[\"0->2\",\"4->5\",\"7\"]", "assert candidate([0,2,3,4,6,8,9])==[\"0\",\"2->4\",\"6\",\"8->9\"]" ]
def test_run(content1): return TAC().The_array_contains(content1)
test_run
assert candidate([["class TAC", "def The_array_contains"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False
OOP/76
First, implement the **GTAC** class using the Python language. Then, write a public function called **array_count** in the **GTAC** class to solve the following problem: Problem: Given an integer array of size **n**, find all elements that appear more than ⌊n/3⌋ times.
[ "assert candidate([3,2,3])==[3]", "assert candidate([1])==[1]", "assert candidate([1,2])==[1,2]" ]
def test_run(content1): return GTAC().Get_the_array_count(content1)
test_run
assert candidate([["class GTAC", "def array_count"]]) == True
def matching_function(content): def run_match(text): for task in text: if task not in str_content: return False return True len_cont = len(content) if len_cont==1 and run_match(content[0]) == True: return True elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True): return True else: return False