repository_name
stringlengths
5
67
func_path_in_repository
stringlengths
4
234
func_name
stringlengths
0
153
whole_func_string
stringlengths
52
3.87M
language
stringclasses
6 values
func_code_string
stringlengths
52
3.87M
func_code_tokens
sequence
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
sequence
split_name
stringclasses
1 value
func_code_url
stringlengths
85
339
apache/spark
python/pyspark/streaming/dstream.py
DStream.foreachRDD
def foreachRDD(self, func): """ Apply a function to each RDD in this DStream. """ if func.__code__.co_argcount == 1: old_func = func func = lambda t, rdd: old_func(rdd) jfunc = TransformFunction(self._sc, func, self._jrdd_deserializer) api = self._ssc._jvm.PythonDStream api.callForeachRDD(self._jdstream, jfunc)
python
def foreachRDD(self, func): """ Apply a function to each RDD in this DStream. """ if func.__code__.co_argcount == 1: old_func = func func = lambda t, rdd: old_func(rdd) jfunc = TransformFunction(self._sc, func, self._jrdd_deserializer) api = self._ssc._jvm.PythonDStream api.callForeachRDD(self._jdstream, jfunc)
[ "def", "foreachRDD", "(", "self", ",", "func", ")", ":", "if", "func", ".", "__code__", ".", "co_argcount", "==", "1", ":", "old_func", "=", "func", "func", "=", "lambda", "t", ",", "rdd", ":", "old_func", "(", "rdd", ")", "jfunc", "=", "TransformFunction", "(", "self", ".", "_sc", ",", "func", ",", "self", ".", "_jrdd_deserializer", ")", "api", "=", "self", ".", "_ssc", ".", "_jvm", ".", "PythonDStream", "api", ".", "callForeachRDD", "(", "self", ".", "_jdstream", ",", "jfunc", ")" ]
Apply a function to each RDD in this DStream.
[ "Apply", "a", "function", "to", "each", "RDD", "in", "this", "DStream", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L155-L164
apache/spark
python/pyspark/streaming/dstream.py
DStream.pprint
def pprint(self, num=10): """ Print the first num elements of each RDD generated in this DStream. @param num: the number of elements from the first will be printed. """ def takeAndPrint(time, rdd): taken = rdd.take(num + 1) print("-------------------------------------------") print("Time: %s" % time) print("-------------------------------------------") for record in taken[:num]: print(record) if len(taken) > num: print("...") print("") self.foreachRDD(takeAndPrint)
python
def pprint(self, num=10): """ Print the first num elements of each RDD generated in this DStream. @param num: the number of elements from the first will be printed. """ def takeAndPrint(time, rdd): taken = rdd.take(num + 1) print("-------------------------------------------") print("Time: %s" % time) print("-------------------------------------------") for record in taken[:num]: print(record) if len(taken) > num: print("...") print("") self.foreachRDD(takeAndPrint)
[ "def", "pprint", "(", "self", ",", "num", "=", "10", ")", ":", "def", "takeAndPrint", "(", "time", ",", "rdd", ")", ":", "taken", "=", "rdd", ".", "take", "(", "num", "+", "1", ")", "print", "(", "\"-------------------------------------------\"", ")", "print", "(", "\"Time: %s\"", "%", "time", ")", "print", "(", "\"-------------------------------------------\"", ")", "for", "record", "in", "taken", "[", ":", "num", "]", ":", "print", "(", "record", ")", "if", "len", "(", "taken", ")", ">", "num", ":", "print", "(", "\"...\"", ")", "print", "(", "\"\"", ")", "self", ".", "foreachRDD", "(", "takeAndPrint", ")" ]
Print the first num elements of each RDD generated in this DStream. @param num: the number of elements from the first will be printed.
[ "Print", "the", "first", "num", "elements", "of", "each", "RDD", "generated", "in", "this", "DStream", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L166-L183
apache/spark
python/pyspark/streaming/dstream.py
DStream.persist
def persist(self, storageLevel): """ Persist the RDDs of this DStream with the given storage level """ self.is_cached = True javaStorageLevel = self._sc._getJavaStorageLevel(storageLevel) self._jdstream.persist(javaStorageLevel) return self
python
def persist(self, storageLevel): """ Persist the RDDs of this DStream with the given storage level """ self.is_cached = True javaStorageLevel = self._sc._getJavaStorageLevel(storageLevel) self._jdstream.persist(javaStorageLevel) return self
[ "def", "persist", "(", "self", ",", "storageLevel", ")", ":", "self", ".", "is_cached", "=", "True", "javaStorageLevel", "=", "self", ".", "_sc", ".", "_getJavaStorageLevel", "(", "storageLevel", ")", "self", ".", "_jdstream", ".", "persist", "(", "javaStorageLevel", ")", "return", "self" ]
Persist the RDDs of this DStream with the given storage level
[ "Persist", "the", "RDDs", "of", "this", "DStream", "with", "the", "given", "storage", "level" ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L219-L226
apache/spark
python/pyspark/streaming/dstream.py
DStream.checkpoint
def checkpoint(self, interval): """ Enable periodic checkpointing of RDDs of this DStream @param interval: time in seconds, after each period of that, generated RDD will be checkpointed """ self.is_checkpointed = True self._jdstream.checkpoint(self._ssc._jduration(interval)) return self
python
def checkpoint(self, interval): """ Enable periodic checkpointing of RDDs of this DStream @param interval: time in seconds, after each period of that, generated RDD will be checkpointed """ self.is_checkpointed = True self._jdstream.checkpoint(self._ssc._jduration(interval)) return self
[ "def", "checkpoint", "(", "self", ",", "interval", ")", ":", "self", ".", "is_checkpointed", "=", "True", "self", ".", "_jdstream", ".", "checkpoint", "(", "self", ".", "_ssc", ".", "_jduration", "(", "interval", ")", ")", "return", "self" ]
Enable periodic checkpointing of RDDs of this DStream @param interval: time in seconds, after each period of that, generated RDD will be checkpointed
[ "Enable", "periodic", "checkpointing", "of", "RDDs", "of", "this", "DStream" ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L228-L237
apache/spark
python/pyspark/streaming/dstream.py
DStream.groupByKey
def groupByKey(self, numPartitions=None): """ Return a new DStream by applying groupByKey on each RDD. """ if numPartitions is None: numPartitions = self._sc.defaultParallelism return self.transform(lambda rdd: rdd.groupByKey(numPartitions))
python
def groupByKey(self, numPartitions=None): """ Return a new DStream by applying groupByKey on each RDD. """ if numPartitions is None: numPartitions = self._sc.defaultParallelism return self.transform(lambda rdd: rdd.groupByKey(numPartitions))
[ "def", "groupByKey", "(", "self", ",", "numPartitions", "=", "None", ")", ":", "if", "numPartitions", "is", "None", ":", "numPartitions", "=", "self", ".", "_sc", ".", "defaultParallelism", "return", "self", ".", "transform", "(", "lambda", "rdd", ":", "rdd", ".", "groupByKey", "(", "numPartitions", ")", ")" ]
Return a new DStream by applying groupByKey on each RDD.
[ "Return", "a", "new", "DStream", "by", "applying", "groupByKey", "on", "each", "RDD", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L239-L245
apache/spark
python/pyspark/streaming/dstream.py
DStream.countByValue
def countByValue(self): """ Return a new DStream in which each RDD contains the counts of each distinct value in each RDD of this DStream. """ return self.map(lambda x: (x, 1)).reduceByKey(lambda x, y: x+y)
python
def countByValue(self): """ Return a new DStream in which each RDD contains the counts of each distinct value in each RDD of this DStream. """ return self.map(lambda x: (x, 1)).reduceByKey(lambda x, y: x+y)
[ "def", "countByValue", "(", "self", ")", ":", "return", "self", ".", "map", "(", "lambda", "x", ":", "(", "x", ",", "1", ")", ")", ".", "reduceByKey", "(", "lambda", "x", ",", "y", ":", "x", "+", "y", ")" ]
Return a new DStream in which each RDD contains the counts of each distinct value in each RDD of this DStream.
[ "Return", "a", "new", "DStream", "in", "which", "each", "RDD", "contains", "the", "counts", "of", "each", "distinct", "value", "in", "each", "RDD", "of", "this", "DStream", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L247-L252
apache/spark
python/pyspark/streaming/dstream.py
DStream.saveAsTextFiles
def saveAsTextFiles(self, prefix, suffix=None): """ Save each RDD in this DStream as at text file, using string representation of elements. """ def saveAsTextFile(t, rdd): path = rddToFileName(prefix, suffix, t) try: rdd.saveAsTextFile(path) except Py4JJavaError as e: # after recovered from checkpointing, the foreachRDD may # be called twice if 'FileAlreadyExistsException' not in str(e): raise return self.foreachRDD(saveAsTextFile)
python
def saveAsTextFiles(self, prefix, suffix=None): """ Save each RDD in this DStream as at text file, using string representation of elements. """ def saveAsTextFile(t, rdd): path = rddToFileName(prefix, suffix, t) try: rdd.saveAsTextFile(path) except Py4JJavaError as e: # after recovered from checkpointing, the foreachRDD may # be called twice if 'FileAlreadyExistsException' not in str(e): raise return self.foreachRDD(saveAsTextFile)
[ "def", "saveAsTextFiles", "(", "self", ",", "prefix", ",", "suffix", "=", "None", ")", ":", "def", "saveAsTextFile", "(", "t", ",", "rdd", ")", ":", "path", "=", "rddToFileName", "(", "prefix", ",", "suffix", ",", "t", ")", "try", ":", "rdd", ".", "saveAsTextFile", "(", "path", ")", "except", "Py4JJavaError", "as", "e", ":", "# after recovered from checkpointing, the foreachRDD may", "# be called twice", "if", "'FileAlreadyExistsException'", "not", "in", "str", "(", "e", ")", ":", "raise", "return", "self", ".", "foreachRDD", "(", "saveAsTextFile", ")" ]
Save each RDD in this DStream as at text file, using string representation of elements.
[ "Save", "each", "RDD", "in", "this", "DStream", "as", "at", "text", "file", "using", "string", "representation", "of", "elements", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L254-L268
apache/spark
python/pyspark/streaming/dstream.py
DStream.transform
def transform(self, func): """ Return a new DStream in which each RDD is generated by applying a function on each RDD of this DStream. `func` can have one argument of `rdd`, or have two arguments of (`time`, `rdd`) """ if func.__code__.co_argcount == 1: oldfunc = func func = lambda t, rdd: oldfunc(rdd) assert func.__code__.co_argcount == 2, "func should take one or two arguments" return TransformedDStream(self, func)
python
def transform(self, func): """ Return a new DStream in which each RDD is generated by applying a function on each RDD of this DStream. `func` can have one argument of `rdd`, or have two arguments of (`time`, `rdd`) """ if func.__code__.co_argcount == 1: oldfunc = func func = lambda t, rdd: oldfunc(rdd) assert func.__code__.co_argcount == 2, "func should take one or two arguments" return TransformedDStream(self, func)
[ "def", "transform", "(", "self", ",", "func", ")", ":", "if", "func", ".", "__code__", ".", "co_argcount", "==", "1", ":", "oldfunc", "=", "func", "func", "=", "lambda", "t", ",", "rdd", ":", "oldfunc", "(", "rdd", ")", "assert", "func", ".", "__code__", ".", "co_argcount", "==", "2", ",", "\"func should take one or two arguments\"", "return", "TransformedDStream", "(", "self", ",", "func", ")" ]
Return a new DStream in which each RDD is generated by applying a function on each RDD of this DStream. `func` can have one argument of `rdd`, or have two arguments of (`time`, `rdd`)
[ "Return", "a", "new", "DStream", "in", "which", "each", "RDD", "is", "generated", "by", "applying", "a", "function", "on", "each", "RDD", "of", "this", "DStream", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L287-L299
apache/spark
python/pyspark/streaming/dstream.py
DStream.transformWith
def transformWith(self, func, other, keepSerializer=False): """ Return a new DStream in which each RDD is generated by applying a function on each RDD of this DStream and 'other' DStream. `func` can have two arguments of (`rdd_a`, `rdd_b`) or have three arguments of (`time`, `rdd_a`, `rdd_b`) """ if func.__code__.co_argcount == 2: oldfunc = func func = lambda t, a, b: oldfunc(a, b) assert func.__code__.co_argcount == 3, "func should take two or three arguments" jfunc = TransformFunction(self._sc, func, self._jrdd_deserializer, other._jrdd_deserializer) dstream = self._sc._jvm.PythonTransformed2DStream(self._jdstream.dstream(), other._jdstream.dstream(), jfunc) jrdd_serializer = self._jrdd_deserializer if keepSerializer else self._sc.serializer return DStream(dstream.asJavaDStream(), self._ssc, jrdd_serializer)
python
def transformWith(self, func, other, keepSerializer=False): """ Return a new DStream in which each RDD is generated by applying a function on each RDD of this DStream and 'other' DStream. `func` can have two arguments of (`rdd_a`, `rdd_b`) or have three arguments of (`time`, `rdd_a`, `rdd_b`) """ if func.__code__.co_argcount == 2: oldfunc = func func = lambda t, a, b: oldfunc(a, b) assert func.__code__.co_argcount == 3, "func should take two or three arguments" jfunc = TransformFunction(self._sc, func, self._jrdd_deserializer, other._jrdd_deserializer) dstream = self._sc._jvm.PythonTransformed2DStream(self._jdstream.dstream(), other._jdstream.dstream(), jfunc) jrdd_serializer = self._jrdd_deserializer if keepSerializer else self._sc.serializer return DStream(dstream.asJavaDStream(), self._ssc, jrdd_serializer)
[ "def", "transformWith", "(", "self", ",", "func", ",", "other", ",", "keepSerializer", "=", "False", ")", ":", "if", "func", ".", "__code__", ".", "co_argcount", "==", "2", ":", "oldfunc", "=", "func", "func", "=", "lambda", "t", ",", "a", ",", "b", ":", "oldfunc", "(", "a", ",", "b", ")", "assert", "func", ".", "__code__", ".", "co_argcount", "==", "3", ",", "\"func should take two or three arguments\"", "jfunc", "=", "TransformFunction", "(", "self", ".", "_sc", ",", "func", ",", "self", ".", "_jrdd_deserializer", ",", "other", ".", "_jrdd_deserializer", ")", "dstream", "=", "self", ".", "_sc", ".", "_jvm", ".", "PythonTransformed2DStream", "(", "self", ".", "_jdstream", ".", "dstream", "(", ")", ",", "other", ".", "_jdstream", ".", "dstream", "(", ")", ",", "jfunc", ")", "jrdd_serializer", "=", "self", ".", "_jrdd_deserializer", "if", "keepSerializer", "else", "self", ".", "_sc", ".", "serializer", "return", "DStream", "(", "dstream", ".", "asJavaDStream", "(", ")", ",", "self", ".", "_ssc", ",", "jrdd_serializer", ")" ]
Return a new DStream in which each RDD is generated by applying a function on each RDD of this DStream and 'other' DStream. `func` can have two arguments of (`rdd_a`, `rdd_b`) or have three arguments of (`time`, `rdd_a`, `rdd_b`)
[ "Return", "a", "new", "DStream", "in", "which", "each", "RDD", "is", "generated", "by", "applying", "a", "function", "on", "each", "RDD", "of", "this", "DStream", "and", "other", "DStream", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L301-L317
apache/spark
python/pyspark/streaming/dstream.py
DStream.union
def union(self, other): """ Return a new DStream by unifying data of another DStream with this DStream. @param other: Another DStream having the same interval (i.e., slideDuration) as this DStream. """ if self._slideDuration != other._slideDuration: raise ValueError("the two DStream should have same slide duration") return self.transformWith(lambda a, b: a.union(b), other, True)
python
def union(self, other): """ Return a new DStream by unifying data of another DStream with this DStream. @param other: Another DStream having the same interval (i.e., slideDuration) as this DStream. """ if self._slideDuration != other._slideDuration: raise ValueError("the two DStream should have same slide duration") return self.transformWith(lambda a, b: a.union(b), other, True)
[ "def", "union", "(", "self", ",", "other", ")", ":", "if", "self", ".", "_slideDuration", "!=", "other", ".", "_slideDuration", ":", "raise", "ValueError", "(", "\"the two DStream should have same slide duration\"", ")", "return", "self", ".", "transformWith", "(", "lambda", "a", ",", "b", ":", "a", ".", "union", "(", "b", ")", ",", "other", ",", "True", ")" ]
Return a new DStream by unifying data of another DStream with this DStream. @param other: Another DStream having the same interval (i.e., slideDuration) as this DStream.
[ "Return", "a", "new", "DStream", "by", "unifying", "data", "of", "another", "DStream", "with", "this", "DStream", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L332-L341
apache/spark
python/pyspark/streaming/dstream.py
DStream.cogroup
def cogroup(self, other, numPartitions=None): """ Return a new DStream by applying 'cogroup' between RDDs of this DStream and `other` DStream. Hash partitioning is used to generate the RDDs with `numPartitions` partitions. """ if numPartitions is None: numPartitions = self._sc.defaultParallelism return self.transformWith(lambda a, b: a.cogroup(b, numPartitions), other)
python
def cogroup(self, other, numPartitions=None): """ Return a new DStream by applying 'cogroup' between RDDs of this DStream and `other` DStream. Hash partitioning is used to generate the RDDs with `numPartitions` partitions. """ if numPartitions is None: numPartitions = self._sc.defaultParallelism return self.transformWith(lambda a, b: a.cogroup(b, numPartitions), other)
[ "def", "cogroup", "(", "self", ",", "other", ",", "numPartitions", "=", "None", ")", ":", "if", "numPartitions", "is", "None", ":", "numPartitions", "=", "self", ".", "_sc", ".", "defaultParallelism", "return", "self", ".", "transformWith", "(", "lambda", "a", ",", "b", ":", "a", ".", "cogroup", "(", "b", ",", "numPartitions", ")", ",", "other", ")" ]
Return a new DStream by applying 'cogroup' between RDDs of this DStream and `other` DStream. Hash partitioning is used to generate the RDDs with `numPartitions` partitions.
[ "Return", "a", "new", "DStream", "by", "applying", "cogroup", "between", "RDDs", "of", "this", "DStream", "and", "other", "DStream", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L343-L352
apache/spark
python/pyspark/streaming/dstream.py
DStream._jtime
def _jtime(self, timestamp): """ Convert datetime or unix_timestamp into Time """ if isinstance(timestamp, datetime): timestamp = time.mktime(timestamp.timetuple()) return self._sc._jvm.Time(long(timestamp * 1000))
python
def _jtime(self, timestamp): """ Convert datetime or unix_timestamp into Time """ if isinstance(timestamp, datetime): timestamp = time.mktime(timestamp.timetuple()) return self._sc._jvm.Time(long(timestamp * 1000))
[ "def", "_jtime", "(", "self", ",", "timestamp", ")", ":", "if", "isinstance", "(", "timestamp", ",", "datetime", ")", ":", "timestamp", "=", "time", ".", "mktime", "(", "timestamp", ".", "timetuple", "(", ")", ")", "return", "self", ".", "_sc", ".", "_jvm", ".", "Time", "(", "long", "(", "timestamp", "*", "1000", ")", ")" ]
Convert datetime or unix_timestamp into Time
[ "Convert", "datetime", "or", "unix_timestamp", "into", "Time" ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L402-L407
apache/spark
python/pyspark/streaming/dstream.py
DStream.slice
def slice(self, begin, end): """ Return all the RDDs between 'begin' to 'end' (both included) `begin`, `end` could be datetime.datetime() or unix_timestamp """ jrdds = self._jdstream.slice(self._jtime(begin), self._jtime(end)) return [RDD(jrdd, self._sc, self._jrdd_deserializer) for jrdd in jrdds]
python
def slice(self, begin, end): """ Return all the RDDs between 'begin' to 'end' (both included) `begin`, `end` could be datetime.datetime() or unix_timestamp """ jrdds = self._jdstream.slice(self._jtime(begin), self._jtime(end)) return [RDD(jrdd, self._sc, self._jrdd_deserializer) for jrdd in jrdds]
[ "def", "slice", "(", "self", ",", "begin", ",", "end", ")", ":", "jrdds", "=", "self", ".", "_jdstream", ".", "slice", "(", "self", ".", "_jtime", "(", "begin", ")", ",", "self", ".", "_jtime", "(", "end", ")", ")", "return", "[", "RDD", "(", "jrdd", ",", "self", ".", "_sc", ",", "self", ".", "_jrdd_deserializer", ")", "for", "jrdd", "in", "jrdds", "]" ]
Return all the RDDs between 'begin' to 'end' (both included) `begin`, `end` could be datetime.datetime() or unix_timestamp
[ "Return", "all", "the", "RDDs", "between", "begin", "to", "end", "(", "both", "included", ")" ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L409-L416
apache/spark
python/pyspark/streaming/dstream.py
DStream.window
def window(self, windowDuration, slideDuration=None): """ Return a new DStream in which each RDD contains all the elements in seen in a sliding window of time over this DStream. @param windowDuration: width of the window; must be a multiple of this DStream's batching interval @param slideDuration: sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of this DStream's batching interval """ self._validate_window_param(windowDuration, slideDuration) d = self._ssc._jduration(windowDuration) if slideDuration is None: return DStream(self._jdstream.window(d), self._ssc, self._jrdd_deserializer) s = self._ssc._jduration(slideDuration) return DStream(self._jdstream.window(d, s), self._ssc, self._jrdd_deserializer)
python
def window(self, windowDuration, slideDuration=None): """ Return a new DStream in which each RDD contains all the elements in seen in a sliding window of time over this DStream. @param windowDuration: width of the window; must be a multiple of this DStream's batching interval @param slideDuration: sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of this DStream's batching interval """ self._validate_window_param(windowDuration, slideDuration) d = self._ssc._jduration(windowDuration) if slideDuration is None: return DStream(self._jdstream.window(d), self._ssc, self._jrdd_deserializer) s = self._ssc._jduration(slideDuration) return DStream(self._jdstream.window(d, s), self._ssc, self._jrdd_deserializer)
[ "def", "window", "(", "self", ",", "windowDuration", ",", "slideDuration", "=", "None", ")", ":", "self", ".", "_validate_window_param", "(", "windowDuration", ",", "slideDuration", ")", "d", "=", "self", ".", "_ssc", ".", "_jduration", "(", "windowDuration", ")", "if", "slideDuration", "is", "None", ":", "return", "DStream", "(", "self", ".", "_jdstream", ".", "window", "(", "d", ")", ",", "self", ".", "_ssc", ",", "self", ".", "_jrdd_deserializer", ")", "s", "=", "self", ".", "_ssc", ".", "_jduration", "(", "slideDuration", ")", "return", "DStream", "(", "self", ".", "_jdstream", ".", "window", "(", "d", ",", "s", ")", ",", "self", ".", "_ssc", ",", "self", ".", "_jrdd_deserializer", ")" ]
Return a new DStream in which each RDD contains all the elements in seen in a sliding window of time over this DStream. @param windowDuration: width of the window; must be a multiple of this DStream's batching interval @param slideDuration: sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of this DStream's batching interval
[ "Return", "a", "new", "DStream", "in", "which", "each", "RDD", "contains", "all", "the", "elements", "in", "seen", "in", "a", "sliding", "window", "of", "time", "over", "this", "DStream", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L427-L443
apache/spark
python/pyspark/streaming/dstream.py
DStream.reduceByWindow
def reduceByWindow(self, reduceFunc, invReduceFunc, windowDuration, slideDuration): """ Return a new DStream in which each RDD has a single element generated by reducing all elements in a sliding window over this DStream. if `invReduceFunc` is not None, the reduction is done incrementally using the old window's reduced value : 1. reduce the new values that entered the window (e.g., adding new counts) 2. "inverse reduce" the old values that left the window (e.g., subtracting old counts) This is more efficient than `invReduceFunc` is None. @param reduceFunc: associative and commutative reduce function @param invReduceFunc: inverse reduce function of `reduceFunc`; such that for all y, and invertible x: `invReduceFunc(reduceFunc(x, y), x) = y` @param windowDuration: width of the window; must be a multiple of this DStream's batching interval @param slideDuration: sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of this DStream's batching interval """ keyed = self.map(lambda x: (1, x)) reduced = keyed.reduceByKeyAndWindow(reduceFunc, invReduceFunc, windowDuration, slideDuration, 1) return reduced.map(lambda kv: kv[1])
python
def reduceByWindow(self, reduceFunc, invReduceFunc, windowDuration, slideDuration): """ Return a new DStream in which each RDD has a single element generated by reducing all elements in a sliding window over this DStream. if `invReduceFunc` is not None, the reduction is done incrementally using the old window's reduced value : 1. reduce the new values that entered the window (e.g., adding new counts) 2. "inverse reduce" the old values that left the window (e.g., subtracting old counts) This is more efficient than `invReduceFunc` is None. @param reduceFunc: associative and commutative reduce function @param invReduceFunc: inverse reduce function of `reduceFunc`; such that for all y, and invertible x: `invReduceFunc(reduceFunc(x, y), x) = y` @param windowDuration: width of the window; must be a multiple of this DStream's batching interval @param slideDuration: sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of this DStream's batching interval """ keyed = self.map(lambda x: (1, x)) reduced = keyed.reduceByKeyAndWindow(reduceFunc, invReduceFunc, windowDuration, slideDuration, 1) return reduced.map(lambda kv: kv[1])
[ "def", "reduceByWindow", "(", "self", ",", "reduceFunc", ",", "invReduceFunc", ",", "windowDuration", ",", "slideDuration", ")", ":", "keyed", "=", "self", ".", "map", "(", "lambda", "x", ":", "(", "1", ",", "x", ")", ")", "reduced", "=", "keyed", ".", "reduceByKeyAndWindow", "(", "reduceFunc", ",", "invReduceFunc", ",", "windowDuration", ",", "slideDuration", ",", "1", ")", "return", "reduced", ".", "map", "(", "lambda", "kv", ":", "kv", "[", "1", "]", ")" ]
Return a new DStream in which each RDD has a single element generated by reducing all elements in a sliding window over this DStream. if `invReduceFunc` is not None, the reduction is done incrementally using the old window's reduced value : 1. reduce the new values that entered the window (e.g., adding new counts) 2. "inverse reduce" the old values that left the window (e.g., subtracting old counts) This is more efficient than `invReduceFunc` is None. @param reduceFunc: associative and commutative reduce function @param invReduceFunc: inverse reduce function of `reduceFunc`; such that for all y, and invertible x: `invReduceFunc(reduceFunc(x, y), x) = y` @param windowDuration: width of the window; must be a multiple of this DStream's batching interval @param slideDuration: sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of this DStream's batching interval
[ "Return", "a", "new", "DStream", "in", "which", "each", "RDD", "has", "a", "single", "element", "generated", "by", "reducing", "all", "elements", "in", "a", "sliding", "window", "over", "this", "DStream", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L445-L471
apache/spark
python/pyspark/streaming/dstream.py
DStream.countByWindow
def countByWindow(self, windowDuration, slideDuration): """ Return a new DStream in which each RDD has a single element generated by counting the number of elements in a window over this DStream. windowDuration and slideDuration are as defined in the window() operation. This is equivalent to window(windowDuration, slideDuration).count(), but will be more efficient if window is large. """ return self.map(lambda x: 1).reduceByWindow(operator.add, operator.sub, windowDuration, slideDuration)
python
def countByWindow(self, windowDuration, slideDuration): """ Return a new DStream in which each RDD has a single element generated by counting the number of elements in a window over this DStream. windowDuration and slideDuration are as defined in the window() operation. This is equivalent to window(windowDuration, slideDuration).count(), but will be more efficient if window is large. """ return self.map(lambda x: 1).reduceByWindow(operator.add, operator.sub, windowDuration, slideDuration)
[ "def", "countByWindow", "(", "self", ",", "windowDuration", ",", "slideDuration", ")", ":", "return", "self", ".", "map", "(", "lambda", "x", ":", "1", ")", ".", "reduceByWindow", "(", "operator", ".", "add", ",", "operator", ".", "sub", ",", "windowDuration", ",", "slideDuration", ")" ]
Return a new DStream in which each RDD has a single element generated by counting the number of elements in a window over this DStream. windowDuration and slideDuration are as defined in the window() operation. This is equivalent to window(windowDuration, slideDuration).count(), but will be more efficient if window is large.
[ "Return", "a", "new", "DStream", "in", "which", "each", "RDD", "has", "a", "single", "element", "generated", "by", "counting", "the", "number", "of", "elements", "in", "a", "window", "over", "this", "DStream", ".", "windowDuration", "and", "slideDuration", "are", "as", "defined", "in", "the", "window", "()", "operation", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L473-L483
apache/spark
python/pyspark/streaming/dstream.py
DStream.countByValueAndWindow
def countByValueAndWindow(self, windowDuration, slideDuration, numPartitions=None): """ Return a new DStream in which each RDD contains the count of distinct elements in RDDs in a sliding window over this DStream. @param windowDuration: width of the window; must be a multiple of this DStream's batching interval @param slideDuration: sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of this DStream's batching interval @param numPartitions: number of partitions of each RDD in the new DStream. """ keyed = self.map(lambda x: (x, 1)) counted = keyed.reduceByKeyAndWindow(operator.add, operator.sub, windowDuration, slideDuration, numPartitions) return counted.filter(lambda kv: kv[1] > 0)
python
def countByValueAndWindow(self, windowDuration, slideDuration, numPartitions=None): """ Return a new DStream in which each RDD contains the count of distinct elements in RDDs in a sliding window over this DStream. @param windowDuration: width of the window; must be a multiple of this DStream's batching interval @param slideDuration: sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of this DStream's batching interval @param numPartitions: number of partitions of each RDD in the new DStream. """ keyed = self.map(lambda x: (x, 1)) counted = keyed.reduceByKeyAndWindow(operator.add, operator.sub, windowDuration, slideDuration, numPartitions) return counted.filter(lambda kv: kv[1] > 0)
[ "def", "countByValueAndWindow", "(", "self", ",", "windowDuration", ",", "slideDuration", ",", "numPartitions", "=", "None", ")", ":", "keyed", "=", "self", ".", "map", "(", "lambda", "x", ":", "(", "x", ",", "1", ")", ")", "counted", "=", "keyed", ".", "reduceByKeyAndWindow", "(", "operator", ".", "add", ",", "operator", ".", "sub", ",", "windowDuration", ",", "slideDuration", ",", "numPartitions", ")", "return", "counted", ".", "filter", "(", "lambda", "kv", ":", "kv", "[", "1", "]", ">", "0", ")" ]
Return a new DStream in which each RDD contains the count of distinct elements in RDDs in a sliding window over this DStream. @param windowDuration: width of the window; must be a multiple of this DStream's batching interval @param slideDuration: sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of this DStream's batching interval @param numPartitions: number of partitions of each RDD in the new DStream.
[ "Return", "a", "new", "DStream", "in", "which", "each", "RDD", "contains", "the", "count", "of", "distinct", "elements", "in", "RDDs", "in", "a", "sliding", "window", "over", "this", "DStream", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L485-L500
apache/spark
python/pyspark/streaming/dstream.py
DStream.groupByKeyAndWindow
def groupByKeyAndWindow(self, windowDuration, slideDuration, numPartitions=None): """ Return a new DStream by applying `groupByKey` over a sliding window. Similar to `DStream.groupByKey()`, but applies it over a sliding window. @param windowDuration: width of the window; must be a multiple of this DStream's batching interval @param slideDuration: sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of this DStream's batching interval @param numPartitions: Number of partitions of each RDD in the new DStream. """ ls = self.mapValues(lambda x: [x]) grouped = ls.reduceByKeyAndWindow(lambda a, b: a.extend(b) or a, lambda a, b: a[len(b):], windowDuration, slideDuration, numPartitions) return grouped.mapValues(ResultIterable)
python
def groupByKeyAndWindow(self, windowDuration, slideDuration, numPartitions=None): """ Return a new DStream by applying `groupByKey` over a sliding window. Similar to `DStream.groupByKey()`, but applies it over a sliding window. @param windowDuration: width of the window; must be a multiple of this DStream's batching interval @param slideDuration: sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of this DStream's batching interval @param numPartitions: Number of partitions of each RDD in the new DStream. """ ls = self.mapValues(lambda x: [x]) grouped = ls.reduceByKeyAndWindow(lambda a, b: a.extend(b) or a, lambda a, b: a[len(b):], windowDuration, slideDuration, numPartitions) return grouped.mapValues(ResultIterable)
[ "def", "groupByKeyAndWindow", "(", "self", ",", "windowDuration", ",", "slideDuration", ",", "numPartitions", "=", "None", ")", ":", "ls", "=", "self", ".", "mapValues", "(", "lambda", "x", ":", "[", "x", "]", ")", "grouped", "=", "ls", ".", "reduceByKeyAndWindow", "(", "lambda", "a", ",", "b", ":", "a", ".", "extend", "(", "b", ")", "or", "a", ",", "lambda", "a", ",", "b", ":", "a", "[", "len", "(", "b", ")", ":", "]", ",", "windowDuration", ",", "slideDuration", ",", "numPartitions", ")", "return", "grouped", ".", "mapValues", "(", "ResultIterable", ")" ]
Return a new DStream by applying `groupByKey` over a sliding window. Similar to `DStream.groupByKey()`, but applies it over a sliding window. @param windowDuration: width of the window; must be a multiple of this DStream's batching interval @param slideDuration: sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of this DStream's batching interval @param numPartitions: Number of partitions of each RDD in the new DStream.
[ "Return", "a", "new", "DStream", "by", "applying", "groupByKey", "over", "a", "sliding", "window", ".", "Similar", "to", "DStream", ".", "groupByKey", "()", "but", "applies", "it", "over", "a", "sliding", "window", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L502-L517
apache/spark
python/pyspark/streaming/dstream.py
DStream.reduceByKeyAndWindow
def reduceByKeyAndWindow(self, func, invFunc, windowDuration, slideDuration=None, numPartitions=None, filterFunc=None): """ Return a new DStream by applying incremental `reduceByKey` over a sliding window. The reduced value of over a new window is calculated using the old window's reduce value : 1. reduce the new values that entered the window (e.g., adding new counts) 2. "inverse reduce" the old values that left the window (e.g., subtracting old counts) `invFunc` can be None, then it will reduce all the RDDs in window, could be slower than having `invFunc`. @param func: associative and commutative reduce function @param invFunc: inverse function of `reduceFunc` @param windowDuration: width of the window; must be a multiple of this DStream's batching interval @param slideDuration: sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of this DStream's batching interval @param numPartitions: number of partitions of each RDD in the new DStream. @param filterFunc: function to filter expired key-value pairs; only pairs that satisfy the function are retained set this to null if you do not want to filter """ self._validate_window_param(windowDuration, slideDuration) if numPartitions is None: numPartitions = self._sc.defaultParallelism reduced = self.reduceByKey(func, numPartitions) if invFunc: def reduceFunc(t, a, b): b = b.reduceByKey(func, numPartitions) r = a.union(b).reduceByKey(func, numPartitions) if a else b if filterFunc: r = r.filter(filterFunc) return r def invReduceFunc(t, a, b): b = b.reduceByKey(func, numPartitions) joined = a.leftOuterJoin(b, numPartitions) return joined.mapValues(lambda kv: invFunc(kv[0], kv[1]) if kv[1] is not None else kv[0]) jreduceFunc = TransformFunction(self._sc, reduceFunc, reduced._jrdd_deserializer) jinvReduceFunc = TransformFunction(self._sc, invReduceFunc, reduced._jrdd_deserializer) if slideDuration is None: slideDuration = self._slideDuration dstream = self._sc._jvm.PythonReducedWindowedDStream( reduced._jdstream.dstream(), jreduceFunc, jinvReduceFunc, self._ssc._jduration(windowDuration), self._ssc._jduration(slideDuration)) return DStream(dstream.asJavaDStream(), self._ssc, self._sc.serializer) else: return reduced.window(windowDuration, slideDuration).reduceByKey(func, numPartitions)
python
def reduceByKeyAndWindow(self, func, invFunc, windowDuration, slideDuration=None, numPartitions=None, filterFunc=None): """ Return a new DStream by applying incremental `reduceByKey` over a sliding window. The reduced value of over a new window is calculated using the old window's reduce value : 1. reduce the new values that entered the window (e.g., adding new counts) 2. "inverse reduce" the old values that left the window (e.g., subtracting old counts) `invFunc` can be None, then it will reduce all the RDDs in window, could be slower than having `invFunc`. @param func: associative and commutative reduce function @param invFunc: inverse function of `reduceFunc` @param windowDuration: width of the window; must be a multiple of this DStream's batching interval @param slideDuration: sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of this DStream's batching interval @param numPartitions: number of partitions of each RDD in the new DStream. @param filterFunc: function to filter expired key-value pairs; only pairs that satisfy the function are retained set this to null if you do not want to filter """ self._validate_window_param(windowDuration, slideDuration) if numPartitions is None: numPartitions = self._sc.defaultParallelism reduced = self.reduceByKey(func, numPartitions) if invFunc: def reduceFunc(t, a, b): b = b.reduceByKey(func, numPartitions) r = a.union(b).reduceByKey(func, numPartitions) if a else b if filterFunc: r = r.filter(filterFunc) return r def invReduceFunc(t, a, b): b = b.reduceByKey(func, numPartitions) joined = a.leftOuterJoin(b, numPartitions) return joined.mapValues(lambda kv: invFunc(kv[0], kv[1]) if kv[1] is not None else kv[0]) jreduceFunc = TransformFunction(self._sc, reduceFunc, reduced._jrdd_deserializer) jinvReduceFunc = TransformFunction(self._sc, invReduceFunc, reduced._jrdd_deserializer) if slideDuration is None: slideDuration = self._slideDuration dstream = self._sc._jvm.PythonReducedWindowedDStream( reduced._jdstream.dstream(), jreduceFunc, jinvReduceFunc, self._ssc._jduration(windowDuration), self._ssc._jduration(slideDuration)) return DStream(dstream.asJavaDStream(), self._ssc, self._sc.serializer) else: return reduced.window(windowDuration, slideDuration).reduceByKey(func, numPartitions)
[ "def", "reduceByKeyAndWindow", "(", "self", ",", "func", ",", "invFunc", ",", "windowDuration", ",", "slideDuration", "=", "None", ",", "numPartitions", "=", "None", ",", "filterFunc", "=", "None", ")", ":", "self", ".", "_validate_window_param", "(", "windowDuration", ",", "slideDuration", ")", "if", "numPartitions", "is", "None", ":", "numPartitions", "=", "self", ".", "_sc", ".", "defaultParallelism", "reduced", "=", "self", ".", "reduceByKey", "(", "func", ",", "numPartitions", ")", "if", "invFunc", ":", "def", "reduceFunc", "(", "t", ",", "a", ",", "b", ")", ":", "b", "=", "b", ".", "reduceByKey", "(", "func", ",", "numPartitions", ")", "r", "=", "a", ".", "union", "(", "b", ")", ".", "reduceByKey", "(", "func", ",", "numPartitions", ")", "if", "a", "else", "b", "if", "filterFunc", ":", "r", "=", "r", ".", "filter", "(", "filterFunc", ")", "return", "r", "def", "invReduceFunc", "(", "t", ",", "a", ",", "b", ")", ":", "b", "=", "b", ".", "reduceByKey", "(", "func", ",", "numPartitions", ")", "joined", "=", "a", ".", "leftOuterJoin", "(", "b", ",", "numPartitions", ")", "return", "joined", ".", "mapValues", "(", "lambda", "kv", ":", "invFunc", "(", "kv", "[", "0", "]", ",", "kv", "[", "1", "]", ")", "if", "kv", "[", "1", "]", "is", "not", "None", "else", "kv", "[", "0", "]", ")", "jreduceFunc", "=", "TransformFunction", "(", "self", ".", "_sc", ",", "reduceFunc", ",", "reduced", ".", "_jrdd_deserializer", ")", "jinvReduceFunc", "=", "TransformFunction", "(", "self", ".", "_sc", ",", "invReduceFunc", ",", "reduced", ".", "_jrdd_deserializer", ")", "if", "slideDuration", "is", "None", ":", "slideDuration", "=", "self", ".", "_slideDuration", "dstream", "=", "self", ".", "_sc", ".", "_jvm", ".", "PythonReducedWindowedDStream", "(", "reduced", ".", "_jdstream", ".", "dstream", "(", ")", ",", "jreduceFunc", ",", "jinvReduceFunc", ",", "self", ".", "_ssc", ".", "_jduration", "(", "windowDuration", ")", ",", "self", ".", "_ssc", ".", "_jduration", "(", "slideDuration", ")", ")", "return", "DStream", "(", "dstream", ".", "asJavaDStream", "(", ")", ",", "self", ".", "_ssc", ",", "self", ".", "_sc", ".", "serializer", ")", "else", ":", "return", "reduced", ".", "window", "(", "windowDuration", ",", "slideDuration", ")", ".", "reduceByKey", "(", "func", ",", "numPartitions", ")" ]
Return a new DStream by applying incremental `reduceByKey` over a sliding window. The reduced value of over a new window is calculated using the old window's reduce value : 1. reduce the new values that entered the window (e.g., adding new counts) 2. "inverse reduce" the old values that left the window (e.g., subtracting old counts) `invFunc` can be None, then it will reduce all the RDDs in window, could be slower than having `invFunc`. @param func: associative and commutative reduce function @param invFunc: inverse function of `reduceFunc` @param windowDuration: width of the window; must be a multiple of this DStream's batching interval @param slideDuration: sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of this DStream's batching interval @param numPartitions: number of partitions of each RDD in the new DStream. @param filterFunc: function to filter expired key-value pairs; only pairs that satisfy the function are retained set this to null if you do not want to filter
[ "Return", "a", "new", "DStream", "by", "applying", "incremental", "reduceByKey", "over", "a", "sliding", "window", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L519-L574
apache/spark
python/pyspark/streaming/dstream.py
DStream.updateStateByKey
def updateStateByKey(self, updateFunc, numPartitions=None, initialRDD=None): """ Return a new "state" DStream where the state for each key is updated by applying the given function on the previous state of the key and the new values of the key. @param updateFunc: State update function. If this function returns None, then corresponding state key-value pair will be eliminated. """ if numPartitions is None: numPartitions = self._sc.defaultParallelism if initialRDD and not isinstance(initialRDD, RDD): initialRDD = self._sc.parallelize(initialRDD) def reduceFunc(t, a, b): if a is None: g = b.groupByKey(numPartitions).mapValues(lambda vs: (list(vs), None)) else: g = a.cogroup(b.partitionBy(numPartitions), numPartitions) g = g.mapValues(lambda ab: (list(ab[1]), list(ab[0])[0] if len(ab[0]) else None)) state = g.mapValues(lambda vs_s: updateFunc(vs_s[0], vs_s[1])) return state.filter(lambda k_v: k_v[1] is not None) jreduceFunc = TransformFunction(self._sc, reduceFunc, self._sc.serializer, self._jrdd_deserializer) if initialRDD: initialRDD = initialRDD._reserialize(self._jrdd_deserializer) dstream = self._sc._jvm.PythonStateDStream(self._jdstream.dstream(), jreduceFunc, initialRDD._jrdd) else: dstream = self._sc._jvm.PythonStateDStream(self._jdstream.dstream(), jreduceFunc) return DStream(dstream.asJavaDStream(), self._ssc, self._sc.serializer)
python
def updateStateByKey(self, updateFunc, numPartitions=None, initialRDD=None): """ Return a new "state" DStream where the state for each key is updated by applying the given function on the previous state of the key and the new values of the key. @param updateFunc: State update function. If this function returns None, then corresponding state key-value pair will be eliminated. """ if numPartitions is None: numPartitions = self._sc.defaultParallelism if initialRDD and not isinstance(initialRDD, RDD): initialRDD = self._sc.parallelize(initialRDD) def reduceFunc(t, a, b): if a is None: g = b.groupByKey(numPartitions).mapValues(lambda vs: (list(vs), None)) else: g = a.cogroup(b.partitionBy(numPartitions), numPartitions) g = g.mapValues(lambda ab: (list(ab[1]), list(ab[0])[0] if len(ab[0]) else None)) state = g.mapValues(lambda vs_s: updateFunc(vs_s[0], vs_s[1])) return state.filter(lambda k_v: k_v[1] is not None) jreduceFunc = TransformFunction(self._sc, reduceFunc, self._sc.serializer, self._jrdd_deserializer) if initialRDD: initialRDD = initialRDD._reserialize(self._jrdd_deserializer) dstream = self._sc._jvm.PythonStateDStream(self._jdstream.dstream(), jreduceFunc, initialRDD._jrdd) else: dstream = self._sc._jvm.PythonStateDStream(self._jdstream.dstream(), jreduceFunc) return DStream(dstream.asJavaDStream(), self._ssc, self._sc.serializer)
[ "def", "updateStateByKey", "(", "self", ",", "updateFunc", ",", "numPartitions", "=", "None", ",", "initialRDD", "=", "None", ")", ":", "if", "numPartitions", "is", "None", ":", "numPartitions", "=", "self", ".", "_sc", ".", "defaultParallelism", "if", "initialRDD", "and", "not", "isinstance", "(", "initialRDD", ",", "RDD", ")", ":", "initialRDD", "=", "self", ".", "_sc", ".", "parallelize", "(", "initialRDD", ")", "def", "reduceFunc", "(", "t", ",", "a", ",", "b", ")", ":", "if", "a", "is", "None", ":", "g", "=", "b", ".", "groupByKey", "(", "numPartitions", ")", ".", "mapValues", "(", "lambda", "vs", ":", "(", "list", "(", "vs", ")", ",", "None", ")", ")", "else", ":", "g", "=", "a", ".", "cogroup", "(", "b", ".", "partitionBy", "(", "numPartitions", ")", ",", "numPartitions", ")", "g", "=", "g", ".", "mapValues", "(", "lambda", "ab", ":", "(", "list", "(", "ab", "[", "1", "]", ")", ",", "list", "(", "ab", "[", "0", "]", ")", "[", "0", "]", "if", "len", "(", "ab", "[", "0", "]", ")", "else", "None", ")", ")", "state", "=", "g", ".", "mapValues", "(", "lambda", "vs_s", ":", "updateFunc", "(", "vs_s", "[", "0", "]", ",", "vs_s", "[", "1", "]", ")", ")", "return", "state", ".", "filter", "(", "lambda", "k_v", ":", "k_v", "[", "1", "]", "is", "not", "None", ")", "jreduceFunc", "=", "TransformFunction", "(", "self", ".", "_sc", ",", "reduceFunc", ",", "self", ".", "_sc", ".", "serializer", ",", "self", ".", "_jrdd_deserializer", ")", "if", "initialRDD", ":", "initialRDD", "=", "initialRDD", ".", "_reserialize", "(", "self", ".", "_jrdd_deserializer", ")", "dstream", "=", "self", ".", "_sc", ".", "_jvm", ".", "PythonStateDStream", "(", "self", ".", "_jdstream", ".", "dstream", "(", ")", ",", "jreduceFunc", ",", "initialRDD", ".", "_jrdd", ")", "else", ":", "dstream", "=", "self", ".", "_sc", ".", "_jvm", ".", "PythonStateDStream", "(", "self", ".", "_jdstream", ".", "dstream", "(", ")", ",", "jreduceFunc", ")", "return", "DStream", "(", "dstream", ".", "asJavaDStream", "(", ")", ",", "self", ".", "_ssc", ",", "self", ".", "_sc", ".", "serializer", ")" ]
Return a new "state" DStream where the state for each key is updated by applying the given function on the previous state of the key and the new values of the key. @param updateFunc: State update function. If this function returns None, then corresponding state key-value pair will be eliminated.
[ "Return", "a", "new", "state", "DStream", "where", "the", "state", "for", "each", "key", "is", "updated", "by", "applying", "the", "given", "function", "on", "the", "previous", "state", "of", "the", "key", "and", "the", "new", "values", "of", "the", "key", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/streaming/dstream.py#L576-L608
apache/spark
python/pyspark/ml/fpm.py
FPGrowth.setParams
def setParams(self, minSupport=0.3, minConfidence=0.8, itemsCol="items", predictionCol="prediction", numPartitions=None): """ setParams(self, minSupport=0.3, minConfidence=0.8, itemsCol="items", \ predictionCol="prediction", numPartitions=None) """ kwargs = self._input_kwargs return self._set(**kwargs)
python
def setParams(self, minSupport=0.3, minConfidence=0.8, itemsCol="items", predictionCol="prediction", numPartitions=None): """ setParams(self, minSupport=0.3, minConfidence=0.8, itemsCol="items", \ predictionCol="prediction", numPartitions=None) """ kwargs = self._input_kwargs return self._set(**kwargs)
[ "def", "setParams", "(", "self", ",", "minSupport", "=", "0.3", ",", "minConfidence", "=", "0.8", ",", "itemsCol", "=", "\"items\"", ",", "predictionCol", "=", "\"prediction\"", ",", "numPartitions", "=", "None", ")", ":", "kwargs", "=", "self", ".", "_input_kwargs", "return", "self", ".", "_set", "(", "*", "*", "kwargs", ")" ]
setParams(self, minSupport=0.3, minConfidence=0.8, itemsCol="items", \ predictionCol="prediction", numPartitions=None)
[ "setParams", "(", "self", "minSupport", "=", "0", ".", "3", "minConfidence", "=", "0", ".", "8", "itemsCol", "=", "items", "\\", "predictionCol", "=", "prediction", "numPartitions", "=", "None", ")" ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/fpm.py#L237-L244
apache/spark
python/pyspark/ml/fpm.py
PrefixSpan.setParams
def setParams(self, minSupport=0.1, maxPatternLength=10, maxLocalProjDBSize=32000000, sequenceCol="sequence"): """ setParams(self, minSupport=0.1, maxPatternLength=10, maxLocalProjDBSize=32000000, \ sequenceCol="sequence") """ kwargs = self._input_kwargs return self._set(**kwargs)
python
def setParams(self, minSupport=0.1, maxPatternLength=10, maxLocalProjDBSize=32000000, sequenceCol="sequence"): """ setParams(self, minSupport=0.1, maxPatternLength=10, maxLocalProjDBSize=32000000, \ sequenceCol="sequence") """ kwargs = self._input_kwargs return self._set(**kwargs)
[ "def", "setParams", "(", "self", ",", "minSupport", "=", "0.1", ",", "maxPatternLength", "=", "10", ",", "maxLocalProjDBSize", "=", "32000000", ",", "sequenceCol", "=", "\"sequence\"", ")", ":", "kwargs", "=", "self", ".", "_input_kwargs", "return", "self", ".", "_set", "(", "*", "*", "kwargs", ")" ]
setParams(self, minSupport=0.1, maxPatternLength=10, maxLocalProjDBSize=32000000, \ sequenceCol="sequence")
[ "setParams", "(", "self", "minSupport", "=", "0", ".", "1", "maxPatternLength", "=", "10", "maxLocalProjDBSize", "=", "32000000", "\\", "sequenceCol", "=", "sequence", ")" ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/fpm.py#L304-L311
apache/spark
python/pyspark/ml/fpm.py
PrefixSpan.findFrequentSequentialPatterns
def findFrequentSequentialPatterns(self, dataset): """ .. note:: Experimental Finds the complete set of frequent sequential patterns in the input sequences of itemsets. :param dataset: A dataframe containing a sequence column which is `ArrayType(ArrayType(T))` type, T is the item type for the input dataset. :return: A `DataFrame` that contains columns of sequence and corresponding frequency. The schema of it will be: - `sequence: ArrayType(ArrayType(T))` (T is the item type) - `freq: Long` >>> from pyspark.ml.fpm import PrefixSpan >>> from pyspark.sql import Row >>> df = sc.parallelize([Row(sequence=[[1, 2], [3]]), ... Row(sequence=[[1], [3, 2], [1, 2]]), ... Row(sequence=[[1, 2], [5]]), ... Row(sequence=[[6]])]).toDF() >>> prefixSpan = PrefixSpan(minSupport=0.5, maxPatternLength=5) >>> prefixSpan.findFrequentSequentialPatterns(df).sort("sequence").show(truncate=False) +----------+----+ |sequence |freq| +----------+----+ |[[1]] |3 | |[[1], [3]]|2 | |[[1, 2]] |3 | |[[2]] |3 | |[[3]] |2 | +----------+----+ .. versionadded:: 2.4.0 """ self._transfer_params_to_java() jdf = self._java_obj.findFrequentSequentialPatterns(dataset._jdf) return DataFrame(jdf, dataset.sql_ctx)
python
def findFrequentSequentialPatterns(self, dataset): """ .. note:: Experimental Finds the complete set of frequent sequential patterns in the input sequences of itemsets. :param dataset: A dataframe containing a sequence column which is `ArrayType(ArrayType(T))` type, T is the item type for the input dataset. :return: A `DataFrame` that contains columns of sequence and corresponding frequency. The schema of it will be: - `sequence: ArrayType(ArrayType(T))` (T is the item type) - `freq: Long` >>> from pyspark.ml.fpm import PrefixSpan >>> from pyspark.sql import Row >>> df = sc.parallelize([Row(sequence=[[1, 2], [3]]), ... Row(sequence=[[1], [3, 2], [1, 2]]), ... Row(sequence=[[1, 2], [5]]), ... Row(sequence=[[6]])]).toDF() >>> prefixSpan = PrefixSpan(minSupport=0.5, maxPatternLength=5) >>> prefixSpan.findFrequentSequentialPatterns(df).sort("sequence").show(truncate=False) +----------+----+ |sequence |freq| +----------+----+ |[[1]] |3 | |[[1], [3]]|2 | |[[1, 2]] |3 | |[[2]] |3 | |[[3]] |2 | +----------+----+ .. versionadded:: 2.4.0 """ self._transfer_params_to_java() jdf = self._java_obj.findFrequentSequentialPatterns(dataset._jdf) return DataFrame(jdf, dataset.sql_ctx)
[ "def", "findFrequentSequentialPatterns", "(", "self", ",", "dataset", ")", ":", "self", ".", "_transfer_params_to_java", "(", ")", "jdf", "=", "self", ".", "_java_obj", ".", "findFrequentSequentialPatterns", "(", "dataset", ".", "_jdf", ")", "return", "DataFrame", "(", "jdf", ",", "dataset", ".", "sql_ctx", ")" ]
.. note:: Experimental Finds the complete set of frequent sequential patterns in the input sequences of itemsets. :param dataset: A dataframe containing a sequence column which is `ArrayType(ArrayType(T))` type, T is the item type for the input dataset. :return: A `DataFrame` that contains columns of sequence and corresponding frequency. The schema of it will be: - `sequence: ArrayType(ArrayType(T))` (T is the item type) - `freq: Long` >>> from pyspark.ml.fpm import PrefixSpan >>> from pyspark.sql import Row >>> df = sc.parallelize([Row(sequence=[[1, 2], [3]]), ... Row(sequence=[[1], [3, 2], [1, 2]]), ... Row(sequence=[[1, 2], [5]]), ... Row(sequence=[[6]])]).toDF() >>> prefixSpan = PrefixSpan(minSupport=0.5, maxPatternLength=5) >>> prefixSpan.findFrequentSequentialPatterns(df).sort("sequence").show(truncate=False) +----------+----+ |sequence |freq| +----------+----+ |[[1]] |3 | |[[1], [3]]|2 | |[[1, 2]] |3 | |[[2]] |3 | |[[3]] |2 | +----------+----+ .. versionadded:: 2.4.0
[ "..", "note", "::", "Experimental" ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/fpm.py#L314-L349
apache/spark
python/pyspark/traceback_utils.py
first_spark_call
def first_spark_call(): """ Return a CallSite representing the first Spark call in the current call stack. """ tb = traceback.extract_stack() if len(tb) == 0: return None file, line, module, what = tb[len(tb) - 1] sparkpath = os.path.dirname(file) first_spark_frame = len(tb) - 1 for i in range(0, len(tb)): file, line, fun, what = tb[i] if file.startswith(sparkpath): first_spark_frame = i break if first_spark_frame == 0: file, line, fun, what = tb[0] return CallSite(function=fun, file=file, linenum=line) sfile, sline, sfun, swhat = tb[first_spark_frame] ufile, uline, ufun, uwhat = tb[first_spark_frame - 1] return CallSite(function=sfun, file=ufile, linenum=uline)
python
def first_spark_call(): """ Return a CallSite representing the first Spark call in the current call stack. """ tb = traceback.extract_stack() if len(tb) == 0: return None file, line, module, what = tb[len(tb) - 1] sparkpath = os.path.dirname(file) first_spark_frame = len(tb) - 1 for i in range(0, len(tb)): file, line, fun, what = tb[i] if file.startswith(sparkpath): first_spark_frame = i break if first_spark_frame == 0: file, line, fun, what = tb[0] return CallSite(function=fun, file=file, linenum=line) sfile, sline, sfun, swhat = tb[first_spark_frame] ufile, uline, ufun, uwhat = tb[first_spark_frame - 1] return CallSite(function=sfun, file=ufile, linenum=uline)
[ "def", "first_spark_call", "(", ")", ":", "tb", "=", "traceback", ".", "extract_stack", "(", ")", "if", "len", "(", "tb", ")", "==", "0", ":", "return", "None", "file", ",", "line", ",", "module", ",", "what", "=", "tb", "[", "len", "(", "tb", ")", "-", "1", "]", "sparkpath", "=", "os", ".", "path", ".", "dirname", "(", "file", ")", "first_spark_frame", "=", "len", "(", "tb", ")", "-", "1", "for", "i", "in", "range", "(", "0", ",", "len", "(", "tb", ")", ")", ":", "file", ",", "line", ",", "fun", ",", "what", "=", "tb", "[", "i", "]", "if", "file", ".", "startswith", "(", "sparkpath", ")", ":", "first_spark_frame", "=", "i", "break", "if", "first_spark_frame", "==", "0", ":", "file", ",", "line", ",", "fun", ",", "what", "=", "tb", "[", "0", "]", "return", "CallSite", "(", "function", "=", "fun", ",", "file", "=", "file", ",", "linenum", "=", "line", ")", "sfile", ",", "sline", ",", "sfun", ",", "swhat", "=", "tb", "[", "first_spark_frame", "]", "ufile", ",", "uline", ",", "ufun", ",", "uwhat", "=", "tb", "[", "first_spark_frame", "-", "1", "]", "return", "CallSite", "(", "function", "=", "sfun", ",", "file", "=", "ufile", ",", "linenum", "=", "uline", ")" ]
Return a CallSite representing the first Spark call in the current call stack.
[ "Return", "a", "CallSite", "representing", "the", "first", "Spark", "call", "in", "the", "current", "call", "stack", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/traceback_utils.py#L26-L46
apache/spark
examples/src/main/python/mllib/logistic_regression.py
parsePoint
def parsePoint(line): """ Parse a line of text into an MLlib LabeledPoint object. """ values = [float(s) for s in line.split(' ')] if values[0] == -1: # Convert -1 labels to 0 for MLlib values[0] = 0 return LabeledPoint(values[0], values[1:])
python
def parsePoint(line): """ Parse a line of text into an MLlib LabeledPoint object. """ values = [float(s) for s in line.split(' ')] if values[0] == -1: # Convert -1 labels to 0 for MLlib values[0] = 0 return LabeledPoint(values[0], values[1:])
[ "def", "parsePoint", "(", "line", ")", ":", "values", "=", "[", "float", "(", "s", ")", "for", "s", "in", "line", ".", "split", "(", "' '", ")", "]", "if", "values", "[", "0", "]", "==", "-", "1", ":", "# Convert -1 labels to 0 for MLlib", "values", "[", "0", "]", "=", "0", "return", "LabeledPoint", "(", "values", "[", "0", "]", ",", "values", "[", "1", ":", "]", ")" ]
Parse a line of text into an MLlib LabeledPoint object.
[ "Parse", "a", "line", "of", "text", "into", "an", "MLlib", "LabeledPoint", "object", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/examples/src/main/python/mllib/logistic_regression.py#L32-L39
apache/spark
python/pyspark/mllib/evaluation.py
MulticlassMetrics.fMeasure
def fMeasure(self, label, beta=None): """ Returns f-measure. """ if beta is None: return self.call("fMeasure", label) else: return self.call("fMeasure", label, beta)
python
def fMeasure(self, label, beta=None): """ Returns f-measure. """ if beta is None: return self.call("fMeasure", label) else: return self.call("fMeasure", label, beta)
[ "def", "fMeasure", "(", "self", ",", "label", ",", "beta", "=", "None", ")", ":", "if", "beta", "is", "None", ":", "return", "self", ".", "call", "(", "\"fMeasure\"", ",", "label", ")", "else", ":", "return", "self", ".", "call", "(", "\"fMeasure\"", ",", "label", ",", "beta", ")" ]
Returns f-measure.
[ "Returns", "f", "-", "measure", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/evaluation.py#L297-L304
apache/spark
python/pyspark/mllib/evaluation.py
MultilabelMetrics.precision
def precision(self, label=None): """ Returns precision or precision for a given label (category) if specified. """ if label is None: return self.call("precision") else: return self.call("precision", float(label))
python
def precision(self, label=None): """ Returns precision or precision for a given label (category) if specified. """ if label is None: return self.call("precision") else: return self.call("precision", float(label))
[ "def", "precision", "(", "self", ",", "label", "=", "None", ")", ":", "if", "label", "is", "None", ":", "return", "self", ".", "call", "(", "\"precision\"", ")", "else", ":", "return", "self", ".", "call", "(", "\"precision\"", ",", "float", "(", "label", ")", ")" ]
Returns precision or precision for a given label (category) if specified.
[ "Returns", "precision", "or", "precision", "for", "a", "given", "label", "(", "category", ")", "if", "specified", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/evaluation.py#L504-L511
apache/spark
python/pyspark/mllib/evaluation.py
MultilabelMetrics.recall
def recall(self, label=None): """ Returns recall or recall for a given label (category) if specified. """ if label is None: return self.call("recall") else: return self.call("recall", float(label))
python
def recall(self, label=None): """ Returns recall or recall for a given label (category) if specified. """ if label is None: return self.call("recall") else: return self.call("recall", float(label))
[ "def", "recall", "(", "self", ",", "label", "=", "None", ")", ":", "if", "label", "is", "None", ":", "return", "self", ".", "call", "(", "\"recall\"", ")", "else", ":", "return", "self", ".", "call", "(", "\"recall\"", ",", "float", "(", "label", ")", ")" ]
Returns recall or recall for a given label (category) if specified.
[ "Returns", "recall", "or", "recall", "for", "a", "given", "label", "(", "category", ")", "if", "specified", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/evaluation.py#L514-L521
apache/spark
python/pyspark/mllib/evaluation.py
MultilabelMetrics.f1Measure
def f1Measure(self, label=None): """ Returns f1Measure or f1Measure for a given label (category) if specified. """ if label is None: return self.call("f1Measure") else: return self.call("f1Measure", float(label))
python
def f1Measure(self, label=None): """ Returns f1Measure or f1Measure for a given label (category) if specified. """ if label is None: return self.call("f1Measure") else: return self.call("f1Measure", float(label))
[ "def", "f1Measure", "(", "self", ",", "label", "=", "None", ")", ":", "if", "label", "is", "None", ":", "return", "self", ".", "call", "(", "\"f1Measure\"", ")", "else", ":", "return", "self", ".", "call", "(", "\"f1Measure\"", ",", "float", "(", "label", ")", ")" ]
Returns f1Measure or f1Measure for a given label (category) if specified.
[ "Returns", "f1Measure", "or", "f1Measure", "for", "a", "given", "label", "(", "category", ")", "if", "specified", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/evaluation.py#L524-L531
apache/spark
python/pyspark/sql/dataframe.py
_to_corrected_pandas_type
def _to_corrected_pandas_type(dt): """ When converting Spark SQL records to Pandas DataFrame, the inferred data type may be wrong. This method gets the corrected data type for Pandas if that type may be inferred uncorrectly. """ import numpy as np if type(dt) == ByteType: return np.int8 elif type(dt) == ShortType: return np.int16 elif type(dt) == IntegerType: return np.int32 elif type(dt) == FloatType: return np.float32 else: return None
python
def _to_corrected_pandas_type(dt): """ When converting Spark SQL records to Pandas DataFrame, the inferred data type may be wrong. This method gets the corrected data type for Pandas if that type may be inferred uncorrectly. """ import numpy as np if type(dt) == ByteType: return np.int8 elif type(dt) == ShortType: return np.int16 elif type(dt) == IntegerType: return np.int32 elif type(dt) == FloatType: return np.float32 else: return None
[ "def", "_to_corrected_pandas_type", "(", "dt", ")", ":", "import", "numpy", "as", "np", "if", "type", "(", "dt", ")", "==", "ByteType", ":", "return", "np", ".", "int8", "elif", "type", "(", "dt", ")", "==", "ShortType", ":", "return", "np", ".", "int16", "elif", "type", "(", "dt", ")", "==", "IntegerType", ":", "return", "np", ".", "int32", "elif", "type", "(", "dt", ")", "==", "FloatType", ":", "return", "np", ".", "float32", "else", ":", "return", "None" ]
When converting Spark SQL records to Pandas DataFrame, the inferred data type may be wrong. This method gets the corrected data type for Pandas if that type may be inferred uncorrectly.
[ "When", "converting", "Spark", "SQL", "records", "to", "Pandas", "DataFrame", "the", "inferred", "data", "type", "may", "be", "wrong", ".", "This", "method", "gets", "the", "corrected", "data", "type", "for", "Pandas", "if", "that", "type", "may", "be", "inferred", "uncorrectly", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L2239-L2254
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.rdd
def rdd(self): """Returns the content as an :class:`pyspark.RDD` of :class:`Row`. """ if self._lazy_rdd is None: jrdd = self._jdf.javaToPython() self._lazy_rdd = RDD(jrdd, self.sql_ctx._sc, BatchedSerializer(PickleSerializer())) return self._lazy_rdd
python
def rdd(self): """Returns the content as an :class:`pyspark.RDD` of :class:`Row`. """ if self._lazy_rdd is None: jrdd = self._jdf.javaToPython() self._lazy_rdd = RDD(jrdd, self.sql_ctx._sc, BatchedSerializer(PickleSerializer())) return self._lazy_rdd
[ "def", "rdd", "(", "self", ")", ":", "if", "self", ".", "_lazy_rdd", "is", "None", ":", "jrdd", "=", "self", ".", "_jdf", ".", "javaToPython", "(", ")", "self", ".", "_lazy_rdd", "=", "RDD", "(", "jrdd", ",", "self", ".", "sql_ctx", ".", "_sc", ",", "BatchedSerializer", "(", "PickleSerializer", "(", ")", ")", ")", "return", "self", ".", "_lazy_rdd" ]
Returns the content as an :class:`pyspark.RDD` of :class:`Row`.
[ "Returns", "the", "content", "as", "an", ":", "class", ":", "pyspark", ".", "RDD", "of", ":", "class", ":", "Row", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L87-L93
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.toJSON
def toJSON(self, use_unicode=True): """Converts a :class:`DataFrame` into a :class:`RDD` of string. Each row is turned into a JSON document as one element in the returned RDD. >>> df.toJSON().first() u'{"age":2,"name":"Alice"}' """ rdd = self._jdf.toJSON() return RDD(rdd.toJavaRDD(), self._sc, UTF8Deserializer(use_unicode))
python
def toJSON(self, use_unicode=True): """Converts a :class:`DataFrame` into a :class:`RDD` of string. Each row is turned into a JSON document as one element in the returned RDD. >>> df.toJSON().first() u'{"age":2,"name":"Alice"}' """ rdd = self._jdf.toJSON() return RDD(rdd.toJavaRDD(), self._sc, UTF8Deserializer(use_unicode))
[ "def", "toJSON", "(", "self", ",", "use_unicode", "=", "True", ")", ":", "rdd", "=", "self", ".", "_jdf", ".", "toJSON", "(", ")", "return", "RDD", "(", "rdd", ".", "toJavaRDD", "(", ")", ",", "self", ".", "_sc", ",", "UTF8Deserializer", "(", "use_unicode", ")", ")" ]
Converts a :class:`DataFrame` into a :class:`RDD` of string. Each row is turned into a JSON document as one element in the returned RDD. >>> df.toJSON().first() u'{"age":2,"name":"Alice"}'
[ "Converts", "a", ":", "class", ":", "DataFrame", "into", "a", ":", "class", ":", "RDD", "of", "string", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L111-L120
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.schema
def schema(self): """Returns the schema of this :class:`DataFrame` as a :class:`pyspark.sql.types.StructType`. >>> df.schema StructType(List(StructField(age,IntegerType,true),StructField(name,StringType,true))) """ if self._schema is None: try: self._schema = _parse_datatype_json_string(self._jdf.schema().json()) except AttributeError as e: raise Exception( "Unable to parse datatype from schema. %s" % e) return self._schema
python
def schema(self): """Returns the schema of this :class:`DataFrame` as a :class:`pyspark.sql.types.StructType`. >>> df.schema StructType(List(StructField(age,IntegerType,true),StructField(name,StringType,true))) """ if self._schema is None: try: self._schema = _parse_datatype_json_string(self._jdf.schema().json()) except AttributeError as e: raise Exception( "Unable to parse datatype from schema. %s" % e) return self._schema
[ "def", "schema", "(", "self", ")", ":", "if", "self", ".", "_schema", "is", "None", ":", "try", ":", "self", ".", "_schema", "=", "_parse_datatype_json_string", "(", "self", ".", "_jdf", ".", "schema", "(", ")", ".", "json", "(", ")", ")", "except", "AttributeError", "as", "e", ":", "raise", "Exception", "(", "\"Unable to parse datatype from schema. %s\"", "%", "e", ")", "return", "self", ".", "_schema" ]
Returns the schema of this :class:`DataFrame` as a :class:`pyspark.sql.types.StructType`. >>> df.schema StructType(List(StructField(age,IntegerType,true),StructField(name,StringType,true)))
[ "Returns", "the", "schema", "of", "this", ":", "class", ":", "DataFrame", "as", "a", ":", "class", ":", "pyspark", ".", "sql", ".", "types", ".", "StructType", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L226-L238
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.explain
def explain(self, extended=False): """Prints the (logical and physical) plans to the console for debugging purpose. :param extended: boolean, default ``False``. If ``False``, prints only the physical plan. >>> df.explain() == Physical Plan == *(1) Scan ExistingRDD[age#0,name#1] >>> df.explain(True) == Parsed Logical Plan == ... == Analyzed Logical Plan == ... == Optimized Logical Plan == ... == Physical Plan == ... """ if extended: print(self._jdf.queryExecution().toString()) else: print(self._jdf.queryExecution().simpleString())
python
def explain(self, extended=False): """Prints the (logical and physical) plans to the console for debugging purpose. :param extended: boolean, default ``False``. If ``False``, prints only the physical plan. >>> df.explain() == Physical Plan == *(1) Scan ExistingRDD[age#0,name#1] >>> df.explain(True) == Parsed Logical Plan == ... == Analyzed Logical Plan == ... == Optimized Logical Plan == ... == Physical Plan == ... """ if extended: print(self._jdf.queryExecution().toString()) else: print(self._jdf.queryExecution().simpleString())
[ "def", "explain", "(", "self", ",", "extended", "=", "False", ")", ":", "if", "extended", ":", "print", "(", "self", ".", "_jdf", ".", "queryExecution", "(", ")", ".", "toString", "(", ")", ")", "else", ":", "print", "(", "self", ".", "_jdf", ".", "queryExecution", "(", ")", ".", "simpleString", "(", ")", ")" ]
Prints the (logical and physical) plans to the console for debugging purpose. :param extended: boolean, default ``False``. If ``False``, prints only the physical plan. >>> df.explain() == Physical Plan == *(1) Scan ExistingRDD[age#0,name#1] >>> df.explain(True) == Parsed Logical Plan == ... == Analyzed Logical Plan == ... == Optimized Logical Plan == ... == Physical Plan == ...
[ "Prints", "the", "(", "logical", "and", "physical", ")", "plans", "to", "the", "console", "for", "debugging", "purpose", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L253-L275
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.exceptAll
def exceptAll(self, other): """Return a new :class:`DataFrame` containing rows in this :class:`DataFrame` but not in another :class:`DataFrame` while preserving duplicates. This is equivalent to `EXCEPT ALL` in SQL. >>> df1 = spark.createDataFrame( ... [("a", 1), ("a", 1), ("a", 1), ("a", 2), ("b", 3), ("c", 4)], ["C1", "C2"]) >>> df2 = spark.createDataFrame([("a", 1), ("b", 3)], ["C1", "C2"]) >>> df1.exceptAll(df2).show() +---+---+ | C1| C2| +---+---+ | a| 1| | a| 1| | a| 2| | c| 4| +---+---+ Also as standard in SQL, this function resolves columns by position (not by name). """ return DataFrame(self._jdf.exceptAll(other._jdf), self.sql_ctx)
python
def exceptAll(self, other): """Return a new :class:`DataFrame` containing rows in this :class:`DataFrame` but not in another :class:`DataFrame` while preserving duplicates. This is equivalent to `EXCEPT ALL` in SQL. >>> df1 = spark.createDataFrame( ... [("a", 1), ("a", 1), ("a", 1), ("a", 2), ("b", 3), ("c", 4)], ["C1", "C2"]) >>> df2 = spark.createDataFrame([("a", 1), ("b", 3)], ["C1", "C2"]) >>> df1.exceptAll(df2).show() +---+---+ | C1| C2| +---+---+ | a| 1| | a| 1| | a| 2| | c| 4| +---+---+ Also as standard in SQL, this function resolves columns by position (not by name). """ return DataFrame(self._jdf.exceptAll(other._jdf), self.sql_ctx)
[ "def", "exceptAll", "(", "self", ",", "other", ")", ":", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "exceptAll", "(", "other", ".", "_jdf", ")", ",", "self", ".", "sql_ctx", ")" ]
Return a new :class:`DataFrame` containing rows in this :class:`DataFrame` but not in another :class:`DataFrame` while preserving duplicates. This is equivalent to `EXCEPT ALL` in SQL. >>> df1 = spark.createDataFrame( ... [("a", 1), ("a", 1), ("a", 1), ("a", 2), ("b", 3), ("c", 4)], ["C1", "C2"]) >>> df2 = spark.createDataFrame([("a", 1), ("b", 3)], ["C1", "C2"]) >>> df1.exceptAll(df2).show() +---+---+ | C1| C2| +---+---+ | a| 1| | a| 1| | a| 2| | c| 4| +---+---+ Also as standard in SQL, this function resolves columns by position (not by name).
[ "Return", "a", "new", ":", "class", ":", "DataFrame", "containing", "rows", "in", "this", ":", "class", ":", "DataFrame", "but", "not", "in", "another", ":", "class", ":", "DataFrame", "while", "preserving", "duplicates", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L278-L300
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.show
def show(self, n=20, truncate=True, vertical=False): """Prints the first ``n`` rows to the console. :param n: Number of rows to show. :param truncate: If set to True, truncate strings longer than 20 chars by default. If set to a number greater than one, truncates long strings to length ``truncate`` and align cells right. :param vertical: If set to True, print output rows vertically (one line per column value). >>> df DataFrame[age: int, name: string] >>> df.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ >>> df.show(truncate=3) +---+----+ |age|name| +---+----+ | 2| Ali| | 5| Bob| +---+----+ >>> df.show(vertical=True) -RECORD 0----- age | 2 name | Alice -RECORD 1----- age | 5 name | Bob """ if isinstance(truncate, bool) and truncate: print(self._jdf.showString(n, 20, vertical)) else: print(self._jdf.showString(n, int(truncate), vertical))
python
def show(self, n=20, truncate=True, vertical=False): """Prints the first ``n`` rows to the console. :param n: Number of rows to show. :param truncate: If set to True, truncate strings longer than 20 chars by default. If set to a number greater than one, truncates long strings to length ``truncate`` and align cells right. :param vertical: If set to True, print output rows vertically (one line per column value). >>> df DataFrame[age: int, name: string] >>> df.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ >>> df.show(truncate=3) +---+----+ |age|name| +---+----+ | 2| Ali| | 5| Bob| +---+----+ >>> df.show(vertical=True) -RECORD 0----- age | 2 name | Alice -RECORD 1----- age | 5 name | Bob """ if isinstance(truncate, bool) and truncate: print(self._jdf.showString(n, 20, vertical)) else: print(self._jdf.showString(n, int(truncate), vertical))
[ "def", "show", "(", "self", ",", "n", "=", "20", ",", "truncate", "=", "True", ",", "vertical", "=", "False", ")", ":", "if", "isinstance", "(", "truncate", ",", "bool", ")", "and", "truncate", ":", "print", "(", "self", ".", "_jdf", ".", "showString", "(", "n", ",", "20", ",", "vertical", ")", ")", "else", ":", "print", "(", "self", ".", "_jdf", ".", "showString", "(", "n", ",", "int", "(", "truncate", ")", ",", "vertical", ")", ")" ]
Prints the first ``n`` rows to the console. :param n: Number of rows to show. :param truncate: If set to True, truncate strings longer than 20 chars by default. If set to a number greater than one, truncates long strings to length ``truncate`` and align cells right. :param vertical: If set to True, print output rows vertically (one line per column value). >>> df DataFrame[age: int, name: string] >>> df.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ >>> df.show(truncate=3) +---+----+ |age|name| +---+----+ | 2| Ali| | 5| Bob| +---+----+ >>> df.show(vertical=True) -RECORD 0----- age | 2 name | Alice -RECORD 1----- age | 5 name | Bob
[ "Prints", "the", "first", "n", "rows", "to", "the", "console", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L324-L361
apache/spark
python/pyspark/sql/dataframe.py
DataFrame._repr_html_
def _repr_html_(self): """Returns a dataframe with html code when you enabled eager evaluation by 'spark.sql.repl.eagerEval.enabled', this only called by REPL you are using support eager evaluation with HTML. """ import cgi if not self._support_repr_html: self._support_repr_html = True if self.sql_ctx._conf.isReplEagerEvalEnabled(): max_num_rows = max(self.sql_ctx._conf.replEagerEvalMaxNumRows(), 0) sock_info = self._jdf.getRowsToPython( max_num_rows, self.sql_ctx._conf.replEagerEvalTruncate()) rows = list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer()))) head = rows[0] row_data = rows[1:] has_more_data = len(row_data) > max_num_rows row_data = row_data[:max_num_rows] html = "<table border='1'>\n" # generate table head html += "<tr><th>%s</th></tr>\n" % "</th><th>".join(map(lambda x: cgi.escape(x), head)) # generate table rows for row in row_data: html += "<tr><td>%s</td></tr>\n" % "</td><td>".join( map(lambda x: cgi.escape(x), row)) html += "</table>\n" if has_more_data: html += "only showing top %d %s\n" % ( max_num_rows, "row" if max_num_rows == 1 else "rows") return html else: return None
python
def _repr_html_(self): """Returns a dataframe with html code when you enabled eager evaluation by 'spark.sql.repl.eagerEval.enabled', this only called by REPL you are using support eager evaluation with HTML. """ import cgi if not self._support_repr_html: self._support_repr_html = True if self.sql_ctx._conf.isReplEagerEvalEnabled(): max_num_rows = max(self.sql_ctx._conf.replEagerEvalMaxNumRows(), 0) sock_info = self._jdf.getRowsToPython( max_num_rows, self.sql_ctx._conf.replEagerEvalTruncate()) rows = list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer()))) head = rows[0] row_data = rows[1:] has_more_data = len(row_data) > max_num_rows row_data = row_data[:max_num_rows] html = "<table border='1'>\n" # generate table head html += "<tr><th>%s</th></tr>\n" % "</th><th>".join(map(lambda x: cgi.escape(x), head)) # generate table rows for row in row_data: html += "<tr><td>%s</td></tr>\n" % "</td><td>".join( map(lambda x: cgi.escape(x), row)) html += "</table>\n" if has_more_data: html += "only showing top %d %s\n" % ( max_num_rows, "row" if max_num_rows == 1 else "rows") return html else: return None
[ "def", "_repr_html_", "(", "self", ")", ":", "import", "cgi", "if", "not", "self", ".", "_support_repr_html", ":", "self", ".", "_support_repr_html", "=", "True", "if", "self", ".", "sql_ctx", ".", "_conf", ".", "isReplEagerEvalEnabled", "(", ")", ":", "max_num_rows", "=", "max", "(", "self", ".", "sql_ctx", ".", "_conf", ".", "replEagerEvalMaxNumRows", "(", ")", ",", "0", ")", "sock_info", "=", "self", ".", "_jdf", ".", "getRowsToPython", "(", "max_num_rows", ",", "self", ".", "sql_ctx", ".", "_conf", ".", "replEagerEvalTruncate", "(", ")", ")", "rows", "=", "list", "(", "_load_from_socket", "(", "sock_info", ",", "BatchedSerializer", "(", "PickleSerializer", "(", ")", ")", ")", ")", "head", "=", "rows", "[", "0", "]", "row_data", "=", "rows", "[", "1", ":", "]", "has_more_data", "=", "len", "(", "row_data", ")", ">", "max_num_rows", "row_data", "=", "row_data", "[", ":", "max_num_rows", "]", "html", "=", "\"<table border='1'>\\n\"", "# generate table head", "html", "+=", "\"<tr><th>%s</th></tr>\\n\"", "%", "\"</th><th>\"", ".", "join", "(", "map", "(", "lambda", "x", ":", "cgi", ".", "escape", "(", "x", ")", ",", "head", ")", ")", "# generate table rows", "for", "row", "in", "row_data", ":", "html", "+=", "\"<tr><td>%s</td></tr>\\n\"", "%", "\"</td><td>\"", ".", "join", "(", "map", "(", "lambda", "x", ":", "cgi", ".", "escape", "(", "x", ")", ",", "row", ")", ")", "html", "+=", "\"</table>\\n\"", "if", "has_more_data", ":", "html", "+=", "\"only showing top %d %s\\n\"", "%", "(", "max_num_rows", ",", "\"row\"", "if", "max_num_rows", "==", "1", "else", "\"rows\"", ")", "return", "html", "else", ":", "return", "None" ]
Returns a dataframe with html code when you enabled eager evaluation by 'spark.sql.repl.eagerEval.enabled', this only called by REPL you are using support eager evaluation with HTML.
[ "Returns", "a", "dataframe", "with", "html", "code", "when", "you", "enabled", "eager", "evaluation", "by", "spark", ".", "sql", ".", "repl", ".", "eagerEval", ".", "enabled", "this", "only", "called", "by", "REPL", "you", "are", "using", "support", "eager", "evaluation", "with", "HTML", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L372-L403
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.checkpoint
def checkpoint(self, eager=True): """Returns a checkpointed version of this Dataset. Checkpointing can be used to truncate the logical plan of this DataFrame, which is especially useful in iterative algorithms where the plan may grow exponentially. It will be saved to files inside the checkpoint directory set with L{SparkContext.setCheckpointDir()}. :param eager: Whether to checkpoint this DataFrame immediately .. note:: Experimental """ jdf = self._jdf.checkpoint(eager) return DataFrame(jdf, self.sql_ctx)
python
def checkpoint(self, eager=True): """Returns a checkpointed version of this Dataset. Checkpointing can be used to truncate the logical plan of this DataFrame, which is especially useful in iterative algorithms where the plan may grow exponentially. It will be saved to files inside the checkpoint directory set with L{SparkContext.setCheckpointDir()}. :param eager: Whether to checkpoint this DataFrame immediately .. note:: Experimental """ jdf = self._jdf.checkpoint(eager) return DataFrame(jdf, self.sql_ctx)
[ "def", "checkpoint", "(", "self", ",", "eager", "=", "True", ")", ":", "jdf", "=", "self", ".", "_jdf", ".", "checkpoint", "(", "eager", ")", "return", "DataFrame", "(", "jdf", ",", "self", ".", "sql_ctx", ")" ]
Returns a checkpointed version of this Dataset. Checkpointing can be used to truncate the logical plan of this DataFrame, which is especially useful in iterative algorithms where the plan may grow exponentially. It will be saved to files inside the checkpoint directory set with L{SparkContext.setCheckpointDir()}. :param eager: Whether to checkpoint this DataFrame immediately .. note:: Experimental
[ "Returns", "a", "checkpointed", "version", "of", "this", "Dataset", ".", "Checkpointing", "can", "be", "used", "to", "truncate", "the", "logical", "plan", "of", "this", "DataFrame", "which", "is", "especially", "useful", "in", "iterative", "algorithms", "where", "the", "plan", "may", "grow", "exponentially", ".", "It", "will", "be", "saved", "to", "files", "inside", "the", "checkpoint", "directory", "set", "with", "L", "{", "SparkContext", ".", "setCheckpointDir", "()", "}", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L406-L417
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.localCheckpoint
def localCheckpoint(self, eager=True): """Returns a locally checkpointed version of this Dataset. Checkpointing can be used to truncate the logical plan of this DataFrame, which is especially useful in iterative algorithms where the plan may grow exponentially. Local checkpoints are stored in the executors using the caching subsystem and therefore they are not reliable. :param eager: Whether to checkpoint this DataFrame immediately .. note:: Experimental """ jdf = self._jdf.localCheckpoint(eager) return DataFrame(jdf, self.sql_ctx)
python
def localCheckpoint(self, eager=True): """Returns a locally checkpointed version of this Dataset. Checkpointing can be used to truncate the logical plan of this DataFrame, which is especially useful in iterative algorithms where the plan may grow exponentially. Local checkpoints are stored in the executors using the caching subsystem and therefore they are not reliable. :param eager: Whether to checkpoint this DataFrame immediately .. note:: Experimental """ jdf = self._jdf.localCheckpoint(eager) return DataFrame(jdf, self.sql_ctx)
[ "def", "localCheckpoint", "(", "self", ",", "eager", "=", "True", ")", ":", "jdf", "=", "self", ".", "_jdf", ".", "localCheckpoint", "(", "eager", ")", "return", "DataFrame", "(", "jdf", ",", "self", ".", "sql_ctx", ")" ]
Returns a locally checkpointed version of this Dataset. Checkpointing can be used to truncate the logical plan of this DataFrame, which is especially useful in iterative algorithms where the plan may grow exponentially. Local checkpoints are stored in the executors using the caching subsystem and therefore they are not reliable. :param eager: Whether to checkpoint this DataFrame immediately .. note:: Experimental
[ "Returns", "a", "locally", "checkpointed", "version", "of", "this", "Dataset", ".", "Checkpointing", "can", "be", "used", "to", "truncate", "the", "logical", "plan", "of", "this", "DataFrame", "which", "is", "especially", "useful", "in", "iterative", "algorithms", "where", "the", "plan", "may", "grow", "exponentially", ".", "Local", "checkpoints", "are", "stored", "in", "the", "executors", "using", "the", "caching", "subsystem", "and", "therefore", "they", "are", "not", "reliable", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L420-L431
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.withWatermark
def withWatermark(self, eventTime, delayThreshold): """Defines an event time watermark for this :class:`DataFrame`. A watermark tracks a point in time before which we assume no more late data is going to arrive. Spark will use this watermark for several purposes: - To know when a given time window aggregation can be finalized and thus can be emitted when using output modes that do not allow updates. - To minimize the amount of state that we need to keep for on-going aggregations. The current watermark is computed by looking at the `MAX(eventTime)` seen across all of the partitions in the query minus a user specified `delayThreshold`. Due to the cost of coordinating this value across partitions, the actual watermark used is only guaranteed to be at least `delayThreshold` behind the actual event time. In some cases we may still process records that arrive more than `delayThreshold` late. :param eventTime: the name of the column that contains the event time of the row. :param delayThreshold: the minimum delay to wait to data to arrive late, relative to the latest record that has been processed in the form of an interval (e.g. "1 minute" or "5 hours"). .. note:: Evolving >>> sdf.select('name', sdf.time.cast('timestamp')).withWatermark('time', '10 minutes') DataFrame[name: string, time: timestamp] """ if not eventTime or type(eventTime) is not str: raise TypeError("eventTime should be provided as a string") if not delayThreshold or type(delayThreshold) is not str: raise TypeError("delayThreshold should be provided as a string interval") jdf = self._jdf.withWatermark(eventTime, delayThreshold) return DataFrame(jdf, self.sql_ctx)
python
def withWatermark(self, eventTime, delayThreshold): """Defines an event time watermark for this :class:`DataFrame`. A watermark tracks a point in time before which we assume no more late data is going to arrive. Spark will use this watermark for several purposes: - To know when a given time window aggregation can be finalized and thus can be emitted when using output modes that do not allow updates. - To minimize the amount of state that we need to keep for on-going aggregations. The current watermark is computed by looking at the `MAX(eventTime)` seen across all of the partitions in the query minus a user specified `delayThreshold`. Due to the cost of coordinating this value across partitions, the actual watermark used is only guaranteed to be at least `delayThreshold` behind the actual event time. In some cases we may still process records that arrive more than `delayThreshold` late. :param eventTime: the name of the column that contains the event time of the row. :param delayThreshold: the minimum delay to wait to data to arrive late, relative to the latest record that has been processed in the form of an interval (e.g. "1 minute" or "5 hours"). .. note:: Evolving >>> sdf.select('name', sdf.time.cast('timestamp')).withWatermark('time', '10 minutes') DataFrame[name: string, time: timestamp] """ if not eventTime or type(eventTime) is not str: raise TypeError("eventTime should be provided as a string") if not delayThreshold or type(delayThreshold) is not str: raise TypeError("delayThreshold should be provided as a string interval") jdf = self._jdf.withWatermark(eventTime, delayThreshold) return DataFrame(jdf, self.sql_ctx)
[ "def", "withWatermark", "(", "self", ",", "eventTime", ",", "delayThreshold", ")", ":", "if", "not", "eventTime", "or", "type", "(", "eventTime", ")", "is", "not", "str", ":", "raise", "TypeError", "(", "\"eventTime should be provided as a string\"", ")", "if", "not", "delayThreshold", "or", "type", "(", "delayThreshold", ")", "is", "not", "str", ":", "raise", "TypeError", "(", "\"delayThreshold should be provided as a string interval\"", ")", "jdf", "=", "self", ".", "_jdf", ".", "withWatermark", "(", "eventTime", ",", "delayThreshold", ")", "return", "DataFrame", "(", "jdf", ",", "self", ".", "sql_ctx", ")" ]
Defines an event time watermark for this :class:`DataFrame`. A watermark tracks a point in time before which we assume no more late data is going to arrive. Spark will use this watermark for several purposes: - To know when a given time window aggregation can be finalized and thus can be emitted when using output modes that do not allow updates. - To minimize the amount of state that we need to keep for on-going aggregations. The current watermark is computed by looking at the `MAX(eventTime)` seen across all of the partitions in the query minus a user specified `delayThreshold`. Due to the cost of coordinating this value across partitions, the actual watermark used is only guaranteed to be at least `delayThreshold` behind the actual event time. In some cases we may still process records that arrive more than `delayThreshold` late. :param eventTime: the name of the column that contains the event time of the row. :param delayThreshold: the minimum delay to wait to data to arrive late, relative to the latest record that has been processed in the form of an interval (e.g. "1 minute" or "5 hours"). .. note:: Evolving >>> sdf.select('name', sdf.time.cast('timestamp')).withWatermark('time', '10 minutes') DataFrame[name: string, time: timestamp]
[ "Defines", "an", "event", "time", "watermark", "for", "this", ":", "class", ":", "DataFrame", ".", "A", "watermark", "tracks", "a", "point", "in", "time", "before", "which", "we", "assume", "no", "more", "late", "data", "is", "going", "to", "arrive", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L434-L465
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.hint
def hint(self, name, *parameters): """Specifies some hint on the current DataFrame. :param name: A name of the hint. :param parameters: Optional parameters. :return: :class:`DataFrame` >>> df.join(df2.hint("broadcast"), "name").show() +----+---+------+ |name|age|height| +----+---+------+ | Bob| 5| 85| +----+---+------+ """ if len(parameters) == 1 and isinstance(parameters[0], list): parameters = parameters[0] if not isinstance(name, str): raise TypeError("name should be provided as str, got {0}".format(type(name))) allowed_types = (basestring, list, float, int) for p in parameters: if not isinstance(p, allowed_types): raise TypeError( "all parameters should be in {0}, got {1} of type {2}".format( allowed_types, p, type(p))) jdf = self._jdf.hint(name, self._jseq(parameters)) return DataFrame(jdf, self.sql_ctx)
python
def hint(self, name, *parameters): """Specifies some hint on the current DataFrame. :param name: A name of the hint. :param parameters: Optional parameters. :return: :class:`DataFrame` >>> df.join(df2.hint("broadcast"), "name").show() +----+---+------+ |name|age|height| +----+---+------+ | Bob| 5| 85| +----+---+------+ """ if len(parameters) == 1 and isinstance(parameters[0], list): parameters = parameters[0] if not isinstance(name, str): raise TypeError("name should be provided as str, got {0}".format(type(name))) allowed_types = (basestring, list, float, int) for p in parameters: if not isinstance(p, allowed_types): raise TypeError( "all parameters should be in {0}, got {1} of type {2}".format( allowed_types, p, type(p))) jdf = self._jdf.hint(name, self._jseq(parameters)) return DataFrame(jdf, self.sql_ctx)
[ "def", "hint", "(", "self", ",", "name", ",", "*", "parameters", ")", ":", "if", "len", "(", "parameters", ")", "==", "1", "and", "isinstance", "(", "parameters", "[", "0", "]", ",", "list", ")", ":", "parameters", "=", "parameters", "[", "0", "]", "if", "not", "isinstance", "(", "name", ",", "str", ")", ":", "raise", "TypeError", "(", "\"name should be provided as str, got {0}\"", ".", "format", "(", "type", "(", "name", ")", ")", ")", "allowed_types", "=", "(", "basestring", ",", "list", ",", "float", ",", "int", ")", "for", "p", "in", "parameters", ":", "if", "not", "isinstance", "(", "p", ",", "allowed_types", ")", ":", "raise", "TypeError", "(", "\"all parameters should be in {0}, got {1} of type {2}\"", ".", "format", "(", "allowed_types", ",", "p", ",", "type", "(", "p", ")", ")", ")", "jdf", "=", "self", ".", "_jdf", ".", "hint", "(", "name", ",", "self", ".", "_jseq", "(", "parameters", ")", ")", "return", "DataFrame", "(", "jdf", ",", "self", ".", "sql_ctx", ")" ]
Specifies some hint on the current DataFrame. :param name: A name of the hint. :param parameters: Optional parameters. :return: :class:`DataFrame` >>> df.join(df2.hint("broadcast"), "name").show() +----+---+------+ |name|age|height| +----+---+------+ | Bob| 5| 85| +----+---+------+
[ "Specifies", "some", "hint", "on", "the", "current", "DataFrame", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L468-L496
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.collect
def collect(self): """Returns all the records as a list of :class:`Row`. >>> df.collect() [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] """ with SCCallSiteSync(self._sc) as css: sock_info = self._jdf.collectToPython() return list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer())))
python
def collect(self): """Returns all the records as a list of :class:`Row`. >>> df.collect() [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] """ with SCCallSiteSync(self._sc) as css: sock_info = self._jdf.collectToPython() return list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer())))
[ "def", "collect", "(", "self", ")", ":", "with", "SCCallSiteSync", "(", "self", ".", "_sc", ")", "as", "css", ":", "sock_info", "=", "self", ".", "_jdf", ".", "collectToPython", "(", ")", "return", "list", "(", "_load_from_socket", "(", "sock_info", ",", "BatchedSerializer", "(", "PickleSerializer", "(", ")", ")", ")", ")" ]
Returns all the records as a list of :class:`Row`. >>> df.collect() [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')]
[ "Returns", "all", "the", "records", "as", "a", "list", "of", ":", "class", ":", "Row", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L509-L517
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.toLocalIterator
def toLocalIterator(self): """ Returns an iterator that contains all of the rows in this :class:`DataFrame`. The iterator will consume as much memory as the largest partition in this DataFrame. >>> list(df.toLocalIterator()) [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] """ with SCCallSiteSync(self._sc) as css: sock_info = self._jdf.toPythonIterator() return _load_from_socket(sock_info, BatchedSerializer(PickleSerializer()))
python
def toLocalIterator(self): """ Returns an iterator that contains all of the rows in this :class:`DataFrame`. The iterator will consume as much memory as the largest partition in this DataFrame. >>> list(df.toLocalIterator()) [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] """ with SCCallSiteSync(self._sc) as css: sock_info = self._jdf.toPythonIterator() return _load_from_socket(sock_info, BatchedSerializer(PickleSerializer()))
[ "def", "toLocalIterator", "(", "self", ")", ":", "with", "SCCallSiteSync", "(", "self", ".", "_sc", ")", "as", "css", ":", "sock_info", "=", "self", ".", "_jdf", ".", "toPythonIterator", "(", ")", "return", "_load_from_socket", "(", "sock_info", ",", "BatchedSerializer", "(", "PickleSerializer", "(", ")", ")", ")" ]
Returns an iterator that contains all of the rows in this :class:`DataFrame`. The iterator will consume as much memory as the largest partition in this DataFrame. >>> list(df.toLocalIterator()) [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')]
[ "Returns", "an", "iterator", "that", "contains", "all", "of", "the", "rows", "in", "this", ":", "class", ":", "DataFrame", ".", "The", "iterator", "will", "consume", "as", "much", "memory", "as", "the", "largest", "partition", "in", "this", "DataFrame", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L521-L531
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.limit
def limit(self, num): """Limits the result count to the number specified. >>> df.limit(1).collect() [Row(age=2, name=u'Alice')] >>> df.limit(0).collect() [] """ jdf = self._jdf.limit(num) return DataFrame(jdf, self.sql_ctx)
python
def limit(self, num): """Limits the result count to the number specified. >>> df.limit(1).collect() [Row(age=2, name=u'Alice')] >>> df.limit(0).collect() [] """ jdf = self._jdf.limit(num) return DataFrame(jdf, self.sql_ctx)
[ "def", "limit", "(", "self", ",", "num", ")", ":", "jdf", "=", "self", ".", "_jdf", ".", "limit", "(", "num", ")", "return", "DataFrame", "(", "jdf", ",", "self", ".", "sql_ctx", ")" ]
Limits the result count to the number specified. >>> df.limit(1).collect() [Row(age=2, name=u'Alice')] >>> df.limit(0).collect() []
[ "Limits", "the", "result", "count", "to", "the", "number", "specified", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L535-L544
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.persist
def persist(self, storageLevel=StorageLevel.MEMORY_AND_DISK): """Sets the storage level to persist the contents of the :class:`DataFrame` across operations after the first time it is computed. This can only be used to assign a new storage level if the :class:`DataFrame` does not have a storage level set yet. If no storage level is specified defaults to (C{MEMORY_AND_DISK}). .. note:: The default storage level has changed to C{MEMORY_AND_DISK} to match Scala in 2.0. """ self.is_cached = True javaStorageLevel = self._sc._getJavaStorageLevel(storageLevel) self._jdf.persist(javaStorageLevel) return self
python
def persist(self, storageLevel=StorageLevel.MEMORY_AND_DISK): """Sets the storage level to persist the contents of the :class:`DataFrame` across operations after the first time it is computed. This can only be used to assign a new storage level if the :class:`DataFrame` does not have a storage level set yet. If no storage level is specified defaults to (C{MEMORY_AND_DISK}). .. note:: The default storage level has changed to C{MEMORY_AND_DISK} to match Scala in 2.0. """ self.is_cached = True javaStorageLevel = self._sc._getJavaStorageLevel(storageLevel) self._jdf.persist(javaStorageLevel) return self
[ "def", "persist", "(", "self", ",", "storageLevel", "=", "StorageLevel", ".", "MEMORY_AND_DISK", ")", ":", "self", ".", "is_cached", "=", "True", "javaStorageLevel", "=", "self", ".", "_sc", ".", "_getJavaStorageLevel", "(", "storageLevel", ")", "self", ".", "_jdf", ".", "persist", "(", "javaStorageLevel", ")", "return", "self" ]
Sets the storage level to persist the contents of the :class:`DataFrame` across operations after the first time it is computed. This can only be used to assign a new storage level if the :class:`DataFrame` does not have a storage level set yet. If no storage level is specified defaults to (C{MEMORY_AND_DISK}). .. note:: The default storage level has changed to C{MEMORY_AND_DISK} to match Scala in 2.0.
[ "Sets", "the", "storage", "level", "to", "persist", "the", "contents", "of", "the", ":", "class", ":", "DataFrame", "across", "operations", "after", "the", "first", "time", "it", "is", "computed", ".", "This", "can", "only", "be", "used", "to", "assign", "a", "new", "storage", "level", "if", "the", ":", "class", ":", "DataFrame", "does", "not", "have", "a", "storage", "level", "set", "yet", ".", "If", "no", "storage", "level", "is", "specified", "defaults", "to", "(", "C", "{", "MEMORY_AND_DISK", "}", ")", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L592-L603
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.storageLevel
def storageLevel(self): """Get the :class:`DataFrame`'s current storage level. >>> df.storageLevel StorageLevel(False, False, False, False, 1) >>> df.cache().storageLevel StorageLevel(True, True, False, True, 1) >>> df2.persist(StorageLevel.DISK_ONLY_2).storageLevel StorageLevel(True, False, False, False, 2) """ java_storage_level = self._jdf.storageLevel() storage_level = StorageLevel(java_storage_level.useDisk(), java_storage_level.useMemory(), java_storage_level.useOffHeap(), java_storage_level.deserialized(), java_storage_level.replication()) return storage_level
python
def storageLevel(self): """Get the :class:`DataFrame`'s current storage level. >>> df.storageLevel StorageLevel(False, False, False, False, 1) >>> df.cache().storageLevel StorageLevel(True, True, False, True, 1) >>> df2.persist(StorageLevel.DISK_ONLY_2).storageLevel StorageLevel(True, False, False, False, 2) """ java_storage_level = self._jdf.storageLevel() storage_level = StorageLevel(java_storage_level.useDisk(), java_storage_level.useMemory(), java_storage_level.useOffHeap(), java_storage_level.deserialized(), java_storage_level.replication()) return storage_level
[ "def", "storageLevel", "(", "self", ")", ":", "java_storage_level", "=", "self", ".", "_jdf", ".", "storageLevel", "(", ")", "storage_level", "=", "StorageLevel", "(", "java_storage_level", ".", "useDisk", "(", ")", ",", "java_storage_level", ".", "useMemory", "(", ")", ",", "java_storage_level", ".", "useOffHeap", "(", ")", ",", "java_storage_level", ".", "deserialized", "(", ")", ",", "java_storage_level", ".", "replication", "(", ")", ")", "return", "storage_level" ]
Get the :class:`DataFrame`'s current storage level. >>> df.storageLevel StorageLevel(False, False, False, False, 1) >>> df.cache().storageLevel StorageLevel(True, True, False, True, 1) >>> df2.persist(StorageLevel.DISK_ONLY_2).storageLevel StorageLevel(True, False, False, False, 2)
[ "Get", "the", ":", "class", ":", "DataFrame", "s", "current", "storage", "level", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L607-L623
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.unpersist
def unpersist(self, blocking=False): """Marks the :class:`DataFrame` as non-persistent, and remove all blocks for it from memory and disk. .. note:: `blocking` default has changed to False to match Scala in 2.0. """ self.is_cached = False self._jdf.unpersist(blocking) return self
python
def unpersist(self, blocking=False): """Marks the :class:`DataFrame` as non-persistent, and remove all blocks for it from memory and disk. .. note:: `blocking` default has changed to False to match Scala in 2.0. """ self.is_cached = False self._jdf.unpersist(blocking) return self
[ "def", "unpersist", "(", "self", ",", "blocking", "=", "False", ")", ":", "self", ".", "is_cached", "=", "False", "self", ".", "_jdf", ".", "unpersist", "(", "blocking", ")", "return", "self" ]
Marks the :class:`DataFrame` as non-persistent, and remove all blocks for it from memory and disk. .. note:: `blocking` default has changed to False to match Scala in 2.0.
[ "Marks", "the", ":", "class", ":", "DataFrame", "as", "non", "-", "persistent", "and", "remove", "all", "blocks", "for", "it", "from", "memory", "and", "disk", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L626-L634
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.coalesce
def coalesce(self, numPartitions): """ Returns a new :class:`DataFrame` that has exactly `numPartitions` partitions. :param numPartitions: int, to specify the target number of partitions Similar to coalesce defined on an :class:`RDD`, this operation results in a narrow dependency, e.g. if you go from 1000 partitions to 100 partitions, there will not be a shuffle, instead each of the 100 new partitions will claim 10 of the current partitions. If a larger number of partitions is requested, it will stay at the current number of partitions. However, if you're doing a drastic coalesce, e.g. to numPartitions = 1, this may result in your computation taking place on fewer nodes than you like (e.g. one node in the case of numPartitions = 1). To avoid this, you can call repartition(). This will add a shuffle step, but means the current upstream partitions will be executed in parallel (per whatever the current partitioning is). >>> df.coalesce(1).rdd.getNumPartitions() 1 """ return DataFrame(self._jdf.coalesce(numPartitions), self.sql_ctx)
python
def coalesce(self, numPartitions): """ Returns a new :class:`DataFrame` that has exactly `numPartitions` partitions. :param numPartitions: int, to specify the target number of partitions Similar to coalesce defined on an :class:`RDD`, this operation results in a narrow dependency, e.g. if you go from 1000 partitions to 100 partitions, there will not be a shuffle, instead each of the 100 new partitions will claim 10 of the current partitions. If a larger number of partitions is requested, it will stay at the current number of partitions. However, if you're doing a drastic coalesce, e.g. to numPartitions = 1, this may result in your computation taking place on fewer nodes than you like (e.g. one node in the case of numPartitions = 1). To avoid this, you can call repartition(). This will add a shuffle step, but means the current upstream partitions will be executed in parallel (per whatever the current partitioning is). >>> df.coalesce(1).rdd.getNumPartitions() 1 """ return DataFrame(self._jdf.coalesce(numPartitions), self.sql_ctx)
[ "def", "coalesce", "(", "self", ",", "numPartitions", ")", ":", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "coalesce", "(", "numPartitions", ")", ",", "self", ".", "sql_ctx", ")" ]
Returns a new :class:`DataFrame` that has exactly `numPartitions` partitions. :param numPartitions: int, to specify the target number of partitions Similar to coalesce defined on an :class:`RDD`, this operation results in a narrow dependency, e.g. if you go from 1000 partitions to 100 partitions, there will not be a shuffle, instead each of the 100 new partitions will claim 10 of the current partitions. If a larger number of partitions is requested, it will stay at the current number of partitions. However, if you're doing a drastic coalesce, e.g. to numPartitions = 1, this may result in your computation taking place on fewer nodes than you like (e.g. one node in the case of numPartitions = 1). To avoid this, you can call repartition(). This will add a shuffle step, but means the current upstream partitions will be executed in parallel (per whatever the current partitioning is). >>> df.coalesce(1).rdd.getNumPartitions() 1
[ "Returns", "a", "new", ":", "class", ":", "DataFrame", "that", "has", "exactly", "numPartitions", "partitions", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L637-L659
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.repartition
def repartition(self, numPartitions, *cols): """ Returns a new :class:`DataFrame` partitioned by the given partitioning expressions. The resulting DataFrame is hash partitioned. :param numPartitions: can be an int to specify the target number of partitions or a Column. If it is a Column, it will be used as the first partitioning column. If not specified, the default number of partitions is used. .. versionchanged:: 1.6 Added optional arguments to specify the partitioning columns. Also made numPartitions optional if partitioning columns are specified. >>> df.repartition(10).rdd.getNumPartitions() 10 >>> data = df.union(df).repartition("age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 5| Bob| | 2|Alice| | 2|Alice| +---+-----+ >>> data = data.repartition(7, "age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| | 2|Alice| | 5| Bob| +---+-----+ >>> data.rdd.getNumPartitions() 7 >>> data = data.repartition("name", "age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 5| Bob| | 2|Alice| | 2|Alice| +---+-----+ """ if isinstance(numPartitions, int): if len(cols) == 0: return DataFrame(self._jdf.repartition(numPartitions), self.sql_ctx) else: return DataFrame( self._jdf.repartition(numPartitions, self._jcols(*cols)), self.sql_ctx) elif isinstance(numPartitions, (basestring, Column)): cols = (numPartitions, ) + cols return DataFrame(self._jdf.repartition(self._jcols(*cols)), self.sql_ctx) else: raise TypeError("numPartitions should be an int or Column")
python
def repartition(self, numPartitions, *cols): """ Returns a new :class:`DataFrame` partitioned by the given partitioning expressions. The resulting DataFrame is hash partitioned. :param numPartitions: can be an int to specify the target number of partitions or a Column. If it is a Column, it will be used as the first partitioning column. If not specified, the default number of partitions is used. .. versionchanged:: 1.6 Added optional arguments to specify the partitioning columns. Also made numPartitions optional if partitioning columns are specified. >>> df.repartition(10).rdd.getNumPartitions() 10 >>> data = df.union(df).repartition("age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 5| Bob| | 2|Alice| | 2|Alice| +---+-----+ >>> data = data.repartition(7, "age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| | 2|Alice| | 5| Bob| +---+-----+ >>> data.rdd.getNumPartitions() 7 >>> data = data.repartition("name", "age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 5| Bob| | 2|Alice| | 2|Alice| +---+-----+ """ if isinstance(numPartitions, int): if len(cols) == 0: return DataFrame(self._jdf.repartition(numPartitions), self.sql_ctx) else: return DataFrame( self._jdf.repartition(numPartitions, self._jcols(*cols)), self.sql_ctx) elif isinstance(numPartitions, (basestring, Column)): cols = (numPartitions, ) + cols return DataFrame(self._jdf.repartition(self._jcols(*cols)), self.sql_ctx) else: raise TypeError("numPartitions should be an int or Column")
[ "def", "repartition", "(", "self", ",", "numPartitions", ",", "*", "cols", ")", ":", "if", "isinstance", "(", "numPartitions", ",", "int", ")", ":", "if", "len", "(", "cols", ")", "==", "0", ":", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "repartition", "(", "numPartitions", ")", ",", "self", ".", "sql_ctx", ")", "else", ":", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "repartition", "(", "numPartitions", ",", "self", ".", "_jcols", "(", "*", "cols", ")", ")", ",", "self", ".", "sql_ctx", ")", "elif", "isinstance", "(", "numPartitions", ",", "(", "basestring", ",", "Column", ")", ")", ":", "cols", "=", "(", "numPartitions", ",", ")", "+", "cols", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "repartition", "(", "self", ".", "_jcols", "(", "*", "cols", ")", ")", ",", "self", ".", "sql_ctx", ")", "else", ":", "raise", "TypeError", "(", "\"numPartitions should be an int or Column\"", ")" ]
Returns a new :class:`DataFrame` partitioned by the given partitioning expressions. The resulting DataFrame is hash partitioned. :param numPartitions: can be an int to specify the target number of partitions or a Column. If it is a Column, it will be used as the first partitioning column. If not specified, the default number of partitions is used. .. versionchanged:: 1.6 Added optional arguments to specify the partitioning columns. Also made numPartitions optional if partitioning columns are specified. >>> df.repartition(10).rdd.getNumPartitions() 10 >>> data = df.union(df).repartition("age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 5| Bob| | 2|Alice| | 2|Alice| +---+-----+ >>> data = data.repartition(7, "age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| | 2|Alice| | 5| Bob| +---+-----+ >>> data.rdd.getNumPartitions() 7 >>> data = data.repartition("name", "age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 5| Bob| | 2|Alice| | 2|Alice| +---+-----+
[ "Returns", "a", "new", ":", "class", ":", "DataFrame", "partitioned", "by", "the", "given", "partitioning", "expressions", ".", "The", "resulting", "DataFrame", "is", "hash", "partitioned", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L662-L721
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.sample
def sample(self, withReplacement=None, fraction=None, seed=None): """Returns a sampled subset of this :class:`DataFrame`. :param withReplacement: Sample with replacement or not (default False). :param fraction: Fraction of rows to generate, range [0.0, 1.0]. :param seed: Seed for sampling (default a random seed). .. note:: This is not guaranteed to provide exactly the fraction specified of the total count of the given :class:`DataFrame`. .. note:: `fraction` is required and, `withReplacement` and `seed` are optional. >>> df = spark.range(10) >>> df.sample(0.5, 3).count() 7 >>> df.sample(fraction=0.5, seed=3).count() 7 >>> df.sample(withReplacement=True, fraction=0.5, seed=3).count() 1 >>> df.sample(1.0).count() 10 >>> df.sample(fraction=1.0).count() 10 >>> df.sample(False, fraction=1.0).count() 10 """ # For the cases below: # sample(True, 0.5 [, seed]) # sample(True, fraction=0.5 [, seed]) # sample(withReplacement=False, fraction=0.5 [, seed]) is_withReplacement_set = \ type(withReplacement) == bool and isinstance(fraction, float) # For the case below: # sample(faction=0.5 [, seed]) is_withReplacement_omitted_kwargs = \ withReplacement is None and isinstance(fraction, float) # For the case below: # sample(0.5 [, seed]) is_withReplacement_omitted_args = isinstance(withReplacement, float) if not (is_withReplacement_set or is_withReplacement_omitted_kwargs or is_withReplacement_omitted_args): argtypes = [ str(type(arg)) for arg in [withReplacement, fraction, seed] if arg is not None] raise TypeError( "withReplacement (optional), fraction (required) and seed (optional)" " should be a bool, float and number; however, " "got [%s]." % ", ".join(argtypes)) if is_withReplacement_omitted_args: if fraction is not None: seed = fraction fraction = withReplacement withReplacement = None seed = long(seed) if seed is not None else None args = [arg for arg in [withReplacement, fraction, seed] if arg is not None] jdf = self._jdf.sample(*args) return DataFrame(jdf, self.sql_ctx)
python
def sample(self, withReplacement=None, fraction=None, seed=None): """Returns a sampled subset of this :class:`DataFrame`. :param withReplacement: Sample with replacement or not (default False). :param fraction: Fraction of rows to generate, range [0.0, 1.0]. :param seed: Seed for sampling (default a random seed). .. note:: This is not guaranteed to provide exactly the fraction specified of the total count of the given :class:`DataFrame`. .. note:: `fraction` is required and, `withReplacement` and `seed` are optional. >>> df = spark.range(10) >>> df.sample(0.5, 3).count() 7 >>> df.sample(fraction=0.5, seed=3).count() 7 >>> df.sample(withReplacement=True, fraction=0.5, seed=3).count() 1 >>> df.sample(1.0).count() 10 >>> df.sample(fraction=1.0).count() 10 >>> df.sample(False, fraction=1.0).count() 10 """ # For the cases below: # sample(True, 0.5 [, seed]) # sample(True, fraction=0.5 [, seed]) # sample(withReplacement=False, fraction=0.5 [, seed]) is_withReplacement_set = \ type(withReplacement) == bool and isinstance(fraction, float) # For the case below: # sample(faction=0.5 [, seed]) is_withReplacement_omitted_kwargs = \ withReplacement is None and isinstance(fraction, float) # For the case below: # sample(0.5 [, seed]) is_withReplacement_omitted_args = isinstance(withReplacement, float) if not (is_withReplacement_set or is_withReplacement_omitted_kwargs or is_withReplacement_omitted_args): argtypes = [ str(type(arg)) for arg in [withReplacement, fraction, seed] if arg is not None] raise TypeError( "withReplacement (optional), fraction (required) and seed (optional)" " should be a bool, float and number; however, " "got [%s]." % ", ".join(argtypes)) if is_withReplacement_omitted_args: if fraction is not None: seed = fraction fraction = withReplacement withReplacement = None seed = long(seed) if seed is not None else None args = [arg for arg in [withReplacement, fraction, seed] if arg is not None] jdf = self._jdf.sample(*args) return DataFrame(jdf, self.sql_ctx)
[ "def", "sample", "(", "self", ",", "withReplacement", "=", "None", ",", "fraction", "=", "None", ",", "seed", "=", "None", ")", ":", "# For the cases below:", "# sample(True, 0.5 [, seed])", "# sample(True, fraction=0.5 [, seed])", "# sample(withReplacement=False, fraction=0.5 [, seed])", "is_withReplacement_set", "=", "type", "(", "withReplacement", ")", "==", "bool", "and", "isinstance", "(", "fraction", ",", "float", ")", "# For the case below:", "# sample(faction=0.5 [, seed])", "is_withReplacement_omitted_kwargs", "=", "withReplacement", "is", "None", "and", "isinstance", "(", "fraction", ",", "float", ")", "# For the case below:", "# sample(0.5 [, seed])", "is_withReplacement_omitted_args", "=", "isinstance", "(", "withReplacement", ",", "float", ")", "if", "not", "(", "is_withReplacement_set", "or", "is_withReplacement_omitted_kwargs", "or", "is_withReplacement_omitted_args", ")", ":", "argtypes", "=", "[", "str", "(", "type", "(", "arg", ")", ")", "for", "arg", "in", "[", "withReplacement", ",", "fraction", ",", "seed", "]", "if", "arg", "is", "not", "None", "]", "raise", "TypeError", "(", "\"withReplacement (optional), fraction (required) and seed (optional)\"", "\" should be a bool, float and number; however, \"", "\"got [%s].\"", "%", "\", \"", ".", "join", "(", "argtypes", ")", ")", "if", "is_withReplacement_omitted_args", ":", "if", "fraction", "is", "not", "None", ":", "seed", "=", "fraction", "fraction", "=", "withReplacement", "withReplacement", "=", "None", "seed", "=", "long", "(", "seed", ")", "if", "seed", "is", "not", "None", "else", "None", "args", "=", "[", "arg", "for", "arg", "in", "[", "withReplacement", ",", "fraction", ",", "seed", "]", "if", "arg", "is", "not", "None", "]", "jdf", "=", "self", ".", "_jdf", ".", "sample", "(", "*", "args", ")", "return", "DataFrame", "(", "jdf", ",", "self", ".", "sql_ctx", ")" ]
Returns a sampled subset of this :class:`DataFrame`. :param withReplacement: Sample with replacement or not (default False). :param fraction: Fraction of rows to generate, range [0.0, 1.0]. :param seed: Seed for sampling (default a random seed). .. note:: This is not guaranteed to provide exactly the fraction specified of the total count of the given :class:`DataFrame`. .. note:: `fraction` is required and, `withReplacement` and `seed` are optional. >>> df = spark.range(10) >>> df.sample(0.5, 3).count() 7 >>> df.sample(fraction=0.5, seed=3).count() 7 >>> df.sample(withReplacement=True, fraction=0.5, seed=3).count() 1 >>> df.sample(1.0).count() 10 >>> df.sample(fraction=1.0).count() 10 >>> df.sample(False, fraction=1.0).count() 10
[ "Returns", "a", "sampled", "subset", "of", "this", ":", "class", ":", "DataFrame", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L784-L846
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.sampleBy
def sampleBy(self, col, fractions, seed=None): """ Returns a stratified sample without replacement based on the fraction given on each stratum. :param col: column that defines strata :param fractions: sampling fraction for each stratum. If a stratum is not specified, we treat its fraction as zero. :param seed: random seed :return: a new DataFrame that represents the stratified sample >>> from pyspark.sql.functions import col >>> dataset = sqlContext.range(0, 100).select((col("id") % 3).alias("key")) >>> sampled = dataset.sampleBy("key", fractions={0: 0.1, 1: 0.2}, seed=0) >>> sampled.groupBy("key").count().orderBy("key").show() +---+-----+ |key|count| +---+-----+ | 0| 3| | 1| 6| +---+-----+ >>> dataset.sampleBy(col("key"), fractions={2: 1.0}, seed=0).count() 33 .. versionchanged:: 3.0 Added sampling by a column of :class:`Column` """ if isinstance(col, basestring): col = Column(col) elif not isinstance(col, Column): raise ValueError("col must be a string or a column, but got %r" % type(col)) if not isinstance(fractions, dict): raise ValueError("fractions must be a dict but got %r" % type(fractions)) for k, v in fractions.items(): if not isinstance(k, (float, int, long, basestring)): raise ValueError("key must be float, int, long, or string, but got %r" % type(k)) fractions[k] = float(v) col = col._jc seed = seed if seed is not None else random.randint(0, sys.maxsize) return DataFrame(self._jdf.stat().sampleBy(col, self._jmap(fractions), seed), self.sql_ctx)
python
def sampleBy(self, col, fractions, seed=None): """ Returns a stratified sample without replacement based on the fraction given on each stratum. :param col: column that defines strata :param fractions: sampling fraction for each stratum. If a stratum is not specified, we treat its fraction as zero. :param seed: random seed :return: a new DataFrame that represents the stratified sample >>> from pyspark.sql.functions import col >>> dataset = sqlContext.range(0, 100).select((col("id") % 3).alias("key")) >>> sampled = dataset.sampleBy("key", fractions={0: 0.1, 1: 0.2}, seed=0) >>> sampled.groupBy("key").count().orderBy("key").show() +---+-----+ |key|count| +---+-----+ | 0| 3| | 1| 6| +---+-----+ >>> dataset.sampleBy(col("key"), fractions={2: 1.0}, seed=0).count() 33 .. versionchanged:: 3.0 Added sampling by a column of :class:`Column` """ if isinstance(col, basestring): col = Column(col) elif not isinstance(col, Column): raise ValueError("col must be a string or a column, but got %r" % type(col)) if not isinstance(fractions, dict): raise ValueError("fractions must be a dict but got %r" % type(fractions)) for k, v in fractions.items(): if not isinstance(k, (float, int, long, basestring)): raise ValueError("key must be float, int, long, or string, but got %r" % type(k)) fractions[k] = float(v) col = col._jc seed = seed if seed is not None else random.randint(0, sys.maxsize) return DataFrame(self._jdf.stat().sampleBy(col, self._jmap(fractions), seed), self.sql_ctx)
[ "def", "sampleBy", "(", "self", ",", "col", ",", "fractions", ",", "seed", "=", "None", ")", ":", "if", "isinstance", "(", "col", ",", "basestring", ")", ":", "col", "=", "Column", "(", "col", ")", "elif", "not", "isinstance", "(", "col", ",", "Column", ")", ":", "raise", "ValueError", "(", "\"col must be a string or a column, but got %r\"", "%", "type", "(", "col", ")", ")", "if", "not", "isinstance", "(", "fractions", ",", "dict", ")", ":", "raise", "ValueError", "(", "\"fractions must be a dict but got %r\"", "%", "type", "(", "fractions", ")", ")", "for", "k", ",", "v", "in", "fractions", ".", "items", "(", ")", ":", "if", "not", "isinstance", "(", "k", ",", "(", "float", ",", "int", ",", "long", ",", "basestring", ")", ")", ":", "raise", "ValueError", "(", "\"key must be float, int, long, or string, but got %r\"", "%", "type", "(", "k", ")", ")", "fractions", "[", "k", "]", "=", "float", "(", "v", ")", "col", "=", "col", ".", "_jc", "seed", "=", "seed", "if", "seed", "is", "not", "None", "else", "random", ".", "randint", "(", "0", ",", "sys", ".", "maxsize", ")", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "stat", "(", ")", ".", "sampleBy", "(", "col", ",", "self", ".", "_jmap", "(", "fractions", ")", ",", "seed", ")", ",", "self", ".", "sql_ctx", ")" ]
Returns a stratified sample without replacement based on the fraction given on each stratum. :param col: column that defines strata :param fractions: sampling fraction for each stratum. If a stratum is not specified, we treat its fraction as zero. :param seed: random seed :return: a new DataFrame that represents the stratified sample >>> from pyspark.sql.functions import col >>> dataset = sqlContext.range(0, 100).select((col("id") % 3).alias("key")) >>> sampled = dataset.sampleBy("key", fractions={0: 0.1, 1: 0.2}, seed=0) >>> sampled.groupBy("key").count().orderBy("key").show() +---+-----+ |key|count| +---+-----+ | 0| 3| | 1| 6| +---+-----+ >>> dataset.sampleBy(col("key"), fractions={2: 1.0}, seed=0).count() 33 .. versionchanged:: 3.0 Added sampling by a column of :class:`Column`
[ "Returns", "a", "stratified", "sample", "without", "replacement", "based", "on", "the", "fraction", "given", "on", "each", "stratum", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L849-L889
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.randomSplit
def randomSplit(self, weights, seed=None): """Randomly splits this :class:`DataFrame` with the provided weights. :param weights: list of doubles as weights with which to split the DataFrame. Weights will be normalized if they don't sum up to 1.0. :param seed: The seed for sampling. >>> splits = df4.randomSplit([1.0, 2.0], 24) >>> splits[0].count() 2 >>> splits[1].count() 2 """ for w in weights: if w < 0.0: raise ValueError("Weights must be positive. Found weight value: %s" % w) seed = seed if seed is not None else random.randint(0, sys.maxsize) rdd_array = self._jdf.randomSplit(_to_list(self.sql_ctx._sc, weights), long(seed)) return [DataFrame(rdd, self.sql_ctx) for rdd in rdd_array]
python
def randomSplit(self, weights, seed=None): """Randomly splits this :class:`DataFrame` with the provided weights. :param weights: list of doubles as weights with which to split the DataFrame. Weights will be normalized if they don't sum up to 1.0. :param seed: The seed for sampling. >>> splits = df4.randomSplit([1.0, 2.0], 24) >>> splits[0].count() 2 >>> splits[1].count() 2 """ for w in weights: if w < 0.0: raise ValueError("Weights must be positive. Found weight value: %s" % w) seed = seed if seed is not None else random.randint(0, sys.maxsize) rdd_array = self._jdf.randomSplit(_to_list(self.sql_ctx._sc, weights), long(seed)) return [DataFrame(rdd, self.sql_ctx) for rdd in rdd_array]
[ "def", "randomSplit", "(", "self", ",", "weights", ",", "seed", "=", "None", ")", ":", "for", "w", "in", "weights", ":", "if", "w", "<", "0.0", ":", "raise", "ValueError", "(", "\"Weights must be positive. Found weight value: %s\"", "%", "w", ")", "seed", "=", "seed", "if", "seed", "is", "not", "None", "else", "random", ".", "randint", "(", "0", ",", "sys", ".", "maxsize", ")", "rdd_array", "=", "self", ".", "_jdf", ".", "randomSplit", "(", "_to_list", "(", "self", ".", "sql_ctx", ".", "_sc", ",", "weights", ")", ",", "long", "(", "seed", ")", ")", "return", "[", "DataFrame", "(", "rdd", ",", "self", ".", "sql_ctx", ")", "for", "rdd", "in", "rdd_array", "]" ]
Randomly splits this :class:`DataFrame` with the provided weights. :param weights: list of doubles as weights with which to split the DataFrame. Weights will be normalized if they don't sum up to 1.0. :param seed: The seed for sampling. >>> splits = df4.randomSplit([1.0, 2.0], 24) >>> splits[0].count() 2 >>> splits[1].count() 2
[ "Randomly", "splits", "this", ":", "class", ":", "DataFrame", "with", "the", "provided", "weights", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L892-L911
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.dtypes
def dtypes(self): """Returns all column names and their data types as a list. >>> df.dtypes [('age', 'int'), ('name', 'string')] """ return [(str(f.name), f.dataType.simpleString()) for f in self.schema.fields]
python
def dtypes(self): """Returns all column names and their data types as a list. >>> df.dtypes [('age', 'int'), ('name', 'string')] """ return [(str(f.name), f.dataType.simpleString()) for f in self.schema.fields]
[ "def", "dtypes", "(", "self", ")", ":", "return", "[", "(", "str", "(", "f", ".", "name", ")", ",", "f", ".", "dataType", ".", "simpleString", "(", ")", ")", "for", "f", "in", "self", ".", "schema", ".", "fields", "]" ]
Returns all column names and their data types as a list. >>> df.dtypes [('age', 'int'), ('name', 'string')]
[ "Returns", "all", "column", "names", "and", "their", "data", "types", "as", "a", "list", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L915-L921
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.colRegex
def colRegex(self, colName): """ Selects column based on the column name specified as a regex and returns it as :class:`Column`. :param colName: string, column name specified as a regex. >>> df = spark.createDataFrame([("a", 1), ("b", 2), ("c", 3)], ["Col1", "Col2"]) >>> df.select(df.colRegex("`(Col1)?+.+`")).show() +----+ |Col2| +----+ | 1| | 2| | 3| +----+ """ if not isinstance(colName, basestring): raise ValueError("colName should be provided as string") jc = self._jdf.colRegex(colName) return Column(jc)
python
def colRegex(self, colName): """ Selects column based on the column name specified as a regex and returns it as :class:`Column`. :param colName: string, column name specified as a regex. >>> df = spark.createDataFrame([("a", 1), ("b", 2), ("c", 3)], ["Col1", "Col2"]) >>> df.select(df.colRegex("`(Col1)?+.+`")).show() +----+ |Col2| +----+ | 1| | 2| | 3| +----+ """ if not isinstance(colName, basestring): raise ValueError("colName should be provided as string") jc = self._jdf.colRegex(colName) return Column(jc)
[ "def", "colRegex", "(", "self", ",", "colName", ")", ":", "if", "not", "isinstance", "(", "colName", ",", "basestring", ")", ":", "raise", "ValueError", "(", "\"colName should be provided as string\"", ")", "jc", "=", "self", ".", "_jdf", ".", "colRegex", "(", "colName", ")", "return", "Column", "(", "jc", ")" ]
Selects column based on the column name specified as a regex and returns it as :class:`Column`. :param colName: string, column name specified as a regex. >>> df = spark.createDataFrame([("a", 1), ("b", 2), ("c", 3)], ["Col1", "Col2"]) >>> df.select(df.colRegex("`(Col1)?+.+`")).show() +----+ |Col2| +----+ | 1| | 2| | 3| +----+
[ "Selects", "column", "based", "on", "the", "column", "name", "specified", "as", "a", "regex", "and", "returns", "it", "as", ":", "class", ":", "Column", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L934-L954
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.alias
def alias(self, alias): """Returns a new :class:`DataFrame` with an alias set. :param alias: string, an alias name to be set for the DataFrame. >>> from pyspark.sql.functions import * >>> df_as1 = df.alias("df_as1") >>> df_as2 = df.alias("df_as2") >>> joined_df = df_as1.join(df_as2, col("df_as1.name") == col("df_as2.name"), 'inner') >>> joined_df.select("df_as1.name", "df_as2.name", "df_as2.age").collect() [Row(name=u'Bob', name=u'Bob', age=5), Row(name=u'Alice', name=u'Alice', age=2)] """ assert isinstance(alias, basestring), "alias should be a string" return DataFrame(getattr(self._jdf, "as")(alias), self.sql_ctx)
python
def alias(self, alias): """Returns a new :class:`DataFrame` with an alias set. :param alias: string, an alias name to be set for the DataFrame. >>> from pyspark.sql.functions import * >>> df_as1 = df.alias("df_as1") >>> df_as2 = df.alias("df_as2") >>> joined_df = df_as1.join(df_as2, col("df_as1.name") == col("df_as2.name"), 'inner') >>> joined_df.select("df_as1.name", "df_as2.name", "df_as2.age").collect() [Row(name=u'Bob', name=u'Bob', age=5), Row(name=u'Alice', name=u'Alice', age=2)] """ assert isinstance(alias, basestring), "alias should be a string" return DataFrame(getattr(self._jdf, "as")(alias), self.sql_ctx)
[ "def", "alias", "(", "self", ",", "alias", ")", ":", "assert", "isinstance", "(", "alias", ",", "basestring", ")", ",", "\"alias should be a string\"", "return", "DataFrame", "(", "getattr", "(", "self", ".", "_jdf", ",", "\"as\"", ")", "(", "alias", ")", ",", "self", ".", "sql_ctx", ")" ]
Returns a new :class:`DataFrame` with an alias set. :param alias: string, an alias name to be set for the DataFrame. >>> from pyspark.sql.functions import * >>> df_as1 = df.alias("df_as1") >>> df_as2 = df.alias("df_as2") >>> joined_df = df_as1.join(df_as2, col("df_as1.name") == col("df_as2.name"), 'inner') >>> joined_df.select("df_as1.name", "df_as2.name", "df_as2.age").collect() [Row(name=u'Bob', name=u'Bob', age=5), Row(name=u'Alice', name=u'Alice', age=2)]
[ "Returns", "a", "new", ":", "class", ":", "DataFrame", "with", "an", "alias", "set", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L958-L971
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.crossJoin
def crossJoin(self, other): """Returns the cartesian product with another :class:`DataFrame`. :param other: Right side of the cartesian product. >>> df.select("age", "name").collect() [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] >>> df2.select("name", "height").collect() [Row(name=u'Tom', height=80), Row(name=u'Bob', height=85)] >>> df.crossJoin(df2.select("height")).select("age", "name", "height").collect() [Row(age=2, name=u'Alice', height=80), Row(age=2, name=u'Alice', height=85), Row(age=5, name=u'Bob', height=80), Row(age=5, name=u'Bob', height=85)] """ jdf = self._jdf.crossJoin(other._jdf) return DataFrame(jdf, self.sql_ctx)
python
def crossJoin(self, other): """Returns the cartesian product with another :class:`DataFrame`. :param other: Right side of the cartesian product. >>> df.select("age", "name").collect() [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] >>> df2.select("name", "height").collect() [Row(name=u'Tom', height=80), Row(name=u'Bob', height=85)] >>> df.crossJoin(df2.select("height")).select("age", "name", "height").collect() [Row(age=2, name=u'Alice', height=80), Row(age=2, name=u'Alice', height=85), Row(age=5, name=u'Bob', height=80), Row(age=5, name=u'Bob', height=85)] """ jdf = self._jdf.crossJoin(other._jdf) return DataFrame(jdf, self.sql_ctx)
[ "def", "crossJoin", "(", "self", ",", "other", ")", ":", "jdf", "=", "self", ".", "_jdf", ".", "crossJoin", "(", "other", ".", "_jdf", ")", "return", "DataFrame", "(", "jdf", ",", "self", ".", "sql_ctx", ")" ]
Returns the cartesian product with another :class:`DataFrame`. :param other: Right side of the cartesian product. >>> df.select("age", "name").collect() [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] >>> df2.select("name", "height").collect() [Row(name=u'Tom', height=80), Row(name=u'Bob', height=85)] >>> df.crossJoin(df2.select("height")).select("age", "name", "height").collect() [Row(age=2, name=u'Alice', height=80), Row(age=2, name=u'Alice', height=85), Row(age=5, name=u'Bob', height=80), Row(age=5, name=u'Bob', height=85)]
[ "Returns", "the", "cartesian", "product", "with", "another", ":", "class", ":", "DataFrame", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L975-L990
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.join
def join(self, other, on=None, how=None): """Joins with another :class:`DataFrame`, using the given join expression. :param other: Right side of the join :param on: a string for the join column name, a list of column names, a join expression (Column), or a list of Columns. If `on` is a string or a list of strings indicating the name of the join column(s), the column(s) must exist on both sides, and this performs an equi-join. :param how: str, default ``inner``. Must be one of: ``inner``, ``cross``, ``outer``, ``full``, ``fullouter``, ``full_outer``, ``left``, ``leftouter``, ``left_outer``, ``right``, ``rightouter``, ``right_outer``, ``semi``, ``leftsemi``, ``left_semi``, ``anti``, ``leftanti`` and ``left_anti``. The following performs a full outer join between ``df1`` and ``df2``. >>> df.join(df2, df.name == df2.name, 'outer').select(df.name, df2.height).collect() [Row(name=None, height=80), Row(name=u'Bob', height=85), Row(name=u'Alice', height=None)] >>> df.join(df2, 'name', 'outer').select('name', 'height').collect() [Row(name=u'Tom', height=80), Row(name=u'Bob', height=85), Row(name=u'Alice', height=None)] >>> cond = [df.name == df3.name, df.age == df3.age] >>> df.join(df3, cond, 'outer').select(df.name, df3.age).collect() [Row(name=u'Alice', age=2), Row(name=u'Bob', age=5)] >>> df.join(df2, 'name').select(df.name, df2.height).collect() [Row(name=u'Bob', height=85)] >>> df.join(df4, ['name', 'age']).select(df.name, df.age).collect() [Row(name=u'Bob', age=5)] """ if on is not None and not isinstance(on, list): on = [on] if on is not None: if isinstance(on[0], basestring): on = self._jseq(on) else: assert isinstance(on[0], Column), "on should be Column or list of Column" on = reduce(lambda x, y: x.__and__(y), on) on = on._jc if on is None and how is None: jdf = self._jdf.join(other._jdf) else: if how is None: how = "inner" if on is None: on = self._jseq([]) assert isinstance(how, basestring), "how should be basestring" jdf = self._jdf.join(other._jdf, on, how) return DataFrame(jdf, self.sql_ctx)
python
def join(self, other, on=None, how=None): """Joins with another :class:`DataFrame`, using the given join expression. :param other: Right side of the join :param on: a string for the join column name, a list of column names, a join expression (Column), or a list of Columns. If `on` is a string or a list of strings indicating the name of the join column(s), the column(s) must exist on both sides, and this performs an equi-join. :param how: str, default ``inner``. Must be one of: ``inner``, ``cross``, ``outer``, ``full``, ``fullouter``, ``full_outer``, ``left``, ``leftouter``, ``left_outer``, ``right``, ``rightouter``, ``right_outer``, ``semi``, ``leftsemi``, ``left_semi``, ``anti``, ``leftanti`` and ``left_anti``. The following performs a full outer join between ``df1`` and ``df2``. >>> df.join(df2, df.name == df2.name, 'outer').select(df.name, df2.height).collect() [Row(name=None, height=80), Row(name=u'Bob', height=85), Row(name=u'Alice', height=None)] >>> df.join(df2, 'name', 'outer').select('name', 'height').collect() [Row(name=u'Tom', height=80), Row(name=u'Bob', height=85), Row(name=u'Alice', height=None)] >>> cond = [df.name == df3.name, df.age == df3.age] >>> df.join(df3, cond, 'outer').select(df.name, df3.age).collect() [Row(name=u'Alice', age=2), Row(name=u'Bob', age=5)] >>> df.join(df2, 'name').select(df.name, df2.height).collect() [Row(name=u'Bob', height=85)] >>> df.join(df4, ['name', 'age']).select(df.name, df.age).collect() [Row(name=u'Bob', age=5)] """ if on is not None and not isinstance(on, list): on = [on] if on is not None: if isinstance(on[0], basestring): on = self._jseq(on) else: assert isinstance(on[0], Column), "on should be Column or list of Column" on = reduce(lambda x, y: x.__and__(y), on) on = on._jc if on is None and how is None: jdf = self._jdf.join(other._jdf) else: if how is None: how = "inner" if on is None: on = self._jseq([]) assert isinstance(how, basestring), "how should be basestring" jdf = self._jdf.join(other._jdf, on, how) return DataFrame(jdf, self.sql_ctx)
[ "def", "join", "(", "self", ",", "other", ",", "on", "=", "None", ",", "how", "=", "None", ")", ":", "if", "on", "is", "not", "None", "and", "not", "isinstance", "(", "on", ",", "list", ")", ":", "on", "=", "[", "on", "]", "if", "on", "is", "not", "None", ":", "if", "isinstance", "(", "on", "[", "0", "]", ",", "basestring", ")", ":", "on", "=", "self", ".", "_jseq", "(", "on", ")", "else", ":", "assert", "isinstance", "(", "on", "[", "0", "]", ",", "Column", ")", ",", "\"on should be Column or list of Column\"", "on", "=", "reduce", "(", "lambda", "x", ",", "y", ":", "x", ".", "__and__", "(", "y", ")", ",", "on", ")", "on", "=", "on", ".", "_jc", "if", "on", "is", "None", "and", "how", "is", "None", ":", "jdf", "=", "self", ".", "_jdf", ".", "join", "(", "other", ".", "_jdf", ")", "else", ":", "if", "how", "is", "None", ":", "how", "=", "\"inner\"", "if", "on", "is", "None", ":", "on", "=", "self", ".", "_jseq", "(", "[", "]", ")", "assert", "isinstance", "(", "how", ",", "basestring", ")", ",", "\"how should be basestring\"", "jdf", "=", "self", ".", "_jdf", ".", "join", "(", "other", ".", "_jdf", ",", "on", ",", "how", ")", "return", "DataFrame", "(", "jdf", ",", "self", ".", "sql_ctx", ")" ]
Joins with another :class:`DataFrame`, using the given join expression. :param other: Right side of the join :param on: a string for the join column name, a list of column names, a join expression (Column), or a list of Columns. If `on` is a string or a list of strings indicating the name of the join column(s), the column(s) must exist on both sides, and this performs an equi-join. :param how: str, default ``inner``. Must be one of: ``inner``, ``cross``, ``outer``, ``full``, ``fullouter``, ``full_outer``, ``left``, ``leftouter``, ``left_outer``, ``right``, ``rightouter``, ``right_outer``, ``semi``, ``leftsemi``, ``left_semi``, ``anti``, ``leftanti`` and ``left_anti``. The following performs a full outer join between ``df1`` and ``df2``. >>> df.join(df2, df.name == df2.name, 'outer').select(df.name, df2.height).collect() [Row(name=None, height=80), Row(name=u'Bob', height=85), Row(name=u'Alice', height=None)] >>> df.join(df2, 'name', 'outer').select('name', 'height').collect() [Row(name=u'Tom', height=80), Row(name=u'Bob', height=85), Row(name=u'Alice', height=None)] >>> cond = [df.name == df3.name, df.age == df3.age] >>> df.join(df3, cond, 'outer').select(df.name, df3.age).collect() [Row(name=u'Alice', age=2), Row(name=u'Bob', age=5)] >>> df.join(df2, 'name').select(df.name, df2.height).collect() [Row(name=u'Bob', height=85)] >>> df.join(df4, ['name', 'age']).select(df.name, df.age).collect() [Row(name=u'Bob', age=5)]
[ "Joins", "with", "another", ":", "class", ":", "DataFrame", "using", "the", "given", "join", "expression", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L994-L1046
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.sortWithinPartitions
def sortWithinPartitions(self, *cols, **kwargs): """Returns a new :class:`DataFrame` with each partition sorted by the specified column(s). :param cols: list of :class:`Column` or column names to sort by. :param ascending: boolean or list of boolean (default True). Sort ascending vs. descending. Specify list for multiple sort orders. If a list is specified, length of the list must equal length of the `cols`. >>> df.sortWithinPartitions("age", ascending=False).show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ """ jdf = self._jdf.sortWithinPartitions(self._sort_cols(cols, kwargs)) return DataFrame(jdf, self.sql_ctx)
python
def sortWithinPartitions(self, *cols, **kwargs): """Returns a new :class:`DataFrame` with each partition sorted by the specified column(s). :param cols: list of :class:`Column` or column names to sort by. :param ascending: boolean or list of boolean (default True). Sort ascending vs. descending. Specify list for multiple sort orders. If a list is specified, length of the list must equal length of the `cols`. >>> df.sortWithinPartitions("age", ascending=False).show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ """ jdf = self._jdf.sortWithinPartitions(self._sort_cols(cols, kwargs)) return DataFrame(jdf, self.sql_ctx)
[ "def", "sortWithinPartitions", "(", "self", ",", "*", "cols", ",", "*", "*", "kwargs", ")", ":", "jdf", "=", "self", ".", "_jdf", ".", "sortWithinPartitions", "(", "self", ".", "_sort_cols", "(", "cols", ",", "kwargs", ")", ")", "return", "DataFrame", "(", "jdf", ",", "self", ".", "sql_ctx", ")" ]
Returns a new :class:`DataFrame` with each partition sorted by the specified column(s). :param cols: list of :class:`Column` or column names to sort by. :param ascending: boolean or list of boolean (default True). Sort ascending vs. descending. Specify list for multiple sort orders. If a list is specified, length of the list must equal length of the `cols`. >>> df.sortWithinPartitions("age", ascending=False).show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+
[ "Returns", "a", "new", ":", "class", ":", "DataFrame", "with", "each", "partition", "sorted", "by", "the", "specified", "column", "(", "s", ")", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1049-L1066
apache/spark
python/pyspark/sql/dataframe.py
DataFrame._jseq
def _jseq(self, cols, converter=None): """Return a JVM Seq of Columns from a list of Column or names""" return _to_seq(self.sql_ctx._sc, cols, converter)
python
def _jseq(self, cols, converter=None): """Return a JVM Seq of Columns from a list of Column or names""" return _to_seq(self.sql_ctx._sc, cols, converter)
[ "def", "_jseq", "(", "self", ",", "cols", ",", "converter", "=", "None", ")", ":", "return", "_to_seq", "(", "self", ".", "sql_ctx", ".", "_sc", ",", "cols", ",", "converter", ")" ]
Return a JVM Seq of Columns from a list of Column or names
[ "Return", "a", "JVM", "Seq", "of", "Columns", "from", "a", "list", "of", "Column", "or", "names" ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1097-L1099
apache/spark
python/pyspark/sql/dataframe.py
DataFrame._jcols
def _jcols(self, *cols): """Return a JVM Seq of Columns from a list of Column or column names If `cols` has only one list in it, cols[0] will be used as the list. """ if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] return self._jseq(cols, _to_java_column)
python
def _jcols(self, *cols): """Return a JVM Seq of Columns from a list of Column or column names If `cols` has only one list in it, cols[0] will be used as the list. """ if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] return self._jseq(cols, _to_java_column)
[ "def", "_jcols", "(", "self", ",", "*", "cols", ")", ":", "if", "len", "(", "cols", ")", "==", "1", "and", "isinstance", "(", "cols", "[", "0", "]", ",", "list", ")", ":", "cols", "=", "cols", "[", "0", "]", "return", "self", ".", "_jseq", "(", "cols", ",", "_to_java_column", ")" ]
Return a JVM Seq of Columns from a list of Column or column names If `cols` has only one list in it, cols[0] will be used as the list.
[ "Return", "a", "JVM", "Seq", "of", "Columns", "from", "a", "list", "of", "Column", "or", "column", "names" ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1105-L1112
apache/spark
python/pyspark/sql/dataframe.py
DataFrame._sort_cols
def _sort_cols(self, cols, kwargs): """ Return a JVM Seq of Columns that describes the sort order """ if not cols: raise ValueError("should sort by at least one column") if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] jcols = [_to_java_column(c) for c in cols] ascending = kwargs.get('ascending', True) if isinstance(ascending, (bool, int)): if not ascending: jcols = [jc.desc() for jc in jcols] elif isinstance(ascending, list): jcols = [jc if asc else jc.desc() for asc, jc in zip(ascending, jcols)] else: raise TypeError("ascending can only be boolean or list, but got %s" % type(ascending)) return self._jseq(jcols)
python
def _sort_cols(self, cols, kwargs): """ Return a JVM Seq of Columns that describes the sort order """ if not cols: raise ValueError("should sort by at least one column") if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] jcols = [_to_java_column(c) for c in cols] ascending = kwargs.get('ascending', True) if isinstance(ascending, (bool, int)): if not ascending: jcols = [jc.desc() for jc in jcols] elif isinstance(ascending, list): jcols = [jc if asc else jc.desc() for asc, jc in zip(ascending, jcols)] else: raise TypeError("ascending can only be boolean or list, but got %s" % type(ascending)) return self._jseq(jcols)
[ "def", "_sort_cols", "(", "self", ",", "cols", ",", "kwargs", ")", ":", "if", "not", "cols", ":", "raise", "ValueError", "(", "\"should sort by at least one column\"", ")", "if", "len", "(", "cols", ")", "==", "1", "and", "isinstance", "(", "cols", "[", "0", "]", ",", "list", ")", ":", "cols", "=", "cols", "[", "0", "]", "jcols", "=", "[", "_to_java_column", "(", "c", ")", "for", "c", "in", "cols", "]", "ascending", "=", "kwargs", ".", "get", "(", "'ascending'", ",", "True", ")", "if", "isinstance", "(", "ascending", ",", "(", "bool", ",", "int", ")", ")", ":", "if", "not", "ascending", ":", "jcols", "=", "[", "jc", ".", "desc", "(", ")", "for", "jc", "in", "jcols", "]", "elif", "isinstance", "(", "ascending", ",", "list", ")", ":", "jcols", "=", "[", "jc", "if", "asc", "else", "jc", ".", "desc", "(", ")", "for", "asc", ",", "jc", "in", "zip", "(", "ascending", ",", "jcols", ")", "]", "else", ":", "raise", "TypeError", "(", "\"ascending can only be boolean or list, but got %s\"", "%", "type", "(", "ascending", ")", ")", "return", "self", ".", "_jseq", "(", "jcols", ")" ]
Return a JVM Seq of Columns that describes the sort order
[ "Return", "a", "JVM", "Seq", "of", "Columns", "that", "describes", "the", "sort", "order" ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1114-L1131
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.describe
def describe(self, *cols): """Computes basic statistics for numeric and string columns. This include count, mean, stddev, min, and max. If no columns are given, this function computes statistics for all numerical or string columns. .. note:: This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting DataFrame. >>> df.describe(['age']).show() +-------+------------------+ |summary| age| +-------+------------------+ | count| 2| | mean| 3.5| | stddev|2.1213203435596424| | min| 2| | max| 5| +-------+------------------+ >>> df.describe().show() +-------+------------------+-----+ |summary| age| name| +-------+------------------+-----+ | count| 2| 2| | mean| 3.5| null| | stddev|2.1213203435596424| null| | min| 2|Alice| | max| 5| Bob| +-------+------------------+-----+ Use summary for expanded statistics and control over which statistics to compute. """ if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] jdf = self._jdf.describe(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx)
python
def describe(self, *cols): """Computes basic statistics for numeric and string columns. This include count, mean, stddev, min, and max. If no columns are given, this function computes statistics for all numerical or string columns. .. note:: This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting DataFrame. >>> df.describe(['age']).show() +-------+------------------+ |summary| age| +-------+------------------+ | count| 2| | mean| 3.5| | stddev|2.1213203435596424| | min| 2| | max| 5| +-------+------------------+ >>> df.describe().show() +-------+------------------+-----+ |summary| age| name| +-------+------------------+-----+ | count| 2| 2| | mean| 3.5| null| | stddev|2.1213203435596424| null| | min| 2|Alice| | max| 5| Bob| +-------+------------------+-----+ Use summary for expanded statistics and control over which statistics to compute. """ if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] jdf = self._jdf.describe(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx)
[ "def", "describe", "(", "self", ",", "*", "cols", ")", ":", "if", "len", "(", "cols", ")", "==", "1", "and", "isinstance", "(", "cols", "[", "0", "]", ",", "list", ")", ":", "cols", "=", "cols", "[", "0", "]", "jdf", "=", "self", ".", "_jdf", ".", "describe", "(", "self", ".", "_jseq", "(", "cols", ")", ")", "return", "DataFrame", "(", "jdf", ",", "self", ".", "sql_ctx", ")" ]
Computes basic statistics for numeric and string columns. This include count, mean, stddev, min, and max. If no columns are given, this function computes statistics for all numerical or string columns. .. note:: This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting DataFrame. >>> df.describe(['age']).show() +-------+------------------+ |summary| age| +-------+------------------+ | count| 2| | mean| 3.5| | stddev|2.1213203435596424| | min| 2| | max| 5| +-------+------------------+ >>> df.describe().show() +-------+------------------+-----+ |summary| age| name| +-------+------------------+-----+ | count| 2| 2| | mean| 3.5| null| | stddev|2.1213203435596424| null| | min| 2|Alice| | max| 5| Bob| +-------+------------------+-----+ Use summary for expanded statistics and control over which statistics to compute.
[ "Computes", "basic", "statistics", "for", "numeric", "and", "string", "columns", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1134-L1169
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.summary
def summary(self, *statistics): """Computes specified statistics for numeric and string columns. Available statistics are: - count - mean - stddev - min - max - arbitrary approximate percentiles specified as a percentage (eg, 75%) If no statistics are given, this function computes count, mean, stddev, min, approximate quartiles (percentiles at 25%, 50%, and 75%), and max. .. note:: This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting DataFrame. >>> df.summary().show() +-------+------------------+-----+ |summary| age| name| +-------+------------------+-----+ | count| 2| 2| | mean| 3.5| null| | stddev|2.1213203435596424| null| | min| 2|Alice| | 25%| 2| null| | 50%| 2| null| | 75%| 5| null| | max| 5| Bob| +-------+------------------+-----+ >>> df.summary("count", "min", "25%", "75%", "max").show() +-------+---+-----+ |summary|age| name| +-------+---+-----+ | count| 2| 2| | min| 2|Alice| | 25%| 2| null| | 75%| 5| null| | max| 5| Bob| +-------+---+-----+ To do a summary for specific columns first select them: >>> df.select("age", "name").summary("count").show() +-------+---+----+ |summary|age|name| +-------+---+----+ | count| 2| 2| +-------+---+----+ See also describe for basic statistics. """ if len(statistics) == 1 and isinstance(statistics[0], list): statistics = statistics[0] jdf = self._jdf.summary(self._jseq(statistics)) return DataFrame(jdf, self.sql_ctx)
python
def summary(self, *statistics): """Computes specified statistics for numeric and string columns. Available statistics are: - count - mean - stddev - min - max - arbitrary approximate percentiles specified as a percentage (eg, 75%) If no statistics are given, this function computes count, mean, stddev, min, approximate quartiles (percentiles at 25%, 50%, and 75%), and max. .. note:: This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting DataFrame. >>> df.summary().show() +-------+------------------+-----+ |summary| age| name| +-------+------------------+-----+ | count| 2| 2| | mean| 3.5| null| | stddev|2.1213203435596424| null| | min| 2|Alice| | 25%| 2| null| | 50%| 2| null| | 75%| 5| null| | max| 5| Bob| +-------+------------------+-----+ >>> df.summary("count", "min", "25%", "75%", "max").show() +-------+---+-----+ |summary|age| name| +-------+---+-----+ | count| 2| 2| | min| 2|Alice| | 25%| 2| null| | 75%| 5| null| | max| 5| Bob| +-------+---+-----+ To do a summary for specific columns first select them: >>> df.select("age", "name").summary("count").show() +-------+---+----+ |summary|age|name| +-------+---+----+ | count| 2| 2| +-------+---+----+ See also describe for basic statistics. """ if len(statistics) == 1 and isinstance(statistics[0], list): statistics = statistics[0] jdf = self._jdf.summary(self._jseq(statistics)) return DataFrame(jdf, self.sql_ctx)
[ "def", "summary", "(", "self", ",", "*", "statistics", ")", ":", "if", "len", "(", "statistics", ")", "==", "1", "and", "isinstance", "(", "statistics", "[", "0", "]", ",", "list", ")", ":", "statistics", "=", "statistics", "[", "0", "]", "jdf", "=", "self", ".", "_jdf", ".", "summary", "(", "self", ".", "_jseq", "(", "statistics", ")", ")", "return", "DataFrame", "(", "jdf", ",", "self", ".", "sql_ctx", ")" ]
Computes specified statistics for numeric and string columns. Available statistics are: - count - mean - stddev - min - max - arbitrary approximate percentiles specified as a percentage (eg, 75%) If no statistics are given, this function computes count, mean, stddev, min, approximate quartiles (percentiles at 25%, 50%, and 75%), and max. .. note:: This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting DataFrame. >>> df.summary().show() +-------+------------------+-----+ |summary| age| name| +-------+------------------+-----+ | count| 2| 2| | mean| 3.5| null| | stddev|2.1213203435596424| null| | min| 2|Alice| | 25%| 2| null| | 50%| 2| null| | 75%| 5| null| | max| 5| Bob| +-------+------------------+-----+ >>> df.summary("count", "min", "25%", "75%", "max").show() +-------+---+-----+ |summary|age| name| +-------+---+-----+ | count| 2| 2| | min| 2|Alice| | 25%| 2| null| | 75%| 5| null| | max| 5| Bob| +-------+---+-----+ To do a summary for specific columns first select them: >>> df.select("age", "name").summary("count").show() +-------+---+----+ |summary|age|name| +-------+---+----+ | count| 2| 2| +-------+---+----+ See also describe for basic statistics.
[ "Computes", "specified", "statistics", "for", "numeric", "and", "string", "columns", ".", "Available", "statistics", "are", ":", "-", "count", "-", "mean", "-", "stddev", "-", "min", "-", "max", "-", "arbitrary", "approximate", "percentiles", "specified", "as", "a", "percentage", "(", "eg", "75%", ")" ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1172-L1226
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.head
def head(self, n=None): """Returns the first ``n`` rows. .. note:: This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. :param n: int, default 1. Number of rows to return. :return: If n is greater than 1, return a list of :class:`Row`. If n is 1, return a single Row. >>> df.head() Row(age=2, name=u'Alice') >>> df.head(1) [Row(age=2, name=u'Alice')] """ if n is None: rs = self.head(1) return rs[0] if rs else None return self.take(n)
python
def head(self, n=None): """Returns the first ``n`` rows. .. note:: This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. :param n: int, default 1. Number of rows to return. :return: If n is greater than 1, return a list of :class:`Row`. If n is 1, return a single Row. >>> df.head() Row(age=2, name=u'Alice') >>> df.head(1) [Row(age=2, name=u'Alice')] """ if n is None: rs = self.head(1) return rs[0] if rs else None return self.take(n)
[ "def", "head", "(", "self", ",", "n", "=", "None", ")", ":", "if", "n", "is", "None", ":", "rs", "=", "self", ".", "head", "(", "1", ")", "return", "rs", "[", "0", "]", "if", "rs", "else", "None", "return", "self", ".", "take", "(", "n", ")" ]
Returns the first ``n`` rows. .. note:: This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. :param n: int, default 1. Number of rows to return. :return: If n is greater than 1, return a list of :class:`Row`. If n is 1, return a single Row. >>> df.head() Row(age=2, name=u'Alice') >>> df.head(1) [Row(age=2, name=u'Alice')]
[ "Returns", "the", "first", "n", "rows", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1230-L1248
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.select
def select(self, *cols): """Projects a set of expressions and returns a new :class:`DataFrame`. :param cols: list of column names (string) or expressions (:class:`Column`). If one of the column names is '*', that column is expanded to include all columns in the current DataFrame. >>> df.select('*').collect() [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] >>> df.select('name', 'age').collect() [Row(name=u'Alice', age=2), Row(name=u'Bob', age=5)] >>> df.select(df.name, (df.age + 10).alias('age')).collect() [Row(name=u'Alice', age=12), Row(name=u'Bob', age=15)] """ jdf = self._jdf.select(self._jcols(*cols)) return DataFrame(jdf, self.sql_ctx)
python
def select(self, *cols): """Projects a set of expressions and returns a new :class:`DataFrame`. :param cols: list of column names (string) or expressions (:class:`Column`). If one of the column names is '*', that column is expanded to include all columns in the current DataFrame. >>> df.select('*').collect() [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] >>> df.select('name', 'age').collect() [Row(name=u'Alice', age=2), Row(name=u'Bob', age=5)] >>> df.select(df.name, (df.age + 10).alias('age')).collect() [Row(name=u'Alice', age=12), Row(name=u'Bob', age=15)] """ jdf = self._jdf.select(self._jcols(*cols)) return DataFrame(jdf, self.sql_ctx)
[ "def", "select", "(", "self", ",", "*", "cols", ")", ":", "jdf", "=", "self", ".", "_jdf", ".", "select", "(", "self", ".", "_jcols", "(", "*", "cols", ")", ")", "return", "DataFrame", "(", "jdf", ",", "self", ".", "sql_ctx", ")" ]
Projects a set of expressions and returns a new :class:`DataFrame`. :param cols: list of column names (string) or expressions (:class:`Column`). If one of the column names is '*', that column is expanded to include all columns in the current DataFrame. >>> df.select('*').collect() [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] >>> df.select('name', 'age').collect() [Row(name=u'Alice', age=2), Row(name=u'Bob', age=5)] >>> df.select(df.name, (df.age + 10).alias('age')).collect() [Row(name=u'Alice', age=12), Row(name=u'Bob', age=15)]
[ "Projects", "a", "set", "of", "expressions", "and", "returns", "a", "new", ":", "class", ":", "DataFrame", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1302-L1317
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.selectExpr
def selectExpr(self, *expr): """Projects a set of SQL expressions and returns a new :class:`DataFrame`. This is a variant of :func:`select` that accepts SQL expressions. >>> df.selectExpr("age * 2", "abs(age)").collect() [Row((age * 2)=4, abs(age)=2), Row((age * 2)=10, abs(age)=5)] """ if len(expr) == 1 and isinstance(expr[0], list): expr = expr[0] jdf = self._jdf.selectExpr(self._jseq(expr)) return DataFrame(jdf, self.sql_ctx)
python
def selectExpr(self, *expr): """Projects a set of SQL expressions and returns a new :class:`DataFrame`. This is a variant of :func:`select` that accepts SQL expressions. >>> df.selectExpr("age * 2", "abs(age)").collect() [Row((age * 2)=4, abs(age)=2), Row((age * 2)=10, abs(age)=5)] """ if len(expr) == 1 and isinstance(expr[0], list): expr = expr[0] jdf = self._jdf.selectExpr(self._jseq(expr)) return DataFrame(jdf, self.sql_ctx)
[ "def", "selectExpr", "(", "self", ",", "*", "expr", ")", ":", "if", "len", "(", "expr", ")", "==", "1", "and", "isinstance", "(", "expr", "[", "0", "]", ",", "list", ")", ":", "expr", "=", "expr", "[", "0", "]", "jdf", "=", "self", ".", "_jdf", ".", "selectExpr", "(", "self", ".", "_jseq", "(", "expr", ")", ")", "return", "DataFrame", "(", "jdf", ",", "self", ".", "sql_ctx", ")" ]
Projects a set of SQL expressions and returns a new :class:`DataFrame`. This is a variant of :func:`select` that accepts SQL expressions. >>> df.selectExpr("age * 2", "abs(age)").collect() [Row((age * 2)=4, abs(age)=2), Row((age * 2)=10, abs(age)=5)]
[ "Projects", "a", "set", "of", "SQL", "expressions", "and", "returns", "a", "new", ":", "class", ":", "DataFrame", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1320-L1331
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.filter
def filter(self, condition): """Filters rows using the given condition. :func:`where` is an alias for :func:`filter`. :param condition: a :class:`Column` of :class:`types.BooleanType` or a string of SQL expression. >>> df.filter(df.age > 3).collect() [Row(age=5, name=u'Bob')] >>> df.where(df.age == 2).collect() [Row(age=2, name=u'Alice')] >>> df.filter("age > 3").collect() [Row(age=5, name=u'Bob')] >>> df.where("age = 2").collect() [Row(age=2, name=u'Alice')] """ if isinstance(condition, basestring): jdf = self._jdf.filter(condition) elif isinstance(condition, Column): jdf = self._jdf.filter(condition._jc) else: raise TypeError("condition should be string or Column") return DataFrame(jdf, self.sql_ctx)
python
def filter(self, condition): """Filters rows using the given condition. :func:`where` is an alias for :func:`filter`. :param condition: a :class:`Column` of :class:`types.BooleanType` or a string of SQL expression. >>> df.filter(df.age > 3).collect() [Row(age=5, name=u'Bob')] >>> df.where(df.age == 2).collect() [Row(age=2, name=u'Alice')] >>> df.filter("age > 3").collect() [Row(age=5, name=u'Bob')] >>> df.where("age = 2").collect() [Row(age=2, name=u'Alice')] """ if isinstance(condition, basestring): jdf = self._jdf.filter(condition) elif isinstance(condition, Column): jdf = self._jdf.filter(condition._jc) else: raise TypeError("condition should be string or Column") return DataFrame(jdf, self.sql_ctx)
[ "def", "filter", "(", "self", ",", "condition", ")", ":", "if", "isinstance", "(", "condition", ",", "basestring", ")", ":", "jdf", "=", "self", ".", "_jdf", ".", "filter", "(", "condition", ")", "elif", "isinstance", "(", "condition", ",", "Column", ")", ":", "jdf", "=", "self", ".", "_jdf", ".", "filter", "(", "condition", ".", "_jc", ")", "else", ":", "raise", "TypeError", "(", "\"condition should be string or Column\"", ")", "return", "DataFrame", "(", "jdf", ",", "self", ".", "sql_ctx", ")" ]
Filters rows using the given condition. :func:`where` is an alias for :func:`filter`. :param condition: a :class:`Column` of :class:`types.BooleanType` or a string of SQL expression. >>> df.filter(df.age > 3).collect() [Row(age=5, name=u'Bob')] >>> df.where(df.age == 2).collect() [Row(age=2, name=u'Alice')] >>> df.filter("age > 3").collect() [Row(age=5, name=u'Bob')] >>> df.where("age = 2").collect() [Row(age=2, name=u'Alice')]
[ "Filters", "rows", "using", "the", "given", "condition", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1335-L1359
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.groupBy
def groupBy(self, *cols): """Groups the :class:`DataFrame` using the specified columns, so we can run aggregation on them. See :class:`GroupedData` for all the available aggregate functions. :func:`groupby` is an alias for :func:`groupBy`. :param cols: list of columns to group by. Each element should be a column name (string) or an expression (:class:`Column`). >>> df.groupBy().avg().collect() [Row(avg(age)=3.5)] >>> sorted(df.groupBy('name').agg({'age': 'mean'}).collect()) [Row(name=u'Alice', avg(age)=2.0), Row(name=u'Bob', avg(age)=5.0)] >>> sorted(df.groupBy(df.name).avg().collect()) [Row(name=u'Alice', avg(age)=2.0), Row(name=u'Bob', avg(age)=5.0)] >>> sorted(df.groupBy(['name', df.age]).count().collect()) [Row(name=u'Alice', age=2, count=1), Row(name=u'Bob', age=5, count=1)] """ jgd = self._jdf.groupBy(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self)
python
def groupBy(self, *cols): """Groups the :class:`DataFrame` using the specified columns, so we can run aggregation on them. See :class:`GroupedData` for all the available aggregate functions. :func:`groupby` is an alias for :func:`groupBy`. :param cols: list of columns to group by. Each element should be a column name (string) or an expression (:class:`Column`). >>> df.groupBy().avg().collect() [Row(avg(age)=3.5)] >>> sorted(df.groupBy('name').agg({'age': 'mean'}).collect()) [Row(name=u'Alice', avg(age)=2.0), Row(name=u'Bob', avg(age)=5.0)] >>> sorted(df.groupBy(df.name).avg().collect()) [Row(name=u'Alice', avg(age)=2.0), Row(name=u'Bob', avg(age)=5.0)] >>> sorted(df.groupBy(['name', df.age]).count().collect()) [Row(name=u'Alice', age=2, count=1), Row(name=u'Bob', age=5, count=1)] """ jgd = self._jdf.groupBy(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self)
[ "def", "groupBy", "(", "self", ",", "*", "cols", ")", ":", "jgd", "=", "self", ".", "_jdf", ".", "groupBy", "(", "self", ".", "_jcols", "(", "*", "cols", ")", ")", "from", "pyspark", ".", "sql", ".", "group", "import", "GroupedData", "return", "GroupedData", "(", "jgd", ",", "self", ")" ]
Groups the :class:`DataFrame` using the specified columns, so we can run aggregation on them. See :class:`GroupedData` for all the available aggregate functions. :func:`groupby` is an alias for :func:`groupBy`. :param cols: list of columns to group by. Each element should be a column name (string) or an expression (:class:`Column`). >>> df.groupBy().avg().collect() [Row(avg(age)=3.5)] >>> sorted(df.groupBy('name').agg({'age': 'mean'}).collect()) [Row(name=u'Alice', avg(age)=2.0), Row(name=u'Bob', avg(age)=5.0)] >>> sorted(df.groupBy(df.name).avg().collect()) [Row(name=u'Alice', avg(age)=2.0), Row(name=u'Bob', avg(age)=5.0)] >>> sorted(df.groupBy(['name', df.age]).count().collect()) [Row(name=u'Alice', age=2, count=1), Row(name=u'Bob', age=5, count=1)]
[ "Groups", "the", ":", "class", ":", "DataFrame", "using", "the", "specified", "columns", "so", "we", "can", "run", "aggregation", "on", "them", ".", "See", ":", "class", ":", "GroupedData", "for", "all", "the", "available", "aggregate", "functions", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1363-L1384
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.union
def union(self, other): """ Return a new :class:`DataFrame` containing union of rows in this and another frame. This is equivalent to `UNION ALL` in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by :func:`distinct`. Also as standard in SQL, this function resolves columns by position (not by name). """ return DataFrame(self._jdf.union(other._jdf), self.sql_ctx)
python
def union(self, other): """ Return a new :class:`DataFrame` containing union of rows in this and another frame. This is equivalent to `UNION ALL` in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by :func:`distinct`. Also as standard in SQL, this function resolves columns by position (not by name). """ return DataFrame(self._jdf.union(other._jdf), self.sql_ctx)
[ "def", "union", "(", "self", ",", "other", ")", ":", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "union", "(", "other", ".", "_jdf", ")", ",", "self", ".", "sql_ctx", ")" ]
Return a new :class:`DataFrame` containing union of rows in this and another frame. This is equivalent to `UNION ALL` in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by :func:`distinct`. Also as standard in SQL, this function resolves columns by position (not by name).
[ "Return", "a", "new", ":", "class", ":", "DataFrame", "containing", "union", "of", "rows", "in", "this", "and", "another", "frame", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1444-L1452
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.unionByName
def unionByName(self, other): """ Returns a new :class:`DataFrame` containing union of rows in this and another frame. This is different from both `UNION ALL` and `UNION DISTINCT` in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by :func:`distinct`. The difference between this function and :func:`union` is that this function resolves columns by name (not by position): >>> df1 = spark.createDataFrame([[1, 2, 3]], ["col0", "col1", "col2"]) >>> df2 = spark.createDataFrame([[4, 5, 6]], ["col1", "col2", "col0"]) >>> df1.unionByName(df2).show() +----+----+----+ |col0|col1|col2| +----+----+----+ | 1| 2| 3| | 6| 4| 5| +----+----+----+ """ return DataFrame(self._jdf.unionByName(other._jdf), self.sql_ctx)
python
def unionByName(self, other): """ Returns a new :class:`DataFrame` containing union of rows in this and another frame. This is different from both `UNION ALL` and `UNION DISTINCT` in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by :func:`distinct`. The difference between this function and :func:`union` is that this function resolves columns by name (not by position): >>> df1 = spark.createDataFrame([[1, 2, 3]], ["col0", "col1", "col2"]) >>> df2 = spark.createDataFrame([[4, 5, 6]], ["col1", "col2", "col0"]) >>> df1.unionByName(df2).show() +----+----+----+ |col0|col1|col2| +----+----+----+ | 1| 2| 3| | 6| 4| 5| +----+----+----+ """ return DataFrame(self._jdf.unionByName(other._jdf), self.sql_ctx)
[ "def", "unionByName", "(", "self", ",", "other", ")", ":", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "unionByName", "(", "other", ".", "_jdf", ")", ",", "self", ".", "sql_ctx", ")" ]
Returns a new :class:`DataFrame` containing union of rows in this and another frame. This is different from both `UNION ALL` and `UNION DISTINCT` in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by :func:`distinct`. The difference between this function and :func:`union` is that this function resolves columns by name (not by position): >>> df1 = spark.createDataFrame([[1, 2, 3]], ["col0", "col1", "col2"]) >>> df2 = spark.createDataFrame([[4, 5, 6]], ["col1", "col2", "col0"]) >>> df1.unionByName(df2).show() +----+----+----+ |col0|col1|col2| +----+----+----+ | 1| 2| 3| | 6| 4| 5| +----+----+----+
[ "Returns", "a", "new", ":", "class", ":", "DataFrame", "containing", "union", "of", "rows", "in", "this", "and", "another", "frame", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1466-L1485
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.intersect
def intersect(self, other): """ Return a new :class:`DataFrame` containing rows only in both this frame and another frame. This is equivalent to `INTERSECT` in SQL. """ return DataFrame(self._jdf.intersect(other._jdf), self.sql_ctx)
python
def intersect(self, other): """ Return a new :class:`DataFrame` containing rows only in both this frame and another frame. This is equivalent to `INTERSECT` in SQL. """ return DataFrame(self._jdf.intersect(other._jdf), self.sql_ctx)
[ "def", "intersect", "(", "self", ",", "other", ")", ":", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "intersect", "(", "other", ".", "_jdf", ")", ",", "self", ".", "sql_ctx", ")" ]
Return a new :class:`DataFrame` containing rows only in both this frame and another frame. This is equivalent to `INTERSECT` in SQL.
[ "Return", "a", "new", ":", "class", ":", "DataFrame", "containing", "rows", "only", "in", "both", "this", "frame", "and", "another", "frame", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1488-L1494
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.intersectAll
def intersectAll(self, other): """ Return a new :class:`DataFrame` containing rows in both this dataframe and other dataframe while preserving duplicates. This is equivalent to `INTERSECT ALL` in SQL. >>> df1 = spark.createDataFrame([("a", 1), ("a", 1), ("b", 3), ("c", 4)], ["C1", "C2"]) >>> df2 = spark.createDataFrame([("a", 1), ("a", 1), ("b", 3)], ["C1", "C2"]) >>> df1.intersectAll(df2).sort("C1", "C2").show() +---+---+ | C1| C2| +---+---+ | a| 1| | a| 1| | b| 3| +---+---+ Also as standard in SQL, this function resolves columns by position (not by name). """ return DataFrame(self._jdf.intersectAll(other._jdf), self.sql_ctx)
python
def intersectAll(self, other): """ Return a new :class:`DataFrame` containing rows in both this dataframe and other dataframe while preserving duplicates. This is equivalent to `INTERSECT ALL` in SQL. >>> df1 = spark.createDataFrame([("a", 1), ("a", 1), ("b", 3), ("c", 4)], ["C1", "C2"]) >>> df2 = spark.createDataFrame([("a", 1), ("a", 1), ("b", 3)], ["C1", "C2"]) >>> df1.intersectAll(df2).sort("C1", "C2").show() +---+---+ | C1| C2| +---+---+ | a| 1| | a| 1| | b| 3| +---+---+ Also as standard in SQL, this function resolves columns by position (not by name). """ return DataFrame(self._jdf.intersectAll(other._jdf), self.sql_ctx)
[ "def", "intersectAll", "(", "self", ",", "other", ")", ":", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "intersectAll", "(", "other", ".", "_jdf", ")", ",", "self", ".", "sql_ctx", ")" ]
Return a new :class:`DataFrame` containing rows in both this dataframe and other dataframe while preserving duplicates. This is equivalent to `INTERSECT ALL` in SQL. >>> df1 = spark.createDataFrame([("a", 1), ("a", 1), ("b", 3), ("c", 4)], ["C1", "C2"]) >>> df2 = spark.createDataFrame([("a", 1), ("a", 1), ("b", 3)], ["C1", "C2"]) >>> df1.intersectAll(df2).sort("C1", "C2").show() +---+---+ | C1| C2| +---+---+ | a| 1| | a| 1| | b| 3| +---+---+ Also as standard in SQL, this function resolves columns by position (not by name).
[ "Return", "a", "new", ":", "class", ":", "DataFrame", "containing", "rows", "in", "both", "this", "dataframe", "and", "other", "dataframe", "while", "preserving", "duplicates", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1497-L1516
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.subtract
def subtract(self, other): """ Return a new :class:`DataFrame` containing rows in this frame but not in another frame. This is equivalent to `EXCEPT DISTINCT` in SQL. """ return DataFrame(getattr(self._jdf, "except")(other._jdf), self.sql_ctx)
python
def subtract(self, other): """ Return a new :class:`DataFrame` containing rows in this frame but not in another frame. This is equivalent to `EXCEPT DISTINCT` in SQL. """ return DataFrame(getattr(self._jdf, "except")(other._jdf), self.sql_ctx)
[ "def", "subtract", "(", "self", ",", "other", ")", ":", "return", "DataFrame", "(", "getattr", "(", "self", ".", "_jdf", ",", "\"except\"", ")", "(", "other", ".", "_jdf", ")", ",", "self", ".", "sql_ctx", ")" ]
Return a new :class:`DataFrame` containing rows in this frame but not in another frame. This is equivalent to `EXCEPT DISTINCT` in SQL.
[ "Return", "a", "new", ":", "class", ":", "DataFrame", "containing", "rows", "in", "this", "frame", "but", "not", "in", "another", "frame", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1519-L1526
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.dropDuplicates
def dropDuplicates(self, subset=None): """Return a new :class:`DataFrame` with duplicate rows removed, optionally only considering certain columns. For a static batch :class:`DataFrame`, it just drops duplicate rows. For a streaming :class:`DataFrame`, it will keep all data across triggers as intermediate state to drop duplicates rows. You can use :func:`withWatermark` to limit how late the duplicate data can be and system will accordingly limit the state. In addition, too late data older than watermark will be dropped to avoid any possibility of duplicates. :func:`drop_duplicates` is an alias for :func:`dropDuplicates`. >>> from pyspark.sql import Row >>> df = sc.parallelize([ \\ ... Row(name='Alice', age=5, height=80), \\ ... Row(name='Alice', age=5, height=80), \\ ... Row(name='Alice', age=10, height=80)]).toDF() >>> df.dropDuplicates().show() +---+------+-----+ |age|height| name| +---+------+-----+ | 5| 80|Alice| | 10| 80|Alice| +---+------+-----+ >>> df.dropDuplicates(['name', 'height']).show() +---+------+-----+ |age|height| name| +---+------+-----+ | 5| 80|Alice| +---+------+-----+ """ if subset is None: jdf = self._jdf.dropDuplicates() else: jdf = self._jdf.dropDuplicates(self._jseq(subset)) return DataFrame(jdf, self.sql_ctx)
python
def dropDuplicates(self, subset=None): """Return a new :class:`DataFrame` with duplicate rows removed, optionally only considering certain columns. For a static batch :class:`DataFrame`, it just drops duplicate rows. For a streaming :class:`DataFrame`, it will keep all data across triggers as intermediate state to drop duplicates rows. You can use :func:`withWatermark` to limit how late the duplicate data can be and system will accordingly limit the state. In addition, too late data older than watermark will be dropped to avoid any possibility of duplicates. :func:`drop_duplicates` is an alias for :func:`dropDuplicates`. >>> from pyspark.sql import Row >>> df = sc.parallelize([ \\ ... Row(name='Alice', age=5, height=80), \\ ... Row(name='Alice', age=5, height=80), \\ ... Row(name='Alice', age=10, height=80)]).toDF() >>> df.dropDuplicates().show() +---+------+-----+ |age|height| name| +---+------+-----+ | 5| 80|Alice| | 10| 80|Alice| +---+------+-----+ >>> df.dropDuplicates(['name', 'height']).show() +---+------+-----+ |age|height| name| +---+------+-----+ | 5| 80|Alice| +---+------+-----+ """ if subset is None: jdf = self._jdf.dropDuplicates() else: jdf = self._jdf.dropDuplicates(self._jseq(subset)) return DataFrame(jdf, self.sql_ctx)
[ "def", "dropDuplicates", "(", "self", ",", "subset", "=", "None", ")", ":", "if", "subset", "is", "None", ":", "jdf", "=", "self", ".", "_jdf", ".", "dropDuplicates", "(", ")", "else", ":", "jdf", "=", "self", ".", "_jdf", ".", "dropDuplicates", "(", "self", ".", "_jseq", "(", "subset", ")", ")", "return", "DataFrame", "(", "jdf", ",", "self", ".", "sql_ctx", ")" ]
Return a new :class:`DataFrame` with duplicate rows removed, optionally only considering certain columns. For a static batch :class:`DataFrame`, it just drops duplicate rows. For a streaming :class:`DataFrame`, it will keep all data across triggers as intermediate state to drop duplicates rows. You can use :func:`withWatermark` to limit how late the duplicate data can be and system will accordingly limit the state. In addition, too late data older than watermark will be dropped to avoid any possibility of duplicates. :func:`drop_duplicates` is an alias for :func:`dropDuplicates`. >>> from pyspark.sql import Row >>> df = sc.parallelize([ \\ ... Row(name='Alice', age=5, height=80), \\ ... Row(name='Alice', age=5, height=80), \\ ... Row(name='Alice', age=10, height=80)]).toDF() >>> df.dropDuplicates().show() +---+------+-----+ |age|height| name| +---+------+-----+ | 5| 80|Alice| | 10| 80|Alice| +---+------+-----+ >>> df.dropDuplicates(['name', 'height']).show() +---+------+-----+ |age|height| name| +---+------+-----+ | 5| 80|Alice| +---+------+-----+
[ "Return", "a", "new", ":", "class", ":", "DataFrame", "with", "duplicate", "rows", "removed", "optionally", "only", "considering", "certain", "columns", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1529-L1565
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.dropna
def dropna(self, how='any', thresh=None, subset=None): """Returns a new :class:`DataFrame` omitting rows with null values. :func:`DataFrame.dropna` and :func:`DataFrameNaFunctions.drop` are aliases of each other. :param how: 'any' or 'all'. If 'any', drop a row if it contains any nulls. If 'all', drop a row only if all its values are null. :param thresh: int, default None If specified, drop rows that have less than `thresh` non-null values. This overwrites the `how` parameter. :param subset: optional list of column names to consider. >>> df4.na.drop().show() +---+------+-----+ |age|height| name| +---+------+-----+ | 10| 80|Alice| +---+------+-----+ """ if how is not None and how not in ['any', 'all']: raise ValueError("how ('" + how + "') should be 'any' or 'all'") if subset is None: subset = self.columns elif isinstance(subset, basestring): subset = [subset] elif not isinstance(subset, (list, tuple)): raise ValueError("subset should be a list or tuple of column names") if thresh is None: thresh = len(subset) if how == 'any' else 1 return DataFrame(self._jdf.na().drop(thresh, self._jseq(subset)), self.sql_ctx)
python
def dropna(self, how='any', thresh=None, subset=None): """Returns a new :class:`DataFrame` omitting rows with null values. :func:`DataFrame.dropna` and :func:`DataFrameNaFunctions.drop` are aliases of each other. :param how: 'any' or 'all'. If 'any', drop a row if it contains any nulls. If 'all', drop a row only if all its values are null. :param thresh: int, default None If specified, drop rows that have less than `thresh` non-null values. This overwrites the `how` parameter. :param subset: optional list of column names to consider. >>> df4.na.drop().show() +---+------+-----+ |age|height| name| +---+------+-----+ | 10| 80|Alice| +---+------+-----+ """ if how is not None and how not in ['any', 'all']: raise ValueError("how ('" + how + "') should be 'any' or 'all'") if subset is None: subset = self.columns elif isinstance(subset, basestring): subset = [subset] elif not isinstance(subset, (list, tuple)): raise ValueError("subset should be a list or tuple of column names") if thresh is None: thresh = len(subset) if how == 'any' else 1 return DataFrame(self._jdf.na().drop(thresh, self._jseq(subset)), self.sql_ctx)
[ "def", "dropna", "(", "self", ",", "how", "=", "'any'", ",", "thresh", "=", "None", ",", "subset", "=", "None", ")", ":", "if", "how", "is", "not", "None", "and", "how", "not", "in", "[", "'any'", ",", "'all'", "]", ":", "raise", "ValueError", "(", "\"how ('\"", "+", "how", "+", "\"') should be 'any' or 'all'\"", ")", "if", "subset", "is", "None", ":", "subset", "=", "self", ".", "columns", "elif", "isinstance", "(", "subset", ",", "basestring", ")", ":", "subset", "=", "[", "subset", "]", "elif", "not", "isinstance", "(", "subset", ",", "(", "list", ",", "tuple", ")", ")", ":", "raise", "ValueError", "(", "\"subset should be a list or tuple of column names\"", ")", "if", "thresh", "is", "None", ":", "thresh", "=", "len", "(", "subset", ")", "if", "how", "==", "'any'", "else", "1", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "na", "(", ")", ".", "drop", "(", "thresh", ",", "self", ".", "_jseq", "(", "subset", ")", ")", ",", "self", ".", "sql_ctx", ")" ]
Returns a new :class:`DataFrame` omitting rows with null values. :func:`DataFrame.dropna` and :func:`DataFrameNaFunctions.drop` are aliases of each other. :param how: 'any' or 'all'. If 'any', drop a row if it contains any nulls. If 'all', drop a row only if all its values are null. :param thresh: int, default None If specified, drop rows that have less than `thresh` non-null values. This overwrites the `how` parameter. :param subset: optional list of column names to consider. >>> df4.na.drop().show() +---+------+-----+ |age|height| name| +---+------+-----+ | 10| 80|Alice| +---+------+-----+
[ "Returns", "a", "new", ":", "class", ":", "DataFrame", "omitting", "rows", "with", "null", "values", ".", ":", "func", ":", "DataFrame", ".", "dropna", "and", ":", "func", ":", "DataFrameNaFunctions", ".", "drop", "are", "aliases", "of", "each", "other", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1568-L1600
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.fillna
def fillna(self, value, subset=None): """Replace null values, alias for ``na.fill()``. :func:`DataFrame.fillna` and :func:`DataFrameNaFunctions.fill` are aliases of each other. :param value: int, long, float, string, bool or dict. Value to replace null values with. If the value is a dict, then `subset` is ignored and `value` must be a mapping from column name (string) to replacement value. The replacement value must be an int, long, float, boolean, or string. :param subset: optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if `value` is a string, and subset contains a non-string column, then the non-string column is simply ignored. >>> df4.na.fill(50).show() +---+------+-----+ |age|height| name| +---+------+-----+ | 10| 80|Alice| | 5| 50| Bob| | 50| 50| Tom| | 50| 50| null| +---+------+-----+ >>> df5.na.fill(False).show() +----+-------+-----+ | age| name| spy| +----+-------+-----+ | 10| Alice|false| | 5| Bob|false| |null|Mallory| true| +----+-------+-----+ >>> df4.na.fill({'age': 50, 'name': 'unknown'}).show() +---+------+-------+ |age|height| name| +---+------+-------+ | 10| 80| Alice| | 5| null| Bob| | 50| null| Tom| | 50| null|unknown| +---+------+-------+ """ if not isinstance(value, (float, int, long, basestring, bool, dict)): raise ValueError("value should be a float, int, long, string, bool or dict") # Note that bool validates isinstance(int), but we don't want to # convert bools to floats if not isinstance(value, bool) and isinstance(value, (int, long)): value = float(value) if isinstance(value, dict): return DataFrame(self._jdf.na().fill(value), self.sql_ctx) elif subset is None: return DataFrame(self._jdf.na().fill(value), self.sql_ctx) else: if isinstance(subset, basestring): subset = [subset] elif not isinstance(subset, (list, tuple)): raise ValueError("subset should be a list or tuple of column names") return DataFrame(self._jdf.na().fill(value, self._jseq(subset)), self.sql_ctx)
python
def fillna(self, value, subset=None): """Replace null values, alias for ``na.fill()``. :func:`DataFrame.fillna` and :func:`DataFrameNaFunctions.fill` are aliases of each other. :param value: int, long, float, string, bool or dict. Value to replace null values with. If the value is a dict, then `subset` is ignored and `value` must be a mapping from column name (string) to replacement value. The replacement value must be an int, long, float, boolean, or string. :param subset: optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if `value` is a string, and subset contains a non-string column, then the non-string column is simply ignored. >>> df4.na.fill(50).show() +---+------+-----+ |age|height| name| +---+------+-----+ | 10| 80|Alice| | 5| 50| Bob| | 50| 50| Tom| | 50| 50| null| +---+------+-----+ >>> df5.na.fill(False).show() +----+-------+-----+ | age| name| spy| +----+-------+-----+ | 10| Alice|false| | 5| Bob|false| |null|Mallory| true| +----+-------+-----+ >>> df4.na.fill({'age': 50, 'name': 'unknown'}).show() +---+------+-------+ |age|height| name| +---+------+-------+ | 10| 80| Alice| | 5| null| Bob| | 50| null| Tom| | 50| null|unknown| +---+------+-------+ """ if not isinstance(value, (float, int, long, basestring, bool, dict)): raise ValueError("value should be a float, int, long, string, bool or dict") # Note that bool validates isinstance(int), but we don't want to # convert bools to floats if not isinstance(value, bool) and isinstance(value, (int, long)): value = float(value) if isinstance(value, dict): return DataFrame(self._jdf.na().fill(value), self.sql_ctx) elif subset is None: return DataFrame(self._jdf.na().fill(value), self.sql_ctx) else: if isinstance(subset, basestring): subset = [subset] elif not isinstance(subset, (list, tuple)): raise ValueError("subset should be a list or tuple of column names") return DataFrame(self._jdf.na().fill(value, self._jseq(subset)), self.sql_ctx)
[ "def", "fillna", "(", "self", ",", "value", ",", "subset", "=", "None", ")", ":", "if", "not", "isinstance", "(", "value", ",", "(", "float", ",", "int", ",", "long", ",", "basestring", ",", "bool", ",", "dict", ")", ")", ":", "raise", "ValueError", "(", "\"value should be a float, int, long, string, bool or dict\"", ")", "# Note that bool validates isinstance(int), but we don't want to", "# convert bools to floats", "if", "not", "isinstance", "(", "value", ",", "bool", ")", "and", "isinstance", "(", "value", ",", "(", "int", ",", "long", ")", ")", ":", "value", "=", "float", "(", "value", ")", "if", "isinstance", "(", "value", ",", "dict", ")", ":", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "na", "(", ")", ".", "fill", "(", "value", ")", ",", "self", ".", "sql_ctx", ")", "elif", "subset", "is", "None", ":", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "na", "(", ")", ".", "fill", "(", "value", ")", ",", "self", ".", "sql_ctx", ")", "else", ":", "if", "isinstance", "(", "subset", ",", "basestring", ")", ":", "subset", "=", "[", "subset", "]", "elif", "not", "isinstance", "(", "subset", ",", "(", "list", ",", "tuple", ")", ")", ":", "raise", "ValueError", "(", "\"subset should be a list or tuple of column names\"", ")", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "na", "(", ")", ".", "fill", "(", "value", ",", "self", ".", "_jseq", "(", "subset", ")", ")", ",", "self", ".", "sql_ctx", ")" ]
Replace null values, alias for ``na.fill()``. :func:`DataFrame.fillna` and :func:`DataFrameNaFunctions.fill` are aliases of each other. :param value: int, long, float, string, bool or dict. Value to replace null values with. If the value is a dict, then `subset` is ignored and `value` must be a mapping from column name (string) to replacement value. The replacement value must be an int, long, float, boolean, or string. :param subset: optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if `value` is a string, and subset contains a non-string column, then the non-string column is simply ignored. >>> df4.na.fill(50).show() +---+------+-----+ |age|height| name| +---+------+-----+ | 10| 80|Alice| | 5| 50| Bob| | 50| 50| Tom| | 50| 50| null| +---+------+-----+ >>> df5.na.fill(False).show() +----+-------+-----+ | age| name| spy| +----+-------+-----+ | 10| Alice|false| | 5| Bob|false| |null|Mallory| true| +----+-------+-----+ >>> df4.na.fill({'age': 50, 'name': 'unknown'}).show() +---+------+-------+ |age|height| name| +---+------+-------+ | 10| 80| Alice| | 5| null| Bob| | 50| null| Tom| | 50| null|unknown| +---+------+-------+
[ "Replace", "null", "values", "alias", "for", "na", ".", "fill", "()", ".", ":", "func", ":", "DataFrame", ".", "fillna", "and", ":", "func", ":", "DataFrameNaFunctions", ".", "fill", "are", "aliases", "of", "each", "other", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1603-L1665
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.replace
def replace(self, to_replace, value=_NoValue, subset=None): """Returns a new :class:`DataFrame` replacing a value with another value. :func:`DataFrame.replace` and :func:`DataFrameNaFunctions.replace` are aliases of each other. Values to_replace and value must have the same type and can only be numerics, booleans, or strings. Value can have None. When replacing, the new value will be cast to the type of the existing column. For numeric replacements all values to be replaced should have unique floating point representation. In case of conflicts (for example with `{42: -1, 42.0: 1}`) and arbitrary replacement will be used. :param to_replace: bool, int, long, float, string, list or dict. Value to be replaced. If the value is a dict, then `value` is ignored or can be omitted, and `to_replace` must be a mapping between a value and a replacement. :param value: bool, int, long, float, string, list or None. The replacement value must be a bool, int, long, float, string or None. If `value` is a list, `value` should be of the same length and type as `to_replace`. If `value` is a scalar and `to_replace` is a sequence, then `value` is used as a replacement for each item in `to_replace`. :param subset: optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if `value` is a string, and subset contains a non-string column, then the non-string column is simply ignored. >>> df4.na.replace(10, 20).show() +----+------+-----+ | age|height| name| +----+------+-----+ | 20| 80|Alice| | 5| null| Bob| |null| null| Tom| |null| null| null| +----+------+-----+ >>> df4.na.replace('Alice', None).show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80|null| | 5| null| Bob| |null| null| Tom| |null| null|null| +----+------+----+ >>> df4.na.replace({'Alice': None}).show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80|null| | 5| null| Bob| |null| null| Tom| |null| null|null| +----+------+----+ >>> df4.na.replace(['Alice', 'Bob'], ['A', 'B'], 'name').show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80| A| | 5| null| B| |null| null| Tom| |null| null|null| +----+------+----+ """ if value is _NoValue: if isinstance(to_replace, dict): value = None else: raise TypeError("value argument is required when to_replace is not a dictionary.") # Helper functions def all_of(types): """Given a type or tuple of types and a sequence of xs check if each x is instance of type(s) >>> all_of(bool)([True, False]) True >>> all_of(basestring)(["a", 1]) False """ def all_of_(xs): return all(isinstance(x, types) for x in xs) return all_of_ all_of_bool = all_of(bool) all_of_str = all_of(basestring) all_of_numeric = all_of((float, int, long)) # Validate input types valid_types = (bool, float, int, long, basestring, list, tuple) if not isinstance(to_replace, valid_types + (dict, )): raise ValueError( "to_replace should be a bool, float, int, long, string, list, tuple, or dict. " "Got {0}".format(type(to_replace))) if not isinstance(value, valid_types) and value is not None \ and not isinstance(to_replace, dict): raise ValueError("If to_replace is not a dict, value should be " "a bool, float, int, long, string, list, tuple or None. " "Got {0}".format(type(value))) if isinstance(to_replace, (list, tuple)) and isinstance(value, (list, tuple)): if len(to_replace) != len(value): raise ValueError("to_replace and value lists should be of the same length. " "Got {0} and {1}".format(len(to_replace), len(value))) if not (subset is None or isinstance(subset, (list, tuple, basestring))): raise ValueError("subset should be a list or tuple of column names, " "column name or None. Got {0}".format(type(subset))) # Reshape input arguments if necessary if isinstance(to_replace, (float, int, long, basestring)): to_replace = [to_replace] if isinstance(to_replace, dict): rep_dict = to_replace if value is not None: warnings.warn("to_replace is a dict and value is not None. value will be ignored.") else: if isinstance(value, (float, int, long, basestring)) or value is None: value = [value for _ in range(len(to_replace))] rep_dict = dict(zip(to_replace, value)) if isinstance(subset, basestring): subset = [subset] # Verify we were not passed in mixed type generics. if not any(all_of_type(rep_dict.keys()) and all_of_type(x for x in rep_dict.values() if x is not None) for all_of_type in [all_of_bool, all_of_str, all_of_numeric]): raise ValueError("Mixed type replacements are not supported") if subset is None: return DataFrame(self._jdf.na().replace('*', rep_dict), self.sql_ctx) else: return DataFrame( self._jdf.na().replace(self._jseq(subset), self._jmap(rep_dict)), self.sql_ctx)
python
def replace(self, to_replace, value=_NoValue, subset=None): """Returns a new :class:`DataFrame` replacing a value with another value. :func:`DataFrame.replace` and :func:`DataFrameNaFunctions.replace` are aliases of each other. Values to_replace and value must have the same type and can only be numerics, booleans, or strings. Value can have None. When replacing, the new value will be cast to the type of the existing column. For numeric replacements all values to be replaced should have unique floating point representation. In case of conflicts (for example with `{42: -1, 42.0: 1}`) and arbitrary replacement will be used. :param to_replace: bool, int, long, float, string, list or dict. Value to be replaced. If the value is a dict, then `value` is ignored or can be omitted, and `to_replace` must be a mapping between a value and a replacement. :param value: bool, int, long, float, string, list or None. The replacement value must be a bool, int, long, float, string or None. If `value` is a list, `value` should be of the same length and type as `to_replace`. If `value` is a scalar and `to_replace` is a sequence, then `value` is used as a replacement for each item in `to_replace`. :param subset: optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if `value` is a string, and subset contains a non-string column, then the non-string column is simply ignored. >>> df4.na.replace(10, 20).show() +----+------+-----+ | age|height| name| +----+------+-----+ | 20| 80|Alice| | 5| null| Bob| |null| null| Tom| |null| null| null| +----+------+-----+ >>> df4.na.replace('Alice', None).show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80|null| | 5| null| Bob| |null| null| Tom| |null| null|null| +----+------+----+ >>> df4.na.replace({'Alice': None}).show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80|null| | 5| null| Bob| |null| null| Tom| |null| null|null| +----+------+----+ >>> df4.na.replace(['Alice', 'Bob'], ['A', 'B'], 'name').show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80| A| | 5| null| B| |null| null| Tom| |null| null|null| +----+------+----+ """ if value is _NoValue: if isinstance(to_replace, dict): value = None else: raise TypeError("value argument is required when to_replace is not a dictionary.") # Helper functions def all_of(types): """Given a type or tuple of types and a sequence of xs check if each x is instance of type(s) >>> all_of(bool)([True, False]) True >>> all_of(basestring)(["a", 1]) False """ def all_of_(xs): return all(isinstance(x, types) for x in xs) return all_of_ all_of_bool = all_of(bool) all_of_str = all_of(basestring) all_of_numeric = all_of((float, int, long)) # Validate input types valid_types = (bool, float, int, long, basestring, list, tuple) if not isinstance(to_replace, valid_types + (dict, )): raise ValueError( "to_replace should be a bool, float, int, long, string, list, tuple, or dict. " "Got {0}".format(type(to_replace))) if not isinstance(value, valid_types) and value is not None \ and not isinstance(to_replace, dict): raise ValueError("If to_replace is not a dict, value should be " "a bool, float, int, long, string, list, tuple or None. " "Got {0}".format(type(value))) if isinstance(to_replace, (list, tuple)) and isinstance(value, (list, tuple)): if len(to_replace) != len(value): raise ValueError("to_replace and value lists should be of the same length. " "Got {0} and {1}".format(len(to_replace), len(value))) if not (subset is None or isinstance(subset, (list, tuple, basestring))): raise ValueError("subset should be a list or tuple of column names, " "column name or None. Got {0}".format(type(subset))) # Reshape input arguments if necessary if isinstance(to_replace, (float, int, long, basestring)): to_replace = [to_replace] if isinstance(to_replace, dict): rep_dict = to_replace if value is not None: warnings.warn("to_replace is a dict and value is not None. value will be ignored.") else: if isinstance(value, (float, int, long, basestring)) or value is None: value = [value for _ in range(len(to_replace))] rep_dict = dict(zip(to_replace, value)) if isinstance(subset, basestring): subset = [subset] # Verify we were not passed in mixed type generics. if not any(all_of_type(rep_dict.keys()) and all_of_type(x for x in rep_dict.values() if x is not None) for all_of_type in [all_of_bool, all_of_str, all_of_numeric]): raise ValueError("Mixed type replacements are not supported") if subset is None: return DataFrame(self._jdf.na().replace('*', rep_dict), self.sql_ctx) else: return DataFrame( self._jdf.na().replace(self._jseq(subset), self._jmap(rep_dict)), self.sql_ctx)
[ "def", "replace", "(", "self", ",", "to_replace", ",", "value", "=", "_NoValue", ",", "subset", "=", "None", ")", ":", "if", "value", "is", "_NoValue", ":", "if", "isinstance", "(", "to_replace", ",", "dict", ")", ":", "value", "=", "None", "else", ":", "raise", "TypeError", "(", "\"value argument is required when to_replace is not a dictionary.\"", ")", "# Helper functions", "def", "all_of", "(", "types", ")", ":", "\"\"\"Given a type or tuple of types and a sequence of xs\n check if each x is instance of type(s)\n\n >>> all_of(bool)([True, False])\n True\n >>> all_of(basestring)([\"a\", 1])\n False\n \"\"\"", "def", "all_of_", "(", "xs", ")", ":", "return", "all", "(", "isinstance", "(", "x", ",", "types", ")", "for", "x", "in", "xs", ")", "return", "all_of_", "all_of_bool", "=", "all_of", "(", "bool", ")", "all_of_str", "=", "all_of", "(", "basestring", ")", "all_of_numeric", "=", "all_of", "(", "(", "float", ",", "int", ",", "long", ")", ")", "# Validate input types", "valid_types", "=", "(", "bool", ",", "float", ",", "int", ",", "long", ",", "basestring", ",", "list", ",", "tuple", ")", "if", "not", "isinstance", "(", "to_replace", ",", "valid_types", "+", "(", "dict", ",", ")", ")", ":", "raise", "ValueError", "(", "\"to_replace should be a bool, float, int, long, string, list, tuple, or dict. \"", "\"Got {0}\"", ".", "format", "(", "type", "(", "to_replace", ")", ")", ")", "if", "not", "isinstance", "(", "value", ",", "valid_types", ")", "and", "value", "is", "not", "None", "and", "not", "isinstance", "(", "to_replace", ",", "dict", ")", ":", "raise", "ValueError", "(", "\"If to_replace is not a dict, value should be \"", "\"a bool, float, int, long, string, list, tuple or None. \"", "\"Got {0}\"", ".", "format", "(", "type", "(", "value", ")", ")", ")", "if", "isinstance", "(", "to_replace", ",", "(", "list", ",", "tuple", ")", ")", "and", "isinstance", "(", "value", ",", "(", "list", ",", "tuple", ")", ")", ":", "if", "len", "(", "to_replace", ")", "!=", "len", "(", "value", ")", ":", "raise", "ValueError", "(", "\"to_replace and value lists should be of the same length. \"", "\"Got {0} and {1}\"", ".", "format", "(", "len", "(", "to_replace", ")", ",", "len", "(", "value", ")", ")", ")", "if", "not", "(", "subset", "is", "None", "or", "isinstance", "(", "subset", ",", "(", "list", ",", "tuple", ",", "basestring", ")", ")", ")", ":", "raise", "ValueError", "(", "\"subset should be a list or tuple of column names, \"", "\"column name or None. Got {0}\"", ".", "format", "(", "type", "(", "subset", ")", ")", ")", "# Reshape input arguments if necessary", "if", "isinstance", "(", "to_replace", ",", "(", "float", ",", "int", ",", "long", ",", "basestring", ")", ")", ":", "to_replace", "=", "[", "to_replace", "]", "if", "isinstance", "(", "to_replace", ",", "dict", ")", ":", "rep_dict", "=", "to_replace", "if", "value", "is", "not", "None", ":", "warnings", ".", "warn", "(", "\"to_replace is a dict and value is not None. value will be ignored.\"", ")", "else", ":", "if", "isinstance", "(", "value", ",", "(", "float", ",", "int", ",", "long", ",", "basestring", ")", ")", "or", "value", "is", "None", ":", "value", "=", "[", "value", "for", "_", "in", "range", "(", "len", "(", "to_replace", ")", ")", "]", "rep_dict", "=", "dict", "(", "zip", "(", "to_replace", ",", "value", ")", ")", "if", "isinstance", "(", "subset", ",", "basestring", ")", ":", "subset", "=", "[", "subset", "]", "# Verify we were not passed in mixed type generics.", "if", "not", "any", "(", "all_of_type", "(", "rep_dict", ".", "keys", "(", ")", ")", "and", "all_of_type", "(", "x", "for", "x", "in", "rep_dict", ".", "values", "(", ")", "if", "x", "is", "not", "None", ")", "for", "all_of_type", "in", "[", "all_of_bool", ",", "all_of_str", ",", "all_of_numeric", "]", ")", ":", "raise", "ValueError", "(", "\"Mixed type replacements are not supported\"", ")", "if", "subset", "is", "None", ":", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "na", "(", ")", ".", "replace", "(", "'*'", ",", "rep_dict", ")", ",", "self", ".", "sql_ctx", ")", "else", ":", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "na", "(", ")", ".", "replace", "(", "self", ".", "_jseq", "(", "subset", ")", ",", "self", ".", "_jmap", "(", "rep_dict", ")", ")", ",", "self", ".", "sql_ctx", ")" ]
Returns a new :class:`DataFrame` replacing a value with another value. :func:`DataFrame.replace` and :func:`DataFrameNaFunctions.replace` are aliases of each other. Values to_replace and value must have the same type and can only be numerics, booleans, or strings. Value can have None. When replacing, the new value will be cast to the type of the existing column. For numeric replacements all values to be replaced should have unique floating point representation. In case of conflicts (for example with `{42: -1, 42.0: 1}`) and arbitrary replacement will be used. :param to_replace: bool, int, long, float, string, list or dict. Value to be replaced. If the value is a dict, then `value` is ignored or can be omitted, and `to_replace` must be a mapping between a value and a replacement. :param value: bool, int, long, float, string, list or None. The replacement value must be a bool, int, long, float, string or None. If `value` is a list, `value` should be of the same length and type as `to_replace`. If `value` is a scalar and `to_replace` is a sequence, then `value` is used as a replacement for each item in `to_replace`. :param subset: optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if `value` is a string, and subset contains a non-string column, then the non-string column is simply ignored. >>> df4.na.replace(10, 20).show() +----+------+-----+ | age|height| name| +----+------+-----+ | 20| 80|Alice| | 5| null| Bob| |null| null| Tom| |null| null| null| +----+------+-----+ >>> df4.na.replace('Alice', None).show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80|null| | 5| null| Bob| |null| null| Tom| |null| null|null| +----+------+----+ >>> df4.na.replace({'Alice': None}).show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80|null| | 5| null| Bob| |null| null| Tom| |null| null|null| +----+------+----+ >>> df4.na.replace(['Alice', 'Bob'], ['A', 'B'], 'name').show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80| A| | 5| null| B| |null| null| Tom| |null| null|null| +----+------+----+
[ "Returns", "a", "new", ":", "class", ":", "DataFrame", "replacing", "a", "value", "with", "another", "value", ".", ":", "func", ":", "DataFrame", ".", "replace", "and", ":", "func", ":", "DataFrameNaFunctions", ".", "replace", "are", "aliases", "of", "each", "other", ".", "Values", "to_replace", "and", "value", "must", "have", "the", "same", "type", "and", "can", "only", "be", "numerics", "booleans", "or", "strings", ".", "Value", "can", "have", "None", ".", "When", "replacing", "the", "new", "value", "will", "be", "cast", "to", "the", "type", "of", "the", "existing", "column", ".", "For", "numeric", "replacements", "all", "values", "to", "be", "replaced", "should", "have", "unique", "floating", "point", "representation", ".", "In", "case", "of", "conflicts", "(", "for", "example", "with", "{", "42", ":", "-", "1", "42", ".", "0", ":", "1", "}", ")", "and", "arbitrary", "replacement", "will", "be", "used", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1668-L1805
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.approxQuantile
def approxQuantile(self, col, probabilities, relativeError): """ Calculates the approximate quantiles of numerical columns of a DataFrame. The result of this algorithm has the following deterministic bound: If the DataFrame has N elements and if we request the quantile at probability `p` up to error `err`, then the algorithm will return a sample `x` from the DataFrame so that the *exact* rank of `x` is close to (p * N). More precisely, floor((p - err) * N) <= rank(x) <= ceil((p + err) * N). This method implements a variation of the Greenwald-Khanna algorithm (with some speed optimizations). The algorithm was first present in [[https://doi.org/10.1145/375663.375670 Space-efficient Online Computation of Quantile Summaries]] by Greenwald and Khanna. Note that null values will be ignored in numerical columns before calculation. For columns only containing null values, an empty list is returned. :param col: str, list. Can be a single column name, or a list of names for multiple columns. :param probabilities: a list of quantile probabilities Each number must belong to [0, 1]. For example 0 is the minimum, 0.5 is the median, 1 is the maximum. :param relativeError: The relative target precision to achieve (>= 0). If set to zero, the exact quantiles are computed, which could be very expensive. Note that values greater than 1 are accepted but give the same result as 1. :return: the approximate quantiles at the given probabilities. If the input `col` is a string, the output is a list of floats. If the input `col` is a list or tuple of strings, the output is also a list, but each element in it is a list of floats, i.e., the output is a list of list of floats. .. versionchanged:: 2.2 Added support for multiple columns. """ if not isinstance(col, (basestring, list, tuple)): raise ValueError("col should be a string, list or tuple, but got %r" % type(col)) isStr = isinstance(col, basestring) if isinstance(col, tuple): col = list(col) elif isStr: col = [col] for c in col: if not isinstance(c, basestring): raise ValueError("columns should be strings, but got %r" % type(c)) col = _to_list(self._sc, col) if not isinstance(probabilities, (list, tuple)): raise ValueError("probabilities should be a list or tuple") if isinstance(probabilities, tuple): probabilities = list(probabilities) for p in probabilities: if not isinstance(p, (float, int, long)) or p < 0 or p > 1: raise ValueError("probabilities should be numerical (float, int, long) in [0,1].") probabilities = _to_list(self._sc, probabilities) if not isinstance(relativeError, (float, int, long)) or relativeError < 0: raise ValueError("relativeError should be numerical (float, int, long) >= 0.") relativeError = float(relativeError) jaq = self._jdf.stat().approxQuantile(col, probabilities, relativeError) jaq_list = [list(j) for j in jaq] return jaq_list[0] if isStr else jaq_list
python
def approxQuantile(self, col, probabilities, relativeError): """ Calculates the approximate quantiles of numerical columns of a DataFrame. The result of this algorithm has the following deterministic bound: If the DataFrame has N elements and if we request the quantile at probability `p` up to error `err`, then the algorithm will return a sample `x` from the DataFrame so that the *exact* rank of `x` is close to (p * N). More precisely, floor((p - err) * N) <= rank(x) <= ceil((p + err) * N). This method implements a variation of the Greenwald-Khanna algorithm (with some speed optimizations). The algorithm was first present in [[https://doi.org/10.1145/375663.375670 Space-efficient Online Computation of Quantile Summaries]] by Greenwald and Khanna. Note that null values will be ignored in numerical columns before calculation. For columns only containing null values, an empty list is returned. :param col: str, list. Can be a single column name, or a list of names for multiple columns. :param probabilities: a list of quantile probabilities Each number must belong to [0, 1]. For example 0 is the minimum, 0.5 is the median, 1 is the maximum. :param relativeError: The relative target precision to achieve (>= 0). If set to zero, the exact quantiles are computed, which could be very expensive. Note that values greater than 1 are accepted but give the same result as 1. :return: the approximate quantiles at the given probabilities. If the input `col` is a string, the output is a list of floats. If the input `col` is a list or tuple of strings, the output is also a list, but each element in it is a list of floats, i.e., the output is a list of list of floats. .. versionchanged:: 2.2 Added support for multiple columns. """ if not isinstance(col, (basestring, list, tuple)): raise ValueError("col should be a string, list or tuple, but got %r" % type(col)) isStr = isinstance(col, basestring) if isinstance(col, tuple): col = list(col) elif isStr: col = [col] for c in col: if not isinstance(c, basestring): raise ValueError("columns should be strings, but got %r" % type(c)) col = _to_list(self._sc, col) if not isinstance(probabilities, (list, tuple)): raise ValueError("probabilities should be a list or tuple") if isinstance(probabilities, tuple): probabilities = list(probabilities) for p in probabilities: if not isinstance(p, (float, int, long)) or p < 0 or p > 1: raise ValueError("probabilities should be numerical (float, int, long) in [0,1].") probabilities = _to_list(self._sc, probabilities) if not isinstance(relativeError, (float, int, long)) or relativeError < 0: raise ValueError("relativeError should be numerical (float, int, long) >= 0.") relativeError = float(relativeError) jaq = self._jdf.stat().approxQuantile(col, probabilities, relativeError) jaq_list = [list(j) for j in jaq] return jaq_list[0] if isStr else jaq_list
[ "def", "approxQuantile", "(", "self", ",", "col", ",", "probabilities", ",", "relativeError", ")", ":", "if", "not", "isinstance", "(", "col", ",", "(", "basestring", ",", "list", ",", "tuple", ")", ")", ":", "raise", "ValueError", "(", "\"col should be a string, list or tuple, but got %r\"", "%", "type", "(", "col", ")", ")", "isStr", "=", "isinstance", "(", "col", ",", "basestring", ")", "if", "isinstance", "(", "col", ",", "tuple", ")", ":", "col", "=", "list", "(", "col", ")", "elif", "isStr", ":", "col", "=", "[", "col", "]", "for", "c", "in", "col", ":", "if", "not", "isinstance", "(", "c", ",", "basestring", ")", ":", "raise", "ValueError", "(", "\"columns should be strings, but got %r\"", "%", "type", "(", "c", ")", ")", "col", "=", "_to_list", "(", "self", ".", "_sc", ",", "col", ")", "if", "not", "isinstance", "(", "probabilities", ",", "(", "list", ",", "tuple", ")", ")", ":", "raise", "ValueError", "(", "\"probabilities should be a list or tuple\"", ")", "if", "isinstance", "(", "probabilities", ",", "tuple", ")", ":", "probabilities", "=", "list", "(", "probabilities", ")", "for", "p", "in", "probabilities", ":", "if", "not", "isinstance", "(", "p", ",", "(", "float", ",", "int", ",", "long", ")", ")", "or", "p", "<", "0", "or", "p", ">", "1", ":", "raise", "ValueError", "(", "\"probabilities should be numerical (float, int, long) in [0,1].\"", ")", "probabilities", "=", "_to_list", "(", "self", ".", "_sc", ",", "probabilities", ")", "if", "not", "isinstance", "(", "relativeError", ",", "(", "float", ",", "int", ",", "long", ")", ")", "or", "relativeError", "<", "0", ":", "raise", "ValueError", "(", "\"relativeError should be numerical (float, int, long) >= 0.\"", ")", "relativeError", "=", "float", "(", "relativeError", ")", "jaq", "=", "self", ".", "_jdf", ".", "stat", "(", ")", ".", "approxQuantile", "(", "col", ",", "probabilities", ",", "relativeError", ")", "jaq_list", "=", "[", "list", "(", "j", ")", "for", "j", "in", "jaq", "]", "return", "jaq_list", "[", "0", "]", "if", "isStr", "else", "jaq_list" ]
Calculates the approximate quantiles of numerical columns of a DataFrame. The result of this algorithm has the following deterministic bound: If the DataFrame has N elements and if we request the quantile at probability `p` up to error `err`, then the algorithm will return a sample `x` from the DataFrame so that the *exact* rank of `x` is close to (p * N). More precisely, floor((p - err) * N) <= rank(x) <= ceil((p + err) * N). This method implements a variation of the Greenwald-Khanna algorithm (with some speed optimizations). The algorithm was first present in [[https://doi.org/10.1145/375663.375670 Space-efficient Online Computation of Quantile Summaries]] by Greenwald and Khanna. Note that null values will be ignored in numerical columns before calculation. For columns only containing null values, an empty list is returned. :param col: str, list. Can be a single column name, or a list of names for multiple columns. :param probabilities: a list of quantile probabilities Each number must belong to [0, 1]. For example 0 is the minimum, 0.5 is the median, 1 is the maximum. :param relativeError: The relative target precision to achieve (>= 0). If set to zero, the exact quantiles are computed, which could be very expensive. Note that values greater than 1 are accepted but give the same result as 1. :return: the approximate quantiles at the given probabilities. If the input `col` is a string, the output is a list of floats. If the input `col` is a list or tuple of strings, the output is also a list, but each element in it is a list of floats, i.e., the output is a list of list of floats. .. versionchanged:: 2.2 Added support for multiple columns.
[ "Calculates", "the", "approximate", "quantiles", "of", "numerical", "columns", "of", "a", "DataFrame", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1808-L1879
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.corr
def corr(self, col1, col2, method=None): """ Calculates the correlation of two columns of a DataFrame as a double value. Currently only supports the Pearson Correlation Coefficient. :func:`DataFrame.corr` and :func:`DataFrameStatFunctions.corr` are aliases of each other. :param col1: The name of the first column :param col2: The name of the second column :param method: The correlation method. Currently only supports "pearson" """ if not isinstance(col1, basestring): raise ValueError("col1 should be a string.") if not isinstance(col2, basestring): raise ValueError("col2 should be a string.") if not method: method = "pearson" if not method == "pearson": raise ValueError("Currently only the calculation of the Pearson Correlation " + "coefficient is supported.") return self._jdf.stat().corr(col1, col2, method)
python
def corr(self, col1, col2, method=None): """ Calculates the correlation of two columns of a DataFrame as a double value. Currently only supports the Pearson Correlation Coefficient. :func:`DataFrame.corr` and :func:`DataFrameStatFunctions.corr` are aliases of each other. :param col1: The name of the first column :param col2: The name of the second column :param method: The correlation method. Currently only supports "pearson" """ if not isinstance(col1, basestring): raise ValueError("col1 should be a string.") if not isinstance(col2, basestring): raise ValueError("col2 should be a string.") if not method: method = "pearson" if not method == "pearson": raise ValueError("Currently only the calculation of the Pearson Correlation " + "coefficient is supported.") return self._jdf.stat().corr(col1, col2, method)
[ "def", "corr", "(", "self", ",", "col1", ",", "col2", ",", "method", "=", "None", ")", ":", "if", "not", "isinstance", "(", "col1", ",", "basestring", ")", ":", "raise", "ValueError", "(", "\"col1 should be a string.\"", ")", "if", "not", "isinstance", "(", "col2", ",", "basestring", ")", ":", "raise", "ValueError", "(", "\"col2 should be a string.\"", ")", "if", "not", "method", ":", "method", "=", "\"pearson\"", "if", "not", "method", "==", "\"pearson\"", ":", "raise", "ValueError", "(", "\"Currently only the calculation of the Pearson Correlation \"", "+", "\"coefficient is supported.\"", ")", "return", "self", ".", "_jdf", ".", "stat", "(", ")", ".", "corr", "(", "col1", ",", "col2", ",", "method", ")" ]
Calculates the correlation of two columns of a DataFrame as a double value. Currently only supports the Pearson Correlation Coefficient. :func:`DataFrame.corr` and :func:`DataFrameStatFunctions.corr` are aliases of each other. :param col1: The name of the first column :param col2: The name of the second column :param method: The correlation method. Currently only supports "pearson"
[ "Calculates", "the", "correlation", "of", "two", "columns", "of", "a", "DataFrame", "as", "a", "double", "value", ".", "Currently", "only", "supports", "the", "Pearson", "Correlation", "Coefficient", ".", ":", "func", ":", "DataFrame", ".", "corr", "and", ":", "func", ":", "DataFrameStatFunctions", ".", "corr", "are", "aliases", "of", "each", "other", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1882-L1901
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.cov
def cov(self, col1, col2): """ Calculate the sample covariance for the given columns, specified by their names, as a double value. :func:`DataFrame.cov` and :func:`DataFrameStatFunctions.cov` are aliases. :param col1: The name of the first column :param col2: The name of the second column """ if not isinstance(col1, basestring): raise ValueError("col1 should be a string.") if not isinstance(col2, basestring): raise ValueError("col2 should be a string.") return self._jdf.stat().cov(col1, col2)
python
def cov(self, col1, col2): """ Calculate the sample covariance for the given columns, specified by their names, as a double value. :func:`DataFrame.cov` and :func:`DataFrameStatFunctions.cov` are aliases. :param col1: The name of the first column :param col2: The name of the second column """ if not isinstance(col1, basestring): raise ValueError("col1 should be a string.") if not isinstance(col2, basestring): raise ValueError("col2 should be a string.") return self._jdf.stat().cov(col1, col2)
[ "def", "cov", "(", "self", ",", "col1", ",", "col2", ")", ":", "if", "not", "isinstance", "(", "col1", ",", "basestring", ")", ":", "raise", "ValueError", "(", "\"col1 should be a string.\"", ")", "if", "not", "isinstance", "(", "col2", ",", "basestring", ")", ":", "raise", "ValueError", "(", "\"col2 should be a string.\"", ")", "return", "self", ".", "_jdf", ".", "stat", "(", ")", ".", "cov", "(", "col1", ",", "col2", ")" ]
Calculate the sample covariance for the given columns, specified by their names, as a double value. :func:`DataFrame.cov` and :func:`DataFrameStatFunctions.cov` are aliases. :param col1: The name of the first column :param col2: The name of the second column
[ "Calculate", "the", "sample", "covariance", "for", "the", "given", "columns", "specified", "by", "their", "names", "as", "a", "double", "value", ".", ":", "func", ":", "DataFrame", ".", "cov", "and", ":", "func", ":", "DataFrameStatFunctions", ".", "cov", "are", "aliases", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1904-L1916
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.crosstab
def crosstab(self, col1, col2): """ Computes a pair-wise frequency table of the given columns. Also known as a contingency table. The number of distinct values for each column should be less than 1e4. At most 1e6 non-zero pair frequencies will be returned. The first column of each row will be the distinct values of `col1` and the column names will be the distinct values of `col2`. The name of the first column will be `$col1_$col2`. Pairs that have no occurrences will have zero as their counts. :func:`DataFrame.crosstab` and :func:`DataFrameStatFunctions.crosstab` are aliases. :param col1: The name of the first column. Distinct items will make the first item of each row. :param col2: The name of the second column. Distinct items will make the column names of the DataFrame. """ if not isinstance(col1, basestring): raise ValueError("col1 should be a string.") if not isinstance(col2, basestring): raise ValueError("col2 should be a string.") return DataFrame(self._jdf.stat().crosstab(col1, col2), self.sql_ctx)
python
def crosstab(self, col1, col2): """ Computes a pair-wise frequency table of the given columns. Also known as a contingency table. The number of distinct values for each column should be less than 1e4. At most 1e6 non-zero pair frequencies will be returned. The first column of each row will be the distinct values of `col1` and the column names will be the distinct values of `col2`. The name of the first column will be `$col1_$col2`. Pairs that have no occurrences will have zero as their counts. :func:`DataFrame.crosstab` and :func:`DataFrameStatFunctions.crosstab` are aliases. :param col1: The name of the first column. Distinct items will make the first item of each row. :param col2: The name of the second column. Distinct items will make the column names of the DataFrame. """ if not isinstance(col1, basestring): raise ValueError("col1 should be a string.") if not isinstance(col2, basestring): raise ValueError("col2 should be a string.") return DataFrame(self._jdf.stat().crosstab(col1, col2), self.sql_ctx)
[ "def", "crosstab", "(", "self", ",", "col1", ",", "col2", ")", ":", "if", "not", "isinstance", "(", "col1", ",", "basestring", ")", ":", "raise", "ValueError", "(", "\"col1 should be a string.\"", ")", "if", "not", "isinstance", "(", "col2", ",", "basestring", ")", ":", "raise", "ValueError", "(", "\"col2 should be a string.\"", ")", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "stat", "(", ")", ".", "crosstab", "(", "col1", ",", "col2", ")", ",", "self", ".", "sql_ctx", ")" ]
Computes a pair-wise frequency table of the given columns. Also known as a contingency table. The number of distinct values for each column should be less than 1e4. At most 1e6 non-zero pair frequencies will be returned. The first column of each row will be the distinct values of `col1` and the column names will be the distinct values of `col2`. The name of the first column will be `$col1_$col2`. Pairs that have no occurrences will have zero as their counts. :func:`DataFrame.crosstab` and :func:`DataFrameStatFunctions.crosstab` are aliases. :param col1: The name of the first column. Distinct items will make the first item of each row. :param col2: The name of the second column. Distinct items will make the column names of the DataFrame.
[ "Computes", "a", "pair", "-", "wise", "frequency", "table", "of", "the", "given", "columns", ".", "Also", "known", "as", "a", "contingency", "table", ".", "The", "number", "of", "distinct", "values", "for", "each", "column", "should", "be", "less", "than", "1e4", ".", "At", "most", "1e6", "non", "-", "zero", "pair", "frequencies", "will", "be", "returned", ".", "The", "first", "column", "of", "each", "row", "will", "be", "the", "distinct", "values", "of", "col1", "and", "the", "column", "names", "will", "be", "the", "distinct", "values", "of", "col2", ".", "The", "name", "of", "the", "first", "column", "will", "be", "$col1_$col2", ".", "Pairs", "that", "have", "no", "occurrences", "will", "have", "zero", "as", "their", "counts", ".", ":", "func", ":", "DataFrame", ".", "crosstab", "and", ":", "func", ":", "DataFrameStatFunctions", ".", "crosstab", "are", "aliases", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1919-L1938
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.freqItems
def freqItems(self, cols, support=None): """ Finding frequent items for columns, possibly with false positives. Using the frequent element count algorithm described in "https://doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou". :func:`DataFrame.freqItems` and :func:`DataFrameStatFunctions.freqItems` are aliases. .. note:: This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting DataFrame. :param cols: Names of the columns to calculate frequent items for as a list or tuple of strings. :param support: The frequency with which to consider an item 'frequent'. Default is 1%. The support must be greater than 1e-4. """ if isinstance(cols, tuple): cols = list(cols) if not isinstance(cols, list): raise ValueError("cols must be a list or tuple of column names as strings.") if not support: support = 0.01 return DataFrame(self._jdf.stat().freqItems(_to_seq(self._sc, cols), support), self.sql_ctx)
python
def freqItems(self, cols, support=None): """ Finding frequent items for columns, possibly with false positives. Using the frequent element count algorithm described in "https://doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou". :func:`DataFrame.freqItems` and :func:`DataFrameStatFunctions.freqItems` are aliases. .. note:: This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting DataFrame. :param cols: Names of the columns to calculate frequent items for as a list or tuple of strings. :param support: The frequency with which to consider an item 'frequent'. Default is 1%. The support must be greater than 1e-4. """ if isinstance(cols, tuple): cols = list(cols) if not isinstance(cols, list): raise ValueError("cols must be a list or tuple of column names as strings.") if not support: support = 0.01 return DataFrame(self._jdf.stat().freqItems(_to_seq(self._sc, cols), support), self.sql_ctx)
[ "def", "freqItems", "(", "self", ",", "cols", ",", "support", "=", "None", ")", ":", "if", "isinstance", "(", "cols", ",", "tuple", ")", ":", "cols", "=", "list", "(", "cols", ")", "if", "not", "isinstance", "(", "cols", ",", "list", ")", ":", "raise", "ValueError", "(", "\"cols must be a list or tuple of column names as strings.\"", ")", "if", "not", "support", ":", "support", "=", "0.01", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "stat", "(", ")", ".", "freqItems", "(", "_to_seq", "(", "self", ".", "_sc", ",", "cols", ")", ",", "support", ")", ",", "self", ".", "sql_ctx", ")" ]
Finding frequent items for columns, possibly with false positives. Using the frequent element count algorithm described in "https://doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou". :func:`DataFrame.freqItems` and :func:`DataFrameStatFunctions.freqItems` are aliases. .. note:: This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting DataFrame. :param cols: Names of the columns to calculate frequent items for as a list or tuple of strings. :param support: The frequency with which to consider an item 'frequent'. Default is 1%. The support must be greater than 1e-4.
[ "Finding", "frequent", "items", "for", "columns", "possibly", "with", "false", "positives", ".", "Using", "the", "frequent", "element", "count", "algorithm", "described", "in", "https", ":", "//", "doi", ".", "org", "/", "10", ".", "1145", "/", "762471", ".", "762473", "proposed", "by", "Karp", "Schenker", "and", "Papadimitriou", ".", ":", "func", ":", "DataFrame", ".", "freqItems", "and", ":", "func", ":", "DataFrameStatFunctions", ".", "freqItems", "are", "aliases", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1941-L1962
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.withColumn
def withColumn(self, colName, col): """ Returns a new :class:`DataFrame` by adding a column or replacing the existing column that has the same name. The column expression must be an expression over this DataFrame; attempting to add a column from some other dataframe will raise an error. :param colName: string, name of the new column. :param col: a :class:`Column` expression for the new column. .. note:: This method introduces a projection internally. Therefore, calling it multiple times, for instance, via loops in order to add multiple columns can generate big plans which can cause performance issues and even `StackOverflowException`. To avoid this, use :func:`select` with the multiple columns at once. >>> df.withColumn('age2', df.age + 2).collect() [Row(age=2, name=u'Alice', age2=4), Row(age=5, name=u'Bob', age2=7)] """ assert isinstance(col, Column), "col should be Column" return DataFrame(self._jdf.withColumn(colName, col._jc), self.sql_ctx)
python
def withColumn(self, colName, col): """ Returns a new :class:`DataFrame` by adding a column or replacing the existing column that has the same name. The column expression must be an expression over this DataFrame; attempting to add a column from some other dataframe will raise an error. :param colName: string, name of the new column. :param col: a :class:`Column` expression for the new column. .. note:: This method introduces a projection internally. Therefore, calling it multiple times, for instance, via loops in order to add multiple columns can generate big plans which can cause performance issues and even `StackOverflowException`. To avoid this, use :func:`select` with the multiple columns at once. >>> df.withColumn('age2', df.age + 2).collect() [Row(age=2, name=u'Alice', age2=4), Row(age=5, name=u'Bob', age2=7)] """ assert isinstance(col, Column), "col should be Column" return DataFrame(self._jdf.withColumn(colName, col._jc), self.sql_ctx)
[ "def", "withColumn", "(", "self", ",", "colName", ",", "col", ")", ":", "assert", "isinstance", "(", "col", ",", "Column", ")", ",", "\"col should be Column\"", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "withColumn", "(", "colName", ",", "col", ".", "_jc", ")", ",", "self", ".", "sql_ctx", ")" ]
Returns a new :class:`DataFrame` by adding a column or replacing the existing column that has the same name. The column expression must be an expression over this DataFrame; attempting to add a column from some other dataframe will raise an error. :param colName: string, name of the new column. :param col: a :class:`Column` expression for the new column. .. note:: This method introduces a projection internally. Therefore, calling it multiple times, for instance, via loops in order to add multiple columns can generate big plans which can cause performance issues and even `StackOverflowException`. To avoid this, use :func:`select` with the multiple columns at once. >>> df.withColumn('age2', df.age + 2).collect() [Row(age=2, name=u'Alice', age2=4), Row(age=5, name=u'Bob', age2=7)]
[ "Returns", "a", "new", ":", "class", ":", "DataFrame", "by", "adding", "a", "column", "or", "replacing", "the", "existing", "column", "that", "has", "the", "same", "name", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1966-L1987
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.withColumnRenamed
def withColumnRenamed(self, existing, new): """Returns a new :class:`DataFrame` by renaming an existing column. This is a no-op if schema doesn't contain the given column name. :param existing: string, name of the existing column to rename. :param new: string, new name of the column. >>> df.withColumnRenamed('age', 'age2').collect() [Row(age2=2, name=u'Alice'), Row(age2=5, name=u'Bob')] """ return DataFrame(self._jdf.withColumnRenamed(existing, new), self.sql_ctx)
python
def withColumnRenamed(self, existing, new): """Returns a new :class:`DataFrame` by renaming an existing column. This is a no-op if schema doesn't contain the given column name. :param existing: string, name of the existing column to rename. :param new: string, new name of the column. >>> df.withColumnRenamed('age', 'age2').collect() [Row(age2=2, name=u'Alice'), Row(age2=5, name=u'Bob')] """ return DataFrame(self._jdf.withColumnRenamed(existing, new), self.sql_ctx)
[ "def", "withColumnRenamed", "(", "self", ",", "existing", ",", "new", ")", ":", "return", "DataFrame", "(", "self", ".", "_jdf", ".", "withColumnRenamed", "(", "existing", ",", "new", ")", ",", "self", ".", "sql_ctx", ")" ]
Returns a new :class:`DataFrame` by renaming an existing column. This is a no-op if schema doesn't contain the given column name. :param existing: string, name of the existing column to rename. :param new: string, new name of the column. >>> df.withColumnRenamed('age', 'age2').collect() [Row(age2=2, name=u'Alice'), Row(age2=5, name=u'Bob')]
[ "Returns", "a", "new", ":", "class", ":", "DataFrame", "by", "renaming", "an", "existing", "column", ".", "This", "is", "a", "no", "-", "op", "if", "schema", "doesn", "t", "contain", "the", "given", "column", "name", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L1991-L2001
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.drop
def drop(self, *cols): """Returns a new :class:`DataFrame` that drops the specified column. This is a no-op if schema doesn't contain the given column name(s). :param cols: a string name of the column to drop, or a :class:`Column` to drop, or a list of string name of the columns to drop. >>> df.drop('age').collect() [Row(name=u'Alice'), Row(name=u'Bob')] >>> df.drop(df.age).collect() [Row(name=u'Alice'), Row(name=u'Bob')] >>> df.join(df2, df.name == df2.name, 'inner').drop(df.name).collect() [Row(age=5, height=85, name=u'Bob')] >>> df.join(df2, df.name == df2.name, 'inner').drop(df2.name).collect() [Row(age=5, name=u'Bob', height=85)] >>> df.join(df2, 'name', 'inner').drop('age', 'height').collect() [Row(name=u'Bob')] """ if len(cols) == 1: col = cols[0] if isinstance(col, basestring): jdf = self._jdf.drop(col) elif isinstance(col, Column): jdf = self._jdf.drop(col._jc) else: raise TypeError("col should be a string or a Column") else: for col in cols: if not isinstance(col, basestring): raise TypeError("each col in the param list should be a string") jdf = self._jdf.drop(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx)
python
def drop(self, *cols): """Returns a new :class:`DataFrame` that drops the specified column. This is a no-op if schema doesn't contain the given column name(s). :param cols: a string name of the column to drop, or a :class:`Column` to drop, or a list of string name of the columns to drop. >>> df.drop('age').collect() [Row(name=u'Alice'), Row(name=u'Bob')] >>> df.drop(df.age).collect() [Row(name=u'Alice'), Row(name=u'Bob')] >>> df.join(df2, df.name == df2.name, 'inner').drop(df.name).collect() [Row(age=5, height=85, name=u'Bob')] >>> df.join(df2, df.name == df2.name, 'inner').drop(df2.name).collect() [Row(age=5, name=u'Bob', height=85)] >>> df.join(df2, 'name', 'inner').drop('age', 'height').collect() [Row(name=u'Bob')] """ if len(cols) == 1: col = cols[0] if isinstance(col, basestring): jdf = self._jdf.drop(col) elif isinstance(col, Column): jdf = self._jdf.drop(col._jc) else: raise TypeError("col should be a string or a Column") else: for col in cols: if not isinstance(col, basestring): raise TypeError("each col in the param list should be a string") jdf = self._jdf.drop(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx)
[ "def", "drop", "(", "self", ",", "*", "cols", ")", ":", "if", "len", "(", "cols", ")", "==", "1", ":", "col", "=", "cols", "[", "0", "]", "if", "isinstance", "(", "col", ",", "basestring", ")", ":", "jdf", "=", "self", ".", "_jdf", ".", "drop", "(", "col", ")", "elif", "isinstance", "(", "col", ",", "Column", ")", ":", "jdf", "=", "self", ".", "_jdf", ".", "drop", "(", "col", ".", "_jc", ")", "else", ":", "raise", "TypeError", "(", "\"col should be a string or a Column\"", ")", "else", ":", "for", "col", "in", "cols", ":", "if", "not", "isinstance", "(", "col", ",", "basestring", ")", ":", "raise", "TypeError", "(", "\"each col in the param list should be a string\"", ")", "jdf", "=", "self", ".", "_jdf", ".", "drop", "(", "self", ".", "_jseq", "(", "cols", ")", ")", "return", "DataFrame", "(", "jdf", ",", "self", ".", "sql_ctx", ")" ]
Returns a new :class:`DataFrame` that drops the specified column. This is a no-op if schema doesn't contain the given column name(s). :param cols: a string name of the column to drop, or a :class:`Column` to drop, or a list of string name of the columns to drop. >>> df.drop('age').collect() [Row(name=u'Alice'), Row(name=u'Bob')] >>> df.drop(df.age).collect() [Row(name=u'Alice'), Row(name=u'Bob')] >>> df.join(df2, df.name == df2.name, 'inner').drop(df.name).collect() [Row(age=5, height=85, name=u'Bob')] >>> df.join(df2, df.name == df2.name, 'inner').drop(df2.name).collect() [Row(age=5, name=u'Bob', height=85)] >>> df.join(df2, 'name', 'inner').drop('age', 'height').collect() [Row(name=u'Bob')]
[ "Returns", "a", "new", ":", "class", ":", "DataFrame", "that", "drops", "the", "specified", "column", ".", "This", "is", "a", "no", "-", "op", "if", "schema", "doesn", "t", "contain", "the", "given", "column", "name", "(", "s", ")", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L2005-L2041
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.toDF
def toDF(self, *cols): """Returns a new class:`DataFrame` that with new specified column names :param cols: list of new column names (string) >>> df.toDF('f1', 'f2').collect() [Row(f1=2, f2=u'Alice'), Row(f1=5, f2=u'Bob')] """ jdf = self._jdf.toDF(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx)
python
def toDF(self, *cols): """Returns a new class:`DataFrame` that with new specified column names :param cols: list of new column names (string) >>> df.toDF('f1', 'f2').collect() [Row(f1=2, f2=u'Alice'), Row(f1=5, f2=u'Bob')] """ jdf = self._jdf.toDF(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx)
[ "def", "toDF", "(", "self", ",", "*", "cols", ")", ":", "jdf", "=", "self", ".", "_jdf", ".", "toDF", "(", "self", ".", "_jseq", "(", "cols", ")", ")", "return", "DataFrame", "(", "jdf", ",", "self", ".", "sql_ctx", ")" ]
Returns a new class:`DataFrame` that with new specified column names :param cols: list of new column names (string) >>> df.toDF('f1', 'f2').collect() [Row(f1=2, f2=u'Alice'), Row(f1=5, f2=u'Bob')]
[ "Returns", "a", "new", "class", ":", "DataFrame", "that", "with", "new", "specified", "column", "names" ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L2044-L2053
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.transform
def transform(self, func): """Returns a new class:`DataFrame`. Concise syntax for chaining custom transformations. :param func: a function that takes and returns a class:`DataFrame`. >>> from pyspark.sql.functions import col >>> df = spark.createDataFrame([(1, 1.0), (2, 2.0)], ["int", "float"]) >>> def cast_all_to_int(input_df): ... return input_df.select([col(col_name).cast("int") for col_name in input_df.columns]) >>> def sort_columns_asc(input_df): ... return input_df.select(*sorted(input_df.columns)) >>> df.transform(cast_all_to_int).transform(sort_columns_asc).show() +-----+---+ |float|int| +-----+---+ | 1| 1| | 2| 2| +-----+---+ """ result = func(self) assert isinstance(result, DataFrame), "Func returned an instance of type [%s], " \ "should have been DataFrame." % type(result) return result
python
def transform(self, func): """Returns a new class:`DataFrame`. Concise syntax for chaining custom transformations. :param func: a function that takes and returns a class:`DataFrame`. >>> from pyspark.sql.functions import col >>> df = spark.createDataFrame([(1, 1.0), (2, 2.0)], ["int", "float"]) >>> def cast_all_to_int(input_df): ... return input_df.select([col(col_name).cast("int") for col_name in input_df.columns]) >>> def sort_columns_asc(input_df): ... return input_df.select(*sorted(input_df.columns)) >>> df.transform(cast_all_to_int).transform(sort_columns_asc).show() +-----+---+ |float|int| +-----+---+ | 1| 1| | 2| 2| +-----+---+ """ result = func(self) assert isinstance(result, DataFrame), "Func returned an instance of type [%s], " \ "should have been DataFrame." % type(result) return result
[ "def", "transform", "(", "self", ",", "func", ")", ":", "result", "=", "func", "(", "self", ")", "assert", "isinstance", "(", "result", ",", "DataFrame", ")", ",", "\"Func returned an instance of type [%s], \"", "\"should have been DataFrame.\"", "%", "type", "(", "result", ")", "return", "result" ]
Returns a new class:`DataFrame`. Concise syntax for chaining custom transformations. :param func: a function that takes and returns a class:`DataFrame`. >>> from pyspark.sql.functions import col >>> df = spark.createDataFrame([(1, 1.0), (2, 2.0)], ["int", "float"]) >>> def cast_all_to_int(input_df): ... return input_df.select([col(col_name).cast("int") for col_name in input_df.columns]) >>> def sort_columns_asc(input_df): ... return input_df.select(*sorted(input_df.columns)) >>> df.transform(cast_all_to_int).transform(sort_columns_asc).show() +-----+---+ |float|int| +-----+---+ | 1| 1| | 2| 2| +-----+---+
[ "Returns", "a", "new", "class", ":", "DataFrame", ".", "Concise", "syntax", "for", "chaining", "custom", "transformations", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L2056-L2078
apache/spark
python/pyspark/sql/dataframe.py
DataFrame.toPandas
def toPandas(self): """ Returns the contents of this :class:`DataFrame` as Pandas ``pandas.DataFrame``. This is only available if Pandas is installed and available. .. note:: This method should only be used if the resulting Pandas's DataFrame is expected to be small, as all the data is loaded into the driver's memory. .. note:: Usage with spark.sql.execution.arrow.enabled=True is experimental. >>> df.toPandas() # doctest: +SKIP age name 0 2 Alice 1 5 Bob """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() import pandas as pd if self.sql_ctx._conf.pandasRespectSessionTimeZone(): timezone = self.sql_ctx._conf.sessionLocalTimeZone() else: timezone = None if self.sql_ctx._conf.arrowEnabled(): use_arrow = True try: from pyspark.sql.types import to_arrow_schema from pyspark.sql.utils import require_minimum_pyarrow_version require_minimum_pyarrow_version() to_arrow_schema(self.schema) except Exception as e: if self.sql_ctx._conf.arrowFallbackEnabled(): msg = ( "toPandas attempted Arrow optimization because " "'spark.sql.execution.arrow.enabled' is set to true; however, " "failed by the reason below:\n %s\n" "Attempting non-optimization as " "'spark.sql.execution.arrow.fallback.enabled' is set to " "true." % _exception_message(e)) warnings.warn(msg) use_arrow = False else: msg = ( "toPandas attempted Arrow optimization because " "'spark.sql.execution.arrow.enabled' is set to true, but has reached " "the error below and will not continue because automatic fallback " "with 'spark.sql.execution.arrow.fallback.enabled' has been set to " "false.\n %s" % _exception_message(e)) warnings.warn(msg) raise # Try to use Arrow optimization when the schema is supported and the required version # of PyArrow is found, if 'spark.sql.execution.arrow.enabled' is enabled. if use_arrow: try: from pyspark.sql.types import _check_dataframe_localize_timestamps import pyarrow batches = self._collectAsArrow() if len(batches) > 0: table = pyarrow.Table.from_batches(batches) # Pandas DataFrame created from PyArrow uses datetime64[ns] for date type # values, but we should use datetime.date to match the behavior with when # Arrow optimization is disabled. pdf = table.to_pandas(date_as_object=True) return _check_dataframe_localize_timestamps(pdf, timezone) else: return pd.DataFrame.from_records([], columns=self.columns) except Exception as e: # We might have to allow fallback here as well but multiple Spark jobs can # be executed. So, simply fail in this case for now. msg = ( "toPandas attempted Arrow optimization because " "'spark.sql.execution.arrow.enabled' is set to true, but has reached " "the error below and can not continue. Note that " "'spark.sql.execution.arrow.fallback.enabled' does not have an effect " "on failures in the middle of computation.\n %s" % _exception_message(e)) warnings.warn(msg) raise # Below is toPandas without Arrow optimization. pdf = pd.DataFrame.from_records(self.collect(), columns=self.columns) dtype = {} for field in self.schema: pandas_type = _to_corrected_pandas_type(field.dataType) # SPARK-21766: if an integer field is nullable and has null values, it can be # inferred by pandas as float column. Once we convert the column with NaN back # to integer type e.g., np.int16, we will hit exception. So we use the inferred # float type, not the corrected type from the schema in this case. if pandas_type is not None and \ not(isinstance(field.dataType, IntegralType) and field.nullable and pdf[field.name].isnull().any()): dtype[field.name] = pandas_type for f, t in dtype.items(): pdf[f] = pdf[f].astype(t, copy=False) if timezone is None: return pdf else: from pyspark.sql.types import _check_series_convert_timestamps_local_tz for field in self.schema: # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if isinstance(field.dataType, TimestampType): pdf[field.name] = \ _check_series_convert_timestamps_local_tz(pdf[field.name], timezone) return pdf
python
def toPandas(self): """ Returns the contents of this :class:`DataFrame` as Pandas ``pandas.DataFrame``. This is only available if Pandas is installed and available. .. note:: This method should only be used if the resulting Pandas's DataFrame is expected to be small, as all the data is loaded into the driver's memory. .. note:: Usage with spark.sql.execution.arrow.enabled=True is experimental. >>> df.toPandas() # doctest: +SKIP age name 0 2 Alice 1 5 Bob """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() import pandas as pd if self.sql_ctx._conf.pandasRespectSessionTimeZone(): timezone = self.sql_ctx._conf.sessionLocalTimeZone() else: timezone = None if self.sql_ctx._conf.arrowEnabled(): use_arrow = True try: from pyspark.sql.types import to_arrow_schema from pyspark.sql.utils import require_minimum_pyarrow_version require_minimum_pyarrow_version() to_arrow_schema(self.schema) except Exception as e: if self.sql_ctx._conf.arrowFallbackEnabled(): msg = ( "toPandas attempted Arrow optimization because " "'spark.sql.execution.arrow.enabled' is set to true; however, " "failed by the reason below:\n %s\n" "Attempting non-optimization as " "'spark.sql.execution.arrow.fallback.enabled' is set to " "true." % _exception_message(e)) warnings.warn(msg) use_arrow = False else: msg = ( "toPandas attempted Arrow optimization because " "'spark.sql.execution.arrow.enabled' is set to true, but has reached " "the error below and will not continue because automatic fallback " "with 'spark.sql.execution.arrow.fallback.enabled' has been set to " "false.\n %s" % _exception_message(e)) warnings.warn(msg) raise # Try to use Arrow optimization when the schema is supported and the required version # of PyArrow is found, if 'spark.sql.execution.arrow.enabled' is enabled. if use_arrow: try: from pyspark.sql.types import _check_dataframe_localize_timestamps import pyarrow batches = self._collectAsArrow() if len(batches) > 0: table = pyarrow.Table.from_batches(batches) # Pandas DataFrame created from PyArrow uses datetime64[ns] for date type # values, but we should use datetime.date to match the behavior with when # Arrow optimization is disabled. pdf = table.to_pandas(date_as_object=True) return _check_dataframe_localize_timestamps(pdf, timezone) else: return pd.DataFrame.from_records([], columns=self.columns) except Exception as e: # We might have to allow fallback here as well but multiple Spark jobs can # be executed. So, simply fail in this case for now. msg = ( "toPandas attempted Arrow optimization because " "'spark.sql.execution.arrow.enabled' is set to true, but has reached " "the error below and can not continue. Note that " "'spark.sql.execution.arrow.fallback.enabled' does not have an effect " "on failures in the middle of computation.\n %s" % _exception_message(e)) warnings.warn(msg) raise # Below is toPandas without Arrow optimization. pdf = pd.DataFrame.from_records(self.collect(), columns=self.columns) dtype = {} for field in self.schema: pandas_type = _to_corrected_pandas_type(field.dataType) # SPARK-21766: if an integer field is nullable and has null values, it can be # inferred by pandas as float column. Once we convert the column with NaN back # to integer type e.g., np.int16, we will hit exception. So we use the inferred # float type, not the corrected type from the schema in this case. if pandas_type is not None and \ not(isinstance(field.dataType, IntegralType) and field.nullable and pdf[field.name].isnull().any()): dtype[field.name] = pandas_type for f, t in dtype.items(): pdf[f] = pdf[f].astype(t, copy=False) if timezone is None: return pdf else: from pyspark.sql.types import _check_series_convert_timestamps_local_tz for field in self.schema: # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if isinstance(field.dataType, TimestampType): pdf[field.name] = \ _check_series_convert_timestamps_local_tz(pdf[field.name], timezone) return pdf
[ "def", "toPandas", "(", "self", ")", ":", "from", "pyspark", ".", "sql", ".", "utils", "import", "require_minimum_pandas_version", "require_minimum_pandas_version", "(", ")", "import", "pandas", "as", "pd", "if", "self", ".", "sql_ctx", ".", "_conf", ".", "pandasRespectSessionTimeZone", "(", ")", ":", "timezone", "=", "self", ".", "sql_ctx", ".", "_conf", ".", "sessionLocalTimeZone", "(", ")", "else", ":", "timezone", "=", "None", "if", "self", ".", "sql_ctx", ".", "_conf", ".", "arrowEnabled", "(", ")", ":", "use_arrow", "=", "True", "try", ":", "from", "pyspark", ".", "sql", ".", "types", "import", "to_arrow_schema", "from", "pyspark", ".", "sql", ".", "utils", "import", "require_minimum_pyarrow_version", "require_minimum_pyarrow_version", "(", ")", "to_arrow_schema", "(", "self", ".", "schema", ")", "except", "Exception", "as", "e", ":", "if", "self", ".", "sql_ctx", ".", "_conf", ".", "arrowFallbackEnabled", "(", ")", ":", "msg", "=", "(", "\"toPandas attempted Arrow optimization because \"", "\"'spark.sql.execution.arrow.enabled' is set to true; however, \"", "\"failed by the reason below:\\n %s\\n\"", "\"Attempting non-optimization as \"", "\"'spark.sql.execution.arrow.fallback.enabled' is set to \"", "\"true.\"", "%", "_exception_message", "(", "e", ")", ")", "warnings", ".", "warn", "(", "msg", ")", "use_arrow", "=", "False", "else", ":", "msg", "=", "(", "\"toPandas attempted Arrow optimization because \"", "\"'spark.sql.execution.arrow.enabled' is set to true, but has reached \"", "\"the error below and will not continue because automatic fallback \"", "\"with 'spark.sql.execution.arrow.fallback.enabled' has been set to \"", "\"false.\\n %s\"", "%", "_exception_message", "(", "e", ")", ")", "warnings", ".", "warn", "(", "msg", ")", "raise", "# Try to use Arrow optimization when the schema is supported and the required version", "# of PyArrow is found, if 'spark.sql.execution.arrow.enabled' is enabled.", "if", "use_arrow", ":", "try", ":", "from", "pyspark", ".", "sql", ".", "types", "import", "_check_dataframe_localize_timestamps", "import", "pyarrow", "batches", "=", "self", ".", "_collectAsArrow", "(", ")", "if", "len", "(", "batches", ")", ">", "0", ":", "table", "=", "pyarrow", ".", "Table", ".", "from_batches", "(", "batches", ")", "# Pandas DataFrame created from PyArrow uses datetime64[ns] for date type", "# values, but we should use datetime.date to match the behavior with when", "# Arrow optimization is disabled.", "pdf", "=", "table", ".", "to_pandas", "(", "date_as_object", "=", "True", ")", "return", "_check_dataframe_localize_timestamps", "(", "pdf", ",", "timezone", ")", "else", ":", "return", "pd", ".", "DataFrame", ".", "from_records", "(", "[", "]", ",", "columns", "=", "self", ".", "columns", ")", "except", "Exception", "as", "e", ":", "# We might have to allow fallback here as well but multiple Spark jobs can", "# be executed. So, simply fail in this case for now.", "msg", "=", "(", "\"toPandas attempted Arrow optimization because \"", "\"'spark.sql.execution.arrow.enabled' is set to true, but has reached \"", "\"the error below and can not continue. Note that \"", "\"'spark.sql.execution.arrow.fallback.enabled' does not have an effect \"", "\"on failures in the middle of computation.\\n %s\"", "%", "_exception_message", "(", "e", ")", ")", "warnings", ".", "warn", "(", "msg", ")", "raise", "# Below is toPandas without Arrow optimization.", "pdf", "=", "pd", ".", "DataFrame", ".", "from_records", "(", "self", ".", "collect", "(", ")", ",", "columns", "=", "self", ".", "columns", ")", "dtype", "=", "{", "}", "for", "field", "in", "self", ".", "schema", ":", "pandas_type", "=", "_to_corrected_pandas_type", "(", "field", ".", "dataType", ")", "# SPARK-21766: if an integer field is nullable and has null values, it can be", "# inferred by pandas as float column. Once we convert the column with NaN back", "# to integer type e.g., np.int16, we will hit exception. So we use the inferred", "# float type, not the corrected type from the schema in this case.", "if", "pandas_type", "is", "not", "None", "and", "not", "(", "isinstance", "(", "field", ".", "dataType", ",", "IntegralType", ")", "and", "field", ".", "nullable", "and", "pdf", "[", "field", ".", "name", "]", ".", "isnull", "(", ")", ".", "any", "(", ")", ")", ":", "dtype", "[", "field", ".", "name", "]", "=", "pandas_type", "for", "f", ",", "t", "in", "dtype", ".", "items", "(", ")", ":", "pdf", "[", "f", "]", "=", "pdf", "[", "f", "]", ".", "astype", "(", "t", ",", "copy", "=", "False", ")", "if", "timezone", "is", "None", ":", "return", "pdf", "else", ":", "from", "pyspark", ".", "sql", ".", "types", "import", "_check_series_convert_timestamps_local_tz", "for", "field", "in", "self", ".", "schema", ":", "# TODO: handle nested timestamps, such as ArrayType(TimestampType())?", "if", "isinstance", "(", "field", ".", "dataType", ",", "TimestampType", ")", ":", "pdf", "[", "field", ".", "name", "]", "=", "_check_series_convert_timestamps_local_tz", "(", "pdf", "[", "field", ".", "name", "]", ",", "timezone", ")", "return", "pdf" ]
Returns the contents of this :class:`DataFrame` as Pandas ``pandas.DataFrame``. This is only available if Pandas is installed and available. .. note:: This method should only be used if the resulting Pandas's DataFrame is expected to be small, as all the data is loaded into the driver's memory. .. note:: Usage with spark.sql.execution.arrow.enabled=True is experimental. >>> df.toPandas() # doctest: +SKIP age name 0 2 Alice 1 5 Bob
[ "Returns", "the", "contents", "of", "this", ":", "class", ":", "DataFrame", "as", "Pandas", "pandas", ".", "DataFrame", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L2081-L2192
apache/spark
python/pyspark/sql/dataframe.py
DataFrame._collectAsArrow
def _collectAsArrow(self): """ Returns all records as a list of ArrowRecordBatches, pyarrow must be installed and available on driver and worker Python environments. .. note:: Experimental. """ with SCCallSiteSync(self._sc) as css: sock_info = self._jdf.collectAsArrowToPython() # Collect list of un-ordered batches where last element is a list of correct order indices results = list(_load_from_socket(sock_info, ArrowCollectSerializer())) batches = results[:-1] batch_order = results[-1] # Re-order the batch list using the correct order return [batches[i] for i in batch_order]
python
def _collectAsArrow(self): """ Returns all records as a list of ArrowRecordBatches, pyarrow must be installed and available on driver and worker Python environments. .. note:: Experimental. """ with SCCallSiteSync(self._sc) as css: sock_info = self._jdf.collectAsArrowToPython() # Collect list of un-ordered batches where last element is a list of correct order indices results = list(_load_from_socket(sock_info, ArrowCollectSerializer())) batches = results[:-1] batch_order = results[-1] # Re-order the batch list using the correct order return [batches[i] for i in batch_order]
[ "def", "_collectAsArrow", "(", "self", ")", ":", "with", "SCCallSiteSync", "(", "self", ".", "_sc", ")", "as", "css", ":", "sock_info", "=", "self", ".", "_jdf", ".", "collectAsArrowToPython", "(", ")", "# Collect list of un-ordered batches where last element is a list of correct order indices", "results", "=", "list", "(", "_load_from_socket", "(", "sock_info", ",", "ArrowCollectSerializer", "(", ")", ")", ")", "batches", "=", "results", "[", ":", "-", "1", "]", "batch_order", "=", "results", "[", "-", "1", "]", "# Re-order the batch list using the correct order", "return", "[", "batches", "[", "i", "]", "for", "i", "in", "batch_order", "]" ]
Returns all records as a list of ArrowRecordBatches, pyarrow must be installed and available on driver and worker Python environments. .. note:: Experimental.
[ "Returns", "all", "records", "as", "a", "list", "of", "ArrowRecordBatches", "pyarrow", "must", "be", "installed", "and", "available", "on", "driver", "and", "worker", "Python", "environments", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/dataframe.py#L2194-L2210
apache/spark
python/pyspark/statcounter.py
StatCounter.asDict
def asDict(self, sample=False): """Returns the :class:`StatCounter` members as a ``dict``. >>> sc.parallelize([1., 2., 3., 4.]).stats().asDict() {'count': 4L, 'max': 4.0, 'mean': 2.5, 'min': 1.0, 'stdev': 1.2909944487358056, 'sum': 10.0, 'variance': 1.6666666666666667} """ return { 'count': self.count(), 'mean': self.mean(), 'sum': self.sum(), 'min': self.min(), 'max': self.max(), 'stdev': self.stdev() if sample else self.sampleStdev(), 'variance': self.variance() if sample else self.sampleVariance() }
python
def asDict(self, sample=False): """Returns the :class:`StatCounter` members as a ``dict``. >>> sc.parallelize([1., 2., 3., 4.]).stats().asDict() {'count': 4L, 'max': 4.0, 'mean': 2.5, 'min': 1.0, 'stdev': 1.2909944487358056, 'sum': 10.0, 'variance': 1.6666666666666667} """ return { 'count': self.count(), 'mean': self.mean(), 'sum': self.sum(), 'min': self.min(), 'max': self.max(), 'stdev': self.stdev() if sample else self.sampleStdev(), 'variance': self.variance() if sample else self.sampleVariance() }
[ "def", "asDict", "(", "self", ",", "sample", "=", "False", ")", ":", "return", "{", "'count'", ":", "self", ".", "count", "(", ")", ",", "'mean'", ":", "self", ".", "mean", "(", ")", ",", "'sum'", ":", "self", ".", "sum", "(", ")", ",", "'min'", ":", "self", ".", "min", "(", ")", ",", "'max'", ":", "self", ".", "max", "(", ")", ",", "'stdev'", ":", "self", ".", "stdev", "(", ")", "if", "sample", "else", "self", ".", "sampleStdev", "(", ")", ",", "'variance'", ":", "self", ".", "variance", "(", ")", "if", "sample", "else", "self", ".", "sampleVariance", "(", ")", "}" ]
Returns the :class:`StatCounter` members as a ``dict``. >>> sc.parallelize([1., 2., 3., 4.]).stats().asDict() {'count': 4L, 'max': 4.0, 'mean': 2.5, 'min': 1.0, 'stdev': 1.2909944487358056, 'sum': 10.0, 'variance': 1.6666666666666667}
[ "Returns", "the", ":", "class", ":", "StatCounter", "members", "as", "a", "dict", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/statcounter.py#L134-L154
apache/spark
sql/gen-sql-markdown.py
_list_function_infos
def _list_function_infos(jvm): """ Returns a list of function information via JVM. Sorts wrapped expression infos by name and returns them. """ jinfos = jvm.org.apache.spark.sql.api.python.PythonSQLUtils.listBuiltinFunctionInfos() infos = [] for jinfo in jinfos: name = jinfo.getName() usage = jinfo.getUsage() usage = usage.replace("_FUNC_", name) if usage is not None else usage infos.append(ExpressionInfo( className=jinfo.getClassName(), name=name, usage=usage, arguments=jinfo.getArguments().replace("_FUNC_", name), examples=jinfo.getExamples().replace("_FUNC_", name), note=jinfo.getNote(), since=jinfo.getSince(), deprecated=jinfo.getDeprecated())) return sorted(infos, key=lambda i: i.name)
python
def _list_function_infos(jvm): """ Returns a list of function information via JVM. Sorts wrapped expression infos by name and returns them. """ jinfos = jvm.org.apache.spark.sql.api.python.PythonSQLUtils.listBuiltinFunctionInfos() infos = [] for jinfo in jinfos: name = jinfo.getName() usage = jinfo.getUsage() usage = usage.replace("_FUNC_", name) if usage is not None else usage infos.append(ExpressionInfo( className=jinfo.getClassName(), name=name, usage=usage, arguments=jinfo.getArguments().replace("_FUNC_", name), examples=jinfo.getExamples().replace("_FUNC_", name), note=jinfo.getNote(), since=jinfo.getSince(), deprecated=jinfo.getDeprecated())) return sorted(infos, key=lambda i: i.name)
[ "def", "_list_function_infos", "(", "jvm", ")", ":", "jinfos", "=", "jvm", ".", "org", ".", "apache", ".", "spark", ".", "sql", ".", "api", ".", "python", ".", "PythonSQLUtils", ".", "listBuiltinFunctionInfos", "(", ")", "infos", "=", "[", "]", "for", "jinfo", "in", "jinfos", ":", "name", "=", "jinfo", ".", "getName", "(", ")", "usage", "=", "jinfo", ".", "getUsage", "(", ")", "usage", "=", "usage", ".", "replace", "(", "\"_FUNC_\"", ",", "name", ")", "if", "usage", "is", "not", "None", "else", "usage", "infos", ".", "append", "(", "ExpressionInfo", "(", "className", "=", "jinfo", ".", "getClassName", "(", ")", ",", "name", "=", "name", ",", "usage", "=", "usage", ",", "arguments", "=", "jinfo", ".", "getArguments", "(", ")", ".", "replace", "(", "\"_FUNC_\"", ",", "name", ")", ",", "examples", "=", "jinfo", ".", "getExamples", "(", ")", ".", "replace", "(", "\"_FUNC_\"", ",", "name", ")", ",", "note", "=", "jinfo", ".", "getNote", "(", ")", ",", "since", "=", "jinfo", ".", "getSince", "(", ")", ",", "deprecated", "=", "jinfo", ".", "getDeprecated", "(", ")", ")", ")", "return", "sorted", "(", "infos", ",", "key", "=", "lambda", "i", ":", "i", ".", "name", ")" ]
Returns a list of function information via JVM. Sorts wrapped expression infos by name and returns them.
[ "Returns", "a", "list", "of", "function", "information", "via", "JVM", ".", "Sorts", "wrapped", "expression", "infos", "by", "name", "and", "returns", "them", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/sql/gen-sql-markdown.py#L26-L47
apache/spark
sql/gen-sql-markdown.py
_make_pretty_usage
def _make_pretty_usage(usage): """ Makes the usage description pretty and returns a formatted string if `usage` is not an empty string. Otherwise, returns None. """ if usage is not None and usage.strip() != "": usage = "\n".join(map(lambda u: u.strip(), usage.split("\n"))) return "%s\n\n" % usage
python
def _make_pretty_usage(usage): """ Makes the usage description pretty and returns a formatted string if `usage` is not an empty string. Otherwise, returns None. """ if usage is not None and usage.strip() != "": usage = "\n".join(map(lambda u: u.strip(), usage.split("\n"))) return "%s\n\n" % usage
[ "def", "_make_pretty_usage", "(", "usage", ")", ":", "if", "usage", "is", "not", "None", "and", "usage", ".", "strip", "(", ")", "!=", "\"\"", ":", "usage", "=", "\"\\n\"", ".", "join", "(", "map", "(", "lambda", "u", ":", "u", ".", "strip", "(", ")", ",", "usage", ".", "split", "(", "\"\\n\"", ")", ")", ")", "return", "\"%s\\n\\n\"", "%", "usage" ]
Makes the usage description pretty and returns a formatted string if `usage` is not an empty string. Otherwise, returns None.
[ "Makes", "the", "usage", "description", "pretty", "and", "returns", "a", "formatted", "string", "if", "usage", "is", "not", "an", "empty", "string", ".", "Otherwise", "returns", "None", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/sql/gen-sql-markdown.py#L50-L58
apache/spark
sql/gen-sql-markdown.py
_make_pretty_arguments
def _make_pretty_arguments(arguments): """ Makes the arguments description pretty and returns a formatted string if `arguments` starts with the argument prefix. Otherwise, returns None. Expected input: Arguments: * arg0 - ... ... * arg0 - ... ... Expected output: **Arguments:** * arg0 - ... ... * arg0 - ... ... """ if arguments.startswith("\n Arguments:"): arguments = "\n".join(map(lambda u: u[6:], arguments.strip().split("\n")[1:])) return "**Arguments:**\n\n%s\n\n" % arguments
python
def _make_pretty_arguments(arguments): """ Makes the arguments description pretty and returns a formatted string if `arguments` starts with the argument prefix. Otherwise, returns None. Expected input: Arguments: * arg0 - ... ... * arg0 - ... ... Expected output: **Arguments:** * arg0 - ... ... * arg0 - ... ... """ if arguments.startswith("\n Arguments:"): arguments = "\n".join(map(lambda u: u[6:], arguments.strip().split("\n")[1:])) return "**Arguments:**\n\n%s\n\n" % arguments
[ "def", "_make_pretty_arguments", "(", "arguments", ")", ":", "if", "arguments", ".", "startswith", "(", "\"\\n Arguments:\"", ")", ":", "arguments", "=", "\"\\n\"", ".", "join", "(", "map", "(", "lambda", "u", ":", "u", "[", "6", ":", "]", ",", "arguments", ".", "strip", "(", ")", ".", "split", "(", "\"\\n\"", ")", "[", "1", ":", "]", ")", ")", "return", "\"**Arguments:**\\n\\n%s\\n\\n\"", "%", "arguments" ]
Makes the arguments description pretty and returns a formatted string if `arguments` starts with the argument prefix. Otherwise, returns None. Expected input: Arguments: * arg0 - ... ... * arg0 - ... ... Expected output: **Arguments:** * arg0 - ... ... * arg0 - ... ...
[ "Makes", "the", "arguments", "description", "pretty", "and", "returns", "a", "formatted", "string", "if", "arguments", "starts", "with", "the", "argument", "prefix", ".", "Otherwise", "returns", "None", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/sql/gen-sql-markdown.py#L61-L86
apache/spark
sql/gen-sql-markdown.py
_make_pretty_examples
def _make_pretty_examples(examples): """ Makes the examples description pretty and returns a formatted string if `examples` starts with the example prefix. Otherwise, returns None. Expected input: Examples: > SELECT ...; ... > SELECT ...; ... Expected output: **Examples:** ``` > SELECT ...; ... > SELECT ...; ... ``` """ if examples.startswith("\n Examples:"): examples = "\n".join(map(lambda u: u[6:], examples.strip().split("\n")[1:])) return "**Examples:**\n\n```\n%s\n```\n\n" % examples
python
def _make_pretty_examples(examples): """ Makes the examples description pretty and returns a formatted string if `examples` starts with the example prefix. Otherwise, returns None. Expected input: Examples: > SELECT ...; ... > SELECT ...; ... Expected output: **Examples:** ``` > SELECT ...; ... > SELECT ...; ... ``` """ if examples.startswith("\n Examples:"): examples = "\n".join(map(lambda u: u[6:], examples.strip().split("\n")[1:])) return "**Examples:**\n\n```\n%s\n```\n\n" % examples
[ "def", "_make_pretty_examples", "(", "examples", ")", ":", "if", "examples", ".", "startswith", "(", "\"\\n Examples:\"", ")", ":", "examples", "=", "\"\\n\"", ".", "join", "(", "map", "(", "lambda", "u", ":", "u", "[", "6", ":", "]", ",", "examples", ".", "strip", "(", ")", ".", "split", "(", "\"\\n\"", ")", "[", "1", ":", "]", ")", ")", "return", "\"**Examples:**\\n\\n```\\n%s\\n```\\n\\n\"", "%", "examples" ]
Makes the examples description pretty and returns a formatted string if `examples` starts with the example prefix. Otherwise, returns None. Expected input: Examples: > SELECT ...; ... > SELECT ...; ... Expected output: **Examples:** ``` > SELECT ...; ... > SELECT ...; ... ```
[ "Makes", "the", "examples", "description", "pretty", "and", "returns", "a", "formatted", "string", "if", "examples", "starts", "with", "the", "example", "prefix", ".", "Otherwise", "returns", "None", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/sql/gen-sql-markdown.py#L89-L116
apache/spark
sql/gen-sql-markdown.py
_make_pretty_note
def _make_pretty_note(note): """ Makes the note description pretty and returns a formatted string if `note` is not an empty string. Otherwise, returns None. Expected input: ... Expected output: **Note:** ... """ if note != "": note = "\n".join(map(lambda n: n[4:], note.split("\n"))) return "**Note:**\n%s\n" % note
python
def _make_pretty_note(note): """ Makes the note description pretty and returns a formatted string if `note` is not an empty string. Otherwise, returns None. Expected input: ... Expected output: **Note:** ... """ if note != "": note = "\n".join(map(lambda n: n[4:], note.split("\n"))) return "**Note:**\n%s\n" % note
[ "def", "_make_pretty_note", "(", "note", ")", ":", "if", "note", "!=", "\"\"", ":", "note", "=", "\"\\n\"", ".", "join", "(", "map", "(", "lambda", "n", ":", "n", "[", "4", ":", "]", ",", "note", ".", "split", "(", "\"\\n\"", ")", ")", ")", "return", "\"**Note:**\\n%s\\n\"", "%", "note" ]
Makes the note description pretty and returns a formatted string if `note` is not an empty string. Otherwise, returns None. Expected input: ... Expected output: **Note:** ...
[ "Makes", "the", "note", "description", "pretty", "and", "returns", "a", "formatted", "string", "if", "note", "is", "not", "an", "empty", "string", ".", "Otherwise", "returns", "None", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/sql/gen-sql-markdown.py#L119-L137
apache/spark
sql/gen-sql-markdown.py
_make_pretty_deprecated
def _make_pretty_deprecated(deprecated): """ Makes the deprecated description pretty and returns a formatted string if `deprecated` is not an empty string. Otherwise, returns None. Expected input: ... Expected output: **Deprecated:** ... """ if deprecated != "": deprecated = "\n".join(map(lambda n: n[4:], deprecated.split("\n"))) return "**Deprecated:**\n%s\n" % deprecated
python
def _make_pretty_deprecated(deprecated): """ Makes the deprecated description pretty and returns a formatted string if `deprecated` is not an empty string. Otherwise, returns None. Expected input: ... Expected output: **Deprecated:** ... """ if deprecated != "": deprecated = "\n".join(map(lambda n: n[4:], deprecated.split("\n"))) return "**Deprecated:**\n%s\n" % deprecated
[ "def", "_make_pretty_deprecated", "(", "deprecated", ")", ":", "if", "deprecated", "!=", "\"\"", ":", "deprecated", "=", "\"\\n\"", ".", "join", "(", "map", "(", "lambda", "n", ":", "n", "[", "4", ":", "]", ",", "deprecated", ".", "split", "(", "\"\\n\"", ")", ")", ")", "return", "\"**Deprecated:**\\n%s\\n\"", "%", "deprecated" ]
Makes the deprecated description pretty and returns a formatted string if `deprecated` is not an empty string. Otherwise, returns None. Expected input: ... Expected output: **Deprecated:** ...
[ "Makes", "the", "deprecated", "description", "pretty", "and", "returns", "a", "formatted", "string", "if", "deprecated", "is", "not", "an", "empty", "string", ".", "Otherwise", "returns", "None", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/sql/gen-sql-markdown.py#L140-L158
apache/spark
sql/gen-sql-markdown.py
generate_sql_markdown
def generate_sql_markdown(jvm, path): """ Generates a markdown file after listing the function information. The output file is created in `path`. Expected output: ### NAME USAGE **Arguments:** ARGUMENTS **Examples:** ``` EXAMPLES ``` **Note:** NOTE **Since:** SINCE **Deprecated:** DEPRECATED <br/> """ with open(path, 'w') as mdfile: for info in _list_function_infos(jvm): name = info.name usage = _make_pretty_usage(info.usage) arguments = _make_pretty_arguments(info.arguments) examples = _make_pretty_examples(info.examples) note = _make_pretty_note(info.note) since = info.since deprecated = _make_pretty_deprecated(info.deprecated) mdfile.write("### %s\n\n" % name) if usage is not None: mdfile.write("%s\n\n" % usage.strip()) if arguments is not None: mdfile.write(arguments) if examples is not None: mdfile.write(examples) if note is not None: mdfile.write(note) if since is not None and since != "": mdfile.write("**Since:** %s\n\n" % since.strip()) if deprecated is not None: mdfile.write(deprecated) mdfile.write("<br/>\n\n")
python
def generate_sql_markdown(jvm, path): """ Generates a markdown file after listing the function information. The output file is created in `path`. Expected output: ### NAME USAGE **Arguments:** ARGUMENTS **Examples:** ``` EXAMPLES ``` **Note:** NOTE **Since:** SINCE **Deprecated:** DEPRECATED <br/> """ with open(path, 'w') as mdfile: for info in _list_function_infos(jvm): name = info.name usage = _make_pretty_usage(info.usage) arguments = _make_pretty_arguments(info.arguments) examples = _make_pretty_examples(info.examples) note = _make_pretty_note(info.note) since = info.since deprecated = _make_pretty_deprecated(info.deprecated) mdfile.write("### %s\n\n" % name) if usage is not None: mdfile.write("%s\n\n" % usage.strip()) if arguments is not None: mdfile.write(arguments) if examples is not None: mdfile.write(examples) if note is not None: mdfile.write(note) if since is not None and since != "": mdfile.write("**Since:** %s\n\n" % since.strip()) if deprecated is not None: mdfile.write(deprecated) mdfile.write("<br/>\n\n")
[ "def", "generate_sql_markdown", "(", "jvm", ",", "path", ")", ":", "with", "open", "(", "path", ",", "'w'", ")", "as", "mdfile", ":", "for", "info", "in", "_list_function_infos", "(", "jvm", ")", ":", "name", "=", "info", ".", "name", "usage", "=", "_make_pretty_usage", "(", "info", ".", "usage", ")", "arguments", "=", "_make_pretty_arguments", "(", "info", ".", "arguments", ")", "examples", "=", "_make_pretty_examples", "(", "info", ".", "examples", ")", "note", "=", "_make_pretty_note", "(", "info", ".", "note", ")", "since", "=", "info", ".", "since", "deprecated", "=", "_make_pretty_deprecated", "(", "info", ".", "deprecated", ")", "mdfile", ".", "write", "(", "\"### %s\\n\\n\"", "%", "name", ")", "if", "usage", "is", "not", "None", ":", "mdfile", ".", "write", "(", "\"%s\\n\\n\"", "%", "usage", ".", "strip", "(", ")", ")", "if", "arguments", "is", "not", "None", ":", "mdfile", ".", "write", "(", "arguments", ")", "if", "examples", "is", "not", "None", ":", "mdfile", ".", "write", "(", "examples", ")", "if", "note", "is", "not", "None", ":", "mdfile", ".", "write", "(", "note", ")", "if", "since", "is", "not", "None", "and", "since", "!=", "\"\"", ":", "mdfile", ".", "write", "(", "\"**Since:** %s\\n\\n\"", "%", "since", ".", "strip", "(", ")", ")", "if", "deprecated", "is", "not", "None", ":", "mdfile", ".", "write", "(", "deprecated", ")", "mdfile", ".", "write", "(", "\"<br/>\\n\\n\"", ")" ]
Generates a markdown file after listing the function information. The output file is created in `path`. Expected output: ### NAME USAGE **Arguments:** ARGUMENTS **Examples:** ``` EXAMPLES ``` **Note:** NOTE **Since:** SINCE **Deprecated:** DEPRECATED <br/>
[ "Generates", "a", "markdown", "file", "after", "listing", "the", "function", "information", ".", "The", "output", "file", "is", "created", "in", "path", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/sql/gen-sql-markdown.py#L161-L218
apache/spark
python/pyspark/mllib/classification.py
LogisticRegressionModel.predict
def predict(self, x): """ Predict values for a single data point or an RDD of points using the model trained. """ if isinstance(x, RDD): return x.map(lambda v: self.predict(v)) x = _convert_to_vector(x) if self.numClasses == 2: margin = self.weights.dot(x) + self._intercept if margin > 0: prob = 1 / (1 + exp(-margin)) else: exp_margin = exp(margin) prob = exp_margin / (1 + exp_margin) if self._threshold is None: return prob else: return 1 if prob > self._threshold else 0 else: best_class = 0 max_margin = 0.0 if x.size + 1 == self._dataWithBiasSize: for i in range(0, self._numClasses - 1): margin = x.dot(self._weightsMatrix[i][0:x.size]) + \ self._weightsMatrix[i][x.size] if margin > max_margin: max_margin = margin best_class = i + 1 else: for i in range(0, self._numClasses - 1): margin = x.dot(self._weightsMatrix[i]) if margin > max_margin: max_margin = margin best_class = i + 1 return best_class
python
def predict(self, x): """ Predict values for a single data point or an RDD of points using the model trained. """ if isinstance(x, RDD): return x.map(lambda v: self.predict(v)) x = _convert_to_vector(x) if self.numClasses == 2: margin = self.weights.dot(x) + self._intercept if margin > 0: prob = 1 / (1 + exp(-margin)) else: exp_margin = exp(margin) prob = exp_margin / (1 + exp_margin) if self._threshold is None: return prob else: return 1 if prob > self._threshold else 0 else: best_class = 0 max_margin = 0.0 if x.size + 1 == self._dataWithBiasSize: for i in range(0, self._numClasses - 1): margin = x.dot(self._weightsMatrix[i][0:x.size]) + \ self._weightsMatrix[i][x.size] if margin > max_margin: max_margin = margin best_class = i + 1 else: for i in range(0, self._numClasses - 1): margin = x.dot(self._weightsMatrix[i]) if margin > max_margin: max_margin = margin best_class = i + 1 return best_class
[ "def", "predict", "(", "self", ",", "x", ")", ":", "if", "isinstance", "(", "x", ",", "RDD", ")", ":", "return", "x", ".", "map", "(", "lambda", "v", ":", "self", ".", "predict", "(", "v", ")", ")", "x", "=", "_convert_to_vector", "(", "x", ")", "if", "self", ".", "numClasses", "==", "2", ":", "margin", "=", "self", ".", "weights", ".", "dot", "(", "x", ")", "+", "self", ".", "_intercept", "if", "margin", ">", "0", ":", "prob", "=", "1", "/", "(", "1", "+", "exp", "(", "-", "margin", ")", ")", "else", ":", "exp_margin", "=", "exp", "(", "margin", ")", "prob", "=", "exp_margin", "/", "(", "1", "+", "exp_margin", ")", "if", "self", ".", "_threshold", "is", "None", ":", "return", "prob", "else", ":", "return", "1", "if", "prob", ">", "self", ".", "_threshold", "else", "0", "else", ":", "best_class", "=", "0", "max_margin", "=", "0.0", "if", "x", ".", "size", "+", "1", "==", "self", ".", "_dataWithBiasSize", ":", "for", "i", "in", "range", "(", "0", ",", "self", ".", "_numClasses", "-", "1", ")", ":", "margin", "=", "x", ".", "dot", "(", "self", ".", "_weightsMatrix", "[", "i", "]", "[", "0", ":", "x", ".", "size", "]", ")", "+", "self", ".", "_weightsMatrix", "[", "i", "]", "[", "x", ".", "size", "]", "if", "margin", ">", "max_margin", ":", "max_margin", "=", "margin", "best_class", "=", "i", "+", "1", "else", ":", "for", "i", "in", "range", "(", "0", ",", "self", ".", "_numClasses", "-", "1", ")", ":", "margin", "=", "x", ".", "dot", "(", "self", ".", "_weightsMatrix", "[", "i", "]", ")", "if", "margin", ">", "max_margin", ":", "max_margin", "=", "margin", "best_class", "=", "i", "+", "1", "return", "best_class" ]
Predict values for a single data point or an RDD of points using the model trained.
[ "Predict", "values", "for", "a", "single", "data", "point", "or", "an", "RDD", "of", "points", "using", "the", "model", "trained", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/classification.py#L195-L231
apache/spark
python/pyspark/mllib/classification.py
LogisticRegressionModel.save
def save(self, sc, path): """ Save this model to the given path. """ java_model = sc._jvm.org.apache.spark.mllib.classification.LogisticRegressionModel( _py2java(sc, self._coeff), self.intercept, self.numFeatures, self.numClasses) java_model.save(sc._jsc.sc(), path)
python
def save(self, sc, path): """ Save this model to the given path. """ java_model = sc._jvm.org.apache.spark.mllib.classification.LogisticRegressionModel( _py2java(sc, self._coeff), self.intercept, self.numFeatures, self.numClasses) java_model.save(sc._jsc.sc(), path)
[ "def", "save", "(", "self", ",", "sc", ",", "path", ")", ":", "java_model", "=", "sc", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "mllib", ".", "classification", ".", "LogisticRegressionModel", "(", "_py2java", "(", "sc", ",", "self", ".", "_coeff", ")", ",", "self", ".", "intercept", ",", "self", ".", "numFeatures", ",", "self", ".", "numClasses", ")", "java_model", ".", "save", "(", "sc", ".", "_jsc", ".", "sc", "(", ")", ",", "path", ")" ]
Save this model to the given path.
[ "Save", "this", "model", "to", "the", "given", "path", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/classification.py#L234-L240
apache/spark
python/pyspark/mllib/classification.py
LogisticRegressionWithLBFGS.train
def train(cls, data, iterations=100, initialWeights=None, regParam=0.0, regType="l2", intercept=False, corrections=10, tolerance=1e-6, validateData=True, numClasses=2): """ Train a logistic regression model on the given data. :param data: The training data, an RDD of LabeledPoint. :param iterations: The number of iterations. (default: 100) :param initialWeights: The initial weights. (default: None) :param regParam: The regularizer parameter. (default: 0.0) :param regType: The type of regularizer used for training our model. Supported values: - "l1" for using L1 regularization - "l2" for using L2 regularization (default) - None for no regularization :param intercept: Boolean parameter which indicates the use or not of the augmented representation for training data (i.e., whether bias features are activated or not). (default: False) :param corrections: The number of corrections used in the LBFGS update. If a known updater is used for binary classification, it calls the ml implementation and this parameter will have no effect. (default: 10) :param tolerance: The convergence tolerance of iterations for L-BFGS. (default: 1e-6) :param validateData: Boolean parameter which indicates if the algorithm should validate data before training. (default: True) :param numClasses: The number of classes (i.e., outcomes) a label can take in Multinomial Logistic Regression. (default: 2) >>> data = [ ... LabeledPoint(0.0, [0.0, 1.0]), ... LabeledPoint(1.0, [1.0, 0.0]), ... ] >>> lrm = LogisticRegressionWithLBFGS.train(sc.parallelize(data), iterations=10) >>> lrm.predict([1.0, 0.0]) 1 >>> lrm.predict([0.0, 1.0]) 0 """ def train(rdd, i): return callMLlibFunc("trainLogisticRegressionModelWithLBFGS", rdd, int(iterations), i, float(regParam), regType, bool(intercept), int(corrections), float(tolerance), bool(validateData), int(numClasses)) if initialWeights is None: if numClasses == 2: initialWeights = [0.0] * len(data.first().features) else: if intercept: initialWeights = [0.0] * (len(data.first().features) + 1) * (numClasses - 1) else: initialWeights = [0.0] * len(data.first().features) * (numClasses - 1) return _regression_train_wrapper(train, LogisticRegressionModel, data, initialWeights)
python
def train(cls, data, iterations=100, initialWeights=None, regParam=0.0, regType="l2", intercept=False, corrections=10, tolerance=1e-6, validateData=True, numClasses=2): """ Train a logistic regression model on the given data. :param data: The training data, an RDD of LabeledPoint. :param iterations: The number of iterations. (default: 100) :param initialWeights: The initial weights. (default: None) :param regParam: The regularizer parameter. (default: 0.0) :param regType: The type of regularizer used for training our model. Supported values: - "l1" for using L1 regularization - "l2" for using L2 regularization (default) - None for no regularization :param intercept: Boolean parameter which indicates the use or not of the augmented representation for training data (i.e., whether bias features are activated or not). (default: False) :param corrections: The number of corrections used in the LBFGS update. If a known updater is used for binary classification, it calls the ml implementation and this parameter will have no effect. (default: 10) :param tolerance: The convergence tolerance of iterations for L-BFGS. (default: 1e-6) :param validateData: Boolean parameter which indicates if the algorithm should validate data before training. (default: True) :param numClasses: The number of classes (i.e., outcomes) a label can take in Multinomial Logistic Regression. (default: 2) >>> data = [ ... LabeledPoint(0.0, [0.0, 1.0]), ... LabeledPoint(1.0, [1.0, 0.0]), ... ] >>> lrm = LogisticRegressionWithLBFGS.train(sc.parallelize(data), iterations=10) >>> lrm.predict([1.0, 0.0]) 1 >>> lrm.predict([0.0, 1.0]) 0 """ def train(rdd, i): return callMLlibFunc("trainLogisticRegressionModelWithLBFGS", rdd, int(iterations), i, float(regParam), regType, bool(intercept), int(corrections), float(tolerance), bool(validateData), int(numClasses)) if initialWeights is None: if numClasses == 2: initialWeights = [0.0] * len(data.first().features) else: if intercept: initialWeights = [0.0] * (len(data.first().features) + 1) * (numClasses - 1) else: initialWeights = [0.0] * len(data.first().features) * (numClasses - 1) return _regression_train_wrapper(train, LogisticRegressionModel, data, initialWeights)
[ "def", "train", "(", "cls", ",", "data", ",", "iterations", "=", "100", ",", "initialWeights", "=", "None", ",", "regParam", "=", "0.0", ",", "regType", "=", "\"l2\"", ",", "intercept", "=", "False", ",", "corrections", "=", "10", ",", "tolerance", "=", "1e-6", ",", "validateData", "=", "True", ",", "numClasses", "=", "2", ")", ":", "def", "train", "(", "rdd", ",", "i", ")", ":", "return", "callMLlibFunc", "(", "\"trainLogisticRegressionModelWithLBFGS\"", ",", "rdd", ",", "int", "(", "iterations", ")", ",", "i", ",", "float", "(", "regParam", ")", ",", "regType", ",", "bool", "(", "intercept", ")", ",", "int", "(", "corrections", ")", ",", "float", "(", "tolerance", ")", ",", "bool", "(", "validateData", ")", ",", "int", "(", "numClasses", ")", ")", "if", "initialWeights", "is", "None", ":", "if", "numClasses", "==", "2", ":", "initialWeights", "=", "[", "0.0", "]", "*", "len", "(", "data", ".", "first", "(", ")", ".", "features", ")", "else", ":", "if", "intercept", ":", "initialWeights", "=", "[", "0.0", "]", "*", "(", "len", "(", "data", ".", "first", "(", ")", ".", "features", ")", "+", "1", ")", "*", "(", "numClasses", "-", "1", ")", "else", ":", "initialWeights", "=", "[", "0.0", "]", "*", "len", "(", "data", ".", "first", "(", ")", ".", "features", ")", "*", "(", "numClasses", "-", "1", ")", "return", "_regression_train_wrapper", "(", "train", ",", "LogisticRegressionModel", ",", "data", ",", "initialWeights", ")" ]
Train a logistic regression model on the given data. :param data: The training data, an RDD of LabeledPoint. :param iterations: The number of iterations. (default: 100) :param initialWeights: The initial weights. (default: None) :param regParam: The regularizer parameter. (default: 0.0) :param regType: The type of regularizer used for training our model. Supported values: - "l1" for using L1 regularization - "l2" for using L2 regularization (default) - None for no regularization :param intercept: Boolean parameter which indicates the use or not of the augmented representation for training data (i.e., whether bias features are activated or not). (default: False) :param corrections: The number of corrections used in the LBFGS update. If a known updater is used for binary classification, it calls the ml implementation and this parameter will have no effect. (default: 10) :param tolerance: The convergence tolerance of iterations for L-BFGS. (default: 1e-6) :param validateData: Boolean parameter which indicates if the algorithm should validate data before training. (default: True) :param numClasses: The number of classes (i.e., outcomes) a label can take in Multinomial Logistic Regression. (default: 2) >>> data = [ ... LabeledPoint(0.0, [0.0, 1.0]), ... LabeledPoint(1.0, [1.0, 0.0]), ... ] >>> lrm = LogisticRegressionWithLBFGS.train(sc.parallelize(data), iterations=10) >>> lrm.predict([1.0, 0.0]) 1 >>> lrm.predict([0.0, 1.0]) 0
[ "Train", "a", "logistic", "regression", "model", "on", "the", "given", "data", "." ]
train
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/classification.py#L332-L400