text
stringlengths
4
1.02M
meta
dict
from __future__ import unicode_literals """ Patch courtesy of: https://marmida.com/blog/index.php/2012/08/08/monkey-patching-assert_raises/ """ # code for monkey-patching import nose.tools # let's fix nose.tools.assert_raises (which is really unittest.assertRaises) # so that it always supports context management # in order for these changes to be available to other modules, you'll need # to guarantee this module is imported by your fixture before either nose or # unittest are imported try: nose.tools.assert_raises(Exception) except TypeError: # this version of assert_raises doesn't support the 1-arg version class AssertRaisesContext(object): def __init__(self, expected): self.expected = expected def __enter__(self): return self def __exit__(self, exc_type, exc_val, tb): self.exception = exc_val if issubclass(exc_type, self.expected): return True nose.tools.assert_equal(exc_type, self.expected) # if you get to this line, the last assertion must have passed # suppress the propagation of this exception return True def assert_raises_context(exc_type): return AssertRaisesContext(exc_type) nose.tools.assert_raises = assert_raises_context
{ "content_hash": "53d0bf1c7bcf81ecb260f5bab0a4da51", "timestamp": "", "source": "github", "line_count": 40, "max_line_length": 76, "avg_line_length": 33.05, "alnum_prop": 0.6762481089258698, "repo_name": "silveregg/moto", "id": "6ceacaa891bf3cd115325b8ceb1dff173c8061e7", "size": "1322", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/backport_assert_raises.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Makefile", "bytes": "230" }, { "name": "Python", "bytes": "2435907" } ], "symlink_target": "" }
from __future__ import absolute_import input_name = '../examples/navier_stokes/navier_stokes2d.py' output_name = 'test_navier_stokes2d.vtk' from tests_basic import TestInput class Test(TestInput): pass
{ "content_hash": "f98877bc03628094cde27f51b31cfad1", "timestamp": "", "source": "github", "line_count": 7, "max_line_length": 59, "avg_line_length": 29.571428571428573, "alnum_prop": 0.7584541062801933, "repo_name": "lokik/sfepy", "id": "9d59b0d4120703a2e468740c68d07c94d55db7b0", "size": "207", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_input_navier_stokes2d.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "448969" }, { "name": "C++", "bytes": "37842" }, { "name": "GLSL", "bytes": "6058" }, { "name": "Makefile", "bytes": "184" }, { "name": "PowerShell", "bytes": "3118" }, { "name": "Python", "bytes": "2701733" }, { "name": "Shell", "bytes": "71" } ], "symlink_target": "" }
""" Python Interchangeable Virtual Instrument Library Copyright (c) 2014-2016 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # Programmable fiberoptic instrument from .diconGP700 import diconGP700
{ "content_hash": "fcc7ef67781d4c0f01c41d343d9ef8b6", "timestamp": "", "source": "github", "line_count": 30, "max_line_length": 77, "avg_line_length": 39.93333333333333, "alnum_prop": 0.8046744574290484, "repo_name": "Diti24/python-ivi", "id": "f5112f804a138755dd00d2293a646501207f3aa4", "size": "1198", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ivi/dicon/__init__.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "1992462" } ], "symlink_target": "" }
from oslotest import base as test_base from testtools import matchers import webob import webob.dec from oslo_middleware import request_id class RequestIdTest(test_base.BaseTestCase): def test_generate_request_id(self): @webob.dec.wsgify def application(req): return req.environ[request_id.ENV_REQUEST_ID] app = request_id.RequestId(application) req = webob.Request.blank('/test') res = req.get_response(app) res_req_id = res.headers.get(request_id.HTTP_RESP_HEADER_REQUEST_ID) self.assertThat(res_req_id, matchers.StartsWith(b'req-')) # request-id in request environ is returned as response body self.assertEqual(res_req_id, res.body)
{ "content_hash": "f193cbdb2c9c25cc630886f66d107449", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 76, "avg_line_length": 34.666666666666664, "alnum_prop": 0.6909340659340659, "repo_name": "JioCloud/oslo.middleware", "id": "09bdd327596f3f4c726d4d1be4657bedb147e72b", "size": "1364", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "oslo_middleware/tests/test_request_id.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "123331" } ], "symlink_target": "" }
""" .. module:: libopenzwave This file is part of **python-openzwave** project https://github.com/OpenZWave/python-openzwave. :platform: Unix, Windows, MacOS X :sinopsis: openzwave C++ .. moduleauthor: bibi21000 aka Sebastien GALLET <bibi21000@gmail.com> .. moduleauthor: Maarten Damen <m.damen@gmail.com> License : GPL(v3) **python-openzwave** is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. **python-openzwave** is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with python-openzwave. If not, see http://www.gnu.org/licenses. """ class PyOptions(object): """ Manage options manager """ def __init__(self, config_path=None, user_path=".", cmd_line=""): """ Create an option object and check that parameters are valid. :param device: The device to use :type device: str :param config_path: The openzwave config directory. If None, try to configure automatically. :type config_path: str :param user_path: The user directory :type user_path: str :param cmd_line: The "command line" options of the openzwave library :type cmd_line: str """ if config_path is None: config_path = self.getConfigPath() if config_path is None: raise LibZWaveException("Can't autoconfigure path to config") self._config_path = config_path if user_path is None: user_path = "." self._user_path = user_path if cmd_line is None: cmd_line="" self._cmd_line = cmd_line self.create(self._config_path, self._user_path, self._cmd_line) def create(self, a, b, c): """ .. _createoptions: Create an option object used to start the manager :param a: The path of the config directory :type a: str :param b: The path of the user directory :type b: str :param c: The "command line" options of the openzwave library :type c: str :see: destroyoptions_ """ self.options = CreateOptions( str_to_cppstr(a), str_to_cppstr(b), str_to_cppstr(c)) return True def destroy(self): """ .. _destroyoptions: Deletes the Options and cleans up any associated objects. The application is responsible for destroying the Options object, but this must not be done until after the Manager object has been destroyed. :return: The result of the operation. :rtype: bool :see: createoptions_ """ return self.options.Destroy() def lock(self): """ .. _lock: Lock the options. Needed to start the manager :return: The result of the operation. :rtype: bool :see: areLocked_ """ return self.options.Lock() def areLocked(self): ''' .. _areLocked: Test whether the options have been locked. :return: true if the options have been locked. :rtype: boolean :see: lock_ ''' return self.options.AreLocked() def addOptionBool(self, name, value): """ .. _addOptionBool: Add a boolean option. :param name: The name of the option. :type name: str :param value: The value of the option. :type value: boolean :return: The result of the operation. :rtype: bool :see: addOption_, addOptionInt_, addOptionString_ """ return self.options.AddOptionBool(str_to_cppstr(name), value) def addOptionInt(self, name, value): """ .. _addOptionInt: Add an integer option. :param name: The name of the option. :type name: str :param value: The value of the option. :type value: boolean :return: The result of the operation. :rtype: bool :see: addOption_, addOptionBool_, addOptionString_ """ return self.options.AddOptionInt(str_to_cppstr(name), value) def addOptionString(self, name, value, append=False): """ .. _addOptionString: Add a string option. :param name: The name of the option. Option names are case insensitive and must be unique. :type name: str :param value: The value of the option. :type value: str :param append: Setting append to true will cause values read from the command line or XML file to be concatenated into a comma delimited set. If _append is false, newer values will overwrite older ones. :type append: boolean :return: The result of the operation. :rtype: bool :see: addOption_, addOptionBool_, addOptionInt_ """ return self.options.AddOptionString( str_to_cppstr(name), str_to_cppstr(value), append) def addOption(self, name, value): """ .. _addOption: Add an option. :param name: The name of the option. :type name: string :param value: The value of the option. :type value: boolean, integer, string :return: The result of the operation. :rtype: bool :see: addOptionBool_, addOptionInt_, addOptionString_ """ if name not in PyOptionList: return False if PyOptionList[name]['type'] == "String": return self.addOptionString(name, value) elif PyOptionList[name]['type'] == "Bool": return self.addOptionBool(name, value) elif PyOptionList[name]['type'] == "Int": return self.addOptionInt(name, value) return False def getOption(self, name): """ .. _getOption: Retrieve option of a value. :param name: The name of the option. :type name: string :return: The value :rtype: boolean, integer, string or None :see: getOptionAsBool_, getOptionAsInt_, getOptionAsString_ """ if name not in PyOptionList: return None if PyOptionList[name]['type'] == "String": return self.getOptionAsString(name) elif PyOptionList[name]['type'] == "Bool": return self.getOptionAsBool(name) elif PyOptionList[name]['type'] == "Int": return self.getOptionAsInt(name) return False # def getOptionAsBool(self, name): # """ # .. _getOptionAsBool: # # Retrieve boolean value of an option. # # :param name: The name of the option. # :type name: string # :return: The value or None # :rtype: boolean or None # # :see: getOption_, getOptionAsInt_, getOptionAsString_ # # """ # cdef bool type_bool # cret = self.options.GetOptionAsBool(str_to_cppstr(name), &type_bool) # ret = type_bool if cret==True else None # return ret # # def getOptionAsInt(self, name): # """ # .. _getOptionAsInt: # # Retrieve integer value of an option. # # :param name: The name of the option. # :type name: string # :return: The value or None # :rtype: Integer or None # # :see: getOption_, getOptionAsBool_, getOptionAsString_ # # """ # cdef int32_t type_int # cret = self.options.GetOptionAsInt(str_to_cppstr(name), &type_int) # ret = type_int if cret==True else None # return ret # # def getOptionAsString(self, name): # """ # .. _getOptionAsString: # # Retrieve string value of an option. # # :param name: The name of the option. # :type name: string # :return: The value or None # :rtype: String or None # # :see: getOption_, getOptionAsBool_, getOptionAsInt_ # # """ # cdef string type_string # cret = self.options.GetOptionAsString(str_to_cppstr(name), &type_string) # ret = cstr_to_str(type_string.c_str()) if cret==True else None # return ret def getConfigPath(self): ''' .. _getConfigPath: Retrieve the config path. This directory hold the xml files. :return: A string containing the library config path or None. :rtype: str ''' return configPath() PyStatDriver = { 'SOFCnt' : "Number of SOF bytes received", 'ACKWaiting' : "Number of unsolicited messages while waiting for an ACK", 'readAborts' : "Number of times read were aborted due to timeouts", 'badChecksum' : "Number of bad checksums", 'readCnt' : "Number of messages successfully read", 'writeCnt' : "Number of messages successfully sent", 'CANCnt' : "Number of CAN bytes received", 'NAKCnt' : "Number of NAK bytes received", 'ACKCnt' : "Number of ACK bytes received", 'OOFCnt' : "Number of bytes out of framing", 'dropped' : "Number of messages dropped & not delivered", 'retries' : "Number of messages retransmitted", 'callbacks' : "Number of unexpected callbacks", 'badroutes' : "Number of failed messages due to bad route response", 'noack' : "Number of no ACK returned errors", 'netbusy' : "Number of network busy/failure messages", 'nondelivery' : "Number of messages not delivered to network", 'routedbusy' : "Number of messages received with routed busy status", 'broadcastReadCnt' : "Number of broadcasts read", 'broadcastWriteCnt' : "Number of broadcasts sent", } PyLogLevels = { 'Invalid' : {'doc':'Invalid Log Status', 'value':0}, 'None' : {'doc':'Disable all logging', 'value':1}, 'Always' : {'doc':'These messages should always be shown', 'value':2}, 'Fatal' : {'doc':'A likely fatal issue in the library', 'value':3}, 'Error' : {'doc':'A serious issue with the library or the network', 'value':4}, 'Warning' : {'doc':'A minor issue from which the library should be able to recover', 'value':5}, 'Alert' : {'doc':'Something unexpected by the library about which the controlling application should be aware', 'value':6}, 'Info' : {'doc':"Everything's working fine...these messages provide streamlined feedback on each message", 'value':7}, 'Detail' : {'doc':'Detailed information on the progress of each message', 'value':8}, 'Debug' : {'doc':'Very detailed information on progress that will create a huge log file quickly but this level (as others) can be queued and sent to the log only on an error or warning', 'value':9}, 'StreamDetail' : {'doc':'Will include low-level byte transfers from controller to buffer to application and back', 'value':10}, 'Internal' : {'doc':'Used only within the log class (uses existing timestamp, etc', 'value':11}, } class EnumWithDoc(str): """Enum helper""" def setDoc(self, doc): self.doc = doc return self PyControllerState = [ EnumWithDoc('Normal').setDoc("No command in progress."), EnumWithDoc('Starting').setDoc("The command is starting."), EnumWithDoc('Cancel').setDoc("The command was cancelled."), EnumWithDoc('Error').setDoc("Command invocation had error(s) and was aborted."), EnumWithDoc('Waiting').setDoc("Controller is waiting for a user action."), EnumWithDoc('Sleeping').setDoc("Controller command is on a sleep queue wait for device."), EnumWithDoc('InProgress').setDoc("The controller is communicating with the other device to carry out the command."), EnumWithDoc('Completed').setDoc("The command has completed successfully."), EnumWithDoc('Failed').setDoc("The command has failed."), EnumWithDoc('NodeOK').setDoc("Used only with ControllerCommand_HasNodeFailed to indicate that the controller thinks the node is OK."), EnumWithDoc('NodeFailed').setDoc("Used only with ControllerCommand_HasNodeFailed to indicate that the controller thinks the node has failed."), ] PyNotifications = [ EnumWithDoc('ValueAdded').setDoc("A new node value has been added to OpenZWave's set. These notifications occur after a node has been discovered, and details of its command classes have been received. Each command class may generate one or more values depending on the complexity of the item being represented."), EnumWithDoc('ValueRemoved').setDoc("A node value has been removed from OpenZWave's set. This only occurs when a node is removed."), EnumWithDoc('ValueChanged').setDoc("A node value has been updated from the Z-Wave network and it is different from the previous value."), EnumWithDoc('ValueRefreshed').setDoc("A node value has been updated from the Z-Wave network."), EnumWithDoc('Group').setDoc("The associations for the node have changed. The application should rebuild any group information it holds about the node."), EnumWithDoc('NodeNew').setDoc("A new node has been found (not already stored in zwcfg*.xml file)."), EnumWithDoc('NodeAdded').setDoc("A new node has been added to OpenZWave's set. This may be due to a device being added to the Z-Wave network, or because the application is initializing itself."), EnumWithDoc('NodeRemoved').setDoc("A node has been removed from OpenZWave's set. This may be due to a device being removed from the Z-Wave network, or because the application is closing."), EnumWithDoc('NodeProtocolInfo').setDoc("Basic node information has been receievd, such as whether the node is a setening device, a routing device and its baud rate and basic, generic and specific types. It is after this notification that you can call Manager::GetNodeType to obtain a label containing the device description."), EnumWithDoc('NodeNaming').setDoc("One of the node names has changed (name, manufacturer, product)."), EnumWithDoc('NodeEvent').setDoc("A node has triggered an event. This is commonly caused when a node sends a Basic_Set command to the controller. The event value is stored in the notification."), EnumWithDoc('PollingDisabled').setDoc("Polling of a node has been successfully turned off by a call to Manager::DisablePoll."), EnumWithDoc('PollingEnabled').setDoc("Polling of a node has been successfully turned on by a call to Manager::EnablePoll."), EnumWithDoc('SceneEvent').setDoc("Scene Activation Set received."), EnumWithDoc('CreateButton').setDoc("Handheld controller button event created."), EnumWithDoc('DeleteButton').setDoc("Handheld controller button event deleted."), EnumWithDoc('ButtonOn').setDoc("Handheld controller button on pressed event."), EnumWithDoc('ButtonOff').setDoc("Handheld controller button off pressed event."), EnumWithDoc('DriverReady').setDoc("A driver for a PC Z-Wave controller has been added and is ready to use. The notification will contain the controller's Home ID, which is needed to call most of the Manager methods."), EnumWithDoc('DriverFailed').setDoc("Driver failed to load."), EnumWithDoc('DriverReset').setDoc("All nodes and values for this driver have been removed. This is sent instead of potentially hundreds of individual node and value notifications."), EnumWithDoc('EssentialNodeQueriesComplete').setDoc("The queries on a node that are essential to its operation have been completed. The node can now handle incoming messages."), EnumWithDoc('NodeQueriesComplete').setDoc("All the initialisation queries on a node have been completed."), EnumWithDoc('AwakeNodesQueried').setDoc("All awake nodes have been queried, so client application can expected complete data for these nodes."), EnumWithDoc('AllNodesQueriedSomeDead').setDoc("All nodes have been queried but some dead nodes found."), EnumWithDoc('AllNodesQueried').setDoc("All nodes have been queried, so client application can expected complete data."), EnumWithDoc('Notification').setDoc("A manager notification report."), EnumWithDoc('DriverRemoved').setDoc("The Driver is being removed."), EnumWithDoc('ControllerCommand').setDoc("When Controller Commands are executed, Notifications of Success/Failure etc are communicated via this Notification."), ] PyStatDriver = { 'SOFCnt' : "Number of SOF bytes received", 'ACKWaiting' : "Number of unsolicited messages while waiting for an ACK", 'readAborts' : "Number of times read were aborted due to timeouts", 'badChecksum' : "Number of bad checksums", 'readCnt' : "Number of messages successfully read", 'writeCnt' : "Number of messages successfully sent", 'CANCnt' : "Number of CAN bytes received", 'NAKCnt' : "Number of NAK bytes received", 'ACKCnt' : "Number of ACK bytes received", 'OOFCnt' : "Number of bytes out of framing", 'dropped' : "Number of messages dropped & not delivered", 'retries' : "Number of messages retransmitted", 'callbacks' : "Number of unexpected callbacks", 'badroutes' : "Number of failed messages due to bad route response", 'noack' : "Number of no ACK returned errors", 'netbusy' : "Number of network busy/failure messages", 'nondelivery' : "Number of messages not delivered to network", 'routedbusy' : "Number of messages received with routed busy status", 'broadcastReadCnt' : "Number of broadcasts read", 'broadcastWriteCnt' : "Number of broadcasts sent", } COMMAND_CLASS_DESC = { 0x00: 'COMMAND_CLASS_NO_OPERATION', 0x20: 'COMMAND_CLASS_BASIC', 0x21: 'COMMAND_CLASS_CONTROLLER_REPLICATION', 0x22: 'COMMAND_CLASS_APPLICATION_STATUS', 0x23: 'COMMAND_CLASS_ZIP_SERVICES', 0x24: 'COMMAND_CLASS_ZIP_SERVER', 0x25: 'COMMAND_CLASS_SWITCH_BINARY', 0x26: 'COMMAND_CLASS_SWITCH_MULTILEVEL', 0x27: 'COMMAND_CLASS_SWITCH_ALL', 0x28: 'COMMAND_CLASS_SWITCH_TOGGLE_BINARY', 0x29: 'COMMAND_CLASS_SWITCH_TOGGLE_MULTILEVEL', 0x2A: 'COMMAND_CLASS_CHIMNEY_FAN', 0x2B: 'COMMAND_CLASS_SCENE_ACTIVATION', 0x2C: 'COMMAND_CLASS_SCENE_ACTUATOR_CONF', 0x2D: 'COMMAND_CLASS_SCENE_CONTROLLER_CONF', 0x2E: 'COMMAND_CLASS_ZIP_CLIENT', 0x2F: 'COMMAND_CLASS_ZIP_ADV_SERVICES', 0x30: 'COMMAND_CLASS_SENSOR_BINARY', 0x31: 'COMMAND_CLASS_SENSOR_MULTILEVEL', 0x32: 'COMMAND_CLASS_METER', 0x33: 'COMMAND_CLASS_COLOR', 0x34: 'COMMAND_CLASS_ZIP_ADV_CLIENT', 0x35: 'COMMAND_CLASS_METER_PULSE', 0x3C: 'COMMAND_CLASS_METER_TBL_CONFIG', 0x3D: 'COMMAND_CLASS_METER_TBL_MONITOR', 0x3E: 'COMMAND_CLASS_METER_TBL_PUSH', 0x38: 'COMMAND_CLASS_THERMOSTAT_HEATING', 0x40: 'COMMAND_CLASS_THERMOSTAT_MODE', 0x42: 'COMMAND_CLASS_THERMOSTAT_OPERATING_STATE', 0x43: 'COMMAND_CLASS_THERMOSTAT_SETPOINT', 0x44: 'COMMAND_CLASS_THERMOSTAT_FAN_MODE', 0x45: 'COMMAND_CLASS_THERMOSTAT_FAN_STATE', 0x46: 'COMMAND_CLASS_CLIMATE_CONTROL_SCHEDULE', 0x47: 'COMMAND_CLASS_THERMOSTAT_SETBACK', 0x4c: 'COMMAND_CLASS_DOOR_LOCK_LOGGING', 0x4E: 'COMMAND_CLASS_SCHEDULE_ENTRY_LOCK', 0x50: 'COMMAND_CLASS_BASIC_WINDOW_COVERING', 0x51: 'COMMAND_CLASS_MTP_WINDOW_COVERING', 0x56: 'COMMAND_CLASS_CRC_16_ENCAP', 0x5A: 'COMMAND_CLASS_DEVICE_RESET_LOCALLY', 0x5E: 'COMMAND_CLASS_ZWAVE_PLUS_INFO', 0x60: 'COMMAND_CLASS_MULTI_CHANNEL_V2', 0x61: 'COMMAND_CLASS_DISPLAY', 0x62: 'COMMAND_CLASS_DOOR_LOCK', 0x63: 'COMMAND_CLASS_USER_CODE', 0x64: 'COMMAND_CLASS_GARAGE_DOOR', 0x70: 'COMMAND_CLASS_CONFIGURATION', 0x71: 'COMMAND_CLASS_ALARM', 0x72: 'COMMAND_CLASS_MANUFACTURER_SPECIFIC', 0x73: 'COMMAND_CLASS_POWERLEVEL', 0x75: 'COMMAND_CLASS_PROTECTION', 0x76: 'COMMAND_CLASS_LOCK', 0x77: 'COMMAND_CLASS_NODE_NAMING', 0x78: 'COMMAND_CLASS_ACTUATOR_MULTILEVEL', 0x79: 'COMMAND_CLASS_KICK', 0x7A: 'COMMAND_CLASS_FIRMWARE_UPDATE_MD', 0x7B: 'COMMAND_CLASS_GROUPING_NAME', 0x7C: 'COMMAND_CLASS_REMOTE_ASSOCIATION_ACTIVATE', 0x7D: 'COMMAND_CLASS_REMOTE_ASSOCIATION', 0x80: 'COMMAND_CLASS_BATTERY', 0x81: 'COMMAND_CLASS_CLOCK', 0x82: 'COMMAND_CLASS_HAIL', 0x83: 'COMMAND_CLASS_NETWORK_STAT', 0x84: 'COMMAND_CLASS_WAKE_UP', 0x85: 'COMMAND_CLASS_ASSOCIATION', 0x86: 'COMMAND_CLASS_VERSION', 0x87: 'COMMAND_CLASS_INDICATOR', 0x88: 'COMMAND_CLASS_PROPRIETARY', 0x89: 'COMMAND_CLASS_LANGUAGE', 0x8A: 'COMMAND_CLASS_TIME', 0x8B: 'COMMAND_CLASS_TIME_PARAMETERS', 0x8C: 'COMMAND_CLASS_GEOGRAPHIC_LOCATION', 0x8D: 'COMMAND_CLASS_COMPOSITE', 0x8E: 'COMMAND_CLASS_MULTI_INSTANCE_ASSOCIATION', 0x8F: 'COMMAND_CLASS_MULTI_CMD', 0x90: 'COMMAND_CLASS_ENERGY_PRODUCTION', 0x91: 'COMMAND_CLASS_MANUFACTURER_PROPRIETARY', 0x92: 'COMMAND_CLASS_SCREEN_MD', 0x93: 'COMMAND_CLASS_SCREEN_ATTRIBUTES', 0x94: 'COMMAND_CLASS_SIMPLE_AV_CONTROL', 0x95: 'COMMAND_CLASS_AV_CONTENT_DIRECTORY_MD', 0x96: 'COMMAND_CLASS_AV_RENDERER_STATUS', 0x97: 'COMMAND_CLASS_AV_CONTENT_SEARCH_MD', 0x98: 'COMMAND_CLASS_SECURITY', 0x99: 'COMMAND_CLASS_AV_TAGGING_MD', 0x9A: 'COMMAND_CLASS_IP_CONFIGURATION', 0x9B: 'COMMAND_CLASS_ASSOCIATION_COMMAND_CONFIGURATION', 0x9C: 'COMMAND_CLASS_SENSOR_ALARM', 0x9D: 'COMMAND_CLASS_SILENCE_ALARM', 0x9E: 'COMMAND_CLASS_SENSOR_CONFIGURATION', 0xEF: 'COMMAND_CLASS_MARK', 0xF0: 'COMMAND_CLASS_NON_INTEROPERABLE' }
{ "content_hash": "282b935448ea7dc4dfa6a351ab3f5f15", "timestamp": "", "source": "github", "line_count": 514, "max_line_length": 331, "avg_line_length": 42.05642023346304, "alnum_prop": 0.6635518342045612, "repo_name": "Julian/libopenzwave-cffi", "id": "0414778e36eb738ff3c83eb64b793b974e632049", "size": "21642", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "libopenzwave/_global.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "3589" }, { "name": "C++", "bytes": "9952" }, { "name": "Python", "bytes": "33820" } ], "symlink_target": "" }
from string import ascii_lowercase import scrapy from scrapy.spiders import CrawlSpider from w3lib.html import remove_tags, remove_tags_with_content class InvestopediaSpider(CrawlSpider): name = 'investopedia' start_urls = ['http://www.investopedia.com/terms/%s/' % s for s in ascii_lowercase + '1'] def parse(self, response): """ Parse the response page """ url = response.url # 'terms' has to be there in the URL to proceed further if 'terms' not in url: return # if the url ends with '.asp', then that's a topic page if url.endswith('.asp'): return self._parse_topic_response(response) # Otherwise, assume that this a list page return self._parse_topic_list(response) def _parse_topic_response(self, response): """ Parses various topics e.g. www.investopedia.com/terms/o/oddlottheory.asp """ # Get the title first title = response.css('title::text').extract_first() # Replace / with a space - creates issues with writing to file title = title.replace('/', ' ') # Get the first div with id Content content = response.css('div#Content')[0] content = content.css('div.content-box') text = '' for child in content.xpath('//p'): # Get the text from this child <p></p> tag paragraph = child.extract() # Remove tags including <p> and <a> paragraph = remove_tags(remove_tags_with_content(paragraph, ('script', ))).strip() # Replace '&amp;' with '&' paragraph = paragraph.replace('&amp;', '&') # Replace 'U.S.' with 'US': paragraph = paragraph.replace('U.S.', 'US') # Some more replacements to improve the default tokenization for c in '();.,[]"\'-:/%$+@?': paragraph = paragraph.replace(c, ' {} '.format(c)) # Add to the file text += paragraph.lower() + '\n' # Save the title and the text both filename = 'investopedia_data.txt' f = open(filename, 'a') f.write(text) f.close() def _parse_topic_list(self, response): """ Parse the page with the topics listed out e.g. www.investopedia.com/terms/o/ """ list_element = response.css('ol.list') # Iterate through the list of topics for l in list_element.css('li'): # Extract the URL url = l.css('a::attr(href)').extract_first() next_page = response.urljoin(url) yield scrapy.Request(next_page, callback=self.parse)
{ "content_hash": "7904c135fdd0358f5a0492de8b0b2b04", "timestamp": "", "source": "github", "line_count": 85, "max_line_length": 94, "avg_line_length": 31.858823529411765, "alnum_prop": 0.5646233382570163, "repo_name": "hardikp/fnlp", "id": "7c0f9870e79cff216a1da016624dd93d4b229446", "size": "2708", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "scrapy-spiders/investopedia.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "15705" } ], "symlink_target": "" }
from __future__ import division import numpy as np import scipy as sp from pylab import ion from scipy import signal as sig from scipy import optimize as opt from scipy.interpolate import interp1d #from scipy.io import loadmat import matplotlib as mpl from matplotlib.mlab import * from matplotlib.pyplot import * from matplotlib.widgets import MultiCursor from matplotlib.ticker import EngFormatter import re import os import sys import csv import argparse import pprint from itertools import cycle import time from peak_finding import find_peaks_cwt from constants import pi from smartFormat import smartFormat, simpleFormat import timeAndFreq as tf # TODO: Constrained optimization, especially keeping frequency of peak # and amplitude sign (PEAK vs. NULL) within desired ranges so as to # truly optimize fit and get a rational result out. def structurallyDampedRes(params, angFreq): ''' Model of a single mass-spring system with only structural (hysteretic) damping (i.e., no viscous damping) X-values are given by angFreq, omega Model parameters and the variables typically used for them are ampl0, A0 = F0/m resFreq, omega_0 = sqrt(k/m) qFactor, Q = 1/eta ''' ampl0 = params['ampl0'] resFreq = params['resFreq'] qFactor = params['qFactor'] #B = -2j*lossFactor*springConst*mass-2*springConst*mass+2*mass**2*angFreq**2 #ampl = 4*force*mass**2 * (-1j*lossFactor*springConst - # springConst + mass*angFreq**2) / ( -B**2 ) ampl = ampl0/(angFreq**2 - resFreq**2*(1-1j/qFactor)) return ampl def viscAndStructDampedRes(params, angFreq): ''' Model of a single mass-spring-damper system with both viscous and structural (hysteretic) damping X-values are given by angFreq, omega Model parameters and the variables typically used for them are mass, m springConst, k lossFactor, eta viscousDamping, gamma force, F0 ''' mass = params['mass'] springConst = params['springConst'] lossFactor = params['lossFactor'] viscousDamping = params['viscousDamping'] force = params['force'] A = viscousDamping*np.sqrt( viscousDamping**2 - 4j*lossFactor*springConst*mass - 4*springConst*mass) B = viscousDamping**2 - 2j*lossFactor*springConst*mass \ - 2*springConst*mass + 2*mass**2*angFreq**2 ampl = 4*force*mass**2 * ( -1j*lossFactor*springConst - springConst \ + mass*angFreq**2 - gamma*angFreq*(pi*1j/2) ) \ / ( (A+B)*(A-B) ) return ampl def twoCoupledOscViscousDamping(params, omega): ''' Model of two coupled mass-spring-damper systems, where there is no loss in the coupling term. X-values are given by omega Model parameters are alpha0 -- nominal driving force r_alpha -- ratio of driving forces omega1 -- angular frequency of first resonance omega2 -- angular frequency of second resonance Q1 -- Q factor for first resonance Q2 -- Q factor for second resonance coupling -- strength of coupling between the two r_mass -- ratio of masses ''' alpha0 = params['alpha0'].value r_alpha = params['r_alpha'].value omega1 = params['omega1'].value omega2 = params['omega2'].value Q1 = params['Q1'].value Q2 = params['Q2'].value coupling = params['coupling'].value r_mass = params['r_mass'].value #dc_offset = params['dc_offset'].value zeta1 = 1/(2*Q1) zeta2 = 1/(2*Q2) model = \ (-( \ ( \ alpha0*( \ coupling*(-1+r_mass*r_alpha) \ + r_alpha*(-2*1j*zeta2*omega+omega**2-omega2**2) \ ) \ ) \ / ( \ (-2*1j* zeta1* omega + omega**2 - omega1**2) \ * (-2*1j* zeta2 *omega + omega**2 - omega2**2) \ + coupling*( \ omega*( \ -2*1j*(r_mass*zeta1+zeta2) \ + (1 + r_mass)*omega \ ) \ - r_mass*omega1**2 \ - omega2**2 \ ) \ ) \ ) \ + ( \ 1j*alpha0*( \ coupling*(-1+r_mass*r_alpha) \ + 2*1j*zeta1*omega - omega**2 + omega1**2 \ ) \ ) \ / ( \ (2*zeta1*omega + 1j*(omega - omega1)*(omega + omega1)) \ * (-2*1j* zeta2*omega + omega**2 - omega2**2) \ + coupling*( \ omega*(2*(r_mass*zeta1 + zeta2) + 1j*(1+r_mass)*omega) \ - 1j*r_mass*omega1**2 - 1j*omega2**2 \ ) \ )) return model def complLorentzian(freq, x0, beta, gamma, phi0): Y = 1j*phi0 + \ beta/(-freq**2 + 1j*gamma*freq + x0**2) return Y def complResErr(params, freq, cVal): x0, beta, gamma, phi0 = params Y = complLorentzian(freq, x0, beta, gamma, phi0) err = Y - cVal return np.abs(err) def realLorentzian(freq, x0, beta, gamma, y0): #Y = beta * (gamma/2)/((freq-x0)**2 + (gamma/2)**2) #Y = (gamma/2)/((freq-x0)**2 + (gamma/2)**2) #Y = beta/(1+((freq-x0)*gamma/2)**2) + y0 Y = (beta)/((freq-x0)**2 + (gamma/2)**2) + y0 return Y def realGaussian(freq, x0, beta, gamma, y0): #-- Gamma is FWHM #Y = beta * np.exp((freq-x0)**2/(gamma**2/8/np.log(2))) Y = np.exp((freq-x0)**2/(gamma**2/8/np.log(2))) + y0 return Y def realResErr(params, freq, amplVal): x0, beta, gamma, y0 = params Y = realLorentzian(freq, x0, beta, gamma, y0) #Y = realGaussian(freq, x0, beta, gamma, y00) err = Y - amplVal return abs(err) def fitLorentzian(extremumInd, xCoords, yData, f0, gamma0, n=1, peak=True, compl=True): xCoords = xCoords.astype(np.float_) yData = yData.astype(np.float_) f0 = xCoords[extremumInd] gamma0 = 0.0001*f0 #trialLorentzian = realLorentzian(xCoords, f0, 1, gamma0) #beta0 = np.abs(yData[extremumInd]) / max(trialLorentzian) beta0 = yData[extremumInd] beta0 = max(yData) phi0 = 0 y00 = 0 print "initial parameters", f0, beta0, gamma0 if compl: params = [f0, beta0, gamma0, phi0] optout = opt.leastsq(complResErr, params, args=(xCoords, yData), full_output=True) return optout params = [f0, beta0, gamma0, y00] #optout = opt.leastsq(realResErr, params, args=(xCoords, yData), # full_output=True) optout = opt.curve_fit(realLorentzian, xCoords, yData, p0=params) return optout def realLorentziansPD(x, paramsDicts): if isinstance(paramsDicts, dict): pd = paramsDicts return realLorentzian(x, pd['x0'], pd['beta'], pd['gamma'], pd['y0']) y = np.zeros_like(x) for pd in paramsDicts: y += realLorentzian(x, pd['x0'], pd['beta'], pd['gamma'], pd['y0']) return y def realLorentziansPL(x, *args, **kwargs): nParams = 4 paramsList = list(args)[1:] paramsDicts = [] for n in range(int(len(paramsList)/nParams)): paramsDicts.append( {'x0': paramsList[nParams*n], 'beta': paramsList[nParams*n+1], 'gamma': paramsList[nParams*n+2], 'y0': paramsList[nParams*n+3]} ) return realLorentziansPD(x, paramsDicts) def realLorentziansTemp(x, x0, beta, gamma, y0=0.0): freq = x #y0 = 0.0 #x0 = 6197.0 print 'x0', x0, 'beta', beta, 'gamma', gamma, 'y0', y0 Y = (beta*(gamma/2)**2)/((freq-x0)**2 + (gamma/2)**2) + y0 return Y def fitLorentzians(xCoords, yData, initialGuessDicts, compl=False): if compl: nParams = 5 else: nParams = 4 #-- Make sure data types are floats s.t. bug in scipy doesn't rear its # ugly head xCoords = xCoords.astype(np.float_) yData = yData.astype(np.float_) #if isinstance(initialGuessDicts, dict): # initialGuessDicts = [initialGuessDicts] ##-- Unpack dictionary parameters into a list #params = [] #for igd in initialGuessDicts: # params.extend([igd['x0'], igd['beta'], igd['gamma'], igd['y0']]) params = (initialGuessDicts['x0'], initialGuessDicts['beta'], initialGuessDicts['gamma'], initialGuessDicts['y0']) print 'igparams', params #if compl: # params = [f0, beta0, gamma0, phi0] # optout = opt.leastsq(complResErr, params, args=(xCoords, yData), # full_output=True) # return optout optout = opt.curve_fit(realLorentziansTemp, xCoords, yData, p0=params) #optout = opt.curve_fit(realLorentziansPL, xCoords, yData, p0=params) print 'optout', optout ##-- Re-pack dictionary parameters into list of dictionaries #n = 0 #paramsList = optout[0] #for igd in initialGuessDicts: # igd.update( # {'x0': paramsList[n*nParams], # 'beta': paramsList[n*nParams+1], # 'gamma': paramsList[n*nParams+2], # 'y0': paramsList[n*nParams+3]} # ) optout = list(optout) optout[0] = initialGuessDicts return optout
{ "content_hash": "d2f540171a37f7ca4d84c0a8e3f34063", "timestamp": "", "source": "github", "line_count": 304, "max_line_length": 80, "avg_line_length": 30.654605263157894, "alnum_prop": 0.5759201631076296, "repo_name": "jllanfranchi/pygeneric", "id": "591b7ad005c1b91e82e954befe0d85cc7400c94d", "size": "9437", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "peak_fitting.py", "mode": "33188", "license": "mit", "language": [ { "name": "Jupyter Notebook", "bytes": "18292" }, { "name": "Python", "bytes": "313385" } ], "symlink_target": "" }
import os import sys import json import yaml def main(): with open(sys.argv[1], 'rb') as f: known_issues = yaml.load(f.read()) skipstrings = [ 'passed in strict mode', 'passed in non-strict mode', 'failed in strict mode as expected', 'failed in non-strict mode as expected' ] in_failed_tests = False tofix_count = 0 # count of bugs that will be fixed (no uncertainty about proper behavior etc) known_errors = [] diagnosed_errors = [] unknown_errors = [] other_errors = [] for line in sys.stdin: if len(line) > 1 and line[-1] == '\n': line = line[:-1] # Skip success cases skip = False for sk in skipstrings: if sk in line: skip = True if skip: continue # Augment error list with "known bugs" print(line) # print error list as is, then refined version later if 'failed tests' in line.lower(): in_failed_tests = True continue if in_failed_tests and line.strip() == '': in_failed_tests = False continue if in_failed_tests: # " intl402/ch12/12.2/12.2.3_c in non-strict mode" tmp = line.strip().split(' ') test = tmp[0] matched = False for kn in known_issues: if kn.get('test', None) != test: continue if kn.has_key('diagnosed'): tofix_count += 1 diagnosed_errors.append(line + ' // diagnosed: ' + kn['diagnosed']) elif kn.has_key('knownissue'): # Don't bump tofix_count, as testcase expected result is not certain known_errors.append(line + ' // KNOWN: ' + kn['knownissue']) else: tofix_count += 1 unknown_errors.append(line + ' // ??? (rule matches)') kn['used'] = True # mark rule used matched = True break if matched: continue # no match, to fix other_errors.append(line) tofix_count += 1 print('') print('=== CATEGORISED ERRORS ===') print('') # With ES2015+ semantic changes to ES5 there are too many known # issues to print by default. #for i in known_errors: # print(i) for i in diagnosed_errors: print(i) for i in unknown_errors: print(i) for i in other_errors: print(i) # Check for unused rules (e.g. bugs fixed) print('') for kn in known_issues: if not kn.has_key('used'): print('WARNING: unused rule: ' + json.dumps(kn)) # Used by testclient if len(unknown_errors) > 0 or len(other_errors) > 0: print('TEST262 FAILED') elif len(known_errors) > 0 or len(diagnosed_errors) > 0: # Known and diagnosed errors don't indicate test failure # as far as Github status is concerned. print('TEST262 SUCCESS') else: print('TEST262 SUCCESS') # To fix count print('') print('KNOWN ISSUE COUNT: ' + str(len(known_errors))) print('TO-FIX COUNT: ' + str(tofix_count)) print(' = test case failures which need fixing (Duktape bugs, uninvestigated)') if __name__ == '__main__': main()
{ "content_hash": "417a473ad02bfe38cf8b7cfbb33c58aa", "timestamp": "", "source": "github", "line_count": 121, "max_line_length": 101, "avg_line_length": 28.31404958677686, "alnum_prop": 0.5239346176298891, "repo_name": "markand/duktape", "id": "5cde7e3daafce2f8d22d738ecd6009d19b14d3d8", "size": "3450", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "util/filter_test262_log.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "2859797" }, { "name": "C++", "bytes": "18532" }, { "name": "CSS", "bytes": "32733" }, { "name": "CoffeeScript", "bytes": "1029" }, { "name": "HTML", "bytes": "4438824" }, { "name": "Java", "bytes": "3043" }, { "name": "JavaScript", "bytes": "8666999" }, { "name": "Lua", "bytes": "19160" }, { "name": "Makefile", "bytes": "47049" }, { "name": "Perl", "bytes": "177" }, { "name": "Perl6", "bytes": "22748" }, { "name": "Python", "bytes": "291537" }, { "name": "Ruby", "bytes": "18384" }, { "name": "Shell", "bytes": "24267" } ], "symlink_target": "" }
""" SleekXMPP: The Sleek XMPP Library Copyright (C) 2013 Nathanael C. Fritz, Lance J.T. Stout This file is part of SleekXMPP. See the file LICENSE for copying permission. """ import logging from sleekxmpp.plugins.base import BasePlugin from sleekxmpp.plugins.xep_0152 import stanza, Reachability log = logging.getLogger(__name__) class XEP_0152(BasePlugin): """ XEP-0152: Reachability Addresses """ name = 'xep_0152' description = 'XEP-0152: Reachability Addresses' dependencies = set(['xep_0163']) stanza = stanza def plugin_end(self): self.xmpp['xep_0030'].del_feature(feature=Reachability.namespace) self.xmpp['xep_0163'].remove_interest(Reachability.namespace) def session_bind(self, jid): self.xmpp['xep_0163'].register_pep('reachability', Reachability) def publish_reachability(self, addresses, options=None, ifrom=None, block=True, callback=None, timeout=None): """ Publish alternative addresses where the user can be reached. Arguments: addresses -- A list of dictionaries containing the URI and optional description for each address. options -- Optional form of publish options. ifrom -- Specify the sender's JID. block -- Specify if the send call will block until a response is received, or a timeout occurs. Defaults to True. timeout -- The length of time (in seconds) to wait for a response before exiting the send call if blocking is used. Defaults to sleekxmpp.xmlstream.RESPONSE_TIMEOUT callback -- Optional reference to a stream handler function. Will be executed when a reply stanza is received. """ if not isinstance(addresses, (list, tuple)): addresses = [addresses] reach = Reachability() for address in addresses: if not hasattr(address, 'items'): address = {'uri': address} addr = stanza.Address() for key, val in address.items(): addr[key] = val reach.append(addr) return self.xmpp['xep_0163'].publish(reach, node=Reachability.namespace, options=options, ifrom=ifrom, block=block, callback=callback, timeout=timeout) def stop(self, ifrom=None, block=True, callback=None, timeout=None): """ Clear existing user activity information to stop notifications. Arguments: ifrom -- Specify the sender's JID. block -- Specify if the send call will block until a response is received, or a timeout occurs. Defaults to True. timeout -- The length of time (in seconds) to wait for a response before exiting the send call if blocking is used. Defaults to sleekxmpp.xmlstream.RESPONSE_TIMEOUT callback -- Optional reference to a stream handler function. Will be executed when a reply stanza is received. """ reach = Reachability() return self.xmpp['xep_0163'].publish(reach, node=Reachability.namespace, ifrom=ifrom, block=block, callback=callback, timeout=timeout)
{ "content_hash": "51d166942fc48743091ff5afea817fd7", "timestamp": "", "source": "github", "line_count": 93, "max_line_length": 79, "avg_line_length": 38.064516129032256, "alnum_prop": 0.5847457627118644, "repo_name": "isandlaTech/cohorte-3rdparty", "id": "4cf81739f04f9447c49570957f6f7883c112f246", "size": "3540", "binary": false, "copies": "12", "ref": "refs/heads/master", "path": "sleekxmpp/src/main/python/sleekxmpp/plugins/xep_0152/reachability.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "5939" }, { "name": "Perl", "bytes": "8420" }, { "name": "Python", "bytes": "5545307" }, { "name": "Shell", "bytes": "2838" } ], "symlink_target": "" }
""" Copyright 2014 Google Inc. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import os import sys from fontTools.subset import load_font from fontTools.subset import Options from fontTools.subset import save_font from fontTools.subset import Subsetter def main(args): """Subset a font (useful for making small test fonts). Args: args: list, arguments the user typed. """ parser = argparse.ArgumentParser() parser.add_argument('fontfile', help='Input font file') parser.add_argument('--subset_postfix', default='', help='Postfix to the subset extension') parser.add_argument('--text', default='', help='Text to include in the subset') parser.add_argument('--unicodes', default='', help='Comma separated list of Unicode codepoints (hex) ' 'to include in the subset; eg, "e7,0xe8,U+00e9"') parser.add_argument('--glyphs', default='', help='Comma separated list of glyph IDs (decimal) to ' 'include in the subset; eg, "1,27"') parser.add_argument('--hinting', default=False, action='store_true', help='Enable hinting if specified, no hinting if not ' 'present') cmd_args = parser.parse_args(args) options = Options() # Definitely want the .notdef glyph and outlines. options.notdef_glyph = True options.notdef_outline = True # Get the item. to keep in the subset. text = cmd_args.text unicodes_str = cmd_args.unicodes.lower().replace('0x', '').replace('u+', '') # TODO(bstell) replace this whole files by using the new subset.py code unicodes_input = [c for c in unicodes_str.split(',') if c] unicodes = [] for c in unicodes_input: if '-' in c: uni_range = c.split('-') uni_range_expanded = range(int(uni_range[0], 16), int(uni_range[1], 16) + 1) unicodes.extend(uni_range_expanded) else: unicodes.append(int(c, 16)) #unicodes = [int(c, 16) for c in unicodes_input_expanded] glyphs = [int(c) for c in cmd_args.glyphs.split(',') if c] fontfile = cmd_args.fontfile options.hinting = cmd_args.hinting # False => no hinting options.hinting = True # hint stripping for CFF is currently broken dirname = os.path.dirname(fontfile) basename = os.path.basename(fontfile) filename, extension = os.path.splitext(basename) subset_postfix = cmd_args.subset_postfix output_file = dirname + '/' + filename + '_subset' + subset_postfix + extension print "output_file =", output_file font = load_font(fontfile, options, lazy=False) subsetter = Subsetter(options) subsetter.populate(text=text, unicodes=unicodes, glyphs=glyphs) subsetter.subset(font) save_font(font, output_file, options) if __name__ == '__main__': main(sys.argv[1:])
{ "content_hash": "9be744f082867094695a55644029056c", "timestamp": "", "source": "github", "line_count": 88, "max_line_length": 82, "avg_line_length": 38.125, "alnum_prop": 0.6700447093889716, "repo_name": "googlefonts/TachyFont", "id": "603ccd8140305a850b01bafe8ed52b0eeb70d606", "size": "3355", "binary": false, "copies": "4", "ref": "refs/heads/main", "path": "build_time/src/make_subset.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "ASP.NET", "bytes": "303868" }, { "name": "CSS", "bytes": "313471" }, { "name": "HTML", "bytes": "100691" }, { "name": "Java", "bytes": "24368" }, { "name": "JavaScript", "bytes": "1163591" }, { "name": "Python", "bytes": "169129" }, { "name": "Shell", "bytes": "11939" } ], "symlink_target": "" }
import os DEBUG = False TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Poeks', 'poeksweb@gmail.com'), ) MANAGERS = ADMINS DATABASE_ENGINE = 'appengine' # 'postgresql_psycopg2', 'postgresql', 'mysql', 'sqlite3' or 'oracle'. DATABASE_NAME = '' # Or path to database file if using sqlite3. DATABASE_USER = '' # Not used with sqlite3. DATABASE_PASSWORD = '' # Not used with sqlite3. DATABASE_HOST = '' # Set to empty string for localhost. Not used with sqlite3. DATABASE_PORT = '' # Set to empty string for default. Not used with sqlite3. # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'America/New_York' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # Absolute path to the directory that holds media. # Example: "/home/media/media.lawrence.com/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash if there is a path component (optional in other cases). # Examples: "http://media.lawrence.com", "http://example.com/media/" MEDIA_URL = '' # URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a # trailing slash. # Examples: "http://foo.com/media/", "/media/". ADMIN_MEDIA_PREFIX = '/media/' # Make this unique, and don't share it with anybody. SECRET_KEY = 'hvhxfm5u=^*v&fdsgfhfdoo#oq8x*eg8+1&gfsgdf9sxbye@=umutgn^t_sg_nx' # Ensure that email is not sent via SMTP by default to match the standard App # Engine SDK behaviour. If you want to sent email via SMTP then add the name of # your mailserver here. EMAIL_HOST = '' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.load_template_source', 'django.template.loaders.app_directories.load_template_source', # 'django.template.loaders.eggs.load_template_source', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', # 'django.contrib.sessions.middleware.SessionMiddleware', # 'django.contrib.auth.middleware.AuthenticationMiddleware', # 'django.middleware.doc.XViewMiddleware', ) TEMPLATE_CONTEXT_PROCESSORS = ( # 'django.core.context_processors.auth', 'django.core.context_processors.debug', 'django.core.context_processors.i18n', # 'django.core.context_processors.media', # 0.97 only. # 'django.core.context_processors.request', ) ROOT_URLCONF = 'urls' ROOT_PATH = os.path.dirname(__file__) TEMPLATE_DIRS = ( os.path.join(ROOT_PATH, 'templates') ) INSTALLED_APPS = ( 'appengine_django', 'faves', # 'django.contrib.auth', # 'django.contrib.contenttypes', # 'django.contrib.sessions', # 'django.contrib.sites', ) TWITTER = { 'base': 'http://twitter.com/', 'faves': 'favorites', 'page': '?page=', 'auth_user': 'poeks', 'auth_pswd': 'digital' } BITLY = { 'api_key': 'R_83df87afe0f7b99fb9a7a5c50ef09494', 'login': 'poeks' } APP_DOMAIN = 'www.twitterbelle.com' APP_URL = "http://%s" % APP_DOMAIN
{ "content_hash": "85197fafe4fa4f1fdc2ba6002276275c", "timestamp": "", "source": "github", "line_count": 110, "max_line_length": 101, "avg_line_length": 31.554545454545455, "alnum_prop": 0.700374531835206, "repo_name": "poeks/twitterbelle", "id": "d9e24c893bef3cfaa680958fc9b26001364a58c8", "size": "4104", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "settings.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "JavaScript", "bytes": "5451" }, { "name": "Python", "bytes": "350587" } ], "symlink_target": "" }
import os import copy import six import jsonschema from jsonschema import _validators from jsonschema.validators import create from st2common.util import jsonify __all__ = [ 'get_validator', 'get_parameter_schema', 'validate' ] # https://github.com/json-schema/json-schema/blob/master/draft-04/schema # The source material is licensed under the AFL or BSD license. # Both draft 4 and custom schema has additionalProperties set to false by default. # The custom schema differs from draft 4 with the extension of position, immutable, # and draft 3 version of required. PATH = os.path.join(os.path.dirname(os.path.realpath(__file__))) SCHEMAS = { 'draft4': jsonify.load_file('%s/draft4.json' % PATH), 'custom': jsonify.load_file('%s/custom.json' % PATH) } SCHEMA_ANY_TYPE = { "anyOf": [ {"type": "array"}, {"type": "boolean"}, {"type": "integer"}, {"type": "number"}, {"type": "object"}, {"type": "string"} ] } def get_draft_schema(version='custom', additional_properties=False): schema = copy.deepcopy(SCHEMAS[version]) if additional_properties and 'additionalProperties' in schema: del schema['additionalProperties'] return schema def extend_with_default(validator_class): validate_properties = validator_class.VALIDATORS["properties"] def set_defaults(validator, properties, instance, schema): for error in validate_properties( validator, properties, instance, schema, ): yield error for property, subschema in six.iteritems(properties): if "default" in subschema: instance.setdefault(property, subschema["default"]) return jsonschema.validators.extend( validator_class, {"properties": set_defaults}, ) CustomValidator = create( meta_schema=get_draft_schema(additional_properties=True), validators={ u"$ref": _validators.ref, u"additionalItems": _validators.additionalItems, u"additionalProperties": _validators.additionalProperties, u"allOf": _validators.allOf_draft4, u"anyOf": _validators.anyOf_draft4, u"dependencies": _validators.dependencies, u"enum": _validators.enum, u"format": _validators.format, u"items": _validators.items, u"maxItems": _validators.maxItems, u"maxLength": _validators.maxLength, u"maxProperties": _validators.maxProperties_draft4, u"maximum": _validators.maximum, u"minItems": _validators.minItems, u"minLength": _validators.minLength, u"minProperties": _validators.minProperties_draft4, u"minimum": _validators.minimum, u"multipleOf": _validators.multipleOf, u"not": _validators.not_draft4, u"oneOf": _validators.oneOf_draft4, u"pattern": _validators.pattern, u"patternProperties": _validators.patternProperties, u"properties": _validators.properties_draft3, u"type": _validators.type_draft4, u"uniqueItems": _validators.uniqueItems, }, version="action_param", ) def validate(instance, schema, cls=None, use_default=True, *args, **kwargs): """ Custom validate function which supports default arguments combined with the "required" property. :param use_default: True to support the use of the optional default property. :type use_default: ``bool`` """ instance = copy.deepcopy(instance) schema_type = schema.get('type', None) instance_is_dict = isinstance(instance, dict) if use_default and schema_type == 'object' and instance_is_dict: properties = schema.get('properties', {}) for property_name, property_data in six.iteritems(properties): default_value = property_data.get('default', None) # Assign default value on the instance so the validation doesn't fail if requires is # true but the value is not provided if default_value is not None and instance.get(property_name, None) is None: instance[property_name] = default_value # pylint: disable=assignment-from-no-return result = jsonschema.validate(instance=instance, schema=schema, cls=cls, *args, **kwargs) return result VALIDATORS = { 'draft4': jsonschema.Draft4Validator, 'custom': CustomValidator } def get_validator(version='custom', assign_property_default=False): validator = VALIDATORS[version] return extend_with_default(validator) if assign_property_default else validator def get_parameter_schema(model): # Dynamically construct JSON schema from the parameters metadata. def normalize(x): return {k: v if v else SCHEMA_ANY_TYPE for k, v in six.iteritems(x)} schema = {} from st2common.util.action_db import get_runnertype_by_name runner_type = get_runnertype_by_name(model.runner_type['name']) properties = normalize(runner_type.runner_parameters) properties.update(normalize(model.parameters)) if properties: schema['title'] = model.name if model.description: schema['description'] = model.description schema['type'] = 'object' schema['properties'] = properties schema['additionalProperties'] = False return schema
{ "content_hash": "2bc275fee4303b403d68762b139f730b", "timestamp": "", "source": "github", "line_count": 154, "max_line_length": 96, "avg_line_length": 34.38961038961039, "alnum_prop": 0.6695619335347432, "repo_name": "Itxaka/st2", "id": "157ac9b4173a0d970fcff824a929ff7d92c5350a", "size": "5296", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "st2common/st2common/util/schema/__init__.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "198" }, { "name": "Makefile", "bytes": "35769" }, { "name": "PowerShell", "bytes": "299" }, { "name": "Python", "bytes": "2673739" }, { "name": "Shell", "bytes": "16008" }, { "name": "Slash", "bytes": "677" } ], "symlink_target": "" }
""" Classes for handling sparse matrices. To read about different sparse formats, see http://www-users.cs.umn.edu/~saad/software/SPARSKIT/paper.ps """ from __future__ import print_function # TODO # Automatic methods for determining best sparse format? import sys import numpy from numpy.lib.stride_tricks import as_strided from six import integer_types from six.moves import xrange import scipy.sparse import theano from theano import gof, tensor, scalar, config from theano.gradient import DisconnectedType from theano.sparse.utils import hash_from_sparse import theano.tests.unittest_tools as utt from theano.gradient import grad_not_implemented, grad_undefined from theano.sparse.type import SparseType, _is_sparse sparse_formats = ['csc', 'csr'] """ Types of sparse matrices to use for testing. """ _mtypes = [scipy.sparse.csc_matrix, scipy.sparse.csr_matrix] # _mtypes = [sparse.csc_matrix, sparse.csr_matrix, sparse.dok_matrix, # sparse.lil_matrix, sparse.coo_matrix] # * new class ``dia_matrix`` : the sparse DIAgonal format # * new class ``bsr_matrix`` : the Block CSR format _mtype_to_str = {scipy.sparse.csc_matrix: "csc", scipy.sparse.csr_matrix: "csr"} def _is_sparse_variable(x): """ Returns ------- boolean True iff x is a L{SparseVariable} (and not a L{tensor.TensorType}, for instance). """ if not isinstance(x, gof.Variable): raise NotImplementedError("this function should only be called on " "*variables* (of type sparse.SparseType " "or tensor.TensorType, for instance), not ", x) return isinstance(x.type, SparseType) def _is_dense_variable(x): """ Returns ------- boolean True if x is a L{tensor.TensorType} (and not a L{SparseVariable}, for instance). """ if not isinstance(x, gof.Variable): raise NotImplementedError("this function should only be called on " "*variables* (of type sparse.SparseType or " "tensor.TensorType, for instance), not ", x) return isinstance(x.type, tensor.TensorType) def _is_dense(x): """ Returns ------- boolean True unless x is a L{scipy.sparse.spmatrix} (and not a L{numpy.ndarray}). """ if not isinstance(x, (scipy.sparse.spmatrix, numpy.ndarray)): raise NotImplementedError("this function should only be called on " "sparse.scipy.sparse.spmatrix or " "numpy.ndarray, not,", x) return isinstance(x, numpy.ndarray) # Wrapper type def as_sparse_variable(x, name=None): """ Wrapper around SparseVariable constructor to construct a Variable with a sparse matrix with the same dtype and format. Parameters ---------- x A sparse matrix. Returns ------- object SparseVariable version of `x`. """ # TODO # Verify that sp is sufficiently sparse, and raise a # warning if it is not if isinstance(x, gof.Apply): if len(x.outputs) != 1: raise ValueError("It is ambiguous which output of a " "multi-output Op has to be fetched.", x) else: x = x.outputs[0] if isinstance(x, gof.Variable): if not isinstance(x.type, SparseType): raise TypeError("Variable type field must be a SparseType.", x, x.type) return x try: return constant(x, name=name) except TypeError: raise TypeError("Cannot convert %s to SparseType" % x, type(x)) as_sparse = as_sparse_variable def as_sparse_or_tensor_variable(x, name=None): """ Same as `as_sparse_variable` but if we can't make a sparse variable, we try to make a tensor variable. Parameters ---------- x A sparse matrix. Returns ------- SparseVariable or TensorVariable version of `x` """ try: return as_sparse_variable(x, name) except (ValueError, TypeError): return theano.tensor.as_tensor_variable(x, name) def verify_grad_sparse(op, pt, structured=False, *args, **kwargs): """ Wrapper for theano.test.unittest_tools.py:verify_grad wich converts sparse variables back and forth. Parameters ---------- op Op to check. pt List of inputs to realize the tests. structured True to tests with a structured grad, False otherwise. args Other `verify_grad` parameters if any. kwargs Other `verify_grad` keywords if any. Returns ------- None """ def conv_none(x): return x def conv_csr(ind, indptr, shp): def f(spdata): return CSR(spdata, ind, indptr, shp) return f def conv_csc(ind, indptr, shp): def f(spdata): return CSC(spdata, ind, indptr, shp) return f iconv = [] dpt = [] for p in pt: if _is_sparse(p): if structured: dpt.append(p.data) else: dpt.append(p.toarray()) if p.format == 'csr': if structured: iconv.append(conv_csr(p.indices[:p.size], p.indptr, p.shape)) else: iconv.append(csr_from_dense) elif p.format == 'csc': if structured: iconv.append(conv_csc(p.indices[:p.size], p.indptr, p.shape)) else: iconv.append(csc_from_dense) else: raise NotImplementedError("No conv for %s" % (p.format,)) else: dpt.append(p) iconv.append(conv_none) output = op(*[as_sparse_or_tensor_variable(p) for p in pt]) if isinstance(output, (list, tuple)): raise NotImplementedError("verify_grad can't deal with " "multiple outputs") if _is_sparse_variable(output): oconv = DenseFromSparse(structured=structured) else: oconv = conv_none def conv_op(*inputs): ipt = [conv(i) for i, conv in zip(inputs, iconv)] out = op(*ipt) return oconv(out) return utt.verify_grad(conv_op, dpt, *args, **kwargs) verify_grad_sparse.E_grad = utt.verify_grad.E_grad def constant(x, name=None): if not isinstance(x, scipy.sparse.spmatrix): raise TypeError("sparse.constant must be called on a " "scipy.sparse.spmatrix") try: return SparseConstant(SparseType(format=x.format, dtype=x.dtype), x.copy(), name=name) except TypeError: raise TypeError("Could not convert %s to SparseType" % x, type(x)) def sp_ones_like(x): """ Construct a sparse matrix of ones with the same sparsity pattern. Parameters ---------- x Sparse matrix to take the sparsity pattern. Returns ------- A sparse matrix The same as `x` with data changed for ones. """ # TODO: don't restrict to CSM formats data, indices, indptr, shape = csm_properties(x) return CSM(format=x.format)(tensor.ones_like(data), indices, indptr, shape) def sp_zeros_like(x): """ Construct a sparse matrix of zeros. Parameters ---------- x Sparse matrix to take the shape. Returns ------- A sparse matrix The same as `x` with zero entries for all element. """ # TODO: don't restrict to CSM formats _, _, indptr, shape = csm_properties(x) return CSM(format=x.format)(data=numpy.array([], dtype=x.type.dtype), indices=numpy.array([], dtype='int32'), indptr=tensor.zeros_like(indptr), shape=shape) class _sparse_py_operators: T = property(lambda self: transpose(self), doc="Return aliased transpose of self (read-only)") def astype(self, dtype): return cast(self, dtype) def __neg__(self): return neg(self) def __add__(left, right): return add(left, right) def __radd__(right, left): return add(left, right) def __sub__(left, right): return sub(left, right) def __rsub__(right, left): return sub(left, right) def __mul__(left, right): return mul(left, right) def __rmul__(left, right): return mul(left, right) # comparison operators def __lt__(self, other): return lt(self, other) def __le__(self, other): return le(self, other) def __gt__(self, other): return gt(self, other) def __ge__(self, other): return ge(self, other) # extra pseudo-operator symbols def __dot__(left, right): return structured_dot(left, right) def __rdot__(right, left): return structured_dot(left, right) # N.B. THIS IS COMMENTED OUT ON PURPOSE!!! # Discussion with Fred & James (at least, and maybe others before) # we decided that casting from a sparse to dense should be explicit # because it's usually something you just want to be pretty careful # about, and not to do by accident. # def _as_TensorVariable(self): # return dense_from_sparse(self) def toarray(self): return dense_from_sparse(self) shape = property(lambda self: tensor.shape(dense_from_sparse(self))) # don't worry! # the plan is that the ShapeFeature in tensor.opt will do shape propagation # and remove the dense_from_sparse from the graph. This will *NOT* # actually expand your sparse matrix just to get the shape. ndim = property(lambda self: self.type.ndim) dtype = property(lambda self: self.type.dtype) # Note that the `size` attribute of sparse matrices behaves differently # from dense matrices: it is the number of elements stored in the matrix # rather than the total number of elements that may be stored. Note also # that stored zeros *do* count in the size. size = property(lambda self: csm_data(self).size) def zeros_like(model): return sp_zeros_like(model) def __getitem__(self, args): if not isinstance(args, tuple): args = args, if len(args) == 2: scalar_arg_1 = (numpy.isscalar(args[0]) or getattr(args[0], 'type', None) == tensor.iscalar) scalar_arg_2 = (numpy.isscalar(args[1]) or getattr(args[1], 'type', None) == tensor.iscalar) if scalar_arg_1 and scalar_arg_2: ret = get_item_scalar(self, args) elif isinstance(args[0], list): ret = get_item_2lists(self, args[0], args[1]) else: ret = get_item_2d(self, args) elif isinstance(args[0], list): ret = get_item_list(self, args[0]) else: ret = get_item_2d(self, args) return ret class SparseVariable(_sparse_py_operators, gof.Variable): dtype = property(lambda self: self.type.dtype) format = property(lambda self: self.type.format) def __str__(self): return '%s{%s,%s}' % ( self.__class__.__name__, self.format, self.dtype) def __repr__(self): return str(self) class SparseConstantSignature(tuple): def __eq__(self, other): (a, b), (x, y) = self, other return (a == x and (b.dtype == y.dtype) and (type(b) == type(y)) and (b.shape == y.shape) and (abs(b - y).sum() < 1e-6 * b.nnz)) def __hash__(self): (a, b) = self return hash(type(self)) ^ hash(a) ^ hash(type(b)) def theano_hash(self): (_, d) = self return hash_from_sparse(d) class SparseConstant(gof.Constant, _sparse_py_operators): dtype = property(lambda self: self.type.dtype) format = property(lambda self: self.type.format) def signature(self): assert self.data is not None return SparseConstantSignature((self.type, self.data)) def __str__(self): return '%s{%s,%s,shape=%s,nnz=%s}' % ( self.__class__.__name__, self.format, self.dtype, self.data.shape, self.data.nnz) def __repr__(self): return str(self) SparseType.Variable = SparseVariable SparseType.Constant = SparseConstant # for more dtypes, call SparseType(format, dtype) def matrix(format, name=None, dtype=None): if dtype is None: dtype = config.floatX type = SparseType(format=format, dtype=dtype) return type(name) def csc_matrix(name=None, dtype=None): return matrix('csc', name, dtype) def csr_matrix(name=None, dtype=None): return matrix('csr', name, dtype) def bsr_matrix(name=None, dtype=None): return matrix('bsr', name, dtype) # for more dtypes, call SparseType(format, dtype) csc_dmatrix = SparseType(format='csc', dtype='float64') csr_dmatrix = SparseType(format='csr', dtype='float64') bsr_dmatrix = SparseType(format='bsr', dtype='float64') csc_fmatrix = SparseType(format='csc', dtype='float32') csr_fmatrix = SparseType(format='csr', dtype='float32') bsr_fmatrix = SparseType(format='bsr', dtype='float32') all_dtypes = SparseType.dtype_set complex_dtypes = [t for t in all_dtypes if t[:7] == 'complex'] float_dtypes = [t for t in all_dtypes if t[:5] == 'float'] int_dtypes = [t for t in all_dtypes if t[:3] == 'int'] uint_dtypes = [t for t in all_dtypes if t[:4] == 'uint'] continuous_dtypes = complex_dtypes + float_dtypes discrete_dtypes = int_dtypes + uint_dtypes # CONSTRUCTION class CSMProperties(gof.Op): # See doc in instance of this Op or function after this class definition. # NOTE # We won't implement infer_shape for this op now. This will # ask that we implement an GetNNZ op, and this op will keep # the dependence on the input of this op. So this won't help # to remove computations in the graph. To remove computation, # we will need to make an infer_sparse_pattern feature to # remove computations. Doing this is trickier then the # infer_shape feature. For example, how do we handle the case # when some op create some 0 values? So there is dependence # on the values themselves. We could write an infer_shape for # the last output that is the shape, but I dough this will # get used. # we don't return a view of the shape, we create a new ndarray from the # shape tuple. __props__ = () view_map = {0: [0], 1: [0], 2: [0]} """ Indexing to speficied what part of the data parameter should be use to construct the sparse matrix. """ def __init__(self, kmap=None): if kmap is not None: raise Exception("Do not use kmap, it is removed") def make_node(self, csm): csm = as_sparse_variable(csm) assert csm.format in ["csr", "csc"] data = tensor.TensorType(dtype=csm.type.dtype, broadcastable=(False,))() return gof.Apply(self, [csm], [data, tensor.ivector(), tensor.ivector(), tensor.ivector()]) def perform(self, node, inputs, out): (csm,) = inputs out[0][0] = csm.data if str(csm.data.dtype) == 'int32': out[0][0] = theano._asarray(out[0][0], dtype='int32') # backport out[1][0] = theano._asarray(csm.indices, dtype='int32') out[2][0] = theano._asarray(csm.indptr, dtype='int32') out[3][0] = theano._asarray(csm.shape, dtype='int32') def grad(self, inputs, g): # g[1:] is all integers, so their Jacobian in this op # is 0. We thus don't need to worry about what their values # are. # if g[0] is disconnected, then this op doesn't contribute # any gradient anywhere. but we know that at least one of # g[1:] is connected, or this grad method wouldn't have been # called, so we should report zeros (csm,) = inputs if isinstance(g[0].type, DisconnectedType): return [csm.zeros_like()] data, indices, indptr, shape = csm_properties(csm) return [CSM(csm.format)(g[0], indices, indptr, shape)] # don't make this a function or it breaks some optimizations below csm_properties = CSMProperties() """ Extract all of .data, .indices, .indptr and .shape field. For specific field, `csm_data`, `csm_indices`, `csm_indptr` and `csm_shape` are provided. Parameters ---------- csm Sparse matrix in CSR or CSC format. Returns (data, indices, indptr, shape), the properties of `csm`. Notes ----- The grad implemented is regular, i.e. not structured. `infer_shape` method is not available for this op. """ def csm_data(csm): """ Return the data field of the sparse variable. """ return csm_properties(csm)[0] def csm_indices(csm): """ Return the indices field of the sparse variable. """ return csm_properties(csm)[1] def csm_indptr(csm): """ Return the indptr field of the sparse variable. """ return csm_properties(csm)[2] def csm_shape(csm): """ Return the shape field of the sparse variable. """ return csm_properties(csm)[3] class CSM(gof.Op): # See doc in instance of this Op or function after this class definition. """ Indexing to speficied what part of the data parameter should be used to construct the sparse matrix. """ __props__ = ('format',) """ Pre-computed hash value, defined by __init__. """ def __init__(self, format, kmap=None): if format not in ('csr', 'csc'): raise ValueError("format must be one of: 'csr', 'csc'", format) self.format = format if kmap is not None: raise Exception("Do not use kmap, it is removed") # should view the other inputs too, but viewing multiple # inputs is not currently supported by the destroyhandler self.view_map = {0: [0]} def make_node(self, data, indices, indptr, shape): data = tensor.as_tensor_variable(data) if not isinstance(indices, gof.Variable): indices_ = numpy.asarray(indices) indices_32 = theano._asarray(indices, dtype='int32') assert (indices_ == indices_32).all() indices = indices_32 if not isinstance(indptr, gof.Variable): indptr_ = numpy.asarray(indptr) indptr_32 = theano._asarray(indptr, dtype='int32') assert (indptr_ == indptr_32).all() indptr = indptr_32 if not isinstance(shape, gof.Variable): shape_ = numpy.asarray(shape) shape_32 = theano._asarray(shape, dtype='int32') assert (shape_ == shape_32).all() shape = shape_32 indices = tensor.as_tensor_variable(indices) indptr = tensor.as_tensor_variable(indptr) shape = tensor.as_tensor_variable(shape) if data.type.ndim != 1: raise TypeError('data argument must be a vector', data.type, data.type.ndim) if indices.type.ndim != 1 or indices.type.dtype not in discrete_dtypes: raise TypeError('indices must be vector of integers', indices, indices.type) if indptr.type.ndim != 1 or indptr.type.dtype not in discrete_dtypes: raise TypeError('indices must be vector of integers', indptr, indptr.type) if shape.type.ndim != 1 or shape.type.dtype not in discrete_dtypes: raise TypeError('n_rows must be integer type', shape, shape.type) return gof.Apply(self, [data, indices, indptr, shape], [SparseType(dtype=data.type.dtype, format=self.format)()]) def perform(self, node, inputs, outputs): # for efficiency, if remap does nothing, then do not apply it (data, indices, indptr, shape) = inputs (out,) = outputs if len(shape) != 2: raise ValueError('Shape should be an array of length 2') if data.shape != indices.shape: errmsg = ('Data (shape ' + repr(data.shape) + ' must have the same number of elements ' + 'as indices (shape' + repr(indices.shape) + ')') raise ValueError(errmsg) if self.format == 'csc': out[0] = scipy.sparse.csc_matrix((data, indices.copy(), indptr.copy()), numpy.asarray(shape), copy=False) else: assert self.format == 'csr' out[0] = scipy.sparse.csr_matrix((data, indices.copy(), indptr.copy()), shape.copy(), copy=False) def connection_pattern(self, node): return [[True], [False], [False], [False]] def grad(self, inputs, gout): (x_data, x_indices, x_indptr, x_shape) = inputs (g_out,) = gout g_data, g_indices, g_indptr, g_shape = csm_properties(g_out) # unpack the data vector and wrap it as a 1d TensorType g_data = csm_grad()(x_data, x_indices, x_indptr, x_shape, g_data, g_indices, g_indptr, g_shape) return [g_data, DisconnectedType()(), DisconnectedType()(), DisconnectedType()()] def infer_shape(self, node, shapes): # node.inputs[3] is of lenght as we only support sparse matrix. return [(node.inputs[3][0], node.inputs[3][1])] CSC = CSM('csc') """ Construct a CSC matrix from the internal representation. Parameters ---------- data One dimensional tensor representing the data of the sparse matrix to construct. indices One dimensional tensor of integers representing the indices of the sparse matrix to construct. indptr One dimensional tensor of integers representing the indice pointer for the sparse matrix to construct. shape One dimensional tensor of integers representing the shape of the sparse matrix to construct. Returns ------- sparse matrix A sparse matrix having the properties specified by the inputs. Notes ----- The grad method returns a dense vector, so it provides a regular grad. """ CSR = CSM('csr') """ Construct a CSR matrix from the internal representation. Parameters ---------- data One dimensional tensor representing the data of the sparse matrix to construct. indices One dimensional tensor of integers representing the indices of the sparse matrix to construct. indptr One dimensional tensor of integers representing the indice pointer for the sparse matrix to construct. shape One dimensional tensor of integers representing the shape of the sparse matrix to construct. Returns ------- sparse matrix A sparse matrix having the properties specified by the inputs. Notes ----- The grad method returns a dense vector, so it provides a regular grad. """ class CSMGrad(gof.op.Op): # Note # This Op computes the gradient of the CSM Op. CSM creates a matrix from # data, indices, and indptr vectors; it's gradient is the gradient of # the data vector only. There are two complexities to calculate this # gradient: # 1. The gradient may be sparser than the input matrix defined by (data, # indices, indptr). In this case, the data vector of the gradient will have # less elements than the data vector of the input because sparse formats # remove 0s. Since we are only returning the gradient of the data vector, # the relevant 0s need to be added back. # 2. The elements in the sparse dimension are not guaranteed to be sorted. # Therefore, the input data vector may have a different order than the # gradient data vector. __props__ = () def __init__(self, kmap=None): if kmap is not None: raise Exception("Do not use kmap, it is removed") # This class always allocate a new output. # I keep this here to help GD understand what this kmap think is. # if self.kmap is None: # self.view_map = {0: [1]} def make_node(self, x_data, x_indices, x_indptr, x_shape, g_data, g_indices, g_indptr, g_shape): gout_data = g_data.type() return gof.Apply(self, [x_data, x_indices, x_indptr, x_shape, g_data, g_indices, g_indptr, g_shape], [gout_data]) def perform(self, node, inputs, outputs): (x_data, x_indices, x_indptr, x_shape, g_data, g_indices, g_indptr, g_shape) = inputs (g_out,) = outputs if len(x_indptr) - 1 == x_shape[0]: sp_dim = x_shape[1] else: sp_dim = x_shape[0] g_row = numpy.zeros(sp_dim, dtype=g_data.dtype) gout_data = numpy.zeros(x_data.shape, dtype=node.outputs[0].dtype) for i in range(len(x_indptr) - 1): for j_ptr in range(g_indptr[i], g_indptr[i + 1]): g_row[g_indices[j_ptr]] += g_data[j_ptr] for j_ptr in range(x_indptr[i], x_indptr[i + 1]): gout_data[j_ptr] = g_row[x_indices[j_ptr]] for j_ptr in range(g_indptr[i], g_indptr[i + 1]): g_row[g_indices[j_ptr]] = 0 g_out[0] = gout_data def infer_shape(self, node, shapes): return [shapes[1]] csm_grad = CSMGrad class Cast(gof.op.Op): # See doc in instance of this Op or function after this class definition. __props__ = ("out_type",) def __init__(self, out_type): self.out_type = out_type def make_node(self, x): x = as_sparse_variable(x) assert x.format in ["csr", "csc"] return gof.Apply( self, [x], [SparseType(dtype=self.out_type, format=x.format)()]) def perform(self, node, inputs, outputs): (x,) = inputs (out,) = outputs assert _is_sparse(x) out[0] = x.astype(self.out_type) def grad(self, inputs, outputs_gradients): gz = outputs_gradients[0] if gz.dtype in complex_dtypes: raise NotImplementedError("grad not implemented for complex types") if inputs[0].dtype in complex_dtypes: raise NotImplementedError("grad not implemented for complex types") if gz.dtype in discrete_dtypes: if inputs[0].dtype in discrete_dtypes: return [inputs[0].zeros_like(dtype=theano.config.floatX)] else: return [inputs[0].zeros_like()] else: if inputs[0].dtype in discrete_dtypes: return [gz] else: return [Cast(inputs[0].dtype)(gz)] def infer_shape(self, node, ins_shapes): return ins_shapes def __str__(self): return "%s(%s)" % (self.__class__.__name__, self.out_type) bcast = Cast('int8') wcast = Cast('int16') icast = Cast('int32') lcast = Cast('int64') fcast = Cast('float32') dcast = Cast('float64') ccast = Cast('complex64') zcast = Cast('complex128') def cast(variable, dtype): """ Cast sparse variable to the desired dtype. Parameters ---------- variable Sparse matrix. dtype The dtype wanted. Returns ------- Same as `x` but having `dtype` as dtype. Notes ----- The grad implemented is regular, i.e. not structured. """ return Cast(dtype)(variable) # # Conversion # class DenseFromSparse(gof.op.Op): # See doc in instance of this Op or function after this class definition. __props__ = () # We don't put sparse_grad in the props. def __init__(self, structured=True): self.sparse_grad = structured def __str__(self): return "%s{structured_grad=%s}" % ( self.__class__.__name__, self.sparse_grad) def make_node(self, x): x = as_sparse_variable(x) return gof.Apply(self, [x], [tensor.TensorType(dtype=x.type.dtype, broadcastable=(False, False))()]) def perform(self, node, inputs, outputs): (x,) = inputs (out,) = outputs if _is_dense(x): print(( "WARNING: You just called DenseFromSparse on a dense matrix." ), file=sys.stderr) out[0] = x else: out[0] = x.toarray() assert _is_dense(out[0]) def grad(self, inputs, gout): (x,) = inputs (gz,) = gout if self.sparse_grad: left = sp_ones_like(x) right = gz # Do upcasting if necessary to avoid an unimplemented case # of mul if right.dtype == 'float64' and left.dtype == 'float32': left = left.astype('float64') if right.dtype == 'float32' and left.dtype == 'float64': right = right.astype('float64') return [left * right] else: return [SparseFromDense(x.type.format)(gz)] def infer_shape(self, node, shapes): return [shapes[0]] dense_from_sparse = DenseFromSparse() """ Convert a sparse matrix to a dense one. Parameters ---------- x A sparse matrix. Returns ------- theano.tensor.matrix A dense matrix, the same as `x`. Notes ----- The grad implementation can be controlled through the constructor via the `structured` parameter. `True` will provide a structured grad while `False` will provide a regular grad. By default, the grad is structured. """ class SparseFromDense(gof.op.Op): __props__ = () def __init__(self, format): self.format = format def __str__(self): return "%s{%s}" % ( self.__class__.__name__, self.format) def make_node(self, x): x = tensor.as_tensor_variable(x) if x.ndim > 2: raise TypeError( "Theano does not have sparse tensor types with more " "than 2 dimensions, but %s.ndim = %i" % (x, x.ndim)) elif x.ndim == 1: x = x.dimshuffle('x', 0) elif x.ndim == 0: x = x.dimshuffle('x', 'x') else: assert x.ndim == 2 return gof.Apply(self, [x], [SparseType(dtype=x.type.dtype, format=self.format)()]) def perform(self, node, inputs, outputs): (x,) = inputs (out,) = outputs out[0] = SparseType.format_cls[self.format](x) def grad(self, inputs, gout): (x,) = inputs (gz,) = gout gx = dense_from_sparse(gz) gx = tensor.patternbroadcast(gx, x.broadcastable) return gx, def infer_shape(self, node, shapes): return [shapes[0]] csr_from_dense = SparseFromDense('csr') """ Convert a dense matrix to a sparse csr matrix. Parameters ---------- x A dense matrix. Returns ------- sparse matrix The same as `x` in a sparse csr matrix format. """ csc_from_dense = SparseFromDense('csc') """ Convert a dense matrix to a sparse csc matrix. Parameters ---------- x A dense matrix. Returns ------- sparse matrix The same as `x` in a sparse csc matrix format. """ # Indexing class GetItemList(gof.op.Op): __props__ = () def infer_shape(self, node, shapes): return [(shapes[1][0], shapes[0][1])] def make_node(self, x, index): x = as_sparse_variable(x) assert x.format in ["csr", "csc"] ind = tensor.as_tensor_variable(index) assert ind.ndim == 1 assert "int" in ind.dtype return gof.Apply(self, [x, ind], [x.type()]) def perform(self, node, inp, outputs): (out,) = outputs x = inp[0] indices = inp[1] assert _is_sparse(x) out[0] = x[indices] def grad(self, inputs, g_outputs): x, indices = inputs gout, = g_outputs return [GetItemListGrad(self)(x, indices, gout), grad_undefined(self, 1, indices, "No gradient for this input")] get_item_list = GetItemList() """ Select row of sparse matrix, returning them as a new sparse matrix. Parameters ---------- x Sparse matrix. index List of rows. Returns ------- sparse matrix The corresponding rows in `x`. """ class GetItemListGrad(gof.op.Op): __props__ = () def infer_shape(self, node, shapes): return [(shapes[0])] def make_node(self, x, index, gz): x = as_sparse_variable(x) gz = as_sparse_variable(gz) assert x.format in ["csr", "csc"] assert gz.format in ["csr", "csc"] ind = tensor.as_tensor_variable(index) assert ind.ndim == 1 assert "int" in ind.dtype scipy_ver = [int(n) for n in scipy.__version__.split('.')[:2]] if not scipy_ver >= [0, 13]: raise NotImplementedError("Scipy version is to old") return gof.Apply(self, [x, ind, gz], [x.type()]) def perform(self, node, inp, outputs): (out,) = outputs x = inp[0] indices = inp[1] gz = inp[2] if x.format in ["csr"]: y = scipy.sparse.csr_matrix((x.shape[0], x.shape[1])) else: y = scipy.sparse.csc_matrix((x.shape[0], x.shape[1])) for a in range(0, len(indices)): y[indices[a]] = gz[a] out[0] = y get_item_list_grad = GetItemListGrad() class GetItem2Lists(gof.op.Op): __props__ = () def make_node(self, x, ind1, ind2): x = as_sparse_variable(x) assert x.format in ["csr", "csc"] ind1 = tensor.as_tensor_variable(ind1) ind2 = tensor.as_tensor_variable(ind2) assert "int" in ind1.dtype assert "int" in ind2.dtype return gof.Apply(self, [x, ind1, ind2], [theano.tensor.vector()]) def perform(self, node, inp, outputs): (out,) = outputs x = inp[0] ind1 = inp[1] ind2 = inp[2] out[0] = numpy.asarray(x[ind1, ind2]).flatten() """ Here scipy returns the corresponding elements in a matrix which isn't what we are aiming for. Using asarray and flatten, out[0] becomes an array. """ def grad(self, inputs, g_outputs): x, ind1, ind2 = inputs gout, = g_outputs return [GetItem2ListsGrad(self)(x, ind1, ind2, gout), grad_undefined(self, 1, ind1, "No gradient for this input"), grad_undefined(self, 1, ind2, "No gradient for this input")] get_item_2lists = GetItem2Lists() """ Select elements of sparse matrix, returning them in a vector. Parameters ---------- x Sparse matrix. index List of two lists, first list indicating the row of each element and second list indicating its column. Returns ------- theano.tensor.vector The corresponding elements in `x`. """ class GetItem2ListsGrad(gof.op.Op): __props__ = () def infer_shape(self, node, shapes): return [(shapes[0])] def make_node(self, x, ind1, ind2, gz): x = as_sparse_variable(x) assert x.format in ["csr", "csc"] ind1 = tensor.as_tensor_variable(ind1) ind2 = tensor.as_tensor_variable(ind2) assert ind1.ndim == 1 assert ind2.ndim == 1 assert "int" in ind1.dtype assert "int" in ind2.dtype return gof.Apply(self, [x, ind1, ind2, gz], [x.type()]) def perform(self, node, inp, outputs): (out,) = outputs x = inp[0] ind1 = inp[1] ind2 = inp[2] gz = inp[3] if x.format in ["csr"]: y = scipy.sparse.csr_matrix((x.shape[0], x.shape[1])) else: y = scipy.sparse.csc_matrix((x.shape[0], x.shape[1])) z = 0 for z in range(0, len(ind1)): y[(ind1[z], ind2[z])] = gz[z] out[0] = y get_item_2lists_grad = GetItem2ListsGrad() class GetItem2d(gof.op.Op): # See doc in instance of this Op or function after this class definition. __props__ = () # Fred:Too complicated for now. If you need it, look at # the Subtensor.infer_shape. # def infer_shape(self, node, i0_shapes): # return i0_shapes def make_node(self, x, index): scipy_ver = [int(n) for n in scipy.__version__.split('.')[:2]] x = as_sparse_variable(x) assert x.format in ["csr", "csc"] assert len(index) in [1, 2] input_op = [x] generic_None = theano.gof.Constant(theano.gof.generic, None) for ind in index: if isinstance(ind, slice): # in case of slice is written in theano variable start = ind.start stop = ind.stop step = ind.step # If start or stop or step are None, make them a Generic # constant. Else, they should be converted to Tensor Variables # of dimension 1 and int/uint dtype. if scipy_ver < [0, 14] and ind.step is not None: raise ValueError( 'Slice with step is not support with current' ' version of Scipy.') if ind.step is None or ind.step == 1: step = generic_None else: if not isinstance(step, gof.Variable): step = tensor.as_tensor_variable(step) if not (step.ndim == 0 and step.dtype in tensor.discrete_dtypes): raise ValueError(( "Impossible to index into a sparse matrix with " "slice where step=%s" % step), step.ndim, step.dtype) if start is None: start = generic_None else: if not isinstance(start, gof.Variable): start = tensor.as_tensor_variable(start) if not (start.ndim == 0 and start.dtype in tensor.discrete_dtypes): raise ValueError(( "Impossible to index into a sparse matrix with " "slice where start=%s" % start), start.ndim, start.dtype) if stop is None: stop = generic_None else: if not isinstance(stop, gof.Variable): stop = tensor.as_tensor_variable(stop) if not (stop.ndim == 0 and stop.dtype in tensor.discrete_dtypes): raise ValueError(( "Impossible to index into a sparse matrix with " "slice where stop=%s" % stop), stop.ndim, stop.dtype) elif ((isinstance(ind, gof.Variable) and getattr(ind, 'ndim', -1) == 0) or numpy.isscalar(ind)): raise NotImplementedError( 'Theano has no sparse vector' + 'Use X[a:b, c:d], X[a:b, c:c+1] or X[a:b] instead.') else: raise ValueError(( 'Advanced indexing is not implemented for sparse ' 'matrices. Argument not supported: %s' % ind)) input_op += [start, stop, step] if len(index) == 1: input_op += [generic_None, generic_None, generic_None] return gof.Apply(self, input_op, [x.type()]) def perform(self, node, inputs, outputs): (x, start1, stop1, step1, start2, stop2, step2) = inputs (out,) = outputs assert _is_sparse(x) out[0] = x[start1:stop1:step1, start2:stop2:step2] get_item_2d = GetItem2d() """ Implement a subtensor of sparse variable, returning a sparse matrix. If you want to take only one element of a sparse matrix see `GetItemScalar` that returns a tensor scalar. Parameters ---------- x Sparse matrix. index Tuple of slice object. Returns ------- sparse matrix The corresponding slice in `x`. Notes ----- Subtensor selection always returns a matrix, so indexing with [a:b, c:d] is forced. If one index is a scalar, for instance, x[a:b, c] or x[a, b:c], an error will be raised. Use instead x[a:b, c:c+1] or x[a:a+1, b:c]. The above indexing methods are not supported because the return value would be a sparse matrix rather than a sparse vector, which is a deviation from numpy indexing rule. This decision is made largely to preserve consistency between numpy and theano. This may be revised when sparse vectors are supported. The grad is not implemented for this op. """ class GetItemScalar(gof.op.Op): # See doc in instance of this Op or function after this class definition. __props__ = () def infer_shape(self, node, shapes): return [()] def make_node(self, x, index): x = as_sparse_variable(x) assert x.format in ["csr", "csc"] assert len(index) == 2 input_op = [x] for ind in index: if isinstance(ind, slice): raise Exception("GetItemScalar called with a slice as index!") # in case of indexing using int instead of theano variable elif isinstance(ind, integer_types): ind = theano.tensor.constant(ind) input_op += [ind] # in case of indexing using theano variable elif ind.ndim == 0: input_op += [ind] else: raise NotImplemented() return gof.Apply(self, input_op, [tensor.scalar(dtype=x.dtype)]) def perform(self, node, inputs, outputs): (x, ind1, ind2) = inputs (out,) = outputs assert _is_sparse(x) out[0] = theano._asarray(x[ind1, ind2], x.dtype) get_item_scalar = GetItemScalar() """ Implement a subtensor of a sparse variable that takes two scalars as index and returns a scalar. If you want to take a slice of a sparse matrix see `GetItem2d` that returns a sparse matrix. Parameters ---------- x Sparse matrix. index Tuple of scalars. Returns ------- theano.tensor.scalar The corresponding item in `x`. Notes ----- The grad is not implemented for this op. """ # Linear Algebra class Transpose(gof.op.Op): # See doc in instance of this Op or function after this class definition. view_map = {0: [0]} format_map = {'csr': 'csc', 'csc': 'csr'} __props__ = () def __str__(self): return "Sparse" + self.__class__.__name__ def make_node(self, x): x = as_sparse_variable(x) assert x.format in ["csr", "csc"] return gof.Apply(self, [x], [SparseType(dtype=x.type.dtype, format=self.format_map[x.type.format])()]) def perform(self, node, inputs, outputs): (x,) = inputs (out,) = outputs assert _is_sparse(x) out[0] = x.transpose() def grad(self, inputs, gout): (x,) = inputs (gz,) = gout assert _is_sparse_variable(x) and _is_sparse_variable(gz) return transpose(gz), def infer_shape(self, node, shapes): return [shapes[0][::-1]] transpose = Transpose() """ Return the transpose of the sparse matrix. Parameters ---------- x Sparse matrix. Returns ------- sparse matrix `x` transposed. Notes ----- The returned matrix will not be in the same format. `csc` matrix will be changed in `csr` matrix and `csr` matrix in `csc` matrix. The grad is regular, i.e. not structured. """ class Neg(gof.op.Op): # See doc in instance of this Op or function after this class definition. __props__ = () def __str__(self): return "Sparse" + self.__class__.__name__ def make_node(self, x): x = as_sparse_variable(x) assert x.format in ["csr", "csc"] return gof.Apply(self, [x], [x.type()]) def perform(self, node, inputs, outputs): (x,) = inputs (out,) = outputs assert _is_sparse(x) out[0] = -x def grad(self, inputs, gout): (x,) = inputs (gz,) = gout assert _is_sparse_variable(x) and _is_sparse_variable(gz) return -gz, def infer_shape(self, node, shapes): return [shapes[0]] neg = Neg() """ Return the negation of the sparse matrix. Parameters ---------- x Sparse matrix. Returns ------- sparse matrix -`x`. Notes ----- The grad is regular, i.e. not structured. """ class ColScaleCSC(gof.op.Op): # Scale each columns of a sparse matrix by the corresponding # element of a dense vector # :param x: A sparse matrix. # :param s: A dense vector with length equal to the number # of columns of `x`. # :return: A sparse matrix in the same format as `x` which # each column had been multiply by the corresponding # element of `s`. # :note: The grad implemented is structured. __props__ = () def make_node(self, x, s): if x.format != 'csc': raise ValueError('x was not a csc matrix') return gof.Apply(self, [x, s], [x.type()]) def perform(self, node, inputs, outputs): (x, s) = inputs (z,) = outputs M, N = x.shape assert x.format == 'csc' assert s.shape == (N, ) y = x.copy() for j in xrange(0, N): y.data[y.indptr[j]: y.indptr[j + 1]] *= s[j] z[0] = y def grad(self, inputs, gout): (x, s) = inputs (gz,) = gout return [col_scale(gz, s), sp_sum(x * gz, axis=0)] def infer_shape(self, node, ins_shapes): return [ins_shapes[0]] class RowScaleCSC(gof.op.Op): # Scale each row of a sparse matrix by the corresponding element of # a dense vector # :param x: A sparse matrix. # :param s: A dense vector with length equal to the number # of rows of `x`. # :return: A sparse matrix in the same format as `x` which # each row had been multiply by the corresponding # element of `s`. # :note: The grad implemented is structured. view_map = {0: [0]} __props__ = () def make_node(self, x, s): x = as_sparse_variable(x) assert x.format in ["csr", "csc"] return gof.Apply(self, [x, s], [x.type()]) def perform(self, node, inputs, outputs): (x, s) = inputs (z,) = outputs M, N = x.shape assert x.format == 'csc' assert s.shape == (M,) indices = x.indices indptr = x.indptr y_data = x.data.copy() for j in xrange(0, N): for i_idx in xrange(indptr[j], indptr[j + 1]): y_data[i_idx] *= s[indices[i_idx]] z[0] = scipy.sparse.csc_matrix((y_data, indices, indptr), (M, N)) def grad(self, inputs, gout): (x, s) = inputs (gz,) = gout return [row_scale(gz, s), sp_sum(x * gz, axis=1)] def infer_shape(self, node, ins_shapes): return [ins_shapes[0]] def col_scale(x, s): """ Scale each columns of a sparse matrix by the corresponding element of a dense vector. Parameters ---------- x A sparse matrix. s A dense vector with length equal to the number of columns of `x`. Returns ------- A sparse matrix in the same format as `x` which each column had been multiply by the corresponding element of `s`. Notes ----- The grad implemented is structured. """ if x.format == 'csc': return ColScaleCSC()(x, s) elif x.format == 'csr': return RowScaleCSC()(x.T, s).T else: raise NotImplementedError() def row_scale(x, s): """ Scale each row of a sparse matrix by the corresponding element of a dense vector. Parameters ---------- x A sparse matrix. s A dense vector with length equal to the number of rows of `x`. Returns ------- A sparse matrix A sparse matrix in the same format as `x` whose each row has been multiplied by the corresponding element of `s`. Notes ----- The grad implemented is structured. """ return col_scale(x.T, s).T class SpSum(gof.op.Op): # See doc in instance of this Op or function after this class definition. __props__ = ("axis",) # WARNING: judgement call... # We are not using the structured in the comparison or hashing # because it doesn't change the perform method therefore, we # *do* want Sums with different structured values to be merged # by the merge optimization and this requires them to compare equal. def __init__(self, axis=None, sparse_grad=True): super(SpSum, self).__init__() self.axis = axis self.structured = sparse_grad if self.axis not in (None, 0, 1): raise ValueError('Illegal value for self.axis.') def make_node(self, x): x = as_sparse_variable(x) assert x.format in ["csr", "csc"] b = () if self.axis is not None: b = (False,) z = tensor.TensorType(broadcastable=b, dtype=x.dtype)() return gof.Apply(self, [x], [z]) def perform(self, node, inputs, outputs): (x,) = inputs (z,) = outputs if self.axis is None: z[0] = numpy.asarray(x.sum()) else: z[0] = numpy.asarray(x.sum(self.axis)).ravel() def grad(self, inputs, gout): (x,) = inputs (gz,) = gout if x.dtype not in continuous_dtypes: return [x.zeros_like(dtype=theano.config.floatX)] if self.structured: if self.axis is None: r = gz * theano.sparse.sp_ones_like(x) elif self.axis == 0: r = col_scale(theano.sparse.sp_ones_like(x), gz) elif self.axis == 1: r = row_scale(theano.sparse.sp_ones_like(x), gz) else: raise ValueError('Illegal value for self.axis.') else: o_format = x.format x = dense_from_sparse(x) if _is_sparse_variable(gz): gz = dense_from_sparse(gz) if self.axis is None: r = tensor.second(x, gz) else: ones = tensor.ones_like(x) if self.axis == 0: r = tensor.addbroadcast(gz.dimshuffle('x', 0), 0) * ones elif self.axis == 1: r = tensor.addbroadcast(gz.dimshuffle(0, 'x'), 1) * ones else: raise ValueError('Illegal value for self.axis.') r = SparseFromDense(o_format)(r) return [r] def infer_shape(self, node, shapes): r = None if self.axis is None: r = [()] elif self.axis == 0: r = [(shapes[0][1],)] else: r = [(shapes[0][0],)] return r def __str__(self): return self.__class__.__name__ + "{axis=%s}" % str(self.axis) def sp_sum(x, axis=None, sparse_grad=False): """ Calculate the sum of a sparse matrix along the specified axis. It operates a reduction along the specified axis. When `axis` is `None`, it is applied along all axes. Parameters ---------- x Sparse matrix. axis Axis along which the sum is applied. Integer or `None`. sparse_grad : bool `True` to have a structured grad. Returns ------- object The sum of `x` in a dense format. Notes ----- The grad implementation is controlled with the `sparse_grad` parameter. `True` will provide a structured grad and `False` will provide a regular grad. For both choices, the grad returns a sparse matrix having the same format as `x`. This op does not return a sparse matrix, but a dense tensor matrix. """ return SpSum(axis, sparse_grad)(x) class Diag(gof.op.Op): # See doc in instance of this Op or function after this class definition. __props__ = () def make_node(self, x): x = as_sparse_variable(x) assert x.format in ["csr", "csc"] return gof.Apply(self, [x], [tensor.tensor(broadcastable=(False,), dtype=x.dtype)]) def perform(self, node, inputs, outputs): (x,) = inputs (z,) = outputs N, M = x.shape if N != M: raise ValueError('Diag only apply on square matrix') z[0] = x.diagonal() def grad(self, inputs, gout): (x,) = inputs (gz,) = gout return [square_diagonal(gz)] def infer_shape(self, nodes, shapes): return [(tensor.minimum(*shapes[0]), )] diag = Diag() """ Extract the diagonal of a square sparse matrix as a dense vector. Parameters ---------- x A square sparse matrix in csc format. Returns ------- theano.tensor.vector A dense vector representing the diagonal elements. Notes ----- The grad implemented is regular, i.e. not structured, since the output is a dense vector. """ class SquareDiagonal(gof.op.Op): # See doc in instance of this Op or function after this class definition. __props__ = () def make_node(self, diag): diag = tensor.as_tensor_variable(diag) if diag.type.ndim != 1: raise TypeError('data argument must be a vector', diag.type) return gof.Apply(self, [diag], [SparseType(dtype=diag.dtype, format='csc')()]) def perform(self, node, inputs, outputs): (z,) = outputs diag = inputs[0] N = len(diag) data = diag[:N] indices = list(range(N)) indptr = list(range(N + 1)) tup = (data, indices, indptr) z[0] = scipy.sparse.csc_matrix(tup, copy=True) def grad(self, inputs, gout): (gz,) = gout return [diag(gz)] def infer_shape(self, nodes, shapes): return [(shapes[0][0], shapes[0][0])] square_diagonal = SquareDiagonal() """ Return a square sparse (csc) matrix whose diagonal is given by the dense vector argument. Parameters ---------- x Dense vector for the diagonal. Returns ------- sparse matrix A sparse matrix having `x` as diagonal. Notes ----- The grad implemented is regular, i.e. not structured. """ class EnsureSortedIndices(gof.op.Op): # See doc in instance of this Op or function after this class definition. __props__ = ("inplace",) def __init__(self, inplace): self.inplace = inplace if self.inplace: self.view_map = {0: [0]} def make_node(self, x): x = as_sparse_variable(x) assert x.format in ["csr", "csc"] return gof.Apply(self, [x], [x.type()]) def perform(self, node, inputs, outputs): (x,) = inputs (z,) = outputs if self.inplace: z[0] = x.sort_indices() else: z[0] = x.sorted_indices() def grad(self, inputs, output_grad): return [output_grad[0]] def infer_shape(self, node, i0_shapes): return i0_shapes def __str__(self): if self.inplace: return self.__class__.__name__ + "{inplace}" else: return self.__class__.__name__ + "{no_inplace}" ensure_sorted_indices = EnsureSortedIndices(inplace=False) """ Re-sort indices of a sparse matrix. CSR column indices are not necessarily sorted. Likewise for CSC row indices. Use `ensure_sorted_indices` when sorted indices are required (e.g. when passing data to other libraries). Parameters ---------- x A sparse matrix. Returns ------- sparse matrix The same as `x` with indices sorted. Notes ----- The grad implemented is regular, i.e. not structured. """ def clean(x): """ Remove explicit zeros from a sparse matrix, and re-sort indices. CSR column indices are not necessarily sorted. Likewise for CSC row indices. Use `clean` when sorted indices are required (e.g. when passing data to other libraries) and to ensure there are no zeros in the data. Parameters ---------- x A sparse matrix. Returns ------- A sparse matrix The same as `x` with indices sorted and zeros removed. Notes ----- The grad implemented is regular, i.e. not structured. """ return ensure_sorted_indices(remove0(x)) class AddSS(gof.op.Op): # add(sparse, sparse). # see the doc of add() for more detail. __props__ = () def make_node(self, x, y): x, y = map(as_sparse_variable, [x, y]) assert x.format in ["csr", "csc"] assert y.format in ["csr", "csc"] out_dtype = scalar.upcast(x.type.dtype, y.type.dtype) return gof.Apply(self, [x, y], [SparseType(dtype=out_dtype, format=x.type.format)()]) def perform(self, node, inputs, outputs): (x, y) = inputs (out,) = outputs assert _is_sparse(x) and _is_sparse(y) assert x.shape == y.shape out[0] = x + y def grad(self, inputs, gout): (x, y) = inputs (gz,) = gout assert _is_sparse_variable(x) and _is_sparse_variable(y) assert _is_sparse_variable(gz) return gz, gz def infer_shape(self, node, shapes): return [shapes[0]] add_s_s = AddSS() class AddSSData(gof.op.Op): # See doc in instance of this Op or function after this class definition. __props__ = () def make_node(self, x, y): x, y = map(as_sparse_variable, [x, y]) assert x.format in ["csr", "csc"] assert y.format in ["csr", "csc"] if x.type.dtype != y.type.dtype: raise NotImplementedError() if x.type.format != y.type.format: raise NotImplementedError() return gof.Apply(self, [x, y], [SparseType(dtype=x.type.dtype, format=x.type.format)()]) def perform(self, node, inputs, outputs): (x, y) = inputs (out,) = outputs assert _is_sparse(x) and _is_sparse(y) assert x.shape == y.shape assert x.data.shape == y.data.shape out[0] = x.copy() out[0].data += y.data def grad(self, inputs, gout): (gz,) = gout is_continuous = [(i.dtype in continuous_dtypes) for i in inputs] derivative = {True: gz, False: None} return [derivative[b] for b in is_continuous] def infer_shape(self, node, ins_shapes): return [ins_shapes[0]] add_s_s_data = AddSSData() """ Add two sparse matrices assuming they have the same sparsity pattern. Parameters ---------- x Sparse matrix. y Sparse matrix. Returns ------- A sparse matrix The sum of the two sparse matrices element wise. Notes ----- `x` and `y` are assumed to have the same sparsity pattern. The grad implemented is structured. """ class AddSD(gof.op.Op): # add(sparse, sparse). # see the doc of add() for more detail. __props__ = () def make_node(self, x, y): x, y = as_sparse_variable(x), tensor.as_tensor_variable(y) assert x.format in ["csr", "csc"] out_dtype = scalar.upcast(x.type.dtype, y.type.dtype) # The magic number two here arises because L{scipy.sparse} # objects must be matrices (have dimension 2) assert y.type.ndim == 2 return gof.Apply(self, [x, y], [tensor.TensorType(dtype=out_dtype, broadcastable=y.type.broadcastable )()]) def perform(self, node, inputs, outputs): (x, y) = inputs (out,) = outputs assert _is_dense(y) # The asarray is needed as in some case, this return a # numpy.matrixlib.defmatrix.matrix object and not an ndarray. out[0] = theano._asarray(x + y, dtype=node.outputs[0].type.dtype) def grad(self, inputs, gout): (x, y) = inputs (gz,) = gout assert _is_sparse_variable(x) and _is_dense_variable(y) assert _is_dense_variable(gz) return sp_ones_like(x) * gz, gz def infer_shape(self, node, shapes): return [shapes[1]] add_s_d = AddSD() class StructuredAddSV(gof.op.Op): __props__ = () def make_node(self, x, y): x = as_sparse_variable(x) assert x.format in ["csr", "csc"] y = tensor.as_tensor_variable(y) assert y.type.ndim == 1 if x.type.dtype != y.type.dtype: raise NotImplementedError() return gof.Apply(self, [x, y], [SparseType(dtype=x.type.dtype, format=x.type.format)()]) def perform(self, node, inputs, outputs): (x, y) = inputs (out,) = outputs assert _is_sparse(x) and not _is_sparse(y) assert x.shape[1] == y.shape[0] out[0] = x.__class__(x + (x.toarray() != 0) * y) def grad(self, inputs, gout): (x, y) = inputs (gz,) = gout assert _is_sparse_variable(x) and not _is_sparse_variable(y) assert _is_sparse_variable(gz) return gz, sp_sum(gz, axis=0, sparse_grad=True) def infer_shape(self, node, ins_shapes): return [ins_shapes[0]] structured_add_s_v = StructuredAddSV() """ Structured addition of a sparse matrix and a dense vector. The elements of the vector are only added to the corresponding non-zero elements of the sparse matrix. Therefore, this operation outputs another sparse matrix. Parameters ---------- x Sparse matrix. y Tensor type vector. Returns ------- A sparse matrix A sparse matrix containing the addition of the vector to the data of the sparse matrix. Notes ----- The grad implemented is structured since the op is structured. """ def add(x, y): """ Add two matrices, at least one of which is sparse. This method will provide the right op according to the inputs. Parameters ---------- x A matrix variable. y A matrix variable. Returns ------- A sparse matrix `x` + `y` Notes ----- At least one of `x` and `y` must be a sparse matrix. The grad will be structured only when one of the variable will be a dense matrix. """ if hasattr(x, 'getnnz'): x = as_sparse_variable(x) if hasattr(y, 'getnnz'): y = as_sparse_variable(y) if not isinstance(x, theano.Variable): x = theano.tensor.as_tensor_variable(x) if not isinstance(y, theano.Variable): y = theano.tensor.as_tensor_variable(y) x_is_sparse_variable = _is_sparse_variable(x) y_is_sparse_variable = _is_sparse_variable(y) assert x_is_sparse_variable or y_is_sparse_variable if x_is_sparse_variable and y_is_sparse_variable: return add_s_s(x, y) elif x_is_sparse_variable and not y_is_sparse_variable: return add_s_d(x, y) elif y_is_sparse_variable and not x_is_sparse_variable: return add_s_d(y, x) else: raise NotImplementedError() def sub(x, y): """ Subtract two matrices, at least one of which is sparse. This method will provide the right op according to the inputs. Parameters ---------- x A matrix variable. y A matrix variable. Returns ------- A sparse matrix `x` - `y` Notes ----- At least one of `x` and `y` must be a sparse matrix. The grad will be structured only when one of the variable will be a dense matrix. """ return x + (-y) class MulSS(gof.op.Op): # mul(sparse, sparse) # See the doc of mul() for more detail __props__ = () def make_node(self, x, y): x, y = as_sparse_variable(x), as_sparse_variable(y) assert x.format in ["csr", "csc"] assert y.format in ["csr", "csc"] out_dtype = scalar.upcast(x.type.dtype, y.type.dtype) return gof.Apply(self, [x, y], [SparseType(dtype=out_dtype, format=x.type.format)()]) def perform(self, node, inputs, outputs): (x, y) = inputs (out,) = outputs assert _is_sparse(x) and _is_sparse(y) assert len(x.shape) == 2 assert y.shape == x.shape # This calls the element-wise multiple # x * y calls dot... out[0] = x.multiply(y) def grad(self, inputs, gout): (x, y) = inputs (gz,) = gout return y * gz, x * gz def infer_shape(self, node, shapes): return [shapes[0]] mul_s_s = MulSS() class MulSD(gof.op.Op): # mul(sparse, dense) # See the doc of mul() for more detail __props__ = () def make_node(self, x, y): x, y = as_sparse_variable(x), tensor.as_tensor_variable(y) assert x.format in ["csr", "csc"] # upcast the tensor. Is the cast of sparse done implemented? dtype = scalar.upcast(x.type.dtype, y.type.dtype) # The magic number two here arises because L{scipy.sparse} # objects must be matrices (have dimension 2) # Broadcasting of the sparse matrix is not supported. # We support nd == 0 used by grad of SpSum() assert y.type.ndim in [0, 2] out = SparseType(dtype=dtype, format=x.type.format)() return gof.Apply(self, [x, y], [out]) def perform(self, node, inputs, outputs): (x, y) = inputs (out,) = outputs assert _is_sparse(x) and _is_dense(y) if len(y.shape) == 0: out_dtype = node.outputs[0].dtype if x.dtype == out_dtype: z = x.copy() else: z = x.astype(out_dtype) out[0] = z out[0].data *= y elif len(y.shape) == 1: raise NotImplementedError() # RowScale / ColScale elif len(y.shape) == 2: # if we have enough memory to fit y, maybe we can fit x.asarray() # too? # TODO: change runtime from O(M*N) to O(nonzeros) M, N = x.shape assert x.shape == y.shape out_dtype = node.outputs[0].dtype if x.format == 'csc': indices = x.indices indptr = x.indptr if x.dtype == out_dtype: z = x.copy() else: z = x.astype(out_dtype) z_data = z.data for j in xrange(0, N): for i_idx in xrange(indptr[j], indptr[j + 1]): i = indices[i_idx] z_data[i_idx] *= y[i, j] out[0] = z elif x.format == 'csr': indices = x.indices indptr = x.indptr if x.dtype == out_dtype: z = x.copy() else: z = x.astype(out_dtype) z_data = z.data for i in xrange(0, M): for j_idx in xrange(indptr[i], indptr[i + 1]): j = indices[j_idx] z_data[j_idx] *= y[i, j] out[0] = z else: print(( "WARNING: crappy implementation of MulSD" ), x.format, file=sys.stderr) out[0] = type(x)(x.toarray() * y) def grad(self, inputs, gout): (x, y) = inputs (gz,) = gout assert _is_sparse_variable(x) and _is_dense_variable(y) assert _is_sparse_variable(gz) return y * gz, dense_from_sparse(x * gz) def infer_shape(self, node, shapes): return [shapes[0]] mul_s_d = MulSD() class MulSV(gof.op.Op): __props__ = () def make_node(self, x, y): x = as_sparse_variable(x) assert x.format in ["csr", "csc"] y = tensor.as_tensor_variable(y) assert y.type.ndim == 1 if x.type.dtype != y.type.dtype: raise NotImplementedError( "MulSV not implemented for differing dtypes." "Got %s and %s." % (str(x.type.dtype), str(y.type.dtype))) return gof.Apply(self, [x, y], [SparseType(dtype=x.type.dtype, format=x.type.format)()]) def perform(self, node, inputs, outputs): (x, y) = inputs (out,) = outputs assert _is_sparse(x) and not _is_sparse(y) assert x.shape[1] == y.shape[0] out[0] = x.__class__(x.toarray() * y) def grad(self, inputs, gout): (x, y) = inputs (gz,) = gout assert _is_sparse_variable(x) and _is_dense_variable(y) assert _is_sparse_variable(gz) # mul_s_v is not implemented if the types vary if gz.dtype == 'float64' and y.dtype == 'float32': y = y.astype('float64') if gz.dtype == 'float32' and y.dtype == 'float64': gz = gz.astype('float64') return mul_s_v(gz, y), sp_sum(x * gz, axis=0, sparse_grad=True) def infer_shape(self, node, ins_shapes): return [ins_shapes[0]] mul_s_v = MulSV() """ Multiplication of sparse matrix by a broadcasted dense vector element wise. Parameters ---------- x Sparse matrix to multiply. y Tensor broadcastable vector. Returns ------- A sparse matrix The product x * y element wise. Notes ----- The grad implemented is regular, i.e. not structured. """ def mul(x, y): """ Multiply elementwise two matrices, at least one of which is sparse. This method will provide the right op according to the inputs. Parameters ---------- x A matrix variable. y A matrix variable. Returns ------- A sparse matrix `x` + `y` Notes ----- At least one of `x` and `y` must be a sparse matrix. The grad is regular, i.e. not structured. """ x = as_sparse_or_tensor_variable(x) y = as_sparse_or_tensor_variable(y) x_is_sparse_variable = _is_sparse_variable(x) y_is_sparse_variable = _is_sparse_variable(y) assert x_is_sparse_variable or y_is_sparse_variable if x_is_sparse_variable and y_is_sparse_variable: # mul_s_s is not implemented if the types differ if y.dtype == 'float64' and x.dtype == 'float32': x = x.astype('float64') return mul_s_s(x, y) elif x_is_sparse_variable and not y_is_sparse_variable: # mul is unimplemented if the dtypes differ if y.dtype == 'float64' and x.dtype == 'float32': x = x.astype('float64') return mul_s_d(x, y) elif y_is_sparse_variable and not x_is_sparse_variable: return mul_s_d(y, x) else: raise NotImplementedError() class __ComparisonOpSS(gof.op.Op): """ Used as a superclass for all comparisons between two sparses matrices. Parameters ---------- x First compared sparse matrix. y Second compared sparse matrix Returns ------- object Comparison(x,y) """ __props__ = () # Function to override def comparison(self, x, y): raise NotImplementedError() def make_node(self, x, y): x = as_sparse_variable(x) y = as_sparse_variable(y) if x.type.format != y.type.format: raise NotImplementedError() return gof.Apply(self, [x, y], [SparseType(dtype='uint8', format=x.type.format)()]) def perform(self, node, inputs, outputs): (x, y) = inputs (out,) = outputs assert _is_sparse(x) and _is_sparse(y) assert x.shape == y.shape out[0] = self.comparison(x, y).astype('uint8') def infer_shape(self, node, ins_shapes): return [ins_shapes[0]] class __ComparisonOpSD(gof.op.Op): """ Used as a superclass for all comparisons between sparse and dense matrix. Parameters ---------- x Sparse matrix. y Dense matrix. Returns ------- object Comparison(x,y) """ __props__ = () # Function to override def comparison(self, x, y): raise NotImplementedError() def make_node(self, x, y): x, y = as_sparse_variable(x), tensor.as_tensor_variable(y) assert y.type.ndim == 2 out = tensor.TensorType(dtype='uint8', broadcastable=(False, False))() return gof.Apply(self, [x, y], [out]) def perform(self, node, inputs, outputs): (x, y) = inputs (out,) = outputs assert _is_sparse(x) assert x.shape == y.shape assert _is_dense(y) o = self.comparison(x, y).astype('uint8') o = numpy.asarray(o) out[0] = o def infer_shape(self, node, ins_shapes): return [ins_shapes[0]] def __ComparisonSwitch(SS, SD, DS): """ Parameters ---------- SS Function to apply between two sparses matrices. SD Function to apply between a sparse and a dense matrix. DS Function to apply between a dense and a sparse matrix. Returns ------- function Switch function taking two matrices as input. Notes ----- At least one of `x` and `y` must be a sparse matrix. DS swap input as a dense matrix cannot be a left operand. """ def helper(x, y): scipy_ver = [int(n) for n in scipy.__version__.split('.')[:2]] assert scipy_ver >= [0, 13] if hasattr(x, 'getnnz'): x = as_sparse_variable(x) if hasattr(y, 'getnnz'): y = as_sparse_variable(y) if not isinstance(x, theano.Variable): x = theano.tensor.as_tensor_variable(x) if not isinstance(y, theano.Variable): y = theano.tensor.as_tensor_variable(y) x_is_sparse_variable = _is_sparse_variable(x) y_is_sparse_variable = _is_sparse_variable(y) assert x_is_sparse_variable or y_is_sparse_variable if x_is_sparse_variable and y_is_sparse_variable: return SS(x, y) elif x_is_sparse_variable and not y_is_sparse_variable: return SD(x, y) elif y_is_sparse_variable and not x_is_sparse_variable: return DS(y, x) else: raise NotImplementedError() return helper class EqualSS(__ComparisonOpSS): def comparison(self, x, y): return x == y equal_s_s = EqualSS() class EqualSD(__ComparisonOpSD): def comparison(self, x, y): return x == y equal_s_d = EqualSD() class NotEqualSS(__ComparisonOpSS): def comparison(self, x, y): return x != y not_equal_s_s = NotEqualSS() class NotEqualSD(__ComparisonOpSD): def comparison(self, x, y): return x != y not_equal_s_d = NotEqualSD() class LessThanSS(__ComparisonOpSS): def comparison(self, x, y): return x < y less_than_s_s = LessThanSS() class LessThanSD(__ComparisonOpSD): def comparison(self, x, y): return x < y less_than_s_d = LessThanSD() class GreaterThanSS(__ComparisonOpSS): def comparison(self, x, y): return x > y greater_than_s_s = GreaterThanSS() class GreaterThanSD(__ComparisonOpSD): def comparison(self, x, y): return x > y greater_than_s_d = GreaterThanSD() class LessEqualSS(__ComparisonOpSS): def comparison(self, x, y): return x <= y less_equal_s_s = LessEqualSS() class LessEqualSD(__ComparisonOpSD): def comparison(self, x, y): return x <= y less_equal_s_d = LessEqualSD() class GreaterEqualSS(__ComparisonOpSS): def comparison(self, x, y): return x >= y greater_equal_s_s = GreaterEqualSS() class GreaterEqualSD(__ComparisonOpSD): def comparison(self, x, y): return x >= y greater_equal_s_d = GreaterEqualSD() eq = __ComparisonSwitch(equal_s_s, equal_s_d, equal_s_d) """ Parameters ---------- x A matrix variable. y A matrix variable. Returns ------- matrix variable `x` == `y` Notes ----- At least one of `x` and `y` must be a sparse matrix. """ neq = __ComparisonSwitch(not_equal_s_s, not_equal_s_d, not_equal_s_d) """ Parameters ---------- x A matrix variable. y A matrix variable. Returns ------- matrix variable `x` != `y` Notes ----- At least one of `x` and `y` must be a sparse matrix. """ lt = __ComparisonSwitch(less_than_s_s, less_than_s_d, greater_than_s_d) """ Parameters ---------- x A matrix variable. y A matrix variable. Returns ------- matrix variable `x` < `y` Notes ----- At least one of `x` and `y` must be a sparse matrix. """ gt = __ComparisonSwitch(greater_than_s_s, greater_than_s_d, less_than_s_d) """ Parameters ---------- x A matrix variable. y A matrix variable. Returns ------- matrix variable `x` > `y` Notes ----- At least one of `x` and `y` must be a sparse matrix. """ le = __ComparisonSwitch(less_equal_s_s, less_equal_s_d, greater_equal_s_d) """ Parameters ---------- x A matrix variable. y A matrix variable. Returns ------- matrix variable `x` <= `y` Notes ----- At least one of `x` and `y` must be a sparse matrix. """ ge = __ComparisonSwitch(greater_equal_s_s, greater_equal_s_d, less_equal_s_d) """ Parameters ---------- x A matrix variable. y A matrix variable. Returns ------- matrix variable `x` >= `y` Notes ----- At least one of `x` and `y` must be a sparse matrix. """ class HStack(gof.op.Op): # See doc in instance of this Op or function after this class definition. __props__ = ("format", "dtype") def __init__(self, format=None, dtype=None): if format is None: self.format = 'csc' else: self.format = format if dtype is None: raise ValueError('The output dtype must be specified.') self.dtype = dtype def make_node(self, *mat): if not mat: raise ValueError('Cannot join an empty list of sparses.') var = [as_sparse_variable(x) for x in mat] for x in var: assert x.format in ["csr", "csc"] return gof.Apply(self, var, [SparseType(dtype=self.dtype, format=self.format)()]) def perform(self, node, block, outputs): (out,) = outputs for b in block: assert _is_sparse(b) out[0] = scipy.sparse.hstack(block, format=self.format, dtype=self.dtype) # Some version of scipy (at least 0.14.0.dev-c4314b0) # Do not cast to the wanted dtype. if out[0].dtype != self.dtype: out[0] = out[0].astype(self.dtype) def grad(self, inputs, gout): (gz,) = gout is_continuous = [(inputs[i].dtype in tensor.continuous_dtypes) for i in range(len(inputs))] if _is_sparse_variable(gz): gz = dense_from_sparse(gz) split = tensor.Split(len(inputs))(gz, 1, tensor.stack( [x.shape[1] for x in inputs])) if not isinstance(split, list): split = [split] derivative = [SparseFromDense(self.format)(s) for s in split] def choose(continuous, derivative): if continuous: return derivative else: return None return [choose(c, d) for c, d in zip(is_continuous, derivative)] def infer_shape(self, node, ins_shapes): def _get(l): return l[1] d = sum(map(_get, ins_shapes)) return [(ins_shapes[0][0], d)] def __str__(self): return "%s(%s,%s)" % (self.__class__.__name__, self.format, self.dtype) def hstack(blocks, format=None, dtype=None): """ Stack sparse matrices horizontally (column wise). This wrap the method hstack from scipy. Parameters ---------- blocks List of sparse array of compatible shape. format String representing the output format. Default is csc. dtype Output dtype. Returns ------- array The concatenation of the sparse array column wise. Notes ----- The number of line of the sparse matrix must agree. The grad implemented is regular, i.e. not structured. """ blocks = [as_sparse_variable(i) for i in blocks] if dtype is None: dtype = theano.scalar.upcast(*[i.dtype for i in blocks]) return HStack(format=format, dtype=dtype)(*blocks) class VStack(HStack): # See doc in instance of this Op or function after this class definition. def perform(self, node, block, outputs): (out,) = outputs for b in block: assert _is_sparse(b) out[0] = scipy.sparse.vstack(block, format=self.format, dtype=self.dtype) # Some version of scipy (at least 0.14.0.dev-c4314b0) # Do not cast to the wanted dtype. if out[0].dtype != self.dtype: out[0] = out[0].astype(self.dtype) def grad(self, inputs, gout): (gz,) = gout is_continuous = [(inputs[i].dtype in tensor.continuous_dtypes) for i in range(len(inputs))] if _is_sparse_variable(gz): gz = dense_from_sparse(gz) split = tensor.Split(len(inputs))(gz, 0, tensor.stack( [x.shape[0] for x in inputs])) if not isinstance(split, list): split = [split] derivative = [SparseFromDense(self.format)(s) for s in split] def choose(continuous, derivative): if continuous: return derivative else: return None return [choose(c, d) for c, d in zip(is_continuous, derivative)] def infer_shape(self, node, ins_shapes): def _get(l): return l[0] d = sum(map(_get, ins_shapes)) return [(d, ins_shapes[0][1])] def vstack(blocks, format=None, dtype=None): """ Stack sparse matrices vertically (row wise). This wrap the method vstack from scipy. Parameters ---------- blocks List of sparse array of compatible shape. format String representing the output format. Default is csc. dtype Output dtype. Returns ------- array The concatenation of the sparse array row wise. Notes ----- The number of column of the sparse matrix must agree. The grad implemented is regular, i.e. not structured. """ blocks = [as_sparse_variable(i) for i in blocks] if dtype is None: dtype = theano.scalar.upcast(*[i.dtype for i in blocks]) return VStack(format=format, dtype=dtype)(*blocks) class Remove0(gof.Op): # See doc in instance of this Op or a function after the class definition. __props__ = ("inplace",) def __init__(self, inplace=False): self.inplace = inplace if self.inplace: self.destroy_map = {0: [0]} def __str__(self): l = [] if self.inplace: l.append('inplace') return self.__class__.__name__ + '{%s}' % ', '.join(l) def make_node(self, x): x = as_sparse_variable(x) assert x.format in ["csr", "csc"] return gof.Apply(self, [x], [x.type()]) def perform(self, node, inputs, outputs): (x,) = inputs (z,) = outputs if self.inplace: c = x else: c = x.copy() c.eliminate_zeros() z[0] = c def grad(self, inputs, gout): (x,) = inputs (gz,) = gout return [gz] def infer_shape(self, node, i0_shapes): return i0_shapes remove0 = Remove0() """ Remove explicit zeros from a sparse matrix. Parameters ---------- x Sparse matrix. Returns ------- sparse matrix Exactly `x` but with a data attribute exempt of zeros. Notes ----- The grad implemented is regular, i.e. not structured. """ # Structured monoid def structured_monoid(tensor_op): # Generic operation to perform many kinds of monoid element-wise # operations on the non-zeros of a sparse matrix. # The first parameter must always be a sparse matrix. The other parameters # must be scalars which will be passed as argument to the tensor_op. def decorator(f): def wrapper(*args): x = as_sparse_variable(args[0]) assert x.format in ["csr", "csc"] xs = [scalar.as_scalar(arg) for arg in args[1:]] data, ind, ptr, shape = csm_properties(x) data = tensor_op(data, *xs) return CSM(x.format)(data, ind, ptr, shape) wrapper.__name__ = str(tensor_op.scalar_op) return wrapper return decorator @structured_monoid(tensor.nnet.sigmoid) def structured_sigmoid(x): """ Structured elemwise sigmoid. """ # see decorator for function body @structured_monoid(tensor.exp) def structured_exp(x): """ Structured elemwise exponential. """ # see decorator for function body @structured_monoid(tensor.log) def structured_log(x): """ Structured elemwise logarithm. """ # see decorator for function body @structured_monoid(tensor.pow) def structured_pow(x, y): """ Structured elemwise power of sparse matrix x by scalar y. """ # see decorator for function body @structured_monoid(tensor.minimum) def structured_minimum(x, y): """ Structured elemwise minimum of sparse matrix x by scalar y. """ # see decorator for function body @structured_monoid(tensor.maximum) def structured_maximum(x, y): """ Structured elemwise maximum of sparse matrix x by scalar y. """ # see decorator for function body @structured_monoid(tensor.add) def structured_add(x): """ Structured addition of sparse matrix x and scalar y. """ # see decorator for function body # Sparse operation (map 0 to 0) @structured_monoid(tensor.sin) def sin(x): """ Elemwise sinus of `x`. """ # see decorator for function body @structured_monoid(tensor.tan) def tan(x): """ Elemwise tan of `x`. """ # see decorator for function body @structured_monoid(tensor.arcsin) def arcsin(x): """ Elemwise arcsinus of `x`. """ # see decorator for function body @structured_monoid(tensor.arctan) def arctan(x): """ Elemwise arctan of `x`. """ # see decorator for function body @structured_monoid(tensor.sinh) def sinh(x): """ Elemwise sinh of `x`. """ # see decorator for function body @structured_monoid(tensor.arcsinh) def arcsinh(x): """ Elemwise arcsinh of `x`. """ # see decorator for function body @structured_monoid(tensor.tanh) def tanh(x): """ Elemwise tanh of `x`. """ # see decorator for function body @structured_monoid(tensor.arctanh) def arctanh(x): """ Elemwise arctanh of `x`. """ # see decorator for function body @structured_monoid(tensor.round_half_to_even) def rint(x): """ Elemwise round half to even of `x`. """ # see decorator for function body # Give it a simple name instead of the complex one that would automatically # be derived from `tensor.round_half_to_even`. rint.__name__ = 'rint' @structured_monoid(tensor.sgn) def sgn(x): """ Elemwise signe of `x`. """ # see decorator for function body @structured_monoid(tensor.ceil) def ceil(x): """ Elemwise ceiling of `x`. """ # see decorator for function body @structured_monoid(tensor.floor) def floor(x): """ Elemwise floor of `x`. """ # see decorator for function body @structured_monoid(tensor.log1p) def log1p(x): """ Elemwise log(1 + `x`). """ # see decorator for function body @structured_monoid(tensor.expm1) def expm1(x): """ Elemwise e^`x` - 1. """ # see decorator for function body @structured_monoid(tensor.deg2rad) def deg2rad(x): """ Elemwise degree to radian. """ # see decorator for function body @structured_monoid(tensor.rad2deg) def rad2deg(x): """ Elemwise radian to degree. """ # see decorator for function body @structured_monoid(tensor.trunc) def trunc(x): """ Elemwise truncature. """ # see decorator for function body @structured_monoid(tensor.sqr) def sqr(x): """ Elemwise `x` * `x`. """ # see decorator for function body @structured_monoid(tensor.sqrt) def sqrt(x): """ Elemwise square root of `x`. """ # see decorator for function body @structured_monoid(tensor.conj) def conj(x): """ Elemwise complex conjugate of `x`. """ # see decorator for function body class TrueDot(gof.op.Op): # TODO # Simplify code by splitting into DotSS and DotSD. __props__ = () # The grad_preserves_dense attribute doesn't change the # execution behavior. To let the optimizer merge nodes with # different values of this attribute we shouldn't compare it # here. def __init__(self, grad_preserves_dense=True): self.grad_preserves_dense = grad_preserves_dense def make_node(self, x, y): # NOTE # Because of trickiness of implementing, # we assume that the left argument x is a # SparseVariable (not dense) if x.type.dtype != y.type.dtype: raise NotImplementedError() if not _is_sparse_variable(x): raise TypeError(x) # These are the conversions performed by scipy.sparse.dot if x.type.format == "csc" or x.type.format == "coo": myformat = "csc" elif x.type.format == "csr": myformat = "csr" else: raise NotImplementedError() inputs = [x, y] # Need to convert? e.g. assparse outputs = [SparseType(dtype=x.type.dtype, format=myformat)()] return gof.Apply(self, inputs, outputs) def perform(self, node, inp, out_): # TODO # -Verify that output is sufficiently sparse, # and raise a warning if it is not. # -Also determine that we are storing the # output in the best storage format? x, y = inp out, = out_ rval = x.dot(y) if not scipy.sparse.issparse(rval): rval = getattr(scipy.sparse, x.format + '_matrix')(rval) # x.dot call tocsr() that will "upcast" to ['int8', 'uint8', 'short', # 'ushort', 'intc', 'uintc', 'longlong', 'ulonglong', 'single', # 'double', 'longdouble', 'csingle', 'cdouble', 'clongdouble'] # But ulonglong is uint64 on x86-64, but with a different typenum! if rval.dtype.num != numpy.dtype(str(rval.dtype)).num: assert str(rval.dtype) == node.outputs[0].dtype # Create a view with the expected typenum. format = node.outputs[0].type.format data = rval.data.view(dtype=node.outputs[0].dtype) indices = rval.indices indptr = rval.indptr shape = rval.shape # No need to copy indices and indptr as in CSM.perform(), # as there is only one user of them. if format == 'csc': rval = scipy.sparse.csc_matrix((data, indices, indptr), shape, copy=False) else: assert format == 'csr' rval = scipy.sparse.csr_matrix((data, indices, indptr), shape, copy=False) out[0] = rval def grad(self, inputs, gout): (x, y) = inputs (gz,) = gout assert _is_sparse_variable(gz) assert _is_sparse_variable(x) rval = [true_dot(gz, y.T), true_dot(x.T, gz)] if _is_dense_variable(y): if self.grad_preserves_dense: rval[1] = dense_from_sparse(rval[1]) return rval def infer_shape(self, node, shapes): return [(shapes[0][0], shapes[1][1])] def true_dot(x, y, grad_preserves_dense=True): """ Operation for efficiently calculating the dot product when one or all operands are sparse. Supported formats are CSC and CSR. The output of the operation is sparse. Parameters ---------- x Sparse matrix. y Sparse matrix or 2d tensor variable. grad_preserves_dense : bool If True (default), makes the grad of dense inputs dense. Otherwise the grad is always sparse. Returns ------- The dot product `x`.`y` in a sparse format. Notex ----- The grad implemented is regular, i.e. not structured. """ # TODO # Maybe the triple-transposition formulation # (when x is dense) is slow. See if there is a # direct way to do this. if hasattr(x, 'getnnz'): x = as_sparse_variable(x) assert x.format in ["csr", "csc"] if hasattr(y, 'getnnz'): y = as_sparse_variable(y) assert y.format in ["csr", "csc"] x_is_sparse_variable = _is_sparse_variable(x) y_is_sparse_variable = _is_sparse_variable(y) if not x_is_sparse_variable and not y_is_sparse_variable: raise TypeError() if x_is_sparse_variable: return TrueDot(grad_preserves_dense)(x, y) else: assert y_is_sparse_variable return transpose(TrueDot(grad_preserves_dense)(y.T, x.T)) # Dot class StructuredDot(gof.Op): # See doc in instance of this Op or function after this class definition. __props__ = () def make_node(self, a, b): a = as_sparse_variable(a) assert a.format in ["csr", "csc", "bsr"] if not _is_sparse_variable(a): raise TypeError('First argument must be of type SparseVariable ' 'or SparseConstant') dtype_out = scalar.upcast(a.type.dtype, b.type.dtype) if b.type.ndim != 2: raise NotImplementedError('non-matrix b') if _is_sparse_variable(b): return gof.Apply(self, [a, b], [SparseType(a.type.format, dtype_out)()]) else: return gof.Apply(self, [a, b], [tensor.tensor(dtype_out, (False, b.type.broadcastable[1]))]) def perform(self, node, inputs, outputs): (a, b) = inputs (out,) = outputs if a.shape[1] != b.shape[0]: raise ValueError('shape mismatch in StructuredDot.perform', (a.shape, b.shape)) variable = a * b if isinstance(node.outputs[0].type, SparseType): assert _is_sparse(variable) out[0] = variable return assert _is_dense(variable) # scipy 0.7 automatically converts to dense # dot of an NxM sparse matrix, with a Mx1 dense matrix, returns vector # not matrix if variable.ndim == 1: variable = numpy.expand_dims(variable, 1) elif variable.ndim != 2: raise Exception('Output of structured dot should be a matrix ' '(ndim=2)') assert variable.ndim == 2 if variable.shape != (a.shape[0], b.shape[1]): if b.shape[0] == 1: raise Exception("a.shape=%s, b.shape=%s, " "variable.shape=%s ??? This is probably " "because scipy.csc_matrix dot has a bug " "with singleton dimensions (i.e. " "b.shape[0]=1), for scipy 0.6. Use scipy " "0.7. NB you have scipy version %s" % (a.shape, b.shape, variable.shape, scipy.__version__)) else: raise Exception("a.shape=%s, b.shape=%s, variable.shape=%s " " ??? I have no idea why") # The cast is needed as otherwise we hit the bug mentioned into # theano._asarray function documentation. out[0] = theano._asarray(variable, str(variable.dtype)) def grad(self, inputs, gout): # a is sparse, b is dense, g_out is dense # ga = g_out x b.T # gb = a.T x g_out (a, b) = inputs (g_out,) = gout return [structured_dot_grad(a, b, g_out), structured_dot(a.T, g_out)] def infer_shape(self, node, shapes): return [(shapes[0][0], shapes[1][1])] _structured_dot = StructuredDot() def structured_dot(x, y): """ Structured Dot is like dot, except that only the gradient wrt non-zero elements of the sparse matrix `a` are calculated and propagated. The output is presumed to be a dense matrix, and is represented by a TensorType instance. Parameters ---------- a A sparse matrix. b A sparse or dense matrix. Returns ------- A sparse matrix The dot product of `a` and `b`. Notes ----- The grad implemented is structured. """ # @todo: Maybe the triple-transposition formulation (when x is dense) # is slow. See if there is a direct way to do this. # (JB 20090528: Transposing tensors and sparse matrices is constant-time, # inplace, and fast.) if hasattr(x, 'getnnz'): x = as_sparse_variable(x) assert x.format in ["csr", "csc"] if hasattr(y, 'getnnz'): y = as_sparse_variable(y) assert y.format in ["csr", "csc"] x_is_sparse_variable = _is_sparse_variable(x) y_is_sparse_variable = _is_sparse_variable(y) if not x_is_sparse_variable and not y_is_sparse_variable: raise TypeError('structured_dot requires at least one sparse argument') if x_is_sparse_variable: return _structured_dot(x, y) else: assert y_is_sparse_variable return _structured_dot(y.T, x.T).T class StructuredDotGradCSC(gof.Op): # Op that produces the grad of StructuredDot. # :param a_indices: Matrix indicies # :param a_indptr: Matrix indptr # :param b: Right operand # :param g_ab: Accumulated gradient. # :return: The grad of `a`.`b` for `a` accumulated # with g_ab. # :note: The grad implemented is structured. # :note: a_* are the corresponding properties of a sparse # matrix in csc format. __props__ = () def make_node(self, a_indices, a_indptr, b, g_ab): return gof.Apply(self, [a_indices, a_indptr, b, g_ab], [tensor.tensor(g_ab.dtype, (False,))]) def perform(self, node, inputs, outputs): (a_indices, a_indptr, b, g_ab) = inputs (out,) = outputs g_a_data = numpy.zeros(a_indices.shape, dtype=g_ab.dtype) for j in xrange(len(a_indptr) - 1): ind0 = a_indptr[j] ind1 = a_indptr[j + 1] for i_idx in xrange(ind0, ind1): i = a_indices[i_idx] # Depending on the type of g_ab and b (sparse or dense), # the following dot product can result in a scalar or # a (1, 1) sparse matrix. dot_val = numpy.dot(g_ab[i], b[j].T) if isinstance(dot_val, scipy.sparse.spmatrix): dot_val = dot_val[0, 0] g_a_data[i_idx] = dot_val out[0] = g_a_data def c_code_cache_version(self): return (1,) def c_code(self, node, name, inputs, outputs, sub): (_indices, _indptr, _d, _g) = inputs (_zout,) = outputs if node.inputs[2].type.dtype in ('complex64', 'complex128'): raise NotImplementedError('Complex types are not supported for b') if node.inputs[3].type.dtype in ('complex64', 'complex128'): raise NotImplementedError('Complex types are not supported for ' 'g_ab') return """ if (PyArray_NDIM(%(_d)s) != 2) {PyErr_SetString(PyExc_NotImplementedError, "rank(d) != 2"); %(fail)s;} if (PyArray_NDIM(%(_g)s) != 2) {PyErr_SetString(PyExc_NotImplementedError, "rank(g) != 2"); %(fail)s;} if (PyArray_NDIM(%(_indices)s) != 1) {PyErr_SetString(PyExc_NotImplementedError, "rank(indices) != 1"); %(fail)s;} if (PyArray_NDIM(%(_indptr)s) != 1) {PyErr_SetString(PyExc_NotImplementedError, "rank(indptr) != 1"); %(fail)s;} if( PyArray_TYPE(%(_indices)s) != NPY_INT32) { PyErr_SetString(PyExc_NotImplementedError, "C"); %(fail)s;} if( PyArray_TYPE(%(_indptr)s) != NPY_INT32) {PyErr_SetString(PyExc_NotImplementedError, "D"); %(fail)s;} if( PyArray_DIMS(%(_d)s)[1] != PyArray_DIMS(%(_g)s)[1]) {PyErr_SetString(PyExc_NotImplementedError, "d and g have different numbers of columns"); %(fail)s;} if (!%(_zout)s || (PyArray_DIMS(%(_zout)s)[0] != PyArray_DIMS(%(_indices)s)[0])) { Py_XDECREF(%(_zout)s); %(_zout)s = (PyArrayObject*) PyArray_SimpleNew(1, PyArray_DIMS(%(_indices)s), PyArray_TYPE(%(_g)s)); } { //makes it compile even though labels jump over variable definitions. npy_intp nnz = PyArray_DIMS(%(_indices)s)[0]; npy_intp N = PyArray_DIMS(%(_indptr)s)[0]-1; //TODO: error checking with this npy_intp Sindices = PyArray_STRIDES(%(_indices)s)[0]/PyArray_DESCR(%(_indices)s)->elsize; npy_intp Sindptr = PyArray_STRIDES(%(_indptr)s)[0]/PyArray_DESCR(%(_indptr)s)->elsize; const npy_intp Sd1 = PyArray_STRIDES(%(_d)s)[1]/PyArray_DESCR(%(_d)s)->elsize; const npy_intp Sg1 = PyArray_STRIDES(%(_g)s)[1]/PyArray_DESCR(%(_g)s)->elsize; const npy_intp K = PyArray_DIMS(%(_d)s)[1]; const npy_int32 * __restrict__ indptr = (npy_int32 *)PyArray_DATA(%(_indptr)s); const npy_int32 * __restrict__ indices = (npy_int32 *)PyArray_DATA(%(_indices)s); // loop over columns for (npy_int32 j = 0; j < N; ++j) { // extract j-th row of dense matrix const dtype_%(_d)s* __restrict__ d_row = (dtype_%(_d)s*)(PyArray_BYTES(%(_d)s) + PyArray_STRIDES(%(_d)s)[0] * j); if(j >= PyArray_DIMS(%(_d)s)[0]) {PyErr_SetString(PyExc_NotImplementedError, "G"); %(fail)s;} // for each non-null value in the sparse column for (npy_int32 i_idx = indptr[j * Sindptr]; i_idx < indptr[(j+1) * Sindptr]; ++i_idx) { // extract row index of non-null value npy_int32 i = indices[i_idx * Sindices]; // extract corresponding row in gradient const dtype_%(_g)s* __restrict__ g_row = (dtype_%(_g)s*)(PyArray_BYTES(%(_g)s) + PyArray_STRIDES(%(_g)s)[0] * i); double ip = 0.0; // make sure that row index is not bigger than actual number of rows // Note: wouldn't the above operation fail if that were the case ? // when would this ever be true anyway ? if (i >= PyArray_DIMS(%(_g)s)[0]) {PyErr_SetString(PyExc_NotImplementedError, "H"); %(fail)s;} // perform dot product of dense and sparse rows for(int k = 0; k < K; ++k) { ip += d_row[k * Sd1] * g_row[k*Sg1]; } // write resulting gradient to sparse output ((dtype_%(_zout)s* __restrict__)(PyArray_BYTES(%(_zout)s) + i_idx * PyArray_STRIDES(%(_zout)s)[0]))[0] = ip; } } } """ % dict(locals(), **sub) def infer_shape(self, node, shapes): return [shapes[0]] sdg_csc = StructuredDotGradCSC() class StructuredDotGradCSR(gof.Op): # Op that produces the grad of StructuredDot. # :param a_indices: Matrix indicies # :param a_indptr: Matrix indptr # :param b: Right operand # :param g_ab: Accumulated gradient. # :return: The grad of `a`.`b` for `a` accumulated # with g_ab. # :note: The grad implemented is structured. # :note: a_* are the corresponding properties of a sparse # matrix in csr format. __props__ = () def make_node(self, a_indices, a_indptr, b, g_ab): return gof.Apply(self, [a_indices, a_indptr, b, g_ab], [tensor.tensor(b.dtype, (False,))]) def perform(self, node, inputs, outputs): (a_indices, a_indptr, b, g_ab) = inputs (out,) = outputs g_a_data = numpy.zeros(a_indices.shape, dtype=g_ab.dtype) for i in xrange(len(a_indptr) - 1): # loop over rows ind0 = a_indptr[i] ind1 = a_indptr[i + 1] # loop over values in that row (columns) for j_idx in xrange(ind0, ind1): j = a_indices[j_idx] # grad is dot product of i-th row of gradient with j-th row of b # Depending on the type of g_ab and b (sparse or dense), # the following dot product can result in a scalar or # a (1, 1) sparse matrix. dot_val = numpy.dot(g_ab[i], b[j].T) if isinstance(dot_val, scipy.sparse.spmatrix): dot_val = dot_val[0, 0] g_a_data[j_idx] = dot_val out[0] = g_a_data def c_code_cache_version(self): return (1,) def c_code(self, node, name, inputs, outputs, sub): (_indices, _indptr, _d, _g) = inputs (_zout,) = outputs if node.inputs[2].type.dtype in ('complex64', 'complex128'): raise NotImplementedError('Complex types are not supported for b') if node.inputs[3].type.dtype in ('complex64', 'complex128'): raise NotImplementedError('Complex types are not supported for ' 'g_ab') return """ if (PyArray_NDIM(%(_d)s) != 2) {PyErr_SetString(PyExc_NotImplementedError, "rank(d) != 2"); %(fail)s;} if (PyArray_NDIM(%(_g)s) != 2) {PyErr_SetString(PyExc_NotImplementedError, "rank(g) != 2"); %(fail)s;} if (PyArray_NDIM(%(_indices)s) != 1) {PyErr_SetString(PyExc_NotImplementedError, "rank(indices) != 1"); %(fail)s;} if (PyArray_NDIM(%(_indptr)s) != 1) {PyErr_SetString(PyExc_NotImplementedError, "rank(indptr) != 1"); %(fail)s;} if( PyArray_TYPE(%(_indices)s) != NPY_INT32) { PyErr_SetString(PyExc_NotImplementedError, "C"); %(fail)s;} if( PyArray_TYPE(%(_indptr)s) != NPY_INT32) {PyErr_SetString(PyExc_NotImplementedError, "D"); %(fail)s;} if( PyArray_DIMS(%(_d)s)[1] != PyArray_DIMS(%(_g)s)[1]) {PyErr_SetString(PyExc_NotImplementedError, "d and g have different numbers of columns"); %(fail)s;} if (!%(_zout)s || (PyArray_DIMS(%(_zout)s)[0] != PyArray_DIMS(%(_indices)s)[0])) { Py_XDECREF(%(_zout)s); %(_zout)s = (PyArrayObject*) PyArray_SimpleNew(1, PyArray_DIMS(%(_indices)s), PyArray_TYPE(%(_g)s)); } { //makes it compile even though labels jump over variable definitions. npy_intp nnz = PyArray_DIMS(%(_indices)s)[0]; // extract number of rows npy_intp N = PyArray_DIMS(%(_indptr)s)[0]-1; //TODO: error checking with this npy_intp Sindices = PyArray_STRIDES(%(_indices)s)[0]/PyArray_DESCR(%(_indices)s)->elsize; npy_intp Sindptr = PyArray_STRIDES(%(_indptr)s)[0]/PyArray_DESCR(%(_indptr)s)->elsize; const npy_intp Sd1 = PyArray_STRIDES(%(_d)s)[1]/PyArray_DESCR(%(_d)s)->elsize; const npy_intp Sg1 = PyArray_STRIDES(%(_g)s)[1]/PyArray_DESCR(%(_g)s)->elsize; const npy_intp K = PyArray_DIMS(%(_d)s)[1]; const npy_int32 * __restrict__ indptr = (npy_int32 *)PyArray_DATA(%(_indptr)s); const npy_int32 * __restrict__ indices = (npy_int32 *)PyArray_DATA(%(_indices)s); // loop over columns of sparse matrix for (npy_int32 i = 0; i < N; ++i) { // for each non-null value in the sparse row for (npy_int32 j_idx = indptr[i * Sindptr]; j_idx < indptr[(i+1) * Sindptr]; ++j_idx) { // extract column index of non-null value npy_int32 j = indices[j_idx * Sindices]; // extract j-th row of dense matrix const dtype_%(_d)s* __restrict__ d_row = (dtype_%(_d)s*)(PyArray_BYTES(%(_d)s) + PyArray_STRIDES(%(_d)s)[0] * j); if(j >= PyArray_DIMS(%(_d)s)[0]) {PyErr_SetString(PyExc_NotImplementedError, "G"); %(fail)s;} // extract corresponding row in gradient const dtype_%(_g)s* __restrict__ g_row = (dtype_%(_g)s*)(PyArray_BYTES(%(_g)s) + PyArray_STRIDES(%(_g)s)[0] * i); double ip = 0.0; // make sure that row index is not bigger than actual number of rows // Note: wouldn't the above operation fail if that were the case ? // when would this ever be true anyway ? if (i >= PyArray_DIMS(%(_g)s)[0]) {PyErr_SetString(PyExc_NotImplementedError, "H"); %(fail)s;} // perform dot product of dense and sparse rows for(int k = 0; k < K; ++k) { ip += d_row[k * Sd1] * g_row[k*Sg1]; } // write resulting gradient to sparse output ((dtype_%(_zout)s* __restrict__)(PyArray_BYTES(%(_zout)s) + j_idx * PyArray_STRIDES(%(_zout)s)[0]))[0] = ip; } } } """ % dict(locals(), **sub) def infer_shape(self, node, shapes): return [shapes[0]] sdg_csr = StructuredDotGradCSR() def structured_dot_grad(sparse_A, dense_B, ga): if sparse_A.type.format in ('csc', 'csr'): if sparse_A.type.format == 'csc': sdgcsx = sdg_csc CSx = CSC else: sdgcsx = sdg_csr CSx = CSR g_A_data = sdgcsx(csm_indices(sparse_A), csm_indptr(sparse_A), dense_B, ga) return CSx(g_A_data, csm_indices(sparse_A), csm_indptr(sparse_A), csm_shape(sparse_A)) else: raise NotImplementedError() class SamplingDot(gof.op.Op): # See doc in instance of this Op or function after this class definition. __props__ = () def make_node(self, x, y, p): x = tensor.as_tensor_variable(x) y = tensor.as_tensor_variable(y) p = as_sparse_variable(p) assert p.format in ["csr", "csc"] if not _is_sparse_variable(p): raise TypeError(p) # TODO: use it. dtype_out = scalar.upcast(x.type.dtype, y.type.dtype, p.type.dtype) # noqa return gof.Apply(self, [x, y, p], [p.type()]) def perform(self, node, inputs, outputs): (x, y, p) = inputs (out,) = outputs if _is_sparse(x): raise TypeError(x) if _is_sparse(y): raise TypeError(y) if not _is_sparse(p): raise TypeError(p) out[0] = p.__class__(p.multiply(numpy.dot(x, y.T))) def grad(self, inputs, gout): (x, y, p) = inputs (gz,) = gout rval = [ dot(p * gz, y), dot((p * gz).T, x), grad_not_implemented(self, 2, p) ] return rval def infer_shape(self, node, ins_shapes): return [ins_shapes[2]] sampling_dot = SamplingDot() """ Operand for calculating the dot product dot(`x`, `y`.T) = `z` when you only want to calculate a subset of `z`. It is equivalent to `p` o (`x` . `y`.T) where o is the element-wise product, `x` and `y` operands of the dot product and `p` is a matrix that contains 1 when the corresponding element of `z` should be calculated and 0 when it shouldn't. Note that SamplingDot has a different interface than `dot` because SamplingDot requires `x` to be a `m`x`k` matrix while `y` is a `n`x`k` matrix instead of the usual `k`x`n` matrix. Notes ----- It will work if the pattern is not binary value, but if the pattern doesn't have a high sparsity proportion it will be slower then a more optimized dot followed by a normal elemwise multiplication. The grad implemented is regular, i.e. not structured. Parameters ---------- x Tensor matrix. y Tensor matrix. p Sparse matrix in csr format. Returns ------- sparse matrix A dense matrix containing the dot product of `x` by `y`.T only where `p` is 1. """ class Dot(gof.op.Op): # See doc in instance of this Op or function after this class definition. __props__ = () def __str__(self): return "Sparse" + self.__class__.__name__ def infer_shape(self, node, shapes): xshp, yshp = shapes x, y = node.inputs if x.ndim == 2 and y.ndim == 2: return [(xshp[0], yshp[1])] if x.ndim == 1 and y.ndim == 2: return [(yshp[1],)] if x.ndim == 2 and y.ndim == 1: return [(xshp[0],)] if x.ndim == 1 and y.ndim == 1: return [()] raise NotImplementedError() def make_node(self, x, y): dtype_out = scalar.upcast(x.dtype, y.dtype) # Sparse dot product should have at least one sparse variable # as input. If the other one is not sparse, it has to be converted # into a tensor. if isinstance(x, scipy.sparse.spmatrix): x = as_sparse_variable(x) if isinstance(y, scipy.sparse.spmatrix): y = as_sparse_variable(y) x_is_sparse_var = _is_sparse_variable(x) y_is_sparse_var = _is_sparse_variable(y) if not x_is_sparse_var and not y_is_sparse_var: raise TypeError( "Sparse dot product should have at least one " "sparse variable as inputs, but the inputs are " "%s (%s) and %s (%s)." % (x, x.type, y, y.type)) if not x_is_sparse_var: x = tensor.as_tensor_variable(x) assert y.format in ["csr", "csc"] if x.ndim not in (1, 2): raise TypeError( 'theano.sparse.Dot: input 0 (0-indexed) must have ndim of ' '1 or 2, %d given.' % x.ndim) if not y_is_sparse_var: y = tensor.as_tensor_variable(y) assert x.format in ["csr", "csc"] if y.ndim not in (1, 2): raise TypeError( 'theano.sparse.Dot: input 1 (1-indexed) must have ndim of ' '1 or 2, %d given.' % y.ndim) if y.ndim == 1 or x.ndim == 1: bz = (False,) else: bz = (False, False) return gof.Apply(self, [x, y], [tensor.tensor(dtype=dtype_out, broadcastable=bz)]) def perform(self, node, inputs, out): x, y = inputs out = out[0] x_is_sparse = _is_sparse(x) y_is_sparse = _is_sparse(y) if not x_is_sparse and not y_is_sparse: raise TypeError(x) rval = x * y if x_is_sparse and y_is_sparse: rval = rval.toarray() out[0] = theano._asarray(rval, dtype=node.outputs[0].dtype) def grad(self, inputs, gout): (x, y) = inputs (gz,) = gout assert _is_sparse_variable(x) or _is_sparse_variable(y) rval = [] if _is_dense_variable(y): rval.append(tensor.dot(gz, y.T)) else: rval.append(dot(gz, y.T)) if _is_dense_variable(x): rval.append(tensor.dot(x.T, gz)) else: rval.append(dot(x.T, gz)) return rval _dot = Dot() def dot(x, y): """ Operation for efficiently calculating the dot product when one or all operands is sparse. Supported format are CSC and CSR. The output of the operation is dense. Parameters ---------- x Sparse or dense matrix variable. y Sparse or dense matrix variable. Returns ------- The dot product `x`.`y` in a dense format. Notes ----- The grad implemented is regular, i.e. not structured. At least one of `x` or `y` must be a sparse matrix. When the operation has the form dot(csr_matrix, dense) the gradient of this operation can be performed inplace by UsmmCscDense. This leads to significant speed-ups. """ if hasattr(x, 'getnnz'): x = as_sparse_variable(x) if hasattr(y, 'getnnz'): y = as_sparse_variable(y) x_is_sparse_variable = _is_sparse_variable(x) y_is_sparse_variable = _is_sparse_variable(y) if not x_is_sparse_variable and not y_is_sparse_variable: raise TypeError() return _dot(x, y) class Usmm(gof.op.Op): # See doc in instance of this Op or function after this class definition. # We don't implement the infer_shape as it is # inserted by optimization only. __props__ = () def __str__(self): return 'Usmm{no_inplace}' def make_node(self, alpha, x, y, z): if not _is_sparse_variable(x) and not _is_sparse_variable(y): # If x and y are tensor, we don't want to use this class # We should use Dot22 and Gemm in that case. raise TypeError(x) dtype_out = scalar.upcast(alpha.type.dtype, x.type.dtype, y.type.dtype, z.type.dtype) alpha = tensor.as_tensor_variable(alpha) z = tensor.as_tensor_variable(z) assert z.ndim == 2 assert alpha.type.broadcastable == (True,) * alpha.ndim if not _is_sparse_variable(x): x = tensor.as_tensor_variable(x) assert y.format in ["csr", "csc"] assert x.ndim == 2 if not _is_sparse_variable(y): y = tensor.as_tensor_variable(y) assert x.format in ["csr", "csc"] assert y.ndim == 2 return gof.Apply(self, [alpha, x, y, z], [tensor.tensor(dtype=dtype_out, broadcastable=(False, False))]) def perform(self, node, inputs, outputs): (alpha, x, y, z) = inputs (out,) = outputs x_is_sparse = _is_sparse(x) y_is_sparse = _is_sparse(y) if not x_is_sparse and not y_is_sparse: raise TypeError(x) rval = x * y if isinstance(rval, scipy.sparse.spmatrix): rval = rval.toarray() if rval.dtype == alpha.dtype: rval *= alpha # Faster because operation is inplace else: rval = rval * alpha if rval.dtype == z.dtype: rval += z # Faster because operation is inplace else: rval = rval + z out[0] = rval usmm = Usmm() """ Performs the expression `alpha` * `x` `y` + `z`. Parameters ---------- x Matrix variable. y Matrix variable. z Dense matrix. alpha A tensor scalar. Returns ------- The dense matrix resulting from `alpha` * `x` `y` + `z`. Notes ----- The grad is not implemented for this op. At least one of `x` or `y` must be a sparse matrix. """ class ConstructSparseFromList(gof.Op): # See doc in instance of this Op or function after this class definition. __props__ = () def make_node(self, x, values, ilist): """ Parameters ---------- x A dense matrix that specify the output shape. values A dense matrix with the values to use for output. ilist A dense vector with the same length as the number of rows of values. It specify where in the output to put the corresponding rows. This create a sparse matrix with the same shape as `x`. Its values are the rows of `values` moved. Pseudo-code:: output = csc_matrix.zeros_like(x, dtype=values.dtype) for in_idx, out_idx in enumerate(ilist): output[out_idx] = values[in_idx] """ x_ = theano.tensor.as_tensor_variable(x) values_ = theano.tensor.as_tensor_variable(values) ilist_ = theano.tensor.as_tensor_variable(ilist) if ilist_.type.dtype[:3] not in ('int', 'uin'): raise TypeError('index must be integers') if ilist_.type.ndim != 1: raise TypeError('index must be vector') if x_.type.ndim != 2: raise TypeError( 'cannot create a sparse matrix with %d dimensions' % x_.type.ndim) if values_.type.ndim != 2: raise TypeError( 'cannot create a sparse matrix from values with %d ndim' % values_.type.ndim) # We only need the shape of `x` in the perform # If we keep in the graph the x variable as input of the Apply node, # this can rise the memory usage. That is why the Apply node # take `x_.shape` as input and not `x`. return gof.Apply(self, [x_.shape, values_, ilist_], [csc_matrix(dtype=x.dtype)]) def perform(self, node, inp, out_): out_shape, values, ilist = inp out, = out_ rows, cols = values.shape assert rows == len(ilist) indptr = numpy.arange(cols + 1) * rows indices = as_strided(ilist, strides=(0, ilist.strides[0]), shape=(cols, ilist.shape[0])).flatten() data = values.T.flatten() out[0] = scipy.sparse.csc_matrix((data, indices, indptr), shape=out_shape, dtype=values.dtype) def infer_shape(self, node, ishapes): x = node.inputs[0] return [[x[0], x[1]]] def R_op(self, inputs, eval_points): if None in eval_points[:2]: return [None] return self.make_node(eval_points[0], eval_points[1], *inputs[2:]).outputs def connection_pattern(self, node): rval = [[True], [True], [False]] return rval def grad(self, inputs, grads): g_output, = grads x, y = inputs[:2] idx_list = inputs[2:] gx = g_output gy = theano.tensor.advanced_subtensor1(g_output, *idx_list) return [gx, gy] + [DisconnectedType()()] * len(idx_list) construct_sparse_from_list = ConstructSparseFromList() """ Constructs a sparse matrix out of a list of 2-D matrix rows. Notes ----- The grad implemented is regular, i.e. not structured. """
{ "content_hash": "8224195eefc42da84cbec3a82d51b884", "timestamp": "", "source": "github", "line_count": 4370, "max_line_length": 133, "avg_line_length": 28.402517162471394, "alnum_prop": 0.5572877641618125, "repo_name": "marcsans/cnn-physics-perception", "id": "dad078afe6e7447800efbab9f699cb0299739660", "size": "124119", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "phy/lib/python2.7/site-packages/theano/sparse/basic.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "489272" }, { "name": "C++", "bytes": "3521811" }, { "name": "CSS", "bytes": "7132" }, { "name": "Cuda", "bytes": "232079" }, { "name": "FORTRAN", "bytes": "9868" }, { "name": "HTML", "bytes": "131419" }, { "name": "JavaScript", "bytes": "23881" }, { "name": "Jupyter Notebook", "bytes": "16254" }, { "name": "Makefile", "bytes": "75861" }, { "name": "Matlab", "bytes": "4346" }, { "name": "Objective-C", "bytes": "567" }, { "name": "Python", "bytes": "36682149" }, { "name": "Shell", "bytes": "3878" }, { "name": "TeX", "bytes": "14053" } ], "symlink_target": "" }
from rest_framework import viewsets from .models import Note from .serializers import NoteSerializer class NotesViewSet(viewsets.ModelViewSet): queryset = Note.objects.all() serializer_class = NoteSerializer
{ "content_hash": "dc2d99c90780844a4cbd52f5f1bcff57", "timestamp": "", "source": "github", "line_count": 8, "max_line_length": 42, "avg_line_length": 27.25, "alnum_prop": 0.7981651376146789, "repo_name": "xunil154/ExampleREST", "id": "0de645b0ea458e896f43a9a51de2bcc5f5ce2f47", "size": "218", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "example/notes/views.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "4714" } ], "symlink_target": "" }
__author__ = 'pp' __version__ = '1.0.0' import os import re import copy import time class TextFileInfo(object): def __init__(self, file_id, extension=None, delimiter=None, quotechar=None): self.file_id = file_id self.extension = 'csv' if extension is None else extension self.delimiter = ',' if delimiter is None else delimiter self.quotechar = '|' if quotechar is None else quotechar class FileIterator(object): def __init__(self, path=None, include='.*', exclude=None): self.path = path self.include_patterns = include if isinstance(include, list) else [include] if isinstance(include, str) else [] self.exclude_patterns = exclude if isinstance(exclude, list) else [exclude] if isinstance(exclude, str) else [] def get_next_file( self, path=None, include=None, exclude=None, predicate=None, so='t', only_directories=False, timestamp_filter=None ): """ Iterator over a list of recursively child files (filtered and sorted) :param path: str - parent directory path :param include: - str o list - pattern (str) or list of patterns to be matched against each file fullpath. The checked file will be INCLUDED iff ALL patterns match (AND) :param exclude: - str o list - pattern (str) or list of patterns ([str,])to be matched against each file fullpath The file will be EXLUDED iff exists at least one match with any of the patterns (OR) :param predicate: fn - function to be evaluated on each file fullpath. The file will be included iff predicate returns True, ignored otherwise :param so: str - Criteria for classification of the final list of included files: t: by file creation timestamp, oldest first T: by file creation timestamp, newest first n: by name, ascendent (a-z) N: by name, descendent (z-a) :param only_directories: bool :param timestamp_filter: timestamp - If indicated, all files returned must have creation time greater than it :return: iterator """ _path = self.path if path is None else path if _path is None: raise Exception('FileIterator path is mandatory') _path = _path.replace('\\', '/') if not os.path.exists(_path): raise Exception('FileIterator path not exists') _include_patterns = [] if include is not None: if isinstance(include, list): _include_patterns = include elif isinstance(include, str): _include_patterns = [include] else: _include_patterns = self.include_patterns _exclude_patterns = [] if exclude is not None: if isinstance(exclude, list): _exclude_patterns = exclude elif isinstance(exclude, str): _exclude_patterns = [exclude] else: _exclude_patterns = self.exclude_patterns filtered = [] filenames = [] for root, dirs, files in os.walk(_path): if only_directories: if root != _path: filenames.append(root) else: filenames += [os.path.join(root, f).replace('\\', '/') for f in files] for fullpath in filenames: if timestamp_filter is not None: if time.mktime(timestamp_filter.timetuple()) > os.path.getmtime(fullpath): continue fail = False for include_pattern in _include_patterns: if not re.compile(include_pattern).search(fullpath): fail = True break if fail: continue for exclude_pattern in _exclude_patterns: if re.compile(exclude_pattern).search(fullpath): fail = True break if fail: continue if predicate is not None and hasattr(predicate, '__call__'): if not predicate(fullpath): continue filtered.append(dict(fullpath=fullpath, mtime=int(os.path.getmtime(fullpath)))) if len(filtered): if so in ('t', 'T'): filtered = sorted(filtered, key=lambda k: k['mtime'], reverse=(so == 'T')) elif so in ('n', 'N'): filtered = sorted(filtered, key=lambda k: k['fullpath'], reverse=(so == 'N')) for f in filtered: yield f['fullpath'] def file_existence_validator_from_path(patterns_to_validate, path, include=None, exclude=None): """ Helper for validate files existence :param patterns_to_validate: :param path: :param include: :param exclude: :return: """ validated_patterns = copy.deepcopy(patterns_to_validate) iterator = FileIterator() for f in iterator.get_next_file(path=path, include=include, exclude=exclude): validated_patterns = _validate_files_against_paterns(f, patterns_to_validate, validated_patterns) return dict(count=validated_patterns, result=reduce(lambda x, key: x and validated_patterns[key] == 0, validated_patterns.keys(), True)) def file_existence_validator_from_list(patterns_to_validate, files): validated_patterns = copy.deepcopy(patterns_to_validate) for f in files: validated_patterns = _validate_files_against_paterns(f, patterns_to_validate, validated_patterns) return dict(count=validated_patterns, result=reduce(lambda x, key: x and validated_patterns[key] == 0, validated_patterns.keys(), True)) def _validate_files_against_paterns(f, patterns_to_validate, validated_patterns): for k in patterns_to_validate: if re.match(k, os.path.basename(f)): validated_patterns[k] -= 1 break return validated_patterns def remove_tail_lines(filepath, nlines): f = open(filepath, 'r+') f.seek(0, os.SEEK_END) pos = f.tell() - 1 line_counter = 0 while pos > 0 and line_counter < nlines: if f.read(1) == '\n': line_counter += 1 if line_counter < nlines: pos -= 1 f.seek(pos, os.SEEK_SET) if pos > 0: f.seek(pos, os.SEEK_SET) f.truncate() f.close()
{ "content_hash": "1af077e9b3fc7fcbfbd8c59d8f71a30f", "timestamp": "", "source": "github", "line_count": 168, "max_line_length": 140, "avg_line_length": 38.17261904761905, "alnum_prop": 0.5928582566661469, "repo_name": "Cocuyo-Labs-Team/ccytsk", "id": "a697105f5b52de3e1a06a8ff9bb0ad5f4d2607aa", "size": "6428", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ccytsk/core/files.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "244478" } ], "symlink_target": "" }
'''This utility cleans up the html files as emitted by doxygen so that they are suitable for publication on a Google documentation site. ''' import glob import optparse import os import re import shutil import sys try: from BeautifulSoup import BeautifulSoup, Tag except (ImportError, NotImplementedError): print ("This tool requires the BeautifulSoup package " "(see http://www.crummy.com/software/BeautifulSoup/).\n" "Make sure that the file BeautifulSoup.py is either in this directory " "or is available in your PYTHON_PATH") raise def Trace(msg): if Trace.verbose: sys.stderr.write(str(msg) + '\n') Trace.verbose = False FILES_TO_REMOVE = [ '*.css', '*.map', '*.md5', 'annotated.html', 'bc_s.png', 'classes.html', 'closed.png', 'doxygen.png', 'files.html', 'functions*.html', 'globals_0x*.html', 'globals_enum.html', 'globals_eval.html', 'globals_func.html', 'globals.html', 'globals_type.html', 'globals_vars.html', 'graph_legend.html', 'graph_legend.png', 'hierarchy.html', 'index_8dox.html', 'index.html', 'modules.html', 'namespacemembers_func.html', 'namespacemembers.html', 'namespaces.html', 'nav_f.png', 'nav_h.png', 'open.png', 'tab_a.png', 'tab_b.png', 'tab_h.png', 'tab_s.png', ] class HTMLFixer(object): '''This class cleans up the html strings as produced by Doxygen ''' def __init__(self, html): self.soup = BeautifulSoup(html) def FixTableHeadings(self): '''Fixes the doxygen table headings. This includes: - Using bare <h2> title row instead of row embedded in <tr><td> in table - Putting the "name" attribute into the "id" attribute of the <tr> tag. - Splitting up tables into multiple separate tables if a table heading appears in the middle of a table. For example, this html: <table> <tr><td colspan="2"><h2><a name="pub-attribs"></a> Data Fields List</h2></td></tr> ... </table> would be converted to this: <h2>Data Fields List</h2> <table> ... </table> ''' table_headers = [] for tag in self.soup.findAll('tr'): if tag.td and tag.td.h2 and tag.td.h2.a and tag.td.h2.a['name']: #tag['id'] = tag.td.h2.a['name'] tag.string = tag.td.h2.a.next tag.name = 'h2' table_headers.append(tag) # reverse the list so that earlier tags don't delete later tags table_headers.reverse() # Split up tables that have multiple table header (th) rows for tag in table_headers: Trace("Header tag: %s is %s" % (tag.name, tag.string.strip())) # Is this a heading in the middle of a table? if tag.findPreviousSibling('tr') and tag.parent.name == 'table': Trace("Splitting Table named %s" % tag.string.strip()) table = tag.parent table_parent = table.parent table_index = table_parent.contents.index(table) new_table = Tag(self.soup, name='table', attrs=table.attrs) table_parent.insert(table_index + 1, new_table) tag_index = table.contents.index(tag) for index, row in enumerate(table.contents[tag_index:]): new_table.insert(index, row) # Now move the <h2> tag to be in front of the <table> tag assert tag.parent.name == 'table' table = tag.parent table_parent = table.parent table_index = table_parent.contents.index(table) table_parent.insert(table_index, tag) def RemoveTopHeadings(self): '''Removes <div> sections with a header, tabs, or navpath class attribute''' header_tags = self.soup.findAll( name='div', attrs={'class' : re.compile('^(header|tabs[0-9]*|navpath)$')}) [tag.extract() for tag in header_tags] def RemoveVersionNumbers(self, html): '''Horrible hack to strip _#_# from struct names.''' return re.sub(r'(_\d_\d)(?=[": <])', '', html) def FixAll(self): self.FixTableHeadings() self.RemoveTopHeadings() html = str(self.soup) html = self.RemoveVersionNumbers(html) return html def main(argv): """Main entry for the doxy_cleanup utility doxy_cleanup cleans up the html files generated by doxygen. """ parser = optparse.OptionParser(usage='Usage: %prog [options] directory') parser.add_option('-v', '--verbose', help='verbose output.', action='store_true') options, files = parser.parse_args(argv) if len(files) != 1: parser.error('Expected one directory') if options.verbose: Trace.verbose = True root_dir = files[0] html_dir = os.path.join(root_dir, 'html') # Doxygen puts all files in an 'html' directory. # First, move all files from that directory to root_dir. for filename in glob.glob(os.path.join(html_dir, '*')): Trace('Moving %s -> %s' % (filename, root_dir)) shutil.move(filename, root_dir) # Now remove the 'html' directory. Trace('Removing %s' % html_dir) os.rmdir(html_dir) # Then remove unneeded files. for wildcard in FILES_TO_REMOVE: Trace('Removing "%s":' % wildcard) path = os.path.join(root_dir, wildcard) for filename in glob.glob(path): Trace(' Removing "%s"' % filename) os.remove(filename) # Now, fix the HTML files we've kept. Trace('Fixing HTML files...') for root, _, files in os.walk(root_dir): for filename in files: if not os.path.splitext(filename)[1] == '.html': Trace('Skipping %s' % filename) continue filename = os.path.join(root, filename) Trace('Processing "%s"...' % filename) try: with open(filename) as f: html = f.read() fixer = HTMLFixer(html) output = fixer.FixAll() with open(filename, 'w') as f: f.write(output) except: sys.stderr.write("Error while processing %s\n" % filename) raise return 0 if __name__ == '__main__': try: rtn = main(sys.argv[1:]) except KeyboardInterrupt: sys.stderr.write('%s: interrupted\n' % os.path.basename(__file__)) rtn = 1 sys.exit(rtn)
{ "content_hash": "c362812b84db837d6ff578123b19a9ec", "timestamp": "", "source": "github", "line_count": 213, "max_line_length": 80, "avg_line_length": 28.483568075117372, "alnum_prop": 0.626174386022746, "repo_name": "krieger-od/nwjs_chromium.src", "id": "d90f214f8e4f78a56be1a78a345091e354cbb0f3", "size": "6256", "binary": false, "copies": "9", "ref": "refs/heads/master", "path": "native_client_sdk/src/doc/doxygen/doxy_cleanup.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "AppleScript", "bytes": "6973" }, { "name": "Arduino", "bytes": "464" }, { "name": "Assembly", "bytes": "23945" }, { "name": "Batchfile", "bytes": "8451" }, { "name": "C", "bytes": "4123085" }, { "name": "C++", "bytes": "225911506" }, { "name": "CSS", "bytes": "875874" }, { "name": "Dart", "bytes": "74976" }, { "name": "Go", "bytes": "18155" }, { "name": "HTML", "bytes": "27190037" }, { "name": "Java", "bytes": "7645280" }, { "name": "JavaScript", "bytes": "18828195" }, { "name": "Makefile", "bytes": "96270" }, { "name": "Objective-C", "bytes": "1228317" }, { "name": "Objective-C++", "bytes": "7573158" }, { "name": "PHP", "bytes": "97817" }, { "name": "PLpgSQL", "bytes": "248854" }, { "name": "Perl", "bytes": "63937" }, { "name": "Protocol Buffer", "bytes": "418340" }, { "name": "Python", "bytes": "8032628" }, { "name": "Shell", "bytes": "464218" }, { "name": "Standard ML", "bytes": "4965" }, { "name": "XSLT", "bytes": "418" }, { "name": "nesC", "bytes": "18335" } ], "symlink_target": "" }
import os import os.path as osp import sys import click import torch import torchfcn import yaml from dataset import DatasetV1 this_dir = osp.dirname(osp.realpath(__file__)) def git_hash(): import shlex import subprocess cmd = 'git log -n 1 --pretty="%h"' hash = subprocess.check_output(shlex.split(cmd)).strip() return hash def load_config(config_file): import datetime import pytz config = yaml.load(open(config_file)) assert 'max_iteration' in config assert 'optimizer' in config assert 'lr' in config assert 'weight_decay' in config assert 'aug' in config now = datetime.datetime.now(pytz.timezone('Asia/Tokyo')) now = now.replace(tzinfo=None) out = osp.splitext(osp.basename(config_file))[0] setting = osp.basename(osp.dirname(osp.abspath(config_file))) for key, value in sorted(config.items()): if isinstance(value, basestring): value = value.replace('/', 'SLASH') value = value.replace(':', 'COLON') out += '_{key}-{value}'.format(key=key.upper(), value=value) out += '_VCS-%s' % git_hash() out += '_TIME-%s' % now.strftime('%Y%m%d-%H%M%S') config['out'] = osp.join(this_dir, 'logs', setting, out) config['config_file'] = osp.realpath(config_file) config['timestamp'] = datetime.datetime.now( pytz.timezone('Asia/Tokyo')).isoformat() if not osp.exists(config['out']): os.makedirs(config['out']) with open(osp.join(config['out'], 'params.yaml'), 'w') as f: yaml.safe_dump(config, f, default_flow_style=False) return config @click.command() @click.argument('config_file', type=click.Path(exists=True)) @click.option('--resume', type=click.Path(exists=True)) def main(config_file, resume): config = load_config(config_file) yaml.safe_dump(config, sys.stderr, default_flow_style=False) cuda = torch.cuda.is_available() seed = 1 torch.manual_seed(seed) if cuda: torch.cuda.manual_seed(seed) # 1. dataset kwargs = {'num_workers': 4, 'pin_memory': True} if cuda else {} train_loader = torch.utils.data.DataLoader( DatasetV1(split='train', transform=True, aug=config['aug']), batch_size=config.get('batch_size', 1), shuffle=True, **kwargs) valid_loader = torch.utils.data.DataLoader( DatasetV1(split='valid', transform=True, aug=config['aug']), batch_size=1, shuffle=False, **kwargs) # 2. model n_class = len(DatasetV1.class_names) model = torchfcn.models.FCN32s(n_class=n_class, nodeconv=True) start_epoch = 0 if resume: checkpoint = torch.load(resume) model.load_state_dict(checkpoint['model_state_dict']) start_epoch = checkpoint['epoch'] else: vgg16 = torchfcn.models.VGG16(pretrained=True) model.copy_params_from_vgg16(vgg16, copy_fc8=False, init_upscore=False) if cuda: model = model.cuda() # 3. optimizer optim = getattr(torch.optim, config['optimizer']) optim = optim(model.parameters(), lr=config['lr'], weight_decay=config['weight_decay']) if resume: optim.load_state_dict(checkpoint['optim_state_dict']) trainer = torchfcn.Trainer( cuda=cuda, model=model, optimizer=optim, train_loader=train_loader, val_loader=valid_loader, out=config['out'], max_iter=config['max_iteration'], ) trainer.epoch = start_epoch trainer.iteration = start_epoch * len(train_loader) trainer.train() if __name__ == '__main__': main()
{ "content_hash": "32e1bd03186a63a78393ffda7152e5e6", "timestamp": "", "source": "github", "line_count": 122, "max_line_length": 79, "avg_line_length": 29.442622950819672, "alnum_prop": 0.6322383073496659, "repo_name": "pazeshun/jsk_apc", "id": "168fefc28a879c21e4390531ea9208a18e7b30d8", "size": "3615", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "jsk_arc2017_common/experiments/fcn_object_segmentation/train_fcn32s.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "C++", "bytes": "101871" }, { "name": "CMake", "bytes": "42995" }, { "name": "Common Lisp", "bytes": "695864" }, { "name": "Dockerfile", "bytes": "1503" }, { "name": "HTML", "bytes": "6364" }, { "name": "Python", "bytes": "406153" }, { "name": "Shell", "bytes": "4475" } ], "symlink_target": "" }
"""Unit tests for parser ccio module.""" import os import tempfile import unittest import cclib class guess_fileypeTest(unittest.TestCase): def setUp(self): self.guess = cclib.io.ccio.guess_filetype def test_fail(self): """Does the function fail as expected?""" self.assertIsNone(self.guess([])) self.assertIsNone(self.guess(None)) self.assertIsNone(self.guess(os.devnull)) self.assertIsNone(self.guess(['test', 'random', 'quantum chemistry'])) def test_programs(self): """Does the function catch programs as expected?""" self.assertEqual(self.guess(["Amsterdam Density Functional"]), cclib.parser.ADF) self.assertEqual(self.guess(['Dalton - An Electronic Structure Program']), cclib.parser.DALTON) self.assertEqual(self.guess(['GAMESS']), cclib.parser.GAMESS) self.assertEqual(self.guess(['G A M E S S - U K']), cclib.parser.GAMESSUK) self.assertEqual(self.guess(['Gaussian, Inc.']), cclib.parser.Gaussian) self.assertEqual(self.guess(['Jaguar']), cclib.parser.Jaguar) self.assertEqual(self.guess(['PROGRAM SYSTEM MOLPRO']), cclib.parser.Molpro) self.assertEqual(self.guess(['MOPAC2016']), cclib.parser.MOPAC) self.assertEqual(self.guess(['Northwest Computational Chemistry Package']), cclib.parser.NWChem) self.assertEqual(self.guess(['O R C A']), cclib.parser.ORCA) self.assertEqual(self.guess(["PSI ...Ab Initio Electronic Structure"]), cclib.parser.Psi) self.assertEqual(self.guess(['A Quantum Leap Into The Future Of Chemistry']), cclib.parser.QChem) class ccreadTest(unittest.TestCase): def setUp(self): self.ccread = cclib.io.ccio.ccread def test_fail(self): """Does the function fail as expected?""" self.assertIsNone(self.ccread("", quiet=True)) self.assertIsNone(self.ccread([], quiet=True)) self.assertIsNone(self.ccread(None, quiet=True)) class ccopenTest(unittest.TestCase): def setUp(self): self.ccopen = cclib.io.ccio.ccopen def test_ccopen_fail(self): """Does the function fail as expected?""" self.assertIsNone(self.ccopen("", quiet=True)) self.assertIsNone(self.ccopen([], quiet=True)) self.assertIsNone(self.ccopen(None, quiet=True)) def test_cjson_empty_tempfile(self): """Do we get a CJSON object when the keyword argument used?""" with tempfile.NamedTemporaryFile() as tf: self.assertIsInstance(self.ccopen(tf.name, cjson=True), cclib.io.cjsonreader.CJSON) # This should also work if cjsonreader supported streams. #def test_cjson(self): # """Do we get a CJSON object then keyword argument used?""" # self.assertIsInstance(self.ccopen(StringIO.StringIO(""), cjson=True), cclib.io.cjsonreader.CJSON) class fallbackTest(unittest.TestCase): def setUp(self): self.fallback = cclib.io.ccio.fallback def test_fallback_fail(self): """Does the functin fail as expected?""" self.assertIsNone(self.fallback(None)) if __name__ == "__main__": unittest.main()
{ "content_hash": "5e281538976a82015a3ff99880c6de7e", "timestamp": "", "source": "github", "line_count": 83, "max_line_length": 106, "avg_line_length": 37.93975903614458, "alnum_prop": 0.667513496348047, "repo_name": "Schamnad/cclib", "id": "d7a03d4b77f0d6a7c43ce0cc28b705bfdb867b70", "size": "3347", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "test/io/testccio.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Arc", "bytes": "18395" }, { "name": "DIGITAL Command Language", "bytes": "21581" }, { "name": "Python", "bytes": "836753" }, { "name": "Shell", "bytes": "867" }, { "name": "TeX", "bytes": "29388" } ], "symlink_target": "" }
""" Created on 6 Feb 2018 @author: Bruno Beloff (bruno.beloff@southcoastscience.com) Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter https://www.embeddedrelated.com/showarticle/779.php """ # -------------------------------------------------------------------------------------------------------------------- class LowPassFilter(object): """ classdocs """ @classmethod def construct(cls, delta_t, cut_off_frequency): tau = 1 / cut_off_frequency alpha = delta_t / tau return LowPassFilter(alpha) # ---------------------------------------------------------------------------------------------------------------- def __init__(self, alpha): """ Constructor """ self.__alpha = alpha self.__y = None def reset(self): self.__y = None # ---------------------------------------------------------------------------------------------------------------- def compute(self, x): if self.__y is None: self.__y = x self.__y += self.__alpha * (x - self.__y) return self.__y # ---------------------------------------------------------------------------------------------------------------- def __str__(self, *args, **kwargs): return "LowPassFilter:{alpha:%s, y:%s}" % (self.__alpha, self.__y)
{ "content_hash": "ea1dd972b9fde47c8c32e095d0aeb240", "timestamp": "", "source": "github", "line_count": 54, "max_line_length": 118, "avg_line_length": 25.40740740740741, "alnum_prop": 0.358600583090379, "repo_name": "south-coast-science/scs_core", "id": "2d64fd8fb268792019bf3f838732f776febe8339", "size": "1372", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "src/scs_core/data/low_pass_filter.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "1461551" } ], "symlink_target": "" }
""" Copyright (c) 2011, 2012, Regents of the University of California All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ """ @author Stephen Dawson-Haggerty <stevedh@eecs.berkeley.edu> """ import os import sys from zope.interface import implements from twisted.python import usage from twisted.plugin import IPlugin from twisted.application.service import IServiceMaker from twisted.application import internet from twisted.internet import reactor from twisted.application.service import MultiService from smap import core, loader, smapconf from smap.server import getSite try: from smap.ssl import SslServerContextFactory except ImportError: pass class Options(usage.Options): optParameters = [["data-dir", "d", None, "directory for data"], ["port", "p", None, "service port number"], ["sslport", "s", None, "ssl port number"], ["key", "k", None, "ssl server key"], ["cert", "c", None, "ssl crl list"]] def parseArgs(self, conf): self['conf'] = conf if not os.access(self['conf'], os.R_OK): print >>sys.stderr, "ERROR: no such configuration file: " + self['conf'] sys.exit(1) class SmapServiceMaker(object): implements(IServiceMaker, IPlugin) tapname = "smap" description = "A sMAP server" options = Options def makeService(self, options): if options['data-dir'] != None: if not os.access(options['data-dir'], os.X_OK | os.W_OK): raise core.SmapException("Cannot access " + options['data-dir']) smapconf.SERVER['DataDir'] = options['data-dir'] inst = loader.load(options['conf']) # override defaults with command-line args smapconf.SERVER.update(dict([(k.lower(), v) for (k, v) in options.iteritems() if v != None])) if 'SuggestThreadPool' in smapconf.SERVER: reactor.suggestThreadPoolSize(int(smapconf.SERVER['SuggestThreadPool'])) inst.start() reactor.addSystemEventTrigger('before', 'shutdown', inst.stop) site = getSite(inst, docroot=smapconf.SERVER['docroot']) service = MultiService() # add HTTP and HTTPS servers to the twisted multiservice if 'port' in smapconf.SERVER: service.addService(internet.TCPServer(int(smapconf.SERVER['port']), site)) if 'sslport' in smapconf.SERVER: service.addService(internet.SSLServer(int(smapconf.SERVER['sslport']), site, SslServerContextFactory(smapconf.SERVER))) return service serviceMaker = SmapServiceMaker()
{ "content_hash": "c172769fbe7d1d5f5a9385e99d4fb69d", "timestamp": "", "source": "github", "line_count": 101, "max_line_length": 92, "avg_line_length": 39.42574257425743, "alnum_prop": 0.6762933199397287, "repo_name": "immesys/smap", "id": "642821e58d1d9bff65c19866804bda33d936a15b", "size": "3982", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "python/twisted/plugins/smap_plugin.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "C", "bytes": "301328" }, { "name": "Perl", "bytes": "534" }, { "name": "Python", "bytes": "1381824" }, { "name": "R", "bytes": "8015" }, { "name": "Shell", "bytes": "557" }, { "name": "XSLT", "bytes": "5081" } ], "symlink_target": "" }
import fileinput import string import sys import os # Goldstone old fortran_compiler = 'ifort' fortran_link_flags = '-O1 -mtune=core2 -msse3 -align ' fortran_opt_flags = '-O3 -mtune=core2 -msse3 -align -DBIGBLOCK=8 -c ' src_dir = '/home/jeff/code/spaghetty_backup/python/archive/src/' exe_dir = '/home/jeff/code/spaghetty_backup/python/archive/exe/' lib_name = 'tce_sort_new.a' modlabel = '' def perm(l): sz = len(l) if sz <= 1: return [l] return [p[:i]+[l[0]]+p[i:] for i in xrange(sz) for p in perm(l[1:])] indices = ['4','3','2','1'] #all_permutations = perm(indices) #all_permutations = [indices] transpose_list = [indices] #loop_list = perm(indices) #transpose_list = perm(indices) loop_list = perm(indices) for transpose_order in transpose_list: A = transpose_order[0] B = transpose_order[1] C = transpose_order[2] D = transpose_order[3] for loop_order in loop_list: a = loop_order[0] b = loop_order[1] c = loop_order[2] d = loop_order[3] subroutine_name = 'transpose_'+A+B+C+D+'_loop_'+a+b+c+d+modlabel source_name = subroutine_name+'.F' print fortran_compiler+' '+fortran_opt_flags+' '+src_dir+source_name os.system(fortran_compiler+' '+fortran_opt_flags+' '+src_dir+source_name) os.system('ar -r '+lib_name+' '+subroutine_name+'.o') os.system('rm '+subroutine_name+'.o') #os.system('mv '+subroutine_name+'.F '+src_dir)
{ "content_hash": "3ffe4138dd4cccdfc97c0ab41296d446", "timestamp": "", "source": "github", "line_count": 49, "max_line_length": 75, "avg_line_length": 28.224489795918366, "alnum_prop": 0.6616052060737527, "repo_name": "jeffhammond/spaghetty", "id": "bffc36b134cb5c5553413b98a6620e1ef2708081", "size": "1383", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "branches/spaghetty3/python/archive/compile_source_basic.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "C", "bytes": "28448" }, { "name": "C++", "bytes": "54394" }, { "name": "Cuda", "bytes": "176198" }, { "name": "FORTRAN", "bytes": "237825" }, { "name": "Perl", "bytes": "420" }, { "name": "Python", "bytes": "855226" }, { "name": "Shell", "bytes": "6989" }, { "name": "TeX", "bytes": "290786" } ], "symlink_target": "" }
""" Fix a word-processor-generated styles.odt for odtwriter use: Drop page size specifications from styles.xml in STYLE_FILE.odt. """ # # Author: Michael Schutte <michi@uiae.at> from lxml import etree import sys import zipfile from tempfile import mkstemp import shutil import os NAMESPACES = { "style": "urn:oasis:names:tc:opendocument:xmlns:style:1.0", "fo": "urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0" } def prepstyle(filename): zin = zipfile.ZipFile(filename) styles = zin.read("styles.xml") root = etree.fromstring(styles) for el in root.xpath("//style:page-layout-properties", namespaces=NAMESPACES): for attr in el.attrib: if attr.startswith("{%s}" % NAMESPACES["fo"]): del el.attrib[attr] tempname = mkstemp() zout = zipfile.ZipFile(os.fdopen(tempname[0], "w"), "w", zipfile.ZIP_DEFLATED) for item in zin.infolist(): if item.filename == "styles.xml": zout.writestr(item, etree.tostring(root)) else: zout.writestr(item, zin.read(item.filename)) zout.close() zin.close() shutil.move(tempname[1], filename) def main(): args = sys.argv[1:] if len(args) != 1: print >> sys.stderr, __doc__ print >> sys.stderr, "Usage: %s STYLE_FILE.odt\n" % sys.argv[0] sys.exit(1) filename = args[0] prepstyle(filename) if __name__ == '__main__': main() # vim:tw=78:sw=4:sts=4:et:
{ "content_hash": "d4eee9e702fc38682d30664a7ff67dc6", "timestamp": "", "source": "github", "line_count": 61, "max_line_length": 75, "avg_line_length": 24.672131147540984, "alnum_prop": 0.6132890365448505, "repo_name": "cloudera/hue", "id": "b0b7dccd80df68327768e8d61adbb7a9397571c4", "size": "1701", "binary": false, "copies": "20", "ref": "refs/heads/master", "path": "desktop/core/ext-py/docutils-0.14/tools/rst2odt_prepstyles.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "ABAP", "bytes": "962" }, { "name": "ActionScript", "bytes": "1133" }, { "name": "Ada", "bytes": "99" }, { "name": "Assembly", "bytes": "2347" }, { "name": "AutoHotkey", "bytes": "720" }, { "name": "BASIC", "bytes": "2884" }, { "name": "Batchfile", "bytes": "143575" }, { "name": "C", "bytes": "5129166" }, { "name": "C#", "bytes": "83" }, { "name": "C++", "bytes": "718011" }, { "name": "COBOL", "bytes": "4" }, { "name": "CSS", "bytes": "680715" }, { "name": "Cirru", "bytes": "520" }, { "name": "Clojure", "bytes": "794" }, { "name": "Closure Templates", "bytes": "1072" }, { "name": "CoffeeScript", "bytes": "403" }, { "name": "ColdFusion", "bytes": "86" }, { "name": "Common Lisp", "bytes": "632" }, { "name": "Cython", "bytes": "1016963" }, { "name": "D", "bytes": "324" }, { "name": "Dart", "bytes": "489" }, { "name": "Dockerfile", "bytes": "13576" }, { "name": "EJS", "bytes": "752" }, { "name": "Eiffel", "bytes": "375" }, { "name": "Elixir", "bytes": "692" }, { "name": "Elm", "bytes": "487" }, { "name": "Emacs Lisp", "bytes": "411907" }, { "name": "Erlang", "bytes": "487" }, { "name": "Forth", "bytes": "979" }, { "name": "FreeMarker", "bytes": "1017" }, { "name": "G-code", "bytes": "521" }, { "name": "GAP", "bytes": "29873" }, { "name": "GLSL", "bytes": "512" }, { "name": "Genshi", "bytes": "946" }, { "name": "Gherkin", "bytes": "699" }, { "name": "Go", "bytes": "641" }, { "name": "Groovy", "bytes": "1080" }, { "name": "HTML", "bytes": "28328425" }, { "name": "Haml", "bytes": "920" }, { "name": "Handlebars", "bytes": "173" }, { "name": "Haskell", "bytes": "512" }, { "name": "Haxe", "bytes": "447" }, { "name": "HiveQL", "bytes": "43" }, { "name": "Io", "bytes": "140" }, { "name": "Java", "bytes": "457398" }, { "name": "JavaScript", "bytes": "39181239" }, { "name": "Jinja", "bytes": "356" }, { "name": "Julia", "bytes": "210" }, { "name": "LSL", "bytes": "2080" }, { "name": "Lean", "bytes": "213" }, { "name": "Less", "bytes": "396102" }, { "name": "Lex", "bytes": "218764" }, { "name": "Liquid", "bytes": "1883" }, { "name": "LiveScript", "bytes": "5747" }, { "name": "Lua", "bytes": "78382" }, { "name": "M4", "bytes": "1751" }, { "name": "MATLAB", "bytes": "203" }, { "name": "Makefile", "bytes": "1025937" }, { "name": "Mako", "bytes": "3644004" }, { "name": "Mask", "bytes": "597" }, { "name": "Myghty", "bytes": "936" }, { "name": "Nix", "bytes": "2212" }, { "name": "OCaml", "bytes": "539" }, { "name": "Objective-C", "bytes": "2672" }, { "name": "OpenSCAD", "bytes": "333" }, { "name": "PHP", "bytes": "662" }, { "name": "PLSQL", "bytes": "29403" }, { "name": "PLpgSQL", "bytes": "6006" }, { "name": "Pascal", "bytes": "84273" }, { "name": "Perl", "bytes": "4327" }, { "name": "PigLatin", "bytes": "371" }, { "name": "PowerShell", "bytes": "6235" }, { "name": "Procfile", "bytes": "47" }, { "name": "Pug", "bytes": "584" }, { "name": "Python", "bytes": "92881549" }, { "name": "R", "bytes": "2445" }, { "name": "Roff", "bytes": "484108" }, { "name": "Ruby", "bytes": "1098" }, { "name": "Rust", "bytes": "495" }, { "name": "SCSS", "bytes": "78508" }, { "name": "Sass", "bytes": "770" }, { "name": "Scala", "bytes": "1541" }, { "name": "Scheme", "bytes": "559" }, { "name": "Shell", "bytes": "249165" }, { "name": "Smarty", "bytes": "130" }, { "name": "SourcePawn", "bytes": "948" }, { "name": "Stylus", "bytes": "682" }, { "name": "Tcl", "bytes": "899" }, { "name": "TeX", "bytes": "165743" }, { "name": "Thrift", "bytes": "341963" }, { "name": "Twig", "bytes": "761" }, { "name": "TypeScript", "bytes": "1241396" }, { "name": "VBScript", "bytes": "938" }, { "name": "VHDL", "bytes": "830" }, { "name": "Vala", "bytes": "485" }, { "name": "Verilog", "bytes": "274" }, { "name": "Vim Snippet", "bytes": "226931" }, { "name": "Vue", "bytes": "350385" }, { "name": "XQuery", "bytes": "114" }, { "name": "XSLT", "bytes": "522199" }, { "name": "Yacc", "bytes": "1070437" }, { "name": "jq", "bytes": "4" } ], "symlink_target": "" }
"""Counter for the days until an HTTPS (TLS) certificate will expire.""" from datetime import timedelta import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA, SensorEntity from homeassistant.config_entries import SOURCE_IMPORT from homeassistant.const import ( CONF_HOST, CONF_PORT, DEVICE_CLASS_TIMESTAMP, EVENT_HOMEASSISTANT_START, ) from homeassistant.core import callback import homeassistant.helpers.config_validation as cv from homeassistant.helpers.event import async_call_later from homeassistant.helpers.update_coordinator import CoordinatorEntity from .const import DEFAULT_PORT, DOMAIN SCAN_INTERVAL = timedelta(hours=12) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, } ) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up certificate expiry sensor.""" @callback def schedule_import(_): """Schedule delayed import after HA is fully started.""" async_call_later(hass, 10, do_import) @callback def do_import(_): """Process YAML import.""" hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data=dict(config) ) ) hass.bus.async_listen_once(EVENT_HOMEASSISTANT_START, schedule_import) async def async_setup_entry(hass, entry, async_add_entities): """Add cert-expiry entry.""" coordinator = hass.data[DOMAIN][entry.entry_id] sensors = [ SSLCertificateTimestamp(coordinator), ] async_add_entities(sensors, True) class CertExpiryEntity(CoordinatorEntity): """Defines a base Cert Expiry entity.""" _attr_icon = "mdi:certificate" @property def extra_state_attributes(self): """Return additional sensor state attributes.""" return { "is_valid": self.coordinator.is_cert_valid, "error": str(self.coordinator.cert_error), } class SSLCertificateTimestamp(CertExpiryEntity, SensorEntity): """Implementation of the Cert Expiry timestamp sensor.""" _attr_device_class = DEVICE_CLASS_TIMESTAMP def __init__(self, coordinator) -> None: """Initialize a Cert Expiry timestamp sensor.""" super().__init__(coordinator) self._attr_name = f"Cert Expiry Timestamp ({coordinator.name})" self._attr_unique_id = f"{coordinator.host}:{coordinator.port}-timestamp" @property def native_value(self): """Return the state of the sensor.""" if self.coordinator.data: return self.coordinator.data.isoformat() return None
{ "content_hash": "b81397a76c95016e3477b23974251569", "timestamp": "", "source": "github", "line_count": 92, "max_line_length": 86, "avg_line_length": 30.043478260869566, "alnum_prop": 0.6794500723589001, "repo_name": "lukas-hetzenecker/home-assistant", "id": "7b6445a2f35740d4c6e29f3a18df88222d9ef06d", "size": "2764", "binary": false, "copies": "5", "ref": "refs/heads/dev", "path": "homeassistant/components/cert_expiry/sensor.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "2443" }, { "name": "Python", "bytes": "38023745" }, { "name": "Shell", "bytes": "4910" } ], "symlink_target": "" }
from __future__ import print_function import getpass import inspect import os import sys import textwrap import prettytable import six from six import moves from rally.openstack.common.apiclient import exceptions from rally.openstack.common.gettextutils import _ from rally.openstack.common import strutils from rally.openstack.common import uuidutils def validate_args(fn, *args, **kwargs): """Check that the supplied args are sufficient for calling a function. >>> validate_args(lambda a: None) Traceback (most recent call last): ... MissingArgs: Missing argument(s): a >>> validate_args(lambda a, b, c, d: None, 0, c=1) Traceback (most recent call last): ... MissingArgs: Missing argument(s): b, d :param fn: the function to check :param arg: the positional arguments supplied :param kwargs: the keyword arguments supplied """ argspec = inspect.getargspec(fn) num_defaults = len(argspec.defaults or []) required_args = argspec.args[:len(argspec.args) - num_defaults] def isbound(method): return getattr(method, 'im_self', None) is not None if isbound(fn): required_args.pop(0) missing = [arg for arg in required_args if arg not in kwargs] missing = missing[len(args):] if missing: raise exceptions.MissingArgs(missing) def arg(*args, **kwargs): """Decorator for CLI args. Example: >>> @arg("name", help="Name of the new entity") ... def entity_create(args): ... pass """ def _decorator(func): add_arg(func, *args, **kwargs) return func return _decorator def env(*args, **kwargs): """Returns the first environment variable set. If all are empty, defaults to '' or keyword arg `default`. """ for arg in args: value = os.environ.get(arg) if value: return value return kwargs.get('default', '') def add_arg(func, *args, **kwargs): """Bind CLI arguments to a shell.py `do_foo` function.""" if not hasattr(func, 'arguments'): func.arguments = [] # NOTE(sirp): avoid dups that can occur when the module is shared across # tests. if (args, kwargs) not in func.arguments: # Because of the semantics of decorator composition if we just append # to the options list positional options will appear to be backwards. func.arguments.insert(0, (args, kwargs)) def unauthenticated(func): """Adds 'unauthenticated' attribute to decorated function. Usage: >>> @unauthenticated ... def mymethod(f): ... pass """ func.unauthenticated = True return func def isunauthenticated(func): """Checks if the function does not require authentication. Mark such functions with the `@unauthenticated` decorator. :returns: bool """ return getattr(func, 'unauthenticated', False) def print_list(objs, fields, formatters=None, sortby_index=0, mixed_case_fields=None): """Print a list or objects as a table, one row per object. :param objs: iterable of :class:`Resource` :param fields: attributes that correspond to columns, in order :param formatters: `dict` of callables for field formatting :param sortby_index: index of the field for sorting table rows :param mixed_case_fields: fields corresponding to object attributes that have mixed case names (e.g., 'serverId') """ formatters = formatters or {} mixed_case_fields = mixed_case_fields or [] if sortby_index is None: kwargs = {} else: kwargs = {'sortby': fields[sortby_index]} pt = prettytable.PrettyTable(fields, caching=False) pt.align = 'l' for o in objs: row = [] for field in fields: if field in formatters: row.append(formatters[field](o)) else: if field in mixed_case_fields: field_name = field.replace(' ', '_') else: field_name = field.lower().replace(' ', '_') data = getattr(o, field_name, '') row.append(data) pt.add_row(row) print(strutils.safe_encode(pt.get_string(**kwargs))) def print_dict(dct, dict_property="Property", wrap=0): """Print a `dict` as a table of two columns. :param dct: `dict` to print :param dict_property: name of the first column :param wrap: wrapping for the second column """ pt = prettytable.PrettyTable([dict_property, 'Value'], caching=False) pt.align = 'l' for k, v in six.iteritems(dct): # convert dict to str to check length if isinstance(v, dict): v = six.text_type(v) if wrap > 0: v = textwrap.fill(six.text_type(v), wrap) # if value has a newline, add in multiple rows # e.g. fault with stacktrace if v and isinstance(v, six.string_types) and r'\n' in v: lines = v.strip().split(r'\n') col1 = k for line in lines: pt.add_row([col1, line]) col1 = '' else: pt.add_row([k, v]) print(strutils.safe_encode(pt.get_string())) def get_password(max_password_prompts=3): """Read password from TTY.""" verify = strutils.bool_from_string(env("OS_VERIFY_PASSWORD")) pw = None if hasattr(sys.stdin, "isatty") and sys.stdin.isatty(): # Check for Ctrl-D try: for __ in moves.range(max_password_prompts): pw1 = getpass.getpass("OS Password: ") if verify: pw2 = getpass.getpass("Please verify: ") else: pw2 = pw1 if pw1 == pw2 and pw1: pw = pw1 break except EOFError: pass return pw def find_resource(manager, name_or_id, **find_args): """Look for resource in a given manager. Used as a helper for the _find_* methods. Example: def _find_hypervisor(cs, hypervisor): #Get a hypervisor by name or ID. return cliutils.find_resource(cs.hypervisors, hypervisor) """ # first try to get entity as integer id try: return manager.get(int(name_or_id)) except (TypeError, ValueError, exceptions.NotFound): pass # now try to get entity as uuid try: tmp_id = strutils.safe_encode(name_or_id) if uuidutils.is_uuid_like(tmp_id): return manager.get(tmp_id) except (TypeError, ValueError, exceptions.NotFound): pass # for str id which is not uuid if getattr(manager, 'is_alphanum_id_allowed', False): try: return manager.get(name_or_id) except exceptions.NotFound: pass try: try: return manager.find(human_id=name_or_id, **find_args) except exceptions.NotFound: pass # finally try to find entity by name try: resource = getattr(manager, 'resource_class', None) name_attr = resource.NAME_ATTR if resource else 'name' kwargs = {name_attr: name_or_id} kwargs.update(find_args) return manager.find(**kwargs) except exceptions.NotFound: msg = _("No %(name)s with a name or " "ID of '%(name_or_id)s' exists.") % \ { "name": manager.resource_class.__name__.lower(), "name_or_id": name_or_id } raise exceptions.CommandError(msg) except exceptions.NoUniqueMatch: msg = _("Multiple %(name)s matches found for " "'%(name_or_id)s', use an ID to be more specific.") % \ { "name": manager.resource_class.__name__.lower(), "name_or_id": name_or_id } raise exceptions.CommandError(msg) def service_type(stype): """Adds 'service_type' attribute to decorated function. Usage: @service_type('volume') def mymethod(f): ... """ def inner(f): f.service_type = stype return f return inner def get_service_type(f): """Retrieves service type from function.""" return getattr(f, 'service_type', None) def pretty_choice_list(l): return ', '.join("'%s'" % i for i in l) def exit(msg=''): if msg: print (msg, file=sys.stderr) sys.exit(1)
{ "content_hash": "47c14870727aa9da9b9f5840568a2fdf", "timestamp": "", "source": "github", "line_count": 291, "max_line_length": 77, "avg_line_length": 29.213058419243985, "alnum_prop": 0.5864015998117869, "repo_name": "ytsarev/rally", "id": "a3ce8cc4b1167f7db762e69268a6b3ab5d1a5b63", "size": "9219", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "rally/openstack/common/cliutils.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "984256" }, { "name": "Shell", "bytes": "14201" } ], "symlink_target": "" }
""" MySQL Connector/Python - MySQL drive written in Python """ # Python Db API v2 apilevel = '2.0' threadsafety = 1 paramstyle = 'pyformat' from .connection import MySQLConnection from .errors import ( Error, Warning, InterfaceError, DatabaseError, NotSupportedError, DataError, IntegrityError, ProgrammingError, OperationalError, InternalError, custom_error_exception) from .constants import FieldFlag, FieldType, CharacterSet,\ RefreshOption, ClientFlag from .dbapi import * def Connect(*args, **kwargs): """Shortcut for creating a mysql.MySQL object.""" return MySQLConnection(*args, **kwargs) connect = Connect __all__ = [ 'MySQLConnection', 'Connect', 'custom_error_exception', # Some useful constants 'FieldType','FieldFlag','ClientFlag','CharacterSet','RefreshOption', # Error handling 'Error','Warning', 'InterfaceError','DatabaseError', 'NotSupportedError','DataError','IntegrityError','ProgrammingError', 'OperationalError','InternalError', # DBAPI PEP 249 required exports 'connect','apilevel','threadsafety','paramstyle', 'Date', 'Time', 'Timestamp', 'Binary', 'DateFromTicks', 'DateFromTicks', 'TimestampFromTicks', 'STRING', 'BINARY', 'NUMBER', 'DATETIME', 'ROWID', ]
{ "content_hash": "7524301ebacc6d24bae5c2250ec4fb00", "timestamp": "", "source": "github", "line_count": 42, "max_line_length": 72, "avg_line_length": 30.547619047619047, "alnum_prop": 0.6991426344505066, "repo_name": "rcosnita/fantastico", "id": "77b11b4db93b3d4c8bb9573e7287cee5b6fa1136", "size": "2413", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "virtual_env/libs/mysql-connector/python3/mysql/connector/__init__.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "6802" }, { "name": "Python", "bytes": "2168052" }, { "name": "Shell", "bytes": "13309" } ], "symlink_target": "" }
import sys from typing import Any, Callable, Dict, Iterable, Optional, TypeVar import urllib.parse from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models from .._serialization import Serializer from .._vendor import _convert_request if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False def build_list_request(**kwargs: Any) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-01-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-01-01")) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop("template_url", "/providers/Microsoft.Cache/operations") # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) class Operations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.redisenterprise.RedisEnterpriseManagementClient`'s :attr:`operations` attribute. """ models = _models def __init__(self, *args, **kwargs): input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list(self, **kwargs: Any) -> Iterable["_models.Operation"]: """Lists all of the available REST API operations of the Microsoft.Cache provider. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either Operation or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.redisenterprise.models.Operation] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-01-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.OperationListResult] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_request( api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("OperationListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged(get_next, extract_data) list.metadata = {"url": "/providers/Microsoft.Cache/operations"}
{ "content_hash": "4e3f8205b5a534e21bbf4175174cc824", "timestamp": "", "source": "github", "line_count": 153, "max_line_length": 113, "avg_line_length": 41, "alnum_prop": 0.6354216483341304, "repo_name": "Azure/azure-sdk-for-python", "id": "d5c99c1979cffc83c79f0cb7cb88747a122eac0e", "size": "6773", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "sdk/redisenterprise/azure-mgmt-redisenterprise/azure/mgmt/redisenterprise/operations/_operations.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "1224" }, { "name": "Bicep", "bytes": "24196" }, { "name": "CSS", "bytes": "6089" }, { "name": "Dockerfile", "bytes": "4892" }, { "name": "HTML", "bytes": "12058" }, { "name": "JavaScript", "bytes": "8137" }, { "name": "Jinja", "bytes": "10377" }, { "name": "Jupyter Notebook", "bytes": "272022" }, { "name": "PowerShell", "bytes": "518535" }, { "name": "Python", "bytes": "715484989" }, { "name": "Shell", "bytes": "3631" } ], "symlink_target": "" }
""" line.client ~~~~~~~~~~~ LineClient for sending and receiving message from LINE server. :copyright: (c) 2014 by Taehoon Kim. :license: BSD, see LICENSE for more details. """ import rsa import requests try: import simplejson as json except ImportError: import json from thrift.transport import TTransport from thrift.transport import TSocket from thrift.transport import THttpClient from thrift.protocol import TCompactProtocol import sys reload(sys) sys.setdefaultencoding("utf-8") #from curve import CurveThrift from curve import CurveThrift from curve.ttypes import TalkException from curve.ttypes import ToType, ContentType class LineAPI(object): """This class is a wrapper of LINE API """ LINE_DOMAIN = "http://gd2.line.naver.jp" LINE_HTTP_URL = LINE_DOMAIN + "/api/v4/TalkService.do" LINE_HTTP_IN_URL = LINE_DOMAIN + "/P4" LINE_CERTIFICATE_URL = LINE_DOMAIN + "/Q" LINE_SESSION_LINE_URL = LINE_DOMAIN + "/authct/v1/keys/line" LINE_SESSION_NAVER_URL = LINE_DOMAIN + "/authct/v1/keys/naver" CERT_FILE = ".line.crt" ip = "127.0.0.1" version = "5.1.2" com_name = "" revision = 0 certificate = "" _session = requests.session() _headers = {} def ready(self): """ After login, make `client` and `client_in` instance to communicate with LINE server """ self.transport = THttpClient.THttpClient(self.LINE_HTTP_URL) self.transport_in = THttpClient.THttpClient(self.LINE_HTTP_IN_URL) self.transport.setCustomHeaders(self._headers) self.transport_in.setCustomHeaders(self._headers) self.protocol = TCompactProtocol.TCompactProtocol(self.transport) self.protocol_in = TCompactProtocol.TCompactProtocol(self.transport_in) self._client = CurveThrift.Client(self.protocol) self._client_in = CurveThrift.Client(self.protocol_in) self.transport.open() self.transport_in.open() def updateAuthToken(self): """ After login, update authToken to avoid expiration of authToken. This method skip the PinCode validation step. """ if self.certificate: self.login() self.tokenLogin() return True else: self.raise_error("You need to login first. There is no valid certificate") def tokenLogin(self): self.transport = THttpClient.THttpClient(self.LINE_HTTP_URL) self.transport.setCustomHeaders(self._headers) self.protocol = TCompactProtocol.TCompactProtocol(self.transport) self._client = CurveThrift.Client(self.protocol) def login(self): """Login to LINE server.""" if self.provider == CurveThrift.Provider.LINE: # LINE j = self._get_json(self.LINE_SESSION_LINE_URL) else: # NAVER j = self._get_json(self.LINE_SESSION_NAVER_URL) session_key = j['session_key'] message = (chr(len(session_key)) + session_key + chr(len(self.id)) + self.id + chr(len(self.password)) + self.password).encode('utf-8') keyname, n, e = j['rsa_key'].split(",") pub_key = rsa.PublicKey(int(n,16), int(e,16)) crypto = rsa.encrypt(message, pub_key).encode('hex') self.transport = THttpClient.THttpClient(self.LINE_HTTP_URL) self.transport.setCustomHeaders(self._headers) self.protocol = TCompactProtocol.TCompactProtocol(self.transport) self._client = CurveThrift.Client(self.protocol) try: with open(self.CERT_FILE,'r') as f: self.certificate = f.read() f.close() except: self.certificate = "" msg = self._client.loginWithIdentityCredentialForCertificate( self.id, self.password, keyname, crypto, True, self.ip, self.com_name, self.provider, self.certificate) if msg.type == 1: self.certificate = msg.certificate self.authToken = self._headers['X-Line-Access'] = msg.authToken elif msg.type == 2: msg = "require QR code" self.raise_error(msg) elif msg.type == 3: self._headers['X-Line-Access'] = msg.verifier self._pinCode = msg.pinCode print "Enter PinCode '%s' to your mobile phone in 2 minutes"\ % self._pinCode j = self.get_json(self.LINE_CERTIFICATE_URL) self.verifier = j['result']['verifier'] msg = self._client.loginWithVerifierForCertificate(self.verifier) if msg.type == 1: if msg.certificate is not None: with open(self.CERT_FILE,'w') as f: f.write(msg.certificate) self.certificate = msg.certificate if msg.authToken is not None: self.authToken = self._headers['X-Line-Access'] = msg.authToken return True else: return False else: msg = "Require device confirm" self.raise_error(msg) #raise Exception("Code is removed because of the request of LINE corporation") else: self.authToken = self._headers['X-Line-Access'] = msg.authToken return True def get_json(self, url): """Get josn from given url with saved session and headers""" return json.loads(self._session.get(url, headers=self._headers).text) def _getProfile(self): """Get profile information :returns: Profile object - picturePath - displayName - phone (base64 encoded?) - allowSearchByUserid - pictureStatus - userid - mid # used for unique id for account - phoneticName - regionCode - allowSearchByEmail - email - statusMessage """ return self._client.getProfile() def _getAllContactIds(self): """Get all contacts of your LINE account""" return self._client.getAllContactIds() def _getBlockedContactIds(self): """Get all blocked contacts of your LINE account""" return self._client.getBlockedContactIds() def _getContacts(self, ids): """Get contact information list from ids :returns: List of Contact list - status - capableVideoCall - dispalyName - settings - pictureStatus - capableVoiceCall - capableBuddy - mid - displayNameOverridden - relation - thumbnailUrl - createdTime - facoriteTime - capableMyhome - attributes - type - phoneticName - statusMessage """ if type(ids) != list: msg = "argument should be list of contact ids" self.raise_error(msg) return self._client.getContacts(ids) def _findAndAddContactsByMid(self, mid, seq=0): """Find and add contacts by Mid""" return self._client.findAndAddContactsByMid(seq, mid) def _findContactByUserid(self, userid): """Find contacts by Userid""" return self._client.findContactByUserid(userid) def _findAndAddContactsByUserid(self, userid, seq=0): """Find and add contacts by Userid""" return self._client.findAndAddContactsByUserid(seq, userid) def _findContactsByPhone(self, phones): """Find contacts by phone""" return self._client.findContactsByPhone(phones) def _findAndAddContactsByPhone(self, phones, seq=0): """Find and add contacts by phone""" return self._client.findAndAddContactsByPhone(seq, phones) def _findContactsByEmail(self, emails): """Find contacts by email""" return self._client.findContactsByEmail(emails) def _findAndAddContactsByEmail(self, emails, seq=0): """Find and add contacts by email""" return self._client.findAndAddContactsByEmail(seq, emails) def _createRoom(self, ids, seq=0): """Create a chat room""" return self._client.createRoom(seq, ids) def _getRoom(self, id): """Get a chat room""" return self._client.getRoom(id) def _inviteIntoRoom(self, roomId, contactIds=[]): """Invite contacts into room""" return self._client.inviteIntoRoom(0, roomId, contactIds) def _leaveRoom(self, id): """Leave a chat room""" return self._client.leaveRoom(0, id) def _createGroup(self, name, ids, seq=0): """Create a group""" return self._client.createGroup(seq, name, ids) def _getGroups(self, ids): """Get a list of group with ids""" if type(ids) != list: msg = "argument should be list of group ids" self.raise_error(msg) return self._client.getGroups(ids) def _getGroupIdsJoined(self): """Get group id that you joined""" return self._client.getGroupIdsJoined() def _getGroupIdsInvited(self): """Get group id that you invited""" return self._client.getGroupIdsInvited() def _acceptGroupInvitation(self, groupId, seq=0): """Accept a group invitation""" return self._client.acceptGroupInvitation(seq, groupId) def _cancelGroupInvitation(self, groupId, contactIds=[], seq=0): """Cancel a group invitation""" return self._client.cancelGroupInvitation(seq, groupId, contactIds) def _inviteIntoGroup(self, groupId, contactIds=[], seq=0): """Invite contacts into group""" return self._client.inviteIntoGroup(seq, groupId, contactIds) def _leaveGroup(self, id): """Leave a group""" return self._client.leaveGroup(0, id) def _getRecentMessages(self, id, count=1): """Get recent messages from `id`""" return self._client.getRecentMessages(id, count) def _sendMessage(self, message, seq=0): """Send a message to `id`. `id` could be contact id or group id :param message: `message` instance """ return self._client.sendMessage(seq, message) def _getLastOpRevision(self): return self._client.getLastOpRevision() def _fetchOperations(self, revision, count=50): return self._client.fetchOperations(revision, count) def _getMessageBoxCompactWrapUp(self, id): try: return self._client.getMessageBoxCompactWrapUp(id) except: return None def _getMessageBoxCompactWrapUpList(self, start=1, count=50): try: return self._client.getMessageBoxCompactWrapUpList(start, count) except Exception as e: msg = e self.raise_error(msg) def raise_error(self, msg): """Error format""" raise Exception("Error: %s" % msg) def _get_json(self, url): """Get josn from given url with saved session and headers""" return json.loads(self._session.get(url, headers=self._headers).text) def post_content(self, url, data=None, files=None): return self._session.post(url, headers=self._headers, data=data, files=files)
{ "content_hash": "48a32f3a81b8102e6490de17e226cc21", "timestamp": "", "source": "github", "line_count": 339, "max_line_length": 90, "avg_line_length": 34.46607669616519, "alnum_prop": 0.5890961999315303, "repo_name": "unixz/line-max", "id": "d8092a8601adc2b8e9952f95fb2715beff9274d9", "size": "11708", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "line/api.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "101" }, { "name": "Python", "bytes": "42736" } ], "symlink_target": "" }
import multiprocessing import warnings import six from chainer.backends import cuda from chainer.dataset import convert from chainer import reporter from chainer.training.updaters import standard_updater try: from cupy.cuda import nccl _available = True except ImportError: _available = False import numpy class _Worker(multiprocessing.Process): def __init__(self, proc_id, pipe, master): super(_Worker, self).__init__() self.proc_id = proc_id self.pipe = pipe self.converter = master.converter self.model = master._master self.device = master._devices[proc_id] self.iterator = master._mpu_iterators[proc_id] self.n_devices = len(master._devices) def setup(self): _, comm_id = self.pipe.recv() self.comm = nccl.NcclCommunicator(self.n_devices, comm_id, self.proc_id) self.model.to_gpu(self.device) self.reporter = reporter.Reporter() self.reporter.add_observer('main', self.model) self.reporter.add_observers('main', self.model.namedlinks(skipself=True)) def run(self): dev = cuda.Device(self.device) dev.use() self.setup() gp = None while True: job, data = self.pipe.recv() if job == 'finalize': dev.synchronize() break if job == 'update': # For reducing memory self.model.cleargrads() batch = self.converter(self.iterator.next(), self.device) observation = {} with self.reporter.scope(observation): loss = _calc_loss(self.model, batch) self.model.cleargrads() loss.backward() del loss gg = gather_grads(self.model) nccl_data_type = _get_nccl_data_type(gg.dtype) null_stream = cuda.Stream.null self.comm.reduce(gg.data.ptr, gg.data.ptr, gg.size, nccl_data_type, nccl.NCCL_SUM, 0, null_stream.ptr) del gg self.model.cleargrads() gp = gather_params(self.model) nccl_data_type = _get_nccl_data_type(gp.dtype) self.comm.bcast(gp.data.ptr, gp.size, nccl_data_type, 0, null_stream.ptr) scatter_params(self.model, gp) gp = None class MultiprocessParallelUpdater(standard_updater.StandardUpdater): """Implementation of a multiprocess parallel GPU Updater. This is an implementation of :class:`Updater` that uses multiple GPUs with multi-process data parallelism. It uses Nvidia NCCL for communication between multiple GPUs. It behaves similarly to :class:`~chainer.training.updaters.StandardUpdater`. The update routine is modified to support data-parallel computation on multiple GPUs in one machine. It is based on synchronous parallel SGD: it parallelizes the gradient computation over a mini-batch, and updates the parameters only in the main device. It does not transfer the values collected by :class:`Reporter` in the sub devices to the main device. So you can only see the reported values in the main device. Args: iterators: List of dataset iterator for the training dataset. The number of the iterators must be same to the number of GPUs you use. optimizer: Optimizer to update parameters. The model should be attached to the optimizer. converter: Converter function to build input arrays. Each batch extracted by the iterator is split equally between the devices and then passed with corresponding ``device`` option to this function. :func:`~chainer.dataset.concat_examples` is used by default. devices: Dictionary or list of devices to which the training data is sent. The master device will be the first one in the list or the value attached to the key ``'main'``. auto_new_epoch (bool): If ``True``, :meth:`~chainer.Optimizer.new_epoch` of the main optimizer is automatically called when the ``is_new_epoch`` attribute of the main iterator is ``True``. """ def __init__(self, iterators, optimizer, converter=convert.concat_examples, devices=None, auto_new_epoch=True): if not MultiprocessParallelUpdater.available(): raise Exception( 'NCCL is not enabled. MultiprocessParallelUpdater ' 'requires NCCL.\n' 'Please reinstall CuPy after you install NCCL.\n' '(see https://docs-cupy.chainer.org/en/latest/install.html)') try: cuda.cupy.cuda.driver.ctxGetCurrent() _cuda_initialized = True except cuda.cupy.cuda.driver.CUDADriverError: # The context is not initialized, it will be fine. _cuda_initialized = False if _cuda_initialized: raise RuntimeError( 'The CUDA context has been already initialized. ' 'MultiprocessParallelUpdater assumes the context is ' 'uninitialized. Please do not call CUDA API before ' 'MultiprocessParallelUpdater creates processes.') assert len(iterators) == len(devices) for iterator in iterators[1:]: assert len(iterator.dataset) == len(iterators[0].dataset) # Correct optimizer parameters for new minibatch size optim = optimizer.__class__.__name__ if optim in ('Adam', 'AdaGrad', 'RMSprop'): optimizer.eps *= len(devices) warnings.warn('optimizer.eps is changed to {} ' 'by MultiprocessParallelUpdater for new batch size.'. format(optimizer.eps)) elif optim in ('RMSpropGraves', 'AdaDelta'): optimizer.eps *= len(devices) ** 2 # not quite right for AdaDelta warnings.warn('optimizer.eps is changed to {} ' 'by MultiprocessParallelUpdater for new batch size.'. format(optimizer.eps)) elif hasattr(optimizer, 'lr'): optimizer.lr /= len(devices) warnings.warn('optimizer.lr is changed to {} ' 'by MultiprocessParallelUpdater for new batch size.'. format(optimizer.lr)) super(MultiprocessParallelUpdater, self).__init__( iterator=iterators[0], optimizer=optimizer, converter=converter, auto_new_epoch=auto_new_epoch, ) if isinstance(devices, dict): devices = devices.copy() main = devices.pop('main') devices = list(six.itervalues(devices)) devices = [main] + devices elif isinstance(devices, (list, tuple)): devices = list(devices) else: raise ValueError( 'devices argument should be either dict, list or tuple,' ' but {} was given.'.format(type(devices))) if devices is None or any(device is None for device in devices): raise ValueError('must specify GPU devices') self._master = optimizer.target self._devices = devices self._mpu_iterators = iterators self._initialized = False self._pipes = [] self._workers = [] self.comm = None @staticmethod def available(): return _available def _send_message(self, message): for pipe in self._pipes: pipe.send(message) def setup_workers(self): if self._initialized: return self._initialized = True self._master.cleargrads() for i in six.moves.range(1, len(self._devices)): pipe, worker_end = multiprocessing.Pipe() worker = _Worker(i, worker_end, self) worker.start() self._workers.append(worker) self._pipes.append(pipe) with cuda.Device(self._devices[0]): self._master.to_gpu(self._devices[0]) if len(self._devices) > 1: comm_id = nccl.get_unique_id() self._send_message(("set comm_id", comm_id)) self.comm = nccl.NcclCommunicator(len(self._devices), comm_id, 0) def update_core(self): self.setup_workers() self._send_message(('update', None)) with cuda.Device(self._devices[0]): # For reducing memory self._master.cleargrads() optimizer = self.get_optimizer('main') iterator = self.get_iterator('main') batch = iterator.next() batch = self.converter(batch, self._devices[0]) loss = _calc_loss(self._master, batch) self._master.cleargrads() loss.backward() # NCCL: reduce grads null_stream = cuda.Stream.null if self.comm is not None: gg = gather_grads(self._master) nccl_data_type = _get_nccl_data_type(gg.dtype) self.comm.reduce(gg.data.ptr, gg.data.ptr, gg.size, nccl_data_type, nccl.NCCL_SUM, 0, null_stream.ptr) scatter_grads(self._master, gg) del gg optimizer.update() if self.comm is not None: gp = gather_params(self._master) nccl_data_type = _get_nccl_data_type(gp.dtype) self.comm.bcast(gp.data.ptr, gp.size, nccl_data_type, 0, null_stream.ptr) if self.auto_new_epoch and iterator.is_new_epoch: optimizer.new_epoch(auto=True) def finalize(self): self._send_message(('finalize', None)) for worker in self._workers: worker.join() def _calc_loss(model, in_arrays): if isinstance(in_arrays, tuple): return model(*in_arrays) elif isinstance(in_arrays, dict): return model(**in_arrays) else: return model(in_arrays) def size_num_grads(link): """Count total size of all gradient arrays of a given link Args: link (chainer.link.Link): Target link object. """ size = 0 num = 0 for param in link.params(): if param.size == 0: continue size += param.size num += 1 return size, num def _memcpy_gather(): return cuda.elementwise( 'raw T ptrs, raw X dtypes, raw Y info', 'raw float32 dst', ''' int id_min = id_pre; int id_max = num_src; while (id_max - id_min > 1) { int id = (id_max + id_min) / 2; if (i < info[id]) id_max = id; else id_min = id; } int id = id_min; int i_dst = i; int i_src = i; if (id > 0) i_src -= info[id]; dst[i_dst] = 0; if (ptrs[id] != NULL) { if (dtypes[id] == 0) { // fp32 float *src = reinterpret_cast<float *>(ptrs[id]); dst[i_dst] = src[i_src]; } else { // fp16 float16 *src = reinterpret_cast<float16 *>(ptrs[id]); dst[i_dst] = static_cast<float>(src[i_src]); } } id_pre = id; ''', '_memcpy_gather', loop_prep=''' int num_src = info[0]; int id_pre = 0; ''') def _gather(link, target): size, num = size_num_grads(link) ptrs = numpy.empty(num, dtype=numpy.uint64) dtypes = numpy.empty(num, dtype=numpy.int8) info = numpy.empty(num + 1, dtype=numpy.int32) info[0] = 0 i = 0 for _, param in sorted(link.namedparams()): if param.size == 0: continue ptrs[i] = 0 # NULL pointer d = getattr(param, target) if d is not None: ptrs[i] = d.data.ptr dtypes[i] = 0 # fp32 if param.dtype == numpy.float16: dtypes[i] = 1 # fp16 info[i + 1] = info[i] + param.size i += 1 info[0] = num ptrs = cuda.to_gpu(ptrs) dtypes = cuda.to_gpu(dtypes) info = cuda.to_gpu(info) return _memcpy_gather()(ptrs, dtypes, info, size=size) def gather_grads(link): """Put together all gradient arrays and make a single array Args: link (chainer.link.Link): Target link object. Return: cupy.ndarray """ if link.xp is numpy: raise RuntimeError('gather_grads works only on GPU.') return _gather(link, "grad") def gather_params(link): """Put together all gradient arrays and make a single array Args: link (chainer.link.Link): Target link object. Return: cupy.ndarray """ if link.xp is numpy: raise RuntimeError('Link.gather_params works only on GPU.') return _gather(link, "data") def _memcpy_scatter(): return cuda.elementwise( 'raw T ptrs, raw X dtypes, raw Y info, raw float32 array', '', ''' int id_min = id_pre; int id_max = num_src; while (id_max - id_min > 1) { int id = (id_max + id_min) / 2; if (i < info[id]) id_max = id; else id_min = id; } int id = id_min; int i_src = i; int i_dst = i; if (id > 0) i_dst -= info[id]; if (ptrs[id] != NULL) { if (dtypes[id] == 0) { // fp32 float *dst = reinterpret_cast<float *>(ptrs[id]); dst[i_dst] = array[i_src]; } else { // fp16 float16 *dst = reinterpret_cast<float16 *>(ptrs[id]); dst[i_dst] = static_cast<float16>(array[i_src]); } } id_pre = id; ''', '_memcpy_scatter', loop_prep=''' int num_src = info[0]; int id_pre = 0; ''') def _scatter(link, array, target): size, num = size_num_grads(link) ptrs = numpy.zeros(num, dtype=numpy.uint64) dtypes = numpy.zeros(num, dtype=numpy.int8) info = numpy.zeros(num + 1, dtype=numpy.int32) info[0] = 0 i = 0 for _, param in sorted(link.namedparams()): if param.size == 0: continue ptrs[i] = 0 # NULL pointer d = getattr(param, target) if d is None: d = cuda.cupy.zeros(param.shape, dtype=param.dtype) setattr(param, target, d) ptrs[i] = d.data.ptr dtypes[i] = 0 # fp32 if param.dtype == numpy.float16: dtypes[i] = 1 # fp16 info[i + 1] = info[i] + param.size i += 1 if i != num: raise() info[0] = num ptrs = cuda.to_gpu(ptrs) dtypes = cuda.to_gpu(dtypes) info = cuda.to_gpu(info) return _memcpy_scatter()(ptrs, dtypes, info, array, size=size) def scatter_grads(link, array): """Put back contents of the specified array to the related gradient arrays Args: link (chainer.link.Link): Target link object. array (cupy.ndarray): gathered array created by gather_grads() """ return _scatter(link, array, "grad") def scatter_params(link, array): """Put back contents of the specified array to the related gradient arrays Args: link (chainer.link.Link): Target link object. array (cupy.ndarray): gathered array created by gather_params() """ return _scatter(link, array, "data") def _get_nccl_data_type(dtype): """Get data type for NCCL""" if dtype == numpy.float32: nccl_data_type = nccl.NCCL_FLOAT elif dtype == numpy.float16: nccl_data_type = nccl.NCCL_HALF elif dtype == numpy.float64: nccl_data_type = nccl.NCCL_DOUBLE else: raise RuntimeError('Unexpected data type:{}'.format(dtype)) return nccl_data_type
{ "content_hash": "41f876b19ba39a56232d4c1e043ecc4f", "timestamp": "", "source": "github", "line_count": 490, "max_line_length": 79, "avg_line_length": 33.512244897959185, "alnum_prop": 0.5433895621460325, "repo_name": "ktnyt/chainer", "id": "3da8656f263ed2c21d15cb38b099a201865cf822", "size": "16421", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "chainer/training/updaters/multiprocess_parallel_updater.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "3368" }, { "name": "C", "bytes": "70" }, { "name": "C++", "bytes": "1440363" }, { "name": "CMake", "bytes": "42822" }, { "name": "Cuda", "bytes": "53858" }, { "name": "Dockerfile", "bytes": "1242" }, { "name": "PowerShell", "bytes": "7197" }, { "name": "Python", "bytes": "5128330" }, { "name": "Shell", "bytes": "19475" } ], "symlink_target": "" }
from .app import app from .tags import * from .images import * import config cfg = config.load() if cfg.standalone is not False: # If standalone mode is enabled (default), load the fake Index routes from .index import *
{ "content_hash": "6b34172d5cebe4050a7cb8f8de5e9da9", "timestamp": "", "source": "github", "line_count": 10, "max_line_length": 73, "avg_line_length": 23, "alnum_prop": 0.717391304347826, "repo_name": "airbnb/docker-registry", "id": "f8d94ed9d48b6c7dd0b6e162f4834ed51e1bdd29", "size": "255", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "registry/__init__.py", "mode": "33188", "license": "apache-2.0", "language": [], "symlink_target": "" }
import unittest import env import hiisi import h5py import numpy as np import uuid import os class Test(unittest.TestCase): def setUp(self): self.unique_attr_path = None self.unique_attr_value = None self.reoccuring_attr_paths = [] self.reoccuring_attr_items = [] self.dataset_paths = [] self.group_paths = ['/'] self.data_filename = 'hiisi_test_data.h5' self.create_hdf5_test_data() self.h5file = hiisi.HiisiHDF(self.data_filename, 'r') print('run setUp') def create_hdf5_test_data(self): """Creates random hdf5 file for testing """ n_branches = 3 n_datasets = 3 unique_attr = uuid.uuid1().hex reoccuring_attr = [uuid.uuid1().hex for x in range(n_branches)] dataset_data = np.zeros((3,3)) h5f = h5py.File(self.data_filename, 'w') for i in range(n_branches): group_path = '/branch{}'.format(i) self.group_paths.append(group_path) branch = h5f.create_group(group_path) branch.attrs['reoccuring_attr'] = reoccuring_attr[i] self.reoccuring_attr_paths.append(branch.name) self.reoccuring_attr_items.append((branch.name, reoccuring_attr[i])) for j in range(n_datasets): dataset_name='/branch{}/data{}/dataset'.format(i, j) self.group_paths.append('/branch{}/data{}'.format(i, j)) dataset = h5f.create_dataset(dataset_name, data=np.int8(dataset_data), dtype='int8') self.dataset_paths.append(dataset.name) if i==1 and j==1: dataset.attrs['unique_attr'] = unique_attr self.unique_attr_path = dataset.name self.unique_attr_value = unique_attr h5f.close() def tearDown(self): os.remove(self.data_filename) def test_is_unique_attribute_true(self): self.assertTrue(self.h5file.is_unique_attr('unique_attr')) def test_is_unique_attribute_false(self): self.assertFalse(self.h5file.is_unique_attr('reoccuring_attr')) self.assertFalse(self.h5file.is_unique_attr('not_existing_attr')) def test_attr_exists_true(self): self.assertTrue(self.h5file.attr_exists('unique_attr')) def test_attr_exists_false(self): self.assertFalse(self.h5file.attr_exists('not_existing_attr')) def test_datasets(self): assert list(self.h5file.datasets()) == self.dataset_paths def test_datasets_no_datasets_found(self): with hiisi.HiisiHDF('tmp.h5', 'w') as h5f: assert list(h5f.datasets()) == [] os.remove('tmp.h5') def test_groups(self): assert list(self.h5file.groups()) == self.group_paths def test_groups_no_groups_found(self): with hiisi.HiisiHDF('tmp.h5', 'w') as h5f: assert h5f.groups() == ['/'] os.remove('tmp.h5') def test_attr_gen(self): attr_gen = self.h5file.attr_gen('reoccuring_attr') attr_items = [] for i in attr_gen: attr_items.append((i.path, i.value)) assert attr_items == self.reoccuring_attr_items def test_attr_gen_no_match(self): attr_gen = self.h5file.attr_gen('not_existing_attr') with self.assertRaises(StopIteration): next(attr_gen) def test_create_from_filedict_new_file(self): filename = 'create_from_filedict_test.h5' with hiisi.HiisiHDF(filename, 'w') as h5f: file_dict = {} file_dict['/'] = {'A':1, 'B':2} file_dict['/dataset1/data1/data'] = {'DATASET':np.arange(9).reshape((3,3)), 'C':'c'} file_dict['/dataset1/data1/what'] = {'D':123} h5f.create_from_filedict(file_dict) with hiisi.HiisiHDF(filename, 'r') as h5f: assert h5f['/'].attrs['A'] == 1 assert h5f['/'].attrs['B'] == 2 assert h5f['/dataset1/data1/data'].attrs['C'] == 'c' np.testing.assert_array_equal(h5f['/dataset1/data1/data'][:], np.arange(9).reshape((3,3))) assert h5f['/dataset1/data1/what'].attrs['D'] == 123 os.remove(filename) def test_create_from_filedict_append_new_group(self): filename = './create_from_filedict_test.h5' # Create the file with hiisi.HiisiHDF(filename, 'w') as h5f: file_dict = {} file_dict['/'] = {'A':1, 'B':2} file_dict['/dataset1/data1/data'] = {'DATASET':np.arange(9).reshape((3,3)), 'C':'c'} file_dict['/dataset1/data1/what'] = {'D':123} h5f.create_from_filedict(file_dict) # Append the file created above with hiisi.HiisiHDF(filename, 'a') as h5f: h5f.create_from_filedict({'/added_group':{'attr1':1}}) # Check the results with hiisi.HiisiHDF(filename, 'r') as h5f: assert h5f['/'].attrs['A'] == 1 assert h5f['/'].attrs['B'] == 2 assert h5f['/dataset1/data1/data'].attrs['C'] == 'c' np.testing.assert_array_equal(h5f['/dataset1/data1/data'][:], np.arange(9).reshape((3,3))) assert h5f['/dataset1/data1/what'].attrs['D'] == 123 assert h5f['/added_group'].attrs['attr1'] == 1 os.remove(filename) def test_create_from_filedict_modify_existing_content(self): filename = 'create_from_filedict_test.h5' # Create the file with hiisi.HiisiHDF(filename, 'w') as h5f: file_dict = {} file_dict['/'] = {'A':1, 'B':2} file_dict['/dataset1/data1/data'] = {'DATASET':np.arange(9).reshape((3,3)), 'C':'c'} file_dict['/dataset1/data1/what'] = {'D':123} h5f.create_from_filedict(file_dict) # Append the file created above with hiisi.HiisiHDF(filename, 'a') as h5f: h5f.create_from_filedict({'/dataset1/data1/data':{'C':'new_value'}}) # Check the results with hiisi.HiisiHDF(filename, 'r') as h5f: assert h5f['/'].attrs['A'] == 1 assert h5f['/'].attrs['B'] == 2 assert h5f['/dataset1/data1/data'].attrs['C'] == 'new_value' np.testing.assert_array_equal(h5f['/dataset1/data1/data'][:], np.arange(9).reshape((3,3))) assert h5f['/dataset1/data1/what'].attrs['D'] == 123 os.remove(filename) def test_search_no_match(self): assert [] == list(self.h5file.search('madeupkey', 'xyz')) def test_search_single_match(self): assert [self.unique_attr_path] == list(self.h5file.search('unique_attr', self.unique_attr_value)) def test_search_multiple_matches(self): filename = 'test_search_multiple_matches.h5' with hiisi.HiisiHDF(filename, 'w') as h5f: groups = ['/group1', '/group2', '/basegroup/group1'] for g in groups: group = h5f.create_group(g) group.attrs['attribute'] = 'attribute' with hiisi.HiisiHDF(filename, 'r') as h5f: assert sorted(groups) == sorted(list(h5f.search('attribute', 'attribute'))) os.remove(filename) def test_search_numerical_attribute_within_tolerance(self): filename = 'test_search_numerical_attribute.h5' with hiisi.HiisiHDF(filename, 'w') as h5f: group = h5f.create_group('/group1') group.attrs['attribute'] = 7.3 group = h5f.create_group('/group2') group.attrs['attribute'] = 0.1001 group = h5f.create_group('/basegroup/group1') group.attrs['attribute'] = 0.5245 with hiisi.HiisiHDF(filename, 'r') as h5f: assert ['/basegroup/group1'] == list(h5f.search('attribute', 0.5, 0.1)) os.remove(filename) def test_search_numerical_attribute_outside_tolerance(self): filename = 'test_search_numerical_attribute.h5' with hiisi.HiisiHDF(filename, 'w') as h5f: group = h5f.create_group('/group1') group.attrs['attribute'] = 7.3 group = h5f.create_group('/group2') group.attrs['attribute'] = 0.1001 group = h5f.create_group('/basegroup/group1') group.attrs['attribute'] = 0.5245 with hiisi.HiisiHDF(filename,'r') as h5f: assert [] == list(h5f.search('attribute', 7, 0.1)) os.remove(filename) if __name__=='__main__': unittest.main()
{ "content_hash": "31037b50cc28925c68082b416d858ec1", "timestamp": "", "source": "github", "line_count": 211, "max_line_length": 105, "avg_line_length": 41.677725118483416, "alnum_prop": 0.5499204002729133, "repo_name": "karjaljo/hiisi", "id": "8e2f837e456438794e0b14e05b4e45e4221a0667", "size": "8818", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_hiisi.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "40903" } ], "symlink_target": "" }
import unittest import time import Queue import logging import sys import xmlrunner sys.path.append('../space_machines') sys.path.append('space_machines') from door import DoorState class DoorTests(unittest.TestCase): def setUp(self): logging.basicConfig(level=logging.WARN) self.doorstate = DoorState() self.doorstate.setup(None, name="TEST_DOOR") self.doorstate.start() def test_quick_open_close(self): self.assertEqual(self.doorstate.current_state(), "CLOSED_LOCKED") self.doorstate.send_message({"event": "VALID_KEY"}) time.sleep(0.1) self.assertEqual(self.doorstate.current_state(), "CLOSED_UNLOCKING") self.doorstate.send_message({"event":"DOOR_OPENED"}) time.sleep(0.1) self.assertEqual(self.doorstate.current_state(), "OPEN_UNLOCKING") self.doorstate.send_message({"event":"DOOR_CLOSED"}) time.sleep(0.1) self.assertEqual(self.doorstate.current_state(), "CLOSED_LOCKED") def test_open_wait_close(self): self.assertEqual(self.doorstate.current_state(), "CLOSED_LOCKED") self.doorstate.send_message({"event": "VALID_KEY"}) time.sleep(2) self.assertEqual(self.doorstate.current_state(), "CLOSED_UNLOCKING") self.doorstate.send_message({"event":"DOOR_OPENED"}) time.sleep(0.2) self.assertEqual(self.doorstate.current_state(), "OPEN_UNLOCKING") time.sleep(2) self.assertEqual(self.doorstate.current_state(), "OPEN_LOCKED") self.doorstate.send_message({"event":"DOOR_CLOSED"}) time.sleep(2) self.assertEqual(self.doorstate.current_state(), "CLOSED_LOCKED") def test_open_longwait_close(self): self.assertEqual(self.doorstate.current_state(), "CLOSED_LOCKED") self.doorstate.send_message({"event": "VALID_KEY"}) time.sleep(2) self.assertEqual(self.doorstate.current_state(), "CLOSED_UNLOCKING") self.doorstate.send_message({"event":"DOOR_OPENED"}) time.sleep(20) self.assertEqual(self.doorstate.current_state(), "STUCK_OPEN") self.doorstate.send_message({"event":"DOOR_CLOSED"}) time.sleep(2) self.assertEqual(self.doorstate.current_state(), "CLOSED_LOCKED") def test_force_open(self): self.assertEqual(self.doorstate.current_state(), "CLOSED_LOCKED") self.doorstate.send_message({"event":"DOOR_OPENED"}) time.sleep(0.2) self.assertEqual(self.doorstate.current_state(), "FORCED_OPEN") self.doorstate.send_message({"event":"DOOR_CLOSED"}) time.sleep(0.2) self.assertEqual(self.doorstate.current_state(), "CLOSED_LOCKED") if __name__ == '__main__': unittest.main( testRunner=xmlrunner.XMLTestRunner(output='test-reports'), # these make sure that some options that are not applicable # remain hidden from the help menu. failfast=False, buffer=False, catchbreak=False)
{ "content_hash": "e42b49e68a881223ef9674a369cb266f", "timestamp": "", "source": "github", "line_count": 72, "max_line_length": 72, "avg_line_length": 38.81944444444444, "alnum_prop": 0.7030411449016101, "repo_name": "bvesperman/Sector67RaspberryPiAccessControl", "id": "74ede237f27089b1d6e6d8efc4b886b13c2bb0aa", "size": "2795", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "space_machines/tests/testdoor.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "76491" }, { "name": "Shell", "bytes": "1564" } ], "symlink_target": "" }
from django.db import migrations, models import django.db.models.deletion import markupfield.fields class Migration(migrations.Migration): dependencies = [ ("sponsors", "0019_sponsor_twitter_handle"), ] operations = [ migrations.CreateModel( name="StatementOfWork", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "status", models.CharField( choices=[ ("draft", "Draft"), ("outdated", "Outdated"), ("approved review", "Approved by reviewer"), ("awaiting signature", "Awaiting signature"), ("executed", "Executed"), ("nullified", "Nullified"), ], db_index=True, default="draft", max_length=20, ), ), ( "revision", models.PositiveIntegerField(default=0, verbose_name="Revision nº"), ), ( "document", models.FileField( blank=True, upload_to="sponsors/statements_of_work/", verbose_name="Unsigned PDF", ), ), ( "signed_document", models.FileField( blank=True, upload_to="sponsors/statmentes_of_work/signed/", verbose_name="Signed PDF", ), ), ("sponsor_info", models.TextField(verbose_name="Sponsor information")), ("sponsor_contact", models.TextField(verbose_name="Sponsor contact")), ("benefits_list", markupfield.fields.MarkupField(rendered_field=True)), ( "benefits_list_markup_type", models.CharField( choices=[ ("", "--"), ("html", "HTML"), ("plain", "Plain"), ("markdown", "Markdown"), ("restructuredtext", "Restructured Text"), ], default="markdown", editable=False, max_length=30, ), ), ("legal_clauses", markupfield.fields.MarkupField(rendered_field=True)), ("_benefits_list_rendered", models.TextField(editable=False)), ( "legal_clauses_markup_type", models.CharField( choices=[ ("", "--"), ("html", "HTML"), ("plain", "Plain"), ("markdown", "Markdown"), ("restructuredtext", "Restructured Text"), ], default="markdown", editable=False, max_length=30, ), ), ("created_on", models.DateField(auto_now_add=True)), ("_legal_clauses_rendered", models.TextField(editable=False)), ("last_update", models.DateField(auto_now=True)), ("sent_on", models.DateField(null=True)), ( "sponsorship", models.OneToOneField( null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="statement_of_work", to="sponsors.Sponsorship", ), ), ], options={ "verbose_name": "Statement of Work", "verbose_name_plural": "Statements of Work", }, ), ]
{ "content_hash": "a89c0f59087298ff69de2d646263be16", "timestamp": "", "source": "github", "line_count": 115, "max_line_length": 87, "avg_line_length": 38.66086956521739, "alnum_prop": 0.36707152496626183, "repo_name": "python/pythondotorg", "id": "e451ee8f253bc6ad2764048cc0127afcd2018e3f", "size": "4497", "binary": false, "copies": "3", "ref": "refs/heads/main", "path": "sponsors/migrations/0019_statementofwork.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "7686" }, { "name": "Dockerfile", "bytes": "229" }, { "name": "HTML", "bytes": "498813" }, { "name": "JavaScript", "bytes": "24050" }, { "name": "Makefile", "bytes": "1615" }, { "name": "PostScript", "bytes": "19072" }, { "name": "Procfile", "bytes": "105" }, { "name": "Python", "bytes": "1145343" }, { "name": "Ruby", "bytes": "1464" }, { "name": "SCSS", "bytes": "198033" } ], "symlink_target": "" }
import neural_network as nn # Define some constants that we'll want to have for our project. LOG_DIR = "logs_dir" TRAINING_FILE_NAME = 'train.csv' TESTING_FILE_NAME = 'test.csv' OUTPUT_FILE_NAME = 'results.csv' # Load up our data but make sure we train on everything. data = nn.NNData(TRAINING_FILE_NAME, TESTING_FILE_NAME, split_type=None) # Setup our neural network and train it. sess, merged_summary, writer = nn.setup(LOG_DIR) nn.load_model(sess, 'dr') # Finally, save the results of our actual use case. nn.save_outputs(sess, data, OUTPUT_FILE_NAME, batch=int(data.output.length / 10)) # Acknowledge that we've saved our results. print() print() print("======================") print("======================") print("Output saved to: {}".format(OUTPUT_FILE_NAME)) print("======================") print("======================")
{ "content_hash": "514a559786e86dda1acfbd8b62f31e5d", "timestamp": "", "source": "github", "line_count": 26, "max_line_length": 81, "avg_line_length": 32.23076923076923, "alnum_prop": 0.6455847255369929, "repo_name": "GEMISIS/machine-learning", "id": "334b1e80741465a4254b1b7f1a37d8aa2f3d9c4e", "size": "838", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Kaggle/Digit Recognizer/runner.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "111" }, { "name": "HTML", "bytes": "650" }, { "name": "JavaScript", "bytes": "4336" }, { "name": "Python", "bytes": "97891" } ], "symlink_target": "" }
from fnmatch import filter from sys import stderr import argparse import filecmp import os import subprocess import sys LINKTEST="./link_test" ESCAPE="\033[%sm" BOLD=ESCAPE % "1" RED=ESCAPE % "31" NORMAL=ESCAPE % "0" FAILED=RED+"failed"+NORMAL def find(dir, file_filter=None): files = [walkdir[0]+"/"+file for walkdir in os.walk(dir) for file in walkdir[2]] if file_filter != None: files = filter(files, file_filter) return files def error(message): stderr.write("Error: %s\n" % (message,)) def warn(message): stderr.write("Warning: %s\n" % (message,)) def extract_functions(file): functions = [] in_function = None for line in open(file): if line.startswith("# -- Begin "): if in_function != None: warn("Missing end of function %s" % (in_function,)) funcname = line[12:-1] in_function = funcname text = line elif line.startswith("# -- End "): function_name = line[10:-1] if in_function != function_name: warn("End %s does not match begin %s" % (function_name, in_function)) else: text += line functions.append( (in_function, text) ) in_function = None elif in_function != None: text += line return functions def replace_function(file, function, replacement, dest): out = open(dest, "w") skip = False found = False in_function = None for line in open(file): if line.startswith("# -- Begin "): if in_function != None: warn("Missing end of function %s" % (in_function,)) funcname = line[12:-1] in_function = funcname if in_function == function: out.write(replacement) skip = True elif line.startswith("# -- End "): function_name = line[10:-1] if in_function != function_name: warn("End %s does not match begin %s" % (function_name, in_function)) in_function = None if skip: skip = False continue if not skip: out.write(line) def announce_test(name): stderr.write("%s%s%s: " % (BOLD, name, NORMAL)) stderr.flush() def announce_result(result, info): stderr.write(result) if info != "": stderr.write(": %s" % info) stderr.write("\n") stderr.flush() def testrun(files): linkline="%s %s" % (LINKTEST, " ".join(files),) res = subprocess.call(linkline, shell=True) if res != 0: announce_result(FAILED, "'%s' exitcode != 0" % LINKTEST) return False else: announce_result("ok", "") return True def check_files(): """Check files mode""" for i in range(0, len(NO_PREFIX)): f = NO_PREFIX[i] b=baddir+"/"+f if b not in BAD_FILES: warn("There is no corresponding file to '%s' in %s" \ % (gooddir+"/"+f, baddir)) continue announce_test(f + " [%s/%s]" % (i+1, len(NO_PREFIX))) # combine files (everything from good except f) testfiles=[] skip=False for c in NO_PREFIX: badfile = baddir+"/"+c goodfile = gooddir+"/"+c if c == f: testfiles.append(badfile) if filecmp.cmp(goodfile, badfile): announce_result("skipped", "same content") skip = True break else: testfiles.append(goodfile) if skip: continue testrun(testfiles) def check_functions_in_file(base, goodfile, badfile): functions = extract_functions(goodfile) if len(functions) == 0: warn("Couldn't find any function in %s, missing annotations?" % (goodfile,)) return badfunctions = dict(extract_functions(badfile)) if len(functions) == 0: warn("Couldn't find any function in %s, missing annotations?" % (badfile,)) return COMBINED="/tmp/combined.s" i = 0 for (func,func_text) in functions: announce_test(func + " [%s/%s]" % (i+1, len(functions))) i+=1 if func not in badfunctions: warn("Function '%s' missing from bad file" % func) continue if badfunctions[func] == func_text: announce_result("skipped", "same content") continue replace_function(goodfile, func, badfunctions[func], COMBINED) testfiles=[] for c in NO_PREFIX: if c == base: testfiles.append(COMBINED) continue testfiles.append(gooddir + "/" + c) testrun(testfiles) parser = argparse.ArgumentParser() parser.add_argument('--a', dest='dir_a', default='before') parser.add_argument('--b', dest='dir_b', default='after') parser.add_argument('--insane', help='Skip sanity check', action='store_true') parser.add_argument('file', metavar='file', nargs='?') config = parser.parse_args() gooddir=config.dir_a baddir=config.dir_b BAD_FILES=find(baddir, "*") GOOD_FILES=find(gooddir, "*") NO_PREFIX=sorted([x[len(gooddir)+1:] for x in GOOD_FILES]) # "Checking whether build environment is sane ..." if not config.insane: announce_test("sanity check") if not os.access(LINKTEST, os.X_OK): error("Expect '%s' to be present and executable" % (LINKTEST,)) exit(1) res = testrun(GOOD_FILES) if not res: # "build environment is grinning and holding a spatula. Guess not." linkline="%s %s" % (LINKTEST, " ".join(GOOD_FILES),) stderr.write("\n%s\n\n" % linkline) stderr.write("Returned with exitcode != 0\n") sys.exit(1) if config.file is not None: # File exchange mode goodfile = gooddir+"/"+config.file badfile = baddir+"/"+config.file check_functions_in_file(config.file, goodfile, badfile) else: # Function exchange mode check_files()
{ "content_hash": "bf0402717ace0fee520c7dee20211584", "timestamp": "", "source": "github", "line_count": 193, "max_line_length": 85, "avg_line_length": 31.27979274611399, "alnum_prop": 0.5623654132847441, "repo_name": "ensemblr/llvm-project-boilerplate", "id": "ad6a3e0ea8d22d90eaf489ef5dcf382323ffe5b4", "size": "8132", "binary": false, "copies": "29", "ref": "refs/heads/master", "path": "include/llvm/utils/abtest/abtest.py", "mode": "33261", "license": "mit", "language": [ { "name": "ApacheConf", "bytes": "32" }, { "name": "AppleScript", "bytes": "1429" }, { "name": "Assembly", "bytes": "15649629" }, { "name": "Awk", "bytes": "1747037" }, { "name": "Batchfile", "bytes": "34481" }, { "name": "Brainfuck", "bytes": "284" }, { "name": "C", "bytes": "85584624" }, { "name": "C#", "bytes": "20737" }, { "name": "C++", "bytes": "168418524" }, { "name": "CMake", "bytes": "1174816" }, { "name": "CSS", "bytes": "49900" }, { "name": "Cuda", "bytes": "414703" }, { "name": "Emacs Lisp", "bytes": "110018" }, { "name": "Forth", "bytes": "1490" }, { "name": "Fortran", "bytes": "356707" }, { "name": "GAP", "bytes": "6167" }, { "name": "Go", "bytes": "132137" }, { "name": "HTML", "bytes": "1751124" }, { "name": "JavaScript", "bytes": "141512" }, { "name": "LLVM", "bytes": "62219250" }, { "name": "Limbo", "bytes": "7437" }, { "name": "Logos", "bytes": "1572537943" }, { "name": "Lua", "bytes": "86606" }, { "name": "M", "bytes": "2008" }, { "name": "M4", "bytes": "109560" }, { "name": "Makefile", "bytes": "616437" }, { "name": "Mathematica", "bytes": "7845" }, { "name": "Matlab", "bytes": "53817" }, { "name": "Mercury", "bytes": "1194" }, { "name": "Mirah", "bytes": "1079943" }, { "name": "OCaml", "bytes": "407143" }, { "name": "Objective-C", "bytes": "5910944" }, { "name": "Objective-C++", "bytes": "1720450" }, { "name": "OpenEdge ABL", "bytes": "690534" }, { "name": "PHP", "bytes": "15986" }, { "name": "POV-Ray SDL", "bytes": "19471" }, { "name": "Perl", "bytes": "591927" }, { "name": "PostScript", "bytes": "845774" }, { "name": "Protocol Buffer", "bytes": "20013" }, { "name": "Python", "bytes": "1895427" }, { "name": "QMake", "bytes": "15580" }, { "name": "RenderScript", "bytes": "741" }, { "name": "Roff", "bytes": "94555" }, { "name": "Rust", "bytes": "200" }, { "name": "Scheme", "bytes": "2654" }, { "name": "Shell", "bytes": "1144090" }, { "name": "Smalltalk", "bytes": "144607" }, { "name": "SourcePawn", "bytes": "1544" }, { "name": "Standard ML", "bytes": "2841" }, { "name": "Tcl", "bytes": "8285" }, { "name": "TeX", "bytes": "320484" }, { "name": "Vim script", "bytes": "17239" }, { "name": "Yacc", "bytes": "163484" } ], "symlink_target": "" }
from unittest import TestCase from Game.GameMode import GameMode class TestGameMode(TestCase): def setUp(self): pass def test_gm_new(self): gm = GameMode(mode="test", priority=1) self.assertIsInstance(gm, GameMode) def test_gm_new_bad_priority(self): with self.assertRaises(KeyError): GameMode(mode="test") def test_gm_new_no_mode(self): with self.assertRaises(KeyError): GameMode() def test_gm_new_extra_params(self): with self.assertRaises(TypeError): GameMode(mode="test", priority=3, super_digits="*") def test_gm_new_bad_mode(self): with self.assertRaises(TypeError): GameMode(mode="test", priority=3, digits="S") def test_gm_property_priority(self): gm = GameMode(mode="test", priority=3) gm.priority = 5 self.assertEqual(gm.priority, 5) def test_gm_property_priority_bad(self): gm = GameMode(mode="test", priority=3) with self.assertRaises(TypeError): gm.priority = "X" def test_gm_property_digits(self): gm = GameMode(mode="test", priority=3) gm.digits = 5 self.assertEqual(gm.digits, 5) def test_gm_property_digits_bad(self): gm = GameMode(mode="test", priority=3) with self.assertRaises(TypeError): gm.digits = "X" def test_gm_property_digit_type(self): gm = GameMode(mode="test", priority=3) gm.digit_type = 5 self.assertEqual(gm.digit_type, 5) def test_gm_property_digit_type_bad(self): gm = GameMode(mode="test", priority=3) with self.assertRaises(TypeError): gm.digit_type = "X" def test_gm_property_guesses_allowed(self): gm = GameMode(mode="test", priority=3, guesses_allowed=5) self.assertEqual(gm.guesses_allowed, 5) gm.guesses_allowed = 7 self.assertEqual(gm.guesses_allowed, 7) def test_gm_property_guesses_allowed_bad(self): gm = GameMode(mode="test", priority=3) with self.assertRaises(TypeError): gm.guesses_allowed = "X" def test_gm_property_instructions(self): gm = GameMode(mode="test", priority=3, instruction_text="Test") self.assertEqual(gm.instruction_text, "Test") gm.instruction_text = "This is some test text" self.assertEqual(gm.instruction_text, "This is some test text") def test_gm_property_helptext(self): gm = GameMode(mode="test", priority=3, help_text="Help") self.assertEqual(gm.help_text, "Help") gm.help_text = "This is some help" self.assertEqual(gm.help_text, "This is some help")
{ "content_hash": "d7b87ce3f796f2d787b6f16a7fe6926f", "timestamp": "", "source": "github", "line_count": 80, "max_line_length": 71, "avg_line_length": 33.65, "alnum_prop": 0.6222139673105498, "repo_name": "dsandersAzure/python_cowbull_server", "id": "35e32dfea581f1875c7f5d40eba0289a19437986", "size": "2692", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "unittests/TestGameMode.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "2221" }, { "name": "Python", "bytes": "149374" }, { "name": "Shell", "bytes": "1198" } ], "symlink_target": "" }
import re from django.conf import settings from django.conf.urls import patterns, include, url from django.contrib import admin admin.autodiscover() def static(prefix, **kwargs): return patterns('', url(r'^%s(?P<path>.*)$' % re.escape(prefix.lstrip('/')), 'django.views.static.serve', kwargs=kwargs), ) urlpatterns = patterns('', url(r'^$', 'groupie.app.views.home', name='home'), url(r'^deadline_hack/(?P<voting_hash>[a-zA-Z0-9]{8})$', 'groupie.app.views.deadline_hack', name='deadline_hack'), url(r'^(?P<voting_hash>[a-zA-Z0-9]{8})$', 'groupie.app.views.voting', name='voting'), url(r'^admin/', include(admin.site.urls)), ) urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
{ "content_hash": "8ca94d304a7e9a57d35c8878f3550bbb", "timestamp": "", "source": "github", "line_count": 23, "max_line_length": 117, "avg_line_length": 32.82608695652174, "alnum_prop": 0.6556291390728477, "repo_name": "grunskis/groupie", "id": "4581f2e855badb650771d097477db8d6b076a402", "size": "755", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "groupie/urls.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "153996" }, { "name": "JavaScript", "bytes": "139721" }, { "name": "Python", "bytes": "16554" } ], "symlink_target": "" }
"""Tests for hparam.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.training.python.training import hparam from tensorflow.python.platform import test class HParamsTest(test.TestCase): def testEmpty(self): hparams = hparam.HParams() self.assertDictEqual({}, hparams.values()) hparams.parse('') self.assertDictEqual({}, hparams.values()) with self.assertRaisesRegexp(ValueError, 'Unknown hyperparameter'): hparams.parse('xyz=123') def testContains(self): hparams = hparam.HParams(foo=1) self.assertTrue('foo' in hparams) self.assertFalse('bar' in hparams) def testSomeValues(self): hparams = hparam.HParams(aaa=1, b=2.0, c_c='relu6') self.assertDictEqual({'aaa': 1, 'b': 2.0, 'c_c': 'relu6'}, hparams.values()) expected_str = '[(\'aaa\', 1), (\'b\', 2.0), (\'c_c\', \'relu6\')]' self.assertEqual(expected_str, str(hparams.__str__())) self.assertEqual(expected_str, str(hparams)) self.assertEqual(1, hparams.aaa) self.assertEqual(2.0, hparams.b) self.assertEqual('relu6', hparams.c_c) hparams.parse('aaa=12') self.assertDictEqual({ 'aaa': 12, 'b': 2.0, 'c_c': 'relu6' }, hparams.values()) self.assertEqual(12, hparams.aaa) self.assertEqual(2.0, hparams.b) self.assertEqual('relu6', hparams.c_c) hparams.parse('c_c=relu4, b=-2.0e10') self.assertDictEqual({ 'aaa': 12, 'b': -2.0e10, 'c_c': 'relu4' }, hparams.values()) self.assertEqual(12, hparams.aaa) self.assertEqual(-2.0e10, hparams.b) self.assertEqual('relu4', hparams.c_c) hparams.parse('c_c=,b=0,') self.assertDictEqual({'aaa': 12, 'b': 0, 'c_c': ''}, hparams.values()) self.assertEqual(12, hparams.aaa) self.assertEqual(0.0, hparams.b) self.assertEqual('', hparams.c_c) hparams.parse('c_c=2.3",b=+2,') self.assertEqual(2.0, hparams.b) self.assertEqual('2.3"', hparams.c_c) with self.assertRaisesRegexp(ValueError, 'Unknown hyperparameter'): hparams.parse('x=123') with self.assertRaisesRegexp(ValueError, 'Could not parse'): hparams.parse('aaa=poipoi') with self.assertRaisesRegexp(ValueError, 'Could not parse'): hparams.parse('aaa=1.0') with self.assertRaisesRegexp(ValueError, 'Could not parse'): hparams.parse('b=12x') with self.assertRaisesRegexp(ValueError, 'Could not parse'): hparams.parse('b=relu') with self.assertRaisesRegexp(ValueError, 'Must not pass a list'): hparams.parse('aaa=[123]') self.assertEqual(12, hparams.aaa) self.assertEqual(2.0, hparams.b) self.assertEqual('2.3"', hparams.c_c) # Exports to proto. hparam_def = hparams.to_proto() # Imports from proto. hparams2 = hparam.HParams(hparam_def=hparam_def) # Verifies that all hparams are restored. self.assertEqual(12, hparams2.aaa) self.assertEqual(2.0, hparams2.b) self.assertEqual('2.3"', hparams2.c_c) def testSetFromMap(self): hparams = hparam.HParams(a=1, b=2.0, c='tanh') hparams.override_from_dict({'a': -2, 'c': 'identity'}) self.assertDictEqual({'a': -2, 'c': 'identity', 'b': 2.0}, hparams.values()) hparams = hparam.HParams(x=1, b=2.0, d=[0.5]) hparams.override_from_dict({'d': [0.1, 0.2, 0.3]}) self.assertDictEqual({'d': [0.1, 0.2, 0.3], 'x': 1, 'b': 2.0}, hparams.values()) def testBoolParsing(self): for value in 'true', 'false', 'True', 'False', '1', '0': for initial in False, True: hparams = hparam.HParams(use_gpu=initial) hparams.parse('use_gpu=' + value) self.assertEqual(hparams.use_gpu, value in ['True', 'true', '1']) # Exports to proto. hparam_def = hparams.to_proto() # Imports from proto. hparams2 = hparam.HParams(hparam_def=hparam_def) self.assertEqual(hparams.use_gpu, hparams2.use_gpu) # Check that hparams2.use_gpu is a bool rather than an int. # The assertEqual() call above won't catch this, since # (0 == False) and (1 == True) in Python. self.assertEqual(bool, type(hparams2.use_gpu)) def testBoolParsingFail(self): hparams = hparam.HParams(use_gpu=True) with self.assertRaisesRegexp(ValueError, r'Could not parse.*use_gpu'): hparams.parse('use_gpu=yep') def testLists(self): hparams = hparam.HParams(aaa=[1], b=[2.0, 3.0], c_c=['relu6']) self.assertDictEqual({ 'aaa': [1], 'b': [2.0, 3.0], 'c_c': ['relu6'] }, hparams.values()) self.assertEqual([1], hparams.aaa) self.assertEqual([2.0, 3.0], hparams.b) self.assertEqual(['relu6'], hparams.c_c) hparams.parse('aaa=[12]') self.assertEqual([12], hparams.aaa) hparams.parse('aaa=[12,34,56]') self.assertEqual([12, 34, 56], hparams.aaa) hparams.parse('c_c=[relu4,relu12],b=[1.0]') self.assertEqual(['relu4', 'relu12'], hparams.c_c) self.assertEqual([1.0], hparams.b) hparams.parse('c_c=[],aaa=[-34]') self.assertEqual([-34], hparams.aaa) self.assertEqual([], hparams.c_c) hparams.parse('c_c=[_12,3\'4"],aaa=[+3]') self.assertEqual([3], hparams.aaa) self.assertEqual(['_12', '3\'4"'], hparams.c_c) with self.assertRaisesRegexp(ValueError, 'Unknown hyperparameter'): hparams.parse('x=[123]') with self.assertRaisesRegexp(ValueError, 'Could not parse'): hparams.parse('aaa=[poipoi]') with self.assertRaisesRegexp(ValueError, 'Could not parse'): hparams.parse('aaa=[1.0]') with self.assertRaisesRegexp(ValueError, 'Could not parse'): hparams.parse('b=[12x]') with self.assertRaisesRegexp(ValueError, 'Could not parse'): hparams.parse('b=[relu]') with self.assertRaisesRegexp(ValueError, 'Must pass a list'): hparams.parse('aaa=123') # Exports to proto. hparam_def = hparams.to_proto() # Imports from proto. hparams2 = hparam.HParams(hparam_def=hparam_def) # Verifies that all hparams are restored. self.assertEqual([3], hparams2.aaa) self.assertEqual([1.0], hparams2.b) self.assertEqual(['_12', '3\'4"'], hparams2.c_c) def testParseValuesWithIndexAssigment1(self): """Assignment to an index position.""" parse_dict = hparam.parse_values('arr[1]=10', {'arr': int}) self.assertEqual(len(parse_dict), 1) self.assertTrue(isinstance(parse_dict['arr'], dict)) self.assertDictEqual(parse_dict['arr'], {1: 10}) def testParseValuesWithIndexAssigment2(self): """Assignment to multiple index positions.""" parse_dict = hparam.parse_values('arr[0]=10,arr[5]=20', {'arr': int}) self.assertEqual(len(parse_dict), 1) self.assertTrue(isinstance(parse_dict['arr'], dict)) self.assertDictEqual(parse_dict['arr'], {0: 10, 5: 20}) def testParseValuesWithIndexAssigment3(self): """Assignment to index positions in multiple names.""" parse_dict = hparam.parse_values('arr[0]=10,arr[1]=20,L[5]=100,L[10]=200', {'arr': int, 'L': int}) self.assertEqual(len(parse_dict), 2) self.assertTrue(isinstance(parse_dict['arr'], dict)) self.assertDictEqual(parse_dict['arr'], {0: 10, 1: 20}) self.assertTrue(isinstance(parse_dict['L'], dict)) self.assertDictEqual(parse_dict['L'], {5: 100, 10: 200}) def testParseValuesWithIndexAssigment4(self): """Assignment of index positions and scalars.""" parse_dict = hparam.parse_values('x=10,arr[1]=20,y=30', {'x': int, 'y': int, 'arr': int}) self.assertEqual(len(parse_dict), 3) self.assertTrue(isinstance(parse_dict['arr'], dict)) self.assertDictEqual(parse_dict['arr'], {1: 20}) self.assertEqual(parse_dict['x'], 10) self.assertEqual(parse_dict['y'], 30) def testParseValuesWithIndexAssigment5(self): """Different variable types.""" parse_dict = hparam.parse_values('a[0]=5,b[1]=true,c[2]=abc,d[3]=3.14', { 'a': int, 'b': bool, 'c': str, 'd': float }) self.assertEqual(set(parse_dict.keys()), {'a', 'b', 'c', 'd'}) self.assertTrue(isinstance(parse_dict['a'], dict)) self.assertDictEqual(parse_dict['a'], {0: 5}) self.assertTrue(isinstance(parse_dict['b'], dict)) self.assertDictEqual(parse_dict['b'], {1: True}) self.assertTrue(isinstance(parse_dict['c'], dict)) self.assertDictEqual(parse_dict['c'], {2: 'abc'}) self.assertTrue(isinstance(parse_dict['d'], dict)) self.assertDictEqual(parse_dict['d'], {3: 3.14}) def testParseValuesWithBadIndexAssigment1(self): """Reject assignment of list to variable type.""" with self.assertRaisesRegexp(ValueError, r'Assignment of a list to a list index.'): hparam.parse_values('arr[1]=[1,2,3]', {'arr': int}) def testParseValuesWithBadIndexAssigment2(self): """Reject if type missing.""" with self.assertRaisesRegexp(ValueError, r'Unknown hyperparameter type for arr'): hparam.parse_values('arr[1]=5', {}) def testParseValuesWithBadIndexAssigment3(self): """Reject type of the form name[index].""" with self.assertRaisesRegexp(ValueError, 'Unknown hyperparameter type for arr'): hparam.parse_values('arr[1]=1', {'arr[1]': int}) def testWithReusedVariables(self): with self.assertRaisesRegexp(ValueError, 'Multiple assignments to variable \'x\''): hparam.parse_values('x=1,x=1', {'x': int}) with self.assertRaisesRegexp(ValueError, 'Multiple assignments to variable \'arr\''): hparam.parse_values('arr=[100,200],arr[0]=10', {'arr': int}) with self.assertRaisesRegexp( ValueError, r'Multiple assignments to variable \'arr\[0\]\''): hparam.parse_values('arr[0]=10,arr[0]=20', {'arr': int}) with self.assertRaisesRegexp(ValueError, 'Multiple assignments to variable \'arr\''): hparam.parse_values('arr[0]=10,arr=[100]', {'arr': int}) def testJson(self): hparams = hparam.HParams(aaa=1, b=2.0, c_c='relu6', d=True) self.assertDictEqual({ 'aaa': 1, 'b': 2.0, 'c_c': 'relu6', 'd': True }, hparams.values()) self.assertEqual(1, hparams.aaa) self.assertEqual(2.0, hparams.b) self.assertEqual('relu6', hparams.c_c) hparams.parse_json('{"aaa": 12, "b": 3.0, "c_c": "relu4", "d": false}') self.assertDictEqual({ 'aaa': 12, 'b': 3.0, 'c_c': 'relu4', 'd': False }, hparams.values()) self.assertEqual(12, hparams.aaa) self.assertEqual(3.0, hparams.b) self.assertEqual('relu4', hparams.c_c) json_str = hparams.to_json() hparams2 = hparam.HParams(aaa=10, b=20.0, c_c='hello', d=False) hparams2.parse_json(json_str) self.assertEqual(12, hparams2.aaa) self.assertEqual(3.0, hparams2.b) self.assertEqual('relu4', hparams2.c_c) self.assertEqual(False, hparams2.d) hparams3 = hparam.HParams(aaa=123) self.assertEqual('{"aaa": 123}', hparams3.to_json()) self.assertEqual('{\n "aaa": 123\n}', hparams3.to_json(indent=2)) self.assertEqual('{"aaa"=123}', hparams3.to_json(separators=(';', '='))) hparams4 = hparam.HParams(aaa=123, b='hello', c_c=False) self.assertEqual( '{"aaa": 123, "b": "hello", "c_c": false}', hparams4.to_json(sort_keys=True)) def testSetHParam(self): hparams = hparam.HParams(aaa=1, b=2.0, c_c='relu6', d=True) self.assertDictEqual({ 'aaa': 1, 'b': 2.0, 'c_c': 'relu6', 'd': True }, hparams.values()) self.assertEqual(1, hparams.aaa) self.assertEqual(2.0, hparams.b) self.assertEqual('relu6', hparams.c_c) hparams.set_hparam('aaa', 12) hparams.set_hparam('b', 3.0) hparams.set_hparam('c_c', 'relu4') hparams.set_hparam('d', False) self.assertDictEqual({ 'aaa': 12, 'b': 3.0, 'c_c': 'relu4', 'd': False }, hparams.values()) self.assertEqual(12, hparams.aaa) self.assertEqual(3.0, hparams.b) self.assertEqual('relu4', hparams.c_c) def testSetHParamListNonListMismatch(self): hparams = hparam.HParams(a=1, b=[2.0, 3.0]) with self.assertRaisesRegexp(ValueError, r'Must not pass a list'): hparams.set_hparam('a', [1.0]) with self.assertRaisesRegexp(ValueError, r'Must pass a list'): hparams.set_hparam('b', 1.0) def testSetHParamTypeMismatch(self): hparams = hparam.HParams( int_=1, str_='str', bool_=True, float_=1.1, list_int=[1, 2], none=None) with self.assertRaises(ValueError): hparams.set_hparam('str_', 2.2) with self.assertRaises(ValueError): hparams.set_hparam('int_', False) with self.assertRaises(ValueError): hparams.set_hparam('bool_', 1) with self.assertRaises(ValueError): hparams.set_hparam('int_', 2.2) with self.assertRaises(ValueError): hparams.set_hparam('list_int', [2, 3.3]) with self.assertRaises(ValueError): hparams.set_hparam('int_', '2') # Casting int to float is OK hparams.set_hparam('float_', 1) # Getting stuck with NoneType :( hparams.set_hparam('none', '1') self.assertEqual('1', hparams.none) def testNonProtoFails(self): with self.assertRaisesRegexp(AssertionError, ''): hparam.HParams(hparam_def=1) with self.assertRaisesRegexp(AssertionError, ''): hparam.HParams(hparam_def=1.0) with self.assertRaisesRegexp(AssertionError, ''): hparam.HParams(hparam_def='hello') with self.assertRaisesRegexp(AssertionError, ''): hparam.HParams(hparam_def=[1, 2, 3]) def testGet(self): hparams = hparam.HParams(aaa=1, b=2.0, c_c='relu6', d=True, e=[5.0, 6.0]) # Existing parameters with default=None. self.assertEqual(1, hparams.get('aaa')) self.assertEqual(2.0, hparams.get('b')) self.assertEqual('relu6', hparams.get('c_c')) self.assertEqual(True, hparams.get('d')) self.assertEqual([5.0, 6.0], hparams.get('e', None)) # Existing parameters with compatible defaults. self.assertEqual(1, hparams.get('aaa', 2)) self.assertEqual(2.0, hparams.get('b', 3.0)) self.assertEqual(2.0, hparams.get('b', 3)) self.assertEqual('relu6', hparams.get('c_c', 'default')) self.assertEqual(True, hparams.get('d', True)) self.assertEqual([5.0, 6.0], hparams.get('e', [1.0, 2.0, 3.0])) self.assertEqual([5.0, 6.0], hparams.get('e', [1, 2, 3])) # Existing parameters with incompatible defaults. with self.assertRaises(ValueError): hparams.get('aaa', 2.0) with self.assertRaises(ValueError): hparams.get('b', False) with self.assertRaises(ValueError): hparams.get('c_c', [1, 2, 3]) with self.assertRaises(ValueError): hparams.get('d', 'relu') with self.assertRaises(ValueError): hparams.get('e', 123.0) with self.assertRaises(ValueError): hparams.get('e', ['a', 'b', 'c']) # Nonexistent parameters. self.assertEqual(None, hparams.get('unknown')) self.assertEqual(123, hparams.get('unknown', 123)) self.assertEqual([1, 2, 3], hparams.get('unknown', [1, 2, 3])) if __name__ == '__main__': test.main()
{ "content_hash": "1f47179d7e80aa5950f1a8455b1c64eb", "timestamp": "", "source": "github", "line_count": 408, "max_line_length": 80, "avg_line_length": 37.872549019607845, "alnum_prop": 0.6179135387004918, "repo_name": "ravindrapanda/tensorflow", "id": "16397622edd382bc6dcb12870de5fa22130a2c2b", "size": "16141", "binary": false, "copies": "6", "ref": "refs/heads/master", "path": "tensorflow/contrib/training/python/training/hparam_test.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "7908" }, { "name": "C", "bytes": "186817" }, { "name": "C++", "bytes": "25164156" }, { "name": "CMake", "bytes": "166422" }, { "name": "Go", "bytes": "857510" }, { "name": "HTML", "bytes": "568425" }, { "name": "Java", "bytes": "317802" }, { "name": "JavaScript", "bytes": "1399" }, { "name": "Jupyter Notebook", "bytes": "1833659" }, { "name": "LLVM", "bytes": "6536" }, { "name": "Makefile", "bytes": "37393" }, { "name": "Objective-C", "bytes": "7037" }, { "name": "Objective-C++", "bytes": "64142" }, { "name": "Protocol Buffer", "bytes": "227436" }, { "name": "Python", "bytes": "22238905" }, { "name": "Shell", "bytes": "338684" }, { "name": "TypeScript", "bytes": "797972" } ], "symlink_target": "" }
import os import sys sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "python-bitcoinrpc")) from decimal import Decimal, ROUND_DOWN import json import random import shutil import subprocess import time import re from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException from util import * def p2p_port(n): return 11000 + n + os.getpid()%999 def rpc_port(n): return 12000 + n + os.getpid()%999 def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def sync_blocks(rpc_connections): """ Wait until everybody has the same block count """ while True: counts = [ x.getblockcount() for x in rpc_connections ] if counts == [ counts[0] ]*len(counts): break time.sleep(1) def sync_mempools(rpc_connections): """ Wait until everybody has the same transactions in their memory pools """ while True: pool = set(rpc_connections[0].getrawmempool()) num_match = 1 for i in range(1, len(rpc_connections)): if set(rpc_connections[i].getrawmempool()) == pool: num_match = num_match+1 if num_match == len(rpc_connections): break time.sleep(1) bitcoind_processes = {} def initialize_datadir(dir, n): datadir = os.path.join(dir, "node"+str(n)) if not os.path.isdir(datadir): os.makedirs(datadir) with open(os.path.join(datadir, "bitcoin.conf"), 'w') as f: f.write("regtest=1\n"); f.write("rpcuser=rt\n"); f.write("rpcpassword=rt\n"); f.write("port="+str(p2p_port(n))+"\n"); f.write("rpcport="+str(rpc_port(n))+"\n"); return datadir def initialize_chain(test_dir): """ Create (or copy from cache) a 200-block-long chain and 4 wallets. bitcoind and bitcoin-cli must be in search path. """ if not os.path.isdir(os.path.join("cache", "node0")): devnull = open("/dev/null", "w+") # Create cache directories, run bitcoinds: for i in range(4): datadir=initialize_datadir("cache", i) args = [ "bitcoind", "-keypool=1", "-datadir="+datadir, "-discover=0" ] if i > 0: args.append("-connect=127.0.0.1:"+str(p2p_port(0))) bitcoind_processes[i] = subprocess.Popen(args) subprocess.check_call([ "bitcoin-cli", "-datadir="+datadir, "-rpcwait", "getblockcount"], stdout=devnull) devnull.close() rpcs = [] for i in range(4): try: url = "http://rt:rt@127.0.0.1:%d"%(rpc_port(i),) rpcs.append(AuthServiceProxy(url)) except: sys.stderr.write("Error connecting to "+url+"\n") sys.exit(1) # Create a 200-block-long chain; each of the 4 nodes # gets 25 mature blocks and 25 immature. for i in range(4): rpcs[i].setgenerate(True, 25) sync_blocks(rpcs) for i in range(4): rpcs[i].setgenerate(True, 25) sync_blocks(rpcs) # Shut them down, and clean up cache directories: stop_nodes(rpcs) wait_bitcoinds() for i in range(4): os.remove(log_filename("cache", i, "debug.log")) os.remove(log_filename("cache", i, "db.log")) os.remove(log_filename("cache", i, "peers.dat")) os.remove(log_filename("cache", i, "fee_estimates.dat")) for i in range(4): from_dir = os.path.join("cache", "node"+str(i)) to_dir = os.path.join(test_dir, "node"+str(i)) shutil.copytree(from_dir, to_dir) initialize_datadir(test_dir, i) # Overwrite port/rpcport in bitcoin.conf def _rpchost_to_args(rpchost): '''Convert optional IP:port spec to rpcconnect/rpcport args''' if rpchost is None: return [] match = re.match('(\[[0-9a-fA-f:]+\]|[^:]+)(?::([0-9]+))?$', rpchost) if not match: raise ValueError('Invalid RPC host spec ' + rpchost) rpcconnect = match.group(1) rpcport = match.group(2) if rpcconnect.startswith('['): # remove IPv6 [...] wrapping rpcconnect = rpcconnect[1:-1] rv = ['-rpcconnect=' + rpcconnect] if rpcport: rv += ['-rpcport=' + rpcport] return rv def start_node(i, dir, extra_args=None, rpchost=None): """ Start a bitcoind and return RPC connection to it """ datadir = os.path.join(dir, "node"+str(i)) args = [ "bitcoind", "-datadir="+datadir, "-keypool=1", "-discover=0" ] if extra_args is not None: args.extend(extra_args) bitcoind_processes[i] = subprocess.Popen(args) devnull = open("/dev/null", "w+") subprocess.check_call([ "bitcoin-cli", "-datadir="+datadir] + _rpchost_to_args(rpchost) + ["-rpcwait", "getblockcount"], stdout=devnull) devnull.close() url = "http://rt:rt@%s:%d" % (rpchost or '127.0.0.1', rpc_port(i)) proxy = AuthServiceProxy(url) proxy.url = url # store URL on proxy for info return proxy def start_nodes(num_nodes, dir, extra_args=None, rpchost=None): """ Start multiple bitcoinds, return RPC connections to them """ if extra_args is None: extra_args = [ None for i in range(num_nodes) ] return [ start_node(i, dir, extra_args[i], rpchost) for i in range(num_nodes) ] def log_filename(dir, n_node, logname): return os.path.join(dir, "node"+str(n_node), "regtest", logname) def stop_node(node, i): node.stop() bitcoind_processes[i].wait() del bitcoind_processes[i] def stop_nodes(nodes): for i in range(len(nodes)): nodes[i].stop() del nodes[:] # Emptying array closes connections as a side effect def wait_bitcoinds(): # Wait for all bitcoinds to cleanly exit for bitcoind in bitcoind_processes.values(): bitcoind.wait() bitcoind_processes.clear() def connect_nodes(from_connection, node_num): ip_port = "127.0.0.1:"+str(p2p_port(node_num)) from_connection.addnode(ip_port, "onetry") # poll until version handshake complete to avoid race conditions # with transaction relaying while any(peer['version'] == 0 for peer in from_connection.getpeerinfo()): time.sleep(0.1) def connect_nodes_bi(nodes, a, b): connect_nodes(nodes[a], b) connect_nodes(nodes[b], a) def find_output(node, txid, amount): """ Return index to output of txid with value amount Raises exception if there is none. """ txdata = node.getrawtransaction(txid, 1) for i in range(len(txdata["vout"])): if txdata["vout"][i]["value"] == amount: return i raise RuntimeError("find_output txid %s : %s not found"%(txid,str(amount))) def gather_inputs(from_node, amount_needed): """ Return a random set of unspent txouts that are enough to pay amount_needed """ utxo = from_node.listunspent(1) random.shuffle(utxo) inputs = [] total_in = Decimal("0.00000000") while total_in < amount_needed and len(utxo) > 0: t = utxo.pop() total_in += t["amount"] inputs.append({ "txid" : t["txid"], "vout" : t["vout"], "address" : t["address"] } ) if total_in < amount_needed: raise RuntimeError("Insufficient funds: need %d, have %d"%(amount+fee*2, total_in)) return (total_in, inputs) def make_change(from_node, amount_in, amount_out, fee): """ Create change output(s), return them """ outputs = {} amount = amount_out+fee change = amount_in - amount if change > amount*2: # Create an extra change output to break up big inputs change_address = from_node.getnewaddress() # Split change in two, being careful of rounding: outputs[change_address] = Decimal(change/2).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) change = amount_in - amount - outputs[change_address] if change > 0: outputs[from_node.getnewaddress()] = change return outputs def send_zeropri_transaction(from_node, to_node, amount, fee): """ Create&broadcast a zero-priority transaction. Returns (txid, hex-encoded-txdata) Ensures transaction is zero-priority by first creating a send-to-self, then using it's output """ # Create a send-to-self with confirmed inputs: self_address = from_node.getnewaddress() (total_in, inputs) = gather_inputs(from_node, amount+fee*2) outputs = make_change(from_node, total_in, amount+fee, fee) outputs[self_address] = float(amount+fee) self_rawtx = from_node.createrawtransaction(inputs, outputs) self_signresult = from_node.signrawtransaction(self_rawtx) self_txid = from_node.sendrawtransaction(self_signresult["hex"], True) vout = find_output(from_node, self_txid, amount+fee) # Now immediately spend the output to create a 1-input, 1-output # zero-priority transaction: inputs = [ { "txid" : self_txid, "vout" : vout } ] outputs = { to_node.getnewaddress() : float(amount) } rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"]) def random_zeropri_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random zero-priority transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (txid, txhex) = send_zeropri_transaction(from_node, to_node, amount, fee) return (txid, txhex, fee) def random_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (total_in, inputs) = gather_inputs(from_node, amount+fee) outputs = make_change(from_node, total_in, amount, fee) outputs[to_node.getnewaddress()] = float(amount) rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"], fee) def assert_equal(thing1, thing2): if thing1 != thing2: raise AssertionError("%s != %s"%(str(thing1),str(thing2)))
{ "content_hash": "e4e13cc1d86f94cd2f7b1fa49bef2224", "timestamp": "", "source": "github", "line_count": 302, "max_line_length": 104, "avg_line_length": 35.78476821192053, "alnum_prop": 0.6245026371796059, "repo_name": "TBoehm/greedynode", "id": "6d0b21c927b1368f1c17c998742666e3556724a2", "size": "11087", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "qa/rpc-tests/util.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "113529" }, { "name": "C++", "bytes": "3373391" }, { "name": "CSS", "bytes": "1127" }, { "name": "Makefile", "bytes": "60693" }, { "name": "Objective-C", "bytes": "3036" }, { "name": "Objective-C++", "bytes": "6310" }, { "name": "Python", "bytes": "167964" }, { "name": "Shell", "bytes": "51936" } ], "symlink_target": "" }
from django.urls import reverse from menu import Menu, MenuItem def profile_title(request): """ Return a personalized title for our profile menu item """ # we don't need to check if the user is authenticated because our menu # item will have a check that does that for us name = request.user.get_full_name() or request.user return "%s's Profile" % name Menu.add_item("side", MenuItem("Dashboard", reverse("home"), icon="fas fa-tachometer-alt")) Menu.add_item( "side", MenuItem( "People", None, icon="fas fa-user", children=[ MenuItem("Members", reverse("members-list"), icon="fas fa-user"), MenuItem("Playing adults", reverse("adults-list"), icon="fas fa-user"), MenuItem("Parents", reverse("parents-list"), icon="fas fa-user"), MenuItem("Juniors", reverse("juniors-list"), icon="fas fa-user"), MenuItem("Enquiries", reverse("enquiry-list"), icon="fas fa-user"), MenuItem("Applications", reverse("applied-list"), icon="fas fa-user"), MenuItem("All people", reverse("all-people-list"), icon="fas fa-user"), MenuItem("Search", reverse("people-search"), icon="fa fa-search"), MenuItem("Create adult", reverse("person-create"), icon="fas fa-user"), MenuItem("Create junior", reverse("person-junior-create"), icon="fas fa-user"), ], ), ) Menu.add_item( "side", MenuItem( "Groups", None, icon="fas fa-users", children=[MenuItem("List groups", reverse("group-list"), icon="fas fa-list-ul")], ), ) Menu.add_item( "side", MenuItem( "Charts", None, icon="fas fa-chart-bar", children=[MenuItem("Membership", reverse("charts-members"), icon="fa2 fa-circle")], ), ) Menu.add_item( "side", MenuItem( "Finance", None, icon="fas fa-pound-sign", children=[ MenuItem("Analysis", reverse("billing-analysis"), icon="far fa-circle"), MenuItem("Invoices", reverse("invoice-list"), icon="far fa-circle"), MenuItem("Invoice queries", reverse("invoice-queries"), icon="far fa-circle"), MenuItem("Invoice items", reverse("item-table"), icon="far fa-circle"), MenuItem("Payments", reverse("payment-list"), icon="far fa-circle"), MenuItem("Scheduled payments", reverse("payment-task-list"), icon="far fa-circle"), MenuItem("Refunds", reverse("refund-list"), icon="far fa-circle"), # MenuItem( # "Update from GoCardless", # reverse("cardless_payment_process"), # icon="far fa-circle", # ), MenuItem("Payouts", reverse("cardless_payout_list"), icon="far fa-circle"), ], ), ) Menu.add_item( "side", MenuItem( "Billing", None, icon="fas fa-pound-sign", children=[ MenuItem("Period-end", reverse("billing-period"), icon="far fa-circle"), MenuItem("Year-end", reverse("billing-year-end"), icon="far fa-circle"), ], ), ) Menu.add_item( "side", MenuItem( "Mail", None, icon="far fa-envelope", children=[ MenuItem("Sent mails", reverse("mailtask-list"), icon="far fa-circle"), MenuItem("Invoice templates", reverse("text-invoice-list"), icon="far fa-circle"), MenuItem("Text blocks", reverse("text-list"), icon="far fa-circle"), MenuItem("Mail types", reverse("mailtype-list"), icon="far fa-circle"), ], ), ) Menu.add_item( "side", MenuItem( "Settings", None, icon="fas fa-cog", children=[ MenuItem("Fees", reverse("fees-list"), icon="far fa-circle"), MenuItem("Membership year", reverse("billing-set-year"), icon="far fa-circle"), MenuItem("Membership categories", reverse("membership-list"), icon="far fa-circle"), ], ), ) Menu.add_item( "side", MenuItem( "POS", None, icon="fas fa-shopping-cart", children=[ MenuItem("POS admin", reverse("pos_admin"), icon="fas fa-shopping-cart"), MenuItem("Transactions", reverse("pos_transactions_main"), icon="fas fa-shipping-cart"), ], ), )
{ "content_hash": "63a438f54a4e3b6d7f90e999f78f90f5", "timestamp": "", "source": "github", "line_count": 137, "max_line_length": 100, "avg_line_length": 32.167883211678834, "alnum_prop": 0.5625141819832086, "repo_name": "ianastewart/cwltc-admin", "id": "0a1f1fc83c59aac47081119efcbf85bd9d077fdd", "size": "4407", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "members/menus.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "945975" }, { "name": "Dockerfile", "bytes": "882" }, { "name": "HTML", "bytes": "526368" }, { "name": "JavaScript", "bytes": "843481" }, { "name": "Python", "bytes": "8389886" }, { "name": "Shell", "bytes": "1023" } ], "symlink_target": "" }
"""Sparse attention for the transformer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensor2tensor.layers import common_attention from tensor2tensor.layers import common_layers import tensorflow.compat.v1 as tf from state_of_sparsity.sparse_transformer.layers import common_sparse from tensorflow.contrib.model_pruning.python import pruning # pylint: disable=g-direct-tensorflow-import from tensorflow.python.ops import inplace_ops # pylint: disable=g-direct-tensorflow-import def compute_attention_component(antecedent, total_depth, filter_width=1, padding="VALID", name="c", vars_3d_num_heads=0, sparsity_technique=None, threshold=3.0, training=True, clip_alpha=None, initial_sparsity=None, split_heads=False, num_heads=None): """Computes attention compoenent (query, key or value). Args: antecedent: a Tensor with shape [batch, length, channels] total_depth: an integer filter_width: An integer specifying how wide you want the attention component to be. padding: One of "VALID", "SAME" or "LEFT". Default is VALID: No padding. name: a string specifying scope name. vars_3d_num_heads: an optional integer (if we want to use 3d variables) sparsity_technique: technique used for sparsifying weights. threshold: log alpha threshold used for evaluation with variational dropout. training: whether model is being trained or not. clip_alpha: alpha clipping threshold for variational dropout. initial_sparsity: initial sparsity level for lottery ticket & scratch experiments. split_heads: Whether to prune each head separately. num_heads: The number of heads in the attention module. Returns: c : [batch, length, depth] tensor """ # We don't support 3d attention variables or filter_width > 1 with sparsity # techniques assert not sparsity_technique or (not vars_3d_num_heads and filter_width == 1) if vars_3d_num_heads > 0: assert filter_width == 1 input_depth = antecedent.get_shape().as_list()[-1] depth_per_head = total_depth // vars_3d_num_heads initializer_stddev = input_depth ** -0.5 if "q" in name: initializer_stddev *= depth_per_head ** -0.5 var = tf.get_variable( name, [input_depth, vars_3d_num_heads, total_depth // vars_3d_num_heads], initializer=tf.random_normal_initializer(stddev=initializer_stddev)) var = tf.cast(var, antecedent.dtype) var = tf.reshape(var, [input_depth, total_depth]) return tf.tensordot(antecedent, var, axes=1) if filter_width == 1: if sparsity_technique: if split_heads: # Prune each heads weights separately so that they are free # to have different weight magnitude distributions. if num_heads is None: raise ValueError("`num_heads` must be set for split head pruning.") if total_depth % num_heads != 0: raise ValueError("`total_depth` must be divisible by `num_heads`.") input_depth = antecedent.get_shape().as_list()[-1] depth_per_head = int(total_depth / num_heads) masked_head_weights = [] for head_id in range(num_heads): head_name = name + "_shard_{}".format(head_id) with tf.variable_scope(head_name) as vs: head_weights = tf.get_variable( "kernel", [input_depth, depth_per_head]) masked_head_weights.append(pruning.apply_mask(head_weights, vs)) component_weights = tf.concat(masked_head_weights, axis=1) # compute the full component result return tf.tensordot(antecedent, component_weights, axes=1) else: return common_sparse.dense( antecedent, total_depth, use_bias=False, sparsity_technique=sparsity_technique, threshold=threshold, training=training, clip_alpha=clip_alpha, name=name, initial_sparsity=initial_sparsity) else: return common_layers.dense( antecedent, total_depth, use_bias=False, name=name) else: return common_layers.conv1d( antecedent, total_depth, filter_width, padding=padding, name=name) def compute_qkv(query_antecedent, memory_antecedent, total_key_depth, total_value_depth, q_filter_width=1, kv_filter_width=1, q_padding="VALID", kv_padding="VALID", vars_3d_num_heads=0, sparsity_technique=None, threshold=3.0, training=True, clip_alpha=None, initial_sparsity=None, split_heads=False, num_heads=None): """Computes query, key and value. Args: query_antecedent: a Tensor with shape [batch, length_q, channels] memory_antecedent: a Tensor with shape [batch, length_m, channels] total_key_depth: an integer total_value_depth: an integer q_filter_width: An integer specifying how wide you want the query to be. kv_filter_width: An integer specifying how wide you want the keys and values to be. q_padding: One of "VALID", "SAME" or "LEFT". Default is VALID: No padding. kv_padding: One of "VALID", "SAME" or "LEFT". Default is VALID: No padding. vars_3d_num_heads: an optional (if we want to use 3d variables) sparsity_technique: technique used for sparsifying weights. threshold: log alpha threshold used for evaluation with variational dropout. training: whether model is being trained or not. clip_alpha: alpha clipping threshold for variational dropout. initial_sparsity: initial sparsity level for lottery ticket & scratch experiments. split_heads: Whether to prune each head separately. num_heads: The number of heads in the attention module. Returns: q, k, v : [batch, length, depth] tensors """ if memory_antecedent is None: memory_antecedent = query_antecedent q = compute_attention_component( query_antecedent, total_key_depth, q_filter_width, q_padding, "q", vars_3d_num_heads=vars_3d_num_heads, sparsity_technique=sparsity_technique, threshold=threshold, training=training, clip_alpha=clip_alpha, initial_sparsity=initial_sparsity, split_heads=split_heads, num_heads=num_heads) k = compute_attention_component( memory_antecedent, total_key_depth, kv_filter_width, kv_padding, "k", vars_3d_num_heads=vars_3d_num_heads, sparsity_technique=sparsity_technique, threshold=threshold, training=training, clip_alpha=clip_alpha, initial_sparsity=initial_sparsity, split_heads=split_heads, num_heads=num_heads) v = compute_attention_component( memory_antecedent, total_value_depth, kv_filter_width, kv_padding, "v", vars_3d_num_heads=vars_3d_num_heads, sparsity_technique=sparsity_technique, threshold=threshold, training=training, clip_alpha=clip_alpha, initial_sparsity=initial_sparsity, split_heads=split_heads, num_heads=num_heads) return q, k, v def multihead_attention(query_antecedent, memory_antecedent, bias, total_key_depth, total_value_depth, output_depth, num_heads, dropout_rate, attention_type="dot_product", image_shapes=None, q_filter_width=1, kv_filter_width=1, q_padding="VALID", kv_padding="VALID", cache=None, name="multihead_attention", save_weights_to=None, make_image_summary=True, dropout_broadcast_dims=None, vars_3d=False, sparsity_technique=None, threshold=3.0, training=True, clip_alpha=None, initial_sparsity=None, split_heads=False, **kwargs): """Multihead scaled-dot-product attention with input/output transformations. Args: query_antecedent: a Tensor with shape [batch, length_q, channels] memory_antecedent: a Tensor with shape [batch, length_m, channels] or None bias: bias Tensor (see attention_bias()) total_key_depth: an integer total_value_depth: an integer output_depth: an integer num_heads: an integer dividing total_key_depth and total_value_depth dropout_rate: a floating point number attention_type: a string, either "dot_product", "dot_product_relative", "local_mask_right", "local_unmasked", "masked_dilated_1d", "unmasked_dilated_1d", graph, or any attention function with the signature (query, key, value, **kwargs) image_shapes: optional tuple of integer scalars. see comments for attention_image_summary() q_filter_width: An integer specifying how wide you want the query to be. kv_filter_width: An integer specifying how wide you want the keys and values to be. q_padding: One of "VALID", "SAME" or "LEFT". Default is VALID: No padding. kv_padding: One of "VALID", "SAME" or "LEFT". Default is "VALID": no padding. cache: dict containing Tensors which are the results of previous attentions, used for fast decoding. Expects the dict to contrain two keys ('k' and 'v'), for the initial call the values for these keys should be empty Tensors of the appropriate shape. 'k' [batch_size, 0, key_channels] 'v' [batch_size, 0, value_channels] name: an optional string. save_weights_to: an optional dictionary to capture attention weights for vizualization; the weights tensor will be appended there under a string key created from the variable scope (including name). make_image_summary: Whether to make an attention image summary. dropout_broadcast_dims: an optional list of integers less than 4 specifying in which dimensions to broadcast the dropout decisions. saves memory. vars_3d: use 3-dimensional variables for input/output transformations sparsity_technique: technique used for sparsifying weights. threshold: log alpha threshold used for evaluation with variational dropout. training: whether model is being trained or not. clip_alpha: alpha clipping threshold for variational dropout. initial_sparsity: initial sparsity level for lottery ticket & scratch experiments. split_heads: Whether to prune each head separately. **kwargs (dict): Parameters for the attention function Caching: WARNING: For decoder self-attention, i.e. when memory_antecedent == None, the caching assumes that the bias contains future masking. The caching works by saving all the previous key and value values so that you are able to send just the last query location to this attention function. I.e. if the cache dict is provided it assumes the query is of the shape [batch_size, 1, hidden_dim] rather than the full memory. Returns: The result of the attention transformation. The output shape is [batch_size, length_q, hidden_dim] unless the cache dict is provided in which case only the last memory position is calculated and the output shape is [batch_size, 1, hidden_dim] Optionally returns an additional loss parameters (ex: load balance loss for the experts) returned by the attention_type function. Raises: ValueError: if the key depth or value depth are not divisible by the number of attention heads. """ if total_key_depth % num_heads != 0: raise ValueError("Key depth (%d) must be divisible by the number of " "attention heads (%d)." % (total_key_depth, num_heads)) if total_value_depth % num_heads != 0: raise ValueError("Value depth (%d) must be divisible by the number of " "attention heads (%d)." % (total_value_depth, num_heads)) if vars_3d: raise ValueError("3d attention variables not supported.") if attention_type != "dot_product": raise ValueError( "Sparse multihead attention only supports dot_product attention.") vars_3d_num_heads = 0 with tf.variable_scope( name, default_name="multihead_attention", values=[query_antecedent, memory_antecedent]): if cache is None or memory_antecedent is None: q, k, v = compute_qkv(query_antecedent, memory_antecedent, total_key_depth, total_value_depth, q_filter_width, kv_filter_width, q_padding, kv_padding, vars_3d_num_heads=vars_3d_num_heads, sparsity_technique=sparsity_technique, threshold=threshold, training=training, clip_alpha=clip_alpha, initial_sparsity=initial_sparsity, split_heads=split_heads, num_heads=num_heads) if cache is not None: if bias is None: raise ValueError("Bias required for caching. See function docstring " "for details.") if memory_antecedent is not None: # Encoder-Decoder Attention Cache q = compute_attention_component(query_antecedent, total_key_depth, q_filter_width, q_padding, "q", vars_3d_num_heads=vars_3d_num_heads, sparsity_technique=sparsity_technique, threshold=threshold, training=training, clip_alpha=clip_alpha, initial_sparsity=initial_sparsity, split_heads=split_heads, num_heads=num_heads) k = cache["k_encdec"] v = cache["v_encdec"] else: k = common_attention.split_heads(k, num_heads) v = common_attention.split_heads(v, num_heads) decode_loop_step = kwargs.get("decode_loop_step") if decode_loop_step is None: k = cache["k"] = tf.concat([cache["k"], k], axis=2) v = cache["v"] = tf.concat([cache["v"], v], axis=2) else: # Inplace update is required for inference on TPU. # Inplace_ops only supports inplace_update on the first dimension. # The performance of current implementation is better than updating # the tensor by adding the result of matmul(one_hot, # update_in_current_step) tmp_k = tf.transpose(cache["k"], perm=[2, 0, 1, 3]) tmp_k = inplace_ops.alias_inplace_update( tmp_k, decode_loop_step, tf.squeeze(k, axis=2)) k = cache["k"] = tf.transpose(tmp_k, perm=[1, 2, 0, 3]) tmp_v = tf.transpose(cache["v"], perm=[2, 0, 1, 3]) tmp_v = inplace_ops.alias_inplace_update( tmp_v, decode_loop_step, tf.squeeze(v, axis=2)) v = cache["v"] = tf.transpose(tmp_v, perm=[1, 2, 0, 3]) q = common_attention.split_heads(q, num_heads) if cache is None: k = common_attention.split_heads(k, num_heads) v = common_attention.split_heads(v, num_heads) key_depth_per_head = total_key_depth // num_heads if not vars_3d: q *= key_depth_per_head**-0.5 # compute the attention x = common_attention.dot_product_attention( q, k, v, bias, dropout_rate, image_shapes, save_weights_to=save_weights_to, make_image_summary=make_image_summary, dropout_broadcast_dims=dropout_broadcast_dims) x = common_attention.combine_heads(x) # Set last dim specifically. x.set_shape(x.shape.as_list()[:-1] + [total_value_depth]) if sparsity_technique: x = common_sparse.dense( x, output_depth, use_bias=False, sparsity_technique=sparsity_technique, threshold=threshold, training=training, clip_alpha=clip_alpha, name="output_transform", initial_sparsity=initial_sparsity) else: x = common_layers.dense( x, output_depth, use_bias=False, name="output_transform") return x
{ "content_hash": "8fe9e436d123debff55bc4ccf04bb5fc", "timestamp": "", "source": "github", "line_count": 402, "max_line_length": 105, "avg_line_length": 43.06218905472637, "alnum_prop": 0.6011784414534111, "repo_name": "google-research/google-research", "id": "78566d922cf6321d93e9eae391c8d3d0a0223025", "size": "17919", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "state_of_sparsity/sparse_transformer/layers/sparse_attention.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "9817" }, { "name": "C++", "bytes": "4166670" }, { "name": "CMake", "bytes": "6412" }, { "name": "CSS", "bytes": "27092" }, { "name": "Cuda", "bytes": "1431" }, { "name": "Dockerfile", "bytes": "7145" }, { "name": "Gnuplot", "bytes": "11125" }, { "name": "HTML", "bytes": "77599" }, { "name": "ImageJ Macro", "bytes": "50488" }, { "name": "Java", "bytes": "487585" }, { "name": "JavaScript", "bytes": "896512" }, { "name": "Julia", "bytes": "67986" }, { "name": "Jupyter Notebook", "bytes": "71290299" }, { "name": "Lua", "bytes": "29905" }, { "name": "MATLAB", "bytes": "103813" }, { "name": "Makefile", "bytes": "5636" }, { "name": "NASL", "bytes": "63883" }, { "name": "Perl", "bytes": "8590" }, { "name": "Python", "bytes": "53790200" }, { "name": "R", "bytes": "101058" }, { "name": "Roff", "bytes": "1208" }, { "name": "Rust", "bytes": "2389" }, { "name": "Shell", "bytes": "730444" }, { "name": "Smarty", "bytes": "5966" }, { "name": "Starlark", "bytes": "245038" } ], "symlink_target": "" }
__author__ = 'zelgadis' import bpy import sys UPDATE = "update" WIDTH = "width" HEIGHT = "height" STEREO_CAMERA = "camera" AUDIOFILE = "audiofile" FORMAT = "format" CYCLES_SAMPLES = "cycles_samples" PRERENDER_COUNT = "prerender_count" GPU_DEVICE = "gpu_device" params = {UPDATE: False, WIDTH: 480, HEIGHT: 270, STEREO_CAMERA: "", AUDIOFILE:"/tmp/renderchan-test.wav", FORMAT: "png", CYCLES_SAMPLES: None, PRERENDER_COUNT: 0, GPU_DEVICE: ""} def find_camera(cameras, base, prefixes, suffixes, side_index = 0): for camera in cameras: for prefix in prefixes: if camera.name.lower().startswith(prefix[side_index]) and camera.name[len(prefix[side_index]):] == base: return camera for suffix in suffixes: if camera.name.lower().endswith(suffix[side_index]) and camera.name[:-len(suffix[side_index])] == base: return camera return None def main(): update = params[UPDATE] sce = bpy.context.scene sce.frame_current=sce.frame_current+1 sce.frame_current=sce.frame_current-1 have_builtin_stereo = "use_multiview" in dir(sce.render) if params[STEREO_CAMERA] != "": # Search for old camera simulation first found=False for ob in sce.objects: if ob.name == params[STEREO_CAMERA] and ob.type == 'CAMERA': sce.camera = ob found=True break if not found: separators = ['_', '.', '-', ' '] side = params[STEREO_CAMERA] alt_side = "left" if side == "right" else "right" sides = [side, side[0]] alt_sides = [alt_side, alt_side[0]] prefixes = [(sides[side_index] + sep, alt_sides[side_index] + sep) for sep in separators for side_index in range(0, len(sides))] prefixes.append((side, alt_side)) suffixes = [(sep + sides[side_index], sep + alt_sides[side_index]) for sep in separators for side_index in range(0, len(sides))] suffixes.append((side, alt_side)) cameras = [obj for obj in sce.objects if obj.type == "CAMERA"] if len(cameras) < 1: print("Error: Cannot render, no camera in file " + bpy.data.filepath, file=sys.stderr) exit(1) else: selected_camera = find_camera(cameras, sce.camera.name, prefixes, suffixes) base = None if not selected_camera: for prefix in prefixes: if sce.camera.name.lower().startswith(prefix[0]): base = sce.camera.name[len(prefix[0]):] break if sce.camera.name.lower().startswith(prefix[1]): base = sce.camera.name[len(prefix[1]):] break if base: selected_camera = find_camera(cameras, base, prefixes, suffixes) if not selected_camera: for suffix in suffixes: if sce.camera.name.lower().endswith(suffix[0]): base = sce.camera.name[:-len(suffix[0])] break if sce.camera.name.lower().endswith(suffix[1]): base = sce.camera.name[:-len(suffix[1])] break if base: selected_camera = find_camera(cameras, base, prefixes, suffixes) if selected_camera: sce.camera = selected_camera found = True if found: # We use old method, disable multiview if have_builtin_stereo: sce.render.use_multiview = False else: if have_builtin_stereo: # Use native blender sce.render.use_multiview = True side = params[STEREO_CAMERA] alt_side = "left" if side == "right" else "right" sce.render.views[side].use = True sce.render.views[alt_side].use = False sce.render.views[side].file_suffix = "" sce.render.views[alt_side].file_suffix = "_"+alt_side sce.render.views_format == 'INDIVIDUAL' else: print(prefixes) print(suffixes) print([c.name for c in cameras]) print(sce.camera.name) print("Error: Could not find " + params[STEREO_CAMERA] + " camera for the stereo render of " + bpy.data.filepath, file=sys.stderr) exit(1) else: if have_builtin_stereo: sce.render.use_multiview = False rend = sce.render rend.resolution_percentage = 100 #rend.alpha_mode = "PREMUL" #rend.color_mode = "RGBA" # Cycles special tweaks if sce.render.engine == 'CYCLES': # Allow to override smples from .conf file if params[CYCLES_SAMPLES]!=None: sce.cycles.samples = params[CYCLES_SAMPLES] # Allow to set GPU device from RenderChan module settings # For information how to identify your GPU device from # a cluster console, see http://www.dalaifelinto.com/?p=746 if params[GPU_DEVICE]==None: # That means we have to explicitly force CPU rendering sce.cycles.device = 'CPU' elif params[GPU_DEVICE]!="": print("Cycles: GPU configuration found") error=False if 'CUDA' in bpy.context.user_preferences.system.compute_device_type: bpy.context.user_preferences.system.compute_device_type = 'CUDA' else: error = True print("ERROR: Cannot activate CUDA.") if not error and params[GPU_DEVICE] in bpy.context.user_preferences.system.bl_rna.properties['compute_device'].enum_items.keys(): bpy.context.user_preferences.system.compute_device = params[GPU_DEVICE] else: error = True # FIXME: This test probably should go somewhere else (in modules's CheckRequirements?) print("ERROR: Cannot set GPU device (%s) - not found." % params[GPU_DEVICE]) print() print("Available devices:") for device in bpy.context.user_preferences.system.bl_rna.properties['compute_device'].enum_items.keys(): print(" * %s\n" % device) print() if not error: sce.cycles.device = 'GPU' else: sce.cycles.device = 'CPU' # Optimize tiles for speed depending on rendering device # See tip #3 at http://www.blenderguru.com/4-easy-ways-to-speed-up-cycles/ if sce.cycles.device == 'GPU': print("Cycles: GPU device used") sce.render.tile_x = 256 sce.render.tile_y = 256 sce.cycles.debug_use_spatial_splits = False else: print("Cycles: CPU device used") bpy.context.user_preferences.system.compute_device_type = 'NONE' sce.render.tile_x = 64 sce.render.tile_y = 64 sce.cycles.debug_use_spatial_splits = True print() #sce.cycles.use_cache = True # Cache BVH sce.cycles.debug_bvh_type = 'STATIC_BVH' #sce.render.use_persistent_data = True # Persistent Images # Suff for updating file size_x = rend.resolution_x size_y = rend.resolution_y fps = rend.fps # This is a dirty hack to make objects initialized properly. # Sometimes (especially when using linked groups with armatures and complex expressions) # the objects are not properly initialized and appear correctly only on second-third render. # With the trick below you can instruct blender to make some count of pre-renders to # ensure that all objects are properly initialized. # Just put a relevant option for .conf file, like this: # blender_prerender_count=1 for _ in range(params[PRERENDER_COUNT]): rend.resolution_x = 32 rend.resolution_y = 32 bpy.ops.render.render() rend.resolution_x = params[WIDTH] rend.resolution_y = params[HEIGHT] #rend.fps = $FPS # OPENEXR stuff #rend.exr_zbuf = False #rend.use_exr_half = True #rend.exr_preview = False rend.use_placeholder = False rend.use_overwrite = True # Force format here if params[FORMAT] == "png": rend.image_settings.file_format = "PNG" elif params[FORMAT] == "avi": if (2, 79, 0) < bpy.app.version: rend.image_settings.file_format = "H264" rend.ffmpeg.format = "H264" rend.ffmpeg.use_lossless_output=True #rend.ffmpeg.audio_codec="AAC" else: rend.image_settings.file_format = "FFMPEG" rend.ffmpeg.format = "AVI" rend.ffmpeg.codec='H264' rend.ffmpeg.constant_rate_factor='LOSSLESS' rend.ffmpeg.use_lossless_output=True rend.ffmpeg.audio_codec='PCM' bpy.ops.sound.bake_animation() # Update .blend file if permitted and we have width or height changed if update and ( size_x != rend.resolution_x or size_y != rend.resolution_y or fps != rend.fps ): bpy.ops.wm.save_mainfile("EXEC_DEFAULT", filepath=bpy.data.filepath) # Dump audio track if any #audio_found = False #for path in bpy.utils.blend_paths(0): # if path.endswith(".wav"): # bpy.ops.sound.mixdown(filepath=params[AUDIOFILE], check_existing=False, container="WAV", codec='PCM', accuracy=32, format='S32') # break if __name__ == '__main__': main()
{ "content_hash": "6d4d8c56bdb23b9275db848cf659a330", "timestamp": "", "source": "github", "line_count": 267, "max_line_length": 146, "avg_line_length": 37.325842696629216, "alnum_prop": 0.5569937788480834, "repo_name": "scribblemaniac/RenderChan", "id": "6a6bf775ac643f949adb3b2518e1d09d019be449", "size": "9966", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "renderchan/contrib/blender/render.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Batchfile", "bytes": "29" }, { "name": "Python", "bytes": "228315" }, { "name": "Shell", "bytes": "1879" } ], "symlink_target": "" }
"""flask.""" from flask import Flask from flask import abort from flask import request from flask import render_template import driver # from t_infinity.engineer_create import EngineerCreate # from t_infinity.engineer_service_report import ServiceReport # from t_infinity.login import Login # from t_infinity.logistics_create import LogisticsCreate # from t_infinity import utils # from t_infinity.engineer_shipout import EngineerShipout app = Flask(__name__) @app.route("/") def index(): """return index page. single page app so it's all here TODO - index page """ return render_template('index.html') @app.route("/api/1/t-infinity/", methods = ['GET']) def list_all_endpoints(): """return list of al endpoints""" return abort(501) app.debug = True app.run()
{ "content_hash": "67715933a1a50d89fd4450c5aa2c51d8", "timestamp": "", "source": "github", "line_count": 34, "max_line_length": 62, "avg_line_length": 23.38235294117647, "alnum_prop": 0.7220125786163522, "repo_name": "k33k00/tesseract_infinity", "id": "f955bf9d17ab05704179a76ed7943c42e2a90bde", "size": "795", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "t_infinity.superold/gui/run.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "715454" }, { "name": "HTML", "bytes": "27294" }, { "name": "JavaScript", "bytes": "822463" }, { "name": "Python", "bytes": "198945" } ], "symlink_target": "" }
from .sub_resource import SubResource class VirtualNetworkGatewayIPConfiguration(SubResource): """IP configuration for virtual network gateway. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param id: Resource ID. :type id: str :param private_ip_allocation_method: The private IP allocation method. Possible values are: 'Static' and 'Dynamic'. Possible values include: 'Static', 'Dynamic' :type private_ip_allocation_method: str or ~azure.mgmt.network.v2016_09_01.models.IPAllocationMethod :param subnet: Required. The reference of the subnet resource. :type subnet: ~azure.mgmt.network.v2016_09_01.models.SubResource :param public_ip_address: Required. The reference of the public IP resource. :type public_ip_address: ~azure.mgmt.network.v2016_09_01.models.SubResource :ivar provisioning_state: The provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :vartype provisioning_state: str :param name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :type name: str :param etag: A unique read-only string that changes whenever the resource is updated. :type etag: str """ _validation = { 'subnet': {'required': True}, 'public_ip_address': {'required': True}, 'provisioning_state': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'private_ip_allocation_method': {'key': 'properties.privateIPAllocationMethod', 'type': 'str'}, 'subnet': {'key': 'properties.subnet', 'type': 'SubResource'}, 'public_ip_address': {'key': 'properties.publicIPAddress', 'type': 'SubResource'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, } def __init__(self, **kwargs): super(VirtualNetworkGatewayIPConfiguration, self).__init__(**kwargs) self.private_ip_allocation_method = kwargs.get('private_ip_allocation_method', None) self.subnet = kwargs.get('subnet', None) self.public_ip_address = kwargs.get('public_ip_address', None) self.provisioning_state = None self.name = kwargs.get('name', None) self.etag = kwargs.get('etag', None)
{ "content_hash": "38004c6f72b99d100d378224063ccffb", "timestamp": "", "source": "github", "line_count": 59, "max_line_length": 103, "avg_line_length": 43.33898305084746, "alnum_prop": 0.6589753617520532, "repo_name": "lmazuel/azure-sdk-for-python", "id": "17a483af135717ee03c503082506e7fd33c3890d", "size": "3031", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "azure-mgmt-network/azure/mgmt/network/v2016_09_01/models/virtual_network_gateway_ip_configuration.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "42572767" } ], "symlink_target": "" }
from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('beer', '0002_beer_beer_type'), ] operations = [ migrations.RemoveField( model_name='burger', name='maker', ), migrations.DeleteModel( name='Burger', ), ]
{ "content_hash": "16e7cfb1e64bb3382a9bdbda522855d6", "timestamp": "", "source": "github", "line_count": 20, "max_line_length": 40, "avg_line_length": 19.1, "alnum_prop": 0.5497382198952879, "repo_name": "campovski/beernburger", "id": "26f6d853e035b76c4013e592ecd7d3368f50311b", "size": "453", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "beer/migrations/0003_auto_20170427_1140.py", "mode": "33261", "license": "mit", "language": [ { "name": "CSS", "bytes": "55862" }, { "name": "HTML", "bytes": "29577" }, { "name": "JavaScript", "bytes": "97398" }, { "name": "Python", "bytes": "46872" } ], "symlink_target": "" }
from azure.identity import DefaultAzureCredential from azure.mgmt.apimanagement import ApiManagementClient """ # PREREQUISITES pip install azure-identity pip install azure-mgmt-apimanagement # USAGE python api_management_service_get_sso_token.py Before run the sample, please set the values of the client ID, tenant ID and client secret of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET. For more info about how to get the value, please see: https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal """ def main(): client = ApiManagementClient( credential=DefaultAzureCredential(), subscription_id="subid", ) response = client.api_management_service.get_sso_token( resource_group_name="rg1", service_name="apimService1", ) print(response) # x-ms-original-file: specification/apimanagement/resource-manager/Microsoft.ApiManagement/stable/2021-08-01/examples/ApiManagementServiceGetSsoToken.json if __name__ == "__main__": main()
{ "content_hash": "f6802268a662ff19c01de509a9cb8321", "timestamp": "", "source": "github", "line_count": 33, "max_line_length": 154, "avg_line_length": 33.666666666666664, "alnum_prop": 0.7371737173717372, "repo_name": "Azure/azure-sdk-for-python", "id": "8219fe7c80f88fe6bd6b206ec93f928e5e348c72", "size": "1579", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "sdk/apimanagement/azure-mgmt-apimanagement/generated_samples/api_management_service_get_sso_token.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "1224" }, { "name": "Bicep", "bytes": "24196" }, { "name": "CSS", "bytes": "6089" }, { "name": "Dockerfile", "bytes": "4892" }, { "name": "HTML", "bytes": "12058" }, { "name": "JavaScript", "bytes": "8137" }, { "name": "Jinja", "bytes": "10377" }, { "name": "Jupyter Notebook", "bytes": "272022" }, { "name": "PowerShell", "bytes": "518535" }, { "name": "Python", "bytes": "715484989" }, { "name": "Shell", "bytes": "3631" } ], "symlink_target": "" }
import _plotly_utils.basevalidators class ColorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__(self, plotly_name="color", parent_name="parcats.line", **kwargs): super(ColorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop("array_ok", True), edit_type=kwargs.pop("edit_type", "calc"), colorscale_path=kwargs.pop("colorscale_path", "parcats.line.colorscale"), **kwargs, )
{ "content_hash": "a4eaeb6e1f2fe2ff86f9342ce3ca2a9f", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 85, "avg_line_length": 40.92307692307692, "alnum_prop": 0.618421052631579, "repo_name": "plotly/plotly.py", "id": "c682c57cc651bea1fcecfdec644d478bfb445fdd", "size": "532", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "packages/python/plotly/plotly/validators/parcats/line/_color.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "545" }, { "name": "JavaScript", "bytes": "2074" }, { "name": "PostScript", "bytes": "565328" }, { "name": "Python", "bytes": "31506317" }, { "name": "TypeScript", "bytes": "71337" } ], "symlink_target": "" }
from django.shortcuts import render # def init(request, api_url, api_settings, viewer_id, group_id, is_app_user): # return render(request, 'vk/index.html', context) # api_url=https://api.vk.com/api.php # &api_settings=0 # &viewer_id=123456 # &group_id=654321 # &is_app_user=0 \\ from django.views.decorators.clickjacking import xframe_options_exempt from vkapp.bot.dao.newsDAO import get_news_proposed_today from vkapp.bot.models import Blogger, News, AdminReview, Publication from datetime import datetime, timedelta, time @xframe_options_exempt def init(request, **request_params): param = list(request.GET.items()) #.get('viewer_id') news_cnt = News.objects.filter(date_time__lte=today_end, date_time__gte=today_start).count() return render(request, 'vk/index.html', {'news_count': news_cnt}) # context = {'data': param} # return render(request, 'vk/index.html', context) @xframe_options_exempt def blogers(request): return render(request, 'vk/news.html', {'news': news}) @xframe_options_exempt def news(request): return render(request, 'vk/news1.html', {'news': news}) @xframe_options_exempt def news1(request): return render(request, 'vk/news2.html', {'news': news}) @xframe_options_exempt def news2(request): return render(request, 'vk/news.html', {'news': news}) @xframe_options_exempt def like(request, news_id): news = News.objects.filter(id=news_id) review = AdminReview.objects.get(news=news) review.rating = 1 review.save() return render(request, 'vk/init.html') @xframe_options_exempt def dislike(request, news_id): news = News.objects.filter(id=news_id) review = AdminReview.objects.get(news=news) review.rating = -1 review.save() return render(request, 'vk/init.html')
{ "content_hash": "1abee14f727bc78216ef6361f5625dd2", "timestamp": "", "source": "github", "line_count": 54, "max_line_length": 96, "avg_line_length": 32.81481481481482, "alnum_prop": 0.7065462753950339, "repo_name": "ParuninPavel/lenta4_hack", "id": "6b092633ebd77184c0cfa8bce6dee69c1818eef4", "size": "1772", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "vkapp/vk/views.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "4758" }, { "name": "HTML", "bytes": "29228" }, { "name": "JavaScript", "bytes": "817" }, { "name": "Jupyter Notebook", "bytes": "2080923" }, { "name": "Python", "bytes": "81323" }, { "name": "Shell", "bytes": "8906" } ], "symlink_target": "" }
''' This script computes a 2-7 year bandpass filtered coral series and plot it above the original one Yuxin Zhou ''' from scipy.signal import butter, lfilter, filtfilt def butter_bandpass(lowcut, highcut, fs, order=4): nyq = 0.5 * fs low = lowcut / nyq high = highcut / nyq b, a = butter(order, [low, high], btype='bandpass') return b, a def butter_bandpass_filter(data, lowcut, highcut, fs, order=4): b, a = butter_bandpass(lowcut, highcut, fs, order=order) y = filtfilt(b, a, data) return y # name = 'CCSM4_historical_r1i1p1_185001-200512_Indo_Pacific_coral.nc' # coralVar = DJF_mean.averager(name, 240, 300) # coral = coralVar.getValue() # fs = 1680 # lowcut = 20 # highcut = 70 # f_order = 3 # y = butter_bandpass_filter(coral, lowcut, highcut, fs, f_order) # plt.clf() # f1, = plt.plot(coral, alpha=0.3) # f2, = plt.plot(y) # plt.legend([f1,f2],['Original','filtered']) # plt.title('monthly data, order = %s' % f_order) # plt.savefig('CCSM4_coral.pdf')
{ "content_hash": "b833a59c49cd5cb1e7a40b9528648601", "timestamp": "", "source": "github", "line_count": 34, "max_line_length": 97, "avg_line_length": 29.264705882352942, "alnum_prop": 0.6633165829145728, "repo_name": "CommonClimate/EmileGeay_NatGeo2015", "id": "5ce18b37db2859adf26a7213f8148f7a262f1f5d", "size": "995", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "code/python/bandpass.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "689" }, { "name": "HTML", "bytes": "36251" }, { "name": "Matlab", "bytes": "472620" }, { "name": "Python", "bytes": "20856" } ], "symlink_target": "" }
"""A module for manipulating Images, which are specially wrapped Pygame surfaces. """ import pygame import spyral import copy def _new_spyral_surface(size): """ Internal method for creating a new Spyral-compliant Pygame surface. """ return pygame.Surface((int(size[0]), int(size[1])), pygame.SRCALPHA, 32).convert_alpha() def from_sequence(images, orientation="right", padding=0): """ A function that returns a new Image from a list of images by placing them next to each other. :param images: A list of images to lay out. :type images: List of :class:`Image <spyral.Image>` :param str orientation: Either 'left', 'right', 'above', 'below', or 'square' (square images will be placed in a grid shape, like a chess board). :param padding: The padding between each image. Can be specified as a scalar number (for constant padding between all images) or a list (for different paddings between each image). :type padding: int or a list of ints. :returns: A new :class:`Image <spyral.Image>` """ if orientation == 'square': length = int(math.ceil(math.sqrt(len(images)))) max_height = 0 for index, image in enumerate(images): if index % length == 0: x = 0 y += max_height max_height = 0 else: x += image.width max_height = max(max_height, image.height) sequence.append((image, (x, y))) else: if orientation in ('left', 'right'): selector = spyral.Vec2D(1, 0) else: selector = spyral.Vec2D(0, 1) if orientation in ('left', 'above'): reversed(images) if type(padding) in (float, int, long): padding = [padding] * len(images) else: padding = list(padding) padding.append(0) base = spyral.Vec2D(0, 0) sequence = [] for image, padding in zip(images, padding): sequence.append((image, base)) base = base + selector * (image.size + (padding, padding)) return from_conglomerate(sequence) def from_conglomerate(sequence): """ A function that generates a new image from a sequence of (image, position) pairs. These images will be placed onto a singe image large enough to hold all of them. More explicit and less convenient than :func:`from_seqeuence <spyral.image.from_sequence>`. :param sequence: A list of (image, position) pairs, where the positions are :class:`Vec2D <spyral.Vec2D>` s. :type sequence: List of image, position pairs. :returns: A new :class:`Image <spyral.Image>` """ width, height = 0, 0 for image, (x, y) in sequence: width = max(width, x+image.width) height = max(height, y+image.height) new = Image(size=(width, height)) for image, (x, y) in sequence: new.draw_image(image, (x, y)) return new def render_nine_slice(image, size): """ Creates a new image by dividing the given image into a 3x3 grid, and stretching the sides and center while leaving the corners the same size. This is ideal for buttons and other rectangular shapes. :param image: The image to stretch. :type image: :class:`Image <spyral.Image>` :param size: The new (width, height) of this image. :type size: :class:`Vec2D <spyral.Vec2D>` :returns: A new :class:`Image <spyral.Image>` similar to the old one. """ bs = spyral.Vec2D(size) bw = size[0] bh = size[1] ps = image.size / 3 pw = int(ps[0]) ph = int(ps[1]) surf = image._surf # Hack: If we don't make it one px large things get cut image = spyral.Image(size=bs + (1, 1)) s = image._surf # should probably fix the math instead, but it works for now topleft = surf.subsurface(pygame.Rect((0, 0), ps)) left = surf.subsurface(pygame.Rect((0, ph), ps)) bottomleft = surf.subsurface(pygame.Rect((0, 2*pw), ps)) top = surf.subsurface(pygame.Rect((pw, 0), ps)) mid = surf.subsurface(pygame.Rect((pw, ph), ps)) bottom = surf.subsurface(pygame.Rect((pw, 2*ph), ps)) topright = surf.subsurface(pygame.Rect((2*pw, 0), ps)) right = surf.subsurface(pygame.Rect((2*ph, pw), ps)) bottomright = surf.subsurface(pygame.Rect((2*ph, 2*pw), ps)) # corners s.blit(topleft, (0, 0)) s.blit(topright, (bw - pw, 0)) s.blit(bottomleft, (0, bh - ph)) s.blit(bottomright, bs - ps) # left and right border for y in range(ph, bh - ph - ph, ph): s.blit(left, (0, y)) s.blit(right, (bw - pw, y)) s.blit(left, (0, bh - ph - ph)) s.blit(right, (bw - pw, bh - ph - ph)) # top and bottom border for x in range(pw, bw - pw - pw, pw): s.blit(top, (x, 0)) s.blit(bottom, (x, bh - ph)) s.blit(top, (bw - pw - pw, 0)) s.blit(bottom, (bw - pw - pw, bh - ph)) # center for x in range(pw, bw - pw - pw, pw): for y in range(ph, bh - ph - ph, ph): s.blit(mid, (x, y)) for x in range(pw, bw - pw - pw, pw): s.blit(mid, (x, bh - ph - ph)) for y in range(ph, bh - ph - ph, ph): s.blit(mid, (bw - pw - pw, y)) s.blit(mid, (bw - pw - pw, bh - ph - ph)) return image class Image(object): """ The image is the basic drawable item in spyral. They can be created either by loading from common file formats, or by creating a new image and using some of the draw methods. Images are not drawn on their own, they are placed as the *image* attribute on Sprites to be drawn. Almost all of the methods of an Image instance return the Image itself, enabling commands to be chained in a `fluent interface <http://en.wikipedia.org/wiki/Fluent_interface>`_. :param size: If size is passed, creates a new blank image of that size to draw on. If you do not specify a size, you *must* pass in a filename. :type size: :class:`Vec2D <spyral.Vec2D>` :param str filename: If filename is set, the file with that name is loaded. The appendix has a list of the :ref:`valid image formats<ref.image_formats>`. If you do not specify a filename, you *must* pass in a size. """ def __init__(self, filename=None, size=None): if size is not None and filename is not None: raise ValueError("Must specify exactly one of size and filename. See http://platipy.org/en/latest/spyral_docs.html#spyral.image.Image") if size is None and filename is None: raise ValueError("Must specify exactly one of size and filename. See http://platipy.org/en/latest/spyral_docs.html#spyral.image.Image") if size is not None: self._surf = _new_spyral_surface(size) self._name = None else: self._surf = pygame.image.load(filename).convert_alpha() self._name = filename self._version = 1 def _get_width(self): return self._surf.get_width() #: The width of this image in pixels (int). Read-only. width = property(_get_width) def _get_height(self): return self._surf.get_height() #: The height of this image in pixels (int). Read-only. height = property(_get_height) def _get_size(self): return spyral.Vec2D(self._surf.get_size()) #: The (width, height) of the image (:class:`Vec2D <spyral.Vec2D`). #: Read-only. size = property(_get_size) def fill(self, color): """ Fills the entire image with the specified color. :param color: a three-tuple of RGB values ranging from 0-255. Example: (255, 128, 0) is orange. :type color: a three-tuple of ints. :returns: This image. """ self._surf.fill(color) self._version += 1 spyral.util.scale_surface.clear(self._surf) return self def draw_rect(self, color, position, size=None, border_width=0, anchor='topleft'): """ Draws a rectangle on this image. :param color: a three-tuple of RGB values ranging from 0-255. Example: (255, 128, 0) is orange. :type color: a three-tuple of ints. :param position: The starting position of the rect (top-left corner). If position is a Rect, then size should be `None`. :type position: :class:`Vec2D <spyral.Vec2D>` or :class:`Rect <spyral.Rect>` :param size: The size of the rectangle; should not be given if position is a rect. :type size: :class:`Vec2D <spyral.Vec2D>` :param int border_width: The width of the border to draw. If it is 0, the rectangle is filled with the color specified. :param str anchor: The anchor parameter is an :ref:`anchor position <ref.anchors>`. :returns: This image. """ if size is None: rect = spyral.Rect(position) else: rect = spyral.Rect(position, size) offset = self._calculate_offset(anchor, rect.size) pygame.draw.rect(self._surf, color, (rect.pos + offset, rect.size), border_width) self._version += 1 spyral.util.scale_surface.clear(self._surf) return self def draw_lines(self, color, points, width=1, closed=False): """ Draws a series of connected lines on a image, with the vertices specified by points. This does not draw any sort of end caps on lines. :param color: a three-tuple of RGB values ranging from 0-255. Example: (255, 128, 0) is orange. :type color: a three-tuple of ints. :param points: A list of points that will be connected, one to another. :type points: A list of :class:`Vec2D <spyral.Vec2D>` s. :param int width: The width of the lines. :param bool closed: If closed is True, the first and last point will be connected. If closed is True and width is 0, the shape will be filled. :returns: This image. """ if width == 1: pygame.draw.aalines(self._surf, color, closed, points) else: pygame.draw.lines(self._surf, color, closed, points, width) self._version += 1 spyral.util.scale_surface.clear(self._surf) return self def draw_circle(self, color, position, radius, width=0, anchor='topleft'): """ Draws a circle on this image. :param color: a three-tuple of RGB values ranging from 0-255. Example: (255, 128, 0) is orange. :type color: a three-tuple of ints. :param position: The center of this circle :type position: :class:`Vec2D <spyral.Vec2D>` :param int radius: The radius of this circle :param int width: The width of the circle. If it is 0, the circle is filled with the color specified. :param str anchor: The anchor parameter is an :ref:`anchor position <ref.anchors>`. :returns: This image. """ offset = self._calculate_offset(anchor) pygame.draw.circle(self._surf, color, (position + offset).floor(), radius, width) self._version += 1 spyral.util.scale_surface.clear(self._surf) return self def draw_ellipse(self, color, position, size=None, border_width=0, anchor='topleft'): """ Draws an ellipse on this image. :param color: a three-tuple of RGB values ranging from 0-255. Example: (255, 128, 0) is orange. :type color: a three-tuple of ints. :param position: The starting position of the ellipse (top-left corner). If position is a Rect, then size should be `None`. :type position: :class:`Vec2D <spyral.Vec2D>` or :class:`Rect <spyral.Rect>` :param size: The size of the ellipse; should not be given if position is a rect. :type size: :class:`Vec2D <spyral.Vec2D>` :param int border_width: The width of the ellipse. If it is 0, the ellipse is filled with the color specified. :param str anchor: The anchor parameter is an :ref:`anchor position <ref.anchors>`. :returns: This image. """ if size is None: rect = spyral.Rect(position) else: rect = spyral.Rect(position, size) offset = self._calculate_offset(anchor, rect.size) pygame.draw.ellipse(self._surf, color, (rect.pos + offset, rect.size), border_width) self._version += 1 spyral.util.scale_surface.clear(self._surf) return self def draw_point(self, color, position, anchor='topleft'): """ Draws a point on this image. :param color: a three-tuple of RGB values ranging from 0-255. Example: (255, 128, 0) is orange. :type color: a three-tuple of ints. :param position: The position of this point. :type position: :class:`Vec2D <spyral.Vec2D>` :param str anchor: The anchor parameter is an :ref:`anchor position <ref.anchors>`. :returns: This image. """ offset = self._calculate_offset(anchor) self._surf.set_at(position + offset, color) self._version += 1 spyral.util.scale_surface.clear(self._surf) return self def draw_arc(self, color, start_angle, end_angle, position, size=None, border_width=0, anchor='topleft'): """ Draws an elliptical arc on this image. :param color: a three-tuple of RGB values ranging from 0-255. Example: (255, 128, 0) is orange. :type color: a three-tuple of ints. :param float start_angle: The starting angle, in radians, of the arc. :param float end_angle: The ending angle, in radians, of the arc. :param position: The starting position of the ellipse (top-left corner). If position is a Rect, then size should be `None`. :type position: :class:`Vec2D <spyral.Vec2D>` or :class:`Rect <spyral.Rect>` :param size: The size of the ellipse; should not be given if position is a rect. :type size: :class:`Vec2D <spyral.Vec2D>` :param int border_width: The width of the ellipse. If it is 0, the ellipse is filled with the color specified. :param str anchor: The anchor parameter is an :ref:`anchor position <ref.anchors>`. :returns: This image. """ if size is None: rect = spyral.Rect(position) else: rect = spyral.Rect(position, size) offset = self._calculate_offset(anchor, rect.size) pygame.draw.arc(self._surf, color, (rect.pos + offset, rect.size), start_angle, end_angle, border_width) self._version += 1 spyral.util.scale_surface.clear(self._surf) return self def draw_image(self, image, position=(0, 0), anchor='topleft'): """ Draws another image over this one. :param image: The image to overlay on top of this one. :type image: :class:`Image <spyral.Image>` :param position: The position of this image. :type position: :class:`Vec2D <spyral.Vec2D>` :param str anchor: The anchor parameter is an :ref:`anchor position <ref.anchors>`. :returns: This image. """ offset = self._calculate_offset(anchor, image._surf.get_size()) self._surf.blit(image._surf, position + offset) self._version += 1 spyral.util.scale_surface.clear(self._surf) return self def rotate(self, angle): """ Rotates the image by angle degrees clockwise. This may change the image dimensions if the angle is not a multiple of 90. Successive rotations degrate image quality. Save a copy of the original if you plan to do many rotations. :param float angle: The number of degrees to rotate. :returns: This image. """ self._surf = pygame.transform.rotate(self._surf, angle).convert_alpha() self._version += 1 return self def scale(self, size): """ Scales the image to the destination size. :param size: The new size of the image. :type size: :class:`Vec2D <spyral.Vec2D>` :returns: This image. """ self._surf = pygame.transform.smoothscale(self._surf, size).convert_alpha() self._version += 1 return self def flip(self, flip_x=True, flip_y=True): """ Flips the image horizontally, vertically, or both. :param bool flip_x: whether to flip horizontally. :param bool flip_y: whether to flip vertically. :returns: This image. """ self._version += 1 self._surf = pygame.transform.flip(self._surf, flip_x, flip_y).convert_alpha() return self def copy(self): """ Returns a copy of this image that can be changed while preserving the original. :returns: A new image. """ new = copy.copy(self) new._surf = self._surf.copy() return new def crop(self, position, size=None): """ Removes the edges of an image, keeping the internal rectangle specified by position and size. :param position: The upperleft corner of the internal rectangle that will be preserved. :type position: a :class:`Vec2D <spyral.Vec2D>` or a :class:`Rect <spyral.Rect>`. :param size: The size of the internal rectangle to preserve. If a Rect was passed in for position, this should be None. :type size: :class:`Vec2D <spyral.Vec2D>` or None. :returns: This image. """ if size is None: rect = spyral.Rect(position) else: rect = spyral.Rect(position, size) new = _new_spyral_surface(size) new.blit(self._surf, (0, 0), (rect.pos, rect.size)) self._surf = new self._version += 1 return self def _calculate_offset(self, anchor_type, size=(0, 0)): """ Internal method for calculating the offset associated with an anchor type. :param anchor_type: A string indicating the position of the anchor, taken from :ref:`anchor position <ref.anchors>`. A numerical offset can also be specified. :type anchor_type: str or a :class:`Vec2D <spyral.Vec2D>`. :param size: The size of the region to offset in. :type size: :class:`Vec2D <spyral.Vec2D>`. """ w, h = self._surf.get_size() w2, h2 = size if anchor_type == 'topleft': return spyral.Vec2D(0, 0) elif anchor_type == 'topright': return spyral.Vec2D(w - w2, 0) elif anchor_type == 'midtop': return spyral.Vec2D((w - w2) / 2., 0) elif anchor_type == 'bottomleft': return spyral.Vec2D(0, h - h2) elif anchor_type == 'bottomright': return spyral.Vec2D(w - w2, h - h2) elif anchor_type == 'midbottom': return spyral.Vec2D((w - w2) / 2., h - h2) elif anchor_type == 'midleft': return spyral.Vec2D(0, (h - h2) / 2.) elif anchor_type == 'midright': return spyral.Vec2D(w - w2, (h - h2) / 2.) elif anchor_type == 'center': return spyral.Vec2D((w - w2) / 2., (h - h2) / 2.) else: return spyral.Vec2D(anchor_type) - spyral.Vec2D(w2, h2) def get_subimage_by_pos(self, x, y, width, height): """ Extract image from larger sheet. Used for spritesheets. """ subimage = _new_spyral_surface((width, height)) subimage.blit(self._surf, (0, 0), (x, y, width, height)) new_image = Image(size=(width, height)) new_image._surf = subimage return new_image
{ "content_hash": "d2038f402c52bbb201dc4a41323dbdaf", "timestamp": "", "source": "github", "line_count": 530, "max_line_length": 147, "avg_line_length": 39.509433962264154, "alnum_prop": 0.5683381088825215, "repo_name": "justinmeister/spaceinvaders-spyral", "id": "8e577769602bcedf155e68525e67dbc612d9bac7", "size": "20940", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "libraries/spyral/image.py", "mode": "33261", "license": "mit", "language": [ { "name": "JavaScript", "bytes": "95" }, { "name": "Perl", "bytes": "3224" }, { "name": "Python", "bytes": "368084" } ], "symlink_target": "" }
import xml.etree.ElementTree as ET from programy.parser.template.nodes.base import TemplateNode from programy.parser.template.nodes.indexed import TemplateIndexedNode from test.parser.template.base import TemplateTestsBaseClass class TemplateIndexedNodeTests(TemplateTestsBaseClass): def test_node(self): root = TemplateNode() self.assertIsNotNone(root) self.assertIsNotNone(root.children) self.assertEqual(len(root.children), 0) node = TemplateIndexedNode() self.assertIsNotNone(node) root.append(node) self.assertEqual(len(root.children), 1)
{ "content_hash": "b15c3571f562d01caa3f893e9aa07c3d", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 70, "avg_line_length": 29.476190476190474, "alnum_prop": 0.7382875605815832, "repo_name": "JustArchi/program-y", "id": "80a960005602c42c36adb8b9a99d95521a28bb14", "size": "619", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "src/test/parser/template/nodes/test_indexed.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "937" }, { "name": "HTML", "bytes": "1580" }, { "name": "Python", "bytes": "1027605" }, { "name": "Shell", "bytes": "2835" } ], "symlink_target": "" }
""" Helper routines for density processing, from the Gpcr project originally """ import numpy as np def read_simple(filename,lownam,uppnam) : mat = np.load(filename) return mat[lownam],mat[uppnam] def read_and_scale(filename,lownam,uppnam,scaling=None) : lowmat,uppmat = read_simple(filename,lownam,uppnam) if scaling["flag"] != None : lowsel = lowmat!=0.000 uppsel = uppmat!=0.000 if scaling["flag"] > 0 : uppmat[uppsel] = 1.987*0.3*np.log(uppmat[uppsel]/scaling["factor"][1]) lowmat[lowsel] = 1.987*0.3*np.log(lowmat[lowsel]/scaling["factor"][0]) else : uppmat[uppsel] = uppmat[uppsel]/scaling["factor"][1] lowmat[lowsel] = lowmat[lowsel]/scaling["factor"][0] return lowmat,uppmat def read_and_filter(filename,lownam,uppnam,lowfilter,uppfilter,scaling=None) : lowmat,uppmat=read_and_scale(filename,lownam,uppnam,scaling) if lowfilter != None and uppfilter != None : lowmat[lowfilter] = 0.0 uppmat[uppfilter] = 0.0 return lowmat,uppmat def mol_dist(filename,nam) : MAT_SIZE = 70.0*70.0 mat = np.load(filename) return mat[nam][:,0].mean()/float(MAT_SIZE),mat[nam][:,1].mean()/float(MAT_SIZE) def set_filter(filter_opt,scaling,index) : if filter_opt["density"] == None : return None,None lowmat,uppmat = read_and_scale(filter_opt["density"][index],filter_opt["lower"],filter_opt["upper"],scaling) return lowmat < filter_opt["threshold"],uppmat < filter_opt["threshold"]
{ "content_hash": "e5d111423700dda8d2519b770f94b80e", "timestamp": "", "source": "github", "line_count": 52, "max_line_length": 110, "avg_line_length": 28.21153846153846, "alnum_prop": 0.6837082481254261, "repo_name": "SGenheden/Scripts", "id": "db7c63c11db9d72fd421177db3169ccc5f357049", "size": "1520", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "sgenlib/mat_routines.py", "mode": "33188", "license": "mit", "language": [ { "name": "C++", "bytes": "7562" }, { "name": "Python", "bytes": "950238" }, { "name": "Shell", "bytes": "18990" } ], "symlink_target": "" }
import os import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import spline # from http://www.lfd.uci.edu/~gohlke/ try: import tifffile except ImportError: print ''' The Tifffile module by Christoph Gohlke is required for gel image analysis. Download from http://www.lfd.uci.edu/~gohlke/, save in src/ (same folder as this script) and try again (but save the rendered contents of the html file tifffile.py.html as tifffile.py). Warnings about additional modules can be ignored after Tifffile installation. ''' import sys sys.exit() def getLanes(imagefile,lanes,top,bottom): '''Load pixel data summed by pixel rows down length of specified region corresponding to a gel lane''' tif = tifffile.TiffFile(imagefile) image = tif.asarray() lanes1d = [] for l in lanes: lanes1d += [np.sum(image[top:bottom,l[0]:l[1]],axis=1)] return(lanes1d) def getPerLaneLadder(ladder1x,ladder1peaks,ladder2x,ladder2peaks,samplelanes,sampleoffsets): '''Linearly interpolate between corresponding bands in ladders on either side of samples for "per lane ladders"''' ldiff = ladder2x - ladder1x # take min peaks counting from small to big nladderpeaks = min(len(ladder1peaks),len(ladder2peaks)) ladder1peaks = ladder1peaks[-nladderpeaks:] ladder2peaks = ladder2peaks[-nladderpeaks:] ladderbylanes = [] for n1,l in enumerate(samplelanes): thesepeaks = [] soffset = sampleoffsets[n1] - ladder1x for p in range(nladderpeaks): peakdiff = ladder1peaks[p]-ladder2peaks[p] thesepeaks += [ladder1peaks[p]-peakdiff*(soffset/float(ldiff))] ladderbylanes += [np.array(thesepeaks)] return(ladderbylanes) def Quantify(ladderbylanes,laddersizes,allpeaks,samplenames,doplot,outfolder=None,prefix=None,desired_range=False,gelimagefile=None): '''Interpolate ladder sizes versus migration distance with second order splines and quantify samples''' sizes = {} for n,ladder_peak_dists in enumerate(ladderbylanes): sizes[samplenames[n]] = [] # interpolate and smooth between ladder peaks (which may not be linear or log-linear etc) interpolated_lsizes = np.linspace(laddersizes.min(),laddersizes.max(),1000) smoothed_lpeaks_dists = spline(laddersizes[::-1],ladder_peak_dists[::-1],interpolated_lsizes[::-1],order=2)[::-1] if doplot: fig = plt.figure(figsize=(12, 9)) axes = fig.add_subplot(111) axes.plot(interpolated_lsizes,smoothed_lpeaks_dists,'-r',lw=0.7) axes.plot(laddersizes,ladder_peak_dists,'og') axes.set_xlabel('Fragment size (bp)') axes.set_ylabel('Band migration (pixels)') if desired_range: drange = 'Desired range: %s bp, s'%desired_range else: drange = 'S' #axes.set_title('Band fragment sizes by interpolation of ladder migration distances\n%sample lane %s, %s' % (drange,n+1,samplenames[n])) plt.title('Band fragment sizes by interpolation of ladder migration distances\n%sample lane %s, %s, %s' % (drange,n+1,samplenames[n],gelimagefile)) for b,band in enumerate(ladder_peak_dists): axes.annotate('%s bp' % laddersizes[b], xy=(laddersizes[b],band), xytext=(laddersizes[b]+5000,band), arrowprops=None) # find where sample peaks intersect ladder spline and get corresponding DNA fragment size xmin,xmax = axes.get_xlim() ymin,ymax = axes.get_ylim() for peak in allpeaks[n+1]: s = [i for i,a in enumerate(smoothed_lpeaks_dists[1:]) if a < peak and smoothed_lpeaks_dists[i-1] >= peak][0] sizes[samplenames[n]] += [int(round(interpolated_lsizes[s]))] if doplot: axes.axvline(x=interpolated_lsizes[s],ymax=(peak-ymin)/(ymax-ymin),color = 'purple',lw=1) axes.axhline(y=peak,xmax=(interpolated_lsizes[s]-xmin)/(xmax-xmin),color = 'purple',lw=1) if doplot: axes.annotate('%s' % '\n'.join(['Quantification:']+[str(s)+' bp' for s in sorted(sizes[samplenames[n]])]), xy=((xmax-xmin)*0.6+xmin,(ymax-ymin)*0.8+ymin), xytext=((xmax-xmin)*0.6+xmin,(ymax-ymin)*0.8+ymin), arrowprops=None) plt.savefig(outfolder+os.sep+prefix+'quantification_sample_lane_%s_%s%ssvg' % (n+1,samplenames[n],os.extsep), format='svg') return(sizes) def AnalyseGel(gelimagefile,samplenames,lane_x_ranges,top,bottom,allpeaks,laddersizes,outfolder,prefix,doplot,desired_range): # get lane data from image file lanes1d = getLanes(gelimagefile,lane_x_ranges,top,bottom) if not os.path.exists(outfolder): os.mkdir(outfolder) if doplot: fig = plt.figure(figsize=(12, 9)) # plot ladder peak intensities axes = fig.add_subplot(111) axes.plot(lanes1d[0]) axes.set_xlabel('Distance along lane (pixels)') axes.set_ylabel('Pixel row intensity') plt.title('Lane intensities summed across pixel rows versus distance along ladder lane 1\n%s' % gelimagefile) [axes.axvline(x=a,color = 'red') for a in allpeaks[0]] plt.savefig(outfolder+os.sep+prefix+os.extsep.join(['ladder1','svg']), format='svg') axes.clear() axes.plot(lanes1d[-1]) axes.set_xlabel('Distance along lane (pixels)') axes.set_ylabel('Pixel row intensity') plt.title('Lane intensities summed across pixel rows versus distance along ladder lane 2\n%s' % gelimagefile) [axes.axvline(x=a,color = 'red') for a in allpeaks[-1]] plt.savefig(outfolder+os.sep+prefix+os.extsep.join(['ladder2','svg']), format='svg') # plot samples for n,lane in enumerate(lanes1d[1:-1]): plt.cla() axes.plot(lane) axes.set_xlabel('Distance along lane (pixels)') axes.set_ylabel('Pixel row intensity') plt.title('Lane intensities summed across pixel rows versus distance along\nsample lane %s, %s, %s' % (n+1,samplenames[n],gelimagefile)) [axes.axvline(x=a,color = 'red') for a in allpeaks[n+1]] plt.savefig(outfolder+os.sep+prefix+'intensities_sample_lane_%s_%s.svg' % ((n+1),samplenames[n]), format='svg') # linear regress between ladder bands to create per lane ladders ladder1x = sum(lane_x_ranges[0])/2 ladder2x = sum(lane_x_ranges[-1])/2 ladder1peaks = allpeaks[0] ladder2peaks = allpeaks[-1] samplepeaks = [np.array(a) for a in allpeaks[1:-1]] sampleoffsets = [sum(n)/2 for n in lane_x_ranges[1:-1]] ladderbylanes = getPerLaneLadder(ladder1x,ladder1peaks,ladder2x,ladder2peaks,samplepeaks,sampleoffsets) # interpolate with a smoothed spline sizes = Quantify(ladderbylanes,laddersizes,allpeaks,samplenames,doplot,outfolder,prefix,desired_range,gelimagefile) # print sizes for sample,thesesizes in sizes.items(): print 'Sample %s: %s' % (sample,', '.join([str(s) for s in sorted(thesesizes)])) return(sizes) # low range ladder # https://www.neb.com/products/n0350-low-range-pfg-marker lowrangeladder = [23100,9420,6550,4360,2320,2030] # includes lambda ladder # lambda ladder: # http://www.neb.com/nebecomm/products/productn0340.asp lambdaladder = [1018500,970000,921500,873000,824500,776000,727500, 679000, 630500, 582000, 533500, 485000, 436500, 388000, 339500, 291000, 242500, 194000, 145500, 97000, 48500] # H. wingei chromosomes ladder: # http://www.bio-rad.com/prd/en/US/adirect/biorad?cmd=catProductDetail&vertical=LSR&country=US&lang=en&productID=170-3667 Hwingeiladder = [3130000,2700000,2350000,1810000,1660000,1370000,1050000] doplot = True samples = ['E_1_37','A_3_34','C_4_22','D_4_27','B_4_28','K12'] outfolder = os.sep.join([os.pardir,'image','analysis']) sizes = {} def main(): ## Small fragment ICeuI PFGE gel desired_range = '< 145,500' gelimagefile = os.sep.join([os.pardir,'image','gels',os.extsep.join(['ICeuI_small','tif'])]) laddersizes = np.array(lambdaladder[-4:]+lowrangeladder[:1]) ## samples in left lanes samplenames = samples[:3] # x pixel ranges of lanes lane_x_ranges = ((176,274),(334,434),(494,584),(642,726),(798,904)) # upper and lower pixels (top,bottom) = (10,1128) # band peak intensity distance down gel image -top allpeaks = [np.array([ 25, 237, 549, 856, 1030]), np.array([286, 415, 930]), np.array([280, 428, 912]), np.array([399, 512, 909]), np.array([ 33, 243, 554, 862, 1032])] prefix = 'ICeuI_small_123_' print('\nAnalysing %s, plotting to %s%s%s*.svg\n' % (gelimagefile,outfolder,os.sep,prefix)) sizes[prefix] = AnalyseGel(gelimagefile,samplenames,lane_x_ranges,top,bottom,allpeaks,laddersizes,outfolder,prefix,doplot,desired_range) ## samples in right lanes samplenames = samples[3:] # x pixel ranges of lanes lane_x_ranges = ((798,904),(962,1082),(1114,1224),(1264,1368),(1422,1530)) # band peak intensity distance down gel image -top allpeaks = [np.array([ 33, 243, 554, 862, 1032]), np.array([ 76, 408, 914]), np.array([304, 575, 913]), np.array([331, 588, 927]), np.array([ 36, 255, 568, 879, 1053])] prefix = 'ICeuI_small_456_' print('\nAnalysing %s, plotting to %s%s%s*.svg\n' % (gelimagefile,outfolder,os.sep,prefix)) sizes[prefix] = AnalyseGel(gelimagefile,samplenames,lane_x_ranges,top,bottom,allpeaks,laddersizes,outfolder,prefix,doplot,desired_range) ## Mid fragment ICeuI PFGE gel desired_range = '> 145,500 & < 1,000,000' gelimagefile = os.sep.join([os.pardir,'image','gels',os.extsep.join(['ICeuI_medium','tif'])]) laddersizes = np.array(lambdaladder[-18:-9]) samplenames = samples # x pixel ranges of lanes lane_x_ranges = ((23,63),(96,148),(173,230),(255,305),(333,389),(415,466),(493,546),(584,622)) # upper and lower pixels (top,bottom) = (0,260) # band peak intensity distance down gel image -top allpeaks = [np.array([ 8, 31, 55, 79, 106, 135, 167, 202, 240]), np.array([ 38, 90, 193]), np.array([105, 107, 210]), np.array([ 79, 108, 207]), np.array([ 32, 92, 202]), np.array([ 88, 131, 202]), np.array([ 99, 121, 212]), np.array([ 17, 39, 62, 87, 113, 143, 175, 209, 247])] prefix = 'ICeuI_medium_123456_' print('\nAnalysing %s, plotting to %s%s%s*.svg\n' % (gelimagefile,outfolder,os.sep,prefix)) sizes[prefix] = AnalyseGel(gelimagefile,samplenames,lane_x_ranges,top,bottom,allpeaks,laddersizes,outfolder,prefix,doplot,desired_range) ## Large fragment ICeuI PFGE gel desired_range = '> 2,000,000' gelimagefile = os.sep.join([os.pardir,'image','gels',os.extsep.join(['ICeuI_large','tif'])]) laddersizes = np.array(Hwingeiladder[:3]) # upper and lower pixels (top,bottom) = (130,482) ## sample in left lane samplenames = samples[:1] lane_x_ranges = ((162,204),(316,386),(472,514)) # band peak intensity distance down gel image -top allpeaks = [np.array([ 84, 165, 263]), np.array([119]), np.array([ 87, 158, 254])] prefix = 'ICeuI_large_1_' print('\nAnalysing %s, plotting to %s%s%s*.svg\n' % (gelimagefile,outfolder,os.sep,prefix)) sizes[prefix] = AnalyseGel(gelimagefile,samplenames,lane_x_ranges,top,bottom,allpeaks,laddersizes,outfolder,prefix,doplot,desired_range) ## samples in middle lane samplenames = samples[1:3] lane_x_ranges = ((472,514),(598,660),(728,802),(878,922)) # band peak intensity distance down gel image -top allpeaks = [np.array([ 87, 158, 248]), np.array([163]), np.array([116]), np.array([ 90, 163, 251])] prefix = 'ICeuI_large_23_' print('\nAnalysing %s, plotting to %s%s%s*.svg\n' % (gelimagefile,outfolder,os.sep,prefix)) sizes[prefix] = AnalyseGel(gelimagefile,samplenames,lane_x_ranges,top,bottom,allpeaks,laddersizes,outfolder,prefix,doplot,desired_range) ## samples in right lanes samplenames = samples[3:] lane_x_ranges = ((878,922),(1020,1076),(1160,1220),(1292,1362),(1436,1508)) # band peak intensity distance down gel image -top allpeaks = [np.array([ 90, 163, 251]), np.array([107]), np.array([130]), np.array([145]), np.array([83, 166, 256])] prefix = 'ICeuI_large_456_' print('\nAnalysing %s, plotting to %s%s%s*.svg\n' % (gelimagefile,outfolder,os.sep,prefix)) sizes[prefix] = AnalyseGel(gelimagefile,samplenames,lane_x_ranges,top,bottom,allpeaks,laddersizes,outfolder,prefix,doplot,desired_range) allsizes = {} for sz in sizes.values(): for sm in samples: if sm in sz: if sm in allsizes: allsizes[sm] += sz[sm] else: allsizes[sm] = sz[sm] print('\n') for sm,szs in sorted(allsizes.items()): print('%s: %s' % (sm,sum(szs))) print('\nSee ../image/analysis/ for analysis plots\n') if __name__ == '__main__': main()
{ "content_hash": "c0886aa247211f563c7cbe51c0975475", "timestamp": "", "source": "github", "line_count": 264, "max_line_length": 229, "avg_line_length": 46.90151515151515, "alnum_prop": 0.6842997900177678, "repo_name": "wltrimbl/kmerspectrumanalyzer", "id": "e918eea495c1abf7ce8f9563f9eaf6072261cd70", "size": "12407", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "pfge_analysis/PFGE_analysis.py", "mode": "33261", "license": "bsd-2-clause", "language": [ { "name": "Makefile", "bytes": "2838" }, { "name": "Perl", "bytes": "4666" }, { "name": "Python", "bytes": "126361" }, { "name": "Roff", "bytes": "14642049" }, { "name": "Shell", "bytes": "17486" } ], "symlink_target": "" }
"""Module for testing the del address command.""" import unittest if __name__ == "__main__": import utils utils.import_depends() from brokertest import TestBrokerCommand class TestDelAddress(TestBrokerCommand): def testbasic(self): self.dsdb_expect_delete(self.net.unknown[0].usable[13]) command = ["del_address", "--ip=%s" % self.net.unknown[0].usable[13]] self.noouttest(command) self.dsdb_verify() def testverifybasic(self): command = ["show_address", "--fqdn=arecord13.aqd-unittest.ms.com"] self.notfoundtest(command) def testdefaultenv(self): self.dsdb_expect_delete(self.net.unknown[0].usable[14]) default = self.config.get("site", "default_dns_environment") command = ["del_address", "--fqdn", "arecord14.aqd-unittest.ms.com", "--dns_environment", default] self.noouttest(command) self.dsdb_verify() def testverifydefaultenv(self): command = ["show_address", "--fqdn=arecord14.aqd-unittest.ms.com"] self.notfoundtest(command) def testutenvenv(self): command = ["del_address", "--ip", self.net.unknown[1].usable[14], "--fqdn", "arecord14.aqd-unittest.ms.com", "--dns_environment", "ut-env"] self.noouttest(command) def testverifyutenvenv(self): command = ["show_address", "--fqdn", "arecord14.aqd-unittest.ms.com", "--dns_environment", "ut-env"] self.notfoundtest(command) def testbadip(self): ip = self.net.unknown[0].usable[14] command = ["del_address", "--ip", ip, "--fqdn=arecord15.aqd-unittest.ms.com"] out = self.notfoundtest(command) self.matchoutput(out, "DNS Record arecord15.aqd-unittest.ms.com, ip " "%s not found." % ip, command) def testcleanup(self): self.dsdb_expect_delete(self.net.unknown[0].usable[15]) command = ["del_address", "--ip=%s" % self.net.unknown[0].usable[15], "--fqdn=arecord15.aqd-unittest.ms.com"] self.noouttest(command) self.dsdb_verify() def testfailbadenv(self): default = self.config.get("site", "default_dns_environment") command = ["del_address", "--ip=%s" % self.net.unknown[0].usable[15], "--fqdn=arecord15.aqd-unittest.ms.com", "--dns_environment=environment-does-not-exist"] out = self.notfoundtest(command) self.matchoutput(out, "DNS Environment environment-does-not-exist not found.", command) def testfailprimary(self): ip = self.net.unknown[0].usable[2] command = ["del", "address", "--ip", ip, "--fqdn", "unittest00.one-nyp.ms.com"] out = self.badrequesttest(command) self.matchoutput(out, "DNS Record unittest00.one-nyp.ms.com [%s] is the " "primary name of machine unittest00.one-nyp.ms.com, " "therefore it cannot be deleted." % ip, command) def testfailipinuse(self): ip = self.net.unknown[0].usable[3] command = ["del", "address", "--ip", ip, "--fqdn", "unittest00-e1.one-nyp.ms.com"] out = self.badrequesttest(command) self.matchoutput(out, "IP address %s is still in use by public interface " "eth1 of machine unittest00.one-nyp.ms.com" % ip, command) def testdelunittest20_e1(self): ip = self.net.unknown[12].usable[0] self.dsdb_expect_delete(ip) command = ["del", "address", "--ip", ip, "--fqdn", "unittest20-e1.aqd-unittest.ms.com"] self.noouttest(command) self.dsdb_verify() def testdelzebra3(self): ip = self.net.unknown[13].usable[0] self.dsdb_expect_delete(ip) command = ["del", "address", "--ip", ip, "--fqdn", "zebra3.aqd-unittest.ms.com"] self.noouttest(command) self.dsdb_verify() def test_delip_with_network_env(self): ip = "192.168.3.1" fqdn = "cardenvtest600.aqd-unittest.ms.com" command = ["del", "address", "--ip", ip, "--network_environment", "cardenv"] self.noouttest(command) # External IP addresses should not be added to DSDB self.dsdb_verify(empty=True) command = ["show_address", "--fqdn", fqdn, "--network_environment", "cardenv"] out = self.notfoundtest(command) def test_delreservedreverse(self): self.dsdb_expect_delete(self.net.unknown[0].usable[32]) command = ["del", "address", "--fqdn", "arecord17.aqd-unittest.ms.com"] self.noouttest(command) self.dsdb_verify() def test_verifydelreserve(self): command = ["show", "address", "--fqdn", "arecord17.aqd-unittest.ms.com"] self.notfoundtest(command) command = ["search", "dns", "--record_type", "reserved_name"] out = self.commandtest(command) self.matchclean(out, "reverse.restrict.aqd-unittest.ms.com", command) self.matchclean(out, "reverse2.restrict.aqd-unittest.ms.com", command) def test_610_addipfromip_with_network_env(self): fqdn = "cardenvtest610.aqd-unittest.ms.com" command = ["del", "address", "--fqdn", fqdn, "--network_environment", "cardenv"] self.noouttest(command) # External IP addresses should not be added to DSDB self.dsdb_verify(empty=True) command = ["show_address", "--fqdn=%s" % fqdn] out = self.notfoundtest(command) if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(TestDelAddress) unittest.TextTestRunner(verbosity=2).run(suite)
{ "content_hash": "3b4147c441212e0930ac9e12eb09b3bb", "timestamp": "", "source": "github", "line_count": 153, "max_line_length": 81, "avg_line_length": 39.12418300653595, "alnum_prop": 0.5711660541262947, "repo_name": "stdweird/aquilon", "id": "d3590c6f07a8e05c615dc92b002fc28532f2ab10", "size": "6714", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "tests/broker/test_del_address.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "DIGITAL Command Language", "bytes": "3791" }, { "name": "Makefile", "bytes": "5024" }, { "name": "Mako", "bytes": "3996" }, { "name": "PLSQL", "bytes": "69088" }, { "name": "Perl", "bytes": "5030" }, { "name": "Python", "bytes": "4257490" }, { "name": "SQLPL", "bytes": "869" }, { "name": "Shell", "bytes": "22083" } ], "symlink_target": "" }
import importlib import time import datetime from datetime import timedelta from unittest import mock from django.conf import settings from django.core.signals import request_finished, request_started from django.test.testcases import TransactionTestCase from post_request_task.task import _discard_tasks, _stop_queuing_tasks from olympia.amo.tests import TestCase from olympia.amo.celery import app, task from olympia.amo.utils import utc_millesecs_from_epoch fake_task_func = mock.Mock() def test_celery_routes_in_queues(): queues_in_queues = set([q.name for q in settings.CELERY_TASK_QUEUES]) # check the default queue is defined in CELERY_QUEUES assert settings.CELERY_TASK_DEFAULT_QUEUE in queues_in_queues queues_in_routes = set([c['queue'] for c in settings.CELERY_TASK_ROUTES.values()]) assert queues_in_queues == queues_in_routes def test_celery_routes_only_contain_valid_tasks(): # Import CELERY_IMPORTS like celery would to find additional tasks that # are not automatically imported at startup otherwise. for module_name in settings.CELERY_IMPORTS: importlib.import_module(module_name) # Force a re-discovery of the tasks - when running the tests the # autodiscovery might happen too soon. app.autodiscover_tasks(force=True) # Make sure all tasks in CELERY_TASK_ROUTES are known. known_tasks = app.tasks.keys() for task_name in settings.CELERY_TASK_ROUTES.keys(): assert task_name in known_tasks # Make sure all known tasks have an explicit route set. for task_name in known_tasks: assert task_name in settings.CELERY_TASK_ROUTES.keys() @task(ignore_result=False) def fake_task_with_result(): fake_task_func() return 'foobar' @task def fake_task(): fake_task_func() return 'foobar' @task(track_started=True, ignore_result=False) def sleeping_task(time_to_sleep): time.sleep(time_to_sleep) class TestCeleryWorker(TestCase): @mock.patch('olympia.amo.celery.cache') def test_start_task_timer(self, celery_cache): result = fake_task_with_result.delay() result.get() assert celery_cache.set.called assert celery_cache.set.call_args[0][0] == f'task_start_time.{result.id}' @mock.patch('olympia.amo.celery.cache') @mock.patch('olympia.amo.celery.statsd') def test_track_run_time(self, celery_statsd, celery_cache): minute_ago = datetime.datetime.now() - timedelta(minutes=1) task_start = utc_millesecs_from_epoch(minute_ago) celery_cache.get.return_value = task_start result = fake_task_with_result.delay() result.get() approx_run_time = utc_millesecs_from_epoch() - task_start assert ( celery_statsd.timing.call_args[0][0] == 'tasks.olympia.amo.tests.test_celery.fake_task_with_result' ) actual_run_time = celery_statsd.timing.call_args[0][1] fuzz = 2000 # 2 seconds assert actual_run_time >= (approx_run_time - fuzz) and actual_run_time <= ( approx_run_time + fuzz ) assert celery_cache.get.call_args[0][0] == f'task_start_time.{result.id}' assert celery_cache.delete.call_args[0][0] == f'task_start_time.{result.id}' @mock.patch('olympia.amo.celery.cache') @mock.patch('olympia.amo.celery.statsd') def test_handle_cache_miss_for_stats(self, celery_cache, celery_statsd): celery_cache.get.return_value = None # cache miss fake_task.delay() assert not celery_statsd.timing.called class TestTaskQueued(TransactionTestCase): """Test that tasks are queued and only triggered when a request finishes. Tests our integration with django-post-request-task. """ def setUp(self): super().setUp() fake_task_func.reset_mock() _discard_tasks() def tearDown(self): super().tearDown() fake_task_func.reset_mock() _discard_tasks() _stop_queuing_tasks() def test_not_queued_outside_request_response_cycle(self): fake_task.delay() assert fake_task_func.call_count == 1 def test_queued_inside_request_response_cycle(self): request_started.send(sender=self) fake_task.delay() assert fake_task_func.call_count == 0 request_finished.send_robust(sender=self) assert fake_task_func.call_count == 1 def test_no_dedupe_outside_request_response_cycle(self): fake_task.delay() fake_task.delay() assert fake_task_func.call_count == 2 def test_dedupe_inside_request_response_cycle(self): request_started.send(sender=self) fake_task.delay() fake_task.delay() assert fake_task_func.call_count == 0 request_finished.send_robust(sender=self) assert fake_task_func.call_count == 1
{ "content_hash": "b452439a1d7220baa2be6b77711bf46e", "timestamp": "", "source": "github", "line_count": 150, "max_line_length": 86, "avg_line_length": 32.38666666666666, "alnum_prop": 0.6755866611774393, "repo_name": "bqbn/addons-server", "id": "76e4c8f0622615eff507a6d20cd83d804f073614", "size": "4858", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/olympia/amo/tests/test_celery.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "810080" }, { "name": "Dockerfile", "bytes": "2868" }, { "name": "HTML", "bytes": "585550" }, { "name": "JavaScript", "bytes": "1071952" }, { "name": "Makefile", "bytes": "827" }, { "name": "PLSQL", "bytes": "1074" }, { "name": "PLpgSQL", "bytes": "2381" }, { "name": "Python", "bytes": "5323934" }, { "name": "SQLPL", "bytes": "559" }, { "name": "Shell", "bytes": "11171" }, { "name": "Smarty", "bytes": "1503" } ], "symlink_target": "" }
from __future__ import unicode_literals import string import itertools import click import xlrd import os from . import asciitable, __version__ from .compat import open_file, csv, out_proc from .cursor import XCursor, CSVCursor from six import PY3 from subprocess import Popen, PIPE @click.command() @click.option('--heading', '-h', type=int, help='Row number containing the headings.') @click.option("--file-type", "-f", type=click.Choice(["csv", "excel"]), help="Force parsing of the file to the chosen format.") @click.option("--delimiter", "-d", type=str, default=",", help="Delimiter (only applicable to CSV files) [default: ',']") @click.option("--quotechar", "-q", type=str, default='"', help="Quote character (only applicable to CSV files) [default: '\"']") @click.option("--encoding", "-e", type=str, default="utf-8", help="Encoding [default: UTF-8]") @click.version_option(version=__version__) @click.argument('filename') def cli(filename, heading, file_type, delimiter, quotechar, encoding): """Display Excel or CSV files directly on your terminal. The file type is guessed from file extensions, but can be overridden with the --file-type option. """ if file_type is None: if filename.endswith(".csv"): file_type = "csv" else: file_type = "excel" if file_type == "csv": csv_rows = [] if not PY3: delimiter = str(unicode(delimiter)) quotechar = str(unicode(quotechar)) with open_file(filename, encoding) as f: reader = csv.reader(f, delimiter=delimiter, quotechar=quotechar) for row in reader: csv_rows.append(row) cursor = CSVCursor(csv_rows, heading) else: # As per https://secure.simplistix.co.uk/svn/xlrd/trunk/xlrd/doc/xlrd.html?p=4966 # encodings in Excel are usually UTF-8. So, we only override the encoding # if an encoding is specified by the user. if encoding.lower() != "utf-8": workbook = xlrd.open_workbook(filename, encoding_override=encoding) else: workbook = xlrd.open_workbook(filename) sheet = workbook.sheet_by_index(0) cursor = XCursor(sheet, heading) with out_proc() as out: asciitable.draw(cursor, out=out)
{ "content_hash": "e52108fb896ca3bfe7837f08764ca5fa", "timestamp": "", "source": "github", "line_count": 71, "max_line_length": 101, "avg_line_length": 33.84507042253521, "alnum_prop": 0.6179775280898876, "repo_name": "krockode/x_x", "id": "319d09b27ea3b6be346245c9efe965ae7e602745", "size": "2403", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "x_x/x_x.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "10203" } ], "symlink_target": "" }
from django.core.management import call_command from django.core.management.base import NoArgsCommand from pangolinland.users.factories import generate_users class Command(NoArgsCommand): help = 'Fill the database with test fixtures' def handle(self, *args, **options): self.stdout.write('Starting fill db\r\n') # fixture_list = [] # call_command('loaddata', *fixture_list) generate_users() self.stdout.write('Completed fill db\r\n')
{ "content_hash": "56937557c69119dbad2a2a14ff78a271", "timestamp": "", "source": "github", "line_count": 18, "max_line_length": 55, "avg_line_length": 27.166666666666668, "alnum_prop": 0.6912065439672802, "repo_name": "skylifewww/pangolinland", "id": "0165a0489846edcd00f8af92114238bc60645a94", "size": "489", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pangolinland/core/management/commands/filldb.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "179721" }, { "name": "HTML", "bytes": "195624" }, { "name": "JavaScript", "bytes": "262432" }, { "name": "Makefile", "bytes": "1485" }, { "name": "Nginx", "bytes": "646" }, { "name": "Python", "bytes": "116827" } ], "symlink_target": "" }
import sys import os import signal import re import cPickle import logging import datetime from urlparse import urlparse from traceback import print_exc from time import time, gmtime, strftime, localtime from random import shuffle from types import StringType, IntType, LongType, ListType, DictType from binascii import b2a_hex from cStringIO import StringIO from BTL.translation import _ from BTL.obsoletepythonsupport import * from BitTorrent import platform from BTL import BTFailure from BTL.platform import decode_from_filesystem, efs2 from BTL.defer import DeferredEvent, ThreadedDeferred from BTL.yielddefer import wrap_task from BitTorrent.configfile import parse_configuration_and_args #from BitTorrent.parseargs import parseargs, printHelp from BitTorrent.RawServer_twisted import RawServer from BitTorrent.HTTPHandler import HTTPHandler from BTL.parsedir import parsedir from BitTorrent.NatCheck import NatCheck from BTL.bencode import bencode, bdecode, Bencached from urllib import quote, unquote from BTL.exceptions import str_exc from BitTorrent import version from BitTorrent.prefs import Preferences from BitTorrent.defaultargs import get_defaults from BitTorrent.UI import Size import socket import threading import traceback NOISY = False # code duplication because ow. MAX_INCOMPLETE = 100 if os.name == 'nt': from BitTorrent.platform import win_version_num # starting in XP SP2 the incomplete outgoing connection limit was set to 10 if win_version_num >= (2, 5, 1, 2, 0): MAX_INCOMPLETE = 10 def statefiletemplate(x): if type(x) != DictType: raise ValueError for cname, cinfo in x.iteritems(): if cname == 'peers': for y in cinfo.itervalues(): # The 'peers' key is a dictionary of SHA hashes (torrent ids) if type(y) != DictType: # ... for the active torrents, and each is a dictionary raise ValueError for peerid, info in y.iteritems(): # ... of client ids interested in that torrent if (len(peerid) != 20): raise ValueError if type(info) != DictType: # ... each of which is also a dictionary raise ValueError # ... which has an IP, a Port, and a Bytes Left count for that client for that torrent if type(info.get('ip', '')) != StringType: raise ValueError port = info.get('port') if type(port) not in (IntType, LongType) or port < 0: raise ValueError left = info.get('left') if type(left) not in (IntType, LongType) or left < 0: raise ValueError elif cname == 'completed': if (type(cinfo) != DictType): # The 'completed' key is a dictionary of SHA hashes (torrent ids) raise ValueError # ... for keeping track of the total completions per torrent for y in cinfo.itervalues(): # ... each torrent has an integer value if type(y) not in (IntType,LongType): raise ValueError # ... for the number of reported completions for that torrent elif cname == 'allowed': if (type(cinfo) != DictType): # a list of info_hashes and included data raise ValueError if x.has_key('allowed_dir_files'): adlist = [z[1] for z in x['allowed_dir_files'].itervalues()] for y in cinfo.iterkeys(): # and each should have a corresponding key here if not y in adlist: raise ValueError elif cname == 'allowed_dir_files': if (type(cinfo) != DictType): # a list of files, their attributes and info hashes raise ValueError dirkeys = {} for y in cinfo.itervalues(): # each entry should have a corresponding info_hash if not y[1]: continue if not x['allowed'].has_key(y[1]): raise ValueError if dirkeys.has_key(y[1]): # and each should have a unique info_hash raise ValueError dirkeys[y[1]] = 1 alas = _("your file may exist elsewhere in the universe\nbut alas, not here\n") def isotime(): #return strftime('%Y-%m-%d %H:%M UTC', gmtime(secs)) return datetime.datetime.utcnow().isoformat() http_via_filter = re.compile(' for ([0-9.]+)\Z') def _get_forwarded_ip(headers): if headers.has_key('x_forwarded_for'): header = headers['x_forwarded_for'] try: x,y = header.split(',') except: return header if not is_local_ip(x): return x return y if headers.has_key('client_ip'): return headers['client_ip'] if headers.has_key('via'): x = http_via_filter.search(headers['via']) try: return x.group(1) except: pass if headers.has_key('from'): return headers['from'] return None def get_forwarded_ip(headers): x = _get_forwarded_ip(headers) if x is None or not is_valid_ipv4(x) or is_local_ip(x): return None return x def compact_peer_info(ip, port): try: s = ( ''.join([chr(int(i)) for i in ip.split('.')]) + chr((port & 0xFF00) >> 8) + chr(port & 0xFF) ) if len(s) != 6: s = '' except: s = '' # not a valid IP, must be a domain name return s def is_valid_ipv4(ip): a = ip.split('.') if len(a) != 4: return False try: for x in a: chr(int(x)) return True except: return False def is_local_ip(ip): try: v = [int(x) for x in ip.split('.')] if v[0] == 10 or v[0] == 127 or v[:2] in ([192, 168], [169, 254]): return 1 if v[0] == 172 and v[1] >= 16 and v[1] <= 31: return 1 except ValueError: return 0 default_headers = {'Content-Type': 'text/plain', 'Pragma': 'no-cache'} class Tracker(object): def __init__(self, config, rawserver): self.config = config self.response_size = config['response_size'] self.max_give = config['max_give'] self.dfile = efs2(config['dfile']) self.natcheck = config['nat_check'] favicon = config['favicon'] self.favicon = None if favicon: try: h = open(favicon,'r') self.favicon = h.read() h.close() except: errorfunc(logging.WARNING, _("specified favicon file -- %s -- does not exist.") % favicon) self.rawserver = rawserver self.cached = {} # format: infohash: [[time1, l1, s1], [time2, l2, s2], [time3, l3, s3]] self.cached_t = {} # format: infohash: [time, cache] self.times = {} self.state = {} self.seedcount = {} self.save_pending = False self.parse_pending = False self.only_local_override_ip = config['only_local_override_ip'] if self.only_local_override_ip == 2: self.only_local_override_ip = not config['nat_check'] if os.path.exists(self.dfile): try: h = open(self.dfile, 'rb') ds = h.read() h.close() try: tempstate = cPickle.loads(ds) except: tempstate = bdecode(ds) # backwards-compatibility. if not tempstate.has_key('peers'): tempstate = {'peers': tempstate} statefiletemplate(tempstate) self.state = tempstate except: errorfunc(logging.WARNING, _("statefile %s corrupt; resetting") % self.dfile) self.downloads = self.state.setdefault('peers', {}) self.completed = self.state.setdefault('completed', {}) self.becache = {} # format: infohash: [[l1, s1], [l2, s2], [l3, s3]] for infohash, ds in self.downloads.iteritems(): self.seedcount[infohash] = 0 for x, y in ds.iteritems(): if not y.get('nat', -1): ip = y.get('given_ip') if not (ip and self.allow_local_override(y['ip'], ip)): ip = y['ip'] self.natcheckOK(infohash, x, ip, y['port'], y['left']) if not y['left']: self.seedcount[infohash] += 1 for infohash in self.downloads: self.times[infohash] = {} for peerid in self.downloads[infohash]: self.times[infohash][peerid] = 0 self.reannounce_interval = config['reannounce_interval'] self.save_dfile_interval = config['save_dfile_interval'] self.show_names = config['show_names'] rawserver.add_task(self.save_dfile_interval, self.save_dfile) self.prevtime = time() self.timeout_downloaders_interval = config['timeout_downloaders_interval'] rawserver.add_task(self.timeout_downloaders_interval, self.expire_downloaders) self.logfile = None self.log = None if (config['logfile'] != '') and (config['logfile'] != '-'): try: self.logfile = config['logfile'] self.log = open(self.logfile, 'a') sys.stdout = self.log print _("# Log Started: "), isotime() except: print _("**warning** could not redirect stdout to log file: "), sys.exc_info()[0] if config['hupmonitor']: def huphandler(signum, frame, self = self): try: self.log.close () self.log = open(self.logfile, 'a') sys.stdout = self.log print _("# Log reopened: "), isotime() except: print _("***warning*** could not reopen logfile") signal.signal(signal.SIGHUP, huphandler) self.allow_get = config['allow_get'] if config['allowed_dir'] != '': self.allowed_dir = config['allowed_dir'] self.parse_dir_interval = config['parse_dir_interval'] self.allowed = self.state.setdefault('allowed', {}) self.allowed_dir_files = self.state.setdefault('allowed_dir_files', {}) self.allowed_dir_blocked = {} self.parse_allowed() else: try: del self.state['allowed'] except: pass try: del self.state['allowed_dir_files'] except: pass self.allowed = None self.uq_broken = unquote('+') != ' ' self.keep_dead = config['keep_dead'] def allow_local_override(self, ip, given_ip): return is_valid_ipv4(given_ip) and ( not self.only_local_override_ip or is_local_ip(ip) ) def get_infopage(self): try: if not self.config['show_infopage']: return (404, 'Not Found', default_headers, alas) red = self.config['infopage_redirect'] if red != '': return (302, 'Found', {'Content-Type': 'text/html', 'Location': red}, '<A HREF="'+red+'">Click Here</A>') s = StringIO() s.write('<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">\n' \ '<html><head><title>BitTorrent download info</title>\n') if self.favicon is not None: s.write('<link rel="shortcut icon" href="/favicon.ico">\n') s.write('</head>\n<body>\n' \ '<h3>BitTorrent download info</h3>\n'\ '<ul>\n' '<li><strong>tracker version:</strong> %s</li>\n' \ '<li><strong>server time:</strong> %s</li>\n' \ '</ul>\n' % (version, isotime())) if self.allowed is not None: if self.show_names: names = [ (value[1].name, infohash) for infohash, value in self.allowed.iteritems()] else: names = [(None, infohash) for infohash in self.allowed] else: names = [ (None, infohash) for infohash in self.downloads] if not names: s.write('<p>not tracking any files yet...</p>\n') else: names.sort() tn = 0 tc = 0 td = 0 tt = 0 # Total transferred ts = 0 # Total size nf = 0 # Number of files displayed if self.allowed is not None and self.show_names: s.write('<table summary="files" border="1">\n' \ '<tr><th>info hash</th><th>torrent name</th><th align="right">size</th><th align="right">complete</th><th align="right">downloading</th><th align="right">downloaded</th><th align="right">transferred</th></tr>\n') else: s.write('<table summary="files">\n' \ '<tr><th>info hash</th><th align="right">complete</th><th align="right">downloading</th><th align="right">downloaded</th></tr>\n') for name, infohash in names: l = self.downloads[infohash] n = self.completed.get(infohash, 0) tn = tn + n c = self.seedcount[infohash] tc = tc + c d = len(l) - c td = td + d nf = nf + 1 if self.allowed is not None and self.show_names: if self.allowed.has_key(infohash): sz = self.allowed[infohash][1].total_bytes # size ts = ts + sz szt = sz * n # Transferred for this torrent tt = tt + szt if self.allow_get == 1: linkname = '<a href="/file?info_hash=' + quote(infohash) + '">' + name + '</a>' else: linkname = name s.write('<tr><td><code>%s</code></td><td>%s</td><td align="right">%s</td><td align="right">%i</td><td align="right">%i</td><td align="right">%i</td><td align="right">%s</td></tr>\n' \ % (b2a_hex(infohash), linkname, size_format(sz), c, d, n, size_format(szt))) else: s.write('<tr><td><code>%s</code></td><td align="right"><code>%i</code></td><td align="right"><code>%i</code></td><td align="right"><code>%i</code></td></tr>\n' \ % (b2a_hex(infohash), c, d, n)) ttn = 0 for i in self.completed.itervalues(): ttn = ttn + i if self.allowed is not None and self.show_names: s.write('<tr><td align="right" colspan="2">%i files</td><td align="right">%s</td><td align="right">%i</td><td align="right">%i</td><td align="right">%i/%i</td><td align="right">%s</td></tr>\n' % (nf, size_format(ts), tc, td, tn, ttn, size_format(tt))) else: s.write('<tr><td align="right">%i files</td><td align="right">%i</td><td align="right">%i</td><td align="right">%i/%i</td></tr>\n' % (nf, tc, td, tn, ttn)) s.write('</table>\n' \ '<ul>\n' \ '<li><em>info hash:</em> SHA1 hash of the "info" section of the metainfo (*.torrent)</li>\n' \ '<li><em>complete:</em> number of connected clients with the complete file</li>\n' \ '<li><em>downloading:</em> number of connected clients still downloading</li>\n' \ '<li><em>downloaded:</em> reported complete downloads (total: current/all)</li>\n' \ '<li><em>transferred:</em> torrent size * total downloaded (does not include partial transfers)</li>\n' \ '</ul>\n') s.write('</body>\n' \ '</html>\n') return (200, 'OK', {'Content-Type': 'text/html; charset=iso-8859-1'}, s.getvalue()) except: print_exc() return (500, 'Internal Server Error', {'Content-Type': 'text/html; charset=iso-8859-1'}, 'Server Error') def scrapedata(self, infohash, return_name = True): l = self.downloads[infohash] n = self.completed.get(infohash, 0) c = self.seedcount[infohash] d = len(l) - c f = {'complete': c, 'incomplete': d, 'downloaded': n} if return_name and self.show_names and self.allowed is not None: f['name'] = self.allowed[infohash]['name'] return (f) def get_scrape(self, paramslist): fs = {} if paramslist.has_key('info_hash'): if self.config['scrape_allowed'] not in ['specific', 'full']: return (400, 'Not Authorized', default_headers, bencode({'failure_reason': "specific scrape function is not available with this tracker."})) for infohash in paramslist['info_hash']: if self.allowed is not None and infohash not in self.allowed: continue if infohash in self.downloads: fs[infohash] = self.scrapedata(infohash) else: if self.config['scrape_allowed'] != 'full': return (400, 'Not Authorized', default_headers, bencode({'failure reason': "full scrape function is not available with this tracker."})) #bencode({'failure reason': #_("full scrape function is not available with this tracker.")})) if self.allowed is not None: hashes = self.allowed else: hashes = self.downloads for infohash in hashes: fs[infohash] = self.scrapedata(infohash) return (200, 'OK', {'Content-Type': 'text/plain'}, bencode({'files': fs})) def get_file(self, infohash): if not self.allow_get: return (400, 'Not Authorized', default_headers, _("get function is not available with this tracker.")) if not self.allowed.has_key(infohash): return (404, 'Not Found', default_headers, alas) fname = self.allowed[infohash]['file'] fpath = self.allowed[infohash]['path'] return (200, 'OK', {'Content-Type': 'application/x-bittorrent', 'Content-Disposition': 'attachment; filename=' + fname}, open(fpath, 'rb').read()) def check_allowed(self, infohash, paramslist): if self.allowed is not None: if not self.allowed.has_key(infohash): return (200, 'Not Authorized', default_headers, bencode({'failure reason': "Requested download is not authorized for use with this tracker."})) #_("Requested download is not authorized for use with this tracker.")})) if self.config['allowed_controls']: if self.allowed[infohash].has_key('failure reason'): return (200, 'Not Authorized', default_headers, bencode({'failure reason': self.allowed[infohash]['failure reason']})) return None def add_data(self, infohash, event, ip, paramslist): peers = self.downloads.setdefault(infohash, {}) ts = self.times.setdefault(infohash, {}) self.completed.setdefault(infohash, 0) self.seedcount.setdefault(infohash, 0) def params(key, default = None, l = paramslist): if l.has_key(key): return l[key][0] return default myid = params('peer_id','') if len(myid) != 20: raise ValueError, 'id not of length 20' if event not in ['started', 'completed', 'stopped', 'snooped', None]: raise ValueError, 'invalid event' port = int(params('port','')) if port < 0 or port > 65535: raise ValueError, 'invalid port' left = int(params('left','')) if left < 0: raise ValueError, 'invalid amount left' peer = peers.get(myid) mykey = params('key') auth = not peer or peer.get('key', -1) == mykey or peer.get('ip') == ip gip = params('ip') local_override = gip and self.allow_local_override(ip, gip) if local_override: ip1 = gip else: ip1 = ip if not auth and local_override and self.only_local_override_ip: auth = True if params('numwant') is not None: rsize = min(int(params('numwant')), self.max_give) else: rsize = self.response_size if event == 'stopped': if peer and auth: self.delete_peer(infohash,myid) elif not peer: ts[myid] = time() peer = {'ip': ip, 'port': port, 'left': left} if mykey: peer['key'] = mykey if gip: peer['given ip'] = gip if port: if not self.natcheck or (local_override and self.only_local_override_ip): peer['nat'] = 0 self.natcheckOK(infohash,myid,ip1,port,left) else: NatCheck(self.connectback_result,infohash,myid,ip1,port,self.rawserver) else: peer['nat'] = 2**30 if event == 'completed': self.completed[infohash] += 1 if not left: self.seedcount[infohash] += 1 peers[myid] = peer else: if not auth: return rsize # return w/o changing stats ts[myid] = time() if not left and peer['left']: self.completed[infohash] += 1 self.seedcount[infohash] += 1 if not peer.get('nat', -1): for bc in self.becache[infohash]: bc[1][myid] = bc[0][myid] del bc[0][myid] if peer['left']: peer['left'] = left recheck = False if ip != peer['ip']: peer['ip'] = ip recheck = True if gip != peer.get('given ip'): if gip: peer['given ip'] = gip elif peer.has_key('given ip'): del peer['given ip'] if local_override: if self.only_local_override_ip: self.natcheckOK(infohash,myid,ip1,port,left) else: recheck = True if port and self.natcheck: if recheck: if peer.has_key('nat'): if not peer['nat']: l = self.becache[infohash] y = not peer['left'] for x in l: del x[y][myid] del peer['nat'] # restart NAT testing else: natted = peer.get('nat', -1) if natted and natted < self.natcheck: recheck = True if recheck: NatCheck(self.connectback_result,infohash,myid,ip1,port,self.rawserver) return rsize def peerlist(self, infohash, stopped, is_seed, return_type, rsize): data = {} # return data seeds = self.seedcount[infohash] data['complete'] = seeds data['incomplete'] = len(self.downloads[infohash]) - seeds if ( self.allowed is not None and self.config['allowed_controls'] and self.allowed[infohash].has_key('warning message') ): data['warning message'] = self.allowed[infohash]['warning message'] data['interval'] = self.reannounce_interval if stopped or not rsize: # save some bandwidth data['peers'] = [] return data bc = self.becache.setdefault(infohash,[[{}, {}], [{}, {}], [{}, {}]]) len_l = len(bc[0][0]) len_s = len(bc[0][1]) if not (len_l+len_s): # caches are empty! data['peers'] = [] return data l_get_size = int(float(rsize)*(len_l)/(len_l+len_s)) cache = self.cached.setdefault(infohash,[None,None,None])[return_type] if cache: if cache[0] + self.config['min_time_between_cache_refreshes'] < time(): cache = None else: if ( (is_seed and len(cache[1]) < rsize) or len(cache[1]) < l_get_size or not cache[1] ): cache = None if not cache: vv = [[],[],[]] cache = [ time(), bc[return_type][0].values()+vv[return_type], bc[return_type][1].values() ] shuffle(cache[1]) shuffle(cache[2]) self.cached[infohash][return_type] = cache for rr in xrange(len(self.cached[infohash])): if rr != return_type: try: self.cached[infohash][rr][1].extend(vv[rr]) except: pass if len(cache[1]) < l_get_size: peerdata = cache[1] if not is_seed: peerdata.extend(cache[2]) cache[1] = [] cache[2] = [] else: if not is_seed: peerdata = cache[2][l_get_size-rsize:] del cache[2][l_get_size-rsize:] rsize -= len(peerdata) else: peerdata = [] if rsize: peerdata.extend(cache[1][-rsize:]) del cache[1][-rsize:] if return_type == 2: peerdata = ''.join(peerdata) data['peers'] = peerdata return data def get(self, connection, path, headers): ip = connection.get_ip() nip = get_forwarded_ip(headers) if nip and not self.only_local_override_ip: ip = nip paramslist = {} def params(key, default = None, l = paramslist): if l.has_key(key): return l[key][0] return default try: (scheme, netloc, path, pars, query, fragment) = urlparse(path) if self.uq_broken == 1: path = path.replace('+',' ') query = query.replace('+',' ') path = unquote(path)[1:] for s in query.split('&'): if s != '': i = s.index('=') kw = unquote(s[:i]) paramslist.setdefault(kw, []) paramslist[kw] += [unquote(s[i+1:])] if path == '' or path == 'index.html': return self.get_infopage() if path == 'scrape': return self.get_scrape(paramslist) if (path == 'file'): return self.get_file(params('info_hash')) if path == 'favicon.ico' and self.favicon is not None: return (200, 'OK', {'Content-Type' : 'image/x-icon'}, self.favicon) if path != 'announce': return (404, 'Not Found', default_headers, alas) # main tracker function infohash = params('info_hash') if not infohash: raise ValueError, 'no info hash' notallowed = self.check_allowed(infohash, paramslist) if notallowed: if NOISY: self._print_event( "get: NOT ALLOWED: info_hash=%s, %s" % (infohash.encode('hex'). str(notallowed)) ) return notallowed event = params('event') rsize = self.add_data(infohash, event, ip, paramslist) except ValueError, e: print e if NOISY: self._print_exc( "get: ",e ) return (400, 'Bad Request', {'Content-Type': 'text/plain'}, 'you sent me garbage - ' + str_exc(e)) if params('compact'): return_type = 2 elif params('no_peer_id'): return_type = 1 else: return_type = 0 data = self.peerlist(infohash, event=='stopped', not params('left'), return_type, rsize) if paramslist.has_key('scrape'): data['scrape'] = self.scrapedata(infohash, False) return (200, 'OK', default_headers, bencode(data)) def natcheckOK(self, infohash, peerid, ip, port, not_seed): bc = self.becache.setdefault(infohash,[[{}, {}], [{}, {}], [{}, {}]]) bc[0][not not_seed][peerid] = Bencached(bencode({'ip': ip, 'port': port, 'peer id': peerid})) bc[1][not not_seed][peerid] = Bencached(bencode({'ip': ip, 'port': port})) bc[2][not not_seed][peerid] = compact_peer_info(ip, port) def natchecklog(self, peerid, ip, port, result): print isotime(), '"!natcheck-%s:%i" %s %i 0 - -' % ( ip, port, quote(peerid), result) def connectback_result(self, result, downloadid, peerid, ip, port): record = self.downloads.get(downloadid, {}).get(peerid) if ( record is None or (record['ip'] != ip and record.get('given ip') != ip) or record['port'] != port ): if self.config['log_nat_checks']: self.natchecklog(peerid, ip, port, 404) return if self.config['log_nat_checks']: if result: x = 200 else: x = 503 self.natchecklog(peerid, ip, port, x) if not record.has_key('nat'): record['nat'] = int(not result) if result: self.natcheckOK(downloadid,peerid,ip,port,record['left']) elif result and record['nat']: record['nat'] = 0 self.natcheckOK(downloadid,peerid,ip,port,record['left']) elif not result: record['nat'] += 1 def save_dfile(self): if self.save_pending: return self.save_pending = True # if this is taking all the time, threading it won't help anyway because # of the GIL #state = bencode(self.state) state = cPickle.dumps(self.state) # pickle handles Unicode. df = ThreadedDeferred(wrap_task(self.rawserver.external_add_task), self._save_dfile, state) def cb(r): self.save_pending = False if NOISY: self._print_event( "save_dfile: Completed" ) def eb(etup): self.save_pending = False self._print_exc( "save_dfile: ", etup ) df.addCallbacks(cb, eb) def _save_dfile(self, state): exc_info = None try: h = open(self.dfile, 'wb') h.write(state) h.close() except: exc_info = sys.exc_info() self.rawserver.external_add_task(self.save_dfile_interval, self.save_dfile) if exc_info: raise exc_info[0], exc_info[1], exc_info[2] def parse_allowed(self): if self.parse_pending: return self.parse_pending = True df = ThreadedDeferred(wrap_task(self.rawserver.external_add_task), self._parse_allowed, daemon=True) def eb(etup): self.parse_pending = False self._print_exc("parse_dir: ", etup) df.addCallbacks(self._parse_allowed_finished, eb) def _parse_allowed(self): def errfunc(message, exc_info=None): # logging broken .torrent files would be useful but could confuse # programs parsing log files m = "parse_dir: %s" % message if exc_info: self._print_exc(m, exc_info) else: self._print_event(m) pass r = parsedir(self.allowed_dir, self.allowed, self.allowed_dir_files, self.allowed_dir_blocked, errfunc, include_metainfo = False) # register the call to parse a dir. self.rawserver.external_add_task(self.parse_dir_interval, self.parse_allowed) return r def _parse_allowed_finished(self, r): self.parse_pending = False ( self.allowed, self.allowed_dir_files, self.allowed_dir_blocked, added, removed ) = r if NOISY: self._print_event("_parse_allowed_finished: removals: %s" % str(removed)) for infohash in added: self.downloads.setdefault(infohash, {}) self.completed.setdefault(infohash, 0) self.seedcount.setdefault(infohash, 0) self.state['allowed'] = self.allowed self.state['allowed_dir_files'] = self.allowed_dir_files def delete_peer(self, infohash, peerid): dls = self.downloads[infohash] peer = dls[peerid] if not peer['left']: self.seedcount[infohash] -= 1 if not peer.get('nat', -1): l = self.becache[infohash] y = not peer['left'] for x in l: del x[y][peerid] del self.times[infohash][peerid] del dls[peerid] def expire_downloaders(self): for infohash, peertimes in self.times.iteritems(): items = peertimes.items() for myid, t in items: if t < self.prevtime: self.delete_peer(infohash, myid) self.prevtime = time() if self.keep_dead != 1: items = self.downloads.items() for key, peers in items: if len(peers) == 0 and (self.allowed is None or key not in self.allowed): del self.times[key] del self.downloads[key] del self.seedcount[key] self.rawserver.add_task(self.timeout_downloaders_interval, self.expire_downloaders) def _print_event(self, message): print datetime.datetime.utcnow().isoformat(), message def _print_exc(self, note, etup): print datetime.datetime.utcnow().isoformat(), note, ':' traceback.print_exception(*etup) def track(args): assert type(args) == list and \ len([x for x in args if type(x)==str])==len(args) config = {} defaults = get_defaults('bittorrent-tracker') # hard-coded defaults. try: config, files = parse_configuration_and_args(defaults, 'bittorrent-tracker', args, 0, 0 ) except ValueError, e: print _("error: ") + str_exc(e) print _("run with -? for parameter explanations") return except BTFailure, e: print _("error: ") + str_exc(e) print _("run with -? for parameter explanations") return if config['dfile']=="": config['dfile'] = decode_from_filesystem( os.path.join(platform.get_temp_dir(), efs2(u"dfile") + str(os.getpid()))) config = Preferences().initWithDict(config) ef = lambda e: errorfunc(logging.WARNING, e) platform.write_pid_file(config['pid'], ef) t = None try: r = RawServer(config) t = Tracker(config, r) try: #DEBUG print "track: create_serversocket, port=", config['port'] #END s = r.create_serversocket(config['port'], config['bind']) handler = HTTPHandler(t.get, config['min_time_between_log_flushes']) r.start_listening(s, handler) except socket.error, e: print ("Unable to open port %d. Use a different port?" % config['port']) return r.listen_forever() finally: if t: t.save_dfile() print _("# Shutting down: ") + isotime() def size_format(s): return str(Size(s)) def errorfunc( level, text ): print "%s: %s" % (logging.getLevelName(level), text)
{ "content_hash": "14b24e8cec39b12c136428725f200927", "timestamp": "", "source": "github", "line_count": 923, "max_line_length": 236, "avg_line_length": 40.04875406283857, "alnum_prop": 0.5083727850669553, "repo_name": "sauloal/linuxscripts", "id": "0dbb7eb0ea8406d55a53f10ed95343b33676d228", "size": "37548", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "apache/var/www/html/saulo/torrent/html/bin/clients/mainline/BitTorrent/track.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "616304" }, { "name": "C++", "bytes": "24286" }, { "name": "JavaScript", "bytes": "238160" }, { "name": "PHP", "bytes": "9491076" }, { "name": "Perl", "bytes": "877930" }, { "name": "Python", "bytes": "3651261" }, { "name": "Racket", "bytes": "4568" }, { "name": "Shell", "bytes": "157362" }, { "name": "XSLT", "bytes": "28086" } ], "symlink_target": "" }
from __future__ import absolute_import, print_function from sentry import analytics class IntegrationAddedEvent(analytics.Event): type = "integration.added" attributes = ( analytics.Attribute("provider"), analytics.Attribute("id"), analytics.Attribute("organization_id"), analytics.Attribute("user_id", required=False), analytics.Attribute("default_user_id"), ) class IntegrationIssueCreatedEvent(analytics.Event): type = "integration.issue.created" attributes = ( analytics.Attribute("provider"), analytics.Attribute("id"), analytics.Attribute("organization_id"), analytics.Attribute("user_id", required=False), analytics.Attribute("default_user_id"), ) class IntegrationIssueLinkedEvent(analytics.Event): type = "integration.issue.linked" attributes = ( analytics.Attribute("provider"), analytics.Attribute("id"), analytics.Attribute("organization_id"), analytics.Attribute("user_id", required=False), analytics.Attribute("default_user_id"), ) class IntegrationIssueStatusSyncedEvent(analytics.Event): type = "integration.issue.status.synced" attributes = ( analytics.Attribute("provider"), analytics.Attribute("id"), analytics.Attribute("organization_id"), ) class IntegrationIssueAssigneeSyncedEvent(analytics.Event): type = "integration.issue.assignee.synced" attributes = ( analytics.Attribute("provider"), analytics.Attribute("id"), analytics.Attribute("organization_id"), ) class IntegrationIssueCommentsSyncedEvent(analytics.Event): type = "integration.issue.comments.synced" attributes = ( analytics.Attribute("provider"), analytics.Attribute("id"), analytics.Attribute("organization_id"), ) class IntegrationRepoAddedEvent(analytics.Event): type = "integration.repo.added" attributes = ( analytics.Attribute("provider"), analytics.Attribute("id"), analytics.Attribute("organization_id"), ) class IntegrationResolveCommitEvent(analytics.Event): type = "integration.resolve.commit" attributes = ( analytics.Attribute("provider"), analytics.Attribute("id"), analytics.Attribute("organization_id"), ) class IntegrationResolvePREvent(analytics.Event): type = "integration.resolve.pr" attributes = ( analytics.Attribute("provider"), analytics.Attribute("id"), analytics.Attribute("organization_id"), ) analytics.register(IntegrationAddedEvent) analytics.register(IntegrationIssueCreatedEvent) analytics.register(IntegrationIssueLinkedEvent) analytics.register(IntegrationIssueStatusSyncedEvent) analytics.register(IntegrationIssueAssigneeSyncedEvent) analytics.register(IntegrationIssueCommentsSyncedEvent) analytics.register(IntegrationRepoAddedEvent) analytics.register(IntegrationResolveCommitEvent) analytics.register(IntegrationResolvePREvent)
{ "content_hash": "285c7075952969a6c19d984f6d755d09", "timestamp": "", "source": "github", "line_count": 110, "max_line_length": 59, "avg_line_length": 27.78181818181818, "alnum_prop": 0.7045157068062827, "repo_name": "mvaled/sentry", "id": "04d3024d710869c9d795a445306a287f08889b18", "size": "3056", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "src/sentry/integrations/analytics.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "226439" }, { "name": "Dockerfile", "bytes": "6431" }, { "name": "HTML", "bytes": "173429" }, { "name": "JavaScript", "bytes": "9314175" }, { "name": "Lua", "bytes": "65885" }, { "name": "Makefile", "bytes": "9225" }, { "name": "Python", "bytes": "50385401" }, { "name": "Ruby", "bytes": "168" }, { "name": "Shell", "bytes": "5685" }, { "name": "TypeScript", "bytes": "773664" } ], "symlink_target": "" }
""" Copyright (c) 2013 Clarinova. This file is licensed under the terms of the Revised BSD License, included in this distribution as LICENSE.txt """ from . import DatabaseInterface import semidbm as dbm # @UnresolvedImport import os import json class Dbm(DatabaseInterface): def __init__(self, bundle, base_path, suffix=None): self.bundle = bundle self.suffix = suffix self._path = base_path if suffix: self._path += '-'+suffix self._path += '.dbm' self._file = None @property def reader(self): self.close() self._file = dbm.open(self._path, 'r') return self @property def writer(self): """Return a new writer. Will always create a new file""" self.close() self._file = dbm.open(self._path, 'n') return self @property def appender(self): """Return a new writer, preserving the file if it already exists""" self.close() self._file = dbm.open(self._path, 'c') return self def delete(self): if os.path.exists(self._path): os.remove(self._path) def close(self): if self._file: self._file.close() self._file = None def __getitem__(self, key): return json.loads(self._file[key]) def __setitem__(self, key, val): #print key,'<-',val self._file[str(key)] = json.dumps(val) def keys(self): return self._file.keys()
{ "content_hash": "fc065236d6d0c68c27602c990f1ff824", "timestamp": "", "source": "github", "line_count": 75, "max_line_length": 75, "avg_line_length": 21.626666666666665, "alnum_prop": 0.5283600493218249, "repo_name": "kball/ambry", "id": "3593cb4c6ca36d115a95df8f219fd3c66156dcc1", "size": "1622", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ambry/database/dbm.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Python", "bytes": "1229770" }, { "name": "Ruby", "bytes": "2885" }, { "name": "Shell", "bytes": "16552" } ], "symlink_target": "" }
""" byceps.blueprints.admin.site.views ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :Copyright: 2006-2020 Jochen Kupperschmidt :License: Modified BSD, see LICENSE for details. """ from flask import abort, request from ....services.party import service as party_service from ....services.site import ( service as site_service, settings_service as site_settings_service, ) from ....util.framework.blueprint import create_blueprint from ....util.framework.flash import flash_error, flash_success from ....util.framework.templating import templated from ....util.views import redirect_to from ...authorization.decorators import permission_required from ...authorization.registry import permission_registry from .authorization import SitePermission from .forms import CreateForm, UpdateForm blueprint = create_blueprint('site_admin', __name__) permission_registry.register_enum(SitePermission) @blueprint.route('/') @permission_required(SitePermission.view) @templated def index(): """List all sites.""" sites = site_service.get_all_sites() parties = party_service.get_all_parties() party_titles_by_id = {p.id: p.title for p in parties} sites.sort(key=lambda site: (site.title, site.party_id)) return { 'sites': sites, 'party_titles_by_id': party_titles_by_id, } @blueprint.route('/sites/<site_id>') @permission_required(SitePermission.view) @templated def view(site_id): """Show a site's settings.""" site = site_service.find_site(site_id) if site is None: abort(404) settings = site_settings_service.get_settings(site.id) return { 'site': site, 'settings': settings, } @blueprint.route('/sites/create') @permission_required(SitePermission.create) @templated def create_form(erroneous_form=None): """Show form to create a site.""" party_id = request.args.get('party_id') form = erroneous_form if erroneous_form else CreateForm(party_id=party_id) form.set_email_config_choices() form.set_party_choices() return { 'form': form, } @blueprint.route('/sites', methods=['POST']) @permission_required(SitePermission.create) def create(): """Create a site.""" form = CreateForm(request.form) form.set_email_config_choices() form.set_party_choices() if not form.validate(): return create_form(form) site_id = form.id.data.strip().lower() title = form.title.data.strip() server_name = form.server_name.data.strip() email_config_id = form.email_config_id.data party_id = form.party_id.data enabled = form.enabled.data user_account_creation_enabled = form.user_account_creation_enabled.data login_enabled = form.login_enabled.data if party_id: party = party_service.find_party(party_id) if not party: flash_error(f'Die Party-ID "{party_id}" ist unbekannt.') return create_form(form) else: party_id = None site = site_service.create_site( site_id, title, server_name, email_config_id, enabled, user_account_creation_enabled, login_enabled, party_id=party_id, ) flash_success(f'Die Site "{site.title}" wurde angelegt.') return redirect_to('.view', site_id=site.id) @blueprint.route('/sites/<site_id>/update') @permission_required(SitePermission.update) @templated def update_form(site_id, erroneous_form=None): """Show form to update the site.""" site = _get_site_or_404(site_id) form = erroneous_form if erroneous_form else UpdateForm(obj=site) form.set_email_config_choices() form.set_party_choices() return { 'site': site, 'form': form, } @blueprint.route('/sites/<site_id>', methods=['POST']) @permission_required(SitePermission.update) def update(site_id): """Update the site.""" site = _get_site_or_404(site_id) form = UpdateForm(request.form) form.set_email_config_choices() form.set_party_choices() if not form.validate(): return update_form(site.id, form) title = form.title.data.strip() server_name = form.server_name.data.strip() email_config_id = form.email_config_id.data party_id = form.party_id.data enabled = form.enabled.data user_account_creation_enabled = form.user_account_creation_enabled.data login_enabled = form.login_enabled.data archived = form.archived.data if party_id: party = party_service.find_party(party_id) if not party: flash_error(f'Die Party-ID "{party_id}" ist unbekannt.') return update_form(site.id, form) else: party_id = None try: site = site_service.update_site( site.id, title, server_name, email_config_id, party_id, enabled, user_account_creation_enabled, login_enabled, archived, ) except site_service.UnknownSiteId: abort(404, f'Unknown site ID "{site_id}".') flash_success(f'Die Site "{site.title}" wurde aktualisiert.') return redirect_to('.view', site_id=site.id) def _get_site_or_404(site_id): site = site_service.find_site(site_id) if site is None: abort(404) return site
{ "content_hash": "7eac6de788f6008f82bb01cc207bd19f", "timestamp": "", "source": "github", "line_count": 201, "max_line_length": 78, "avg_line_length": 26.402985074626866, "alnum_prop": 0.6463161861692105, "repo_name": "m-ober/byceps", "id": "2bdc96e3c0a2ed670a27a9ff2a0289d525223878", "size": "5307", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "byceps/blueprints/admin/site/views.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "38499" }, { "name": "Dockerfile", "bytes": "1302" }, { "name": "HTML", "bytes": "369989" }, { "name": "JavaScript", "bytes": "9483" }, { "name": "Python", "bytes": "1152996" } ], "symlink_target": "" }
''' @author: Frank ''' import os try: if os.environ['TERM'].startswith('xterm'): os.environ['TERM'] = 'vt100' except: os.environ['TERM'] = 'vt100' import readline import sys reload(sys) sys.setdefaultencoding('utf8') import shlex import hashlib import optparse import termcolor import pydoc import time import urllib3 import zstacklib.utils.log as log #comment out next line to print detail zstack cli http command to screen. log.configure_log('/var/log/zstack/zstack-cli', log_to_console=False) import apibinding.inventory as inventory import apibinding.api as api import zstacklib.utils.jsonobject as jsonobject import zstacklib.utils.filedb as filedb import zstackcli.parse_config as parse_config import zstackcli.deploy_config as deploy_config import zstackcli.read_config as read_config cld = termcolor.colored cprint = termcolor.cprint text_doc = pydoc.TextDoc() CLI_LIB_FOLDER = os.path.expanduser('~/.zstack/cli') CLI_HISTORY = '%s/command_history' % CLI_LIB_FOLDER CLI_RESULT_HISTORY_FOLDER = '%s/result_history' % CLI_LIB_FOLDER CLI_RESULT_HISTORY_KEY = '%s/result_key' % CLI_RESULT_HISTORY_FOLDER CLI_RESSULT_FILE = '%s/result' % CLI_RESULT_HISTORY_FOLDER SESSION_FILE = '%s/session' % CLI_LIB_FOLDER CLI_MAX_CMD_HISTORY = 1000 CLI_MAX_RESULT_HISTORY = 1000 prompt = '>>>' query_param_keys = \ ['conditions', 'count', 'limit', 'start', 'timeout', \ 'replyWithCount', 'sortBy', 'sortDirection', 'fields'] def clean_password_in_cli_history(): cmd_historys = open(CLI_HISTORY, 'r').readlines() new_cmd_historys = [] for cmd in cmd_historys: if 'password=' in cmd: cmd_params = cmd.split() cmd_list = [] for param in cmd_params: if not 'password=' in param: cmd_list.append(param) else: cmd_list.append(param.split('=')[0] + '=') new_cmd_historys.append(' '.join(cmd_list)) else: new_cmd_historys.append(cmd) open(CLI_HISTORY, 'w').write('\n'.join(new_cmd_historys)) class CliError(Exception): '''Cli Error''' class Cli(object): ''' classdocs ''' msg_creator = {} LOGIN_MESSAGE_NAME = 'APILogInByAccountMsg' LOGOUT_MESSAGE_NAME = 'APILogOutMsg' LOGIN_BY_USER_NAME = 'APILogInByUserMsg' CREATE_ACCOUNT_NAME = 'APICreateAccountMsg' CREATE_USER_NAME = 'APICreateUserMsg' ACCOUNT_RESET_PASSWORD_NAME = 'APIUpdateAccountMsg' USER_RESET_PASSWORD_NAME = 'APIUpdateUserMsg' @staticmethod def register_message_creator(apiname, func): Cli.msg_creator[apiname] = func def usage(self): print ''' ZStack command line tool Type "help" for more information Type Tab key for auto-completion Type "quit" or "exit" or Ctrl-d to exit ''' def print_error(self, err): print '\033[91m' + err + '\033[0m' def complete(self, pattern, index): ''' pattern is current input. index is current matched number of list. complete will be kept calling, until it return None. ''' def prepare_primitive_fields_words(apiname, separator='=', prefix=''): if not prefix: api_map_name = inventory.queryMessageInventoryMap[apiname].__name__ else: api_map_name = apiname query_pri_fields = eval('inventory.%s().PRIMITIVE_FIELDS' % api_map_name) query_pri_fields = ['%s' % field for field in query_pri_fields] temp_fields = list(query_pri_fields) query_pri_fields = [] for field in temp_fields: if prefix: query_pri_fields.append('%s%s%s' % (prefix, field, separator)) else: query_pri_fields.append('%s%s' % (field, separator)) self.words.extend(query_pri_fields) def prepare_expanded_fields_words(apiname, separator='.', prefix=''): if not prefix: api_map_name = inventory.queryMessageInventoryMap[apiname].__name__ else: api_map_name = apiname query_ext_fields = eval('inventory.%s().EXPANDED_FIELDS' % api_map_name) query_ext_fields = ['%s' % field for field in query_ext_fields] temp_fields = list(query_ext_fields) query_ext_fields = [] for field in temp_fields: if prefix: query_ext_fields.append('%s%s%s' % (prefix, field, separator)) else: query_ext_fields.append('%s%s' % (field, separator)) self.words.extend(query_ext_fields) if 'conditions=' in self.words: self.words.remove('conditions=') def prepare_query_words(apiname, prefix=''): prepare_primitive_fields_words(apiname, '=', prefix) prepare_expanded_fields_words(apiname, '.', prefix) def prepare_fields_words(apiname, current_fields=[]): prepare_primitive_fields_words(apiname, ',') for field in current_fields: new_field = '%s,' % field if new_field in self.words: self.words.remove(new_field) def prepare_words(): currtext = readline.get_line_buffer() apiname = currtext.split()[0] if apiname in self.words_db: self.is_cmd = False self.words = ['%s=' % field for field in self.api_class_params['API%sMsg' % apiname]] if apiname.startswith('Query'): real_api_name = 'API%sMsg' % apiname prepare_query_words(real_api_name) if not ('UserTag' in apiname or 'SystemTag' in apiname): self.words.append('__systemTag__=') self.words.append('__userTag__=') else: self.is_cmd = True self.words = self.words_db if not self.words: return None prepare_words() if not self.curr_pattern or pattern.lower() != self.curr_pattern.lower(): #self.matching_words = [w for w in self.words if w.lower().startswith(pattern.lower())] if self.is_cmd: self.matching_words = ['%s ' % w for w in self.words if pattern.lower() in w.lower()] else: #need to auto complete expanded fields. if '.' in pattern: currtext = readline.get_line_buffer() fields_objects = pattern.split('.') head_field = fields_objects[0] fields_num = len(fields_objects) apiname = currtext.split()[0] new_api_name = 'API%sMsg' % apiname if inventory.queryMessageInventoryMap.has_key(new_api_name): api_obj_name = inventory.queryMessageInventoryMap[new_api_name].__name__ query_ext_fields = eval('inventory.%s().EXPANDED_FIELDS' % api_obj_name) if head_field in query_ext_fields: current_obj_name = eval('inventory.%s().QUERY_OBJECT_MAP["%s"]' % (api_obj_name, head_field)) for i in range(0, fields_num): if i == fields_num - 2: break next_field = fields_objects[i + 1] query_ext_fields = eval('inventory.%s().EXPANDED_FIELDS' % current_obj_name) if next_field in query_ext_fields: current_obj_name = eval('inventory.%s().QUERY_OBJECT_MAP["%s"]' % (current_obj_name, next_field)) else: current_obj_name = None else: current_obj_name = None else: current_obj_name = None if current_obj_name: self.words = [] pattern_prefix = '.'.join(fields_objects[:-1]) prepare_query_words(current_obj_name, '%s.' % pattern_prefix) currtext = readline.get_line_buffer() last_field = currtext.split()[-1] if not currtext.endswith(' ') and last_field.startswith('fields='): apiname = currtext.split()[0] new_api_name = 'API%sMsg' % apiname api_map_name = inventory.queryMessageInventoryMap[new_api_name].__name__ self.words = [] fields = last_field.split('=')[1] prepare_fields_words(new_api_name, fields.split(',')) self.matching_words = [w for w in self.words if pattern.lower() in w.lower()] self.curr_pattern = pattern try: return self.matching_words[index] except IndexError: return None def do_command(self, line): def check_session(apiname): if not self.session_uuid and apiname not in [self.LOGIN_MESSAGE_NAME, self.LOGIN_BY_USER_NAME]: self.print_error('''Please login before running any API message example: %sLogInByAccount accountName=admin password=your_super_secure_admin_password''' % prompt) return False return True def is_api_param_a_list(apiname, param): optional_list = eval('isinstance(inventory.%s().%s, \ inventory.OptionalList)' % (apiname, param)) not_none_list = eval('isinstance(inventory.%s().%s, \ inventory.NotNoneList)' % (apiname, param)) if optional_list or not_none_list: return True def build_params(): def eval_string(key, value_string): try: return eval(value_string) except Exception as e: err_msg = """ Parse command parameters error: eval '%s' error for: '%s' the right format is like: "[{'KEY':'VALUE'}, {'KEY':['VALUE1', 'VALUE2']}]" """ % (value_string, key) self.print_error(err_msg) raise e pairs = shlex.split(line) if pairs[0] in self.cli_cmd: cmd = pairs[0] if len(pairs) > 1: return cmd, pairs[1:] else: return cmd, None apiname = 'API%sMsg' % pairs[0] if apiname not in inventory.api_names: raise CliError('"%s" is not an API message' % apiname) #'=' will be used for more meanings than 'equal' in Query API if apiname.startswith('APIQuery'): return apiname, pairs[1:] all_params = {} for param_str in pairs[1:]: params = param_str.split('=', 1) if len(params) != 2: raise CliError('Invalid parameter[%s], the parameter must be split by "="' % param_str) if apiname == 'APIAddSecurityGroupRuleMsg' and params[0] == 'rules': all_params[params[0]] = eval(params[1]) elif apiname in ['APIGetHostMonitoringDataMsg', 'APIGetVmMonitoringDataMsg', 'APIMonitoringPassThroughMsg'] and params[0] == 'query': all_params[params[0]] = eval(params[1]) elif apiname == 'APIAttachNetworkServiceToL3NetworkMsg' and params[0] == 'networkServices': all_params[params[0]] = eval_string(params[0], params[1]) elif apiname == 'APIDetachNetworkServiceFromL3NetworkMsg' and params[0] == 'networkServices': all_params[params[0]] = eval_string(params[0], params[1]) elif apiname == 'APICreatePolicyMsg' and params[0] == 'statements': all_params[params[0]] = eval_string(params[0], params[1]) elif is_api_param_a_list(apiname, params[0]): all_params[params[0]] = params[1].split(',') else: all_params[params[0]] = params[1] return (apiname, all_params) def generate_query_params(apiname, params): ''' Query params will include conditions expression, which includes ops: =, !=, >, <, >=, <=, ?=, !?=, ~=, !~= ?= means 'in' !?= means 'not in' ~= means 'like' !~= means 'not like' =null means 'is null' !=null means 'is not null' ''' null = 'null' eq = '=' gt = '>' lt = '<' nt = '!' lk = '~' qs = '?' ps = '+' ms = '-' perc = '%' underscore = '_' conditions = [] new_params = {} for param in params: if eq in param: key,value = param.split(eq, 1) if not key in query_param_keys: if key.endswith(nt): if value != null: conditions.append({'name':key[:-1], \ 'op':'!=', 'value': value}) else: conditions.append({'name':key[:-1], \ 'op':'is not null', 'value': ''}) elif key.endswith(gt): conditions.append({'name':key[:-1], \ 'op':'>=', 'value': value}) elif key.endswith(lt): conditions.append({'name':key[:-1], \ 'op':'<=', 'value': value}) elif key.endswith('%s%s' % (nt, qs)): conditions.append({'name':key[:-2], \ 'op':'not in', 'value': value}) elif key.endswith(qs): conditions.append({'name':key[:-1], \ 'op':'in', 'value': value}) elif key.endswith('%s%s' % (nt, lk)): #will help to add pattern %, if user not input if not perc in value and not underscore in value: value = '%s%s%s' % (perc, value, perc) conditions.append({'name':key[:-2], \ 'op':'not like', 'value': value}) elif key.endswith(lk): #will help to add pattern %, if user not input if not perc in value and not underscore in value: value = '%s%s%s' % (perc, value, perc) conditions.append({'name':key[:-1], \ 'op':'like', 'value': value}) else: if value != null: conditions.append({'name':key, \ 'op':eq, 'value': value}) else: conditions.append({'name':key, \ 'op':'is null', 'value': ''}) elif key == 'conditions': conditions.extend(value) elif key == 'fields': #remove the last ',' if value.endswith(','): value = value[:-1] new_params[key] = value.split(',') else: if is_api_param_a_list(apiname, key): new_params[key] = value.split(',') else: new_params[key] = value elif gt in param: key,value = param.split(gt, 1) conditions.append({'name':key, \ 'op':gt, 'value': value}) elif lt in param: key,value = param.split(lt, 1) conditions.append({'name':key, \ 'op':lt, 'value': value}) new_params['conditions'] = conditions return new_params def create_msg(apiname, params): creator = self.msg_creator.get(apiname) if creator: return creator(apiname, params) if apiname.startswith('APIQuery'): params = generate_query_params(apiname, params) msg = eval('inventory.%s()' % apiname) for key in params.keys(): value = params[key] setattr(msg, key, value) return msg def set_session_to_api(msg): session = inventory.Session() session.uuid = self.session_uuid msg.session = session (apiname, all_params) = build_params() if apiname in self.cli_cmd: #self.write_more(apiname, None) self.cli_cmd_func[apiname](all_params) return if not check_session(apiname): raise CliError("No session uuid defined") msg = create_msg(apiname, all_params) set_session_to_api(msg) try: if apiname in [self.LOGIN_MESSAGE_NAME, self.LOGIN_BY_USER_NAME, self.CREATE_ACCOUNT_NAME, self.CREATE_USER_NAME]: if not msg.password: raise CliError('"password" must be specified') msg.password = hashlib.sha512(msg.password).hexdigest() if apiname == self.USER_RESET_PASSWORD_NAME: msg.password = hashlib.sha512(msg.password).hexdigest() if apiname == self.LOGOUT_MESSAGE_NAME: if not msg.sessionUuid: setattr(msg, 'sessionUuid', self.session_uuid) start_time = time.time() (name, event) = self.api.async_call_wait_for_complete(msg, fail_soon=True) end_time = time.time() if apiname in [self.LOGIN_MESSAGE_NAME, self.LOGIN_BY_USER_NAME]: self.session_uuid = event.inventory.uuid open(SESSION_FILE, 'w').write(self.session_uuid) result = jsonobject.dumps(event, True) print '%s\n' % result #print 'Time costing: %fs' % (end_time - start_time) self.write_more(line, result) except urllib3.exceptions.MaxRetryError as urlerr: self.print_error('Is %s reachable? Please make sure the management node is running.' % self.api.api_url) self.print_error(str(urlerr)) raise ("Server: %s is not reachable" % self.hostname) except Exception as e: self.print_error(str(e)) self.write_more(line, str(e), False) raise e def main(self, cmd = None): if not cmd: self.usage() exit_code = 0 while True: try: if cmd: self.do_command(cmd) else: line = raw_input(prompt) if line: self.do_command(line) except CliError as clierr: self.print_error(str(clierr)) exit_code = 1 except (EOFError): print '' import atexit if not os.path.exists(os.path.dirname(CLI_HISTORY)): os.system('mkdir -p %s' % os.path.dirname(CLI_HISTORY)) atexit.register(clean_password_in_cli_history) atexit.register(readline.write_history_file, CLI_HISTORY) sys.exit(1) except (KeyboardInterrupt): print '' except Exception as e: exit_code = 3 self.print_error(str(e)) if cmd: sys.exit(exit_code) def build_api_parameters(self): def rule_out_unneeded_params(keys): excludes = ['session'] for k in excludes: if k in keys: keys.remove(k) return keys for apiname in inventory.api_names: obj = eval("inventory.%s()" % apiname) params = [] params.extend(obj.__dict__.keys()) self.api_class_params[apiname] = rule_out_unneeded_params(params) def _parse_api_name(self, api_names): ''' Remove API pattern 'API' and appendix 'MSG' ''' short_api_name = [] for api in api_names: if api.endswith('Msg'): short_api_name.append(api[3:-3]) short_api_name.sort() return short_api_name def completer_print(self, substitution, matches, longest_match_length) : def print_match(columes, new_matches, max_match_length): cur_col = 1 for match in new_matches: if cur_col == columes: end_sign = '\n' cur_col = 1 else: end_sign = ' ' * (max_match_length - len(match)) cur_col += 1 try: index = match.lower().index(self.curr_pattern.lower()) except Exception as e: print "can't find pattern: %s in match: %s" % (self.curr_pattern, match) print e raise e cprint(match[0:index], end='') cprint(match[index:(len(self.curr_pattern) + index)], attrs=['bold', 'reverse'], end='') cprint(match[(len(self.curr_pattern) + index):], end=end_sign) def print_bold(): max_match_length = 0 matches_dot = [] matches_eq_cond = [] matches_eq_param = [] matches_ot = [] currtext = readline.get_line_buffer() apiname = currtext.split()[0] if apiname.startswith('Query'): query_cmd = True else: query_cmd = False for match in matches: if len(match) > max_match_length: max_match_length = len(match) if match.endswith('.'): matches_dot.append(match) elif match.endswith('='): for key in query_param_keys: if query_cmd and match.startswith(key): matches_eq_param.append(match) break else: matches_eq_cond.append(match) else: matches_ot.append(match) max_match_length += 2 try: term_width = int(os.popen('stty size', 'r').read().split()[1]) except: term_width = 80 columes = term_width/max_match_length if columes == 0: columes = 1 if matches_dot: if query_cmd: cprint('[Query Conditions:]', attrs=['bold'], end='\n') print_match(columes, matches_dot, max_match_length) print '\n' if matches_eq_cond: #cprint('[Primitive Query Conditions:]', attrs=['bold'], end='\n') print_match(columes, matches_eq_cond, max_match_length) print '\n' if matches_eq_param: if query_cmd: cprint('[Parameters:]', attrs=['bold'], end='\n') print_match(columes, matches_eq_param, max_match_length) print '\n' if matches_ot: print_match(columes, matches_ot, max_match_length) print '\n' print '' print_bold() print '' cprint('%s%s' % (prompt, readline.get_line_buffer()), end='') #readline.redisplay() def write_more(self, cmd, result, success=True): if self.hd.get(self.start_key): start_value = int(self.hd.get(self.start_key)) else: start_value = 0 if self.hd.get(self.last_key): last_value = int(self.hd.get(self.last_key)) else: last_value = 0 if last_value <= start_value: if start_value < CLI_MAX_RESULT_HISTORY: start_value += 1 else: start_value = 1 last_value = 2 else: if last_value < CLI_MAX_RESULT_HISTORY: start_value += 1 last_value += 1 else: start_value += 1 last_value = 1 self.hd.set(self.start_key, start_value) self.hd.set(self.last_key, last_value) #filedb might leave more than 1 same key item. while self.hd.get(str(start_value)): self.hd.rem(str(start_value)) result_file = '%s%d' % (CLI_RESSULT_FILE, start_value) open(result_file, 'w').write(result) if not self.no_secure and 'password=' in cmd: cmds = cmd.split() cmds2 = [] for cmd2 in cmds: if not 'password=' in cmd2: cmds2.append(cmd2) else: cmds2.append(cmd2.split('=')[0] + '=' + '******') cmd = ' '.join(cmds2) self.hd.set(str(start_value), [cmd, success]) def read_more(self, num=None, need_print=True, full_info=True): ''' need_print will indicate whether print the command result to screen. full_info will indicate whether return command and params information when return command results. ''' start_value = self.hd.get(self.start_key) last_value = self.hd.get(self.last_key) more_usage_list = [text_doc.bold('Usage:'), text_doc.bold('\t%smore NUM\t #show the No. NUM Command result' % prompt), text_doc.bold('\t%smore\t\t #show all available NUM and Command. The failure command will be marked with "!" before it.' % prompt)] more_usage = '\n'.join(more_usage_list) if not start_value: print 'No command history to display.' return if num: if num.isdigit(): if int(num) > CLI_MAX_CMD_HISTORY: print 'Not find result for number: %s' % num print 'Max number is: %s ' % str(CLI_MAX_RESULT_HISTORY) cprint(more_usage, attrs=['bold'], end='\n') return key = start_value - int(num) + 1 if key <= 0: key += CLI_MAX_RESULT_HISTORY #print key result_list = self.hd.get(str(key)) result_file = '%s%d' % (CLI_RESSULT_FILE, key) result = open(result_file, 'r').read() if result_list: output = 'Command: \n\t%s\nResult:\n%s' % \ (result_list[0], result) if need_print: pydoc.pager(output) if full_info: return [result_list[0], output] else: return [result_list[0], result] else: more_list = [] explamation = text_doc.bold('!') if start_value < last_value: for i in range(CLI_MAX_RESULT_HISTORY): if start_value - i > 0: key = start_value - i else: key = start_value - i + CLI_MAX_RESULT_HISTORY cmd_result = self.hd.get(str(key)) cmd_result_list = cmd_result[0].split() cmd = text_doc.bold(cmd_result_list[0]) if len(cmd_result_list) > 1: cmd = cmd + ' ' + ' '.join(cmd_result_list[1:]) if len(cmd_result) <= 2 or cmd_result[2]: more_list.append('[%s]\t %s' % (str(i + 1), cmd)) else: more_list.append('[%s] %s\t %s' % (str(i + 1), \ explamation, cmd)) else: for i in range(start_value): cmd_result = self.hd.get(str(start_value - i)) cmd_result_list = cmd_result[0].split() cmd = text_doc.bold(cmd_result_list[0]) if len(cmd_result_list) > 1: cmd = cmd + ' ' + ' '.join(cmd_result_list[1:]) if len(cmd_result) <= 2 or cmd_result[2]: more_list.append('[%s]\t %s' % (str(i + 1), \ cmd)) else: more_list.append('[%s] %s\t %s' % (str(i + 1), \ explamation, cmd)) more_result = '\n'.join(more_list) header = text_doc.bold('[NUM]\tCOMMAND') more_result = '%s\n%s\n%s' % (header, '-' * 48, more_result) more_result = '%s\n%s' % (more_result, more_usage) pydoc.pager(more_result) return print 'Not find result for number: %s' % num cprint(more_usage, attrs=['bold'], end='\n') def save_json_to_file(self, all_params): def write_to_file(output, file_name, num): file_name = os.path.abspath(file_name) open(file_name, 'w').write(output) print "Saved command: %s result to file: %s" % (str(num), file_name) if not all_params: self.show_help() return nums = all_params[0].split(',') if len(all_params) > 1: file_folder = all_params[1] if len(nums) > 1 and not os.path.isdir(file_folder): print "%s must be a folder, to save more than 1 command" % file_folder return else: file_folder = None if len(all_params) > 2: json_only = all_params[2] else: json_only = False for num in nums: return_result = self.read_more(num, False, not json_only) if not return_result: print "cannot find related command result to save" return cmd, output = return_result if not file_folder: new_file_folder = '%s-%s.json' % (cmd.split()[0], num) else: new_file_folder = file_folder dirname = os.path.dirname(new_file_folder) if not dirname: file_name = new_file_folder write_to_file(output, file_name, num) else: if os.path.isdir(new_file_folder): file_name = '%s/%s-%s.json' % (new_file_folder, cmd.split()[0], num) elif os.path.isdir(dirname): write_to_file(output, file_name, num) else: print "Can't find folder: %s" % dirname def show_more(self, all_params): if not all_params: num = None else: num = all_params[0] self.read_more(num) def show_help(self, all_params): help_string = text_doc.bold('Usage:') help_string += ''' ------------------------------------------------------------------------------- help show help more [No.] show a single or multiple command history. If a command NUM is provided, only history of that command will show. >>> more >>> more 1 save [No.] [TARGET_FILE_NAME|TARGET_FOLDER] save a single or multiple command history to a file or a directory. >>> save 1 save history command 1 result to ./COMMAND-NAME-1.json >>> save 1,2,3,4 save command history 1,2,3,4 to ./COMMAND-1.json, ./COMMAND-2.json, ./COMMAND-3.json, and ./COMMAND-4.json >>> save 1 /tmp save command history 1 to /tmp/COMMAND-1.json >>> save 1 /tmp/1.json save command history 1 to /tmp/1.json ZSTACK_API [API_PARAMS] execute a API command like LogInByAccount, QueryHost. >>> LogInByAccount accountName=admin password=password >>> QueryHost If API PARAMS is a list type, use ',' to split contents. >>> AddVmNicToSecurityGroup \\ securityGroupUuid=561f792761124a9a8fa9198684eaf5f2 \\ vmNicUuids=f994b93fe9354fd89061ea549642c6a4,\\ aee96364351e470abe1cfd919ce630b8,\\ e0c8016595a548628523d97b70e984e8 the parameter 'rules' of AddSecurityGroupRule is a list containing items of map, you need to use a JSON object in this case. >>> AddSecurityGroupRule \\ securityGroupUuid=561f792761124a9a8fa9198684eaf5f2 \\ rules='[{"type":"Ingress","protocol":"TCP",\\ "startPort":100,"endPort":1000},\\ {"type":"Ingress","protocol":"UDP",\\ "startPort":100,"endPort":1000}]' Query* [conditions] [Query_API_PARAMS] query resources with query APIs; find details at http://zdoc.readthedocs.org/en/latest/userManual/query.html. conditions are arranged in format of: CONDITION_NAME(no space)OPERATOR(no space)VALUE [CONDITION_NAME] is a field name of a resource, for example, uuid, name. [OPERATOR] is one of: '='. '!=', '>', '<', '>=', '<=', '?=', '!?=', '~=', '!~=' most operators are straightforward except follows: '?=": check whether a value is within a set of values; values are split by ','; this operator is equal to 'in' operator in SQL. >>> QueryVmInstance name?=VM1,VM2 '!?=': check whether a value is NOT within a set of values; values are split by ','; this operator is equal to 'not in' operator in SQL. >>> QueryVmInstance vmNics.ip!?=192.168.0.1,192.168.0.2 '~=': simple pattern matching; use % to match any number of characters, even zero characters; use _ to match exactly one character; this operator is equal to 'like' operator in SQL. >>> QueryHost name~=IntelCore% >>> QueryHost name~=IntelCore_7 '!~=': negation of simple pattern matching; use % to match any number of characters, even zero characters; use _ to matches exactly one character; this operator is equal to 'not like' in SQL. >>> QueryHost name!~=IntelCore% >>> QueryHost name!~=IntelCore_7 '=null': NULL value test >>> QueryVolume vmInstanceUuid=null '!=null': NOT NULL value test >>> QueryVolume vmInstanceUuid!=null [VALUE] is a string containing value as query a condition; ',' is used to split value into a string list. strings are compared as case insensitive. ''' help_string += text_doc.bold('ZStack API') help_string += ''' ------------------------------------------------------------------------------- ''' for api in self.raw_words_db: help_string += ' %s\n\n' % api pydoc.pager(help_string) def __init__(self, options): ''' Constructor ''' readline.parse_and_bind("tab: complete") readline.set_completer(self.complete) readline.set_completion_display_matches_hook(self.completer_print) try: readline.read_history_file(CLI_HISTORY) except IOError: pass readline.set_history_length(CLI_MAX_CMD_HISTORY) if not os.path.isdir(CLI_RESULT_HISTORY_FOLDER): os.system('rm -rf %s' % os.path.dirname(CLI_RESULT_HISTORY_FOLDER)) os.system('mkdir -p %s' % os.path.dirname(CLI_RESULT_HISTORY_FOLDER)) try: self.hd = filedb.FileDB(CLI_RESULT_HISTORY_KEY, is_abs_path=True) except: os.system('rm -rf %s' % CLI_RESULT_HISTORY_KEY) self.hd = filedb.FileDB(CLI_RESULT_HISTORY_KEY, is_abs_path=True) print "\nRead history file: %s error. Has recreate it.\n" % CLI_RESULT_HISTORY_KEY self.start_key = 'start_key' self.last_key = 'last_key' self.cli_cmd_func = {'help': self.show_help, \ 'history': self.show_help, \ 'more': self.show_more, \ 'quit': sys.exit, \ 'exit': sys.exit, \ 'save': self.save_json_to_file} self.cli_cmd = self.cli_cmd_func.keys() self.raw_words_db = self._parse_api_name(inventory.api_names) self.words_db = list(self.raw_words_db) self.words_db.extend(self.cli_cmd) self.words = list(self.words_db) self.is_cmd = False self.curr_pattern = None self.matching_words = None self.api_class_params = {} self.build_api_parameters() self.api = None self.session_uuid = None if os.path.exists(SESSION_FILE): self.session_uuid = open(SESSION_FILE, 'r').readline() self.hostname = options.host self.port = options.port self.no_secure = options.no_secure self.api = api.Api(host=self.hostname, port=self.port) def main(): parser = optparse.OptionParser() parser.add_option( "-H", "--host", dest="host", default='localhost', action='store', help="[Optional] IP address or DNS name of a ZStack management node. Default value: localhost") parser.add_option( "-p", "--port", dest="port", default='8080', action='store', help="[Optional] Port that the ZStack management node is listening on. Default value: 8080") parser.add_option( "-d", "--deploy", dest="deploy_config_file", default=None, action='store', help="[Optional] deploy a cloud from a XML file.") parser.add_option( "-t", "--tempate", dest="deploy_config_template_file", default=None, action='store', help="[Optional] variable template file for XML file spcified in option '-d'") parser.add_option( "-D", "--dump", dest="zstack_config_dump_file", default=None, action='store', help="[Optional] dump a cloud to a XML file") parser.add_option( "-P", "--password", dest="admin_password", default='password', action='store', help="[Optional] admin account password for dumping and recovering cloud environment. It can only be used when set -D or -d option. Default is 'password'.") parser.add_option( "-s", "--no-secure", dest="no_secure", default=False, action='store_true', help="[Optional] if setting -s, will save password information in command history. ") (options, args) = parser.parse_args() cmd = ' '.join(args) os.environ['ZSTACK_BUILT_IN_HTTP_SERVER_IP'] = options.host os.environ['ZSTACK_BUILT_IN_HTTP_SERVER_PORT'] = options.port if options.zstack_config_dump_file: admin_passwd = hashlib.sha512(options.admin_password).hexdigest() read_config.dump_zstack(options.zstack_config_dump_file, \ admin_passwd) elif options.deploy_config_file: #deploy ZStack pre-configed environment. xml_config = parse_config.DeployConfig(options.deploy_config_file, \ options.deploy_config_template_file) deploy_xml_obj = xml_config.get_deploy_config() admin_passwd = hashlib.sha512(options.admin_password).hexdigest() try: deploy_xml_obj.deployerConfig except: deploy_config.deploy_initial_database(deploy_xml_obj, admin_passwd) else: deploy_config.deploy_initial_database(deploy_xml_obj.deployerConfig\ , admin_passwd) print('Successfully deployed a cloud from: %s' % options.deploy_config_file) else: cli = Cli(options) cli.main(cmd) if __name__ == '__main__': main()
{ "content_hash": "7982e8ec81443623bceb00a12d3cdf6e", "timestamp": "", "source": "github", "line_count": 1073, "max_line_length": 258, "avg_line_length": 38.5358807082945, "alnum_prop": 0.49488500326489154, "repo_name": "ghxandsky/zstack-utility", "id": "97018685dea0a69d30db36d192af3c082b3e8d4f", "size": "41349", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "zstackcli/zstackcli/cli.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "AGS Script", "bytes": "1147" }, { "name": "HTML", "bytes": "4277" }, { "name": "Puppet", "bytes": "10604" }, { "name": "Python", "bytes": "1507292" }, { "name": "Shell", "bytes": "188218" } ], "symlink_target": "" }
"""Basic checks for HomeKitalarm_control_panel.""" from aiohomekit.model.characteristics import CharacteristicsTypes from aiohomekit.model.services import ServicesTypes from homeassistant.helpers import entity_registry as er from .common import get_next_aid, setup_test_component def create_security_system_service(accessory): """Define a security-system characteristics as per page 219 of HAP spec.""" service = accessory.add_service(ServicesTypes.SECURITY_SYSTEM) cur_state = service.add_char(CharacteristicsTypes.SECURITY_SYSTEM_STATE_CURRENT) cur_state.value = 0 targ_state = service.add_char(CharacteristicsTypes.SECURITY_SYSTEM_STATE_TARGET) targ_state.value = 0 # According to the spec, a battery-level characteristic is normally # part of a separate service. However as the code was written (which # predates this test) the battery level would have to be part of the lock # service as it is here. targ_state = service.add_char(CharacteristicsTypes.BATTERY_LEVEL) targ_state.value = 50 async def test_switch_change_alarm_state(hass, utcnow): """Test that we can turn a HomeKit alarm on and off again.""" helper = await setup_test_component(hass, create_security_system_service) await hass.services.async_call( "alarm_control_panel", "alarm_arm_home", {"entity_id": "alarm_control_panel.testdevice"}, blocking=True, ) helper.async_assert_service_values( ServicesTypes.SECURITY_SYSTEM, { CharacteristicsTypes.SECURITY_SYSTEM_STATE_TARGET: 0, }, ) await hass.services.async_call( "alarm_control_panel", "alarm_arm_away", {"entity_id": "alarm_control_panel.testdevice"}, blocking=True, ) helper.async_assert_service_values( ServicesTypes.SECURITY_SYSTEM, { CharacteristicsTypes.SECURITY_SYSTEM_STATE_TARGET: 1, }, ) await hass.services.async_call( "alarm_control_panel", "alarm_arm_night", {"entity_id": "alarm_control_panel.testdevice"}, blocking=True, ) helper.async_assert_service_values( ServicesTypes.SECURITY_SYSTEM, { CharacteristicsTypes.SECURITY_SYSTEM_STATE_TARGET: 2, }, ) await hass.services.async_call( "alarm_control_panel", "alarm_disarm", {"entity_id": "alarm_control_panel.testdevice"}, blocking=True, ) helper.async_assert_service_values( ServicesTypes.SECURITY_SYSTEM, { CharacteristicsTypes.SECURITY_SYSTEM_STATE_TARGET: 3, }, ) async def test_switch_read_alarm_state(hass, utcnow): """Test that we can read the state of a HomeKit alarm accessory.""" helper = await setup_test_component(hass, create_security_system_service) await helper.async_update( ServicesTypes.SECURITY_SYSTEM, {CharacteristicsTypes.SECURITY_SYSTEM_STATE_CURRENT: 0}, ) state = await helper.poll_and_get_state() assert state.state == "armed_home" assert state.attributes["battery_level"] == 50 await helper.async_update( ServicesTypes.SECURITY_SYSTEM, {CharacteristicsTypes.SECURITY_SYSTEM_STATE_CURRENT: 1}, ) state = await helper.poll_and_get_state() assert state.state == "armed_away" await helper.async_update( ServicesTypes.SECURITY_SYSTEM, {CharacteristicsTypes.SECURITY_SYSTEM_STATE_CURRENT: 2}, ) state = await helper.poll_and_get_state() assert state.state == "armed_night" await helper.async_update( ServicesTypes.SECURITY_SYSTEM, {CharacteristicsTypes.SECURITY_SYSTEM_STATE_CURRENT: 3}, ) state = await helper.poll_and_get_state() assert state.state == "disarmed" await helper.async_update( ServicesTypes.SECURITY_SYSTEM, {CharacteristicsTypes.SECURITY_SYSTEM_STATE_CURRENT: 4}, ) state = await helper.poll_and_get_state() assert state.state == "triggered" async def test_migrate_unique_id(hass, utcnow): """Test a we can migrate a alarm_control_panel unique id.""" entity_registry = er.async_get(hass) aid = get_next_aid() alarm_control_panel_entry = entity_registry.async_get_or_create( "alarm_control_panel", "homekit_controller", f"homekit-00:00:00:00:00:00-{aid}-8", ) await setup_test_component(hass, create_security_system_service) assert ( entity_registry.async_get(alarm_control_panel_entry.entity_id).unique_id == f"00:00:00:00:00:00_{aid}_8" )
{ "content_hash": "8ea16e804752a71c3ce36f2f85c097be", "timestamp": "", "source": "github", "line_count": 140, "max_line_length": 84, "avg_line_length": 33, "alnum_prop": 0.6675324675324675, "repo_name": "nkgilley/home-assistant", "id": "2c2ff92ccb64cab967bd2d13268a20d0103698f0", "size": "4620", "binary": false, "copies": "3", "ref": "refs/heads/dev", "path": "tests/components/homekit_controller/test_alarm_control_panel.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "2963" }, { "name": "PLSQL", "bytes": "840" }, { "name": "Python", "bytes": "51597279" }, { "name": "Shell", "bytes": "6252" } ], "symlink_target": "" }
""" Starts a service to scan in intervals for new devices. Will emit EVENT_PLATFORM_DISCOVERED whenever a new service has been discovered. Knows which components handle certain types, will make sure they are loaded before the EVENT_PLATFORM_DISCOVERED is fired. """ import logging import threading from homeassistant import bootstrap from homeassistant.const import ( ATTR_DISCOVERED, ATTR_SERVICE, EVENT_HOMEASSISTANT_START, EVENT_PLATFORM_DISCOVERED) DOMAIN = "discovery" REQUIREMENTS = ['netdisco==0.5.5'] SCAN_INTERVAL = 300 # seconds SERVICE_WEMO = 'belkin_wemo' SERVICE_HUE = 'philips_hue' SERVICE_CAST = 'google_cast' SERVICE_NETGEAR = 'netgear_router' SERVICE_SONOS = 'sonos' SERVICE_PLEX = 'plex_mediaserver' SERVICE_SQUEEZEBOX = 'logitech_mediaserver' SERVICE_HANDLERS = { SERVICE_WEMO: "wemo", SERVICE_CAST: "media_player", SERVICE_HUE: "light", SERVICE_NETGEAR: 'device_tracker', SERVICE_SONOS: 'media_player', SERVICE_PLEX: 'media_player', SERVICE_SQUEEZEBOX: 'media_player', } def listen(hass, service, callback): """Setup listener for discovery of specific service. Service can be a string or a list/tuple. """ if isinstance(service, str): service = (service,) else: service = tuple(service) def discovery_event_listener(event): """Listen for discovery events.""" if event.data[ATTR_SERVICE] in service: callback(event.data[ATTR_SERVICE], event.data.get(ATTR_DISCOVERED)) hass.bus.listen(EVENT_PLATFORM_DISCOVERED, discovery_event_listener) def discover(hass, service, discovered=None, component=None, hass_config=None): """Fire discovery event. Can ensure a component is loaded.""" if component is not None: bootstrap.setup_component(hass, component, hass_config) data = { ATTR_SERVICE: service } if discovered is not None: data[ATTR_DISCOVERED] = discovered hass.bus.fire(EVENT_PLATFORM_DISCOVERED, data) def setup(hass, config): """Start a discovery service.""" logger = logging.getLogger(__name__) from netdisco.service import DiscoveryService # Disable zeroconf logging, it spams logging.getLogger('zeroconf').setLevel(logging.CRITICAL) lock = threading.Lock() def new_service_listener(service, info): """Called when a new service is found.""" with lock: logger.info("Found new service: %s %s", service, info) component = SERVICE_HANDLERS.get(service) # We do not know how to handle this service. if not component: return # This component cannot be setup. if not bootstrap.setup_component(hass, component, config): return hass.bus.fire(EVENT_PLATFORM_DISCOVERED, { ATTR_SERVICE: service, ATTR_DISCOVERED: info }) # pylint: disable=unused-argument def start_discovery(event): """Start discovering.""" netdisco = DiscoveryService(SCAN_INTERVAL) netdisco.add_listener(new_service_listener) netdisco.start() hass.bus.listen_once(EVENT_HOMEASSISTANT_START, start_discovery) return True
{ "content_hash": "3598e28ef475e207b128a353b2b574ec", "timestamp": "", "source": "github", "line_count": 114, "max_line_length": 79, "avg_line_length": 28.42105263157895, "alnum_prop": 0.6679012345679012, "repo_name": "aoakeson/home-assistant", "id": "2d58c54ac0d6b7e97452f9ebc7ea0651fa04b1df", "size": "3240", "binary": false, "copies": "1", "ref": "refs/heads/dev", "path": "homeassistant/components/discovery.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "1510170" }, { "name": "Python", "bytes": "1994353" }, { "name": "Shell", "bytes": "3570" } ], "symlink_target": "" }
from __future__ import absolute_import from inspect import isclass from celery.datastructures import AttributeDict from django.utils.translation import ugettext_lazy as _ __all__ = ('LOG', 'LOG_BY_ID', 'LOG_KEEP',) class _LOG(object): action_class = None class CREATE_ADDON(_LOG): id = 1 action_class = 'add' format = _(u'{addon} was created.') keep = True class EDIT_PROPERTIES(_LOG): """ Expects: addon """ id = 2 action_class = 'edit' format = _(u'{addon} properties edited.') class EDIT_DESCRIPTIONS(_LOG): id = 3 action_class = 'edit' format = _(u'{addon} description edited.') class EDIT_CATEGORIES(_LOG): id = 4 action_class = 'edit' format = _(u'Categories edited for {addon}.') class ADD_USER_WITH_ROLE(_LOG): id = 5 action_class = 'add' format = _(u'{0.name} ({1}) added to {addon}.') keep = True class REMOVE_USER_WITH_ROLE(_LOG): id = 6 action_class = 'delete' # L10n: {0} is the user being removed, {1} is their role. format = _(u'{0.name} ({1}) removed from {addon}.') keep = True class EDIT_CONTRIBUTIONS(_LOG): id = 7 action_class = 'edit' format = _(u'Contributions for {addon}.') class USER_DISABLE(_LOG): id = 8 format = _(u'{addon} disabled.') keep = True class USER_ENABLE(_LOG): id = 9 format = _(u'{addon} enabled.') keep = True class CHANGE_STATUS(_LOG): id = 12 # L10n: {0} is the status format = _(u'{addon} status changed to {0}.') keep = True class ADD_VERSION(_LOG): id = 16 action_class = 'add' format = _(u'{version} added to {addon}.') keep = True class EDIT_VERSION(_LOG): id = 17 action_class = 'edit' format = _(u'{version} edited for {addon}.') class DELETE_VERSION(_LOG): id = 18 action_class = 'delete' # Note, {0} is a string not a version since the version is deleted. # L10n: {0} is the version number format = _(u'Version {0} deleted from {addon}.') keep = True class ADD_FILE_TO_VERSION(_LOG): id = 19 action_class = 'add' format = _(u'File {0.name} added to {version} of {addon}.') class DELETE_FILE_FROM_VERSION(_LOG): """ Expecting: addon, filename, version Because the file is being deleted, filename and version should be strings and not the object. """ id = 20 action_class = 'delete' format = _(u'File {0} deleted from {version} of {addon}.') class APPROVE_VERSION(_LOG): id = 21 action_class = 'approve' format = _(u'{addon} {version} approved.') short = _(u'Approved') keep = True review_email_user = True review_queue = True editor_review_action = True class PRELIMINARY_VERSION(_LOG): id = 42 action_class = 'approve' format = _(u'{addon} {version} given preliminary review.') short = _(u'Preliminarily approved') keep = True review_email_user = True review_queue = True editor_review_action = True class REJECT_VERSION(_LOG): # takes add-on, version, reviewtype id = 43 action_class = 'reject' format = _(u'{addon} {version} rejected.') short = _(u'Rejected') keep = True review_email_user = True review_queue = True editor_review_action = True class RETAIN_VERSION(_LOG): # takes add-on, version, reviewtype id = 22 format = _(u'{addon} {version} retained.') short = _(u'Retained') keep = True review_email_user = True review_queue = True editor_review_action = True class ESCALATE_VERSION(_LOG): # takes add-on, version, reviewtype id = 23 format = _(u'{addon} {version} escalated.') short = _(u'Super review requested') keep = True review_email_user = True review_queue = True hide_developer = True class REQUEST_VERSION(_LOG): # takes add-on, version, reviewtype id = 24 format = _(u'{addon} {version} review requested.') short = _(u'Review requested') keep = True review_email_user = True review_queue = True class REQUEST_INFORMATION(_LOG): id = 44 format = _(u'{addon} {version} more information requested.') short = _(u'More information requested') keep = True review_email_user = True review_queue = True editor_review_action = True class REQUEST_SUPER_REVIEW(_LOG): id = 45 format = _(u'{addon} {version} super review requested.') short = _(u'Super review requested') keep = True review_queue = True sanitize = _(u'The addon has been flagged for Admin Review. It\'s still ' u'in our review queue, but it will need to be checked by one ' u'of our admin reviewers. The review might take longer than ' u'usual.') editor_review_action = True class COMMENT_VERSION(_LOG): id = 49 format = _(u'Comment on {addon} {version}.') short = _(u'Comment') keep = True review_queue = True hide_developer = True editor_review_action = True class ADD_TAG(_LOG): id = 25 action_class = 'tag' format = _(u'{tag} added to {addon}.') class REMOVE_TAG(_LOG): id = 26 action_class = 'tag' format = _(u'{tag} removed from {addon}.') class ADD_TO_COLLECTION(_LOG): id = 27 action_class = 'collection' format = _(u'{addon} added to {collection}.') class REMOVE_FROM_COLLECTION(_LOG): id = 28 action_class = 'collection' format = _(u'{addon} removed from {collection}.') class ADD_REVIEW(_LOG): id = 29 action_class = 'review' format = _(u'{review} for {addon} written.') # TODO(davedash): Add these when we do the admin site class ADD_RECOMMENDED_CATEGORY(_LOG): id = 31 action_class = 'edit' # L10n: {0} is a category name. format = _(u'{addon} featured in {0}.') class REMOVE_RECOMMENDED_CATEGORY(_LOG): id = 32 action_class = 'edit' # L10n: {0} is a category name. format = _(u'{addon} no longer featured in {0}.') class ADD_RECOMMENDED(_LOG): id = 33 format = _(u'{addon} is now featured.') keep = True class REMOVE_RECOMMENDED(_LOG): id = 34 format = _(u'{addon} is no longer featured.') keep = True class ADD_APPVERSION(_LOG): id = 35 action_class = 'add' # L10n: {0} is the application, {1} is the version of the app format = _(u'{0} {1} added.') class CHANGE_USER_WITH_ROLE(_LOG): """ Expects: author.user, role, addon """ id = 36 # L10n: {0} is a user, {1} is their role format = _(u'{0.name} role changed to {1} for {addon}.') keep = True class CHANGE_LICENSE(_LOG): """ Expects: license, addon """ id = 37 action_class = 'edit' format = _(u'{addon} is now licensed under {0.name}.') class CHANGE_POLICY(_LOG): id = 38 action_class = 'edit' format = _(u'{addon} policy changed.') class CHANGE_ICON(_LOG): id = 39 action_class = 'edit' format = _(u'{addon} icon changed.') class APPROVE_REVIEW(_LOG): id = 40 action_class = 'approve' format = _(u'{review} for {addon} approved.') editor_format = _(u'{user} approved {review} for {addon}.') keep = True editor_event = True class DELETE_REVIEW(_LOG): """Requires review.id and add-on objects.""" id = 41 action_class = 'review' format = _(u'Review {review} for {addon} deleted.') editor_format = _(u'{user} deleted {review} for {addon}.') keep = True editor_event = True class MAX_APPVERSION_UPDATED(_LOG): id = 46 format = _(u'Application max version for {version} updated.') class BULK_VALIDATION_EMAILED(_LOG): id = 47 format = _(u'Authors emailed about compatibility of {version}.') class BULK_VALIDATION_USER_EMAILED(_LOG): id = 130 format = _(u'Email sent to Author about add-on compatibility.') class CHANGE_PASSWORD(_LOG): id = 48 format = _(u'Password changed.') class APPROVE_VERSION_WAITING(_LOG): id = 53 action_class = 'approve' format = _(u'{addon} {version} approved but waiting to be made public.') short = _(u'Approved but waiting') keep = True review_email_user = True review_queue = True class USER_EDITED(_LOG): id = 60 format = _(u'Account updated.') class CUSTOM_TEXT(_LOG): id = 98 format = '{0}' class CUSTOM_HTML(_LOG): id = 99 format = '{0}' class OBJECT_ADDED(_LOG): id = 100 format = _(u'Created: {0}.') admin_event = True class OBJECT_EDITED(_LOG): id = 101 format = _(u'Edited field: {2} set to: {0}.') admin_event = True class OBJECT_DELETED(_LOG): id = 102 format = _(u'Deleted: {1}.') admin_event = True class ADMIN_USER_EDITED(_LOG): id = 103 format = _(u'User {user} edited, reason: {1}') admin_event = True class ADMIN_USER_ANONYMIZED(_LOG): id = 104 format = _(u'User {user} anonymized.') admin_event = True class ADMIN_USER_RESTRICTED(_LOG): id = 105 format = _(u'User {user} restricted.') admin_event = True class ADMIN_VIEWED_LOG(_LOG): id = 106 format = _(u'Admin {0} viewed activity log for {user}.') admin_event = True class EDIT_REVIEW(_LOG): id = 107 action_class = 'review' format = _(u'{review} for {addon} updated.') class THEME_REVIEW(_LOG): id = 108 action_class = 'review' format = _(u'{addon} reviewed.') class GROUP_USER_ADDED(_LOG): id = 120 action_class = 'access' format = _(u'User {0.name} added to {group}.') keep = True admin_event = True class GROUP_USER_REMOVED(_LOG): id = 121 action_class = 'access' format = _(u'User {0.name} removed from {group}.') keep = True admin_event = True class ADDON_UNLISTED(_LOG): id = 128 format = _(u'{addon} unlisted.') keep = True class BETA_SIGNED_VALIDATION_PASSED(_LOG): id = 131 format = _(u'{file} was signed.') keep = True class BETA_SIGNED_VALIDATION_FAILED(_LOG): id = 132 format = _(u'{file} was signed.') keep = True class DELETE_ADDON(_LOG): id = 133 action_class = 'delete' # L10n: {0} is the add-on GUID. format = _(u'Addon id {0} with GUID {1} has been deleted') keep = True class EXPERIMENT_SIGNED(_LOG): id = 134 format = _(u'{file} was signed.') keep = True class UNLISTED_SIGNED_VALIDATION_PASSED(_LOG): id = 135 format = _(u'{file} was signed.') keep = True class UNLISTED_SIGNED_VALIDATION_FAILED(_LOG): id = 136 format = _(u'{file} was signed.') keep = True class UNLISTED_SIDELOAD_SIGNED_VALIDATION_PASSED(_LOG): id = 137 format = _(u'{file} was signed.') keep = True class UNLISTED_SIDELOAD_SIGNED_VALIDATION_FAILED(_LOG): id = 138 format = _(u'{file} was signed.') keep = True class PRELIMINARY_ADDON_MIGRATED(_LOG): id = 139 format = _(u'{addon} migrated from preliminary.') keep = True review_queue = True class DEVELOPER_REPLY_VERSION(_LOG): id = 140 format = _(u'Reply by developer on {addon} {version}.') short = _(u'Developer Reply') keep = True review_queue = True class REVIEWER_REPLY_VERSION(_LOG): id = 141 format = _(u'Reply by reviewer on {addon} {version}.') short = _(u'Reviewer Reply') keep = True review_queue = True class APPROVAL_NOTES_CHANGED(_LOG): id = 142 format = _(u'Approval notes changed for {addon} {version}.') short = _(u'Approval notes changed') keep = True review_queue = True class SOURCE_CODE_UPLOADED(_LOG): id = 143 format = _(u'Source code uploaded for {addon} {version}.') short = _(u'Source code uploaded') keep = True review_queue = True LOGS = [x for x in vars().values() if isclass(x) and issubclass(x, _LOG) and x != _LOG] # Make sure there's no duplicate IDs. assert len(LOGS) == len(set(log.id for log in LOGS)) LOG_BY_ID = dict((l.id, l) for l in LOGS) LOG = AttributeDict((l.__name__, l) for l in LOGS) LOG_ADMINS = [l.id for l in LOGS if hasattr(l, 'admin_event')] LOG_KEEP = [l.id for l in LOGS if hasattr(l, 'keep')] LOG_EDITORS = [l.id for l in LOGS if hasattr(l, 'editor_event')] LOG_REVIEW_QUEUE = [l.id for l in LOGS if hasattr(l, 'review_queue')] LOG_EDITOR_REVIEW_ACTION = [ l.id for l in LOGS if hasattr(l, 'editor_review_action')] # Is the user emailed the message? LOG_REVIEW_EMAIL_USER = [l.id for l in LOGS if hasattr(l, 'review_email_user')] # Logs *not* to show to the developer. LOG_HIDE_DEVELOPER = [l.id for l in LOGS if (getattr(l, 'hide_developer', False) or l.id in LOG_ADMINS)] # Review Queue logs to show to developer (i.e. hiding admin/private) LOG_REVIEW_QUEUE_DEVELOPER = list(set(LOG_REVIEW_QUEUE) - set(LOG_HIDE_DEVELOPER)) def log(action, *args, **kw): """ e.g. amo.log(amo.LOG.CREATE_ADDON, []), amo.log(amo.LOG.ADD_FILE_TO_VERSION, file, version) """ from olympia.access.models import Group from olympia.addons.models import Addon from olympia.amo import get_user, logger_log from olympia.devhub.models import ( ActivityLog, AddonLog, CommentLog, GroupLog, UserLog, VersionLog) from olympia.users.models import UserProfile from olympia.versions.models import Version user = kw.get('user', get_user()) if not user: logger_log.warning('Activity log called with no user: %s' % action.id) return al = ActivityLog(user=user, action=action.id) al.arguments = args if 'details' in kw: al.details = kw['details'] al.save() if 'details' in kw and 'comments' in al.details: CommentLog(comments=al.details['comments'], activity_log=al).save() # TODO(davedash): post-remora this may not be necessary. if 'created' in kw: al.created = kw['created'] # Double save necessary since django resets the created date on save. al.save() for arg in args: if isinstance(arg, tuple): if arg[0] == Addon: AddonLog(addon_id=arg[1], activity_log=al).save() elif arg[0] == Version: VersionLog(version_id=arg[1], activity_log=al).save() elif arg[0] == UserProfile: UserLog(user_id=arg[1], activity_log=al).save() elif arg[0] == Group: GroupLog(group_id=arg[1], activity_log=al).save() elif isinstance(arg, Addon): AddonLog(addon=arg, activity_log=al).save() elif isinstance(arg, Version): VersionLog(version=arg, activity_log=al).save() elif isinstance(arg, UserProfile): # Index by any user who is mentioned as an argument. UserLog(activity_log=al, user=arg).save() elif isinstance(arg, Group): GroupLog(group=arg, activity_log=al).save() # Index by every user UserLog(activity_log=al, user=user).save() return al
{ "content_hash": "d53b070259dc6b105654214ee394e54d", "timestamp": "", "source": "github", "line_count": 621, "max_line_length": 79, "avg_line_length": 24.10950080515298, "alnum_prop": 0.6045952444563185, "repo_name": "mstriemer/addons-server", "id": "bc58282c20c50e909417cb97249a3ac5e7beab77", "size": "15080", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "src/olympia/amo/log.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "834050" }, { "name": "HTML", "bytes": "729865" }, { "name": "JavaScript", "bytes": "1324474" }, { "name": "Makefile", "bytes": "7937" }, { "name": "PLSQL", "bytes": "74" }, { "name": "PLpgSQL", "bytes": "2381" }, { "name": "Python", "bytes": "4348593" }, { "name": "SQLPL", "bytes": "559" }, { "name": "Shell", "bytes": "9643" }, { "name": "Smarty", "bytes": "1824" } ], "symlink_target": "" }
from __future__ import unicode_literals from django.conf import settings from django.conf.urls import patterns, include, url from django.conf.urls.static import static from django.views.generic import TemplateView # Uncomment the next two lines to enable the admin: from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', url(r'^$', # noqa TemplateView.as_view(template_name='pages/home.html'), name="home"), url(r'^about/$', TemplateView.as_view(template_name='pages/about.html'), name="about"), # Admin pages and documentation generator url(r'^admin/doc/', include('django.contrib.admindocs.urls')), url(r'^admin/', include(admin.site.urls)), # User management url(r'^users/', include("users.urls", namespace="users")), url(r'^accounts/', include('allauth.urls')), # Uncomment the next line to enable avatars url(r'^avatar/', include('avatar.urls')), # Your stuff: custom urls go here url(r'^registration/', include('registration.urls')), url(r'^capitalism/', include('capitalism.urls')) ) + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
{ "content_hash": "281a2b02b23a546bbf4cc8acb020b82b", "timestamp": "", "source": "github", "line_count": 35, "max_line_length": 66, "avg_line_length": 33.542857142857144, "alnum_prop": 0.686541737649063, "repo_name": "eldruz/tournament_registration", "id": "20db8f0711a894a70dcc15d0fb79a93c2b892618", "size": "1198", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tournament_registration/urls.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "1210" }, { "name": "JavaScript", "bytes": "44" }, { "name": "Python", "bytes": "100432" }, { "name": "Shell", "bytes": "5129" } ], "symlink_target": "" }
from app import app_factory if __name__ == '__main__': app_factory().run()
{ "content_hash": "cce077a037d04efa2fa2dcba682dad8d", "timestamp": "", "source": "github", "line_count": 5, "max_line_length": 27, "avg_line_length": 16.2, "alnum_prop": 0.5679012345679012, "repo_name": "comick/barduino", "id": "ef62521583f4c76c76494078da022a2ace6a1acb", "size": "128", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "run_app.py", "mode": "33188", "license": "mit", "language": [ { "name": "JavaScript", "bytes": "61962" }, { "name": "Python", "bytes": "48678" }, { "name": "Shell", "bytes": "118" } ], "symlink_target": "" }
from django.db import models from django.contrib.auth.models import User # Create your models here. # class City(models.Model): city = models.CharField(max_length=255, unique=True) created_at = models.DateTimeField(auto_now_add=True, editable=False) updated_at = models.DateTimeField(auto_now=True, editable=False) def __unicode__(self): return self.city __str__ = __unicode__ class AgeRange(models.Model): age = models.CharField(max_length=10, unique=True) created_at = models.DateTimeField(auto_now_add=True, editable=False) updated_at = models.DateTimeField(auto_now=True, editable=False) def __unicode__(self): return self.age __str__ = __unicode__ @staticmethod def get_or_add(min=0, max=1000): if min == 0: return AgeRange.objects.get_or_create(age=(str(max) + "+")) elif max == 1000: return AgeRange.objects.get_or_create(age=(">" + str(min))) elif min != 0 and max != 1000: return AgeRange.objects.get_or_create(age=(str(min) + "-" + str(max))) class Interest(models.Model): interest = models.CharField(max_length=255, unique=True) created_at = models.DateTimeField(auto_now_add=True, editable=False) updated_at = models.DateTimeField(auto_now=True, editable=False) def __unicode__(self): return self.interest __str__ = __unicode__ @staticmethod def bulk_get_or_create(interests): interests = [i.lower() for i in interests] all_interests = Interest.objects.filter(interest__in=interests).values_list("interest", flat=True) new_interests = [Interest(interest=i) for i in interests if i not in all_interests] Interest.objects.bulk_create(new_interests) return Interest.objects.filter(interest__in=interests) class Userdata(models.Model): user = models.OneToOneField(User) name = models.CharField(max_length=255) quora_name = models.CharField(max_length=255) ansyahoo = models.CharField(max_length=255) CHOICES = ( (True, "Male"), (False, "Female") ) gender = models.BooleanField(choices=CHOICES) city = models.ForeignKey(City) age = models.ForeignKey(AgeRange) interests = models.ManyToManyField(Interest, through="UserInterest") created_at = models.DateTimeField(auto_now_add=True, editable=False) updated_at = models.DateTimeField(auto_now=True, editable=False) def widget(self): a = [i.interest for i in self.interests.all()[:2]] random_likes = ", ".join(a[:2]) return '<br><div class="pure-g-r" style="background: #ededed; min-height: 112px"><div class="pure-u-1" style="margin: 4px"><div class="pure-u-1-3"><img src="https://graph.facebook.com/' + self.user.username +'/picture?type=normal" alt=""></div><div class="pure-u-1-2"><br><a href="user/' + str(self.id) + '">' + self.name + '</a><br><small>' + self.city.city + '<br></small>likes ' + random_likes + '</div></div></div>' def small_widget(self): a = [i.interest for i in self.interests.all()[:2]] random_likes = ", ".join(a[:2]) return '<div class="pure-u-1-2" style="min-height: 112px"><div class="pure-u-1" style="margin: 4px"><div class="pure-u-1-3"><img src="https://graph.facebook.com/' + self.user.username +'/picture?type=normal" alt=""></div><div class="pure-u-1-2"><br><a href="user/' + str(self.id) + '">' + self.name + '</a><br><small>' + self.city.city + '<br></small>likes ' + random_likes + '</div></div></div>' @staticmethod def create_user(fb_data, quora_name, yahoo, interests): try: user = User.objects.create_user(fb_data["username"], fb_data["username"] + "@facebook.com", "pinterested") except: user = User.objects.get(username=fb_data["username"]) age_dict = { "min": fb_data["age_range"]["min"] if fb_data["age_range"].has_key("min") else 0, "max": fb_data["age_range"]["max"] if fb_data["age_range"].has_key("max") else 1000, } user_data_dict = { "user": user, "name": fb_data["name"], "quora_name": quora_name, "gender": True if fb_data["gender"] is "male" else "Female", "city": City.objects.get_or_create(city=fb_data["location"]["name"])[0], "ansyahoo": yahoo, "age": AgeRange.get_or_add(**age_dict)[0] } userdata = Userdata.objects.create(**user_data_dict) saved_interests = Interest.bulk_get_or_create(interests) activities = [UserInterest(userdata=userdata, interest=s) for s in saved_interests] UserInterest.objects.bulk_create(activities) return user class UserInterest(models.Model): interest = models.ForeignKey(Interest) userdata = models.ForeignKey(Userdata) weight = models.IntegerField(default=1) created_at = models.DateTimeField(auto_now_add=True, editable=False) updated_at = models.DateTimeField(auto_now=True, editable=False)
{ "content_hash": "3b530c1540ff1017cf45a792aa06daef", "timestamp": "", "source": "github", "line_count": 129, "max_line_length": 427, "avg_line_length": 39.883720930232556, "alnum_prop": 0.6171039844509232, "repo_name": "amol-mandhane/konnactivity", "id": "dee15ab45c5a6aa9a464bfa3a8424f94cf80b391", "size": "5145", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "login/models.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "62054" } ], "symlink_target": "" }
'''Slickbird backend tests''' import os import json import tempfile from slickbird.collectionjson import collectionjson from slickbird import orm from tornado.testing import gen_test from . import base pjoin = os.path.join APP_ROOT = os.path.abspath(pjoin(os.path.dirname(__file__), '..')) class TestSlickbirdBackend(base.TestSlickbirdBase): @gen_test def test_collectionjson(self): yield self.collectionadd( 'dummy', pjoin(APP_ROOT, 'tests/dummytest.dat')) tmp = tempfile.NamedTemporaryFile(suffix='.json') session = orm.make_session('sqlite:///' + self.db.name)() cdb = session.query(orm.Collection)\ .first() collectionjson(cdb, tmp) tmp.flush() tmp.seek(0) json.loads(tmp.read().decode('utf-8')) tmp.close()
{ "content_hash": "ab55e082305f2479a85b4616901f4005", "timestamp": "", "source": "github", "line_count": 33, "max_line_length": 66, "avg_line_length": 25.333333333333332, "alnum_prop": 0.6423444976076556, "repo_name": "lpenz/slickbird", "id": "eb891724a1d6676135a4f8311b1a1c1a7d0a6e68", "size": "836", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/backend_tests.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "8388" }, { "name": "JavaScript", "bytes": "6339" }, { "name": "Python", "bytes": "47205" } ], "symlink_target": "" }
""" WSGI config for pubmed_central_request project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.7/howto/deployment/wsgi/ """ import os from os.path import abspath, dirname from sys import path SITE_ROOT = dirname(dirname(abspath(__file__))) path.append(SITE_ROOT) os.environ.setdefault("DJANGO_SETTINGS_MODULE", "pubmed_central_request.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
{ "content_hash": "c6ab4e8dd2765b07cf078c6a44e045e8", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 82, "avg_line_length": 26.238095238095237, "alnum_prop": 0.7713248638838476, "repo_name": "allnightdiner/pubmed_central_request", "id": "de06b9abddca0f8ab09be985bc9058b90e4223c4", "size": "551", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pubmed_central_request/wsgi.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "39" }, { "name": "HTML", "bytes": "3908" }, { "name": "JavaScript", "bytes": "45" }, { "name": "Python", "bytes": "17275" } ], "symlink_target": "" }
import pandas import pyomo import pyomo.opt import pyomo.environ as pe import logging class MaxFlowInterdiction: """A class to compute max-flow interdictions.""" def __init__(self, nodefile, arcfile, attacks=0): """ All the files are CSVs with columns described below. Attacks is the number of attacks. - nodefile: Node Every node must appear as a line in the nodefile. There are two special nodes called 'Start' and 'End' that define the source and sink of the max-flow problem. - arcfile: StartNode,EndNode,Capacity,Attackable Every arc must appear in the arcfile. The data also describes the arc's capacity and whether we can attack this arc. """ # Read in the node_data self.node_data = pandas.read_csv(nodefile) self.node_data.set_index(['Node'], inplace=True) self.node_data.sort_index(inplace=True) # Read in the arc_data self.arc_data = pandas.read_csv(arcfile) self.arc_data['xbar'] = 0 self.arc_data.set_index(['StartNode','EndNode'], inplace=True) self.arc_data.sort_index(inplace=True) self.attacks = attacks self.node_set = self.node_data.index.unique() self.arc_set = self.arc_data.index.unique() self.createPrimal() self.createInterdictionDual() def createPrimal(self): """Create the primal pyomo model. This is used to compute flows after interdiction. The interdiction is stored in arc_data.xbar.""" model = pe.ConcreteModel() # Tell pyomo to read in dual-variable information from the solver model.dual = pe.Suffix(direction=pe.Suffix.IMPORT) # Add the sets model.node_set = pe.Set( initialize=self.node_set ) model.edge_set = pe.Set( initialize=self.arc_set, dimen=2) # Create the variables model.y = pe.Var(model.edge_set, domain=pe.NonNegativeReals) model.v = pe.Var(domain=pe.NonNegativeReals) # Create the objective def obj_rule(model): return model.v - 1.1*sum( data['xbar']*model.y[e] for e,data in self.arc_data.iterrows()) model.OBJ = pe.Objective(rule=obj_rule, sense=pe.maximize) # Create the constraints, one for each node def flow_bal_rule(model, n): tmp = self.arc_data.reset_index() successors = tmp.ix[ tmp.StartNode == n, 'EndNode'].values predecessors = tmp.ix[ tmp.EndNode == n, 'StartNode'].values lhs = sum(model.y[(i,n)] for i in predecessors) - sum(model.y[(n,i)] for i in successors) start_node = int(n == 'Start') end_node = int(n == 'End') rhs = 0 - model.v*(start_node) + model.v*(end_node) constr = (lhs == rhs) if isinstance(constr, bool): return pe.Constraint.Skip return constr model.FlowBalance = pe.Constraint(model.node_set, rule=flow_bal_rule) # Capacity constraints, one for each edge def capacity_rule(model, i, j): capacity = self.arc_data['Capacity'].get((i,j),-1) if capacity < 0: return pe.Constraint.Skip return model.y[(i,j)] <= capacity model.Capacity = pe.Constraint(model.edge_set, rule=capacity_rule) # Store the model self.primal = model def createInterdictionDual(self): # Create the model model = pe.ConcreteModel() # Add the sets model.node_set = pe.Set( initialize=self.node_set ) model.edge_set = pe.Set( initialize=self.arc_set, dimen=2) # Create the variables model.rho = pe.Var(model.node_set, domain=pe.Reals) model.pi = pe.Var(model.edge_set, domain=pe.NonNegativeReals) model.x = pe.Var(model.edge_set, domain=pe.Binary) # Create the objective def obj_rule(model): return sum(data['Capacity']*model.pi[e] for e,data in self.arc_data.iterrows() if data['Capacity']>=0) model.OBJ = pe.Objective(rule=obj_rule, sense=pe.minimize) # Create the constraints for y_ij def edge_constraint_rule(model, i, j): attackable = int(self.arc_data['Attackable'].get((i,j),0)) hasCap = int(self.arc_data['Capacity'].get((i,j),-1)>=0) return model.rho[j] - model.rho[i] + model.pi[(i,j)]*hasCap >= 0 - 1.1*model.x[(i,j)]*attackable model.DualEdgeConstraint = pe.Constraint(model.edge_set, rule=edge_constraint_rule) # Set the x's for non-blockable arcs def v_constraint_rule(model): return model.rho['Start'] - model.rho['End'] == 1 model.VConstraint = pe.Constraint(rule=v_constraint_rule) # Create the interdiction budget constraint def block_limit_rule(model): model.attacks = self.attacks return pe.summation(model.x) <= model.attacks model.BlockLimit = pe.Constraint(rule=block_limit_rule) # Create, save the model self.Idual = model def solve(self, tee=False): solver = pyomo.opt.SolverFactory('gurobi') # Solve the dual first self.Idual.BlockLimit.construct() self.Idual.BlockLimit._constructed = False del self.Idual.BlockLimit._data[None] self.Idual.BlockLimit.reconstruct() self.Idual.preprocess() results = solver.solve(self.Idual, tee=tee, keepfiles=False, options_string="mip_tolerances_integrality=1e-9 mip_tolerances_mipgap=0") # Check that we actually computed an optimal solution, load results if (results.solver.status != pyomo.opt.SolverStatus.ok): logging.warning('Check solver not ok?') if (results.solver.termination_condition != pyomo.opt.TerminationCondition.optimal): logging.warning('Check solver optimality?') self.Idual.solutions.load_from(results) # Now put interdictions into xbar and solve primal for e in self.arc_data.index: self.arc_data.ix[e,'xbar'] = self.Idual.x[e].value self.primal.OBJ.construct() self.primal.OBJ._constructed = False self.primal.OBJ._init_sense = pe.maximize del self.primal.OBJ._data[None] self.primal.OBJ.reconstruct() self.primal.preprocess() results = solver.solve(self.primal, tee=tee, keepfiles=False, options_string="mip_tolerances_integrality=1e-9 mip_tolerances_mipgap=0") # Check that we actually computed an optimal solution, load results if (results.solver.status != pyomo.opt.SolverStatus.ok): logging.warning('Check solver not ok?') if (results.solver.termination_condition != pyomo.opt.TerminationCondition.optimal): logging.warning('Check solver optimality?') self.primal.solutions.load_from(results) def printSolution(self): print() print('Using %d attacks:'%self.attacks) print() edges = sorted(self.arc_set) for e in edges: if self.Idual.x[e].value > 0: print('Interdict arc %s -> %s'%(str(e[0]), str(e[1]))) print() for e0,e1 in self.arc_set: flow = self.primal.y[(e0,e1)].value if flow > 0: print('Flow on arc %s -> %s: %.2f'%(str(e0), str(e1), flow)) print() print('----------') print('Total flow = %.2f (primal) %.2f (dual)'%(self.primal.OBJ(), self.Idual.OBJ())) ######################## # Now lets do something ######################## if __name__ == '__main__': m = MaxFlowInterdiction('sample_nodes_data.csv', 'sample_arcs_data.csv') m.solve() m.printSolution() m.attacks = 1 m.solve() m.printSolution() m.attacks = 2 m.solve() m.printSolution()
{ "content_hash": "fb4b27b516b393bf3999c721eb4fdd8d", "timestamp": "", "source": "github", "line_count": 210, "max_line_length": 168, "avg_line_length": 37.804761904761904, "alnum_prop": 0.6005794180627283, "repo_name": "Pyomo/PyomoGallery", "id": "96743f38458d4abf00ba54204fea43d4a1d4a05d", "size": "7939", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "network_interdiction/max_flow/max_flow_interdict.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Jupyter Notebook", "bytes": "143903" }, { "name": "Python", "bytes": "66340" } ], "symlink_target": "" }
"""This module contains the User Model.""" from google.appengine.api import users from google.appengine.ext import db from django.utils.translation import ugettext import soc.models.linkable class User(soc.models.linkable.Linkable): """A user and associated login credentials, the fundamental identity entity. User is a separate Model class from Person because the same login ID may be used to, for example, serve as Contributor in one Program and a Reviewer in another. Also, this allows a Person to, in the future, re-associate that Person entity with a different Google Account if necessary. A User entity participates in the following relationships implemented as a db.ReferenceProperty elsewhere in another db.Model: persons) a 1:many relationship of Person entities identified by the User. This relation is implemented as the 'persons' back-reference Query of the Person model 'user' reference. documents) a 1:many relationship of Document entities identified by the User. This relation is implemented as the 'user' back-reference Query of the Document model 'user' reference. responses) a 1:many relationship of Response entities submitted by the User. This relation is implemented as the 'responses' back-reference Query of the Response model 'respondent' reference. """ @property def url_id(self): """URL ID property. It provides a unique string identifier of the user that is to be used as a part of various URLs. The returned string is URL safe and can be validated by linkable.LINK_ID_REGEX regular expression. Returns: a string containing URL ID property """ return self.key().name() #: A Google Account, which also provides a "private" email address. #: This email address is only used in an automated fashion by #: Melange web applications and is not made visible to other users #: of any Melange application. account = db.UserProperty(required=True, verbose_name=ugettext('User account')) account.help_text = ugettext( 'A valid Google Account.') #: Google Account unique user id user_id = db.StringProperty(required=False) #: A list (possibly empty) of former Google Accounts associated with #: this User. former_accounts = db.ListProperty(users.User) #: Required field storing publicly-displayed name. Can be a real name #: (though this is not recommended), or a nick name or some other public #: alias. Public names can be any valid UTF-8 text. name = db.StringProperty( default='', required=False, verbose_name=ugettext('Public name')) name.help_text = ugettext( 'Human-readable name (UTF-8) that will be displayed publicly on the' ' site.') #: field storing whether User is a Developer with site-wide access. is_developer = db.BooleanProperty(default=False, verbose_name=ugettext('Is Developer')) is_developer.help_text = ugettext( 'Field used to indicate user with site-wide Developer access.') #: List of Sponsors that the user is a host for host_for = db.ListProperty(item_type=db.Key, default=[]) host_for.help_text = ugettext('List of program owners which ' 'the user is a program administrator for.') #: field storing the user preference as whether to disable TinyMCE disable_tinymce = db.BooleanProperty(default=False, verbose_name=ugettext('Disable TinyMCE')) disable_tinymce.help_text = ugettext( 'Disable the TinyMCE editor.') #: field storing the user preference as to how many rows to show nr_list_rows = db.IntegerProperty( required=False, verbose_name=ugettext('Number of list rows')) nr_list_rows.help_text = ugettext( 'Controls how many rows will be shown per list by default. ' 'Defaults to 5 if not set.') #: field storing wheter the User has agreed to the site-wide Terms of Service. #: (Not a required field because the Terms of Service might not be present #: when the first User profile is created when bootstrapping the site.) agreed_to_tos = db.BooleanProperty(required=False, default=False, verbose_name=ugettext('I Agree to the Terms of Service')) agreed_to_tos.help_text = ugettext( 'Indicates whether the user agreed to the site-wide Terms of Service.') #: field storing when the User has agreed to the site-wide Terms of Service. #: (Not a required field because the Terms of Service might not be present #: when the first User profile is created when bootstrapping the site.) agreed_to_tos_on = db.DateTimeProperty(required=False, default=None, verbose_name=ugettext('Has agreed to the Terms of Service on')) agreed_to_tos_on.help_text = ugettext( 'Indicates when the user agreed to the site-wide Terms of Service.') #: field storing the status of this User. #: valid: Is just that, it's a valid User. #: invalid: This means that this User has been excluded #: from using the website. status = db.StringProperty(required=True, default='valid', choices=['valid', 'invalid'],) status.help_text = ugettext( 'Indicates the status of the User. Invalid means that this account ' 'has been excluded from using the website.')
{ "content_hash": "33e189010d5f7031036c4337d020ba44", "timestamp": "", "source": "github", "line_count": 124, "max_line_length": 80, "avg_line_length": 42.04838709677419, "alnum_prop": 0.724012274645186, "repo_name": "rhyolight/nupic.son", "id": "b550d05e59ca2cac6d39575b084709747ab3138c", "size": "5797", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "app/soc/models/user.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "681301" }, { "name": "JavaScript", "bytes": "392600" }, { "name": "PHP", "bytes": "217376" }, { "name": "Python", "bytes": "5162564" } ], "symlink_target": "" }
from collections import namedtuple import sqlparse from django.db import DatabaseError from django.db.backends.base.introspection import BaseDatabaseIntrospection from django.db.backends.base.introspection import FieldInfo as BaseFieldInfo from django.db.backends.base.introspection import TableInfo from django.db.models import Index from django.utils.regex_helper import _lazy_re_compile FieldInfo = namedtuple( "FieldInfo", BaseFieldInfo._fields + ("pk", "has_json_constraint") ) field_size_re = _lazy_re_compile(r"^\s*(?:var)?char\s*\(\s*(\d+)\s*\)\s*$") def get_field_size(name): """Extract the size number from a "varchar(11)" type name""" m = field_size_re.search(name) return int(m[1]) if m else None # This light wrapper "fakes" a dictionary interface, because some SQLite data # types include variables in them -- e.g. "varchar(30)" -- and can't be matched # as a simple dictionary lookup. class FlexibleFieldLookupDict: # Maps SQL types to Django Field types. Some of the SQL types have multiple # entries here because SQLite allows for anything and doesn't normalize the # field type; it uses whatever was given. base_data_types_reverse = { "bool": "BooleanField", "boolean": "BooleanField", "smallint": "SmallIntegerField", "smallint unsigned": "PositiveSmallIntegerField", "smallinteger": "SmallIntegerField", "int": "IntegerField", "integer": "IntegerField", "bigint": "BigIntegerField", "integer unsigned": "PositiveIntegerField", "bigint unsigned": "PositiveBigIntegerField", "decimal": "DecimalField", "real": "FloatField", "text": "TextField", "char": "CharField", "varchar": "CharField", "blob": "BinaryField", "date": "DateField", "datetime": "DateTimeField", "time": "TimeField", } def __getitem__(self, key): key = key.lower().split("(", 1)[0].strip() return self.base_data_types_reverse[key] class DatabaseIntrospection(BaseDatabaseIntrospection): data_types_reverse = FlexibleFieldLookupDict() def get_field_type(self, data_type, description): field_type = super().get_field_type(data_type, description) if description.pk and field_type in { "BigIntegerField", "IntegerField", "SmallIntegerField", }: # No support for BigAutoField or SmallAutoField as SQLite treats # all integer primary keys as signed 64-bit integers. return "AutoField" if description.has_json_constraint: return "JSONField" return field_type def get_table_list(self, cursor): """Return a list of table and view names in the current database.""" # Skip the sqlite_sequence system table used for autoincrement key # generation. cursor.execute( """ SELECT name, type FROM sqlite_master WHERE type in ('table', 'view') AND NOT name='sqlite_sequence' ORDER BY name""" ) return [TableInfo(row[0], row[1][0]) for row in cursor.fetchall()] def get_table_description(self, cursor, table_name): """ Return a description of the table with the DB-API cursor.description interface. """ cursor.execute( "PRAGMA table_info(%s)" % self.connection.ops.quote_name(table_name) ) table_info = cursor.fetchall() if not table_info: raise DatabaseError(f"Table {table_name} does not exist (empty pragma).") collations = self._get_column_collations(cursor, table_name) json_columns = set() if self.connection.features.can_introspect_json_field: for line in table_info: column = line[1] json_constraint_sql = '%%json_valid("%s")%%' % column has_json_constraint = cursor.execute( """ SELECT sql FROM sqlite_master WHERE type = 'table' AND name = %s AND sql LIKE %s """, [table_name, json_constraint_sql], ).fetchone() if has_json_constraint: json_columns.add(column) return [ FieldInfo( name, data_type, None, get_field_size(data_type), None, None, not notnull, default, collations.get(name), pk == 1, name in json_columns, ) for cid, name, data_type, notnull, default, pk in table_info ] def get_sequences(self, cursor, table_name, table_fields=()): pk_col = self.get_primary_key_column(cursor, table_name) return [{"table": table_name, "column": pk_col}] def get_relations(self, cursor, table_name): """ Return a dictionary of {column_name: (ref_column_name, ref_table_name)} representing all foreign keys in the given table. """ cursor.execute( "PRAGMA foreign_key_list(%s)" % self.connection.ops.quote_name(table_name) ) return { column_name: (ref_column_name, ref_table_name) for ( _, _, ref_table_name, column_name, ref_column_name, *_, ) in cursor.fetchall() } def get_primary_key_column(self, cursor, table_name): """Return the column name of the primary key for the given table.""" cursor.execute( "PRAGMA table_info(%s)" % self.connection.ops.quote_name(table_name) ) for _, name, *_, pk in cursor.fetchall(): if pk: return name return None def _parse_column_or_constraint_definition(self, tokens, columns): token = None is_constraint_definition = None field_name = None constraint_name = None unique = False unique_columns = [] check = False check_columns = [] braces_deep = 0 for token in tokens: if token.match(sqlparse.tokens.Punctuation, "("): braces_deep += 1 elif token.match(sqlparse.tokens.Punctuation, ")"): braces_deep -= 1 if braces_deep < 0: # End of columns and constraints for table definition. break elif braces_deep == 0 and token.match(sqlparse.tokens.Punctuation, ","): # End of current column or constraint definition. break # Detect column or constraint definition by first token. if is_constraint_definition is None: is_constraint_definition = token.match( sqlparse.tokens.Keyword, "CONSTRAINT" ) if is_constraint_definition: continue if is_constraint_definition: # Detect constraint name by second token. if constraint_name is None: if token.ttype in (sqlparse.tokens.Name, sqlparse.tokens.Keyword): constraint_name = token.value elif token.ttype == sqlparse.tokens.Literal.String.Symbol: constraint_name = token.value[1:-1] # Start constraint columns parsing after UNIQUE keyword. if token.match(sqlparse.tokens.Keyword, "UNIQUE"): unique = True unique_braces_deep = braces_deep elif unique: if unique_braces_deep == braces_deep: if unique_columns: # Stop constraint parsing. unique = False continue if token.ttype in (sqlparse.tokens.Name, sqlparse.tokens.Keyword): unique_columns.append(token.value) elif token.ttype == sqlparse.tokens.Literal.String.Symbol: unique_columns.append(token.value[1:-1]) else: # Detect field name by first token. if field_name is None: if token.ttype in (sqlparse.tokens.Name, sqlparse.tokens.Keyword): field_name = token.value elif token.ttype == sqlparse.tokens.Literal.String.Symbol: field_name = token.value[1:-1] if token.match(sqlparse.tokens.Keyword, "UNIQUE"): unique_columns = [field_name] # Start constraint columns parsing after CHECK keyword. if token.match(sqlparse.tokens.Keyword, "CHECK"): check = True check_braces_deep = braces_deep elif check: if check_braces_deep == braces_deep: if check_columns: # Stop constraint parsing. check = False continue if token.ttype in (sqlparse.tokens.Name, sqlparse.tokens.Keyword): if token.value in columns: check_columns.append(token.value) elif token.ttype == sqlparse.tokens.Literal.String.Symbol: if token.value[1:-1] in columns: check_columns.append(token.value[1:-1]) unique_constraint = ( { "unique": True, "columns": unique_columns, "primary_key": False, "foreign_key": None, "check": False, "index": False, } if unique_columns else None ) check_constraint = ( { "check": True, "columns": check_columns, "primary_key": False, "unique": False, "foreign_key": None, "index": False, } if check_columns else None ) return constraint_name, unique_constraint, check_constraint, token def _parse_table_constraints(self, sql, columns): # Check constraint parsing is based of SQLite syntax diagram. # https://www.sqlite.org/syntaxdiagrams.html#table-constraint statement = sqlparse.parse(sql)[0] constraints = {} unnamed_constrains_index = 0 tokens = (token for token in statement.flatten() if not token.is_whitespace) # Go to columns and constraint definition for token in tokens: if token.match(sqlparse.tokens.Punctuation, "("): break # Parse columns and constraint definition while True: ( constraint_name, unique, check, end_token, ) = self._parse_column_or_constraint_definition(tokens, columns) if unique: if constraint_name: constraints[constraint_name] = unique else: unnamed_constrains_index += 1 constraints[ "__unnamed_constraint_%s__" % unnamed_constrains_index ] = unique if check: if constraint_name: constraints[constraint_name] = check else: unnamed_constrains_index += 1 constraints[ "__unnamed_constraint_%s__" % unnamed_constrains_index ] = check if end_token.match(sqlparse.tokens.Punctuation, ")"): break return constraints def get_constraints(self, cursor, table_name): """ Retrieve any constraints or keys (unique, pk, fk, check, index) across one or more columns. """ constraints = {} # Find inline check constraints. try: table_schema = cursor.execute( "SELECT sql FROM sqlite_master WHERE type='table' and name=%s" % (self.connection.ops.quote_name(table_name),) ).fetchone()[0] except TypeError: # table_name is a view. pass else: columns = { info.name for info in self.get_table_description(cursor, table_name) } constraints.update(self._parse_table_constraints(table_schema, columns)) # Get the index info cursor.execute( "PRAGMA index_list(%s)" % self.connection.ops.quote_name(table_name) ) for row in cursor.fetchall(): # SQLite 3.8.9+ has 5 columns, however older versions only give 3 # columns. Discard last 2 columns if there. number, index, unique = row[:3] cursor.execute( "SELECT sql FROM sqlite_master " "WHERE type='index' AND name=%s" % self.connection.ops.quote_name(index) ) # There's at most one row. (sql,) = cursor.fetchone() or (None,) # Inline constraints are already detected in # _parse_table_constraints(). The reasons to avoid fetching inline # constraints from `PRAGMA index_list` are: # - Inline constraints can have a different name and information # than what `PRAGMA index_list` gives. # - Not all inline constraints may appear in `PRAGMA index_list`. if not sql: # An inline constraint continue # Get the index info for that index cursor.execute( "PRAGMA index_info(%s)" % self.connection.ops.quote_name(index) ) for index_rank, column_rank, column in cursor.fetchall(): if index not in constraints: constraints[index] = { "columns": [], "primary_key": False, "unique": bool(unique), "foreign_key": None, "check": False, "index": True, } constraints[index]["columns"].append(column) # Add type and column orders for indexes if constraints[index]["index"]: # SQLite doesn't support any index type other than b-tree constraints[index]["type"] = Index.suffix orders = self._get_index_columns_orders(sql) if orders is not None: constraints[index]["orders"] = orders # Get the PK pk_column = self.get_primary_key_column(cursor, table_name) if pk_column: # SQLite doesn't actually give a name to the PK constraint, # so we invent one. This is fine, as the SQLite backend never # deletes PK constraints by name, as you can't delete constraints # in SQLite; we remake the table with a new PK instead. constraints["__primary__"] = { "columns": [pk_column], "primary_key": True, "unique": False, # It's not actually a unique constraint. "foreign_key": None, "check": False, "index": False, } relations = enumerate(self.get_relations(cursor, table_name).items()) constraints.update( { f"fk_{index}": { "columns": [column_name], "primary_key": False, "unique": False, "foreign_key": (ref_table_name, ref_column_name), "check": False, "index": False, } for index, (column_name, (ref_column_name, ref_table_name)) in relations } ) return constraints def _get_index_columns_orders(self, sql): tokens = sqlparse.parse(sql)[0] for token in tokens: if isinstance(token, sqlparse.sql.Parenthesis): columns = str(token).strip("()").split(", ") return ["DESC" if info.endswith("DESC") else "ASC" for info in columns] return None def _get_column_collations(self, cursor, table_name): row = cursor.execute( """ SELECT sql FROM sqlite_master WHERE type = 'table' AND name = %s """, [table_name], ).fetchone() if not row: return {} sql = row[0] columns = str(sqlparse.parse(sql)[0][-1]).strip("()").split(", ") collations = {} for column in columns: tokens = column[1:].split() column_name = tokens[0].strip('"') for index, token in enumerate(tokens): if token == "COLLATE": collation = tokens[index + 1] break else: collation = None collations[column_name] = collation return collations
{ "content_hash": "292e90117ec41857961d4a4181d5af44", "timestamp": "", "source": "github", "line_count": 438, "max_line_length": 88, "avg_line_length": 39.906392694063925, "alnum_prop": 0.5225127295611877, "repo_name": "solarissmoke/django", "id": "a74153757b122abe3d9ea2ebed1cf5d261c54c29", "size": "17479", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "django/db/backends/sqlite3/introspection.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "87587" }, { "name": "HTML", "bytes": "236871" }, { "name": "JavaScript", "bytes": "146495" }, { "name": "Makefile", "bytes": "125" }, { "name": "Procfile", "bytes": "47" }, { "name": "Python", "bytes": "15962069" }, { "name": "Shell", "bytes": "809" }, { "name": "Smarty", "bytes": "392" } ], "symlink_target": "" }
import time, codecs, sys, traceback, cgi, re, os sys.setrecursionlimit(50000) sys.path.append("/Libs/jsoup-1.8.2.jar") sys.path.append("/Libs/lucene-analyzers-common-4.10.4.jar") sys.path.append("/Libs/lucene-core-4.10.4.jar") sys.path.append("/Libs/lucene-queries-4.10.4.jar") sys.path.append("/Libs/lucene-queryparser-4.10.4.jar") sys.path.append("/Libs/jython-standalone-2.7.0.jar") sys.path.append("/Libs/mysql-connector-java-5.1.22-bin.jar") sys.path.append("/Libs/py4j-0.9.jar") sys.path.append("/Libs/org.apache.commons.lang_2.6.0.v201205030909.jar") sys.path.append("/Libs/org.eclipse.cdt.core_5.6.0.201402142303.jar") sys.path.append("/Libs/org.eclipse.core.contenttype_3.4.200.v20120523-2004.jar") sys.path.append("/Libs/org.eclipse.core.jobs_3.5.200.v20120521-2346.jar") sys.path.append("/Libs/org.eclipse.core.resources.win32.x86_3.5.100.v20110423-0524.jar") sys.path.append("/Libs/org.eclipse.core.resources_3.8.0.v20120522-2034.jar") sys.path.append("/Libs/org.eclipse.core.runtime_3.8.0.v20120521-2346.jar") sys.path.append("/Libs/org.eclipse.equinox.common_3.6.100.v20120522-1841.jar") sys.path.append("/Libs/org.eclipse.equinox.common_3.6.200.v20130402-1505.jar") sys.path.append("/Libs/org.eclipse.equinox.preferences_3.5.0.v20120522-1841.jar") sys.path.append("/Libs/org.eclipse.jdt.core_3.8.1.v20120531-0637.jar") sys.path.append("/Libs/org.eclipse.jdt.ui_3.8.2.v20130107-165834.jar") sys.path.append("/Libs/org.eclipse.jface.text_3.8.0.v20120531-0600.jar") sys.path.append("/Libs/org.eclipse.ltk.core.refactoring_3.6.100.v20130605-1748.jar") sys.path.append("/Libs/org.eclipse.osgi_3.8.0.v20120529-1548.jar") sys.path.append("/Libs/org.eclipse.text_3.5.0.jar") sys.path.append("/Libs/bson-3.0.2.jar") sys.path.append("/Libs/mongodb-driver-3.0.2.jar") sys.path.append("/Libs/mongodb-driver-core-3.0.2.jar") import GitSearch_Result_speed_1 from operator import attrgetter from GitSearch.MyUtils import write_file from GitSearch.DBManager import DBManager from GitSearch.FrontEnd.Generator_Code_Query import Generator from GitSearch.Searcher.Snippet_Searcher_test import SnippetSearcher from GitSearch.Searcher.Question_Searcher_test import GettingQuestionDocs, SimilarQsSearcher from GitSearch.Searcher.BigCloneBench_Searcher_test import find_answer_ids, GettingAnswerDocs, BenchSearcher, recommend from org.apache.lucene.search import IndexSearcher, SearcherManager, SearcherFactory, ReferenceManager from org.apache.lucene.store import SimpleFSDirectory, FSDirectory from java.io import File DBManager.init() DBManager.autoconnection() INDICES_PATH = '/Indices/' hitlog_path = '/Users/Falcon/Desktop/Tracing/hit_logs_for_each_1.txt' scorelog_path = '/Users/Falcon/Desktop/Tracing/Score_logs_1/' base_path = '/Users/Falcon/Desktop/IJA/dataset/Experiment/' def save_experiment_result(input, string): write_file(base_path + "New_Recommended_Set_1/" + str(input) + "_result.txt", string) def read_content_in_file(file_path): try: with codecs.open(file_path, mode='r', encoding='utf-8') as file: text = file.read() file.close() except: return None return text def write_file(file_path, content): file = codecs.open(file_path, mode='a', encoding='utf-8') file.write(content + '\n') file.close() def static_vars(**kwargs): def decorate(func): for k in kwargs: setattr(func, k, kwargs[k]) return func return decorate @static_vars(counter=0) def run(name=None): total_time = time.time() if not os.path.exists(scorelog_path): os.makedirs(scorelog_path) targets = read_content_in_file(base_path + "targets_for_recommendation_1.txt") for query_number in targets.splitlines(): hit_logs_for_each = '' score_logs_for_each = '' run.counter += 1 print '[%s] : [%d] / [%d] : ' % (str(query_number), run.counter, len(targets.split('\n'))), round( (float(run.counter) / float(len(targets.split('\n'))) * 100), 2), '%', 'In progress..' target_file = base_path + "targets/" + query_number + ".txt" code_query = read_content_in_file(target_file) code_query = cgi.escape(re.sub(r'[^\x00-\x80]+', '', code_query)) try: if code_query: search_time = time.time() final_items, hit_logs_for_each, score_logs_for_each = query_index(code_query, hit_logs_for_each, score_logs_for_each) git_search_result = GitSearch_Result_speed_1.GitSearchResult(final_items) for i in git_search_result.items: # print u'************************************************', i.file_name save_experiment_result(query_number, i.file_name.split('.')[0]) if not git_search_result.items: save_experiment_result(query_number, '0') write_file(hitlog_path, hit_logs_for_each) score_final_path = scorelog_path + query_number + '.txt' write_file(score_final_path, score_logs_for_each + '\n') print("Item Searching Time : %s seconds" % (time.time() - search_time)) print ('Total Time Taken : %s seconds' % (time.time() - total_time)) print "***********************************************************************************" except: hit_logs_for_each += '0' # java lexer recursion limit exceeded write_file(hitlog_path, hit_logs_for_each) score_final_path = scorelog_path + query_number + '.txt' write_file(score_final_path, score_logs_for_each + '\n') save_experiment_result(query_number, '0') print(traceback.format_exc()) print ('Total Time Taken : %s seconds' % (time.time() - total_time)) print "***********************************************************************************" def query_index(query, hit_logs_for_each, score_logs_for_each): ### 1_Query Alternation user_code_query = Generator(query) directory = SimpleFSDirectory(File(INDICES_PATH+'stackoverflow')) searchermgr = SearcherManager(directory, SearcherFactory()) searchermgr.maybeRefresh() searcher = searchermgr.acquire() ### 2_Finding 3 Answer Snippets using the User Query (refined) answers = SnippetSearcher(searcher, user_code_query) answer_ids = answers.more_like_this(20, query=user_code_query) searchermgr.release(searcher) searchermgr.close() searcher = None directory.close() directory = None # Log : Answer count if answer_ids: hit_logs_for_each += str(len(answer_ids)) + '\t' else: hit_logs_for_each += ('0' + '\t') ### 3_Finding the Associated Questions question_ids = answers.find_question_ids(answer_ids) # Log : Answer - Question count if question_ids: hit_logs_for_each += str(len(question_ids)) + '\t' else: hit_logs_for_each += ('0' + '\t') directory = SimpleFSDirectory(File(INDICES_PATH + 'questionIndex')) searchermgr = SearcherManager(directory, SearcherFactory()) searchermgr.maybeRefresh() searcher = searchermgr.acquire() getDoc = GettingQuestionDocs(searcher) item_docs = getDoc.search(question_ids, 20)[0:7] # 순위대로 최소 7개의 question을 얻기 위해서 여기서 7개를 자름. searchermgr.release(searcher) searchermgr.close() searcher = None directory.close() directory = None # Log : Question ItemDoc count if item_docs: hit_logs_for_each += str(len(item_docs)) + '\t' else: hit_logs_for_each += ('0' + '\t') directory = SimpleFSDirectory(File(INDICES_PATH + 'questionIndex')) searchermgr = SearcherManager(directory, SearcherFactory()) searchermgr.maybeRefresh() searcher = searchermgr.acquire() ### 4_Finding 3 Similar Questions per a Question (3 X 3) similar_questions = [] question = SimilarQsSearcher(searcher) # Log : Similar Question count for each of Question ItemDoc i = 1 if item_docs: for item_doc in item_docs: similar_question = question.more_like_this2(item_doc, 7) # 각 question 들에 대해 7개씩 비슷한 것들 찾음. if similar_question: hit_logs_for_each += str(len(similar_question)) + '\t' else: hit_logs_for_each += ('0' + '\t') similar_questions += similar_question i += 1 else: hit_logs_for_each += ( '0' + '\t' + '0' + '\t' + '0' + '\t' + '0' + '\t' + '0' + '\t' + '0' + '\t' + '0' + '\t') # 7개 searchermgr.release(searcher) searchermgr.close() searcher = None directory.close() directory = None # Log : Similar Question result count if similar_questions: hit_logs_for_each += str(len(similar_questions)) + '\t' else: hit_logs_for_each += ('0' + '\t') ### 5_Finding Associated Answers for each Question (9 - 9) answer_ids = find_answer_ids(similar_questions) # Log : Question - Answer count if answer_ids: hit_logs_for_each += str(len(answer_ids)) + '\t' else: hit_logs_for_each += ('0' + '\t') directory = SimpleFSDirectory(File(INDICES_PATH + 'stackoverflow')) searchermgr = SearcherManager(directory, SearcherFactory()) searchermgr.maybeRefresh() searcher = searchermgr.acquire() ### 6_Getting Answer Docs for the Final Query getDoc = GettingAnswerDocs(searcher) answer_docs = getDoc.search(answer_ids) searchermgr.release(searcher) searchermgr.close() searcher = None directory.close() directory = None # Log : Answer Docs count if answer_docs: hit_logs_for_each += str(len(answer_docs)) + '\t' else: hit_logs_for_each += ('0' + '\t') directory = SimpleFSDirectory(File(INDICES_PATH + 'bigclonebench_1')) searchermgr = SearcherManager(directory, SearcherFactory()) searchermgr.maybeRefresh() searcher = searchermgr.acquire() bench_results = [] benchsearcher = BenchSearcher(searcher) # BigCloneBench # Exceptional ### 7_Appending for the user query results bench_result, score_logs_for_each = benchsearcher.more_like_this2(100, answer_docs[0], score_logs_for_each, user_code_query, 1) if bench_result: hit_logs_for_each += str(len(bench_result)) + '\t' else: hit_logs_for_each += ('0' + '\t') bench_results += bench_result ### 8_Querying for the Final Results # Log : Bench_result for each query for answer_doc in answer_docs: bench_result, score_logs_for_each = benchsearcher.more_like_this2(100, answer_doc, score_logs_for_each, user_code_query, 0) # , user_query=user_code_query) if bench_result: hit_logs_for_each += str(len(bench_result)) + '\t' else: hit_logs_for_each += ('0' + '\t') bench_results += bench_result searchermgr.release(searcher) searchermgr.close() searcher = None directory.close() directory = None if answer_docs < 49: for a in range(49 - len(answer_docs)): hit_logs_for_each += ('0' + '\t') if bench_results: hit_logs_for_each += str(len(bench_results)) + '\t' else: hit_logs_for_each += ('0' + '\t') sorted_bench_results = sorted(bench_results, key=attrgetter('score'), reverse=True) print 'Search Count : ', len(sorted_bench_results) recommended = recommend(sorted_bench_results) print 'Final Count : ', len(recommended) if bench_results: hit_logs_for_each += str(len(recommended)) + '\t' else: hit_logs_for_each += ('0' + '\t') return recommended, hit_logs_for_each, score_logs_for_each if __name__ == "__main__": run()
{ "content_hash": "6383bdf3dffff29ca40a70879b940a87", "timestamp": "", "source": "github", "line_count": 306, "max_line_length": 119, "avg_line_length": 39.38235294117647, "alnum_prop": 0.6174591320222388, "repo_name": "facoy/facoy", "id": "9f8bef52155452d253fb656a93a3dc40c1893a74", "size": "12171", "binary": false, "copies": "1", "ref": "refs/heads/release-1.0", "path": "FrontEnd/Experiment_SpeedUp/FaCoY_ver1.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "16161" }, { "name": "Java", "bytes": "1038237" }, { "name": "JavaScript", "bytes": "6570" } ], "symlink_target": "" }
import boto import re from boto.utils import find_class import uuid from boto.sdb.db.key import Key from boto.sdb.db.model import Model from boto.sdb.db.blob import Blob from boto.sdb.db.property import ListProperty, MapProperty from datetime import datetime, date, time from boto.exception import SDBPersistenceError ISO8601 = '%Y-%m-%dT%H:%M:%SZ' class TimeDecodeError(Exception): pass class SDBConverter(object): """ Responsible for converting base Python types to format compatible with underlying database. For SimpleDB, that means everything needs to be converted to a string when stored in SimpleDB and from a string when retrieved. To convert a value, pass it to the encode or decode method. The encode method will take a Python native value and convert to DB format. The decode method will take a DB format value and convert it to Python native format. To find the appropriate method to call, the generic encode/decode methods will look for the type-specific method by searching for a method called "encode_<type name>" or "decode_<type name>". """ def __init__(self, manager): self.manager = manager self.type_map = { bool : (self.encode_bool, self.decode_bool), int : (self.encode_int, self.decode_int), long : (self.encode_long, self.decode_long), float : (self.encode_float, self.decode_float), Model : (self.encode_reference, self.decode_reference), Key : (self.encode_reference, self.decode_reference), datetime : (self.encode_datetime, self.decode_datetime), date : (self.encode_date, self.decode_date), time : (self.encode_time, self.decode_time), Blob: (self.encode_blob, self.decode_blob), str: (self.encode_string, self.decode_string), } def encode(self, item_type, value): try: if Model in item_type.mro(): item_type = Model except: pass if item_type in self.type_map: encode = self.type_map[item_type][0] return encode(value) return value def decode(self, item_type, value): if item_type in self.type_map: decode = self.type_map[item_type][1] return decode(value) return value def encode_list(self, prop, value): if value in (None, []): return [] if not isinstance(value, list): # This is a little trick to avoid encoding when it's just a single value, # since that most likely means it's from a query item_type = getattr(prop, "item_type") return self.encode(item_type, value) # Just enumerate(value) won't work here because # we need to add in some zero padding # We support lists up to 1,000 attributes, since # SDB technically only supports 1024 attributes anyway values = {} for k,v in enumerate(value): values["%03d" % k] = v return self.encode_map(prop, values) def encode_map(self, prop, value): import urllib if value == None: return None if not isinstance(value, dict): raise ValueError, 'Expected a dict value, got %s' % type(value) new_value = [] for key in value: item_type = getattr(prop, "item_type") if Model in item_type.mro(): item_type = Model encoded_value = self.encode(item_type, value[key]) if encoded_value != None: new_value.append('%s:%s' % (urllib.quote(key), encoded_value)) return new_value def encode_prop(self, prop, value): if isinstance(prop, ListProperty): return self.encode_list(prop, value) elif isinstance(prop, MapProperty): return self.encode_map(prop, value) else: return self.encode(prop.data_type, value) def decode_list(self, prop, value): if not isinstance(value, list): value = [value] if hasattr(prop, 'item_type'): item_type = getattr(prop, "item_type") dec_val = {} for val in value: if val != None: k,v = self.decode_map_element(item_type, val) try: k = int(k) except: k = v dec_val[k] = v value = dec_val.values() return value def decode_map(self, prop, value): if not isinstance(value, list): value = [value] ret_value = {} item_type = getattr(prop, "item_type") for val in value: k,v = self.decode_map_element(item_type, val) ret_value[k] = v return ret_value def decode_map_element(self, item_type, value): """Decode a single element for a map""" import urllib key = value if ":" in value: key, value = value.split(':',1) key = urllib.unquote(key) if Model in item_type.mro(): value = item_type(id=value) else: value = self.decode(item_type, value) return (key, value) def decode_prop(self, prop, value): if isinstance(prop, ListProperty): return self.decode_list(prop, value) elif isinstance(prop, MapProperty): return self.decode_map(prop, value) else: return self.decode(prop.data_type, value) def encode_int(self, value): value = int(value) value += 2147483648 return '%010d' % value def decode_int(self, value): try: value = int(value) except: boto.log.error("Error, %s is not an integer" % value) value = 0 value = int(value) value -= 2147483648 return int(value) def encode_long(self, value): value = long(value) value += 9223372036854775808 return '%020d' % value def decode_long(self, value): value = long(value) value -= 9223372036854775808 return value def encode_bool(self, value): if value == True or str(value).lower() in ("true", "yes"): return 'true' else: return 'false' def decode_bool(self, value): if value.lower() == 'true': return True else: return False def encode_float(self, value): """ See http://tools.ietf.org/html/draft-wood-ldapext-float-00. """ s = '%e' % value l = s.split('e') mantissa = l[0].ljust(18, '0') exponent = l[1] if value == 0.0: case = '3' exponent = '000' elif mantissa[0] != '-' and exponent[0] == '+': case = '5' exponent = exponent[1:].rjust(3, '0') elif mantissa[0] != '-' and exponent[0] == '-': case = '4' exponent = 999 + int(exponent) exponent = '%03d' % exponent elif mantissa[0] == '-' and exponent[0] == '-': case = '2' mantissa = '%f' % (10 + float(mantissa)) mantissa = mantissa.ljust(18, '0') exponent = exponent[1:].rjust(3, '0') else: case = '1' mantissa = '%f' % (10 + float(mantissa)) mantissa = mantissa.ljust(18, '0') exponent = 999 - int(exponent) exponent = '%03d' % exponent return '%s %s %s' % (case, exponent, mantissa) def decode_float(self, value): case = value[0] exponent = value[2:5] mantissa = value[6:] if case == '3': return 0.0 elif case == '5': pass elif case == '4': exponent = '%03d' % (int(exponent) - 999) elif case == '2': mantissa = '%f' % (float(mantissa) - 10) exponent = '-' + exponent else: mantissa = '%f' % (float(mantissa) - 10) exponent = '%03d' % abs((int(exponent) - 999)) return float(mantissa + 'e' + exponent) def encode_datetime(self, value): if isinstance(value, str) or isinstance(value, unicode): return value return value.strftime(ISO8601) def decode_datetime(self, value): try: return datetime.strptime(value, ISO8601) except: return None def encode_date(self, value): if isinstance(value, str) or isinstance(value, unicode): return value return value.isoformat() def decode_date(self, value): try: value = value.split("-") return date(int(value[0]), int(value[1]), int(value[2])) except: return None encode_time = encode_date def decode_time(self, value): """ converts strings in the form of HH:MM:SS.mmmmmm (created by datetime.time.isoformat()) to datetime.time objects. Timzone-aware strings ("HH:MM:SS.mmmmmm+HH:MM") won't be handled right now and will raise TimeDecodeError. """ if '-' in value or '+' in value: # TODO: Handle tzinfo raise TimeDecodeError("Can't handle timezone aware objects: %r" % value) tmp = value.split('.') arg = map(int, tmp[0].split(':')) if len(tmp) == 2: arg.append(int(tmp[1])) return time(*arg) def encode_reference(self, value): if value in (None, 'None', '', ' '): return None if isinstance(value, str) or isinstance(value, unicode): return value else: return value.id def decode_reference(self, value): if not value or value == "None": return None return value def encode_blob(self, value): if not value: return None if isinstance(value, str): return value if not value.id: bucket = self.manager.get_blob_bucket() key = bucket.new_key(str(uuid.uuid4())) value.id = "s3://%s/%s" % (key.bucket.name, key.name) else: match = re.match("^s3:\/\/([^\/]*)\/(.*)$", value.id) if match: s3 = self.manager.get_s3_connection() bucket = s3.get_bucket(match.group(1), validate=False) key = bucket.get_key(match.group(2)) else: raise SDBPersistenceError("Invalid Blob ID: %s" % value.id) if value.value != None: key.set_contents_from_string(value.value) return value.id def decode_blob(self, value): if not value: return None match = re.match("^s3:\/\/([^\/]*)\/(.*)$", value) if match: s3 = self.manager.get_s3_connection() bucket = s3.get_bucket(match.group(1), validate=False) key = bucket.get_key(match.group(2)) else: return None if key: return Blob(file=key, id="s3://%s/%s" % (key.bucket.name, key.name)) else: return None def encode_string(self, value): """Convert ASCII, Latin-1 or UTF-8 to pure Unicode""" if not isinstance(value, str): return value try: return unicode(value, 'utf-8') except: # really, this should throw an exception. # in the interest of not breaking current # systems, however: arr = [] for ch in value: arr.append(unichr(ord(ch))) return u"".join(arr) def decode_string(self, value): """Decoding a string is really nothing, just return the value as-is""" return value class SDBManager(object): def __init__(self, cls, db_name, db_user, db_passwd, db_host, db_port, db_table, ddl_dir, enable_ssl, consistent=None): self.cls = cls self.db_name = db_name self.db_user = db_user self.db_passwd = db_passwd self.db_host = db_host self.db_port = db_port self.db_table = db_table self.ddl_dir = ddl_dir self.enable_ssl = enable_ssl self.s3 = None self.bucket = None self.converter = SDBConverter(self) self._sdb = None self._domain = None if consistent == None and hasattr(cls, "__consistent__"): consistent = cls.__consistent__ self.consistent = consistent @property def sdb(self): if self._sdb is None: self._connect() return self._sdb @property def domain(self): if self._domain is None: self._connect() return self._domain def _connect(self): args = dict(aws_access_key_id=self.db_user, aws_secret_access_key=self.db_passwd, is_secure=self.enable_ssl) try: region = [x for x in boto.sdb.regions() if x.endpoint == self.db_host][0] args['region'] = region except IndexError: pass self._sdb = boto.connect_sdb(**args) # This assumes that the domain has already been created # It's much more efficient to do it this way rather than # having this make a roundtrip each time to validate. # The downside is that if the domain doesn't exist, it breaks self._domain = self._sdb.lookup(self.db_name, validate=False) if not self._domain: self._domain = self._sdb.create_domain(self.db_name) def _object_lister(self, cls, query_lister): for item in query_lister: obj = self.get_object(cls, item.name, item) if obj: yield obj def encode_value(self, prop, value): if value == None: return None if not prop: return str(value) return self.converter.encode_prop(prop, value) def decode_value(self, prop, value): return self.converter.decode_prop(prop, value) def get_s3_connection(self): if not self.s3: self.s3 = boto.connect_s3(self.db_user, self.db_passwd) return self.s3 def get_blob_bucket(self, bucket_name=None): s3 = self.get_s3_connection() bucket_name = "%s-%s" % (s3.aws_access_key_id, self.domain.name) bucket_name = bucket_name.lower() try: self.bucket = s3.get_bucket(bucket_name) except: self.bucket = s3.create_bucket(bucket_name) return self.bucket def load_object(self, obj): if not obj._loaded: a = self.domain.get_attributes(obj.id,consistent_read=self.consistent) if a.has_key('__type__'): for prop in obj.properties(hidden=False): if a.has_key(prop.name): value = self.decode_value(prop, a[prop.name]) value = prop.make_value_from_datastore(value) try: setattr(obj, prop.name, value) except Exception, e: boto.log.exception(e) obj._loaded = True def get_object(self, cls, id, a=None): obj = None if not a: a = self.domain.get_attributes(id,consistent_read=self.consistent) if a.has_key('__type__'): if not cls or a['__type__'] != cls.__name__: cls = find_class(a['__module__'], a['__type__']) if cls: params = {} for prop in cls.properties(hidden=False): if a.has_key(prop.name): value = self.decode_value(prop, a[prop.name]) value = prop.make_value_from_datastore(value) params[prop.name] = value obj = cls(id, **params) obj._loaded = True else: s = '(%s) class %s.%s not found' % (id, a['__module__'], a['__type__']) boto.log.info('sdbmanager: %s' % s) return obj def get_object_from_id(self, id): return self.get_object(None, id) def query(self, query): query_str = "select * from `%s` %s" % (self.domain.name, self._build_filter_part(query.model_class, query.filters, query.sort_by, query.select)) if query.limit: query_str += " limit %s" % query.limit rs = self.domain.select(query_str, max_items=query.limit, next_token = query.next_token) query.rs = rs return self._object_lister(query.model_class, rs) def count(self, cls, filters, quick=True, sort_by=None, select=None): """ Get the number of results that would be returned in this query """ query = "select count(*) from `%s` %s" % (self.domain.name, self._build_filter_part(cls, filters, sort_by, select)) count = 0 for row in self.domain.select(query): count += int(row['Count']) if quick: return count return count def _build_filter(self, property, name, op, val): if name == "__id__": name = 'itemName()' if name != "itemName()": name = '`%s`' % name if val == None: if op in ('is','='): return "%(name)s is null" % {"name": name} elif op in ('is not', '!='): return "%s is not null" % name else: val = "" if property.__class__ == ListProperty: if op in ("is", "="): op = "like" elif op in ("!=", "not"): op = "not like" if not(op in ["like", "not like"] and val.startswith("%")): val = "%%:%s" % val return "%s %s '%s'" % (name, op, val.replace("'", "''")) def _build_filter_part(self, cls, filters, order_by=None, select=None): """ Build the filter part """ import types query_parts = [] if select: query_parts.append("(%s)" % select) order_by_filtered = False if order_by: if order_by[0] == "-": order_by_method = "DESC"; order_by = order_by[1:] else: order_by_method = "ASC"; if isinstance(filters, str) or isinstance(filters, unicode): query = "WHERE %s AND `__type__` = '%s'" % (filters, cls.__name__) if order_by != None: query += " ORDER BY `%s` %s" % (order_by, order_by_method) return query for filter in filters: filter_parts = [] filter_props = filter[0] if type(filter_props) != list: filter_props = [filter_props] for filter_prop in filter_props: (name, op) = filter_prop.strip().split(" ", 1) value = filter[1] property = cls.find_property(name) if name == order_by: order_by_filtered = True if types.TypeType(value) == types.ListType: filter_parts_sub = [] for val in value: val = self.encode_value(property, val) if isinstance(val, list): for v in val: filter_parts_sub.append(self._build_filter(property, name, op, v)) else: filter_parts_sub.append(self._build_filter(property, name, op, val)) filter_parts.append("(%s)" % (" OR ".join(filter_parts_sub))) else: val = self.encode_value(property, value) if isinstance(val, list): for v in val: filter_parts.append(self._build_filter(property, name, op, v)) else: filter_parts.append(self._build_filter(property, name, op, val)) query_parts.append("(%s)" % (" or ".join(filter_parts))) type_query = "(`__type__` = '%s'" % cls.__name__ for subclass in self._get_all_decendents(cls).keys(): type_query += " or `__type__` = '%s'" % subclass type_query +=")" query_parts.append(type_query) order_by_query = "" if order_by: if not order_by_filtered: query_parts.append("`%s` LIKE '%%'" % order_by) order_by_query = " ORDER BY `%s` %s" % (order_by, order_by_method) if len(query_parts) > 0: return "WHERE %s %s" % (" AND ".join(query_parts), order_by_query) else: return "" def _get_all_decendents(self, cls): """Get all decendents for a given class""" decendents = {} for sc in cls.__sub_classes__: decendents[sc.__name__] = sc decendents.update(self._get_all_decendents(sc)) return decendents def query_gql(self, query_string, *args, **kwds): raise NotImplementedError, "GQL queries not supported in SimpleDB" def save_object(self, obj, expected_value=None): if not obj.id: obj.id = str(uuid.uuid4()) attrs = {'__type__' : obj.__class__.__name__, '__module__' : obj.__class__.__module__, '__lineage__' : obj.get_lineage()} del_attrs = [] for property in obj.properties(hidden=False): value = property.get_value_for_datastore(obj) if value is not None: value = self.encode_value(property, value) if value == []: value = None if value == None: del_attrs.append(property.name) continue attrs[property.name] = value if property.unique: try: args = {property.name: value} obj2 = obj.find(**args).next() if obj2.id != obj.id: raise SDBPersistenceError("Error: %s must be unique!" % property.name) except(StopIteration): pass # Convert the Expected value to SDB format if expected_value: prop = obj.find_property(expected_value[0]) v = expected_value[1] if v is not None and not type(v) == bool: v = self.encode_value(prop, v) expected_value[1] = v self.domain.put_attributes(obj.id, attrs, replace=True, expected_value=expected_value) if len(del_attrs) > 0: self.domain.delete_attributes(obj.id, del_attrs) return obj def delete_object(self, obj): self.domain.delete_attributes(obj.id) def set_property(self, prop, obj, name, value): setattr(obj, name, value) value = prop.get_value_for_datastore(obj) value = self.encode_value(prop, value) if prop.unique: try: args = {prop.name: value} obj2 = obj.find(**args).next() if obj2.id != obj.id: raise SDBPersistenceError("Error: %s must be unique!" % prop.name) except(StopIteration): pass self.domain.put_attributes(obj.id, {name : value}, replace=True) def get_property(self, prop, obj, name): a = self.domain.get_attributes(obj.id,consistent_read=self.consistent) # try to get the attribute value from SDB if name in a: value = self.decode_value(prop, a[name]) value = prop.make_value_from_datastore(value) setattr(obj, prop.name, value) return value raise AttributeError, '%s not found' % name def set_key_value(self, obj, name, value): self.domain.put_attributes(obj.id, {name : value}, replace=True) def delete_key_value(self, obj, name): self.domain.delete_attributes(obj.id, name) def get_key_value(self, obj, name): a = self.domain.get_attributes(obj.id, name,consistent_read=self.consistent) if a.has_key(name): return a[name] else: return None def get_raw_item(self, obj): return self.domain.get_item(obj.id)
{ "content_hash": "bb2324abeb7d929ae647bfd809e112c3", "timestamp": "", "source": "github", "line_count": 676, "max_line_length": 152, "avg_line_length": 36.531065088757394, "alnum_prop": 0.5195383680907066, "repo_name": "drawquest/drawquest-web", "id": "4e51d2d7e35df3691bd5810a7f40932bb3608f37", "size": "25860", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "common/boto/sdb/db/manager/sdbmanager.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "AppleScript", "bytes": "57" }, { "name": "C", "bytes": "547" }, { "name": "CSS", "bytes": "634659" }, { "name": "CoffeeScript", "bytes": "8968" }, { "name": "HTML", "bytes": "898627" }, { "name": "JavaScript", "bytes": "1507053" }, { "name": "Makefile", "bytes": "258" }, { "name": "PHP", "bytes": "1983" }, { "name": "Python", "bytes": "7220727" }, { "name": "Ruby", "bytes": "876" }, { "name": "Shell", "bytes": "3700" } ], "symlink_target": "" }
class ImageComparisonFailure(AssertionError): """ Raise this exception to mark a test as a comparison between two images. """
{ "content_hash": "325cb4147f18a55a435591c1d73007aa", "timestamp": "", "source": "github", "line_count": 4, "max_line_length": 75, "avg_line_length": 34.5, "alnum_prop": 0.717391304347826, "repo_name": "louisLouL/pair_trading", "id": "c39a39207747c75d768ea2dd498dfed364eb88c5", "size": "138", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "capstone_env/lib/python3.6/site-packages/matplotlib/testing/exceptions.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "148513" }, { "name": "C++", "bytes": "172384" }, { "name": "CSS", "bytes": "5382" }, { "name": "Fortran", "bytes": "8281" }, { "name": "HTML", "bytes": "568460" }, { "name": "JavaScript", "bytes": "25360" }, { "name": "Jupyter Notebook", "bytes": "16254" }, { "name": "Python", "bytes": "30357437" }, { "name": "Shell", "bytes": "3260" }, { "name": "Smarty", "bytes": "2045" } ], "symlink_target": "" }
"""Support for HomematicIP Cloud devices.""" import logging import voluptuous as vol from homeassistant import config_entries from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_NAME, EVENT_HOMEASSISTANT_STOP from homeassistant.helpers import device_registry as dr import homeassistant.helpers.config_validation as cv from homeassistant.helpers.typing import ConfigType, HomeAssistantType from .const import ( CONF_ACCESSPOINT, CONF_AUTHTOKEN, DOMAIN, HMIPC_AUTHTOKEN, HMIPC_HAPID, HMIPC_NAME, ) from .generic_entity import HomematicipGenericEntity # noqa: F401 from .hap import HomematicipAuth, HomematicipHAP # noqa: F401 from .services import async_setup_services, async_unload_services _LOGGER = logging.getLogger(__name__) CONFIG_SCHEMA = vol.Schema( { vol.Optional(DOMAIN, default=[]): vol.All( cv.ensure_list, [ vol.Schema( { vol.Optional(CONF_NAME, default=""): vol.Any(cv.string), vol.Required(CONF_ACCESSPOINT): cv.string, vol.Required(CONF_AUTHTOKEN): cv.string, } ) ], ) }, extra=vol.ALLOW_EXTRA, ) async def async_setup(hass: HomeAssistantType, config: ConfigType) -> bool: """Set up the HomematicIP Cloud component.""" hass.data[DOMAIN] = {} accesspoints = config.get(DOMAIN, []) for conf in accesspoints: if conf[CONF_ACCESSPOINT] not in { entry.data[HMIPC_HAPID] for entry in hass.config_entries.async_entries(DOMAIN) }: hass.async_add_job( hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data={ HMIPC_HAPID: conf[CONF_ACCESSPOINT], HMIPC_AUTHTOKEN: conf[CONF_AUTHTOKEN], HMIPC_NAME: conf[CONF_NAME], }, ) ) return True async def async_setup_entry(hass: HomeAssistantType, entry: ConfigEntry) -> bool: """Set up an access point from a config entry.""" # 0.104 introduced config entry unique id, this makes upgrading possible if entry.unique_id is None: new_data = dict(entry.data) hass.config_entries.async_update_entry( entry, unique_id=new_data[HMIPC_HAPID], data=new_data ) hap = HomematicipHAP(hass, entry) hass.data[DOMAIN][entry.unique_id] = hap if not await hap.async_setup(): return False await async_setup_services(hass) # Register on HA stop event to gracefully shutdown HomematicIP Cloud connection hap.reset_connection_listener = hass.bus.async_listen_once( EVENT_HOMEASSISTANT_STOP, hap.shutdown ) # Register hap as device in registry. device_registry = await dr.async_get_registry(hass) home = hap.home # Add the HAP name from configuration if set. hapname = home.label if not home.name else f"{home.name} {home.label}" device_registry.async_get_or_create( config_entry_id=home.id, identifiers={(DOMAIN, home.id)}, manufacturer="eQ-3", name=hapname, model=home.modelType, sw_version=home.currentAPVersion, ) return True async def async_unload_entry(hass: HomeAssistantType, entry: ConfigEntry) -> bool: """Unload a config entry.""" hap = hass.data[DOMAIN].pop(entry.unique_id) hap.reset_connection_listener() await async_unload_services(hass) return await hap.async_reset()
{ "content_hash": "751d8b3c98991a72b691521c1d375cb1", "timestamp": "", "source": "github", "line_count": 119, "max_line_length": 83, "avg_line_length": 31.142857142857142, "alnum_prop": 0.6233135456017269, "repo_name": "tchellomello/home-assistant", "id": "47da33e86dab8cb424b5c61bcf643e73817df6af", "size": "3706", "binary": false, "copies": "2", "ref": "refs/heads/dev", "path": "homeassistant/components/homematicip_cloud/__init__.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "1488" }, { "name": "Python", "bytes": "26713364" }, { "name": "Shell", "bytes": "4528" } ], "symlink_target": "" }
''' This is a simple proxy-minion to manage ROKU devices :maintainer: Christer Edwards (christer.edwards@gmail.com) :maturity: 20150920 :depends: none :platform: all ''' from __future__ import absolute_import # Import python libs import logging import salt.utils.http __proxyenabled__ = ['roku'] LOG = logging.getLogger(__file__) DETAILS = {} def __virtual__(): ''' Only return if all the modules are available ''' if salt.utils.http.query: return True else: return False def init(opts): ''' Every proxy module needs an 'init', though you can just put a 'pass' here if it doesn't need to do anything. ''' LOG.debug('roku proxy init() called...') DETAILS['url'] = opts['proxy']['url'] if not DETAILS['url'].endswith('/'): DETAILS['url'] += '/' def ping(): device = salt.utils.http.query(DETAILS['url'], decode_type='xml', decode=True) try: ret = device['dict'][1]['serialNumber'] except KeyError: ret = 'No data returned from API' return ret def package_list(): ''' List installed "packages", ie; channels ''' channels = [] uri = 'query/apps' device = salt.utils.http.query(DETAILS['url']+uri, decode_type='xml', decode=True) try: ret = device['dict'] for app in ret: for key, val in app.items(): channels.append(val) except KeyError: channels = 'No data returned from API' return channels def service_stop(): ''' "stop" the service, ie; pause ''' uri = 'keypress/Play' return salt.utils.http.query(DETAILS['url']+uri, method='POST') def service_start(): ''' "start" the service, ie; play ''' uri = 'keypress/Play' return salt.utils.http.query(DETAILS['url']+uri, method='POST') def service_replay(): ''' Instant replay ''' uri = 'keypress/InstantReplay' return salt.utils.http.query(DETAILS['url']+uri, method='POST') def shutdown(opts): ''' For this proxy shutdown is a no-op ''' LOG.debug('roku proxy shutdown() called...') pass def navigate_search(): ''' Navigate search ''' uri = 'keypress/Search' return salt.utils.http.query(DETAILS['url']+uri, method='POST') def navigate_home(): ''' Navigate home ''' uri = 'keypress/Home' return salt.utils.http.query(DETAILS['url']+uri, method='POST') def navigate_back(): ''' Navigate back ''' uri = 'keypress/Back' return salt.utils.http.query(DETAILS['url']+uri, method='POST') def navigate_select(): ''' Navigate select ''' uri = 'keypress/Select' return salt.utils.http.query(DETAILS['url']+uri, method='POST') def navigate_left(): ''' Navigate left ''' uri = 'keypress/Left' return salt.utils.http.query(DETAILS['url']+uri, method='POST') def navigate_right(): ''' Navigate right ''' uri = 'keypress/Right' return salt.utils.http.query(DETAILS['url']+uri, method='POST') def navigate_up(): ''' Navigate up ''' uri = 'keypress/Up' return salt.utils.http.query(DETAILS['url']+uri, method='POST') def navigate_down(): ''' Navigate down ''' uri = 'keypress/Down' return salt.utils.http.query(DETAILS['url']+uri, method='POST') def navigate_input(search): ''' Navigate search ''' uri = 'keypress/Lit_'+search return salt.utils.http.query(DETAILS['url']+uri, method='POST')
{ "content_hash": "4e615605c21edfbc60d47258b00ff0d7", "timestamp": "", "source": "github", "line_count": 175, "max_line_length": 86, "avg_line_length": 20.074285714285715, "alnum_prop": 0.5977796754910333, "repo_name": "cedwards/saltstack-proxy-module-roku", "id": "21fc4e2fa8f55ee7d05a139ff1824f26d00eabf0", "size": "3537", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "proxy/roku.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "7708" } ], "symlink_target": "" }
from openstack_dashboard import api from openstack_dashboard.test import helpers as test from neutronclient.v2_0.client import Client as neutronclient # noqa class FwaasApiTests(test.APITestCase): @test.create_stubs({neutronclient: ('create_firewall_rule',)}) def test_rule_create(self): rule1 = self.fw_rules.first() rule1_dict = self.api_fw_rules.first() form_data = {'name': rule1.name, 'description': rule1.description, 'protocol': rule1.protocol, 'action': rule1.action, 'source_ip_address': rule1.source_ip_address, 'source_port': rule1.source_port, 'destination_ip_address': rule1.destination_ip_address, 'destination_port': rule1.destination_port, 'shared': rule1.shared, 'enabled': rule1.enabled } form_dict = {'firewall_rule': form_data} ret_dict = {'firewall_rule': rule1_dict} neutronclient.create_firewall_rule(form_dict).AndReturn(ret_dict) self.mox.ReplayAll() ret_val = api.fwaas.rule_create(self.request, **form_data) self.assertIsInstance(ret_val, api.fwaas.Rule) self.assertEqual(rule1.name, ret_val.name) self.assertTrue(ret_val.id) @test.create_stubs({neutronclient: ('list_firewall_rules', 'list_firewall_policies')}) def test_rule_list(self): exp_rules = self.fw_rules.list() api_rules = {'firewall_rules': self.api_fw_rules.list()} api_policies = {'firewall_policies': self.api_fw_policies.list()} neutronclient.list_firewall_rules().AndReturn(api_rules) neutronclient.list_firewall_policies().AndReturn(api_policies) self.mox.ReplayAll() ret_val = api.fwaas.rule_list(self.request) for (v, d) in zip(ret_val, exp_rules): self.assertIsInstance(v, api.fwaas.Rule) self.assertEqual(d.name, v.name) self.assertTrue(v.id) if d.policy: self.assertEqual(d.firewall_policy_id, v.policy.id, ) self.assertEqual(d.policy.name, v.policy.name) else: self.assertIsNone(v.policy) @test.create_stubs({neutronclient: ('show_firewall_rule', 'show_firewall_policy')}) def test_rule_get(self): exp_rule = self.fw_rules.first() ret_dict = {'firewall_rule': self.api_fw_rules.first()} policy_dict = {'firewall_policy': self.api_fw_policies.first()} neutronclient.show_firewall_rule(exp_rule.id).AndReturn(ret_dict) neutronclient.show_firewall_policy( exp_rule.firewall_policy_id).AndReturn(policy_dict) self.mox.ReplayAll() ret_val = api.fwaas.rule_get(self.request, exp_rule.id) self.assertIsInstance(ret_val, api.fwaas.Rule) self.assertEqual(exp_rule.name, ret_val.name) self.assertTrue(ret_val.id) self.assertEqual(exp_rule.firewall_policy_id, ret_val.policy.id) self.assertEqual(exp_rule.policy.name, ret_val.policy.name) @test.create_stubs({neutronclient: ('update_firewall_rule',)}) def test_rule_update(self): rule = self.fw_rules.first() rule_dict = self.api_fw_rules.first() rule.name = 'new name' rule.description = 'new desc' rule.protocol = 'icmp' rule.action = 'deny' rule.shared = True rule.enabled = False rule_dict['name'] = 'new name' rule_dict['description'] = 'new desc' rule_dict['protocol'] = 'icmp' rule_dict['action'] = 'deny' rule_dict['shared'] = True rule_dict['enabled'] = False form_data = {'name': rule.name, 'description': rule.description, 'protocol': rule.protocol, 'action': rule.action, 'shared': rule.shared, 'enabled': rule.enabled } form_dict = {'firewall_rule': form_data} ret_dict = {'firewall_rule': rule_dict} neutronclient.update_firewall_rule( rule.id, form_dict).AndReturn(ret_dict) self.mox.ReplayAll() ret_val = api.fwaas.rule_update(self.request, rule.id, **form_data) self.assertIsInstance(ret_val, api.fwaas.Rule) self.assertEqual(rule.name, ret_val.name) self.assertTrue(ret_val.id) @test.create_stubs({neutronclient: ('create_firewall_policy', )}) def test_policy_create(self): policy1 = self.fw_policies.first() policy1_dict = self.api_fw_policies.first() form_data = {'name': policy1.name, 'description': policy1.description, 'firewall_rules': policy1.firewall_rules, 'shared': policy1.shared, 'audited': policy1.audited } form_dict = {'firewall_policy': form_data} ret_dict = {'firewall_policy': policy1_dict} neutronclient.create_firewall_policy(form_dict).AndReturn(ret_dict) self.mox.ReplayAll() ret_val = api.fwaas.policy_create(self.request, **form_data) self.assertIsInstance(ret_val, api.fwaas.Policy) self.assertEqual(policy1.name, ret_val.name) self.assertTrue(ret_val.id) @test.create_stubs({neutronclient: ('list_firewall_policies', 'list_firewall_rules')}) def test_policy_list(self): exp_policies = self.fw_policies.list() policies_dict = {'firewall_policies': self.api_fw_policies.list()} rules_dict = {'firewall_rules': self.api_fw_rules.list()} neutronclient.list_firewall_policies().AndReturn(policies_dict) neutronclient.list_firewall_rules().AndReturn(rules_dict) self.mox.ReplayAll() ret_val = api.fwaas.policy_list(self.request) for (v, d) in zip(ret_val, exp_policies): self.assertIsInstance(v, api.fwaas.Policy) self.assertEqual(d.name, v.name) self.assertTrue(v.id) self.assertEqual(len(d.firewall_rules), len(v.rules)) self.assertEqual(len(d.firewall_rules), len(v.firewall_rules)) for (r, exp_r) in zip(v.rules, d.rules): self.assertEqual(exp_r.id, r.id) @test.create_stubs({neutronclient: ('show_firewall_policy', 'list_firewall_rules')}) def test_policy_get(self): exp_policy = self.fw_policies.first() policy_dict = self.api_fw_policies.first() # The first two rules are associated with the first policy. api_rules = self.api_fw_rules.list()[:2] ret_dict = {'firewall_policy': policy_dict} neutronclient.show_firewall_policy(exp_policy.id).AndReturn(ret_dict) filters = {'firewall_policy_id': exp_policy.id} ret_dict = {'firewall_rules': api_rules} neutronclient.list_firewall_rules(**filters).AndReturn(ret_dict) self.mox.ReplayAll() ret_val = api.fwaas.policy_get(self.request, exp_policy.id) self.assertIsInstance(ret_val, api.fwaas.Policy) self.assertEqual(exp_policy.name, ret_val.name) self.assertTrue(ret_val.id) self.assertEqual(len(exp_policy.rules), len(ret_val.rules)) for (exp, ret) in zip(exp_policy.rules, ret_val.rules): self.assertEqual(exp.id, ret.id) @test.create_stubs({neutronclient: ('show_firewall_policy',)}) def test_policy_get_no_rule(self): # 2nd policy is not associated with any rules. exp_policy = self.fw_policies.list()[1] policy_dict = self.api_fw_policies.list()[1] ret_dict = {'firewall_policy': policy_dict} neutronclient.show_firewall_policy(exp_policy.id).AndReturn(ret_dict) self.mox.ReplayAll() ret_val = api.fwaas.policy_get(self.request, exp_policy.id) self.assertIsInstance(ret_val, api.fwaas.Policy) self.assertEqual(exp_policy.name, ret_val.name) self.assertTrue(ret_val.id) self.assertFalse(len(ret_val.rules)) @test.create_stubs({neutronclient: ('update_firewall_policy',)}) def test_policy_update(self): policy = self.fw_policies.first() policy_dict = self.api_fw_policies.first() policy.name = 'new name' policy.description = 'new desc' policy.shared = True policy.audited = False policy_dict['name'] = 'new name' policy_dict['description'] = 'new desc' policy_dict['shared'] = True policy_dict['audited'] = False form_data = {'name': policy.name, 'description': policy.description, 'shared': policy.shared, 'audited': policy.audited } form_dict = {'firewall_policy': form_data} ret_dict = {'firewall_policy': policy_dict} neutronclient.update_firewall_policy( policy.id, form_dict).AndReturn(ret_dict) self.mox.ReplayAll() ret_val = api.fwaas.policy_update(self.request, policy.id, **form_data) self.assertIsInstance(ret_val, api.fwaas.Policy) self.assertEqual(policy.name, ret_val.name) self.assertTrue(ret_val.id) @test.create_stubs({neutronclient: ('firewall_policy_insert_rule',)}) def test_policy_insert_rule(self): policy = self.fw_policies.first() policy_dict = self.api_fw_policies.first() new_rule_id = 'h0881d38-c3eb-4fee-9763-12de3338041d' policy.firewall_rules.append(new_rule_id) policy_dict['firewall_rules'].append(new_rule_id) body = {'firewall_rule_id': new_rule_id, 'insert_before': policy.firewall_rules[1], 'insert_after': policy.firewall_rules[0]} neutronclient.firewall_policy_insert_rule( policy.id, body).AndReturn(policy_dict) self.mox.ReplayAll() ret_val = api.fwaas.policy_insert_rule(self.request, policy.id, **body) self.assertIn(new_rule_id, ret_val.firewall_rules) @test.create_stubs({neutronclient: ('firewall_policy_remove_rule',)}) def test_policy_remove_rule(self): policy = self.fw_policies.first() policy_dict = self.api_fw_policies.first() remove_rule_id = policy.firewall_rules[0] policy_dict['firewall_rules'].remove(remove_rule_id) body = {'firewall_rule_id': remove_rule_id} neutronclient.firewall_policy_remove_rule( policy.id, body).AndReturn(policy_dict) self.mox.ReplayAll() ret_val = api.fwaas.policy_remove_rule(self.request, policy.id, **body) self.assertNotIn(remove_rule_id, ret_val.firewall_rules) @test.create_stubs({neutronclient: ('create_firewall', )}) def test_firewall_create(self): firewall = self.firewalls.first() firewall_dict = self.api_firewalls.first() form_data = {'name': firewall.name, 'description': firewall.description, 'firewall_policy_id': firewall.firewall_policy_id, 'shared': firewall.shared, 'admin_state_up': firewall.admin_state_up } form_dict = {'firewall': form_data} ret_dict = {'firewall': firewall_dict} neutronclient.create_firewall(form_dict).AndReturn(ret_dict) self.mox.ReplayAll() ret_val = api.fwaas.firewall_create(self.request, **form_data) self.assertIsInstance(ret_val, api.fwaas.Firewall) self.assertEqual(firewall.name, ret_val.name) self.assertTrue(ret_val.id) @test.create_stubs({neutronclient: ('list_firewalls', 'list_firewall_policies')}) def test_firewall_list(self): exp_firewalls = self.firewalls.list() firewalls_dict = {'firewalls': self.api_firewalls.list()} policies_dict = {'firewall_policies': self.api_fw_policies.list()} neutronclient.list_firewalls().AndReturn(firewalls_dict) neutronclient.list_firewall_policies().AndReturn(policies_dict) self.mox.ReplayAll() ret_val = api.fwaas.firewall_list(self.request) for (v, d) in zip(ret_val, exp_firewalls): self.assertIsInstance(v, api.fwaas.Firewall) self.assertEqual(d.name, v.name) self.assertTrue(v.id) self.assertEqual(d.firewall_policy_id, v.policy.id) self.assertEqual(d.policy.name, v.policy.name) @test.create_stubs({neutronclient: ('show_firewall', 'show_firewall_policy')}) def test_firewall_get(self): exp_firewall = self.firewalls.first() ret_dict = {'firewall': self.api_firewalls.first()} policy_dict = {'firewall_policy': self.api_fw_policies.first()} neutronclient.show_firewall(exp_firewall.id).AndReturn(ret_dict) neutronclient.show_firewall_policy( exp_firewall.firewall_policy_id).AndReturn(policy_dict) self.mox.ReplayAll() ret_val = api.fwaas.firewall_get(self.request, exp_firewall.id) self.assertIsInstance(ret_val, api.fwaas.Firewall) self.assertEqual(exp_firewall.name, ret_val.name) self.assertTrue(ret_val.id) self.assertEqual(exp_firewall.firewall_policy_id, ret_val.policy.id) self.assertEqual(exp_firewall.policy.name, ret_val.policy.name) @test.create_stubs({neutronclient: ('update_firewall',)}) def test_firewall_update(self): firewall = self.firewalls.first() firewall_dict = self.api_firewalls.first() firewall.name = 'new name' firewall.description = 'new desc' firewall.admin_state_up = False firewall_dict['name'] = 'new name' firewall_dict['description'] = 'new desc' firewall_dict['admin_state_up'] = False form_data = {'name': firewall.name, 'description': firewall.description, 'admin_state_up': firewall.admin_state_up } form_dict = {'firewall': form_data} ret_dict = {'firewall': firewall_dict} neutronclient.update_firewall( firewall.id, form_dict).AndReturn(ret_dict) self.mox.ReplayAll() ret_val = api.fwaas.firewall_update(self.request, firewall.id, **form_data) self.assertIsInstance(ret_val, api.fwaas.Firewall) self.assertEqual(firewall.name, ret_val.name) self.assertTrue(ret_val.id)
{ "content_hash": "79dbe19c03ce71ffab4d211f9ef43c8e", "timestamp": "", "source": "github", "line_count": 357, "max_line_length": 77, "avg_line_length": 41.851540616246496, "alnum_prop": 0.5935345693059367, "repo_name": "mrunge/horizon", "id": "1c978b2f1ec14367e0849649e6267abfd48efd69", "size": "15563", "binary": false, "copies": "7", "ref": "refs/heads/master", "path": "openstack_dashboard/test/api_tests/fwaas_tests.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "64112" }, { "name": "JavaScript", "bytes": "238175" }, { "name": "Python", "bytes": "3989776" }, { "name": "Shell", "bytes": "16967" } ], "symlink_target": "" }
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # isort:skip_file """Unit tests for Superset""" import csv import datetime import doctest import html import io import json import logging from typing import Dict, List from urllib.parse import quote import superset.utils.database from tests.integration_tests.fixtures.birth_names_dashboard import ( load_birth_names_dashboard_with_slices, load_birth_names_data, ) import pytest import pytz import random import re import unittest from unittest import mock import pandas as pd import sqlalchemy as sqla from sqlalchemy.exc import SQLAlchemyError from superset.models.cache import CacheKey from superset.utils.database import get_example_database from tests.integration_tests.conftest import with_feature_flags from tests.integration_tests.fixtures.energy_dashboard import ( load_energy_table_with_slice, load_energy_table_data, ) from tests.integration_tests.test_app import app import superset.views.utils from superset import ( dataframe, db, security_manager, sql_lab, ) from superset.common.db_query_status import QueryStatus from superset.connectors.sqla.models import SqlaTable from superset.db_engine_specs.base import BaseEngineSpec from superset.db_engine_specs.mssql import MssqlEngineSpec from superset.exceptions import SupersetException from superset.extensions import async_query_manager from superset.models import core as models from superset.models.annotations import Annotation, AnnotationLayer from superset.models.dashboard import Dashboard from superset.models.datasource_access_request import DatasourceAccessRequest from superset.models.slice import Slice from superset.models.sql_lab import Query from superset.result_set import SupersetResultSet from superset.utils import core as utils from superset.views import core as views from superset.views.database.views import DatabaseView from .base_tests import SupersetTestCase from tests.integration_tests.fixtures.world_bank_dashboard import ( load_world_bank_dashboard_with_slices, load_world_bank_data, ) logger = logging.getLogger(__name__) @pytest.fixture(scope="module") def cleanup(): db.session.query(Query).delete() db.session.query(DatasourceAccessRequest).delete() db.session.query(models.Log).delete() db.session.commit() yield class TestCore(SupersetTestCase): def setUp(self): self.table_ids = { tbl.table_name: tbl.id for tbl in (db.session.query(SqlaTable).all()) } self.original_unsafe_db_setting = app.config["PREVENT_UNSAFE_DB_CONNECTIONS"] def tearDown(self): db.session.query(Query).delete() app.config["PREVENT_UNSAFE_DB_CONNECTIONS"] = self.original_unsafe_db_setting def test_login(self): resp = self.get_resp("/login/", data=dict(username="admin", password="general")) self.assertNotIn("User confirmation needed", resp) resp = self.get_resp("/logout/", follow_redirects=True) self.assertIn("User confirmation needed", resp) resp = self.get_resp( "/login/", data=dict(username="admin", password="wrongPassword") ) self.assertIn("User confirmation needed", resp) def test_dashboard_endpoint(self): self.login() resp = self.client.get("/superset/dashboard/-1/") assert resp.status_code == 404 @pytest.mark.usefixtures("load_birth_names_dashboard_with_slices") def test_slice_endpoint(self): self.login(username="admin") resp = self.client.get("/superset/slice/-1/") assert resp.status_code == 404 @pytest.mark.usefixtures("load_birth_names_dashboard_with_slices") def test_viz_cache_key(self): self.login(username="admin") slc = self.get_slice("Girls", db.session) viz = slc.viz qobj = viz.query_obj() cache_key = viz.cache_key(qobj) qobj["groupby"] = [] cache_key_with_groupby = viz.cache_key(qobj) self.assertNotEqual(cache_key, cache_key_with_groupby) self.assertNotEqual( viz.cache_key(qobj), viz.cache_key(qobj, time_compare="12 weeks") ) self.assertNotEqual( viz.cache_key(qobj, time_compare="28 days"), viz.cache_key(qobj, time_compare="12 weeks"), ) qobj["inner_from_dttm"] = datetime.datetime(1901, 1, 1) self.assertEqual(cache_key_with_groupby, viz.cache_key(qobj)) def test_get_superset_tables_not_allowed(self): example_db = superset.utils.database.get_example_database() schema_name = self.default_schema_backend_map[example_db.backend] self.login(username="gamma") uri = f"superset/tables/{example_db.id}/{schema_name}/undefined/" rv = self.client.get(uri) self.assertEqual(rv.status_code, 404) @pytest.mark.usefixtures("load_energy_table_with_slice") def test_get_superset_tables_allowed(self): session = db.session table_name = "energy_usage" role_name = "dummy_role" self.logout() self.login(username="gamma") gamma_user = security_manager.find_user(username="gamma") security_manager.add_role(role_name) dummy_role = security_manager.find_role(role_name) gamma_user.roles.append(dummy_role) tbl_id = self.table_ids.get(table_name) table = db.session.query(SqlaTable).filter(SqlaTable.id == tbl_id).first() table_perm = table.perm security_manager.add_permission_role( dummy_role, security_manager.find_permission_view_menu("datasource_access", table_perm), ) session.commit() example_db = utils.get_example_database() schema_name = self.default_schema_backend_map[example_db.backend] uri = f"superset/tables/{example_db.id}/{schema_name}/{table_name}/" rv = self.client.get(uri) self.assertEqual(rv.status_code, 200) # cleanup gamma_user = security_manager.find_user(username="gamma") gamma_user.roles.remove(security_manager.find_role(role_name)) session.commit() @pytest.mark.usefixtures("load_energy_table_with_slice") def test_get_superset_tables_not_allowed_with_out_permissions(self): session = db.session table_name = "energy_usage" role_name = "dummy_role_no_table_access" self.logout() self.login(username="gamma") gamma_user = security_manager.find_user(username="gamma") security_manager.add_role(role_name) dummy_role = security_manager.find_role(role_name) gamma_user.roles.append(dummy_role) session.commit() example_db = utils.get_example_database() schema_name = self.default_schema_backend_map[example_db.backend] uri = f"superset/tables/{example_db.id}/{schema_name}/{table_name}/" rv = self.client.get(uri) self.assertEqual(rv.status_code, 404) # cleanup gamma_user = security_manager.find_user(username="gamma") gamma_user.roles.remove(security_manager.find_role(role_name)) session.commit() def test_get_superset_tables_substr(self): example_db = superset.utils.database.get_example_database() if example_db.backend in {"presto", "hive", "sqlite"}: # TODO: change table to the real table that is in examples. return self.login(username="admin") schema_name = self.default_schema_backend_map[example_db.backend] uri = f"superset/tables/{example_db.id}/{schema_name}/ab_role/" rv = self.client.get(uri) response = json.loads(rv.data.decode("utf-8")) self.assertEqual(rv.status_code, 200) expected_response = { "options": [ { "label": "ab_role", "schema": schema_name, "title": "ab_role", "type": "table", "value": "ab_role", "extra": None, } ], "tableLength": 1, } self.assertEqual(response, expected_response) def test_get_superset_tables_not_found(self): self.login(username="admin") uri = f"superset/tables/invalid/public/undefined/" rv = self.client.get(uri) self.assertEqual(rv.status_code, 404) def test_annotation_json_endpoint(self): # Set up an annotation layer and annotation layer = AnnotationLayer(name="foo", descr="bar") db.session.add(layer) db.session.commit() annotation = Annotation( layer_id=layer.id, short_descr="my_annotation", start_dttm=datetime.datetime(2020, 5, 20, 18, 21, 51), end_dttm=datetime.datetime(2020, 5, 20, 18, 31, 51), ) db.session.add(annotation) db.session.commit() self.login() resp_annotations = json.loads( self.get_resp("annotationlayermodelview/api/read") ) # the UI needs id and name to function self.assertIn("id", resp_annotations["result"][0]) self.assertIn("name", resp_annotations["result"][0]) response = self.get_resp( f"/superset/annotation_json/{layer.id}?form_data=" + quote(json.dumps({"time_range": "100 years ago : now"})) ) assert "my_annotation" in response # Rollback changes db.session.delete(annotation) db.session.delete(layer) db.session.commit() def test_admin_only_permissions(self): def assert_admin_permission_in(role_name, assert_func): role = security_manager.find_role(role_name) permissions = [p.permission.name for p in role.permissions] assert_func("can_approve", permissions) assert_admin_permission_in("Admin", self.assertIn) assert_admin_permission_in("Alpha", self.assertNotIn) assert_admin_permission_in("Gamma", self.assertNotIn) def test_admin_only_menu_views(self): def assert_admin_view_menus_in(role_name, assert_func): role = security_manager.find_role(role_name) view_menus = [p.view_menu.name for p in role.permissions] assert_func("ResetPasswordView", view_menus) assert_func("RoleModelView", view_menus) assert_func("Security", view_menus) assert_func("SQL Lab", view_menus) assert_admin_view_menus_in("Admin", self.assertIn) assert_admin_view_menus_in("Alpha", self.assertNotIn) assert_admin_view_menus_in("Gamma", self.assertNotIn) @pytest.mark.usefixtures("load_energy_table_with_slice") def test_save_slice(self): self.login(username="admin") slice_name = f"Energy Sankey" slice_id = self.get_slice(slice_name, db.session).id copy_name_prefix = "Test Sankey" copy_name = f"{copy_name_prefix}[save]{random.random()}" tbl_id = self.table_ids.get("energy_usage") new_slice_name = f"{copy_name_prefix}[overwrite]{random.random()}" url = ( "/superset/explore/table/{}/?slice_name={}&" "action={}&datasource_name=energy_usage" ) form_data = { "adhoc_filters": [], "viz_type": "sankey", "groupby": ["target"], "metric": "sum__value", "row_limit": 5000, "slice_id": slice_id, } # Changing name and save as a new slice resp = self.client.post( url.format(tbl_id, copy_name, "saveas"), data={"form_data": json.dumps(form_data)}, ) db.session.expunge_all() new_slice_id = resp.json["form_data"]["slice_id"] slc = db.session.query(Slice).filter_by(id=new_slice_id).one() self.assertEqual(slc.slice_name, copy_name) form_data.pop("slice_id") # We don't save the slice id when saving as self.assertEqual(slc.viz.form_data, form_data) form_data = { "adhoc_filters": [], "viz_type": "sankey", "groupby": ["source"], "metric": "sum__value", "row_limit": 5000, "slice_id": new_slice_id, "time_range": "now", } # Setting the name back to its original name by overwriting new slice self.client.post( url.format(tbl_id, new_slice_name, "overwrite"), data={"form_data": json.dumps(form_data)}, ) db.session.expunge_all() slc = db.session.query(Slice).filter_by(id=new_slice_id).one() self.assertEqual(slc.slice_name, new_slice_name) self.assertEqual(slc.viz.form_data, form_data) # Cleanup slices = ( db.session.query(Slice) .filter(Slice.slice_name.like(copy_name_prefix + "%")) .all() ) for slc in slices: db.session.delete(slc) db.session.commit() @pytest.mark.usefixtures("load_energy_table_with_slice") def test_filter_endpoint(self): self.login(username="admin") slice_name = "Energy Sankey" slice_id = self.get_slice(slice_name, db.session).id db.session.commit() tbl_id = self.table_ids.get("energy_usage") table = db.session.query(SqlaTable).filter(SqlaTable.id == tbl_id) table.filter_select_enabled = True url = ( "/superset/filter/table/{}/target/?viz_type=sankey&groupby=source" "&metric=sum__value&flt_col_0=source&flt_op_0=in&flt_eq_0=&" "slice_id={}&datasource_name=energy_usage&" "datasource_id=1&datasource_type=table" ) # Changing name resp = self.get_resp(url.format(tbl_id, slice_id)) assert len(resp) > 0 assert "energy_target0" in resp @pytest.mark.usefixtures("load_birth_names_dashboard_with_slices") def test_slice_data(self): # slice data should have some required attributes self.login(username="admin") slc = self.get_slice( slice_name="Girls", session=db.session, expunge_from_session=False ) slc_data_attributes = slc.data.keys() assert "changed_on" in slc_data_attributes assert "modified" in slc_data_attributes assert "owners" in slc_data_attributes @pytest.mark.usefixtures("load_energy_table_with_slice") def test_slices(self): # Testing by hitting the two supported end points for all slices self.login(username="admin") Slc = Slice urls = [] for slc in db.session.query(Slc).all(): urls += [ (slc.slice_name, "explore", slc.slice_url), ] for name, method, url in urls: logger.info(f"[{name}]/[{method}]: {url}") print(f"[{name}]/[{method}]: {url}") resp = self.client.get(url) self.assertEqual(resp.status_code, 200) def test_add_slice(self): self.login(username="admin") # assert that /chart/add responds with 200 url = "/chart/add" resp = self.client.get(url) self.assertEqual(resp.status_code, 200) @pytest.mark.usefixtures("load_birth_names_dashboard_with_slices") def test_get_user_slices_for_owners(self): self.login(username="alpha") user = security_manager.find_user("alpha") slice_name = "Girls" # ensure user is not owner of any slices url = f"/superset/user_slices/{user.id}/" resp = self.client.get(url) data = json.loads(resp.data) self.assertEqual(data, []) # make user owner of slice and verify that endpoint returns said slice slc = self.get_slice( slice_name=slice_name, session=db.session, expunge_from_session=False ) slc.owners = [user] db.session.merge(slc) db.session.commit() url = f"/superset/user_slices/{user.id}/" resp = self.client.get(url) data = json.loads(resp.data) self.assertEqual(len(data), 1) self.assertEqual(data[0]["title"], slice_name) # remove ownership and ensure user no longer gets slice slc = self.get_slice( slice_name=slice_name, session=db.session, expunge_from_session=False ) slc.owners = [] db.session.merge(slc) db.session.commit() url = f"/superset/user_slices/{user.id}/" resp = self.client.get(url) data = json.loads(resp.data) self.assertEqual(data, []) def test_get_user_slices(self): self.login(username="admin") userid = security_manager.find_user("admin").id url = f"/sliceasync/api/read?_flt_0_created_by={userid}" resp = self.client.get(url) self.assertEqual(resp.status_code, 200) @pytest.mark.usefixtures("load_energy_table_with_slice") def test_slices_V2(self): # Add explore-v2-beta role to admin user # Test all slice urls as user with with explore-v2-beta role security_manager.add_role("explore-v2-beta") security_manager.add_user( "explore_beta", "explore_beta", " user", "explore_beta@airbnb.com", security_manager.find_role("explore-v2-beta"), password="general", ) self.login(username="explore_beta", password="general") Slc = Slice urls = [] for slc in db.session.query(Slc).all(): urls += [(slc.slice_name, "slice_url", slc.slice_url)] for name, method, url in urls: print(f"[{name}]/[{method}]: {url}") self.client.get(url) def test_doctests(self): modules = [utils, models, sql_lab] for mod in modules: failed, tests = doctest.testmod(mod) if failed: raise Exception("Failed a doctest") def test_misc(self): assert self.get_resp("/health") == "OK" assert self.get_resp("/healthcheck") == "OK" assert self.get_resp("/ping") == "OK" def test_testconn(self, username="admin"): # need to temporarily allow sqlite dbs, teardown will undo this app.config["PREVENT_UNSAFE_DB_CONNECTIONS"] = False self.login(username=username) database = superset.utils.database.get_example_database() # validate that the endpoint works with the password-masked sqlalchemy uri data = json.dumps( { "uri": database.safe_sqlalchemy_uri(), "name": "examples", "impersonate_user": False, } ) response = self.client.post( "/superset/testconn", data=data, content_type="application/json" ) assert response.status_code == 200 assert response.headers["Content-Type"] == "application/json" # validate that the endpoint works with the decrypted sqlalchemy uri data = json.dumps( { "uri": database.sqlalchemy_uri_decrypted, "name": "examples", "impersonate_user": False, } ) response = self.client.post( "/superset/testconn", data=data, content_type="application/json" ) assert response.status_code == 200 assert response.headers["Content-Type"] == "application/json" def test_testconn_failed_conn(self, username="admin"): self.login(username=username) data = json.dumps( {"uri": "broken://url", "name": "examples", "impersonate_user": False} ) response = self.client.post( "/superset/testconn", data=data, content_type="application/json" ) assert response.status_code == 400 assert response.headers["Content-Type"] == "application/json" response_body = json.loads(response.data.decode("utf-8")) expected_body = {"error": "Could not load database driver: broken"} assert response_body == expected_body, "%s != %s" % ( response_body, expected_body, ) data = json.dumps( { "uri": "mssql+pymssql://url", "name": "examples", "impersonate_user": False, } ) response = self.client.post( "/superset/testconn", data=data, content_type="application/json" ) assert response.status_code == 400 assert response.headers["Content-Type"] == "application/json" response_body = json.loads(response.data.decode("utf-8")) expected_body = {"error": "Could not load database driver: mssql+pymssql"} assert response_body == expected_body, "%s != %s" % ( response_body, expected_body, ) def test_testconn_unsafe_uri(self, username="admin"): self.login(username=username) app.config["PREVENT_UNSAFE_DB_CONNECTIONS"] = True response = self.client.post( "/superset/testconn", data=json.dumps( { "uri": "sqlite:///home/superset/unsafe.db", "name": "unsafe", "impersonate_user": False, } ), content_type="application/json", ) self.assertEqual(400, response.status_code) response_body = json.loads(response.data.decode("utf-8")) expected_body = { "error": "SQLiteDialect_pysqlite cannot be used as a data source for security reasons." } self.assertEqual(expected_body, response_body) def test_custom_password_store(self): database = superset.utils.database.get_example_database() conn_pre = sqla.engine.url.make_url(database.sqlalchemy_uri_decrypted) def custom_password_store(uri): return "password_store_test" models.custom_password_store = custom_password_store conn = sqla.engine.url.make_url(database.sqlalchemy_uri_decrypted) if conn_pre.password: assert conn.password == "password_store_test" assert conn.password != conn_pre.password # Disable for password store for later tests models.custom_password_store = None def test_databaseview_edit(self, username="admin"): # validate that sending a password-masked uri does not over-write the decrypted # uri self.login(username=username) database = superset.utils.database.get_example_database() sqlalchemy_uri_decrypted = database.sqlalchemy_uri_decrypted url = "databaseview/edit/{}".format(database.id) data = {k: database.__getattribute__(k) for k in DatabaseView.add_columns} data["sqlalchemy_uri"] = database.safe_sqlalchemy_uri() self.client.post(url, data=data) database = superset.utils.database.get_example_database() self.assertEqual(sqlalchemy_uri_decrypted, database.sqlalchemy_uri_decrypted) # Need to clean up after ourselves database.impersonate_user = False database.allow_dml = False database.allow_run_async = False db.session.commit() @pytest.mark.usefixtures( "load_energy_table_with_slice", "load_birth_names_dashboard_with_slices" ) def test_warm_up_cache(self): self.login() slc = self.get_slice("Girls", db.session) data = self.get_json_resp("/superset/warm_up_cache?slice_id={}".format(slc.id)) self.assertEqual( data, [{"slice_id": slc.id, "viz_error": None, "viz_status": "success"}] ) data = self.get_json_resp( "/superset/warm_up_cache?table_name=energy_usage&db_name=main" ) assert len(data) > 0 dashboard = self.get_dash_by_slug("births") assert self.get_json_resp( f"/superset/warm_up_cache?dashboard_id={dashboard.id}&slice_id={slc.id}" ) == [{"slice_id": slc.id, "viz_error": None, "viz_status": "success"}] assert self.get_json_resp( f"/superset/warm_up_cache?dashboard_id={dashboard.id}&slice_id={slc.id}&extra_filters=" + quote(json.dumps([{"col": "name", "op": "in", "val": ["Jennifer"]}])) ) == [{"slice_id": slc.id, "viz_error": None, "viz_status": "success"}] @pytest.mark.usefixtures("load_birth_names_dashboard_with_slices") def test_cache_logging(self): self.login("admin") store_cache_keys = app.config["STORE_CACHE_KEYS_IN_METADATA_DB"] app.config["STORE_CACHE_KEYS_IN_METADATA_DB"] = True girls_slice = self.get_slice("Girls", db.session) self.get_json_resp("/superset/warm_up_cache?slice_id={}".format(girls_slice.id)) ck = db.session.query(CacheKey).order_by(CacheKey.id.desc()).first() assert ck.datasource_uid == f"{girls_slice.table.id}__table" app.config["STORE_CACHE_KEYS_IN_METADATA_DB"] = store_cache_keys def test_redirect_invalid(self): model_url = models.Url(url="hhttp://invalid.com") db.session.add(model_url) db.session.commit() self.login(username="admin") response = self.client.get(f"/r/{model_url.id}") assert response.headers["Location"] == "http://localhost/" db.session.delete(model_url) db.session.commit() @with_feature_flags(KV_STORE=False) def test_kv_disabled(self): self.login(username="admin") resp = self.client.get("/kv/10001/") self.assertEqual(404, resp.status_code) value = json.dumps({"data": "this is a test"}) resp = self.client.post("/kv/store/", data=dict(data=value)) self.assertEqual(resp.status_code, 404) @with_feature_flags(KV_STORE=True) def test_kv_enabled(self): self.login(username="admin") resp = self.client.get("/kv/10001/") self.assertEqual(404, resp.status_code) value = json.dumps({"data": "this is a test"}) resp = self.client.post("/kv/store/", data=dict(data=value)) self.assertEqual(resp.status_code, 200) kv = db.session.query(models.KeyValue).first() kv_value = kv.value self.assertEqual(json.loads(value), json.loads(kv_value)) resp = self.client.get("/kv/{}/".format(kv.id)) self.assertEqual(resp.status_code, 200) self.assertEqual(json.loads(value), json.loads(resp.data.decode("utf-8"))) def test_gamma(self): self.login(username="gamma") assert "Charts" in self.get_resp("/chart/list/") assert "Dashboards" in self.get_resp("/dashboard/list/") @pytest.mark.usefixtures("load_birth_names_dashboard_with_slices") def test_csv_endpoint(self): self.login() client_id = "{}".format(random.getrandbits(64))[:10] get_name_sql = """ SELECT name FROM birth_names LIMIT 1 """ resp = self.run_sql(get_name_sql, client_id, raise_on_error=True) name = resp["data"][0]["name"] sql = f""" SELECT name FROM birth_names WHERE name = '{name}' LIMIT 1 """ client_id = "{}".format(random.getrandbits(64))[:10] self.run_sql(sql, client_id, raise_on_error=True) resp = self.get_resp("/superset/csv/{}".format(client_id)) data = csv.reader(io.StringIO(resp)) expected_data = csv.reader(io.StringIO(f"name\n{name}\n")) client_id = "{}".format(random.getrandbits(64))[:10] self.run_sql(sql, client_id, raise_on_error=True) resp = self.get_resp("/superset/csv/{}".format(client_id)) data = csv.reader(io.StringIO(resp)) expected_data = csv.reader(io.StringIO(f"name\n{name}\n")) self.assertEqual(list(expected_data), list(data)) self.logout() @pytest.mark.usefixtures("load_birth_names_dashboard_with_slices") def test_extra_table_metadata(self): self.login() example_db = superset.utils.database.get_example_database() schema = "default" if example_db.backend in {"presto", "hive"} else "superset" self.get_json_resp( f"/superset/extra_table_metadata/{example_db.id}/birth_names/{schema}/" ) def test_templated_sql_json(self): if superset.utils.database.get_example_database().backend == "presto": # TODO: make it work for presto return self.login() sql = "SELECT '{{ 1+1 }}' as test" data = self.run_sql(sql, "fdaklj3ws") self.assertEqual(data["data"][0]["test"], "2") @mock.patch( "tests.integration_tests.superset_test_custom_template_processors.datetime" ) @mock.patch("superset.views.core.get_sql_results") def test_custom_templated_sql_json(self, sql_lab_mock, mock_dt) -> None: """Test sqllab receives macros expanded query.""" mock_dt.utcnow = mock.Mock(return_value=datetime.datetime(1970, 1, 1)) self.login() sql = "SELECT '$DATE()' as test" resp = { "status": QueryStatus.SUCCESS, "query": {"rows": 1}, "data": [{"test": "'1970-01-01'"}], } sql_lab_mock.return_value = resp dbobj = self.create_fake_db_for_macros() json_payload = dict(database_id=dbobj.id, sql=sql) self.get_json_resp( "/superset/sql_json/", raise_on_error=False, json_=json_payload ) assert sql_lab_mock.called self.assertEqual(sql_lab_mock.call_args[0][1], "SELECT '1970-01-01' as test") self.delete_fake_db_for_macros() def test_fetch_datasource_metadata(self): self.login(username="admin") url = "/superset/fetch_datasource_metadata?" "datasourceKey=1__table" resp = self.get_json_resp(url) keys = [ "name", "type", "order_by_choices", "granularity_sqla", "time_grain_sqla", "id", ] for k in keys: self.assertIn(k, resp.keys()) @staticmethod def _get_user_activity_endpoints(user: str): userid = security_manager.find_user(user).id return ( f"/superset/recent_activity/{userid}/", f"/superset/created_slices/{userid}/", f"/superset/created_dashboards/{userid}/", f"/superset/fave_slices/{userid}/", f"/superset/fave_dashboards/{userid}/", f"/superset/user_slices/{userid}/", f"/superset/fave_dashboards_by_username/{user}/", ) @pytest.mark.usefixtures("load_birth_names_dashboard_with_slices") def test_user_profile(self, username="admin"): self.login(username=username) slc = self.get_slice("Girls", db.session) # Setting some faves url = f"/superset/favstar/Slice/{slc.id}/select/" resp = self.get_json_resp(url) self.assertEqual(resp["count"], 1) dash = db.session.query(Dashboard).filter_by(slug="births").first() url = f"/superset/favstar/Dashboard/{dash.id}/select/" resp = self.get_json_resp(url) self.assertEqual(resp["count"], 1) resp = self.get_resp(f"/superset/profile/{username}/") self.assertIn('"app"', resp) for endpoint in self._get_user_activity_endpoints(username): data = self.get_json_resp(endpoint) self.assertNotIn("message", data) @pytest.mark.usefixtures("load_birth_names_dashboard_with_slices") def test_user_activity_access(self, username="gamma"): self.login(username=username) # accessing own and other users' activity is allowed by default for user in ("admin", "gamma"): for endpoint in self._get_user_activity_endpoints(user): resp = self.client.get(endpoint) assert resp.status_code == 200 # disabling flag will block access to other users' activity data access_flag = app.config["ENABLE_BROAD_ACTIVITY_ACCESS"] app.config["ENABLE_BROAD_ACTIVITY_ACCESS"] = False for user in ("admin", "gamma"): for endpoint in self._get_user_activity_endpoints(user): resp = self.client.get(endpoint) expected_status_code = 200 if user == username else 403 assert resp.status_code == expected_status_code # restore flag app.config["ENABLE_BROAD_ACTIVITY_ACCESS"] = access_flag @pytest.mark.usefixtures("load_birth_names_dashboard_with_slices") def test_slice_id_is_always_logged_correctly_on_web_request(self): # explore case self.login("admin") slc = db.session.query(Slice).filter_by(slice_name="Girls").one() qry = db.session.query(models.Log).filter_by(slice_id=slc.id) self.get_resp(slc.slice_url) self.assertEqual(1, qry.count()) def create_sample_csvfile(self, filename: str, content: List[str]) -> None: with open(filename, "w+") as test_file: for l in content: test_file.write(f"{l}\n") def create_sample_excelfile(self, filename: str, content: Dict[str, str]) -> None: pd.DataFrame(content).to_excel(filename) def enable_csv_upload(self, database: models.Database) -> None: """Enables csv upload in the given database.""" database.allow_file_upload = True db.session.commit() add_datasource_page = self.get_resp("/databaseview/list/") self.assertIn("Upload a CSV", add_datasource_page) form_get = self.get_resp("/csvtodatabaseview/form") self.assertIn("CSV to Database configuration", form_get) def test_dataframe_timezone(self): tz = pytz.FixedOffset(60) data = [ (datetime.datetime(2017, 11, 18, 21, 53, 0, 219225, tzinfo=tz),), (datetime.datetime(2017, 11, 18, 22, 6, 30, tzinfo=tz),), ] results = SupersetResultSet(list(data), [["data"]], BaseEngineSpec) df = results.to_pandas_df() data = dataframe.df_to_records(df) json_str = json.dumps(data, default=utils.pessimistic_json_iso_dttm_ser) self.assertDictEqual( data[0], {"data": pd.Timestamp("2017-11-18 21:53:00.219225+0100", tz=tz)} ) self.assertDictEqual( data[1], {"data": pd.Timestamp("2017-11-18 22:06:30+0100", tz=tz)} ) self.assertEqual( json_str, '[{"data": "2017-11-18T21:53:00.219225+01:00"}, {"data": "2017-11-18T22:06:30+01:00"}]', ) def test_mssql_engine_spec_pymssql(self): # Test for case when tuple is returned (pymssql) data = [ (1, 1, datetime.datetime(2017, 10, 19, 23, 39, 16, 660000)), (2, 2, datetime.datetime(2018, 10, 19, 23, 39, 16, 660000)), ] results = SupersetResultSet( list(data), [["col1"], ["col2"], ["col3"]], MssqlEngineSpec ) df = results.to_pandas_df() data = dataframe.df_to_records(df) self.assertEqual(len(data), 2) self.assertEqual( data[0], {"col1": 1, "col2": 1, "col3": pd.Timestamp("2017-10-19 23:39:16.660000")}, ) def test_comments_in_sqlatable_query(self): clean_query = "SELECT '/* val 1 */' as c1, '-- val 2' as c2 FROM tbl" commented_query = "/* comment 1 */" + clean_query + "-- comment 2" table = SqlaTable( table_name="test_comments_in_sqlatable_query_table", sql=commented_query, database=get_example_database(), ) rendered_query = str(table.get_from_clause()[0]) self.assertEqual(clean_query, rendered_query) def test_slice_payload_no_datasource(self): self.login(username="admin") data = self.get_json_resp("/superset/explore_json/", raise_on_error=False) self.assertEqual( data["errors"][0]["message"], "The dataset associated with this chart no longer exists", ) @pytest.mark.usefixtures("load_birth_names_dashboard_with_slices") def test_explore_json(self): tbl_id = self.table_ids.get("birth_names") form_data = { "datasource": f"{tbl_id}__table", "viz_type": "dist_bar", "granularity_sqla": "ds", "time_range": "No filter", "metrics": ["count"], "adhoc_filters": [], "groupby": ["gender"], "row_limit": 100, } self.login(username="admin") rv = self.client.post( "/superset/explore_json/", data={"form_data": json.dumps(form_data)}, ) data = json.loads(rv.data.decode("utf-8")) self.assertEqual(rv.status_code, 200) self.assertEqual(data["rowcount"], 2) @pytest.mark.usefixtures("load_birth_names_dashboard_with_slices") def test_explore_json_dist_bar_order(self): tbl_id = self.table_ids.get("birth_names") form_data = { "datasource": f"{tbl_id}__table", "viz_type": "dist_bar", "url_params": {}, "granularity_sqla": "ds", "time_range": 'DATEADD(DATETIME("2021-01-22T00:00:00"), -100, year) : 2021-01-22T00:00:00', "metrics": [ { "expressionType": "SIMPLE", "column": { "id": 334, "column_name": "name", "verbose_name": "null", "description": "null", "expression": "", "filterable": True, "groupby": True, "is_dttm": False, "type": "VARCHAR(255)", "python_date_format": "null", }, "aggregate": "COUNT", "sqlExpression": "null", "isNew": False, "hasCustomLabel": False, "label": "COUNT(name)", "optionName": "metric_xdzsijn42f9_khi4h3v3vci", }, { "expressionType": "SIMPLE", "column": { "id": 332, "column_name": "ds", "verbose_name": "null", "description": "null", "expression": "", "filterable": True, "groupby": True, "is_dttm": True, "type": "TIMESTAMP WITHOUT TIME ZONE", "python_date_format": "null", }, "aggregate": "COUNT", "sqlExpression": "null", "isNew": False, "hasCustomLabel": False, "label": "COUNT(ds)", "optionName": "metric_80g1qb9b6o7_ci5vquydcbe", }, ], "order_desc": True, "adhoc_filters": [], "groupby": ["name"], "columns": [], "row_limit": 10, "color_scheme": "supersetColors", "label_colors": {}, "show_legend": True, "y_axis_format": "SMART_NUMBER", "bottom_margin": "auto", "x_ticks_layout": "auto", } self.login(username="admin") rv = self.client.post( "/superset/explore_json/", data={"form_data": json.dumps(form_data)}, ) data = json.loads(rv.data.decode("utf-8")) resp = self.run_sql( """ SELECT count(name) AS count_name, count(ds) AS count_ds FROM birth_names WHERE ds >= '1921-01-22 00:00:00.000000' AND ds < '2021-01-22 00:00:00.000000' GROUP BY name ORDER BY count_name DESC LIMIT 10; """, client_id="client_id_1", username="admin", ) count_ds = [] count_name = [] for series in data["data"]: if series["key"] == "COUNT(ds)": count_ds = series["values"] if series["key"] == "COUNT(name)": count_name = series["values"] for expected, actual_ds, actual_name in zip(resp["data"], count_ds, count_name): assert expected["count_name"] == actual_name["y"] assert expected["count_ds"] == actual_ds["y"] @pytest.mark.usefixtures("load_birth_names_dashboard_with_slices") @mock.patch.dict( "superset.extensions.feature_flag_manager._feature_flags", GLOBAL_ASYNC_QUERIES=True, ) def test_explore_json_async(self): tbl_id = self.table_ids.get("birth_names") form_data = { "datasource": f"{tbl_id}__table", "viz_type": "dist_bar", "granularity_sqla": "ds", "time_range": "No filter", "metrics": ["count"], "adhoc_filters": [], "groupby": ["gender"], "row_limit": 100, } async_query_manager.init_app(app) self.login(username="admin") rv = self.client.post( "/superset/explore_json/", data={"form_data": json.dumps(form_data)}, ) data = json.loads(rv.data.decode("utf-8")) keys = list(data.keys()) self.assertEqual(rv.status_code, 202) self.assertCountEqual( keys, ["channel_id", "job_id", "user_id", "status", "errors", "result_url"] ) @pytest.mark.usefixtures("load_birth_names_dashboard_with_slices") @mock.patch.dict( "superset.extensions.feature_flag_manager._feature_flags", GLOBAL_ASYNC_QUERIES=True, ) def test_explore_json_async_results_format(self): tbl_id = self.table_ids.get("birth_names") form_data = { "datasource": f"{tbl_id}__table", "viz_type": "dist_bar", "granularity_sqla": "ds", "time_range": "No filter", "metrics": ["count"], "adhoc_filters": [], "groupby": ["gender"], "row_limit": 100, } async_query_manager.init_app(app) self.login(username="admin") rv = self.client.post( "/superset/explore_json/?results=true", data={"form_data": json.dumps(form_data)}, ) self.assertEqual(rv.status_code, 200) @pytest.mark.usefixtures("load_birth_names_dashboard_with_slices") @mock.patch( "superset.utils.cache_manager.CacheManager.cache", new_callable=mock.PropertyMock, ) @mock.patch("superset.viz.BaseViz.force_cached", new_callable=mock.PropertyMock) def test_explore_json_data(self, mock_force_cached, mock_cache): tbl_id = self.table_ids.get("birth_names") form_data = dict( { "form_data": { "datasource": f"{tbl_id}__table", "viz_type": "dist_bar", "granularity_sqla": "ds", "time_range": "No filter", "metrics": ["count"], "adhoc_filters": [], "groupby": ["gender"], "row_limit": 100, } } ) class MockCache: def get(self, key): return form_data def set(self): return None mock_cache.return_value = MockCache() mock_force_cached.return_value = False self.login(username="admin") rv = self.client.get("/superset/explore_json/data/valid-cache-key") data = json.loads(rv.data.decode("utf-8")) self.assertEqual(rv.status_code, 200) self.assertEqual(data["rowcount"], 2) @mock.patch( "superset.utils.cache_manager.CacheManager.cache", new_callable=mock.PropertyMock, ) def test_explore_json_data_no_login(self, mock_cache): tbl_id = self.table_ids.get("birth_names") form_data = dict( { "form_data": { "datasource": f"{tbl_id}__table", "viz_type": "dist_bar", "granularity_sqla": "ds", "time_range": "No filter", "metrics": ["count"], "adhoc_filters": [], "groupby": ["gender"], "row_limit": 100, } } ) class MockCache: def get(self, key): return form_data def set(self): return None mock_cache.return_value = MockCache() rv = self.client.get("/superset/explore_json/data/valid-cache-key") self.assertEqual(rv.status_code, 401) def test_explore_json_data_invalid_cache_key(self): self.login(username="admin") cache_key = "invalid-cache-key" rv = self.client.get(f"/superset/explore_json/data/{cache_key}") data = json.loads(rv.data.decode("utf-8")) self.assertEqual(rv.status_code, 404) self.assertEqual(data["error"], "Cached data not found") @mock.patch( "superset.security.SupersetSecurityManager.get_schemas_accessible_by_user" ) @mock.patch("superset.security.SupersetSecurityManager.can_access_database") @mock.patch("superset.security.SupersetSecurityManager.can_access_all_datasources") def test_schemas_access_for_csv_upload_endpoint( self, mock_can_access_all_datasources, mock_can_access_database, mock_schemas_accessible, ): self.login(username="admin") dbobj = self.create_fake_db() mock_can_access_all_datasources.return_value = False mock_can_access_database.return_value = False mock_schemas_accessible.return_value = ["this_schema_is_allowed_too"] data = self.get_json_resp( url="/superset/schemas_access_for_file_upload?db_id={db_id}".format( db_id=dbobj.id ) ) assert data == ["this_schema_is_allowed_too"] self.delete_fake_db() @mock.patch("superset.views.core.results_backend_use_msgpack", False) def test_display_limit(self): from superset.views import core core.results_backend = mock.Mock() self.login() data = [{"col_0": i} for i in range(100)] payload = { "status": QueryStatus.SUCCESS, "query": {"rows": 100}, "data": data, } # limit results to 1 expected_key = {"status": "success", "query": {"rows": 100}, "data": data} limited_data = data[:1] expected_limited = { "status": "success", "query": {"rows": 100}, "data": limited_data, "displayLimitReached": True, } query_mock = mock.Mock() query_mock.sql = "SELECT *" query_mock.database = 1 query_mock.schema = "superset" # do not apply msgpack serialization use_msgpack = app.config["RESULTS_BACKEND_USE_MSGPACK"] app.config["RESULTS_BACKEND_USE_MSGPACK"] = False serialized_payload = sql_lab._serialize_payload(payload, False) compressed = utils.zlib_compress(serialized_payload) core.results_backend.get.return_value = compressed with mock.patch("superset.views.core.db") as mock_superset_db: mock_superset_db.session.query().filter_by().one_or_none.return_value = ( query_mock ) # get all results result_key = json.loads(self.get_resp("/superset/results/key/")) result_limited = json.loads(self.get_resp("/superset/results/key/?rows=1")) self.assertEqual(result_key, expected_key) self.assertEqual(result_limited, expected_limited) app.config["RESULTS_BACKEND_USE_MSGPACK"] = use_msgpack def test_results_default_deserialization(self): use_new_deserialization = False data = [("a", 4, 4.0, "2019-08-18T16:39:16.660000")] cursor_descr = ( ("a", "string"), ("b", "int"), ("c", "float"), ("d", "datetime"), ) db_engine_spec = BaseEngineSpec() results = SupersetResultSet(data, cursor_descr, db_engine_spec) query = { "database_id": 1, "sql": "SELECT * FROM birth_names LIMIT 100", "status": QueryStatus.PENDING, } ( serialized_data, selected_columns, all_columns, expanded_columns, ) = sql_lab._serialize_and_expand_data( results, db_engine_spec, use_new_deserialization ) payload = { "query_id": 1, "status": QueryStatus.SUCCESS, "state": QueryStatus.SUCCESS, "data": serialized_data, "columns": all_columns, "selected_columns": selected_columns, "expanded_columns": expanded_columns, "query": query, } serialized_payload = sql_lab._serialize_payload( payload, use_new_deserialization ) self.assertIsInstance(serialized_payload, str) query_mock = mock.Mock() deserialized_payload = superset.views.utils._deserialize_results_payload( serialized_payload, query_mock, use_new_deserialization ) self.assertDictEqual(deserialized_payload, payload) query_mock.assert_not_called() def test_results_msgpack_deserialization(self): use_new_deserialization = True data = [("a", 4, 4.0, "2019-08-18T16:39:16.660000")] cursor_descr = ( ("a", "string"), ("b", "int"), ("c", "float"), ("d", "datetime"), ) db_engine_spec = BaseEngineSpec() results = SupersetResultSet(data, cursor_descr, db_engine_spec) query = { "database_id": 1, "sql": "SELECT * FROM birth_names LIMIT 100", "status": QueryStatus.PENDING, } ( serialized_data, selected_columns, all_columns, expanded_columns, ) = sql_lab._serialize_and_expand_data( results, db_engine_spec, use_new_deserialization ) payload = { "query_id": 1, "status": QueryStatus.SUCCESS, "state": QueryStatus.SUCCESS, "data": serialized_data, "columns": all_columns, "selected_columns": selected_columns, "expanded_columns": expanded_columns, "query": query, } serialized_payload = sql_lab._serialize_payload( payload, use_new_deserialization ) self.assertIsInstance(serialized_payload, bytes) with mock.patch.object( db_engine_spec, "expand_data", wraps=db_engine_spec.expand_data ) as expand_data: query_mock = mock.Mock() query_mock.database.db_engine_spec.expand_data = expand_data deserialized_payload = superset.views.utils._deserialize_results_payload( serialized_payload, query_mock, use_new_deserialization ) df = results.to_pandas_df() payload["data"] = dataframe.df_to_records(df) self.assertDictEqual(deserialized_payload, payload) expand_data.assert_called_once() @mock.patch.dict( "superset.extensions.feature_flag_manager._feature_flags", {"FOO": lambda x: 1}, clear=True, ) @pytest.mark.usefixtures("load_world_bank_dashboard_with_slices") def test_feature_flag_serialization(self): """ Functions in feature flags don't break bootstrap data serialization. """ self.login() encoded = json.dumps( {"FOO": lambda x: 1, "super": "set"}, default=utils.pessimistic_json_iso_dttm_ser, ) html_string = ( html.escape(encoded, quote=False) .replace("'", "&#39;") .replace('"', "&#34;") ) dash_id = db.session.query(Dashboard.id).first()[0] tbl_id = self.table_ids.get("wb_health_population") urls = [ "/superset/sqllab", "/superset/welcome", f"/superset/dashboard/{dash_id}/", "/superset/profile/admin/", f"/explore/?dataset_type=table&dataset_id={tbl_id}", ] for url in urls: data = self.get_resp(url) self.assertTrue(html_string in data) @mock.patch.dict( "superset.extensions.feature_flag_manager._feature_flags", {"SQLLAB_BACKEND_PERSISTENCE": True}, clear=True, ) def test_sqllab_backend_persistence_payload(self): username = "admin" self.login(username) user_id = security_manager.find_user(username).id # create a tab data = { "queryEditor": json.dumps( { "title": "Untitled Query 1", "dbId": 1, "schema": None, "autorun": False, "sql": "SELECT ...", "queryLimit": 1000, } ) } resp = self.get_json_resp("/tabstateview/", data=data) tab_state_id = resp["id"] # run a query in the created tab self.run_sql( "SELECT name FROM birth_names", "client_id_1", username=username, raise_on_error=True, sql_editor_id=str(tab_state_id), ) # run an orphan query (no tab) self.run_sql( "SELECT name FROM birth_names", "client_id_2", username=username, raise_on_error=True, ) # we should have only 1 query returned, since the second one is not # associated with any tabs payload = views.Superset._get_sqllab_tabs(user_id=user_id) self.assertEqual(len(payload["queries"]), 1) def test_virtual_table_explore_visibility(self): # test that default visibility it set to True database = superset.utils.database.get_example_database() self.assertEqual(database.allows_virtual_table_explore, True) # test that visibility is disabled when extra is set to False extra = database.get_extra() extra["allows_virtual_table_explore"] = False database.extra = json.dumps(extra) self.assertEqual(database.allows_virtual_table_explore, False) # test that visibility is enabled when extra is set to True extra = database.get_extra() extra["allows_virtual_table_explore"] = True database.extra = json.dumps(extra) self.assertEqual(database.allows_virtual_table_explore, True) # test that visibility is not broken with bad values extra = database.get_extra() extra["allows_virtual_table_explore"] = "trash value" database.extra = json.dumps(extra) self.assertEqual(database.allows_virtual_table_explore, True) def test_data_preview_visibility(self): # test that default visibility is allowed database = utils.get_example_database() self.assertEqual(database.disable_data_preview, False) # test that visibility is disabled when extra is set to true extra = database.get_extra() extra["disable_data_preview"] = True database.extra = json.dumps(extra) self.assertEqual(database.disable_data_preview, True) # test that visibility is enabled when extra is set to false extra = database.get_extra() extra["disable_data_preview"] = False database.extra = json.dumps(extra) self.assertEqual(database.disable_data_preview, False) # test that visibility is not broken with bad values extra = database.get_extra() extra["disable_data_preview"] = "trash value" database.extra = json.dumps(extra) self.assertEqual(database.disable_data_preview, False) def test_explore_database_id(self): database = superset.utils.database.get_example_database() explore_database = superset.utils.database.get_example_database() # test that explore_database_id is the regular database # id if none is set in the extra self.assertEqual(database.explore_database_id, database.id) # test that explore_database_id is correct if the extra is set extra = database.get_extra() extra["explore_database_id"] = explore_database.id database.extra = json.dumps(extra) self.assertEqual(database.explore_database_id, explore_database.id) def test_get_column_names_from_metric(self): simple_metric = { "expressionType": utils.AdhocMetricExpressionType.SIMPLE.value, "column": {"column_name": "my_col"}, "aggregate": "SUM", "label": "My Simple Label", } assert utils.get_column_name_from_metric(simple_metric) == "my_col" sql_metric = { "expressionType": utils.AdhocMetricExpressionType.SQL.value, "sqlExpression": "SUM(my_label)", "label": "My SQL Label", } assert utils.get_column_name_from_metric(sql_metric) is None assert utils.get_column_names_from_metrics([simple_metric, sql_metric]) == [ "my_col" ] @pytest.mark.usefixtures("load_world_bank_dashboard_with_slices") @mock.patch("superset.models.core.DB_CONNECTION_MUTATOR") def test_explore_injected_exceptions(self, mock_db_connection_mutator): """ Handle injected exceptions from the db mutator """ # Assert we can handle a custom exception at the mutator level exception = SupersetException("Error message") mock_db_connection_mutator.side_effect = exception slice = db.session.query(Slice).first() url = f"/explore/?form_data=%7B%22slice_id%22%3A%20{slice.id}%7D" self.login() data = self.get_resp(url) self.assertIn("Error message", data) # Assert we can handle a driver exception at the mutator level exception = SQLAlchemyError("Error message") mock_db_connection_mutator.side_effect = exception slice = db.session.query(Slice).first() url = f"/explore/?form_data=%7B%22slice_id%22%3A%20{slice.id}%7D" self.login() data = self.get_resp(url) self.assertIn("Error message", data) @pytest.mark.usefixtures("load_world_bank_dashboard_with_slices") @mock.patch("superset.models.core.DB_CONNECTION_MUTATOR") def test_dashboard_injected_exceptions(self, mock_db_connection_mutator): """ Handle injected exceptions from the db mutator """ # Assert we can handle a custom excetion at the mutator level exception = SupersetException("Error message") mock_db_connection_mutator.side_effect = exception dash = db.session.query(Dashboard).first() url = f"/superset/dashboard/{dash.id}/" self.login() data = self.get_resp(url) self.assertIn("Error message", data) # Assert we can handle a driver exception at the mutator level exception = SQLAlchemyError("Error message") mock_db_connection_mutator.side_effect = exception dash = db.session.query(Dashboard).first() url = f"/superset/dashboard/{dash.id}/" self.login() data = self.get_resp(url) self.assertIn("Error message", data) @mock.patch("superset.sql_lab.cancel_query") @mock.patch("superset.views.core.db.session") def test_stop_query_not_implemented( self, mock_superset_db_session, mock_sql_lab_cancel_query ): """ Handles stop query when the DB engine spec does not have a cancel query method. """ form_data = {"client_id": "foo"} query_mock = mock.Mock() query_mock.client_id = "foo" query_mock.status = QueryStatus.RUNNING self.login(username="admin") mock_superset_db_session.query().filter_by().one().return_value = query_mock mock_sql_lab_cancel_query.return_value = False rv = self.client.post( "/superset/stop_query/", data={"form_data": json.dumps(form_data)}, ) assert rv.status_code == 422 if __name__ == "__main__": unittest.main()
{ "content_hash": "e4fa35f727113fca3435c861f61f9026", "timestamp": "", "source": "github", "line_count": 1628, "max_line_length": 103, "avg_line_length": 37.894348894348894, "alnum_prop": 0.5806263372884652, "repo_name": "airbnb/caravel", "id": "6bc08cae88a3bf4987f763ab2bf34a5ca68ef2ce", "size": "61692", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "tests/integration_tests/core_tests.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "57416" }, { "name": "HTML", "bytes": "112618" }, { "name": "JavaScript", "bytes": "406496" }, { "name": "Mako", "bytes": "412" }, { "name": "Python", "bytes": "588212" }, { "name": "Shell", "bytes": "980" } ], "symlink_target": "" }
"""Implement operations for branch-based reviews.""" # ============================================================================= # CONTENTS # ----------------------------------------------------------------------------- # abdt_branch # # Public Classes: # Branch # .is_abandoned # .is_null # .is_new # .is_status_bad_pre_review # .is_status_bad_land # .is_status_bad_abandoned # .is_status_bad # .has_new_commits # .base_branch_name # .review_branch_hash # .review_branch_name # .review_id_or_none # .get_author_names_emails # .get_any_author_emails # .get_repo_name # .get_browse_url # .describe # .describe_new_commits # .make_message_digest # .make_raw_diff # .verify_review_branch_base # .get_commit_message_from_tip # .abandon # .remove # .clear_mark # .mark_bad_land # .mark_bad_abandoned # .mark_bad_in_review # .mark_new_bad_in_review # .mark_bad_pre_review # .mark_ok_in_review # .mark_ok_new_review # .land # # Public Functions: # calc_is_ok # # ----------------------------------------------------------------------------- # (this contents block is generated, edits will be lost) # ============================================================================= # TODO: write test driver from __future__ import absolute_import import phlgit_checkout import phlgit_log import phlgit_push import phlgit_revparse import phlgitu_ref import phlsys_textconvert import abdt_differ import abdt_errident import abdt_exception import abdt_lander import abdt_naming import abdt_tryloop # TODO: allow this to be passed in _MAX_DIFF_SIZE = int(1.5 * 1024 * 1024) def calc_is_ok(branch): """Return True if the supplied 'branch' is ok, False if bad, else None. Note that a branch can be 'null' in which case we return None. :branch: the Branch to examine :returns: bool status of the branch """ assert branch is not None if branch.is_null() or branch.is_new() or branch.is_abandoned(): return None return not branch.is_status_bad() class Branch(object): def __init__( self, repo, review_branch, review_hash, tracking_branch, tracking_hash, lander, repo_name, browse_url=None): """Create a new relationship tracker for the supplied branch names. :repo: a callable supporting git commands, e.g. repo("status") :review_branch: the abdt_gittypes.GitReviewBranch :review_hash: the commit hash of the branch or None :tracking_branch: the abdt_gittypes.GitWorkingBranch :tracking_hash: the commit hash of the branch or None :lander: a lander conformant to abdt_lander :repo_name: a short string to identify the repo to humans :browse_url: a URL to browse the branch or repo (may be None) """ self._repo = repo self._review_branch = review_branch self._review_hash = review_hash self._tracking_branch = tracking_branch self._tracking_hash = tracking_hash self._lander = lander assert self._review_branch_valid_or_none() assert self._tracking_branch_valid_or_none() self._repo_name = repo_name self._browse_url = browse_url assert self._repo_name is not None def _review_branch_valid_or_none(self): if not self._has_review_branch(): return True else: return isinstance( self._review_branch, abdt_naming.ReviewBranch) def _tracking_branch_valid_or_none(self): if not self._has_tracking_branch(): return True else: return isinstance( self._tracking_branch, abdt_naming.TrackerBranch) def _has_review_branch(self): return self._review_branch is not None def _has_tracking_branch(self): return self._tracking_branch is not None def is_abandoned(self): """Return True if the author's branch no longer exists.""" return not self._has_review_branch() and self._has_tracking_branch() def is_null(self): """Return True if we don't have any data.""" no_review_branch = not self._has_review_branch() no_tracking_branch = not self._has_tracking_branch() return no_review_branch and no_tracking_branch def is_new(self): """Return True if we haven't marked the author's branch.""" return self._has_review_branch() and not self._has_tracking_branch() def is_status_bad_pre_review(self): """Return True if the author's branch is marked 'bad pre-review'.""" if self._has_tracking_branch(): return abdt_naming.isStatusBadPreReview(self._tracking_branch) else: return False def is_status_bad_land(self): """Return True if the author's branch is marked 'bad land'.""" if self._has_tracking_branch(): return abdt_naming.isStatusBadLand(self._tracking_branch) else: return False def is_status_bad_abandoned(self): """Return True if the author's branch is marked 'bad abandoned'.""" if self._has_tracking_branch(): branch = self._tracking_branch return branch.status == abdt_naming.WB_STATUS_BAD_ABANDONED else: return False def is_status_bad(self): """Return True if the author's branch is marked any bad status.""" if self._has_tracking_branch(): return abdt_naming.isStatusBad(self._tracking_branch) else: return False def has_new_commits(self): """Return True if the author's branch is different since marked.""" if self.is_new(): return True else: return self._review_hash != self._tracking_hash def base_branch_name(self): """Return the string name of the branch the review will land on.""" if self._review_branch: return self._review_branch.base return self._tracking_branch.base def review_branch_hash(self): """Return the string hash of the review branch or None.""" return self._review_hash def review_branch_name(self): """Return the string name of the branch the review is based on.""" if self._review_branch: return self._review_branch.branch return self._tracking_branch.review_name def review_id_or_none(self): """Return the int id of the review or 'None' if there isn't one.""" if not self._tracking_branch: return None review_id = None try: review_id = int(self._tracking_branch.id) except ValueError: pass return review_id def get_author_names_emails(self): """Return a list of (name, email) tuples from the branch.""" hashes = self._get_commit_hashes() # names and emails are only mentioned once, in the order that they # appear. reverse the order so that the the most recent commit is # considered first. hashes.reverse() names_emails = phlgit_log.get_author_names_emails_from_hashes( self._repo, hashes) names_emails.reverse() return names_emails def get_any_author_emails(self): """Return a list of emails from the branch. If the branch has an invalid base or has no history against the base then resort to using the whole history. Useful if 'get_author_names_emails' fails. """ if phlgit_revparse.get_sha1_or_none( self._repo, self._review_branch.remote_base) is None: hashes = phlgit_log.get_last_n_commit_hashes_from_ref( self._repo, 1, self._review_branch.remote_branch) else: hashes = self._get_commit_hashes() if not hashes: hashes = phlgit_log.get_last_n_commit_hashes_from_ref( self._repo, 1, self._review_branch.remote_branch) committers = phlgit_log.get_author_names_emails_from_hashes( self._repo, hashes) emails = [committer[1] for committer in committers] return emails def get_repo_name(self): """Return the human name for the repo the branch came from.""" return self._repo_name def get_browse_url(self): """Return the url to browse this branch, may be None.""" return self._browse_url def _get_commit_hashes(self): hashes = self._repo.get_range_hashes( self._review_branch.remote_base, self._review_branch.remote_branch) return hashes def describe(self): """Return a string description of this branch for a human to read.""" branch_description = "(null branch)" if not self.is_null(): branch_description = self.review_branch_name() if self.is_abandoned(): branch_description += " (abandoned)" return "{}, {}".format(self.get_repo_name(), branch_description) def describe_new_commits(self): """Return a string description of the new commits on the branch.""" hashes = None previous = None latest = self._review_branch.remote_branch if self.is_new(): previous = self._review_branch.remote_base else: previous = self._tracking_branch.remote_branch hashes = self._repo.get_range_hashes(previous, latest) hashes.reverse() revisions = self._repo.make_revisions_from_hashes(hashes) message = "" for r in revisions: message += r.abbrev_hash + " " + r.subject + "\n" return phlsys_textconvert.ensure_ascii(message) def make_message_digest(self): """Return a string digest of the commit messages on the branch. The digest is comprised of the title from the earliest commit unique to the branch and all of the message bodies from the unique commits on the branch. """ hashes = self._get_commit_hashes() revisions = self._repo.make_revisions_from_hashes(hashes) message = revisions[0].subject + "\n\n" for r in revisions: message += r.message return phlsys_textconvert.ensure_ascii(message) def make_raw_diff(self): """Return an abdt_differ.DiffResult of the changes on the branch. If the diff would exceed the pre-specified max diff size then take measures to reduce the diff. """ # checkout the 'to' branch, otherwise we won't take into account any # changes to .gitattributes files phlgit_checkout.branch(self._repo, self._review_branch.remote_branch) try: return abdt_differ.make_raw_diff( self._repo, self._review_branch.remote_base, self._review_branch.remote_branch, _MAX_DIFF_SIZE) except abdt_differ.NoDiffError: raise abdt_exception.NoDiffException( self.base_branch_name(), self.review_branch_name(), self.review_branch_hash()) def _is_based_on(self, name, base): # TODO: actually do this return True def verify_review_branch_base(self): """Raise exception if review branch has invalid base.""" if self._review_branch.base not in self._repo.get_remote_branches(): raise abdt_exception.MissingBaseException( self._review_branch.branch, self._review_branch.description, self._review_branch.base) if not self._is_based_on( self._review_branch.branch, self._review_branch.base): raise abdt_exception.AbdUserException( "'" + self._review_branch.branch + "' is not based on '" + self._review_branch.base + "'") def get_commit_message_from_tip(self): """Return string commit message from latest commit on branch.""" hashes = self._get_commit_hashes() revision = phlgit_log.make_revision_from_hash(self._repo, hashes[-1]) message = revision.subject + "\n" message += "\n" message += revision.message + "\n" return phlsys_textconvert.ensure_ascii(message) def _push_delete_review_branch(self): def action(): self._repo.push_delete(self._review_branch.branch) self._tryloop(action, abdt_errident.PUSH_DELETE_REVIEW) def _push_delete_tracking_branch(self): def action(): self._repo.push_delete(self._tracking_branch.branch) self._tryloop(action, abdt_errident.PUSH_DELETE_TRACKING) def abandon(self): """Remove information associated with the abandoned review branch.""" # TODO: raise if the branch is not actually abandoned by the user self._push_delete_tracking_branch() self._tracking_branch = None self._tracking_hash = None def remove(self): """Remove review branch and tracking branch.""" self._repo.archive_to_abandoned( self._review_hash, self.review_branch_name(), self._tracking_branch.base) # push the abandoned archive, don't escalate if it fails to push try: # XXX: oddly pylint complains if we call push_landed() directly: # "Using method (_tryloop) as an attribute (not invoked)" def push_abandoned(): self._repo.push_abandoned() self._tryloop( push_abandoned, abdt_errident.PUSH_ABANDONED_ARCHIVE) except Exception: # XXX: don't worry if we can't push the landed, this is most # likely a permissioning issue but not a showstopper. # we should probably nag on the review instead. pass self._push_delete_review_branch() self._push_delete_tracking_branch() self._review_branch = None self._review_hash = None self._tracking_branch = None self._tracking_hash = None def clear_mark(self): """Clear status and last commit associated with the review branch.""" self._push_delete_tracking_branch() self._tracking_branch = None self._tracking_hash = None def mark_bad_land(self): """Mark the current version of the review branch as 'bad land'.""" assert self.review_id_or_none() is not None self._tryloop( lambda: self._push_status(abdt_naming.WB_STATUS_BAD_LAND), abdt_errident.MARK_BAD_LAND) def mark_bad_abandoned(self): """Mark the current version of the review branch as 'bad abandoned'.""" assert self.review_id_or_none() is not None self._tryloop( lambda: self._push_status(abdt_naming.WB_STATUS_BAD_ABANDONED), abdt_errident.MARK_BAD_ABANDONED) def mark_bad_in_review(self): """Mark the current version of the review branch as 'bad in review'.""" assert self.review_id_or_none() is not None self._tryloop( lambda: self._push_status(abdt_naming.WB_STATUS_BAD_INREVIEW), abdt_errident.MARK_BAD_IN_REVIEW) def mark_new_bad_in_review(self, revision_id): """Mark the current version of the review branch as 'bad in review'.""" assert self.review_id_or_none() is None def action(): if not self.is_new(): # 'push_bad_new_in_review' wont clean up our existing tracker self._push_delete_tracking_branch() self._push_new( abdt_naming.WB_STATUS_BAD_INREVIEW, revision_id) self._tryloop(action, abdt_errident.MARK_NEW_BAD_IN_REVIEW) def mark_bad_pre_review(self): """Mark this version of the review branch as 'bad pre review'.""" assert self.review_id_or_none() is None assert self.is_status_bad_pre_review() or self.is_new() # early out if this operation is redundant, pushing is expensive if self.is_status_bad_pre_review() and not self.has_new_commits(): return def action(): self._push_new( abdt_naming.WB_STATUS_BAD_PREREVIEW, None) self._tryloop( action, abdt_errident.MARK_BAD_PRE_REVIEW) def mark_ok_in_review(self): """Mark this version of the review branch as 'ok in review'.""" assert self.review_id_or_none() is not None self._tryloop( lambda: self._push_status(abdt_naming.WB_STATUS_OK), abdt_errident.MARK_OK_IN_REVIEW) def mark_ok_new_review(self, revision_id): """Mark this version of the review branch as 'ok in review'.""" assert self.review_id_or_none() is None def action(): if not self.is_new(): # 'push_bad_new_in_review' wont clean up our existing tracker self._push_delete_tracking_branch() self._push_new( abdt_naming.WB_STATUS_OK, revision_id) self._tryloop(action, abdt_errident.MARK_OK_NEW_REVIEW) def land(self, author_name, author_email, message): """Integrate the branch into the base and remove the review branch.""" self._repo.checkout_forced_new_branch( self._tracking_branch.base, self._tracking_branch.remote_base) try: result = self._lander( self._repo, self._tracking_branch.remote_branch, author_name, author_email, message) except abdt_lander.LanderException as e: self._repo("reset", "--hard") # fix the working copy raise abdt_exception.LandingException( str(e), self.review_branch_name(), self._tracking_branch.base) landing_hash = phlgit_revparse.get_sha1( self._repo, self._tracking_branch.base) # don't tryloop here as it's more expected that we can't push the base # due to permissioning or some other error try: self._repo.push(self._tracking_branch.base) except Exception as e: raise abdt_exception.LandingPushBaseException( str(e), self.review_branch_name(), self._tracking_branch.base) self._tryloop( lambda: self._repo.push_delete( self._tracking_branch.branch, self.review_branch_name()), abdt_errident.PUSH_DELETE_LANDED) self._repo.archive_to_landed( self._tracking_hash, self.review_branch_name(), self._tracking_branch.base, landing_hash, message) # push the landing archive, don't escalate if it fails to push try: # XXX: oddly pylint complains if we call push_landed() directly: # "Using method (_tryloop) as an attribute (not invoked)" def push_landed(): self._repo.push_landed() self._tryloop( push_landed, abdt_errident.PUSH_LANDING_ARCHIVE) except Exception: # XXX: don't worry if we can't push the landed, this is most # likely a permissioning issue but not a showstopper. # we should probably nag on the review instead. pass self._review_branch = None self._review_hash = None self._tracking_branch = None self._tracking_hash = None return result def _push_status(self, status): old_branch = self._tracking_branch.branch self._tracking_branch.update_status(status) new_branch = self._tracking_branch.branch if old_branch == new_branch: phlgit_push.push_asymmetrical_force( self._repo, self._review_branch.remote_branch, phlgitu_ref.make_local(new_branch), self._tracking_branch.remote) else: phlgit_push.move_asymmetrical( self._repo, self._review_branch.remote_branch, phlgitu_ref.make_local(old_branch), phlgitu_ref.make_local(new_branch), self._repo.get_remote()) self._tracking_hash = self._review_hash def _push_new(self, status, revision_id): tracking_branch = self._review_branch.make_tracker( status, revision_id) phlgit_push.push_asymmetrical_force( self._repo, self._review_branch.remote_branch, phlgitu_ref.make_local(tracking_branch.branch), tracking_branch.remote) self._tracking_branch = tracking_branch self._tracking_hash = self._review_hash def _tryloop(self, f, identifier): return abdt_tryloop.tryloop(f, identifier, self.describe()) # ----------------------------------------------------------------------------- # Copyright (C) 2013-2014 Bloomberg Finance L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------ END-OF-FILE ----------------------------------
{ "content_hash": "7e19f938becb8eca646b05639a647d32", "timestamp": "", "source": "github", "line_count": 623, "max_line_length": 79, "avg_line_length": 35.258426966292134, "alnum_prop": 0.5866794136392607, "repo_name": "valhallasw/phabricator-tools", "id": "14468f155655f4eca7646f095836170115a5608a", "size": "21966", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "py/abd/abdt_branch.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "342" }, { "name": "Puppet", "bytes": "4246" }, { "name": "Python", "bytes": "964066" }, { "name": "Ruby", "bytes": "2000" }, { "name": "Shell", "bytes": "128202" } ], "symlink_target": "" }
import time from lib import oled as display display.disp_content.tonemode = "Vol" display.disp_content.tonevalue = 50 display.disp_content.time = "17:55" display.disp_content.name = "DRadio Wissen" display.disp_content.artist = "Bla" display.disp_content.title = "Blubber" display.disp_content.app_mode = "RAD" display.disp_content.source_string = 0 display.disp_content.wifi = 60 display.disp_content.volume = 50 display.disp_content.mpd_stat = "stop" display.update_display(1234567) time.sleep(2) display.disp_content.tonemode = "Vol" display.disp_content.tonevalue = 30 display.disp_content.time = "0:17" display.disp_content.name = "Deutschlandfunk" display.disp_content.artist = "Bla" display.disp_content.title = "Blubber" display.disp_content.app_mode = "SPOT" display.disp_content.source_string = 0 display.disp_content.wifi = 10 display.disp_content.volume = 30 display.disp_content.mpd_stat = "play" display.update_display(1234567) count=100 while count >= 0: display.disp_content.tonevalue = count display.disp_content.volume = count display.disp_content.wifi = count display.update_display(1234567) count = count - 1 time.sleep(0.2) while count <= 100: display.disp_content.tonevalue = count display.disp_content.volume = count display.disp_content.wifi = count display.update_display(1234567) count = count + 1 time.sleep(0.2)
{ "content_hash": "95e8eb07959729546d5ee7d219850b64", "timestamp": "", "source": "github", "line_count": 50, "max_line_length": 45, "avg_line_length": 27.96, "alnum_prop": 0.740343347639485, "repo_name": "thk4711/orangepi-radio", "id": "bb92fc6eb2777046f691971e655f83543ae0cd96", "size": "1421", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "test/oled_test.py", "mode": "33261", "license": "mit", "language": [ { "name": "Python", "bytes": "91018" } ], "symlink_target": "" }
""" Pyodide and other single-threaded Python builds will be missing the _multiprocessing module. Test that joblib still works in this environment. """ import os import subprocess import sys def test_missing_multiprocessing(tmp_path): """ Test that import joblib works even if _multiprocessing is missing. pytest has already imported everything from joblib. The most reasonable way to test importing joblib with modified environment is to invoke a separate Python process. This also ensures that we don't break other tests by importing a bad `_multiprocessing` module. """ (tmp_path / "_multiprocessing.py").write_text( 'raise ImportError("No _multiprocessing module!")' ) env = dict(os.environ) # For subprocess, use current sys.path with our custom version of # multiprocessing inserted. env["PYTHONPATH"] = ":".join([str(tmp_path)] + sys.path) subprocess.check_call( [sys.executable, "-c", "import joblib, math; " "joblib.Parallel(n_jobs=1)(" "joblib.delayed(math.sqrt)(i**2) for i in range(10))" ], env=env)
{ "content_hash": "f062d5bc403934ad292af8ee76e41ae1", "timestamp": "", "source": "github", "line_count": 32, "max_line_length": 79, "avg_line_length": 35.09375, "alnum_prop": 0.6829919857524488, "repo_name": "joblib/joblib", "id": "251925ced5208b4aaf09d9aab305eb44c7102818", "size": "1123", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "joblib/test/test_missing_multiprocessing.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Cython", "bytes": "390" }, { "name": "Makefile", "bytes": "363" }, { "name": "Python", "bytes": "622066" }, { "name": "Shell", "bytes": "9122" } ], "symlink_target": "" }
import bz2 import datetime as dt from datetime import datetime import gzip import io import lzma import os import struct import warnings import zipfile import numpy as np import pytest from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd import pandas._testing as tm from pandas.core.frame import DataFrame, Series from pandas.io.parsers import read_csv from pandas.io.stata import ( CategoricalConversionWarning, InvalidColumnName, PossiblePrecisionLoss, StataMissingValue, StataReader, StataWriterUTF8, read_stata, ) @pytest.fixture() def mixed_frame(): return DataFrame( { "a": [1, 2, 3, 4], "b": [1.0, 3.0, 27.0, 81.0], "c": ["Atlanta", "Birmingham", "Cincinnati", "Detroit"], } ) @pytest.fixture def dirpath(datapath): return datapath("io", "data", "stata") @pytest.fixture def parsed_114(dirpath): dta14_114 = os.path.join(dirpath, "stata5_114.dta") parsed_114 = read_stata(dta14_114, convert_dates=True) parsed_114.index.name = "index" return parsed_114 class TestStata: @pytest.fixture(autouse=True) def setup_method(self, datapath): self.dirpath = datapath("io", "data", "stata") self.dta1_114 = os.path.join(self.dirpath, "stata1_114.dta") self.dta1_117 = os.path.join(self.dirpath, "stata1_117.dta") self.dta2_113 = os.path.join(self.dirpath, "stata2_113.dta") self.dta2_114 = os.path.join(self.dirpath, "stata2_114.dta") self.dta2_115 = os.path.join(self.dirpath, "stata2_115.dta") self.dta2_117 = os.path.join(self.dirpath, "stata2_117.dta") self.dta3_113 = os.path.join(self.dirpath, "stata3_113.dta") self.dta3_114 = os.path.join(self.dirpath, "stata3_114.dta") self.dta3_115 = os.path.join(self.dirpath, "stata3_115.dta") self.dta3_117 = os.path.join(self.dirpath, "stata3_117.dta") self.csv3 = os.path.join(self.dirpath, "stata3.csv") self.dta4_113 = os.path.join(self.dirpath, "stata4_113.dta") self.dta4_114 = os.path.join(self.dirpath, "stata4_114.dta") self.dta4_115 = os.path.join(self.dirpath, "stata4_115.dta") self.dta4_117 = os.path.join(self.dirpath, "stata4_117.dta") self.dta_encoding = os.path.join(self.dirpath, "stata1_encoding.dta") self.dta_encoding_118 = os.path.join(self.dirpath, "stata1_encoding_118.dta") self.csv14 = os.path.join(self.dirpath, "stata5.csv") self.dta14_113 = os.path.join(self.dirpath, "stata5_113.dta") self.dta14_114 = os.path.join(self.dirpath, "stata5_114.dta") self.dta14_115 = os.path.join(self.dirpath, "stata5_115.dta") self.dta14_117 = os.path.join(self.dirpath, "stata5_117.dta") self.csv15 = os.path.join(self.dirpath, "stata6.csv") self.dta15_113 = os.path.join(self.dirpath, "stata6_113.dta") self.dta15_114 = os.path.join(self.dirpath, "stata6_114.dta") self.dta15_115 = os.path.join(self.dirpath, "stata6_115.dta") self.dta15_117 = os.path.join(self.dirpath, "stata6_117.dta") self.dta16_115 = os.path.join(self.dirpath, "stata7_115.dta") self.dta16_117 = os.path.join(self.dirpath, "stata7_117.dta") self.dta17_113 = os.path.join(self.dirpath, "stata8_113.dta") self.dta17_115 = os.path.join(self.dirpath, "stata8_115.dta") self.dta17_117 = os.path.join(self.dirpath, "stata8_117.dta") self.dta18_115 = os.path.join(self.dirpath, "stata9_115.dta") self.dta18_117 = os.path.join(self.dirpath, "stata9_117.dta") self.dta19_115 = os.path.join(self.dirpath, "stata10_115.dta") self.dta19_117 = os.path.join(self.dirpath, "stata10_117.dta") self.dta20_115 = os.path.join(self.dirpath, "stata11_115.dta") self.dta20_117 = os.path.join(self.dirpath, "stata11_117.dta") self.dta21_117 = os.path.join(self.dirpath, "stata12_117.dta") self.dta22_118 = os.path.join(self.dirpath, "stata14_118.dta") self.dta23 = os.path.join(self.dirpath, "stata15.dta") self.dta24_111 = os.path.join(self.dirpath, "stata7_111.dta") self.dta25_118 = os.path.join(self.dirpath, "stata16_118.dta") self.dta26_119 = os.path.join(self.dirpath, "stata1_119.dta.gz") self.stata_dates = os.path.join(self.dirpath, "stata13_dates.dta") def read_dta(self, file): # Legacy default reader configuration return read_stata(file, convert_dates=True) def read_csv(self, file): return read_csv(file, parse_dates=True) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_read_empty_dta(self, version): empty_ds = DataFrame(columns=["unit"]) # GH 7369, make sure can read a 0-obs dta file with tm.ensure_clean() as path: empty_ds.to_stata(path, write_index=False, version=version) empty_ds2 = read_stata(path) tm.assert_frame_equal(empty_ds, empty_ds2) @pytest.mark.parametrize("file", ["dta1_114", "dta1_117"]) def test_read_dta1(self, file): file = getattr(self, file) parsed = self.read_dta(file) # Pandas uses np.nan as missing value. # Thus, all columns will be of type float, regardless of their name. expected = DataFrame( [(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=["float_miss", "double_miss", "byte_miss", "int_miss", "long_miss"], ) # this is an oddity as really the nan should be float64, but # the casting doesn't fail so need to match stata here expected["float_miss"] = expected["float_miss"].astype(np.float32) tm.assert_frame_equal(parsed, expected) def test_read_dta2(self): expected = DataFrame.from_records( [ ( datetime(2006, 11, 19, 23, 13, 20), 1479596223000, datetime(2010, 1, 20), datetime(2010, 1, 8), datetime(2010, 1, 1), datetime(1974, 7, 1), datetime(2010, 1, 1), datetime(2010, 1, 1), ), ( datetime(1959, 12, 31, 20, 3, 20), -1479590, datetime(1953, 10, 2), datetime(1948, 6, 10), datetime(1955, 1, 1), datetime(1955, 7, 1), datetime(1955, 1, 1), datetime(2, 1, 1), ), (pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT), ], columns=[ "datetime_c", "datetime_big_c", "date", "weekly_date", "monthly_date", "quarterly_date", "half_yearly_date", "yearly_date", ], ) expected["yearly_date"] = expected["yearly_date"].astype("O") with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") parsed_114 = self.read_dta(self.dta2_114) parsed_115 = self.read_dta(self.dta2_115) parsed_117 = self.read_dta(self.dta2_117) # 113 is buggy due to limits of date format support in Stata # parsed_113 = self.read_dta(self.dta2_113) # Remove resource warnings w = [x for x in w if x.category is UserWarning] # should get warning for each call to read_dta assert len(w) == 3 # buggy test because of the NaT comparison on certain platforms # Format 113 test fails since it does not support tc and tC formats # tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected, check_datetimelike_compat=True) tm.assert_frame_equal(parsed_115, expected, check_datetimelike_compat=True) tm.assert_frame_equal(parsed_117, expected, check_datetimelike_compat=True) @pytest.mark.parametrize("file", ["dta3_113", "dta3_114", "dta3_115", "dta3_117"]) def test_read_dta3(self, file): file = getattr(self, file) parsed = self.read_dta(file) # match stata here expected = self.read_csv(self.csv3) expected = expected.astype(np.float32) expected["year"] = expected["year"].astype(np.int16) expected["quarter"] = expected["quarter"].astype(np.int8) tm.assert_frame_equal(parsed, expected) @pytest.mark.parametrize("file", ["dta4_113", "dta4_114", "dta4_115", "dta4_117"]) def test_read_dta4(self, file): file = getattr(self, file) parsed = self.read_dta(file) expected = DataFrame.from_records( [ ["one", "ten", "one", "one", "one"], ["two", "nine", "two", "two", "two"], ["three", "eight", "three", "three", "three"], ["four", "seven", 4, "four", "four"], ["five", "six", 5, np.nan, "five"], ["six", "five", 6, np.nan, "six"], ["seven", "four", 7, np.nan, "seven"], ["eight", "three", 8, np.nan, "eight"], ["nine", "two", 9, np.nan, "nine"], ["ten", "one", "ten", np.nan, "ten"], ], columns=[ "fully_labeled", "fully_labeled2", "incompletely_labeled", "labeled_with_missings", "float_labelled", ], ) # these are all categoricals for col in expected: orig = expected[col].copy() categories = np.asarray(expected["fully_labeled"][orig.notna()]) if col == "incompletely_labeled": categories = orig cat = orig.astype("category")._values cat = cat.set_categories(categories, ordered=True) cat.categories.rename(None, inplace=True) expected[col] = cat # stata doesn't save .category metadata tm.assert_frame_equal(parsed, expected) # File containing strls def test_read_dta12(self): parsed_117 = self.read_dta(self.dta21_117) expected = DataFrame.from_records( [ [1, "abc", "abcdefghi"], [3, "cba", "qwertywertyqwerty"], [93, "", "strl"], ], columns=["x", "y", "z"], ) tm.assert_frame_equal(parsed_117, expected, check_dtype=False) def test_read_dta18(self): parsed_118 = self.read_dta(self.dta22_118) parsed_118["Bytes"] = parsed_118["Bytes"].astype("O") expected = DataFrame.from_records( [ ["Cat", "Bogota", "Bogotá", 1, 1.0, "option b Ünicode", 1.0], ["Dog", "Boston", "Uzunköprü", np.nan, np.nan, np.nan, np.nan], ["Plane", "Rome", "Tromsø", 0, 0.0, "option a", 0.0], ["Potato", "Tokyo", "Elâzığ", -4, 4.0, 4, 4], ["", "", "", 0, 0.3332999, "option a", 1 / 3.0], ], columns=[ "Things", "Cities", "Unicode_Cities_Strl", "Ints", "Floats", "Bytes", "Longs", ], ) expected["Floats"] = expected["Floats"].astype(np.float32) for col in parsed_118.columns: tm.assert_almost_equal(parsed_118[col], expected[col]) with StataReader(self.dta22_118) as rdr: vl = rdr.variable_labels() vl_expected = { "Unicode_Cities_Strl": "Here are some strls with Ünicode chars", "Longs": "long data", "Things": "Here are some things", "Bytes": "byte data", "Ints": "int data", "Cities": "Here are some cities", "Floats": "float data", } tm.assert_dict_equal(vl, vl_expected) assert rdr.data_label == "This is a Ünicode data label" def test_read_write_dta5(self): original = DataFrame( [(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=["float_miss", "double_miss", "byte_miss", "int_miss", "long_miss"], ) original.index.name = "index" with tm.ensure_clean() as path: original.to_stata(path, None) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index("index"), original) def test_write_dta6(self): original = self.read_csv(self.csv3) original.index.name = "index" original.index = original.index.astype(np.int32) original["year"] = original["year"].astype(np.int32) original["quarter"] = original["quarter"].astype(np.int32) with tm.ensure_clean() as path: original.to_stata(path, None) written_and_read_again = self.read_dta(path) tm.assert_frame_equal( written_and_read_again.set_index("index"), original, check_index_type=False, ) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_read_write_dta10(self, version): original = DataFrame( data=[["string", "object", 1, 1.1, np.datetime64("2003-12-25")]], columns=["string", "object", "integer", "floating", "datetime"], ) original["object"] = Series(original["object"], dtype=object) original.index.name = "index" original.index = original.index.astype(np.int32) original["integer"] = original["integer"].astype(np.int32) with tm.ensure_clean() as path: original.to_stata(path, {"datetime": "tc"}, version=version) written_and_read_again = self.read_dta(path) # original.index is np.int32, read index is np.int64 tm.assert_frame_equal( written_and_read_again.set_index("index"), original, check_index_type=False, ) def test_stata_doc_examples(self): with tm.ensure_clean() as path: df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.to_stata(path) def test_write_preserves_original(self): # 9795 np.random.seed(423) df = DataFrame(np.random.randn(5, 4), columns=list("abcd")) df.loc[2, "a":"c"] = np.nan df_copy = df.copy() with tm.ensure_clean() as path: df.to_stata(path, write_index=False) tm.assert_frame_equal(df, df_copy) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_encoding(self, version): # GH 4626, proper encoding handling raw = read_stata(self.dta_encoding) encoded = read_stata(self.dta_encoding) result = encoded.kreis1849[0] expected = raw.kreis1849[0] assert result == expected assert isinstance(result, str) with tm.ensure_clean() as path: encoded.to_stata(path, write_index=False, version=version) reread_encoded = read_stata(path) tm.assert_frame_equal(encoded, reread_encoded) def test_read_write_dta11(self): original = DataFrame( [(1, 2, 3, 4)], columns=[ "good", "b\u00E4d", "8number", "astringwithmorethan32characters______", ], ) formatted = DataFrame( [(1, 2, 3, 4)], columns=["good", "b_d", "_8number", "astringwithmorethan32characters_"], ) formatted.index.name = "index" formatted = formatted.astype(np.int32) with tm.ensure_clean() as path: with tm.assert_produces_warning(pd.io.stata.InvalidColumnName): original.to_stata(path, None) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index("index"), formatted) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_read_write_dta12(self, version): original = DataFrame( [(1, 2, 3, 4, 5, 6)], columns=[ "astringwithmorethan32characters_1", "astringwithmorethan32characters_2", "+", "-", "short", "delete", ], ) formatted = DataFrame( [(1, 2, 3, 4, 5, 6)], columns=[ "astringwithmorethan32characters_", "_0astringwithmorethan32character", "_", "_1_", "_short", "_delete", ], ) formatted.index.name = "index" formatted = formatted.astype(np.int32) with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", InvalidColumnName) original.to_stata(path, None, version=version) # should get a warning for that format. assert len(w) == 1 written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index("index"), formatted) def test_read_write_dta13(self): s1 = Series(2 ** 9, dtype=np.int16) s2 = Series(2 ** 17, dtype=np.int32) s3 = Series(2 ** 33, dtype=np.int64) original = DataFrame({"int16": s1, "int32": s2, "int64": s3}) original.index.name = "index" formatted = original formatted["int64"] = formatted["int64"].astype(np.float64) with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index("index"), formatted) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) @pytest.mark.parametrize( "file", ["dta14_113", "dta14_114", "dta14_115", "dta14_117"] ) def test_read_write_reread_dta14(self, file, parsed_114, version): file = getattr(self, file) parsed = self.read_dta(file) parsed.index.name = "index" expected = self.read_csv(self.csv14) cols = ["byte_", "int_", "long_", "float_", "double_"] for col in cols: expected[col] = expected[col]._convert(datetime=True, numeric=True) expected["float_"] = expected["float_"].astype(np.float32) expected["date_td"] = pd.to_datetime(expected["date_td"], errors="coerce") tm.assert_frame_equal(parsed_114, parsed) with tm.ensure_clean() as path: parsed_114.to_stata(path, {"date_td": "td"}, version=version) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index("index"), parsed_114) @pytest.mark.parametrize( "file", ["dta15_113", "dta15_114", "dta15_115", "dta15_117"] ) def test_read_write_reread_dta15(self, file): expected = self.read_csv(self.csv15) expected["byte_"] = expected["byte_"].astype(np.int8) expected["int_"] = expected["int_"].astype(np.int16) expected["long_"] = expected["long_"].astype(np.int32) expected["float_"] = expected["float_"].astype(np.float32) expected["double_"] = expected["double_"].astype(np.float64) expected["date_td"] = expected["date_td"].apply( datetime.strptime, args=("%Y-%m-%d",) ) file = getattr(self, file) parsed = self.read_dta(file) tm.assert_frame_equal(expected, parsed) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_timestamp_and_label(self, version): original = DataFrame([(1,)], columns=["variable"]) time_stamp = datetime(2000, 2, 29, 14, 21) data_label = "This is a data file." with tm.ensure_clean() as path: original.to_stata( path, time_stamp=time_stamp, data_label=data_label, version=version ) with StataReader(path) as reader: assert reader.time_stamp == "29 Feb 2000 14:21" assert reader.data_label == data_label @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_invalid_timestamp(self, version): original = DataFrame([(1,)], columns=["variable"]) time_stamp = "01 Jan 2000, 00:00:00" with tm.ensure_clean() as path: msg = "time_stamp should be datetime type" with pytest.raises(ValueError, match=msg): original.to_stata(path, time_stamp=time_stamp, version=version) def test_numeric_column_names(self): original = DataFrame(np.reshape(np.arange(25.0), (5, 5))) original.index.name = "index" with tm.ensure_clean() as path: # should get a warning for that format. with tm.assert_produces_warning(InvalidColumnName): original.to_stata(path) written_and_read_again = self.read_dta(path) written_and_read_again = written_and_read_again.set_index("index") columns = list(written_and_read_again.columns) convert_col_name = lambda x: int(x[1]) written_and_read_again.columns = map(convert_col_name, columns) tm.assert_frame_equal(original, written_and_read_again) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_nan_to_missing_value(self, version): s1 = Series(np.arange(4.0), dtype=np.float32) s2 = Series(np.arange(4.0), dtype=np.float64) s1[::2] = np.nan s2[1::2] = np.nan original = DataFrame({"s1": s1, "s2": s2}) original.index.name = "index" with tm.ensure_clean() as path: original.to_stata(path, version=version) written_and_read_again = self.read_dta(path) written_and_read_again = written_and_read_again.set_index("index") tm.assert_frame_equal(written_and_read_again, original) def test_no_index(self): columns = ["x", "y"] original = DataFrame(np.reshape(np.arange(10.0), (5, 2)), columns=columns) original.index.name = "index_not_written" with tm.ensure_clean() as path: original.to_stata(path, write_index=False) written_and_read_again = self.read_dta(path) with pytest.raises(KeyError, match=original.index.name): written_and_read_again["index_not_written"] def test_string_no_dates(self): s1 = Series(["a", "A longer string"]) s2 = Series([1.0, 2.0], dtype=np.float64) original = DataFrame({"s1": s1, "s2": s2}) original.index.name = "index" with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index("index"), original) def test_large_value_conversion(self): s0 = Series([1, 99], dtype=np.int8) s1 = Series([1, 127], dtype=np.int8) s2 = Series([1, 2 ** 15 - 1], dtype=np.int16) s3 = Series([1, 2 ** 63 - 1], dtype=np.int64) original = DataFrame({"s0": s0, "s1": s1, "s2": s2, "s3": s3}) original.index.name = "index" with tm.ensure_clean() as path: with tm.assert_produces_warning(PossiblePrecisionLoss): original.to_stata(path) written_and_read_again = self.read_dta(path) modified = original.copy() modified["s1"] = Series(modified["s1"], dtype=np.int16) modified["s2"] = Series(modified["s2"], dtype=np.int32) modified["s3"] = Series(modified["s3"], dtype=np.float64) tm.assert_frame_equal(written_and_read_again.set_index("index"), modified) def test_dates_invalid_column(self): original = DataFrame([datetime(2006, 11, 19, 23, 13, 20)]) original.index.name = "index" with tm.ensure_clean() as path: with tm.assert_produces_warning(InvalidColumnName): original.to_stata(path, {0: "tc"}) written_and_read_again = self.read_dta(path) modified = original.copy() modified.columns = ["_0"] tm.assert_frame_equal(written_and_read_again.set_index("index"), modified) def test_105(self): # Data obtained from: # http://go.worldbank.org/ZXY29PVJ21 dpath = os.path.join(self.dirpath, "S4_EDUC1.dta") df = pd.read_stata(dpath) df0 = [[1, 1, 3, -2], [2, 1, 2, -2], [4, 1, 1, -2]] df0 = DataFrame(df0) df0.columns = ["clustnum", "pri_schl", "psch_num", "psch_dis"] df0["clustnum"] = df0["clustnum"].astype(np.int16) df0["pri_schl"] = df0["pri_schl"].astype(np.int8) df0["psch_num"] = df0["psch_num"].astype(np.int8) df0["psch_dis"] = df0["psch_dis"].astype(np.float32) tm.assert_frame_equal(df.head(3), df0) def test_value_labels_old_format(self): # GH 19417 # # Test that value_labels() returns an empty dict if the file format # predates supporting value labels. dpath = os.path.join(self.dirpath, "S4_EDUC1.dta") reader = StataReader(dpath) assert reader.value_labels() == {} reader.close() def test_date_export_formats(self): columns = ["tc", "td", "tw", "tm", "tq", "th", "ty"] conversions = {c: c for c in columns} data = [datetime(2006, 11, 20, 23, 13, 20)] * len(columns) original = DataFrame([data], columns=columns) original.index.name = "index" expected_values = [ datetime(2006, 11, 20, 23, 13, 20), # Time datetime(2006, 11, 20), # Day datetime(2006, 11, 19), # Week datetime(2006, 11, 1), # Month datetime(2006, 10, 1), # Quarter year datetime(2006, 7, 1), # Half year datetime(2006, 1, 1), ] # Year expected = DataFrame([expected_values], columns=columns) expected.index.name = "index" with tm.ensure_clean() as path: original.to_stata(path, conversions) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) def test_write_missing_strings(self): original = DataFrame([["1"], [None]], columns=["foo"]) expected = DataFrame([["1"], [""]], columns=["foo"]) expected.index.name = "index" with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) @pytest.mark.parametrize("byteorder", [">", "<"]) def test_bool_uint(self, byteorder, version): s0 = Series([0, 1, True], dtype=np.bool_) s1 = Series([0, 1, 100], dtype=np.uint8) s2 = Series([0, 1, 255], dtype=np.uint8) s3 = Series([0, 1, 2 ** 15 - 100], dtype=np.uint16) s4 = Series([0, 1, 2 ** 16 - 1], dtype=np.uint16) s5 = Series([0, 1, 2 ** 31 - 100], dtype=np.uint32) s6 = Series([0, 1, 2 ** 32 - 1], dtype=np.uint32) original = DataFrame( {"s0": s0, "s1": s1, "s2": s2, "s3": s3, "s4": s4, "s5": s5, "s6": s6} ) original.index.name = "index" expected = original.copy() expected_types = ( np.int8, np.int8, np.int16, np.int16, np.int32, np.int32, np.float64, ) for c, t in zip(expected.columns, expected_types): expected[c] = expected[c].astype(t) with tm.ensure_clean() as path: original.to_stata(path, byteorder=byteorder, version=version) written_and_read_again = self.read_dta(path) written_and_read_again = written_and_read_again.set_index("index") tm.assert_frame_equal(written_and_read_again, expected) def test_variable_labels(self): with StataReader(self.dta16_115) as rdr: sr_115 = rdr.variable_labels() with StataReader(self.dta16_117) as rdr: sr_117 = rdr.variable_labels() keys = ("var1", "var2", "var3") labels = ("label1", "label2", "label3") for k, v in sr_115.items(): assert k in sr_117 assert v == sr_117[k] assert k in keys assert v in labels def test_minimal_size_col(self): str_lens = (1, 100, 244) s = {} for str_len in str_lens: s["s" + str(str_len)] = Series( ["a" * str_len, "b" * str_len, "c" * str_len] ) original = DataFrame(s) with tm.ensure_clean() as path: original.to_stata(path, write_index=False) with StataReader(path) as sr: typlist = sr.typlist variables = sr.varlist formats = sr.fmtlist for variable, fmt, typ in zip(variables, formats, typlist): assert int(variable[1:]) == int(fmt[1:-1]) assert int(variable[1:]) == typ def test_excessively_long_string(self): str_lens = (1, 244, 500) s = {} for str_len in str_lens: s["s" + str(str_len)] = Series( ["a" * str_len, "b" * str_len, "c" * str_len] ) original = DataFrame(s) msg = ( r"Fixed width strings in Stata \.dta files are limited to 244 " r"\(or fewer\)\ncharacters\. Column 's500' does not satisfy " r"this restriction\. Use the\n'version=117' parameter to write " r"the newer \(Stata 13 and later\) format\." ) with pytest.raises(ValueError, match=msg): with tm.ensure_clean() as path: original.to_stata(path) def test_missing_value_generator(self): types = ("b", "h", "l") df = DataFrame([[0.0]], columns=["float_"]) with tm.ensure_clean() as path: df.to_stata(path) with StataReader(path) as rdr: valid_range = rdr.VALID_RANGE expected_values = ["." + chr(97 + i) for i in range(26)] expected_values.insert(0, ".") for t in types: offset = valid_range[t][1] for i in range(0, 27): val = StataMissingValue(offset + 1 + i) assert val.string == expected_values[i] # Test extremes for floats val = StataMissingValue(struct.unpack("<f", b"\x00\x00\x00\x7f")[0]) assert val.string == "." val = StataMissingValue(struct.unpack("<f", b"\x00\xd0\x00\x7f")[0]) assert val.string == ".z" # Test extremes for floats val = StataMissingValue( struct.unpack("<d", b"\x00\x00\x00\x00\x00\x00\xe0\x7f")[0] ) assert val.string == "." val = StataMissingValue( struct.unpack("<d", b"\x00\x00\x00\x00\x00\x1a\xe0\x7f")[0] ) assert val.string == ".z" @pytest.mark.parametrize("file", ["dta17_113", "dta17_115", "dta17_117"]) def test_missing_value_conversion(self, file): columns = ["int8_", "int16_", "int32_", "float32_", "float64_"] smv = StataMissingValue(101) keys = sorted(smv.MISSING_VALUES.keys()) data = [] for i in range(27): row = [StataMissingValue(keys[i + (j * 27)]) for j in range(5)] data.append(row) expected = DataFrame(data, columns=columns) parsed = read_stata(getattr(self, file), convert_missing=True) tm.assert_frame_equal(parsed, expected) def test_big_dates(self): yr = [1960, 2000, 9999, 100, 2262, 1677] mo = [1, 1, 12, 1, 4, 9] dd = [1, 1, 31, 1, 22, 23] hr = [0, 0, 23, 0, 0, 0] mm = [0, 0, 59, 0, 0, 0] ss = [0, 0, 59, 0, 0, 0] expected = [] for i in range(len(yr)): row = [] for j in range(7): if j == 0: row.append(datetime(yr[i], mo[i], dd[i], hr[i], mm[i], ss[i])) elif j == 6: row.append(datetime(yr[i], 1, 1)) else: row.append(datetime(yr[i], mo[i], dd[i])) expected.append(row) expected.append([pd.NaT] * 7) columns = [ "date_tc", "date_td", "date_tw", "date_tm", "date_tq", "date_th", "date_ty", ] # Fixes for weekly, quarterly,half,year expected[2][2] = datetime(9999, 12, 24) expected[2][3] = datetime(9999, 12, 1) expected[2][4] = datetime(9999, 10, 1) expected[2][5] = datetime(9999, 7, 1) expected[4][2] = datetime(2262, 4, 16) expected[4][3] = expected[4][4] = datetime(2262, 4, 1) expected[4][5] = expected[4][6] = datetime(2262, 1, 1) expected[5][2] = expected[5][3] = expected[5][4] = datetime(1677, 10, 1) expected[5][5] = expected[5][6] = datetime(1678, 1, 1) expected = DataFrame(expected, columns=columns, dtype=object) parsed_115 = read_stata(self.dta18_115) parsed_117 = read_stata(self.dta18_117) tm.assert_frame_equal(expected, parsed_115, check_datetimelike_compat=True) tm.assert_frame_equal(expected, parsed_117, check_datetimelike_compat=True) date_conversion = {c: c[-2:] for c in columns} # {c : c[-2:] for c in columns} with tm.ensure_clean() as path: expected.index.name = "index" expected.to_stata(path, date_conversion) written_and_read_again = self.read_dta(path) tm.assert_frame_equal( written_and_read_again.set_index("index"), expected, check_datetimelike_compat=True, ) def test_dtype_conversion(self): expected = self.read_csv(self.csv15) expected["byte_"] = expected["byte_"].astype(np.int8) expected["int_"] = expected["int_"].astype(np.int16) expected["long_"] = expected["long_"].astype(np.int32) expected["float_"] = expected["float_"].astype(np.float32) expected["double_"] = expected["double_"].astype(np.float64) expected["date_td"] = expected["date_td"].apply( datetime.strptime, args=("%Y-%m-%d",) ) no_conversion = read_stata(self.dta15_117, convert_dates=True) tm.assert_frame_equal(expected, no_conversion) conversion = read_stata( self.dta15_117, convert_dates=True, preserve_dtypes=False ) # read_csv types are the same expected = self.read_csv(self.csv15) expected["date_td"] = expected["date_td"].apply( datetime.strptime, args=("%Y-%m-%d",) ) tm.assert_frame_equal(expected, conversion) def test_drop_column(self): expected = self.read_csv(self.csv15) expected["byte_"] = expected["byte_"].astype(np.int8) expected["int_"] = expected["int_"].astype(np.int16) expected["long_"] = expected["long_"].astype(np.int32) expected["float_"] = expected["float_"].astype(np.float32) expected["double_"] = expected["double_"].astype(np.float64) expected["date_td"] = expected["date_td"].apply( datetime.strptime, args=("%Y-%m-%d",) ) columns = ["byte_", "int_", "long_"] expected = expected[columns] dropped = read_stata(self.dta15_117, convert_dates=True, columns=columns) tm.assert_frame_equal(expected, dropped) # See PR 10757 columns = ["int_", "long_", "byte_"] expected = expected[columns] reordered = read_stata(self.dta15_117, convert_dates=True, columns=columns) tm.assert_frame_equal(expected, reordered) msg = "columns contains duplicate entries" with pytest.raises(ValueError, match=msg): columns = ["byte_", "byte_"] read_stata(self.dta15_117, convert_dates=True, columns=columns) msg = "The following columns were not found in the Stata data set: not_found" with pytest.raises(ValueError, match=msg): columns = ["byte_", "int_", "long_", "not_found"] read_stata(self.dta15_117, convert_dates=True, columns=columns) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) @pytest.mark.filterwarnings( "ignore:\\nStata value:pandas.io.stata.ValueLabelTypeMismatch" ) def test_categorical_writing(self, version): original = DataFrame.from_records( [ ["one", "ten", "one", "one", "one", 1], ["two", "nine", "two", "two", "two", 2], ["three", "eight", "three", "three", "three", 3], ["four", "seven", 4, "four", "four", 4], ["five", "six", 5, np.nan, "five", 5], ["six", "five", 6, np.nan, "six", 6], ["seven", "four", 7, np.nan, "seven", 7], ["eight", "three", 8, np.nan, "eight", 8], ["nine", "two", 9, np.nan, "nine", 9], ["ten", "one", "ten", np.nan, "ten", 10], ], columns=[ "fully_labeled", "fully_labeled2", "incompletely_labeled", "labeled_with_missings", "float_labelled", "unlabeled", ], ) expected = original.copy() # these are all categoricals original = pd.concat( [original[col].astype("category") for col in original], axis=1 ) expected.index.name = "index" expected["incompletely_labeled"] = expected["incompletely_labeled"].apply(str) expected["unlabeled"] = expected["unlabeled"].apply(str) for col in expected: orig = expected[col].copy() cat = orig.astype("category")._values cat = cat.as_ordered() if col == "unlabeled": cat = cat.set_categories(orig, ordered=True) cat.categories.rename(None, inplace=True) expected[col] = cat with tm.ensure_clean() as path: original.to_stata(path, version=version) written_and_read_again = self.read_dta(path) res = written_and_read_again.set_index("index") tm.assert_frame_equal(res, expected) def test_categorical_warnings_and_errors(self): # Warning for non-string labels # Error for labels too long original = DataFrame.from_records( [["a" * 10000], ["b" * 10000], ["c" * 10000], ["d" * 10000]], columns=["Too_long"], ) original = pd.concat( [original[col].astype("category") for col in original], axis=1 ) with tm.ensure_clean() as path: msg = ( "Stata value labels for a single variable must have " r"a combined length less than 32,000 characters\." ) with pytest.raises(ValueError, match=msg): original.to_stata(path) original = DataFrame.from_records( [["a"], ["b"], ["c"], ["d"], [1]], columns=["Too_long"] ) original = pd.concat( [original[col].astype("category") for col in original], axis=1 ) with tm.assert_produces_warning(pd.io.stata.ValueLabelTypeMismatch): original.to_stata(path) # should get a warning for mixed content @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_categorical_with_stata_missing_values(self, version): values = [["a" + str(i)] for i in range(120)] values.append([np.nan]) original = DataFrame.from_records(values, columns=["many_labels"]) original = pd.concat( [original[col].astype("category") for col in original], axis=1 ) original.index.name = "index" with tm.ensure_clean() as path: original.to_stata(path, version=version) written_and_read_again = self.read_dta(path) res = written_and_read_again.set_index("index") expected = original.copy() for col in expected: cat = expected[col]._values new_cats = cat.remove_unused_categories().categories cat = cat.set_categories(new_cats, ordered=True) expected[col] = cat tm.assert_frame_equal(res, expected) @pytest.mark.parametrize("file", ["dta19_115", "dta19_117"]) def test_categorical_order(self, file): # Directly construct using expected codes # Format is is_cat, col_name, labels (in order), underlying data expected = [ (True, "ordered", ["a", "b", "c", "d", "e"], np.arange(5)), (True, "reverse", ["a", "b", "c", "d", "e"], np.arange(5)[::-1]), (True, "noorder", ["a", "b", "c", "d", "e"], np.array([2, 1, 4, 0, 3])), (True, "floating", ["a", "b", "c", "d", "e"], np.arange(0, 5)), (True, "float_missing", ["a", "d", "e"], np.array([0, 1, 2, -1, -1])), (False, "nolabel", [1.0, 2.0, 3.0, 4.0, 5.0], np.arange(5)), (True, "int32_mixed", ["d", 2, "e", "b", "a"], np.arange(5)), ] cols = [] for is_cat, col, labels, codes in expected: if is_cat: cols.append( (col, pd.Categorical.from_codes(codes, labels, ordered=True)) ) else: cols.append((col, Series(labels, dtype=np.float32))) expected = DataFrame.from_dict(dict(cols)) # Read with and with out categoricals, ensure order is identical file = getattr(self, file) parsed = read_stata(file) tm.assert_frame_equal(expected, parsed) # Check identity of codes for col in expected: if is_categorical_dtype(expected[col].dtype): tm.assert_series_equal(expected[col].cat.codes, parsed[col].cat.codes) tm.assert_index_equal( expected[col].cat.categories, parsed[col].cat.categories ) @pytest.mark.parametrize("file", ["dta20_115", "dta20_117"]) def test_categorical_sorting(self, file): parsed = read_stata(getattr(self, file)) # Sort based on codes, not strings parsed = parsed.sort_values("srh", na_position="first") # Don't sort index parsed.index = np.arange(parsed.shape[0]) codes = [-1, -1, 0, 1, 1, 1, 2, 2, 3, 4] categories = ["Poor", "Fair", "Good", "Very good", "Excellent"] cat = pd.Categorical.from_codes( codes=codes, categories=categories, ordered=True ) expected = Series(cat, name="srh") tm.assert_series_equal(expected, parsed["srh"]) @pytest.mark.parametrize("file", ["dta19_115", "dta19_117"]) def test_categorical_ordering(self, file): file = getattr(self, file) parsed = read_stata(file) parsed_unordered = read_stata(file, order_categoricals=False) for col in parsed: if not is_categorical_dtype(parsed[col].dtype): continue assert parsed[col].cat.ordered assert not parsed_unordered[col].cat.ordered @pytest.mark.parametrize( "file", [ "dta1_117", "dta2_117", "dta3_117", "dta4_117", "dta14_117", "dta15_117", "dta16_117", "dta17_117", "dta18_117", "dta19_117", "dta20_117", ], ) @pytest.mark.parametrize("chunksize", [1, 2]) @pytest.mark.parametrize("convert_categoricals", [False, True]) @pytest.mark.parametrize("convert_dates", [False, True]) def test_read_chunks_117( self, file, chunksize, convert_categoricals, convert_dates ): fname = getattr(self, file) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") parsed = read_stata( fname, convert_categoricals=convert_categoricals, convert_dates=convert_dates, ) itr = read_stata( fname, iterator=True, convert_categoricals=convert_categoricals, convert_dates=convert_dates, ) pos = 0 for j in range(5): with warnings.catch_warnings(record=True) as w: # noqa warnings.simplefilter("always") try: chunk = itr.read(chunksize) except StopIteration: break from_frame = parsed.iloc[pos : pos + chunksize, :].copy() from_frame = self._convert_categorical(from_frame) tm.assert_frame_equal( from_frame, chunk, check_dtype=False, check_datetimelike_compat=True ) pos += chunksize itr.close() @staticmethod def _convert_categorical(from_frame: DataFrame) -> DataFrame: """ Emulate the categorical casting behavior we expect from roundtripping. """ for col in from_frame: ser = from_frame[col] if is_categorical_dtype(ser.dtype): cat = ser._values.remove_unused_categories() if cat.categories.dtype == object: categories = pd.Index(cat.categories._values) cat = cat.set_categories(categories) from_frame[col] = cat return from_frame def test_iterator(self): fname = self.dta3_117 parsed = read_stata(fname) with read_stata(fname, iterator=True) as itr: chunk = itr.read(5) tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) with read_stata(fname, chunksize=5) as itr: chunk = list(itr) tm.assert_frame_equal(parsed.iloc[0:5, :], chunk[0]) with read_stata(fname, iterator=True) as itr: chunk = itr.get_chunk(5) tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) with read_stata(fname, chunksize=5) as itr: chunk = itr.get_chunk() tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) # GH12153 with read_stata(fname, chunksize=4) as itr: from_chunks = pd.concat(itr) tm.assert_frame_equal(parsed, from_chunks) @pytest.mark.parametrize( "file", [ "dta2_115", "dta3_115", "dta4_115", "dta14_115", "dta15_115", "dta16_115", "dta17_115", "dta18_115", "dta19_115", "dta20_115", ], ) @pytest.mark.parametrize("chunksize", [1, 2]) @pytest.mark.parametrize("convert_categoricals", [False, True]) @pytest.mark.parametrize("convert_dates", [False, True]) def test_read_chunks_115( self, file, chunksize, convert_categoricals, convert_dates ): fname = getattr(self, file) # Read the whole file with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") parsed = read_stata( fname, convert_categoricals=convert_categoricals, convert_dates=convert_dates, ) # Compare to what we get when reading by chunk itr = read_stata( fname, iterator=True, convert_dates=convert_dates, convert_categoricals=convert_categoricals, ) pos = 0 for j in range(5): with warnings.catch_warnings(record=True) as w: # noqa warnings.simplefilter("always") try: chunk = itr.read(chunksize) except StopIteration: break from_frame = parsed.iloc[pos : pos + chunksize, :].copy() from_frame = self._convert_categorical(from_frame) tm.assert_frame_equal( from_frame, chunk, check_dtype=False, check_datetimelike_compat=True ) pos += chunksize itr.close() def test_read_chunks_columns(self): fname = self.dta3_117 columns = ["quarter", "cpi", "m1"] chunksize = 2 parsed = read_stata(fname, columns=columns) with read_stata(fname, iterator=True) as itr: pos = 0 for j in range(5): chunk = itr.read(chunksize, columns=columns) if chunk is None: break from_frame = parsed.iloc[pos : pos + chunksize, :] tm.assert_frame_equal(from_frame, chunk, check_dtype=False) pos += chunksize @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_write_variable_labels(self, version, mixed_frame): # GH 13631, add support for writing variable labels mixed_frame.index.name = "index" variable_labels = {"a": "City Rank", "b": "City Exponent", "c": "City"} with tm.ensure_clean() as path: mixed_frame.to_stata(path, variable_labels=variable_labels, version=version) with StataReader(path) as sr: read_labels = sr.variable_labels() expected_labels = { "index": "", "a": "City Rank", "b": "City Exponent", "c": "City", } assert read_labels == expected_labels variable_labels["index"] = "The Index" with tm.ensure_clean() as path: mixed_frame.to_stata(path, variable_labels=variable_labels, version=version) with StataReader(path) as sr: read_labels = sr.variable_labels() assert read_labels == variable_labels @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_invalid_variable_labels(self, version, mixed_frame): mixed_frame.index.name = "index" variable_labels = {"a": "very long" * 10, "b": "City Exponent", "c": "City"} with tm.ensure_clean() as path: msg = "Variable labels must be 80 characters or fewer" with pytest.raises(ValueError, match=msg): mixed_frame.to_stata( path, variable_labels=variable_labels, version=version ) @pytest.mark.parametrize("version", [114, 117]) def test_invalid_variable_label_encoding(self, version, mixed_frame): mixed_frame.index.name = "index" variable_labels = {"a": "very long" * 10, "b": "City Exponent", "c": "City"} variable_labels["a"] = "invalid character Œ" with tm.ensure_clean() as path: with pytest.raises( ValueError, match="Variable labels must contain only characters" ): mixed_frame.to_stata( path, variable_labels=variable_labels, version=version ) def test_write_variable_label_errors(self, mixed_frame): values = ["\u03A1", "\u0391", "\u039D", "\u0394", "\u0391", "\u03A3"] variable_labels_utf8 = { "a": "City Rank", "b": "City Exponent", "c": "".join(values), } msg = ( "Variable labels must contain only characters that can be " "encoded in Latin-1" ) with pytest.raises(ValueError, match=msg): with tm.ensure_clean() as path: mixed_frame.to_stata(path, variable_labels=variable_labels_utf8) variable_labels_long = { "a": "City Rank", "b": "City Exponent", "c": "A very, very, very long variable label " "that is too long for Stata which means " "that it has more than 80 characters", } msg = "Variable labels must be 80 characters or fewer" with pytest.raises(ValueError, match=msg): with tm.ensure_clean() as path: mixed_frame.to_stata(path, variable_labels=variable_labels_long) def test_default_date_conversion(self): # GH 12259 dates = [ dt.datetime(1999, 12, 31, 12, 12, 12, 12000), dt.datetime(2012, 12, 21, 12, 21, 12, 21000), dt.datetime(1776, 7, 4, 7, 4, 7, 4000), ] original = DataFrame( { "nums": [1.0, 2.0, 3.0], "strs": ["apple", "banana", "cherry"], "dates": dates, } ) with tm.ensure_clean() as path: original.to_stata(path, write_index=False) reread = read_stata(path, convert_dates=True) tm.assert_frame_equal(original, reread) original.to_stata(path, write_index=False, convert_dates={"dates": "tc"}) direct = read_stata(path, convert_dates=True) tm.assert_frame_equal(reread, direct) dates_idx = original.columns.tolist().index("dates") original.to_stata(path, write_index=False, convert_dates={dates_idx: "tc"}) direct = read_stata(path, convert_dates=True) tm.assert_frame_equal(reread, direct) def test_unsupported_type(self): original = DataFrame({"a": [1 + 2j, 2 + 4j]}) msg = "Data type complex128 not supported" with pytest.raises(NotImplementedError, match=msg): with tm.ensure_clean() as path: original.to_stata(path) def test_unsupported_datetype(self): dates = [ dt.datetime(1999, 12, 31, 12, 12, 12, 12000), dt.datetime(2012, 12, 21, 12, 21, 12, 21000), dt.datetime(1776, 7, 4, 7, 4, 7, 4000), ] original = DataFrame( { "nums": [1.0, 2.0, 3.0], "strs": ["apple", "banana", "cherry"], "dates": dates, } ) msg = "Format %tC not implemented" with pytest.raises(NotImplementedError, match=msg): with tm.ensure_clean() as path: original.to_stata(path, convert_dates={"dates": "tC"}) dates = pd.date_range("1-1-1990", periods=3, tz="Asia/Hong_Kong") original = DataFrame( { "nums": [1.0, 2.0, 3.0], "strs": ["apple", "banana", "cherry"], "dates": dates, } ) with pytest.raises(NotImplementedError, match="Data type datetime64"): with tm.ensure_clean() as path: original.to_stata(path) def test_repeated_column_labels(self): # GH 13923, 25772 msg = """ Value labels for column ethnicsn are not unique. These cannot be converted to pandas categoricals. Either read the file with `convert_categoricals` set to False or use the low level interface in `StataReader` to separately read the values and the value_labels. The repeated labels are:\n-+\nwolof """ with pytest.raises(ValueError, match=msg): read_stata(self.dta23, convert_categoricals=True) def test_stata_111(self): # 111 is an old version but still used by current versions of # SAS when exporting to Stata format. We do not know of any # on-line documentation for this version. df = read_stata(self.dta24_111) original = DataFrame( { "y": [1, 1, 1, 1, 1, 0, 0, np.NaN, 0, 0], "x": [1, 2, 1, 3, np.NaN, 4, 3, 5, 1, 6], "w": [2, np.NaN, 5, 2, 4, 4, 3, 1, 2, 3], "z": ["a", "b", "c", "d", "e", "", "g", "h", "i", "j"], } ) original = original[["y", "x", "w", "z"]] tm.assert_frame_equal(original, df) def test_out_of_range_double(self): # GH 14618 df = DataFrame( { "ColumnOk": [0.0, np.finfo(np.double).eps, 4.49423283715579e307], "ColumnTooBig": [0.0, np.finfo(np.double).eps, np.finfo(np.double).max], } ) msg = ( r"Column ColumnTooBig has a maximum value \(.+\) outside the range " r"supported by Stata \(.+\)" ) with pytest.raises(ValueError, match=msg): with tm.ensure_clean() as path: df.to_stata(path) df.loc[2, "ColumnTooBig"] = np.inf msg = ( "Column ColumnTooBig has a maximum value of infinity which is outside " "the range supported by Stata" ) with pytest.raises(ValueError, match=msg): with tm.ensure_clean() as path: df.to_stata(path) def test_out_of_range_float(self): original = DataFrame( { "ColumnOk": [ 0.0, np.finfo(np.float32).eps, np.finfo(np.float32).max / 10.0, ], "ColumnTooBig": [ 0.0, np.finfo(np.float32).eps, np.finfo(np.float32).max, ], } ) original.index.name = "index" for col in original: original[col] = original[col].astype(np.float32) with tm.ensure_clean() as path: original.to_stata(path) reread = read_stata(path) original["ColumnTooBig"] = original["ColumnTooBig"].astype(np.float64) tm.assert_frame_equal(original, reread.set_index("index")) original.loc[2, "ColumnTooBig"] = np.inf msg = ( "Column ColumnTooBig has a maximum value of infinity which " "is outside the range supported by Stata" ) with pytest.raises(ValueError, match=msg): with tm.ensure_clean() as path: original.to_stata(path) def test_path_pathlib(self): df = tm.makeDataFrame() df.index.name = "index" reader = lambda x: read_stata(x).set_index("index") result = tm.round_trip_pathlib(df.to_stata, reader) tm.assert_frame_equal(df, result) def test_pickle_path_localpath(self): df = tm.makeDataFrame() df.index.name = "index" reader = lambda x: read_stata(x).set_index("index") result = tm.round_trip_localpath(df.to_stata, reader) tm.assert_frame_equal(df, result) @pytest.mark.parametrize("write_index", [True, False]) def test_value_labels_iterator(self, write_index): # GH 16923 d = {"A": ["B", "E", "C", "A", "E"]} df = DataFrame(data=d) df["A"] = df["A"].astype("category") with tm.ensure_clean() as path: df.to_stata(path, write_index=write_index) with pd.read_stata(path, iterator=True) as dta_iter: value_labels = dta_iter.value_labels() assert value_labels == {"A": {0: "A", 1: "B", 2: "C", 3: "E"}} def test_set_index(self): # GH 17328 df = tm.makeDataFrame() df.index.name = "index" with tm.ensure_clean() as path: df.to_stata(path) reread = pd.read_stata(path, index_col="index") tm.assert_frame_equal(df, reread) @pytest.mark.parametrize( "column", ["ms", "day", "week", "month", "qtr", "half", "yr"] ) def test_date_parsing_ignores_format_details(self, column): # GH 17797 # # Test that display formats are ignored when determining if a numeric # column is a date value. # # All date types are stored as numbers and format associated with the # column denotes both the type of the date and the display format. # # STATA supports 9 date types which each have distinct units. We test 7 # of the 9 types, ignoring %tC and %tb. %tC is a variant of %tc that # accounts for leap seconds and %tb relies on STATAs business calendar. df = read_stata(self.stata_dates) unformatted = df.loc[0, column] formatted = df.loc[0, column + "_fmt"] assert unformatted == formatted def test_writer_117(self): original = DataFrame( data=[ [ "string", "object", 1, 1, 1, 1.1, 1.1, np.datetime64("2003-12-25"), "a", "a" * 2045, "a" * 5000, "a", ], [ "string-1", "object-1", 1, 1, 1, 1.1, 1.1, np.datetime64("2003-12-26"), "b", "b" * 2045, "", "", ], ], columns=[ "string", "object", "int8", "int16", "int32", "float32", "float64", "datetime", "s1", "s2045", "srtl", "forced_strl", ], ) original["object"] = Series(original["object"], dtype=object) original["int8"] = Series(original["int8"], dtype=np.int8) original["int16"] = Series(original["int16"], dtype=np.int16) original["int32"] = original["int32"].astype(np.int32) original["float32"] = Series(original["float32"], dtype=np.float32) original.index.name = "index" original.index = original.index.astype(np.int32) copy = original.copy() with tm.ensure_clean() as path: original.to_stata( path, convert_dates={"datetime": "tc"}, convert_strl=["forced_strl"], version=117, ) written_and_read_again = self.read_dta(path) # original.index is np.int32, read index is np.int64 tm.assert_frame_equal( written_and_read_again.set_index("index"), original, check_index_type=False, ) tm.assert_frame_equal(original, copy) def test_convert_strl_name_swap(self): original = DataFrame( [["a" * 3000, "A", "apple"], ["b" * 1000, "B", "banana"]], columns=["long1" * 10, "long", 1], ) original.index.name = "index" with tm.assert_produces_warning(pd.io.stata.InvalidColumnName): with tm.ensure_clean() as path: original.to_stata(path, convert_strl=["long", 1], version=117) reread = self.read_dta(path) reread = reread.set_index("index") reread.columns = original.columns tm.assert_frame_equal(reread, original, check_index_type=False) def test_invalid_date_conversion(self): # GH 12259 dates = [ dt.datetime(1999, 12, 31, 12, 12, 12, 12000), dt.datetime(2012, 12, 21, 12, 21, 12, 21000), dt.datetime(1776, 7, 4, 7, 4, 7, 4000), ] original = DataFrame( { "nums": [1.0, 2.0, 3.0], "strs": ["apple", "banana", "cherry"], "dates": dates, } ) with tm.ensure_clean() as path: msg = "convert_dates key must be a column or an integer" with pytest.raises(ValueError, match=msg): original.to_stata(path, convert_dates={"wrong_name": "tc"}) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_nonfile_writing(self, version): # GH 21041 bio = io.BytesIO() df = tm.makeDataFrame() df.index.name = "index" with tm.ensure_clean() as path: df.to_stata(bio, version=version) bio.seek(0) with open(path, "wb") as dta: dta.write(bio.read()) reread = pd.read_stata(path, index_col="index") tm.assert_frame_equal(df, reread) def test_gzip_writing(self): # writing version 117 requires seek and cannot be used with gzip df = tm.makeDataFrame() df.index.name = "index" with tm.ensure_clean() as path: with gzip.GzipFile(path, "wb") as gz: df.to_stata(gz, version=114) with gzip.GzipFile(path, "rb") as gz: reread = pd.read_stata(gz, index_col="index") tm.assert_frame_equal(df, reread) def test_unicode_dta_118(self): unicode_df = self.read_dta(self.dta25_118) columns = ["utf8", "latin1", "ascii", "utf8_strl", "ascii_strl"] values = [ ["ραηδας", "PÄNDÄS", "p", "ραηδας", "p"], ["ƤĀńĐąŜ", "Ö", "a", "ƤĀńĐąŜ", "a"], ["ᴘᴀᴎᴅᴀS", "Ü", "n", "ᴘᴀᴎᴅᴀS", "n"], [" ", " ", "d", " ", "d"], [" ", "", "a", " ", "a"], ["", "", "s", "", "s"], ["", "", " ", "", " "], ] expected = DataFrame(values, columns=columns) tm.assert_frame_equal(unicode_df, expected) def test_mixed_string_strl(self): # GH 23633 output = [{"mixed": "string" * 500, "number": 0}, {"mixed": None, "number": 1}] output = DataFrame(output) output.number = output.number.astype("int32") with tm.ensure_clean() as path: output.to_stata(path, write_index=False, version=117) reread = read_stata(path) expected = output.fillna("") tm.assert_frame_equal(reread, expected) # Check strl supports all None (null) output.loc[:, "mixed"] = None output.to_stata( path, write_index=False, convert_strl=["mixed"], version=117 ) reread = read_stata(path) expected = output.fillna("") tm.assert_frame_equal(reread, expected) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_all_none_exception(self, version): output = [{"none": "none", "number": 0}, {"none": None, "number": 1}] output = DataFrame(output) output.loc[:, "none"] = None with tm.ensure_clean() as path: with pytest.raises(ValueError, match="Column `none` cannot be exported"): output.to_stata(path, version=version) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_invalid_file_not_written(self, version): content = "Here is one __�__ Another one __·__ Another one __½__" df = DataFrame([content], columns=["invalid"]) with tm.ensure_clean() as path: msg1 = ( r"'latin-1' codec can't encode character '\\ufffd' " r"in position 14: ordinal not in range\(256\)" ) msg2 = ( "'ascii' codec can't decode byte 0xef in position 14: " r"ordinal not in range\(128\)" ) with pytest.raises(UnicodeEncodeError, match=f"{msg1}|{msg2}"): with tm.assert_produces_warning(ResourceWarning): df.to_stata(path) def test_strl_latin1(self): # GH 23573, correct GSO data to reflect correct size output = DataFrame( [["pandas"] * 2, ["þâÑÐŧ"] * 2], columns=["var_str", "var_strl"] ) with tm.ensure_clean() as path: output.to_stata(path, version=117, convert_strl=["var_strl"]) with open(path, "rb") as reread: content = reread.read() expected = "þâÑÐŧ" assert expected.encode("latin-1") in content assert expected.encode("utf-8") in content gsos = content.split(b"strls")[1][1:-2] for gso in gsos.split(b"GSO")[1:]: val = gso.split(b"\x00")[-2] size = gso[gso.find(b"\x82") + 1] assert len(val) == size - 1 def test_encoding_latin1_118(self): # GH 25960 msg = """ One or more strings in the dta file could not be decoded using utf-8, and so the fallback encoding of latin-1 is being used. This can happen when a file has been incorrectly encoded by Stata or some other software. You should verify the string values returned are correct.""" with tm.assert_produces_warning(UnicodeWarning) as w: encoded = read_stata(self.dta_encoding_118) assert len(w) == 151 assert w[0].message.args[0] == msg expected = DataFrame([["Düsseldorf"]] * 151, columns=["kreis1849"]) tm.assert_frame_equal(encoded, expected) @pytest.mark.slow def test_stata_119(self): # Gzipped since contains 32,999 variables and uncompressed is 20MiB with gzip.open(self.dta26_119, "rb") as gz: df = read_stata(gz) assert df.shape == (1, 32999) assert df.iloc[0, 6] == "A" * 3000 assert df.iloc[0, 7] == 3.14 assert df.iloc[0, -1] == 1 assert df.iloc[0, 0] == pd.Timestamp(datetime(2012, 12, 21, 21, 12, 21)) @pytest.mark.parametrize("version", [118, 119, None]) def test_utf8_writer(self, version): cat = pd.Categorical(["a", "β", "ĉ"], ordered=True) data = DataFrame( [ [1.0, 1, "ᴬ", "ᴀ relatively long ŝtring"], [2.0, 2, "ᴮ", ""], [3.0, 3, "ᴰ", None], ], columns=["a", "β", "ĉ", "strls"], ) data["ᴐᴬᵀ"] = cat variable_labels = { "a": "apple", "β": "ᵈᵉᵊ", "ĉ": "ᴎტჄႲႳႴႶႺ", "strls": "Long Strings", "ᴐᴬᵀ": "", } data_label = "ᴅaᵀa-label" data["β"] = data["β"].astype(np.int32) with tm.ensure_clean() as path: writer = StataWriterUTF8( path, data, data_label=data_label, convert_strl=["strls"], variable_labels=variable_labels, write_index=False, version=version, ) writer.write_file() reread_encoded = read_stata(path) # Missing is intentionally converted to empty strl data["strls"] = data["strls"].fillna("") tm.assert_frame_equal(data, reread_encoded) reader = StataReader(path) assert reader.data_label == data_label assert reader.variable_labels() == variable_labels data.to_stata(path, version=version, write_index=False) reread_to_stata = read_stata(path) tm.assert_frame_equal(data, reread_to_stata) def test_writer_118_exceptions(self): df = DataFrame(np.zeros((1, 33000), dtype=np.int8)) with tm.ensure_clean() as path: with pytest.raises(ValueError, match="version must be either 118 or 119."): StataWriterUTF8(path, df, version=117) with tm.ensure_clean() as path: with pytest.raises(ValueError, match="You must use version 119"): StataWriterUTF8(path, df, version=118) @pytest.mark.parametrize("version", [105, 108, 111, 113, 114]) def test_backward_compat(version, datapath): data_base = datapath("io", "data", "stata") ref = os.path.join(data_base, "stata-compat-118.dta") old = os.path.join(data_base, f"stata-compat-{version}.dta") expected = pd.read_stata(ref) old_dta = pd.read_stata(old) tm.assert_frame_equal(old_dta, expected, check_dtype=False) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) @pytest.mark.parametrize("use_dict", [True, False]) @pytest.mark.parametrize("infer", [True, False]) def test_compression(compression, version, use_dict, infer): file_name = "dta_inferred_compression.dta" if compression: file_ext = "gz" if compression == "gzip" and not use_dict else compression file_name += f".{file_ext}" compression_arg = compression if infer: compression_arg = "infer" if use_dict: compression_arg = {"method": compression} df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.index.name = "index" with tm.ensure_clean(file_name) as path: df.to_stata(path, version=version, compression=compression_arg) if compression == "gzip": with gzip.open(path, "rb") as comp: fp = io.BytesIO(comp.read()) elif compression == "zip": with zipfile.ZipFile(path, "r") as comp: fp = io.BytesIO(comp.read(comp.filelist[0])) elif compression == "bz2": with bz2.open(path, "rb") as comp: fp = io.BytesIO(comp.read()) elif compression == "xz": with lzma.open(path, "rb") as comp: fp = io.BytesIO(comp.read()) elif compression is None: fp = path reread = read_stata(fp, index_col="index") tm.assert_frame_equal(reread, df) @pytest.mark.parametrize("method", ["zip", "infer"]) @pytest.mark.parametrize("file_ext", [None, "dta", "zip"]) def test_compression_dict(method, file_ext): file_name = f"test.{file_ext}" archive_name = "test.dta" df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.index.name = "index" with tm.ensure_clean(file_name) as path: compression = {"method": method, "archive_name": archive_name} df.to_stata(path, compression=compression) if method == "zip" or file_ext == "zip": zp = zipfile.ZipFile(path, "r") assert len(zp.filelist) == 1 assert zp.filelist[0].filename == archive_name fp = io.BytesIO(zp.read(zp.filelist[0])) else: fp = path reread = read_stata(fp, index_col="index") tm.assert_frame_equal(reread, df) @pytest.mark.parametrize("version", [114, 117, 118, 119, None]) def test_chunked_categorical(version): df = DataFrame({"cats": Series(["a", "b", "a", "b", "c"], dtype="category")}) df.index.name = "index" with tm.ensure_clean() as path: df.to_stata(path, version=version) reader = StataReader(path, chunksize=2, order_categoricals=False) for i, block in enumerate(reader): block = block.set_index("index") assert "cats" in block tm.assert_series_equal(block.cats, df.cats.iloc[2 * i : 2 * (i + 1)]) def test_chunked_categorical_partial(dirpath): dta_file = os.path.join(dirpath, "stata-dta-partially-labeled.dta") values = ["a", "b", "a", "b", 3.0] with StataReader(dta_file, chunksize=2) as reader: with tm.assert_produces_warning(CategoricalConversionWarning): for i, block in enumerate(reader): assert list(block.cats) == values[2 * i : 2 * (i + 1)] if i < 2: idx = pd.Index(["a", "b"]) else: idx = pd.Float64Index([3.0]) tm.assert_index_equal(block.cats.cat.categories, idx) with tm.assert_produces_warning(CategoricalConversionWarning): with StataReader(dta_file, chunksize=5) as reader: large_chunk = reader.__next__() direct = read_stata(dta_file) tm.assert_frame_equal(direct, large_chunk) def test_iterator_errors(dirpath): dta_file = os.path.join(dirpath, "stata-dta-partially-labeled.dta") with pytest.raises(ValueError, match="chunksize must be a positive"): StataReader(dta_file, chunksize=-1) with pytest.raises(ValueError, match="chunksize must be a positive"): StataReader(dta_file, chunksize=0) with pytest.raises(ValueError, match="chunksize must be a positive"): StataReader(dta_file, chunksize="apple") def test_iterator_value_labels(): # GH 31544 values = ["c_label", "b_label"] + ["a_label"] * 500 df = DataFrame({f"col{k}": pd.Categorical(values, ordered=True) for k in range(2)}) with tm.ensure_clean() as path: df.to_stata(path, write_index=False) expected = pd.Index(["a_label", "b_label", "c_label"], dtype="object") with pd.read_stata(path, chunksize=100) as reader: for j, chunk in enumerate(reader): for i in range(2): tm.assert_index_equal(chunk.dtypes[i].categories, expected) tm.assert_frame_equal(chunk, df.iloc[j * 100 : (j + 1) * 100]) def test_precision_loss(): df = DataFrame( [[sum(2 ** i for i in range(60)), sum(2 ** i for i in range(52))]], columns=["big", "little"], ) with tm.ensure_clean() as path: with tm.assert_produces_warning( PossiblePrecisionLoss, match="Column converted from int64 to float64" ): df.to_stata(path, write_index=False) reread = read_stata(path) expected_dt = Series([np.float64, np.float64], index=["big", "little"]) tm.assert_series_equal(reread.dtypes, expected_dt) assert reread.loc[0, "little"] == df.loc[0, "little"] assert reread.loc[0, "big"] == float(df.loc[0, "big"])
{ "content_hash": "8137bed09b21f65cd16d1f8c2ae7c75d", "timestamp": "", "source": "github", "line_count": 1999, "max_line_length": 88, "avg_line_length": 39.09804902451226, "alnum_prop": 0.5394270506800415, "repo_name": "jreback/pandas", "id": "24944281419c340aa764066cb8978843f8b00eb7", "size": "78288", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pandas/tests/io/test_stata.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Batchfile", "bytes": "4879" }, { "name": "C", "bytes": "406353" }, { "name": "C++", "bytes": "17193" }, { "name": "HTML", "bytes": "606963" }, { "name": "Makefile", "bytes": "529" }, { "name": "Python", "bytes": "14930989" }, { "name": "Shell", "bytes": "29317" }, { "name": "Smarty", "bytes": "2040" } ], "symlink_target": "" }
from framework.dependency_management.dependency_resolver import ServiceLocator from framework.http.wafbypasser import wafbypasser def format_args(args): formatted_args = { "target": None, "payloads": None, "headers": None, "methods": None, "data": None, "contains": None, "resp_code_det": None, "reverse": None, "fuzzing_signature": None, "accepted_value": None, "param_name": None, "param_source": None, "delay": None, "follow_cookies": None, "cookie": None, "length": None, "response_time": None, "mode": None } for param, value in dict(args).iteritems(): formatted_args[param.lower()] = value return formatted_args DESCRIPTION = "WAF byppaser module plugin" def run(PluginInfo): Content = DESCRIPTION + " Results:<br />" plugin_params = ServiceLocator.get_component("plugin_params") args = { 'Description': DESCRIPTION, 'Mandatory': {'TARGET': None, 'MODE': None}, 'Optional': { 'METHODS': None, 'COOKIE': None, 'HEADERS': None, 'LENGTH': None, 'DATA': None, 'CONTAINS': None, 'RESP_CODE_DET': None, 'RESPONSE_TIME': None, 'REVERSE': None, 'PAYLOADS': None, 'ACCEPTED_VALUE': None, 'PARAM_NAME': None, 'PARAM_SOURCE': None, 'DELAY': None, 'FOLLOW-COOKIES': None, } } for Args in plugin_params.GetArgs(args, PluginInfo): ret = plugin_params.SetConfig(Args) # Only now, after modifying ATTACHMENT_NAME, update config wafbps = wafbypasser.WAFBypasser(Core) wafbps.start(format_args(Args)) return Content
{ "content_hash": "e3a139963a24bdd5e06c1a4d3df92000", "timestamp": "", "source": "github", "line_count": 62, "max_line_length": 103, "avg_line_length": 29.661290322580644, "alnum_prop": 0.5502990755845568, "repo_name": "DarKnight24/owtf", "id": "eab0a5b35a020cf015fa921e3350b17910828ef4", "size": "1839", "binary": false, "copies": "2", "ref": "refs/heads/develop", "path": "plugins/auxiliary/wafbypasser/WAF_Byppaser@OWTF-AWAF-001.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "HTML", "bytes": "165961" }, { "name": "JavaScript", "bytes": "20557" }, { "name": "Python", "bytes": "704531" }, { "name": "Shell", "bytes": "58019" } ], "symlink_target": "" }
import os from flask.cli import DispatchingApp from werkzeug.debug import DebuggedApplication from werkzeug.exceptions import NotFound from werkzeug.middleware.dispatcher import DispatcherMiddleware from werkzeug.middleware.proxy_fix import ProxyFix from werkzeug.serving import WSGIRequestHandler, run_simple from werkzeug.urls import url_parse try: import pywatchman except ImportError: pywatchman = None def run_cmd(info, **kwargs): if kwargs['reloader_type'] == 'watchman': if pywatchman is None: print('watchman is not available - you need to `pip install pywatchman`') return run_watchman() return run_server(info, **kwargs) def run_watchman(): from .watchman import Watchman try: Watchman().run() except pywatchman.WatchmanError as exc: from indico.util.console import cformat print(cformat('%{red!}watchman error: {}').format(exc)) def run_server(info, host, port, url, ssl, ssl_key, ssl_cert, quiet, proxy, enable_evalex, evalex_from, reloader_type): if port is None: port = 8443 if ssl else 8000 if not enable_evalex: evalex_whitelist = False elif evalex_from: evalex_whitelist = evalex_from else: evalex_whitelist = True if not ssl: ssl_ctx = None elif ssl_key and ssl_cert: ssl_ctx = (ssl_cert, ssl_key) else: ssl_ctx = 'adhoc' if not url: proto = 'https' if ssl else 'http' url_host = f'[{host}]' if ':' in host else host if (port == 80 and not ssl) or (port == 443 and ssl): url = f'{proto}://{url_host}' else: url = f'{proto}://{url_host}:{port}' os.environ['INDICO_DEV_SERVER'] = '1' os.environ.pop('FLASK_DEBUG', None) os.environ['INDICO_CONF_OVERRIDE'] = repr({ 'BASE_URL': url, }) if os.environ.get('WERKZEUG_RUN_MAIN') != 'true': print(f' * Serving Indico on {url}') if evalex_whitelist: print(f' * Werkzeug debugger console on {url}/console') if evalex_whitelist is True: # noqa print(' * Werkzeug debugger console is available to all clients!') try: from indico.core.config import get_config_path extra_files = [get_config_path()] except Exception: extra_files = None # our own logger initialization code runs earlier so werkzeug # doesn't initialize its logger import logging werkzeug_logger = logging.getLogger('werkzeug') werkzeug_logger.propagate = False werkzeug_logger.setLevel(logging.INFO) werkzeug_logger.addHandler(logging.StreamHandler()) app = _make_wsgi_app(info, url, evalex_whitelist, proxy) run_simple(host, port, app, reloader_type=reloader_type, use_reloader=(reloader_type != 'none'), use_debugger=False, use_evalex=False, threaded=True, ssl_context=ssl_ctx, extra_files=extra_files, request_handler=QuietWSGIRequestHandler if quiet else None) def _reset_state(): # XXX: This hack is extremely awful, but when the reloader encounters # an error during import / app creation time (e.g. saving a file with # a syntax error) and the error is fixed later we still have the old # data which then breaks things, so we clear them if possible (and not # care about any exceptions while trying to import these things) # The reason for this behavior is that a file that fails to import # is not added to `sys.modules` so the reloader won't monitor it for # changes. from indico.core.celery import celery celery.flask_app = None def _make_wsgi_app(info, url, evalex_whitelist, proxy): def _load_app(): _reset_state() return info.load_app() url_data = url_parse(url) app = DispatchingApp(_load_app, use_eager_loading=False) app = DebuggedIndico(app, evalex_whitelist) app = _make_indico_dispatcher(app, url_data.path) if proxy: app = ProxyFix(app, x_for=1, x_proto=1, x_host=1) QuietWSGIRequestHandler.INDICO_URL_PREFIX = url_data.path.rstrip('/') return app def _make_indico_dispatcher(wsgi_app, path): path = path.rstrip('/') if not path: # Nothing to dispatch return wsgi_app else: return DispatcherMiddleware(NotFound(), { path: wsgi_app }) class DebuggedIndico(DebuggedApplication): def __init__(self, *args, **kwargs): self._evalex_whitelist = None self._request_ip = None super().__init__(*args, **kwargs) @property def evalex(self): if not self._evalex_whitelist: return False elif self._evalex_whitelist is True: # noqa return True else: return self._request_ip in self._evalex_whitelist @evalex.setter def evalex(self, value): self._evalex_whitelist = value def __call__(self, environ, start_response): self._request_ip = environ['REMOTE_ADDR'] if self._request_ip.startswith('::ffff:'): # convert ipv6-style ipv4 to the regular ipv4 notation self._request_ip = self._request_ip[7:] return super().__call__(environ, start_response) class QuietWSGIRequestHandler(WSGIRequestHandler): INDICO_URL_PREFIX = '' # set from outside based on the url path prefix IGNORED_PATH_PREFIXES = {'/vars.js', '/css/', '/fonts/', '/images/', '/dist/', '/assets/', '/static/'} def log_request(self, code='-', size='-'): if code not in (304, 200): super().log_request(code, size) elif '?__debugger__=yes&cmd=resource' in self.path: pass # don't log debugger resources, they are quite uninteresting elif not any(self.path.startswith(self.INDICO_URL_PREFIX + x) for x in self.IGNORED_PATH_PREFIXES): super().log_request(code, size)
{ "content_hash": "be05e52eae7e660eac5b342ddcd811b2", "timestamp": "", "source": "github", "line_count": 173, "max_line_length": 119, "avg_line_length": 34.179190751445084, "alnum_prop": 0.6350414341281921, "repo_name": "DirkHoffmann/indico", "id": "6555594ef1877560fced6be5294612df0434d64f", "size": "6127", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "indico/cli/devserver.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "33249" }, { "name": "HTML", "bytes": "1398354" }, { "name": "JavaScript", "bytes": "2295843" }, { "name": "Mako", "bytes": "1527" }, { "name": "Python", "bytes": "5426206" }, { "name": "SCSS", "bytes": "496904" }, { "name": "Shell", "bytes": "3877" }, { "name": "TeX", "bytes": "23435" }, { "name": "XSLT", "bytes": "1504" } ], "symlink_target": "" }
import sys from telnet import Telnet from handler import Handler from managers import ListeningManager, ConnectionManager # from _handlers import LogonHandler class EchoHandler(Handler): def __init__(self, conn): Handler.__init__(self, conn) def Enter(self): self.SendString(self.connection, 'Enter Echo Handler\n') def Leave(self): self.SendString(self.connection, 'Leave Echo Handler\n') def Handle(self, cmd): if cmd != 'quit': self.SendString(self.connection, 'Echo Command: %s\n' % cmd) print 'Recv cmd: %s' % cmd else: self.SendString(self.connection, 'Good Bye!\n') self.connection.Close() # cm = ConnectionManager(LogonHandler, Telnet) cm = ConnectionManager(EchoHandler, Telnet) lm = ListeningManager(cm) lm.AddPort(int(sys.argv[1])) while True: lm.Listen() cm.Manage()
{ "content_hash": "39a1ab05f15265502f9a7baece5ebf5e", "timestamp": "", "source": "github", "line_count": 35, "max_line_length": 72, "avg_line_length": 25.714285714285715, "alnum_prop": 0.6544444444444445, "repo_name": "prim/SZMUD", "id": "bf51d5539ea5b35d9f82956471151a9e713ff5c6", "size": "919", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "network/example/echo_demo.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "119898" } ], "symlink_target": "" }
from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('users', '0002_auto_20150905_2016'), ] operations = [ ]
{ "content_hash": "500184742b44fe88706eeeb52c6ed5ec", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 45, "avg_line_length": 17.153846153846153, "alnum_prop": 0.6502242152466368, "repo_name": "sebastian-code/portal", "id": "931780c635df64cf04ab1d0b57d65daf1aeee514", "size": "247", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "djangocali-portal/users/migrations/0003_merge.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "1670" }, { "name": "HTML", "bytes": "55353" }, { "name": "JavaScript", "bytes": "2394" }, { "name": "Nginx", "bytes": "1095" }, { "name": "Python", "bytes": "84625" }, { "name": "Shell", "bytes": "7805" } ], "symlink_target": "" }
from django.conf import settings import ldap import ldap.modlist import logging logger = logging.getLogger("ldapproxy.models") class LdapProxy: ''' wrapper class to talk to the LDAP MASTER server. ''' proxy = None def __init__(self): try: if settings.LDAP_MASTER_DISABLE == True: return except AttributeError: pass try: logger.debug("TLS AVAILABLE? %d" % (ldap.TLS_AVAIL)) print "LDAP SETTINGS->"+settings.LDAP_MASTER_URI ldap.set_option(ldap.OPT_X_TLS_CACERTFILE, settings.LDAP_MASTER_CA) #ldap.set_option(ldap.OPT_X_TLS_CERTFILE, settings.LDAP_MASTER_CERT) #ldap.set_option(ldap.OPT_X_TLS_KEYFILE, settings.LDAP_MASTER_KEY) ldap.set_option(ldap.OPT_X_TLS_REQUIRE_CERT, settings.LDAP_MASTER_REQCERT) ldap.set_option(ldap.OPT_TIMEOUT, settings.LDAP_MASTER_TIMEOUT) self.proxy = ldap.initialize (settings.LDAP_MASTER_URI) if settings.AUTH_LDAP_START_TLS: self.proxy.start_tls_s() self.proxy.simple_bind_s(settings.LDAP_MASTER_DN, settings.LDAP_MASTER_PWD) logger.debug ("LdapProxy.__init__: Connected to ldapserver %s as %s with CA in %s and with certificate %s and key %s" % (settings.LDAP_MASTER_URI, settings.LDAP_MASTER_DN, settings.LDAP_MASTER_CA, settings.LDAP_MASTER_CERT, settings.LDAP_MASTER_KEY)) except ldap.LDAPError, error_message: logger.error ("LdapProxy.__init__: Failed connecting to ldapserver %s as %s with CA in %s and with certificate %s and key %s: %s" % (settings.LDAP_MASTER_URI, settings.LDAP_MASTER_DN, settings.LDAP_MASTER_CA, settings.LDAP_MASTER_CERT, settings.LDAP_MASTER_KEY, error_message)) raise # not really possible to lock objects in de LDAP backend. # Howver, as expedients in different islands may compete, this becomes relevant. # Test 1: editing/saving several times a project, while fetching search results and (re)adding # object is commented out does not cause problems. Probably repeating the delete action raises # also a ldap.NO_SUCH_OBJECT that is silently discarded. ==> OK # Test 2: similar, but now deleting object is commented out. After second time, # an ldap.ALREADY_EXISTS exception is raised. Either the calling code know how to deal with this # or user is confronted with an internal server error. ==> Good enough for now? # Crucial is to be careful that resubmitting does not destroy just-recedntly added data. But this # should be a concern anyway. # Not really guarantee to be successful, but at least we try a couple of times to overcome this problem here. def create_or_replace (self, dn, entry): try: if settings.LDAP_MASTER_DISABLE == True: return except AttributeError: pass count = 0 while 1: try: resultid = self.proxy.search(dn, ldap.SCOPE_BASE) try: t, data = self.proxy.result(resultid, 1) logger.debug("LdapProxy.create_or_replace: dn %s exists and is going to be deleted before being inserted again" % (dn)) self.proxy.delete_s(dn) except ldap.NO_SUCH_OBJECT: pass logger.debug("LdapProxy.create_or_replace: adding %s [%s]" % (dn, entry)) self.proxy.add_s(dn,ldap.modlist.addModlist(entry)) break except ldap.ALREADY_EXISTS: count = count + 1 if count < settings.LDAP_MASTER_RETRIES: continue else: logger.error ("LdapProxy: tried %d time to replace %s in LDAP directory" % (settings.LDAP_MASTER_RETRIES, dn)) raise except ldap.LDAPError, error_message: logger.error ("ldapproxy: create or replace %s with %s failed: %s" % (dn, entry, error_message)) raise def delete (self, dn): try: if settings.LDAP_MASTER_DISABLE == True: return except AttributeError: pass try: resultid = self.proxy.search(dn, ldap.SCOPE_BASE) try: t, data = self.proxy.result(resultid, 1) logger.debug("LdapProxy.delete: dn %s exists and is going to be deleted" % (dn)) self.proxy.delete_s(dn) except ldap.NO_SUCH_OBJECT: pass except ldap.LDAPError, error_message: logger.error ("ldapproxy: delete %s failed: %s" % (dn, error_message)) raise
{ "content_hash": "7d3b3f3d9a76bc725f71a13d5288a105", "timestamp": "", "source": "github", "line_count": 90, "max_line_length": 289, "avg_line_length": 51.544444444444444, "alnum_prop": 0.6208234533304592, "repo_name": "avlach/univbris-ocf", "id": "c8be5ccc40f7508af0b238ebb1c8d1a0efbd8940", "size": "4639", "binary": false, "copies": "4", "ref": "refs/heads/ofelia.opticaldevelopment", "path": "expedient/src/python/expedient/common/ldapproxy/models.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "127542" }, { "name": "JavaScript", "bytes": "289680" }, { "name": "Perl", "bytes": "4421" }, { "name": "Python", "bytes": "3446617" }, { "name": "Racket", "bytes": "32770" }, { "name": "Shell", "bytes": "7609" } ], "symlink_target": "" }
from __future__ import absolute_import from envisage.resource.file_resource_protocol import *
{ "content_hash": "84169598c7c07fd3edbc3ca683adf281", "timestamp": "", "source": "github", "line_count": 2, "max_line_length": 54, "avg_line_length": 47, "alnum_prop": 0.8085106382978723, "repo_name": "enthought/etsproxy", "id": "78fac251c73c33d084002bdd1de2252e769b1af5", "size": "109", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "enthought/envisage/resource/file_resource_protocol.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "363714" } ], "symlink_target": "" }
""" Composites are the **factories** and **decision makers** of a behaviour tree. They are responsible for shaping the branches. .. graphviz:: dot/composites.dot .. tip:: You should never need to subclass or create new composites. Most patterns can be achieved with a combination of the above. Adding to this set exponentially increases the complexity and subsequently making it more difficult to design, introspect, visualise and debug the trees. Always try to find the combination you need to achieve your result before contemplating adding to this set. Actually, scratch that...just don't contemplate it! Composite behaviours typically manage children and apply some logic to the way they execute and return a result, but generally don't do anything themselves. Perform the checks or actions you need to do in the non-composite behaviours. * :class:`~py_trees.composites.Sequence`: execute children sequentially * :class:`~py_trees.composites.Selector`: select a path through the tree, interruptible by higher priorities * :class:`~py_trees.composites.Chooser`: like a selector, but commits to a path once started until it finishes * :class:`~py_trees.composites.Parallel`: manage children concurrently """ ############################################################################## # Imports ############################################################################## import itertools from . import common from .behaviour import Behaviour from .common import Status ############################################################################## # Composites ############################################################################## class Composite(Behaviour): """ The parent class to all composite behaviours, i.e. those that have children. Args: name (:obj:`str`): the composite behaviour name children ([:class:`~py_trees.behaviour.Behaviour`]): list of children to add *args: variable length argument list **kwargs: arbitrary keyword arguments """ def __init__(self, name="", children=None, *args, **kwargs): super(Composite, self).__init__(name, *args, **kwargs) if children is not None: for child in children: self.add_child(child) else: self.children = [] ############################################ # Worker Overrides ############################################ def setup(self, timeout): """ Relays to each child's :meth:`~py_trees.behaviour.Behaviuor.setup` method in turn. Args: timeout (:obj:`float`): time to wait (0.0 is blocking forever) Return: :obj:`bool`: suceess or failure of the operation """ self.logger.debug("%s.setup()" % (self.__class__.__name__)) result = True for child in self.children: new_result = child.setup(timeout) if new_result is None: # replace with py_trees exception! self.logger.error("%s.setup()['%s'.setup() returned None (must be True||False)]" % (self.__class__.__name__, child.name)) result = result and new_result if not result: break return result def stop(self, new_status=Status.INVALID): """ There is generally two use cases that must be supported here. 1) Whenever the composite has gone to a recognised state (i.e. :data:`~py_trees.common.Status.FAILURE` or SUCCESS), or 2) when a higher level parent calls on it to truly stop (INVALID). In only the latter case will children need to be forcibly stopped as well. In the first case, they will have stopped themselves appropriately already. Args: new_status (:class:`~py_trees.common.Status`): behaviour will transition to this new status """ self.logger.debug("%s.stop()[%s]" % (self.__class__.__name__, "%s->%s" % (self.status, new_status) if self.status != new_status else "%s" % new_status)) if new_status == Status.INVALID: for child in self.children: child.stop(new_status) # This part just replicates the Behaviour.stop function. We replicate it here so that # the Behaviour logging doesn't duplicate the composite logging here, just a bit cleaner this way. self.terminate(new_status) self.status = new_status self.iterator = self.tick() def tip(self): """ Recursive function to extract the last running node of the tree. Returns: :class::`~py_trees.behaviour.Behaviour`: the tip function of the current child of this composite or None """ return self.current_child.tip() if self.current_child is not None else None ############################################ # Children ############################################ def add_child(self, child): """ Adds a child. Args: child (:class:`~py_trees.behaviour.Behaviour`): child to add Returns: uuid.UUID: unique id of the child """ assert isinstance(child, Behaviour), "children must be behaviours, but you passed in %s" % type(child) self.children.append(child) child.parent = self return child.id def add_children(self, children): """ Append a list of children to the current list. Args: children ([:class:`~py_trees.behaviour.Behaviour`]): list of children to add """ for child in children: self.add_child(child) def remove_child(self, child): """ Remove the child behaviour from this composite. Args: child (:class:`~py_trees.behaviour.Behaviour`): child to delete Returns: :obj:`int`: index of the child that was removed .. todo:: Error handling for when child is not in this list """ if child.status == Status.RUNNING: child.stop(Status.INVALID) child_index = self.children.index(child) self.children.remove(child) return child_index def remove_all_children(self): """ Remove all children. Makes sure to stop each child if necessary. """ for child in self.children: if child.status == Status.RUNNING: child.stop(Status.INVALID) # makes sure to delete it for this class and all references to it # http://stackoverflow.com/questions/850795/clearing-python-lists del self.children[:] def replace_child(self, child, replacement): """ Replace the child behaviour with another. Args: child (:class:`~py_trees.behaviour.Behaviour`): child to delete replacement (:class:`~py_trees.behaviour.Behaviour`): child to insert """ if child.status == Status.RUNNING: child.stop(Status.INVALID) child_index = self.children.index(child) self.logger.debug("%s.replace_child()[%s->%s]" % (self.__class__.__name__, child.name, replacement.name)) self.children[child_index] = replacement def remove_child_by_id(self, child_id): """ Remove the child with the specified id. Args: child_id (uuid.UUID): unique id of the child Raises: IndexError: if the child was not found """ child = next((c for c in self.children if c.id == child_id), None) if child is not None: if child.status == Status.RUNNING: child.stop(Status.INVALID) self.children.remove(child) else: raise IndexError('child was not found with the specified id [%s]' % child_id) def prepend_child(self, child): """ Prepend the child before all other children. Args: child (:class:`~py_trees.behaviour.Behaviour`): child to insert Returns: uuid.UUID: unique id of the child """ self.children.insert(0, child) child.parent = self return child.id def insert_child(self, child, index): """ Insert child at the specified index. This simply directly calls the python list's :obj:`insert` method using the child and index arguments. Args: child (:class:`~py_trees.behaviour.Behaviour`): child to insert index (:obj:`int`): index to insert it at Returns: uuid.UUID: unique id of the child """ self.children.insert(index, child) child.parent = self return child.id ############################################################################## # Selector ############################################################################## class Selector(Composite): """ Selectors are the Decision Makers .. graphviz:: dot/selector.dot A selector executes each of its child behaviours in turn until one of them succeeds (at which point it itself returns :data:`~py_trees.common.Status.RUNNING` or :data:`~py_trees.common.Status.SUCCESS`, or it runs out of children at which point it itself returns :data:`~py_trees.common.Status.FAILURE`. We usually refer to selecting children as a means of *choosing between priorities*. Each child and its subtree represent a decreasingly lower priority path. .. note:: Switching from a low -> high priority branch causes a `stop(INVALID)` signal to be sent to the previously executing low priority branch. This signal will percolate down that child's own subtree. Behaviours should make sure that they catch this and *destruct* appropriately. Make sure you do your appropriate cleanup in the :meth:`terminate()` methods! e.g. cancelling a running goal, or restoring a context. .. seealso:: The :ref:`py-trees-demo-selector-program` program demos higher priority switching under a selector. Args: name (:obj:`str`): the composite behaviour name children ([:class:`~py_trees.behaviour.Behaviour`]): list of children to add *args: variable length argument list **kwargs: arbitrary keyword arguments """ def __init__(self, name="Selector", children=None, *args, **kwargs): super(Selector, self).__init__(name, children, *args, **kwargs) self.current_child = None def tick(self): """ Run the tick behaviour for this selector. Note that the status of the tick is always determined by its children, not by the user customised update function. Yields: :class:`~py_trees.behaviour.Behaviour`: a reference to itself or one of its children """ self.logger.debug("%s.tick()" % self.__class__.__name__) # Required behaviour for *all* behaviours and composites is # for tick() to check if it isn't running and initialise if self.status != Status.RUNNING: # selectors dont do anything specific on initialisation # - the current child is managed by the update, never needs to be 'initialised' # run subclass (user) handles self.initialise() # run any work designated by a customised instance of this class self.update() previous = self.current_child for child in self.children: for node in child.tick(): yield node if node is child: if node.status == Status.RUNNING or node.status == Status.SUCCESS: self.current_child = child self.status = node.status if previous is None or previous != self.current_child: # we interrupted, invalidate everything at a lower priority passed = False for child in self.children: if passed: if child.status != Status.INVALID: child.stop(Status.INVALID) passed = True if child == self.current_child else passed yield self return # all children failed, set failure ourselves and current child to the last bugger who failed us self.status = Status.FAILURE try: self.current_child = self.children[-1] except IndexError: self.current_child = None yield self def stop(self, new_status=Status.INVALID): """ Stopping a selector requires setting the current child to none. Note that it is important to implement this here instead of terminate, so users are free to subclass this easily with their own terminate and not have to remember that they need to call this function manually. Args: new_status (:class:`~py_trees.common.Status`): the composite is transitioning to this new status """ # retain information about the last running child if the new status is # SUCCESS or FAILURE if new_status == Status.INVALID: self.current_child = None Composite.stop(self, new_status) def __repr__(self): """ Simple string representation of the object. Returns: :obj:`str`: string representation """ s = "Name : %s\n" % self.name s += " Status : %s\n" % self.status s += " Current : %s\n" % (self.current_child.name if self.current_child is not None else "none") s += " Children: %s\n" % [child.name for child in self.children] return s ############################################################################## # Chooser ############################################################################## class Chooser(Selector): """ Choosers are Selectors with Commitment .. graphviz:: dot/chooser.dot A variant of the selector class. Once a child is selected, it cannot be interrupted by higher priority siblings. As soon as the chosen child itself has finished it frees the chooser for an alternative selection. i.e. priorities only come into effect if the chooser wasn't running in the previous tick. .. note:: This is the only composite in py_trees that is not a core composite in most behaviour tree implementations. Nonetheless, this is useful in fields like robotics, where you have to ensure that your manipulator doesn't drop it's payload mid-motion as soon as a higher interrupt arrives. Use this composite sparingly and only if you can't find another way to easily create an elegant tree composition for your task. Args: name (:obj:`str`): the composite behaviour name children ([:class:`~py_trees.behaviour.Behaviour`]): list of children to add *args: variable length argument list **kwargs: arbitrary keyword arguments """ def __init__(self, name="Chooser", children=None, *args, **kwargs): super(Chooser, self).__init__(name, children, *args, **kwargs) def tick(self): """ Run the tick behaviour for this chooser. Note that the status of the tick is (for now) always determined by its children, not by the user customised update function. Yields: :class:`~py_trees.behaviour.Behaviour`: a reference to itself or one of its children """ self.logger.debug("%s.tick()" % self.__class__.__name__) # Required behaviour for *all* behaviours and composites is # for tick() to check if it isn't running and initialise if self.status != Status.RUNNING: # chooser specific initialisation # invalidate everything for child in self.children: child.stop(Status.INVALID) self.current_child = None # run subclass (user) initialisation self.initialise() # run any work designated by a customised instance of this class self.update() if self.current_child is not None: # run our child, and invalidate anyone else who may have been ticked last run # (bit wasteful always checking for the latter) for child in self.children: if child is self.current_child: for node in self.current_child.tick(): yield node elif child.status != Status.INVALID: child.stop(Status.INVALID) else: for child in self.children: for node in child.tick(): yield node if child.status == Status.RUNNING or child.status == Status.SUCCESS: self.current_child = child break new_status = self.current_child.status if self.current_child is not None else Status.FAILURE self.stop(new_status) yield self ############################################################################## # Sequence ############################################################################## class Sequence(Composite): """ Sequences are the factory lines of Behaviour Trees .. graphviz:: dot/sequence.dot A sequence will progressively tick over each of its children so long as each child returns :data:`~py_trees.common.Status.SUCCESS`. If any child returns :data:`~py_trees.common.Status.FAILURE` or :data:`~py_trees.common.Status.RUNNING` the sequence will halt and the parent will adopt the result of this child. If it reaches the last child, it returns with that result regardless. .. note:: The sequence halts once it sees a child is RUNNING and then returns the result. *It does not get stuck in the running behaviour*. .. seealso:: The :ref:`py-trees-demo-sequence-program` program demos a simple sequence in action. Args: name (:obj:`str`): the composite behaviour name children ([:class:`~py_trees.behaviour.Behaviour`]): list of children to add *args: variable length argument list **kwargs: arbitrary keyword arguments """ def __init__(self, name="Sequence", children=None, *args, **kwargs): super(Sequence, self).__init__(name, children, *args, **kwargs) self.current_index = -1 # -1 indicates uninitialised def tick(self): """ Tick over the children. Yields: :class:`~py_trees.behaviour.Behaviour`: a reference to itself or one of its children """ self.logger.debug("%s.tick()" % self.__class__.__name__) if self.status != Status.RUNNING: self.logger.debug("%s.tick() [!RUNNING->resetting child index]" % self.__class__.__name__) # sequence specific handling self.current_index = 0 for child in self.children: # reset the children, this helps when introspecting the tree if child.status != Status.INVALID: child.stop(Status.INVALID) # subclass (user) handling self.initialise() # run any work designated by a customised instance of this class self.update() for child in itertools.islice(self.children, self.current_index, None): for node in child.tick(): yield node if node is child and node.status != Status.SUCCESS: self.status = node.status yield self return self.current_index += 1 # At this point, all children are happy with their SUCCESS, so we should be happy too self.current_index -= 1 # went off the end of the list if we got to here self.stop(Status.SUCCESS) yield self @property def current_child(self): """ Have to check if there's anything actually running first. Returns: :class:`~py_trees.behaviour.Behaviour`: the child that is currently running, or None """ if self.current_index == -1: return None return self.children[self.current_index] if self.children else None def stop(self, new_status=Status.INVALID): """ Stopping a sequence requires taking care of the current index. Note that is important to implement this here intead of terminate, so users are free to subclass this easily with their own terminate and not have to remember that they need to call this function manually. Args: new_status (:class:`~py_trees.common.Status`): the composite is transitioning to this new status """ # retain information about the last running child if the new status is # SUCCESS or FAILURE if new_status == Status.INVALID: self.current_index = -1 Composite.stop(self, new_status) ############################################################################## # Parallel ############################################################################## class Parallel(Composite): """ Parallels enable a kind of concurrency .. graphviz:: dot/parallel.dot Ticks every child every time the parallel is run (a poor man's form of paralellism). * Parallels will return :data:`~py_trees.common.Status.FAILURE` if any child returns :py:data:`~py_trees.common.Status.FAILURE` * Parallels with policy :data:`~py_trees.common.ParallelPolicy.SUCCESS_ON_ONE` return :py:data:`~py_trees.common.Status.SUCCESS` if **at least one** child returns :py:data:`~py_trees.common.Status.SUCCESS` and others are :py:data:`~py_trees.common.Status.RUNNING`. * Parallels with policy :data:`~py_trees.common.ParallelPolicy.SUCCESS_ON_ALL` only returns :py:data:`~py_trees.common.Status.SUCCESS` if **all** children return :py:data:`~py_trees.common.Status.SUCCESS` .. seealso:: The :ref:`py-trees-demo-context-switching-program` program demos a parallel used to assist in a context switching scenario. Args: name (:obj:`str`): the composite behaviour name policy (:class:`~py_trees.common.ParallelPolicy`): policy to use for deciding success or otherwise children ([:class:`~py_trees.behaviour.Behaviour`]): list of children to add *args: variable length argument list **kwargs: arbitrary keyword arguments """ def __init__(self, name="Parallel", policy=common.ParallelPolicy.SUCCESS_ON_ALL, children=None, *args, **kwargs): super(Parallel, self).__init__(name, children, *args, **kwargs) self.policy = policy def tick(self): """ Tick over the children. Yields: :class:`~py_trees.behaviour.Behaviour`: a reference to itself or one of its children """ if self.status != Status.RUNNING: # subclass (user) handling self.initialise() self.logger.debug("%s.tick()" % self.__class__.__name__) # process them all first for child in self.children: for node in child.tick(): yield node # new_status = Status.SUCCESS if self.policy == common.ParallelPolicy.SUCCESS_ON_ALL else Status.RUNNING new_status = Status.RUNNING if any([c.status == Status.FAILURE for c in self.children]): new_status = Status.FAILURE else: if self.policy == common.ParallelPolicy.SUCCESS_ON_ALL: if all([c.status == Status.SUCCESS for c in self.children]): new_status = Status.SUCCESS elif self.policy == common.ParallelPolicy.SUCCESS_ON_ONE: if any([c.status == Status.SUCCESS for c in self.children]): new_status = Status.SUCCESS # special case composite - this parallel may have children that are still running # so if the parallel itself has reached a final status, then these running children # need to be made aware of it too if new_status != Status.RUNNING: for child in self.children: if child.status == Status.RUNNING: # interrupt it (exactly as if it was interrupted by a higher priority) child.stop(Status.INVALID) self.stop(new_status) self.status = new_status yield self @property def current_child(self): """ Have to check if there's anything actually running first. Returns: :class:`~py_trees.behaviour.Behaviour`: the child that is currently running, or None """ if self.status == Status.INVALID: return None if self.status == Status.FAILURE: for child in self.children: if child.status == Status.FAILURE: return child # shouldn't get here elif self.status == Status.SUCCESS and self.policy == common.ParallelPolicy.SUCCESS_ON_ONE: for child in self.children: if child.status == Status.SUCCESS: return child else: return self.children[-1]
{ "content_hash": "44ba99e90c99961bef633180e72d165c", "timestamp": "", "source": "github", "line_count": 609, "max_line_length": 268, "avg_line_length": 41.614121510673236, "alnum_prop": 0.5892751450104565, "repo_name": "stonier/py_trees_suite", "id": "439b76c304a1e05941839a8ec6254f6d3995f136", "size": "25628", "binary": false, "copies": "1", "ref": "refs/heads/release/0.6.x", "path": "py_trees/composites.py", "mode": "33188", "license": "bsd-3-clause", "language": [], "symlink_target": "" }
""" PostgreSQL database backend for Django. Requires psycopg 2: http://initd.org/projects/psycopg2 """ import warnings from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.db import DEFAULT_DB_ALIAS from django.db.backends.base.base import BaseDatabaseWrapper from django.db.utils import DatabaseError as WrappedDatabaseError from django.utils import six from django.utils.encoding import force_str from django.utils.functional import cached_property from django.utils.safestring import SafeBytes, SafeText try: import psycopg2 as Database import psycopg2.extensions import psycopg2.extras except ImportError as e: raise ImproperlyConfigured("Error loading psycopg2 module: %s" % e) def psycopg2_version(): version = psycopg2.__version__.split(' ', 1)[0] return tuple(int(v) for v in version.split('.') if v.isdigit()) PSYCOPG2_VERSION = psycopg2_version() if PSYCOPG2_VERSION < (2, 4, 5): raise ImproperlyConfigured("psycopg2_version 2.4.5 or newer is required; you have %s" % psycopg2.__version__) # Some of these import psycopg2, so import them after checking if it's installed. from .client import DatabaseClient # NOQA isort:skip from .creation import DatabaseCreation # NOQA isort:skip from .features import DatabaseFeatures # NOQA isort:skip from .introspection import DatabaseIntrospection # NOQA isort:skip from .operations import DatabaseOperations # NOQA isort:skip from .schema import DatabaseSchemaEditor # NOQA isort:skip from .utils import utc_tzinfo_factory # NOQA isort:skip from .version import get_version # NOQA isort:skip DatabaseError = Database.DatabaseError IntegrityError = Database.IntegrityError if six.PY2: psycopg2.extensions.register_type(psycopg2.extensions.UNICODE) psycopg2.extensions.register_type(psycopg2.extensions.UNICODEARRAY) psycopg2.extensions.register_adapter(SafeBytes, psycopg2.extensions.QuotedString) psycopg2.extensions.register_adapter(SafeText, psycopg2.extensions.QuotedString) psycopg2.extras.register_uuid() # Register support for inet[] manually so we don't have to handle the Inet() # object on load all the time. INETARRAY_OID = 1041 INETARRAY = psycopg2.extensions.new_array_type( (INETARRAY_OID,), 'INETARRAY', psycopg2.extensions.UNICODE, ) psycopg2.extensions.register_type(INETARRAY) class DatabaseWrapper(BaseDatabaseWrapper): vendor = 'postgresql' # This dictionary maps Field objects to their associated PostgreSQL column # types, as strings. Column-type strings can contain format strings; they'll # be interpolated against the values of Field.__dict__ before being output. # If a column type is set to None, it won't be included in the output. data_types = { 'AutoField': 'serial', 'BigAutoField': 'bigserial', 'BinaryField': 'bytea', 'BooleanField': 'boolean', 'CharField': 'varchar(%(max_length)s)', 'CommaSeparatedIntegerField': 'varchar(%(max_length)s)', 'DateField': 'date', 'DateTimeField': 'timestamp with time zone', 'DecimalField': 'numeric(%(max_digits)s, %(decimal_places)s)', 'DurationField': 'interval', 'FileField': 'varchar(%(max_length)s)', 'FilePathField': 'varchar(%(max_length)s)', 'FloatField': 'double precision', 'IntegerField': 'integer', 'BigIntegerField': 'bigint', 'IPAddressField': 'inet', 'GenericIPAddressField': 'inet', 'NullBooleanField': 'boolean', 'OneToOneField': 'integer', 'PositiveIntegerField': 'integer', 'PositiveSmallIntegerField': 'smallint', 'SlugField': 'varchar(%(max_length)s)', 'SmallIntegerField': 'smallint', 'TextField': 'text', 'TimeField': 'time', 'UUIDField': 'uuid', } data_type_check_constraints = { 'PositiveIntegerField': '"%(column)s" >= 0', 'PositiveSmallIntegerField': '"%(column)s" >= 0', } operators = { 'exact': '= %s', 'iexact': '= UPPER(%s)', 'contains': 'LIKE %s', 'icontains': 'LIKE UPPER(%s)', 'regex': '~ %s', 'iregex': '~* %s', 'gt': '> %s', 'gte': '>= %s', 'lt': '< %s', 'lte': '<= %s', 'startswith': 'LIKE %s', 'endswith': 'LIKE %s', 'istartswith': 'LIKE UPPER(%s)', 'iendswith': 'LIKE UPPER(%s)', } # The patterns below are used to generate SQL pattern lookup clauses when # the right-hand side of the lookup isn't a raw string (it might be an expression # or the result of a bilateral transformation). # In those cases, special characters for LIKE operators (e.g. \, *, _) should be # escaped on database side. # # Note: we use str.format() here for readability as '%' is used as a wildcard for # the LIKE operator. pattern_esc = r"REPLACE(REPLACE(REPLACE({}, '\', '\\'), '%%', '\%%'), '_', '\_')" pattern_ops = { 'contains': "LIKE '%%' || {} || '%%'", 'icontains': "LIKE '%%' || UPPER({}) || '%%'", 'startswith': "LIKE {} || '%%'", 'istartswith': "LIKE UPPER({}) || '%%'", 'endswith': "LIKE '%%' || {}", 'iendswith': "LIKE '%%' || UPPER({})", } Database = Database SchemaEditorClass = DatabaseSchemaEditor # Classes instantiated in __init__(). client_class = DatabaseClient creation_class = DatabaseCreation features_class = DatabaseFeatures introspection_class = DatabaseIntrospection ops_class = DatabaseOperations def get_connection_params(self): settings_dict = self.settings_dict # None may be used to connect to the default 'postgres' db if settings_dict['NAME'] == '': raise ImproperlyConfigured( "settings.DATABASES is improperly configured. " "Please supply the NAME value.") conn_params = { 'database': settings_dict['NAME'] or 'postgres', } conn_params.update(settings_dict['OPTIONS']) conn_params.pop('isolation_level', None) if settings_dict['USER']: conn_params['user'] = settings_dict['USER'] if settings_dict['PASSWORD']: conn_params['password'] = force_str(settings_dict['PASSWORD']) if settings_dict['HOST']: conn_params['host'] = settings_dict['HOST'] if settings_dict['PORT']: conn_params['port'] = settings_dict['PORT'] return conn_params def get_new_connection(self, conn_params): connection = Database.connect(**conn_params) # self.isolation_level must be set: # - after connecting to the database in order to obtain the database's # default when no value is explicitly specified in options. # - before calling _set_autocommit() because if autocommit is on, that # will set connection.isolation_level to ISOLATION_LEVEL_AUTOCOMMIT. options = self.settings_dict['OPTIONS'] try: self.isolation_level = options['isolation_level'] except KeyError: self.isolation_level = connection.isolation_level else: # Set the isolation level to the value from OPTIONS. if self.isolation_level != connection.isolation_level: connection.set_session(isolation_level=self.isolation_level) return connection def ensure_timezone(self): self.ensure_connection() conn_timezone_name = self.connection.get_parameter_status('TimeZone') timezone_name = self.timezone_name if timezone_name and conn_timezone_name != timezone_name: with self.connection.cursor() as cursor: cursor.execute(self.ops.set_time_zone_sql(), [timezone_name]) return True return False def init_connection_state(self): self.connection.set_client_encoding('UTF8') timezone_changed = self.ensure_timezone() if timezone_changed: # Commit after setting the time zone (see #17062) if not self.get_autocommit(): self.connection.commit() def create_cursor(self): cursor = self.connection.cursor() cursor.tzinfo_factory = utc_tzinfo_factory if settings.USE_TZ else None return cursor def _set_autocommit(self, autocommit): with self.wrap_database_errors: self.connection.autocommit = autocommit def check_constraints(self, table_names=None): """ To check constraints, we set constraints to immediate. Then, when, we're done we must ensure they are returned to deferred. """ self.cursor().execute('SET CONSTRAINTS ALL IMMEDIATE') self.cursor().execute('SET CONSTRAINTS ALL DEFERRED') def is_usable(self): try: # Use a psycopg cursor directly, bypassing Django's utilities. self.connection.cursor().execute("SELECT 1") except Database.Error: return False else: return True @property def _nodb_connection(self): nodb_connection = super(DatabaseWrapper, self)._nodb_connection try: nodb_connection.ensure_connection() except (DatabaseError, WrappedDatabaseError): warnings.warn( "Normally Django will use a connection to the 'postgres' database " "to avoid running initialization queries against the production " "database when it's not needed (for example, when running tests). " "Django was unable to create a connection to the 'postgres' database " "and will use the default database instead.", RuntimeWarning ) settings_dict = self.settings_dict.copy() settings_dict['NAME'] = settings.DATABASES[DEFAULT_DB_ALIAS]['NAME'] nodb_connection = self.__class__( self.settings_dict.copy(), alias=self.alias, allow_thread_sharing=False) return nodb_connection @cached_property def psycopg2_version(self): return PSYCOPG2_VERSION @cached_property def pg_version(self): with self.temporary_connection(): return get_version(self.connection)
{ "content_hash": "845a70e1dc9de2a5f19698aea4f7bd87", "timestamp": "", "source": "github", "line_count": 266, "max_line_length": 113, "avg_line_length": 39.54887218045113, "alnum_prop": 0.6263307984790875, "repo_name": "jarshwah/django", "id": "1ab05d81f60d232d7037beb7f70f804b4954fec4", "size": "10520", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "django/db/backends/postgresql/base.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "53023" }, { "name": "HTML", "bytes": "172977" }, { "name": "JavaScript", "bytes": "448123" }, { "name": "Makefile", "bytes": "125" }, { "name": "Python", "bytes": "12112516" }, { "name": "Shell", "bytes": "809" }, { "name": "Smarty", "bytes": "130" } ], "symlink_target": "" }
"""Test the Trusted Networks auth provider.""" from ipaddress import ip_address, ip_network from unittest.mock import Mock, patch from hass_nabucasa import remote import pytest import voluptuous as vol from homeassistant import auth from homeassistant.auth import auth_store from homeassistant.auth.providers import trusted_networks as tn_auth from homeassistant.components.http import CONF_TRUSTED_PROXIES, CONF_USE_X_FORWARDED_FOR from homeassistant.data_entry_flow import RESULT_TYPE_ABORT, RESULT_TYPE_CREATE_ENTRY from homeassistant.setup import async_setup_component @pytest.fixture def store(hass): """Mock store.""" return auth_store.AuthStore(hass) @pytest.fixture def provider(hass, store): """Mock provider.""" return tn_auth.TrustedNetworksAuthProvider( hass, store, tn_auth.CONFIG_SCHEMA( { "type": "trusted_networks", "trusted_networks": [ "192.168.0.1", "192.168.128.0/24", "::1", "fd00::/8", ], } ), ) @pytest.fixture def provider_with_user(hass, store): """Mock provider with trusted users config.""" return tn_auth.TrustedNetworksAuthProvider( hass, store, tn_auth.CONFIG_SCHEMA( { "type": "trusted_networks", "trusted_networks": [ "192.168.0.1", "192.168.128.0/24", "::1", "fd00::/8", ], # user_id will be injected in test "trusted_users": { "192.168.0.1": [], "192.168.128.0/24": [], "fd00::/8": [], }, } ), ) @pytest.fixture def provider_bypass_login(hass, store): """Mock provider with allow_bypass_login config.""" return tn_auth.TrustedNetworksAuthProvider( hass, store, tn_auth.CONFIG_SCHEMA( { "type": "trusted_networks", "trusted_networks": [ "192.168.0.1", "192.168.128.0/24", "::1", "fd00::/8", ], "allow_bypass_login": True, } ), ) @pytest.fixture def manager(hass, store, provider): """Mock manager.""" return auth.AuthManager(hass, store, {(provider.type, provider.id): provider}, {}) @pytest.fixture def manager_with_user(hass, store, provider_with_user): """Mock manager with trusted user.""" return auth.AuthManager( hass, store, {(provider_with_user.type, provider_with_user.id): provider_with_user}, {}, ) @pytest.fixture def manager_bypass_login(hass, store, provider_bypass_login): """Mock manager with allow bypass login.""" return auth.AuthManager( hass, store, {(provider_bypass_login.type, provider_bypass_login.id): provider_bypass_login}, {}, ) async def test_trusted_networks_credentials(manager, provider): """Test trusted_networks credentials related functions.""" owner = await manager.async_create_user("test-owner") tn_owner_cred = await provider.async_get_or_create_credentials({"user": owner.id}) assert tn_owner_cred.is_new is False assert any(cred.id == tn_owner_cred.id for cred in owner.credentials) user = await manager.async_create_user("test-user") tn_user_cred = await provider.async_get_or_create_credentials({"user": user.id}) assert tn_user_cred.id != tn_owner_cred.id assert tn_user_cred.is_new is False assert any(cred.id == tn_user_cred.id for cred in user.credentials) with pytest.raises(tn_auth.InvalidUserError): await provider.async_get_or_create_credentials({"user": "invalid-user"}) async def test_validate_access(provider): """Test validate access from trusted networks.""" provider.async_validate_access(ip_address("192.168.0.1")) provider.async_validate_access(ip_address("192.168.128.10")) provider.async_validate_access(ip_address("::1")) provider.async_validate_access(ip_address("fd01:db8::ff00:42:8329")) with pytest.raises(tn_auth.InvalidAuthError): provider.async_validate_access(ip_address("192.168.0.2")) with pytest.raises(tn_auth.InvalidAuthError): provider.async_validate_access(ip_address("127.0.0.1")) with pytest.raises(tn_auth.InvalidAuthError): provider.async_validate_access(ip_address("2001:db8::ff00:42:8329")) async def test_validate_access_proxy(hass, provider): """Test validate access from trusted networks are blocked from proxy.""" await async_setup_component( hass, "http", { "http": { CONF_TRUSTED_PROXIES: ["192.168.128.0/31", "fd00::1"], CONF_USE_X_FORWARDED_FOR: True, } }, ) provider.async_validate_access(ip_address("192.168.128.2")) provider.async_validate_access(ip_address("fd00::2")) with pytest.raises(tn_auth.InvalidAuthError): provider.async_validate_access(ip_address("192.168.128.0")) with pytest.raises(tn_auth.InvalidAuthError): provider.async_validate_access(ip_address("192.168.128.1")) with pytest.raises(tn_auth.InvalidAuthError): provider.async_validate_access(ip_address("fd00::1")) async def test_validate_access_cloud(hass, provider): """Test validate access from trusted networks are blocked from cloud.""" await async_setup_component( hass, "http", { "http": { CONF_TRUSTED_PROXIES: ["192.168.128.0/31", "fd00::1"], CONF_USE_X_FORWARDED_FOR: True, } }, ) hass.config.components.add("cloud") provider.async_validate_access(ip_address("192.168.128.2")) remote.is_cloud_request.set(True) with pytest.raises(tn_auth.InvalidAuthError): provider.async_validate_access(ip_address("192.168.128.2")) async def test_validate_refresh_token(provider): """Verify re-validation of refresh token.""" with patch.object(provider, "async_validate_access") as mock: with pytest.raises(tn_auth.InvalidAuthError): provider.async_validate_refresh_token(Mock(), None) provider.async_validate_refresh_token(Mock(), "127.0.0.1") mock.assert_called_once_with(ip_address("127.0.0.1")) async def test_login_flow(manager, provider): """Test login flow.""" owner = await manager.async_create_user("test-owner") user = await manager.async_create_user("test-user") # not from trusted network flow = await provider.async_login_flow({"ip_address": ip_address("127.0.0.1")}) step = await flow.async_step_init() assert step["type"] == RESULT_TYPE_ABORT assert step["reason"] == "not_allowed" # from trusted network, list users flow = await provider.async_login_flow({"ip_address": ip_address("192.168.0.1")}) step = await flow.async_step_init() assert step["step_id"] == "init" schema = step["data_schema"] assert schema({"user": owner.id}) with pytest.raises(vol.Invalid): assert schema({"user": "invalid-user"}) # login with valid user step = await flow.async_step_init({"user": user.id}) assert step["type"] == RESULT_TYPE_CREATE_ENTRY assert step["data"]["user"] == user.id async def test_trusted_users_login(manager_with_user, provider_with_user): """Test available user list changed per different IP.""" owner = await manager_with_user.async_create_user("test-owner") sys_user = await manager_with_user.async_create_system_user( "test-sys-user" ) # system user will not be available to select user = await manager_with_user.async_create_user("test-user") # change the trusted users config config = provider_with_user.config["trusted_users"] assert ip_network("192.168.0.1") in config config[ip_network("192.168.0.1")] = [owner.id] assert ip_network("192.168.128.0/24") in config config[ip_network("192.168.128.0/24")] = [sys_user.id, user.id] # not from trusted network flow = await provider_with_user.async_login_flow( {"ip_address": ip_address("127.0.0.1")} ) step = await flow.async_step_init() assert step["type"] == RESULT_TYPE_ABORT assert step["reason"] == "not_allowed" # from trusted network, list users intersect trusted_users flow = await provider_with_user.async_login_flow( {"ip_address": ip_address("192.168.0.1")} ) step = await flow.async_step_init() assert step["step_id"] == "init" schema = step["data_schema"] # only owner listed assert schema({"user": owner.id}) with pytest.raises(vol.Invalid): assert schema({"user": user.id}) # from trusted network, list users intersect trusted_users flow = await provider_with_user.async_login_flow( {"ip_address": ip_address("192.168.128.1")} ) step = await flow.async_step_init() assert step["step_id"] == "init" schema = step["data_schema"] # only user listed assert schema({"user": user.id}) with pytest.raises(vol.Invalid): assert schema({"user": owner.id}) with pytest.raises(vol.Invalid): assert schema({"user": sys_user.id}) # from trusted network, list users intersect trusted_users flow = await provider_with_user.async_login_flow({"ip_address": ip_address("::1")}) step = await flow.async_step_init() assert step["step_id"] == "init" schema = step["data_schema"] # both owner and user listed assert schema({"user": owner.id}) assert schema({"user": user.id}) with pytest.raises(vol.Invalid): assert schema({"user": sys_user.id}) # from trusted network, list users intersect trusted_users flow = await provider_with_user.async_login_flow( {"ip_address": ip_address("fd00::1")} ) step = await flow.async_step_init() assert step["step_id"] == "init" schema = step["data_schema"] # no user listed with pytest.raises(vol.Invalid): assert schema({"user": owner.id}) with pytest.raises(vol.Invalid): assert schema({"user": user.id}) with pytest.raises(vol.Invalid): assert schema({"user": sys_user.id}) async def test_trusted_group_login(manager_with_user, provider_with_user): """Test config trusted_user with group_id.""" owner = await manager_with_user.async_create_user("test-owner") # create a user in user group user = await manager_with_user.async_create_user("test-user") await manager_with_user.async_update_user( user, group_ids=[auth.const.GROUP_ID_USER] ) # change the trusted users config config = provider_with_user.config["trusted_users"] assert ip_network("192.168.0.1") in config config[ip_network("192.168.0.1")] = [{"group": [auth.const.GROUP_ID_USER]}] assert ip_network("192.168.128.0/24") in config config[ip_network("192.168.128.0/24")] = [ owner.id, {"group": [auth.const.GROUP_ID_USER]}, ] # not from trusted network flow = await provider_with_user.async_login_flow( {"ip_address": ip_address("127.0.0.1")} ) step = await flow.async_step_init() assert step["type"] == RESULT_TYPE_ABORT assert step["reason"] == "not_allowed" # from trusted network, list users intersect trusted_users flow = await provider_with_user.async_login_flow( {"ip_address": ip_address("192.168.0.1")} ) step = await flow.async_step_init() assert step["step_id"] == "init" schema = step["data_schema"] # only user listed assert schema({"user": user.id}) with pytest.raises(vol.Invalid): assert schema({"user": owner.id}) # from trusted network, list users intersect trusted_users flow = await provider_with_user.async_login_flow( {"ip_address": ip_address("192.168.128.1")} ) step = await flow.async_step_init() assert step["step_id"] == "init" schema = step["data_schema"] # both owner and user listed assert schema({"user": owner.id}) assert schema({"user": user.id}) async def test_bypass_login_flow(manager_bypass_login, provider_bypass_login): """Test login flow can be bypass if only one user available.""" owner = await manager_bypass_login.async_create_user("test-owner") # not from trusted network flow = await provider_bypass_login.async_login_flow( {"ip_address": ip_address("127.0.0.1")} ) step = await flow.async_step_init() assert step["type"] == RESULT_TYPE_ABORT assert step["reason"] == "not_allowed" # from trusted network, only one available user, bypass the login flow flow = await provider_bypass_login.async_login_flow( {"ip_address": ip_address("192.168.0.1")} ) step = await flow.async_step_init() assert step["type"] == RESULT_TYPE_CREATE_ENTRY assert step["data"]["user"] == owner.id user = await manager_bypass_login.async_create_user("test-user") # from trusted network, two available user, show up login form flow = await provider_bypass_login.async_login_flow( {"ip_address": ip_address("192.168.0.1")} ) step = await flow.async_step_init() schema = step["data_schema"] # both owner and user listed assert schema({"user": owner.id}) assert schema({"user": user.id})
{ "content_hash": "4f678dc47b911da44e688df5d48ba1a2", "timestamp": "", "source": "github", "line_count": 394, "max_line_length": 88, "avg_line_length": 34.464467005076145, "alnum_prop": 0.6227262685028353, "repo_name": "toddeye/home-assistant", "id": "406e9a033da4511dbc52c455e6b5b9bae1090f5e", "size": "13579", "binary": false, "copies": "5", "ref": "refs/heads/dev", "path": "tests/auth/providers/test_trusted_networks.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "3005" }, { "name": "PLSQL", "bytes": "840" }, { "name": "Python", "bytes": "47414832" }, { "name": "Shell", "bytes": "6252" } ], "symlink_target": "" }
from cloudify import ctx # put the operation decorator on any function that is a task from cloudify.decorators import operation @operation def my_task(str1, str2, **kwargs): ctx.logger.info('str1 = '+str1) ctx.logger.info('str2 = '+str2) result = str1 + str2 # setting node instance runtime property ctx.instance.runtime_properties['result'] = result ctx.logger.info('result = '+result)
{ "content_hash": "80f4fc3e3e9045c620abdcebd91fb9bf", "timestamp": "", "source": "github", "line_count": 15, "max_line_length": 60, "avg_line_length": 27.933333333333334, "alnum_prop": 0.6992840095465394, "repo_name": "lj020326/cloudify3-training-labs", "id": "15a5e359b85fefb735c478679e1a2f880a769950", "size": "1104", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "plugin/tasks.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "5672" } ], "symlink_target": "" }
import sys import os import shlex from recommonmark.parser import CommonMarkParser # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] source_parsers = { '.md': CommonMarkParser, } source_suffix = ['.rst', '.md'] # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'pyonep' copyright = u'2015, Exosite' author = u'Exosite' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. sys.path.append('..') from pyonep import __version__ as pyonep_version version = pyonep_version # The full version, including alpha/beta/rc tags. release = pyonep_version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'pyonepdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'pyonep.tex', u'pyonep Documentation', u'Exosite', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'pyonep', u'pyonep Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'pyonep', u'pyonep Documentation', author, 'pyonep', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
{ "content_hash": "4128aa06f7ff4a905d63c6153d582399", "timestamp": "", "source": "github", "line_count": 273, "max_line_length": 79, "avg_line_length": 32.201465201465204, "alnum_prop": 0.7060630189967012, "repo_name": "asolz/pyonep", "id": "68806dcbbe8f74e7f0af9810636b63dede0eafeb", "size": "9210", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "docs/conf.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "58949" }, { "name": "Shell", "bytes": "1336" } ], "symlink_target": "" }
import os import sys try: from setuptools import setup, Command except ImportError: from distutils.core import setup, Command package_name = 'dpkt' description = 'fast, simple packet creation / parsing, with definitions for the basic TCP/IP protocols' readme = open('README.rst').read() requirements = [] # PyPI Readme long_description = open('README.rst').read() # Pull in the package package = __import__(package_name) package_version = package.__version__ if "bdist_msi" in sys.argv: # The MSI build target does not support a 4 digit version, e.g. '1.2.3.4' # therefore we remove the last digit. package_version, _, _ = package_version.rpartition('.') setup(name=package_name, version=package_version, author=package.__author__, author_email=package.__author_email__, url=package.__url__, description=description, long_description=long_description, packages=['dpkt'], install_requires=requirements, license='BSD', zip_safe=False, classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Natural Language :: English', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', ] )
{ "content_hash": "682b95e06084efaf6cb1ba7f7c0cc1e3", "timestamp": "", "source": "github", "line_count": 47, "max_line_length": 103, "avg_line_length": 32.46808510638298, "alnum_prop": 0.6402359108781127, "repo_name": "smutt/dpkt", "id": "8af6f87ca28f9375a9c4f2a50b88a16207286c7e", "size": "1526", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "466" }, { "name": "Python", "bytes": "457209" } ], "symlink_target": "" }
import os from opentamiltests import * from solthiruthi.datastore import Trie from solthiruthi.dictionary import * # Test the canned English dictionary with data structure class TestEnglishDictionary(unittest.TestCase): def setUp(self): self.ENG, self.ENG_size = DictionaryBuilder.create(EnglishLinux) print(u"Loading EnglishLinux dictionary @ size = %d" % self.ENG_size) def tearDown(self): del self.ENG def test_factory_EnglishLinux(self): words = [u"Car", u"Rabbit", u"COdE", u"CoMpUtEr", u"UnIx", u"InDiA"] for w in words: print(u"Verifying ... %s" % w) self.assertTrue(self.ENG.isWord(w.lower())) self.assertTrue(self.ENG.isWord(w.upper())) self.assertTrue(self.ENG.isWord(w)) self.assertFalse(self.ENG.isWord(w + "31")) return class TestParallelDictionary(unittest.TestCase): def setUp(self): self.paralleld, _ = DictionaryBuilder.create(ParallelDictionary) def test_wordlist(self): self.assertTrue(len(self.paralleld.synonym) > 0) self.assertEqual( len(self.paralleld.getAllWords()), -3 + len(self.paralleld.synonym) ) def test_synonym(self): word, syn = u"abundance-மிகுதியாக".split("-") res = self.paralleld.getWordTranslation(word) self.assertEqual(res, syn) class TestDictionarySaveLoad(unittest.TestCase): def setUp(self): self.fname = "data.dot" self.wl = [u"abelian", u"commutative", u"monoid", u"rings", u"groups"] self.TMP, self.TMPVocabSize = DictionaryBuilder.createUsingWordList(self.wl) Trie.serializeToFile(self.TMP, self.fname) def tearDown(self): os.unlink(self.fname) def test_wordlist_dictionary(self): self.assertEqual(self.TMPVocabSize, len(self.wl)) self.assertTrue(self.TMP.isWord(u"groups")) self.assertTrue(self.TMP.isWord(u"rings")) self.assertFalse(self.TMP.isWord(u"trefoil")) def test_load_n_save(self): reloadTMP = Trie.deserializeFromFile(self.fname) self.assertEqual(reloadTMP.getSize(), len(self.wl)) self.assertTrue(reloadTMP.isWord(u"groups")) self.assertTrue(reloadTMP.isWord(u"rings")) self.assertEqual(list(reloadTMP.getAllWords()), list(self.TMP.getAllWords())) for wl in reloadTMP.getAllWords(): print(wl) return # Test the canned dictionary with data structure class TestDictionary(unittest.TestCase): def setUp(self): self.TVU, self.TVU_size = DictionaryBuilder.create(TamilVU) def tearDown(self): del self.TVU def test_wordlist_dictionary(self): TMP, TMPVocabSize = DictionaryBuilder.createUsingWordList( ["word", "list", "wo", "rdli", "st"] ) self.assertEqual(TMPVocabSize, 5) self.assertTrue(TMP.isWord(u"word")) self.assertFalse(TMP.isWord(u"wor")) def test_factory_TVU(self): TVU_agarathi, size = self.TVU, self.TVU_size self.assertTrue(isinstance(TVU_agarathi, TamilVU)) self.assertEqual(size, 63896) return def test_isword(self): words = u"தமிழ் நாட்டில் சங்ககாலத்திலேயே ஒட்டியாணம் போன்ற இடையணிகள் இருந்தமைக்கான சான்றுகளும் பெண்".split( " " ) self.assertEqual(len(list(filter(self.TVU.isWord, words))), 3) self.assertTrue(self.TVU.isWord(u"தமிழ்")) if __name__ == "__main__": unittest.main()
{ "content_hash": "8cf311d1448800bc56c899e86b87b6da", "timestamp": "", "source": "github", "line_count": 102, "max_line_length": 114, "avg_line_length": 34.245098039215684, "alnum_prop": 0.6378471228170627, "repo_name": "arcturusannamalai/open-tamil", "id": "e6c39232e0c5d551d4676e78454357a62d096341", "size": "3735", "binary": false, "copies": "2", "ref": "refs/heads/main", "path": "tests/solthiruthi_canned_datastore.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "14505" }, { "name": "HTML", "bytes": "5869" }, { "name": "Java", "bytes": "35038" }, { "name": "JavaScript", "bytes": "9250" }, { "name": "Makefile", "bytes": "345" }, { "name": "Python", "bytes": "603879" }, { "name": "Ruby", "bytes": "26442" }, { "name": "Shell", "bytes": "3686" } ], "symlink_target": "" }
import os, sys, signal, os.path import subprocess import time from ipython1.kernel.scripts import ipcluster from ipython1.kernel import task, controllerservice as cs, engineservice as es from pebl import data, result from pebl.learner import greedy from pebl.taskcontroller import serial, multiprocess, ipy1 from pebl.test import testfile # NOTE: The EC2 task controller is not tested automatically because: # 1. it requires authentication credential that we can't put in svn # 2. don't want to spend $$ everytime we run pebl's unittest. # So, it's in pebl/test.manual/test_ec2.py class TestSerialTC: tctype = serial.SerialController args = () def setUp(self): d = data.fromfile(testfile("testdata5.txt")) d.discretize() self.tc = self.tctype(*self.args) self.tasks = [greedy.GreedyLearner(d, max_iterations=100) for i in xrange(6)] def test_tc(self): results = self.tc.run(self.tasks) results = result.merge(results) assert isinstance(results, result.LearnerResult) class TestMultiProcessTC(TestSerialTC): tctype = multiprocess.MultiProcessController args = (2,) class TestIPython1TC: # I've tried any ways of creating and terminating the cluster but the # terminating always fails.. So, for now, you have to kill the cluster # manually. def setUp(self): d = data.fromfile(testfile("testdata5.txt")) d.discretize() self.proc = subprocess.Popen("ipcluster -n 2 </dev/null 1>&0 2>&0", shell=True) time.sleep(5) def tearDown(self): os.kill(self.proc.pid, signal.SIGINT) time.sleep(5) def test_tc(self): d = data.fromfile(testfile("testdata5.txt")) d.discretize() tasks = [greedy.GreedyLearner(d) for x in range(5)] tc = ipy1.IPython1Controller("127.0.0.1:10113") results = tc.run(tasks) results = result.merge(results) assert isinstance(results, result.LearnerResult)
{ "content_hash": "1d13a210f18f43bb03d3eed32e3ffef4", "timestamp": "", "source": "github", "line_count": 61, "max_line_length": 87, "avg_line_length": 32.91803278688525, "alnum_prop": 0.6757968127490039, "repo_name": "abhik/pebl", "id": "6b59e424d035923d49c9fe021d9631f1d1672ccf", "size": "2008", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "src/pebl/test/test_taskcontroller.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "9560" }, { "name": "JavaScript", "bytes": "33578" }, { "name": "Python", "bytes": "223655" } ], "symlink_target": "" }
import unittest import numpy import chainer from chainer.backends import cuda import chainer.functions as F from chainer import gradient_check from chainer import testing from chainer.testing import attr @testing.parameterize(*testing.product({ 'shape': [(), (3, 2)], })) class Expm1FunctionTest(unittest.TestCase): def setUp(self): self.x = numpy.random.uniform(.5, 1, self.shape).astype(numpy.float32) self.gy = numpy.random.uniform(-1, 1, self.shape).astype(numpy.float32) self.ggx = \ numpy.random.uniform(-1, 1, self.shape).astype(numpy.float32) self.check_backward_options = {'atol': 1e-3, 'rtol': 1e-2} self.check_double_backward_options = {'atol': 1e-3, 'rtol': 1e-2} def check_forward(self, x_data): x = chainer.Variable(x_data) y = F.expm1(x) testing.assert_allclose( numpy.expm1(self.x), y.data, atol=1e-7, rtol=1e-7) def test_expm1_forward_cpu(self): self.check_forward(self.x) @attr.gpu def test_expm1_forward_gpu(self): self.check_forward(cuda.to_gpu(self.x)) def check_backward(self, x_data, y_grad): gradient_check.check_backward( F.expm1, x_data, y_grad, **self.check_backward_options) def test_expm1_backward_cpu(self): self.check_backward(self.x, self.gy) @attr.gpu def test_expm1_backward_gpu(self): self.check_backward(cuda.to_gpu(self.x), cuda.to_gpu(self.gy)) def check_double_backward(self, x_data, y_grad, x_grad_grad): gradient_check.check_double_backward( F.expm1, x_data, y_grad, x_grad_grad, **self.check_double_backward_options) def test_expm1_double_backward_cpu(self): self.check_double_backward(self.x, self.gy, self.ggx) @attr.gpu def test_expm1_double_backward_gpu(self): self.check_double_backward( cuda.to_gpu(self.x), cuda.to_gpu(self.gy), cuda.to_gpu(self.ggx)) def test_expm1(self): self.assertEqual(F.Expm1().label, 'expm1') testing.run_module(__name__, __file__)
{ "content_hash": "720ed804dad2916286c230ee47be37aa", "timestamp": "", "source": "github", "line_count": 69, "max_line_length": 79, "avg_line_length": 30.47826086956522, "alnum_prop": 0.6367094626723728, "repo_name": "aonotas/chainer", "id": "b3373da03b1950008c1250fb2d7e29a76f3a0620", "size": "2103", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "tests/chainer_tests/functions_tests/math_tests/test_exponential_m1.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "3368" }, { "name": "PowerShell", "bytes": "7197" }, { "name": "Python", "bytes": "3357320" } ], "symlink_target": "" }
from lino.projects.std.settings import * from lino.utils import i2d class Site(Site): title = "Lino Mini 9" project_model = 'contacts.Person' languages = 'en de fr' user_types_module = 'lino_xl.lib.xl.user_types' demo_fixtures = """std demo demo2 checkdata""".split() default_build_method = 'weasy2pdf' the_demo_date = i2d(20141023) webdav_protocol = 'davlink' def get_installed_apps(self): yield super(Site, self).get_installed_apps() # yield 'lino.modlib.users' yield 'lino_book.projects.min9.modlib.contacts' yield 'lino_xl.lib.excerpts' yield 'lino_xl.lib.addresses' yield 'lino_xl.lib.phones' yield 'lino_xl.lib.reception' yield 'lino_xl.lib.courses' yield 'lino_xl.lib.sepa' yield 'lino_xl.lib.notes' # yield 'lino_xl.lib.projects' yield 'lino_xl.lib.humanlinks' yield 'lino_xl.lib.households' yield 'lino_xl.lib.calview' # yield 'lino_xl.lib.extensible' yield 'lino_xl.lib.pages' yield 'lino.modlib.export_excel' yield 'lino_xl.lib.dupable_partners' yield 'lino.modlib.checkdata' yield 'lino.modlib.tinymce' # yield 'lino.modlib.wkhtmltopdf' yield 'lino.modlib.weasyprint' yield 'lino_xl.lib.appypod' yield 'lino.modlib.notify' yield 'lino.modlib.changes' yield 'lino.modlib.comments' yield 'lino.modlib.uploads' yield 'lino_xl.lib.properties' yield 'lino_xl.lib.cv' yield 'lino_xl.lib.b2c' yield 'lino_xl.lib.sales' yield 'lino_xl.lib.finan' def get_plugin_configs(self): """ Change the default value of certain plugin settings. """ yield super(Site, self).get_plugin_configs() yield ('countries', 'country_code', 'BE') yield ('b2c', 'import_statements_path', self.project_dir.child('sepa_in')) def do_site_startup(self): # lino_xl.lib.reception requires some workflow to be imported from lino_xl.lib.cal.workflows import feedback super(Site, self).do_site_startup() SITE = Site(globals()) # ALLOWED_HOSTS = ['*'] DEBUG = True # SECRET_KEY = "20227" # see :djangoticket:`20227`
{ "content_hash": "3874d111316218856671cd9c9bda96a5", "timestamp": "", "source": "github", "line_count": 67, "max_line_length": 82, "avg_line_length": 33.83582089552239, "alnum_prop": 0.6193206881340979, "repo_name": "lino-framework/book", "id": "269290e34528ef87283fafd4d5299bc7d0023a2c", "size": "2375", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "lino_book/projects/min9/settings.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "HTML", "bytes": "3668" }, { "name": "JavaScript", "bytes": "7140" }, { "name": "Python", "bytes": "991438" }, { "name": "Shell", "bytes": "989" } ], "symlink_target": "" }
""" This does a test drawing with lots of things in it, running with and without attribute checking. """ __version__ = '''$Id$''' from reportlab.lib.testutils import setOutDir,makeSuiteForClasses, outputfile, printLocation setOutDir(__name__) import os, sys, time import reportlab.rl_config import unittest from reportlab.lib import colors from reportlab.lib.units import cm from reportlab.pdfgen.canvas import Canvas from reportlab.pdfbase.pdfmetrics import stringWidth from reportlab.platypus import Flowable from reportlab.graphics.shapes import * from reportlab.graphics.charts.piecharts import Pie class GraphicsSpeedTestCase(unittest.TestCase): "Test speed of the graphics rendering process." def test0(self, isFast=0): """Hello World, on a rectangular background. The rectangle's fillColor is yellow. The string's fillColor is red. """ reportlab.rl_config.shapeChecking = not isFast pdfPath = outputfile('test_graphics_speed_fast.pdf') c = Canvas(pdfPath) t0 = time.time() d = Drawing(400, 200) num = 100 for i in range(num): pc = Pie() pc.x = 150 pc.y = 50 pc.data = [10,20,30,40,50,60] pc.labels = ['a','b','c','d','e','f'] pc.slices.strokeWidth=0.5 pc.slices[3].popout = 20 pc.slices[3].strokeWidth = 2 pc.slices[3].strokeDashArray = [2,2] pc.slices[3].labelRadius = 1.75 pc.slices[3].fontColor = colors.red d.add(pc) d.drawOn(c, 80, 500) t1 = time.time() result = 'drew %d pie charts in %0.4f' % (num, t1 - t0) open(outputfile('test_graphics_speed_test%s.log' % (isFast+1)), 'w').write(result) def test1(self, isFast=1): "Same as test1(), but with shape checking turned on." self.test0(isFast) if False: def test2(self): "This is a profiled version of test1()." try: import profile except ImportError: return fileName = outputfile('test_graphics_speed_profile.log') # This runs ok, when only this test script is executed, # but fails, when imported from runAll.py... profile.run("t = GraphicsSpeedTestCase('test2')", fileName) def makeSuite(): return makeSuiteForClasses(GraphicsSpeedTestCase) #noruntests if __name__ == "__main__": unittest.TextTestRunner().run(makeSuite()) printLocation()
{ "content_hash": "65bb717ee252fc39269d812779ba37e4", "timestamp": "", "source": "github", "line_count": 80, "max_line_length": 92, "avg_line_length": 31.85, "alnum_prop": 0.6138147566718996, "repo_name": "kanarelo/reportlab", "id": "bf9346ac9a4b3c9409ef23fe604e812e2b8371f9", "size": "2628", "binary": false, "copies": "15", "ref": "refs/heads/master", "path": "tests/test_graphics_speed.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "720286" }, { "name": "C++", "bytes": "2140" }, { "name": "Java", "bytes": "6333" }, { "name": "Python", "bytes": "2937123" }, { "name": "Shell", "bytes": "2506" } ], "symlink_target": "" }