func
stringlengths 0
484k
| target
int64 0
1
| cwe
sequence | project
stringlengths 2
29
| commit_id
stringlengths 40
40
| hash
float64 1,215,700,430,453,689,100,000,000B
340,281,914,521,452,260,000,000,000,000B
| size
int64 1
24k
| message
stringlengths 0
13.3k
|
---|---|---|---|---|---|---|---|
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
unsigned int flags)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *ptep, pte;
spinlock_t *ptl;
struct page *page;
struct mm_struct *mm = vma->vm_mm;
page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
if (!IS_ERR(page)) {
BUG_ON(flags & FOLL_GET);
goto out;
}
page = NULL;
pgd = pgd_offset(mm, address);
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
goto no_page_table;
pud = pud_offset(pgd, address);
if (pud_none(*pud) || unlikely(pud_bad(*pud)))
goto no_page_table;
pmd = pmd_offset(pud, address);
if (pmd_none(*pmd))
goto no_page_table;
if (pmd_huge(*pmd)) {
BUG_ON(flags & FOLL_GET);
page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
goto out;
}
if (unlikely(pmd_bad(*pmd)))
goto no_page_table;
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
if (!ptep)
goto out;
pte = *ptep;
if (!pte_present(pte))
goto unlock;
if ((flags & FOLL_WRITE) && !pte_write(pte))
goto unlock;
page = vm_normal_page(vma, address, pte);
if (unlikely(!page))
goto unlock;
if (flags & FOLL_GET)
get_page(page);
if (flags & FOLL_TOUCH) {
if ((flags & FOLL_WRITE) &&
!pte_dirty(pte) && !PageDirty(page))
set_page_dirty(page);
mark_page_accessed(page);
}
unlock:
pte_unmap_unlock(ptep, ptl);
out:
return page;
no_page_table:
/*
* When core dumping an enormous anonymous area that nobody
* has touched so far, we don't want to allocate page tables.
*/
if (flags & FOLL_ANON) {
page = ZERO_PAGE(0);
if (flags & FOLL_GET)
get_page(page);
BUG_ON(flags & FOLL_WRITE);
}
return page;
} | 1 | [
"CWE-20"
] | linux-2.6 | 89f5b7da2a6bad2e84670422ab8192382a5aeb9f | 210,867,550,916,712,730,000,000,000,000,000,000,000 | 78 | Reinstate ZERO_PAGE optimization in 'get_user_pages()' and fix XIP
KAMEZAWA Hiroyuki and Oleg Nesterov point out that since the commit
557ed1fa2620dc119adb86b34c614e152a629a80 ("remove ZERO_PAGE") removed
the ZERO_PAGE from the VM mappings, any users of get_user_pages() will
generally now populate the VM with real empty pages needlessly.
We used to get the ZERO_PAGE when we did the "handle_mm_fault()", but
since fault handling no longer uses ZERO_PAGE for new anonymous pages,
we now need to handle that special case in follow_page() instead.
In particular, the removal of ZERO_PAGE effectively removed the core
file writing optimization where we would skip writing pages that had not
been populated at all, and increased memory pressure a lot by allocating
all those useless newly zeroed pages.
This reinstates the optimization by making the unmapped PTE case the
same as for a non-existent page table, which already did this correctly.
While at it, this also fixes the XIP case for follow_page(), where the
caller could not differentiate between the case of a page that simply
could not be used (because it had no "struct page" associated with it)
and a page that just wasn't mapped.
We do that by simply returning an error pointer for pages that could not
be turned into a "struct page *". The error is arbitrarily picked to be
EFAULT, since that was what get_user_pages() already used for the
equivalent IO-mapped page case.
[ Also removed an impossible test for pte_offset_map_lock() failing:
that's not how that function works ]
Acked-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, int len, int write, int force,
struct page **pages, struct vm_area_struct **vmas)
{
int i;
unsigned int vm_flags;
if (len <= 0)
return 0;
/*
* Require read or write permissions.
* If 'force' is set, we only require the "MAY" flags.
*/
vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
i = 0;
do {
struct vm_area_struct *vma;
unsigned int foll_flags;
vma = find_extend_vma(mm, start);
if (!vma && in_gate_area(tsk, start)) {
unsigned long pg = start & PAGE_MASK;
struct vm_area_struct *gate_vma = get_gate_vma(tsk);
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if (write) /* user gate pages are read-only */
return i ? : -EFAULT;
if (pg > TASK_SIZE)
pgd = pgd_offset_k(pg);
else
pgd = pgd_offset_gate(mm, pg);
BUG_ON(pgd_none(*pgd));
pud = pud_offset(pgd, pg);
BUG_ON(pud_none(*pud));
pmd = pmd_offset(pud, pg);
if (pmd_none(*pmd))
return i ? : -EFAULT;
pte = pte_offset_map(pmd, pg);
if (pte_none(*pte)) {
pte_unmap(pte);
return i ? : -EFAULT;
}
if (pages) {
struct page *page = vm_normal_page(gate_vma, start, *pte);
pages[i] = page;
if (page)
get_page(page);
}
pte_unmap(pte);
if (vmas)
vmas[i] = gate_vma;
i++;
start += PAGE_SIZE;
len--;
continue;
}
if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
|| !(vm_flags & vma->vm_flags))
return i ? : -EFAULT;
if (is_vm_hugetlb_page(vma)) {
i = follow_hugetlb_page(mm, vma, pages, vmas,
&start, &len, i, write);
continue;
}
foll_flags = FOLL_TOUCH;
if (pages)
foll_flags |= FOLL_GET;
if (!write && !(vma->vm_flags & VM_LOCKED) &&
(!vma->vm_ops || !vma->vm_ops->fault))
foll_flags |= FOLL_ANON;
do {
struct page *page;
/*
* If tsk is ooming, cut off its access to large memory
* allocations. It has a pending SIGKILL, but it can't
* be processed until returning to user space.
*/
if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
return -ENOMEM;
if (write)
foll_flags |= FOLL_WRITE;
cond_resched();
while (!(page = follow_page(vma, start, foll_flags))) {
int ret;
ret = handle_mm_fault(mm, vma, start,
foll_flags & FOLL_WRITE);
if (ret & VM_FAULT_ERROR) {
if (ret & VM_FAULT_OOM)
return i ? i : -ENOMEM;
else if (ret & VM_FAULT_SIGBUS)
return i ? i : -EFAULT;
BUG();
}
if (ret & VM_FAULT_MAJOR)
tsk->maj_flt++;
else
tsk->min_flt++;
/*
* The VM_FAULT_WRITE bit tells us that
* do_wp_page has broken COW when necessary,
* even if maybe_mkwrite decided not to set
* pte_write. We can thus safely do subsequent
* page lookups as if they were reads.
*/
if (ret & VM_FAULT_WRITE)
foll_flags &= ~FOLL_WRITE;
cond_resched();
}
if (IS_ERR(page))
return i ? i : PTR_ERR(page);
if (pages) {
pages[i] = page;
flush_anon_page(vma, page, start);
flush_dcache_page(page);
}
if (vmas)
vmas[i] = vma;
i++;
start += PAGE_SIZE;
len--;
} while (len && start < vma->vm_end);
} while (len);
return i;
} | 1 | [
"CWE-20"
] | linux-2.6 | 672ca28e300c17bf8d792a2a7a8631193e580c74 | 139,010,725,753,363,210,000,000,000,000,000,000,000 | 138 | Fix ZERO_PAGE breakage with vmware
Commit 89f5b7da2a6bad2e84670422ab8192382a5aeb9f ("Reinstate ZERO_PAGE
optimization in 'get_user_pages()' and fix XIP") broke vmware, as
reported by Jeff Chua:
"This broke vmware 6.0.4.
Jun 22 14:53:03.845: vmx| NOT_IMPLEMENTED
/build/mts/release/bora-93057/bora/vmx/main/vmmonPosix.c:774"
and the reason seems to be that there's an old bug in how we handle do
FOLL_ANON on VM_SHARED areas in get_user_pages(), but since it only
triggered if the whole page table was missing, nobody had apparently hit
it before.
The recent changes to 'follow_page()' made the FOLL_ANON logic trigger
not just for whole missing page tables, but for individual pages as
well, and exposed this problem.
This fixes it by making the test for when FOLL_ANON is used more
careful, and also makes the code easier to read and understand by moving
the logic to a separate inline function.
Reported-and-tested-by: Jeff Chua <jeff.chua.linux@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
static int do_change_type(struct nameidata *nd, int flag)
{
struct vfsmount *m, *mnt = nd->mnt;
int recurse = flag & MS_REC;
int type = flag & ~MS_REC;
if (nd->dentry != nd->mnt->mnt_root)
return -EINVAL;
down_write(&namespace_sem);
spin_lock(&vfsmount_lock);
for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
change_mnt_propagation(m, type);
spin_unlock(&vfsmount_lock);
up_write(&namespace_sem);
return 0;
} | 1 | [
"CWE-269"
] | linux-2.6 | ee6f958291e2a768fd727e7a67badfff0b67711a | 286,192,975,191,664,130,000,000,000,000,000,000,000 | 17 | check privileges before setting mount propagation
There's a missing check for CAP_SYS_ADMIN in do_change_type().
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
int udp_get_port(struct sock *sk, unsigned short snum,
int (*scmp)(const struct sock *, const struct sock *))
{
return __udp_lib_get_port(sk, snum, udp_hash, &udp_port_rover, scmp);
} | 1 | [] | linux-2.6 | 32c1da70810017a98aa6c431a5494a302b6b9a30 | 275,970,421,660,632,930,000,000,000,000,000,000,000 | 5 | [UDP]: Randomize port selection.
This patch causes UDP port allocation to be randomized like TCP.
The earlier code would always choose same port (ie first empty list).
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net> |
int udplite_get_port(struct sock *sk, unsigned short p,
int (*c)(const struct sock *, const struct sock *))
{
return __udp_lib_get_port(sk, p, udplite_hash, &udplite_port_rover, c);
} | 1 | [] | linux-2.6 | 32c1da70810017a98aa6c431a5494a302b6b9a30 | 251,875,682,803,410,300,000,000,000,000,000,000,000 | 5 | [UDP]: Randomize port selection.
This patch causes UDP port allocation to be randomized like TCP.
The earlier code would always choose same port (ie first empty list).
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net> |
int __udp_lib_get_port(struct sock *sk, unsigned short snum,
struct hlist_head udptable[], int *port_rover,
int (*saddr_comp)(const struct sock *sk1,
const struct sock *sk2 ) )
{
struct hlist_node *node;
struct hlist_head *head;
struct sock *sk2;
int error = 1;
write_lock_bh(&udp_hash_lock);
if (snum == 0) {
int best_size_so_far, best, result, i;
if (*port_rover > sysctl_local_port_range[1] ||
*port_rover < sysctl_local_port_range[0])
*port_rover = sysctl_local_port_range[0];
best_size_so_far = 32767;
best = result = *port_rover;
for (i = 0; i < UDP_HTABLE_SIZE; i++, result++) {
int size;
head = &udptable[result & (UDP_HTABLE_SIZE - 1)];
if (hlist_empty(head)) {
if (result > sysctl_local_port_range[1])
result = sysctl_local_port_range[0] +
((result - sysctl_local_port_range[0]) &
(UDP_HTABLE_SIZE - 1));
goto gotit;
}
size = 0;
sk_for_each(sk2, node, head) {
if (++size >= best_size_so_far)
goto next;
}
best_size_so_far = size;
best = result;
next:
;
}
result = best;
for (i = 0; i < (1 << 16) / UDP_HTABLE_SIZE;
i++, result += UDP_HTABLE_SIZE) {
if (result > sysctl_local_port_range[1])
result = sysctl_local_port_range[0]
+ ((result - sysctl_local_port_range[0]) &
(UDP_HTABLE_SIZE - 1));
if (! __udp_lib_lport_inuse(result, udptable))
break;
}
if (i >= (1 << 16) / UDP_HTABLE_SIZE)
goto fail;
gotit:
*port_rover = snum = result;
} else {
head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
sk_for_each(sk2, node, head)
if (sk2->sk_hash == snum &&
sk2 != sk &&
(!sk2->sk_reuse || !sk->sk_reuse) &&
(!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
|| sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
(*saddr_comp)(sk, sk2) )
goto fail;
}
inet_sk(sk)->num = snum;
sk->sk_hash = snum;
if (sk_unhashed(sk)) {
head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
sk_add_node(sk, head);
sock_prot_inc_use(sk->sk_prot);
}
error = 0;
fail:
write_unlock_bh(&udp_hash_lock);
return error;
} | 1 | [] | linux-2.6 | 32c1da70810017a98aa6c431a5494a302b6b9a30 | 203,541,452,275,097,500,000,000,000,000,000,000,000 | 78 | [UDP]: Randomize port selection.
This patch causes UDP port allocation to be randomized like TCP.
The earlier code would always choose same port (ie first empty list).
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net> |
static inline int __udp_lib_lport_inuse(__u16 num, struct hlist_head udptable[])
{
struct sock *sk;
struct hlist_node *node;
sk_for_each(sk, node, &udptable[num & (UDP_HTABLE_SIZE - 1)])
if (sk->sk_hash == num)
return 1;
return 0;
} | 1 | [] | linux-2.6 | 32c1da70810017a98aa6c431a5494a302b6b9a30 | 227,489,957,878,901,400,000,000,000,000,000,000,000 | 10 | [UDP]: Randomize port selection.
This patch causes UDP port allocation to be randomized like TCP.
The earlier code would always choose same port (ie first empty list).
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net> |
static inline void native_set_ldt(const void *addr, unsigned int entries)
{
if (likely(entries == 0))
asm volatile("lldt %w0"::"q" (0));
else {
unsigned cpu = smp_processor_id();
ldt_desc ldt;
set_tssldt_descriptor(&ldt, (unsigned long)addr,
DESC_LDT, entries * sizeof(ldt) - 1);
write_gdt_entry(get_cpu_gdt_table(cpu), GDT_ENTRY_LDT,
&ldt, DESC_LDT);
asm volatile("lldt %w0"::"q" (GDT_ENTRY_LDT*8));
}
} | 1 | [
"CWE-119"
] | linux-2.6 | 5ac37f87ff18843aabab84cf75b2f8504c2d81fe | 201,156,650,941,371,880,000,000,000,000,000,000,000 | 15 | x86: fix ldt limit for 64 bit
Fix size of LDT entries. On x86-64, ldt_desc is a double-sized descriptor.
Signed-off-by: Michael Karcher <kernel@mkarcher.dialup.fu-berlin.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu> |
shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
{
struct inode *inode;
struct shmem_inode_info *info;
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
if (shmem_reserve_inode(sb))
return NULL;
inode = new_inode(sb);
if (inode) {
inode->i_mode = mode;
inode->i_uid = current->fsuid;
inode->i_gid = current->fsgid;
inode->i_blocks = 0;
inode->i_mapping->a_ops = &shmem_aops;
inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
inode->i_generation = get_seconds();
info = SHMEM_I(inode);
memset(info, 0, (char *)inode - (char *)info);
spin_lock_init(&info->lock);
INIT_LIST_HEAD(&info->swaplist);
switch (mode & S_IFMT) {
default:
inode->i_op = &shmem_special_inode_operations;
init_special_inode(inode, mode, dev);
break;
case S_IFREG:
inode->i_op = &shmem_inode_operations;
inode->i_fop = &shmem_file_operations;
mpol_shared_policy_init(&info->policy,
shmem_get_sbmpol(sbinfo));
break;
case S_IFDIR:
inc_nlink(inode);
/* Some things misbehave if size == 0 on a directory */
inode->i_size = 2 * BOGO_DIRENT_SIZE;
inode->i_op = &shmem_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
break;
case S_IFLNK:
/*
* Must not load anything in the rbtree,
* mpol_free_shared_policy will not be called.
*/
mpol_shared_policy_init(&info->policy, NULL);
break;
}
} else
shmem_free_inode(sb);
return inode;
} | 1 | [
"CWE-400"
] | linux-2.6 | 14fcc23fdc78e9d32372553ccf21758a9bd56fa1 | 191,822,221,605,702,970,000,000,000,000,000,000,000 | 54 | tmpfs: fix kernel BUG in shmem_delete_inode
SuSE's insserve initscript ordering program hits kernel BUG at mm/shmem.c:814
on 2.6.26. It's using posix_fadvise on directories, and the shmem_readpage
method added in 2.6.23 is letting POSIX_FADV_WILLNEED allocate useless pages
to a tmpfs directory, incrementing i_blocks count but never decrementing it.
Fix this by assigning shmem_aops (pointing to readpage and writepage and
set_page_dirty) only when it's needed, on a regular file or a long symlink.
Many thanks to Kel for outstanding bugreport and steps to reproduce it.
Reported-by: Kel Modderman <kel@otaku42.de>
Tested-by: Kel Modderman <kel@otaku42.de>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: <stable@kernel.org> [2.6.25.x, 2.6.26.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
{
int error;
int len;
struct inode *inode;
struct page *page = NULL;
char *kaddr;
struct shmem_inode_info *info;
len = strlen(symname) + 1;
if (len > PAGE_CACHE_SIZE)
return -ENAMETOOLONG;
inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
if (!inode)
return -ENOSPC;
error = security_inode_init_security(inode, dir, NULL, NULL,
NULL);
if (error) {
if (error != -EOPNOTSUPP) {
iput(inode);
return error;
}
error = 0;
}
info = SHMEM_I(inode);
inode->i_size = len-1;
if (len <= (char *)inode - (char *)info) {
/* do it inline */
memcpy(info, symname, len);
inode->i_op = &shmem_symlink_inline_operations;
} else {
error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
if (error) {
iput(inode);
return error;
}
unlock_page(page);
inode->i_op = &shmem_symlink_inode_operations;
kaddr = kmap_atomic(page, KM_USER0);
memcpy(kaddr, symname, len);
kunmap_atomic(kaddr, KM_USER0);
set_page_dirty(page);
page_cache_release(page);
}
if (dir->i_mode & S_ISGID)
inode->i_gid = dir->i_gid;
dir->i_size += BOGO_DIRENT_SIZE;
dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d_instantiate(dentry, inode);
dget(dentry);
return 0;
} | 1 | [
"CWE-400"
] | linux-2.6 | 14fcc23fdc78e9d32372553ccf21758a9bd56fa1 | 266,120,824,639,631,280,000,000,000,000,000,000,000 | 55 | tmpfs: fix kernel BUG in shmem_delete_inode
SuSE's insserve initscript ordering program hits kernel BUG at mm/shmem.c:814
on 2.6.26. It's using posix_fadvise on directories, and the shmem_readpage
method added in 2.6.23 is letting POSIX_FADV_WILLNEED allocate useless pages
to a tmpfs directory, incrementing i_blocks count but never decrementing it.
Fix this by assigning shmem_aops (pointing to readpage and writepage and
set_page_dirty) only when it's needed, on a regular file or a long symlink.
Many thanks to Kel for outstanding bugreport and steps to reproduce it.
Reported-by: Kel Modderman <kel@otaku42.de>
Tested-by: Kel Modderman <kel@otaku42.de>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: <stable@kernel.org> [2.6.25.x, 2.6.26.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
void iov_iter_advance(struct iov_iter *i, size_t bytes)
{
BUG_ON(i->count < bytes);
if (likely(i->nr_segs == 1)) {
i->iov_offset += bytes;
i->count -= bytes;
} else {
const struct iovec *iov = i->iov;
size_t base = i->iov_offset;
/*
* The !iov->iov_len check ensures we skip over unlikely
* zero-length segments (without overruning the iovec).
*/
while (bytes || unlikely(!iov->iov_len && i->count)) {
int copy;
copy = min(bytes, iov->iov_len - base);
BUG_ON(!i->count || i->count < copy);
i->count -= copy;
bytes -= copy;
base += copy;
if (iov->iov_len == base) {
iov++;
base = 0;
}
}
i->iov = iov;
i->iov_offset = base;
}
} | 1 | [
"CWE-193"
] | linux-2.6 | 94ad374a0751f40d25e22e036c37f7263569d24c | 175,485,022,128,206,950,000,000,000,000,000,000,000 | 32 | Fix off-by-one error in iov_iter_advance()
The iov_iter_advance() function would look at the iov->iov_len entry
even though it might have iterated over the whole array, and iov was
pointing past the end. This would cause DEBUG_PAGEALLOC to trigger a
kernel page fault if the allocation was at the end of a page, and the
next page was unallocated.
The quick fix is to just change the order of the tests: check that there
is any iovec data left before we check the iov entry itself.
Thanks to Alexey Dobriyan for finding this case, and testing the fix.
Reported-and-tested-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <stable@kernel.org> [2.6.25.x, 2.6.26.x]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
void __cpuinit cpu_init (void)
{
int cpu = stack_smp_processor_id();
struct tss_struct *t = &per_cpu(init_tss, cpu);
struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
unsigned long v;
char *estacks = NULL;
struct task_struct *me;
int i;
/* CPU 0 is initialised in head64.c */
if (cpu != 0) {
pda_init(cpu);
zap_low_mappings(cpu);
} else
estacks = boot_exception_stacks;
me = current;
if (cpu_test_and_set(cpu, cpu_initialized))
panic("CPU#%d already initialized!\n", cpu);
printk("Initializing CPU#%d\n", cpu);
clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
/*
* Initialize the per-CPU GDT with the boot GDT,
* and set up the GDT descriptor:
*/
if (cpu)
memcpy(cpu_gdt(cpu), cpu_gdt_table, GDT_SIZE);
cpu_gdt_descr[cpu].size = GDT_SIZE;
asm volatile("lgdt %0" :: "m" (cpu_gdt_descr[cpu]));
asm volatile("lidt %0" :: "m" (idt_descr));
memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
syscall_init();
wrmsrl(MSR_FS_BASE, 0);
wrmsrl(MSR_KERNEL_GS_BASE, 0);
barrier();
check_efer();
/*
* set up and load the per-CPU TSS
*/
for (v = 0; v < N_EXCEPTION_STACKS; v++) {
static const unsigned int order[N_EXCEPTION_STACKS] = {
[0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
[DEBUG_STACK - 1] = DEBUG_STACK_ORDER
};
if (cpu) {
estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
if (!estacks)
panic("Cannot allocate exception stack %ld %d\n",
v, cpu);
}
estacks += PAGE_SIZE << order[v];
orig_ist->ist[v] = t->ist[v] = (unsigned long)estacks;
}
t->io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
/*
* <= is required because the CPU will access up to
* 8 bits beyond the end of the IO permission bitmap.
*/
for (i = 0; i <= IO_BITMAP_LONGS; i++)
t->io_bitmap[i] = ~0UL;
atomic_inc(&init_mm.mm_count);
me->active_mm = &init_mm;
if (me->mm)
BUG();
enter_lazy_tlb(&init_mm, me);
set_tss_desc(cpu, t);
load_TR_desc();
load_LDT(&init_mm.context);
/*
* Clear all 6 debug registers:
*/
set_debugreg(0UL, 0);
set_debugreg(0UL, 1);
set_debugreg(0UL, 2);
set_debugreg(0UL, 3);
set_debugreg(0UL, 6);
set_debugreg(0UL, 7);
fpu_init();
} | 1 | [] | linux-2.6 | 658fdbef66e5e9be79b457edc2cbbb3add840aa9 | 221,407,552,807,869,840,000,000,000,000,000,000,000 | 95 | [PATCH] Don't leak NT bit into next task
SYSENTER can cause a NT to be set which might cause crashes on the IRET
in the next task.
Following similar i386 patch from Linus.
Signed-off-by: Andi Kleen <ak@suse.de> |
static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
{
struct dentry * result;
struct inode *dir = parent->d_inode;
mutex_lock(&dir->i_mutex);
/*
* First re-do the cached lookup just in case it was created
* while we waited for the directory semaphore..
*
* FIXME! This could use version numbering or similar to
* avoid unnecessary cache lookups.
*
* The "dcache_lock" is purely to protect the RCU list walker
* from concurrent renames at this point (we mustn't get false
* negatives from the RCU list walk here, unlike the optimistic
* fast walk).
*
* so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
*/
result = d_lookup(parent, name);
if (!result) {
struct dentry * dentry = d_alloc(parent, name);
result = ERR_PTR(-ENOMEM);
if (dentry) {
result = dir->i_op->lookup(dir, dentry, nd);
if (result)
dput(dentry);
else
result = dentry;
}
mutex_unlock(&dir->i_mutex);
return result;
}
/*
* Uhhuh! Nasty case: the cache was re-populated while
* we waited on the semaphore. Need to revalidate.
*/
mutex_unlock(&dir->i_mutex);
if (result->d_op && result->d_op->d_revalidate) {
result = do_revalidate(result, nd);
if (!result)
result = ERR_PTR(-ENOENT);
}
return result;
} | 1 | [
"CWE-120"
] | linux-2.6 | d70b67c8bc72ee23b55381bd6a884f4796692f77 | 146,062,967,520,408,140,000,000,000,000,000,000,000 | 47 | [patch] vfs: fix lookup on deleted directory
Lookup can install a child dentry for a deleted directory. This keeps
the directory dentry alive, and the inode pinned in the cache and on
disk, even after all external references have gone away.
This isn't a big problem normally, since memory pressure or umount
will clear out the directory dentry and its children, releasing the
inode. But for UBIFS this causes problems because its orphan area can
overflow.
Fix this by returning ENOENT for all lookups on a S_DEAD directory
before creating a child dentry.
Thanks to Zoltan Sogor for noticing this while testing UBIFS, and
Artem for the excellent analysis of the problem and testing.
Reported-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Tested-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
static struct dentry *__lookup_hash(struct qstr *name,
struct dentry *base, struct nameidata *nd)
{
struct dentry *dentry;
struct inode *inode;
int err;
inode = base->d_inode;
/*
* See if the low-level filesystem might want
* to use its own hash..
*/
if (base->d_op && base->d_op->d_hash) {
err = base->d_op->d_hash(base, name);
dentry = ERR_PTR(err);
if (err < 0)
goto out;
}
dentry = cached_lookup(base, name, nd);
if (!dentry) {
struct dentry *new = d_alloc(base, name);
dentry = ERR_PTR(-ENOMEM);
if (!new)
goto out;
dentry = inode->i_op->lookup(inode, new, nd);
if (!dentry)
dentry = new;
else
dput(new);
}
out:
return dentry;
} | 1 | [
"CWE-120"
] | linux-2.6 | d70b67c8bc72ee23b55381bd6a884f4796692f77 | 78,432,281,267,930,380,000,000,000,000,000,000,000 | 35 | [patch] vfs: fix lookup on deleted directory
Lookup can install a child dentry for a deleted directory. This keeps
the directory dentry alive, and the inode pinned in the cache and on
disk, even after all external references have gone away.
This isn't a big problem normally, since memory pressure or umount
will clear out the directory dentry and its children, releasing the
inode. But for UBIFS this causes problems because its orphan area can
overflow.
Fix this by returning ENOENT for all lookups on a S_DEAD directory
before creating a child dentry.
Thanks to Zoltan Sogor for noticing this while testing UBIFS, and
Artem for the excellent analysis of the problem and testing.
Reported-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Tested-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
snd_seq_oss_synth_make_info(struct seq_oss_devinfo *dp, int dev, struct synth_info *inf)
{
struct seq_oss_synth *rec;
if (dp->synths[dev].is_midi) {
struct midi_info minf;
snd_seq_oss_midi_make_info(dp, dp->synths[dev].midi_mapped, &minf);
inf->synth_type = SYNTH_TYPE_MIDI;
inf->synth_subtype = 0;
inf->nr_voices = 16;
inf->device = dev;
strlcpy(inf->name, minf.name, sizeof(inf->name));
} else {
if ((rec = get_synthdev(dp, dev)) == NULL)
return -ENXIO;
inf->synth_type = rec->synth_type;
inf->synth_subtype = rec->synth_subtype;
inf->nr_voices = rec->nr_voices;
inf->device = dev;
strlcpy(inf->name, rec->name, sizeof(inf->name));
snd_use_lock_free(&rec->use_lock);
}
return 0;
} | 1 | [
"CWE-200"
] | linux-2.6 | 82e68f7ffec3800425f2391c8c86277606860442 | 216,166,856,109,438,500,000,000,000,000,000,000,000 | 24 | sound: ensure device number is valid in snd_seq_oss_synth_make_info
snd_seq_oss_synth_make_info() incorrectly reports information
to userspace without first checking for the validity of the
device number, leading to possible information leak (CVE-2008-3272).
Reported-By: Tobias Klein <tk@trapkit.de>
Acked-and-tested-by: Takashi Iwai <tiwai@suse.de>
Cc: stable@kernel.org
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
static void file_add_remove(struct diff_options *options,
int addremove, unsigned mode,
const unsigned char *sha1,
const char *base, const char *path)
{
int diff = REV_TREE_DIFFERENT;
/*
* Is it an add of a new file? It means that the old tree
* didn't have it at all, so we will turn "REV_TREE_SAME" ->
* "REV_TREE_NEW", but leave any "REV_TREE_DIFFERENT" alone
* (and if it already was "REV_TREE_NEW", we'll keep it
* "REV_TREE_NEW" of course).
*/
if (addremove == '+') {
diff = tree_difference;
if (diff != REV_TREE_SAME)
return;
diff = REV_TREE_NEW;
}
tree_difference = diff;
if (tree_difference == REV_TREE_DIFFERENT)
DIFF_OPT_SET(options, HAS_CHANGES);
} | 1 | [
"CWE-119"
] | git | fd55a19eb1d49ae54008d932a65f79cd6fda45c9 | 220,776,526,793,639,920,000,000,000,000,000,000,000 | 24 | Fix buffer overflow in git diff
If PATH_MAX on your system is smaller than a path stored, it may cause
buffer overflow and stack corruption in diff_addremove() and diff_change()
functions when running git-diff
Signed-off-by: Dmitry Potapov <dpotapov@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com> |
static int show_modified(struct oneway_unpack_data *cbdata,
struct cache_entry *old,
struct cache_entry *new,
int report_missing,
int cached, int match_missing)
{
unsigned int mode, oldmode;
const unsigned char *sha1;
struct rev_info *revs = cbdata->revs;
if (get_stat_data(new, &sha1, &mode, cached, match_missing, cbdata) < 0) {
if (report_missing)
diff_index_show_file(revs, "-", old,
old->sha1, old->ce_mode);
return -1;
}
if (revs->combine_merges && !cached &&
(hashcmp(sha1, old->sha1) || hashcmp(old->sha1, new->sha1))) {
struct combine_diff_path *p;
int pathlen = ce_namelen(new);
p = xmalloc(combine_diff_path_size(2, pathlen));
p->path = (char *) &p->parent[2];
p->next = NULL;
p->len = pathlen;
memcpy(p->path, new->name, pathlen);
p->path[pathlen] = 0;
p->mode = mode;
hashclr(p->sha1);
memset(p->parent, 0, 2 * sizeof(struct combine_diff_parent));
p->parent[0].status = DIFF_STATUS_MODIFIED;
p->parent[0].mode = new->ce_mode;
hashcpy(p->parent[0].sha1, new->sha1);
p->parent[1].status = DIFF_STATUS_MODIFIED;
p->parent[1].mode = old->ce_mode;
hashcpy(p->parent[1].sha1, old->sha1);
show_combined_diff(p, 2, revs->dense_combined_merges, revs);
free(p);
return 0;
}
oldmode = old->ce_mode;
if (mode == oldmode && !hashcmp(sha1, old->sha1) &&
!DIFF_OPT_TST(&revs->diffopt, FIND_COPIES_HARDER))
return 0;
diff_change(&revs->diffopt, oldmode, mode,
old->sha1, sha1, old->name, NULL);
return 0;
} | 1 | [
"CWE-119"
] | git | fd55a19eb1d49ae54008d932a65f79cd6fda45c9 | 226,800,970,801,831,640,000,000,000,000,000,000,000 | 51 | Fix buffer overflow in git diff
If PATH_MAX on your system is smaller than a path stored, it may cause
buffer overflow and stack corruption in diff_addremove() and diff_change()
functions when running git-diff
Signed-off-by: Dmitry Potapov <dpotapov@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com> |
static int compare_tree_entry(struct tree_desc *t1, struct tree_desc *t2, const char *base, int baselen, struct diff_options *opt)
{
unsigned mode1, mode2;
const char *path1, *path2;
const unsigned char *sha1, *sha2;
int cmp, pathlen1, pathlen2;
sha1 = tree_entry_extract(t1, &path1, &mode1);
sha2 = tree_entry_extract(t2, &path2, &mode2);
pathlen1 = tree_entry_len(path1, sha1);
pathlen2 = tree_entry_len(path2, sha2);
cmp = base_name_compare(path1, pathlen1, mode1, path2, pathlen2, mode2);
if (cmp < 0) {
show_entry(opt, "-", t1, base, baselen);
return -1;
}
if (cmp > 0) {
show_entry(opt, "+", t2, base, baselen);
return 1;
}
if (!DIFF_OPT_TST(opt, FIND_COPIES_HARDER) && !hashcmp(sha1, sha2) && mode1 == mode2)
return 0;
/*
* If the filemode has changed to/from a directory from/to a regular
* file, we need to consider it a remove and an add.
*/
if (S_ISDIR(mode1) != S_ISDIR(mode2)) {
show_entry(opt, "-", t1, base, baselen);
show_entry(opt, "+", t2, base, baselen);
return 0;
}
if (DIFF_OPT_TST(opt, RECURSIVE) && S_ISDIR(mode1)) {
int retval;
char *newbase = malloc_base(base, baselen, path1, pathlen1);
if (DIFF_OPT_TST(opt, TREE_IN_RECURSIVE))
opt->change(opt, mode1, mode2,
sha1, sha2, base, path1);
retval = diff_tree_sha1(sha1, sha2, newbase, opt);
free(newbase);
return retval;
}
opt->change(opt, mode1, mode2, sha1, sha2, base, path1);
return 0;
} | 1 | [
"CWE-119"
] | git | fd55a19eb1d49ae54008d932a65f79cd6fda45c9 | 275,627,253,054,133,400,000,000,000,000,000,000,000 | 48 | Fix buffer overflow in git diff
If PATH_MAX on your system is smaller than a path stored, it may cause
buffer overflow and stack corruption in diff_addremove() and diff_change()
functions when running git-diff
Signed-off-by: Dmitry Potapov <dpotapov@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com> |
static void diff_index_show_file(struct rev_info *revs,
const char *prefix,
struct cache_entry *ce,
const unsigned char *sha1, unsigned int mode)
{
diff_addremove(&revs->diffopt, prefix[0], mode,
sha1, ce->name, NULL);
} | 1 | [
"CWE-119"
] | git | fd55a19eb1d49ae54008d932a65f79cd6fda45c9 | 30,420,025,918,771,510,000,000,000,000,000,000,000 | 8 | Fix buffer overflow in git diff
If PATH_MAX on your system is smaller than a path stored, it may cause
buffer overflow and stack corruption in diff_addremove() and diff_change()
functions when running git-diff
Signed-off-by: Dmitry Potapov <dpotapov@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com> |
void diff_addremove(struct diff_options *options,
int addremove, unsigned mode,
const unsigned char *sha1,
const char *base, const char *path)
{
char concatpath[PATH_MAX];
struct diff_filespec *one, *two;
if (DIFF_OPT_TST(options, IGNORE_SUBMODULES) && S_ISGITLINK(mode))
return;
/* This may look odd, but it is a preparation for
* feeding "there are unchanged files which should
* not produce diffs, but when you are doing copy
* detection you would need them, so here they are"
* entries to the diff-core. They will be prefixed
* with something like '=' or '*' (I haven't decided
* which but should not make any difference).
* Feeding the same new and old to diff_change()
* also has the same effect.
* Before the final output happens, they are pruned after
* merged into rename/copy pairs as appropriate.
*/
if (DIFF_OPT_TST(options, REVERSE_DIFF))
addremove = (addremove == '+' ? '-' :
addremove == '-' ? '+' : addremove);
if (!path) path = "";
sprintf(concatpath, "%s%s", base, path);
if (options->prefix &&
strncmp(concatpath, options->prefix, options->prefix_length))
return;
one = alloc_filespec(concatpath);
two = alloc_filespec(concatpath);
if (addremove != '+')
fill_filespec(one, sha1, mode);
if (addremove != '-')
fill_filespec(two, sha1, mode);
diff_queue(&diff_queued_diff, one, two);
DIFF_OPT_SET(options, HAS_CHANGES);
} | 1 | [
"CWE-119"
] | git | fd55a19eb1d49ae54008d932a65f79cd6fda45c9 | 121,643,038,194,642,890,000,000,000,000,000,000,000 | 45 | Fix buffer overflow in git diff
If PATH_MAX on your system is smaller than a path stored, it may cause
buffer overflow and stack corruption in diff_addremove() and diff_change()
functions when running git-diff
Signed-off-by: Dmitry Potapov <dpotapov@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com> |
static void show_entry(struct diff_options *opt, const char *prefix, struct tree_desc *desc,
const char *base, int baselen)
{
unsigned mode;
const char *path;
const unsigned char *sha1 = tree_entry_extract(desc, &path, &mode);
if (DIFF_OPT_TST(opt, RECURSIVE) && S_ISDIR(mode)) {
enum object_type type;
int pathlen = tree_entry_len(path, sha1);
char *newbase = malloc_base(base, baselen, path, pathlen);
struct tree_desc inner;
void *tree;
unsigned long size;
tree = read_sha1_file(sha1, &type, &size);
if (!tree || type != OBJ_TREE)
die("corrupt tree sha %s", sha1_to_hex(sha1));
init_tree_desc(&inner, tree, size);
show_tree(opt, prefix, &inner, newbase, baselen + 1 + pathlen);
free(tree);
free(newbase);
} else {
opt->add_remove(opt, prefix[0], mode, sha1, base, path);
}
} | 1 | [
"CWE-119"
] | git | fd55a19eb1d49ae54008d932a65f79cd6fda45c9 | 138,571,458,001,826,580,000,000,000,000,000,000,000 | 28 | Fix buffer overflow in git diff
If PATH_MAX on your system is smaller than a path stored, it may cause
buffer overflow and stack corruption in diff_addremove() and diff_change()
functions when running git-diff
Signed-off-by: Dmitry Potapov <dpotapov@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com> |
void diff_change(struct diff_options *options,
unsigned old_mode, unsigned new_mode,
const unsigned char *old_sha1,
const unsigned char *new_sha1,
const char *base, const char *path)
{
char concatpath[PATH_MAX];
struct diff_filespec *one, *two;
if (DIFF_OPT_TST(options, IGNORE_SUBMODULES) && S_ISGITLINK(old_mode)
&& S_ISGITLINK(new_mode))
return;
if (DIFF_OPT_TST(options, REVERSE_DIFF)) {
unsigned tmp;
const unsigned char *tmp_c;
tmp = old_mode; old_mode = new_mode; new_mode = tmp;
tmp_c = old_sha1; old_sha1 = new_sha1; new_sha1 = tmp_c;
}
if (!path) path = "";
sprintf(concatpath, "%s%s", base, path);
if (options->prefix &&
strncmp(concatpath, options->prefix, options->prefix_length))
return;
one = alloc_filespec(concatpath);
two = alloc_filespec(concatpath);
fill_filespec(one, old_sha1, old_mode);
fill_filespec(two, new_sha1, new_mode);
diff_queue(&diff_queued_diff, one, two);
DIFF_OPT_SET(options, HAS_CHANGES);
} | 1 | [
"CWE-119"
] | git | fd55a19eb1d49ae54008d932a65f79cd6fda45c9 | 294,087,867,753,526,720,000,000,000,000,000,000,000 | 34 | Fix buffer overflow in git diff
If PATH_MAX on your system is smaller than a path stored, it may cause
buffer overflow and stack corruption in diff_addremove() and diff_change()
functions when running git-diff
Signed-off-by: Dmitry Potapov <dpotapov@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com> |
static void file_change(struct diff_options *options,
unsigned old_mode, unsigned new_mode,
const unsigned char *old_sha1,
const unsigned char *new_sha1,
const char *base, const char *path)
{
tree_difference = REV_TREE_DIFFERENT;
DIFF_OPT_SET(options, HAS_CHANGES);
} | 1 | [
"CWE-119"
] | git | fd55a19eb1d49ae54008d932a65f79cd6fda45c9 | 1,231,797,395,996,266,000,000,000,000,000,000,000 | 9 | Fix buffer overflow in git diff
If PATH_MAX on your system is smaller than a path stored, it may cause
buffer overflow and stack corruption in diff_addremove() and diff_change()
functions when running git-diff
Signed-off-by: Dmitry Potapov <dpotapov@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com> |
int run_diff_files(struct rev_info *revs, unsigned int option)
{
int entries, i;
int diff_unmerged_stage = revs->max_count;
int silent_on_removed = option & DIFF_SILENT_ON_REMOVED;
unsigned ce_option = ((option & DIFF_RACY_IS_MODIFIED)
? CE_MATCH_RACY_IS_DIRTY : 0);
char symcache[PATH_MAX];
if (diff_unmerged_stage < 0)
diff_unmerged_stage = 2;
entries = active_nr;
symcache[0] = '\0';
for (i = 0; i < entries; i++) {
struct stat st;
unsigned int oldmode, newmode;
struct cache_entry *ce = active_cache[i];
int changed;
if (DIFF_OPT_TST(&revs->diffopt, QUIET) &&
DIFF_OPT_TST(&revs->diffopt, HAS_CHANGES))
break;
if (!ce_path_match(ce, revs->prune_data))
continue;
if (ce_stage(ce)) {
struct combine_diff_path *dpath;
int num_compare_stages = 0;
size_t path_len;
path_len = ce_namelen(ce);
dpath = xmalloc(combine_diff_path_size(5, path_len));
dpath->path = (char *) &(dpath->parent[5]);
dpath->next = NULL;
dpath->len = path_len;
memcpy(dpath->path, ce->name, path_len);
dpath->path[path_len] = '\0';
hashclr(dpath->sha1);
memset(&(dpath->parent[0]), 0,
sizeof(struct combine_diff_parent)*5);
changed = check_removed(ce, &st);
if (!changed)
dpath->mode = ce_mode_from_stat(ce, st.st_mode);
else {
if (changed < 0) {
perror(ce->name);
continue;
}
if (silent_on_removed)
continue;
}
while (i < entries) {
struct cache_entry *nce = active_cache[i];
int stage;
if (strcmp(ce->name, nce->name))
break;
/* Stage #2 (ours) is the first parent,
* stage #3 (theirs) is the second.
*/
stage = ce_stage(nce);
if (2 <= stage) {
int mode = nce->ce_mode;
num_compare_stages++;
hashcpy(dpath->parent[stage-2].sha1, nce->sha1);
dpath->parent[stage-2].mode = ce_mode_from_stat(nce, mode);
dpath->parent[stage-2].status =
DIFF_STATUS_MODIFIED;
}
/* diff against the proper unmerged stage */
if (stage == diff_unmerged_stage)
ce = nce;
i++;
}
/*
* Compensate for loop update
*/
i--;
if (revs->combine_merges && num_compare_stages == 2) {
show_combined_diff(dpath, 2,
revs->dense_combined_merges,
revs);
free(dpath);
continue;
}
free(dpath);
dpath = NULL;
/*
* Show the diff for the 'ce' if we found the one
* from the desired stage.
*/
diff_unmerge(&revs->diffopt, ce->name, 0, null_sha1);
if (ce_stage(ce) != diff_unmerged_stage)
continue;
}
if (ce_uptodate(ce))
continue;
changed = check_removed(ce, &st);
if (changed) {
if (changed < 0) {
perror(ce->name);
continue;
}
if (silent_on_removed)
continue;
diff_addremove(&revs->diffopt, '-', ce->ce_mode,
ce->sha1, ce->name, NULL);
continue;
}
changed = ce_match_stat(ce, &st, ce_option);
if (!changed) {
ce_mark_uptodate(ce);
if (!DIFF_OPT_TST(&revs->diffopt, FIND_COPIES_HARDER))
continue;
}
oldmode = ce->ce_mode;
newmode = ce_mode_from_stat(ce, st.st_mode);
diff_change(&revs->diffopt, oldmode, newmode,
ce->sha1, (changed ? null_sha1 : ce->sha1),
ce->name, NULL);
}
diffcore_std(&revs->diffopt);
diff_flush(&revs->diffopt);
return 0;
} | 1 | [
"CWE-119"
] | git | fd55a19eb1d49ae54008d932a65f79cd6fda45c9 | 209,223,692,144,430,640,000,000,000,000,000,000,000 | 137 | Fix buffer overflow in git diff
If PATH_MAX on your system is smaller than a path stored, it may cause
buffer overflow and stack corruption in diff_addremove() and diff_change()
functions when running git-diff
Signed-off-by: Dmitry Potapov <dpotapov@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com> |
static void prepare_attr_stack(const char *path, int dirlen)
{
struct attr_stack *elem, *info;
int len;
char pathbuf[PATH_MAX];
/*
* At the bottom of the attribute stack is the built-in
* set of attribute definitions. Then, contents from
* .gitattribute files from directories closer to the
* root to the ones in deeper directories are pushed
* to the stack. Finally, at the very top of the stack
* we always keep the contents of $GIT_DIR/info/attributes.
*
* When checking, we use entries from near the top of the
* stack, preferring $GIT_DIR/info/attributes, then
* .gitattributes in deeper directories to shallower ones,
* and finally use the built-in set as the default.
*/
if (!attr_stack)
bootstrap_attr_stack();
/*
* Pop the "info" one that is always at the top of the stack.
*/
info = attr_stack;
attr_stack = info->prev;
/*
* Pop the ones from directories that are not the prefix of
* the path we are checking.
*/
while (attr_stack && attr_stack->origin) {
int namelen = strlen(attr_stack->origin);
elem = attr_stack;
if (namelen <= dirlen &&
!strncmp(elem->origin, path, namelen))
break;
debug_pop(elem);
attr_stack = elem->prev;
free_attr_elem(elem);
}
/*
* Read from parent directories and push them down
*/
if (!is_bare_repository()) {
while (1) {
char *cp;
len = strlen(attr_stack->origin);
if (dirlen <= len)
break;
memcpy(pathbuf, path, dirlen);
memcpy(pathbuf + dirlen, "/", 2);
cp = strchr(pathbuf + len + 1, '/');
strcpy(cp + 1, GITATTRIBUTES_FILE);
elem = read_attr(pathbuf, 0);
*cp = '\0';
elem->origin = strdup(pathbuf);
elem->prev = attr_stack;
attr_stack = elem;
debug_push(elem);
}
}
/*
* Finally push the "info" one at the top of the stack.
*/
info->prev = attr_stack;
attr_stack = info;
} | 1 | [] | git | f66cf96d7c613a8129436a5d76ef7b74ee302436 | 252,101,527,543,494,450,000,000,000,000,000,000,000 | 74 | Fix buffer overflow in prepare_attr_stack
If PATH_MAX on your system is smaller than a path stored in the git repo,
it may cause the buffer overflow in prepare_attr_stack.
Signed-off-by: Dmitry Potapov <dpotapov@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com> |
static int grep_tree(struct grep_opt *opt, const char **paths,
struct tree_desc *tree,
const char *tree_name, const char *base)
{
int len;
int hit = 0;
struct name_entry entry;
char *down;
int tn_len = strlen(tree_name);
char *path_buf = xmalloc(PATH_MAX + tn_len + 100);
if (tn_len) {
tn_len = sprintf(path_buf, "%s:", tree_name);
down = path_buf + tn_len;
strcat(down, base);
}
else {
down = path_buf;
strcpy(down, base);
}
len = strlen(path_buf);
while (tree_entry(tree, &entry)) {
strcpy(path_buf + len, entry.path);
if (S_ISDIR(entry.mode))
/* Match "abc/" against pathspec to
* decide if we want to descend into "abc"
* directory.
*/
strcpy(path_buf + len + tree_entry_len(entry.path, entry.sha1), "/");
if (!pathspec_matches(paths, down))
;
else if (S_ISREG(entry.mode))
hit |= grep_sha1(opt, entry.sha1, path_buf, tn_len);
else if (S_ISDIR(entry.mode)) {
enum object_type type;
struct tree_desc sub;
void *data;
unsigned long size;
data = read_sha1_file(entry.sha1, &type, &size);
if (!data)
die("unable to read tree (%s)",
sha1_to_hex(entry.sha1));
init_tree_desc(&sub, data, size);
hit |= grep_tree(opt, paths, &sub, tree_name, down);
free(data);
}
}
return hit;
} | 1 | [] | git | 620e2bb93785ed8eb60846d94fd4753d4817c8ec | 77,154,386,793,728,250,000,000,000,000,000,000,000 | 53 | Fix buffer overflow in git-grep
If PATH_MAX on your system is smaller than any path stored in the git
repository, that can cause memory corruption inside of the grep_tree
function used by git-grep.
Signed-off-by: Dmitry Potapov <dpotapov@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com> |
static int dccp_setsockopt_change(struct sock *sk, int type,
struct dccp_so_feat __user *optval)
{
struct dccp_so_feat opt;
u8 *val;
int rc;
if (copy_from_user(&opt, optval, sizeof(opt)))
return -EFAULT;
val = kmalloc(opt.dccpsf_len, GFP_KERNEL);
if (!val)
return -ENOMEM;
if (copy_from_user(val, opt.dccpsf_val, opt.dccpsf_len)) {
rc = -EFAULT;
goto out_free_val;
}
rc = dccp_feat_change(dccp_msk(sk), type, opt.dccpsf_feat,
val, opt.dccpsf_len, GFP_KERNEL);
if (rc)
goto out_free_val;
out:
return rc;
out_free_val:
kfree(val);
goto out;
} | 1 | [
"CWE-189"
] | linux-2.6 | 3e8a0a559c66ee9e7468195691a56fefc3589740 | 235,127,973,499,082,600,000,000,000,000,000,000,000 | 31 | dccp: change L/R must have at least one byte in the dccpsf_val field
Thanks to Eugene Teo for reporting this problem.
Signed-off-by: Eugene Teo <eugenete@kernel.sg>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net> |
static int sctp_setsockopt_auth_chunk(struct sock *sk,
char __user *optval,
int optlen)
{
struct sctp_authchunk val;
if (optlen != sizeof(struct sctp_authchunk))
return -EINVAL;
if (copy_from_user(&val, optval, optlen))
return -EFAULT;
switch (val.sauth_chunk) {
case SCTP_CID_INIT:
case SCTP_CID_INIT_ACK:
case SCTP_CID_SHUTDOWN_COMPLETE:
case SCTP_CID_AUTH:
return -EINVAL;
}
/* add this chunk id to the endpoint */
return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
} | 1 | [] | linux-2.6 | 5e739d1752aca4e8f3e794d431503bfca3162df4 | 41,331,419,358,057,980,000,000,000,000,000,000,000 | 22 | sctp: fix potential panics in the SCTP-AUTH API.
All of the SCTP-AUTH socket options could cause a panic
if the extension is disabled and the API is envoked.
Additionally, there were some additional assumptions that
certain pointers would always be valid which may not
always be the case.
This patch hardens the API and address all of the crash
scenarios.
Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net> |
static int sctp_setsockopt_auth_key(struct sock *sk,
char __user *optval,
int optlen)
{
struct sctp_authkey *authkey;
struct sctp_association *asoc;
int ret;
if (optlen <= sizeof(struct sctp_authkey))
return -EINVAL;
authkey = kmalloc(optlen, GFP_KERNEL);
if (!authkey)
return -ENOMEM;
if (copy_from_user(authkey, optval, optlen)) {
ret = -EFAULT;
goto out;
}
asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
ret = -EINVAL;
goto out;
}
ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
out:
kfree(authkey);
return ret;
} | 1 | [] | linux-2.6 | 5e739d1752aca4e8f3e794d431503bfca3162df4 | 11,380,394,252,343,390,000,000,000,000,000,000,000 | 31 | sctp: fix potential panics in the SCTP-AUTH API.
All of the SCTP-AUTH socket options could cause a panic
if the extension is disabled and the API is envoked.
Additionally, there were some additional assumptions that
certain pointers would always be valid which may not
always be the case.
This patch hardens the API and address all of the crash
scenarios.
Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net> |
static int sctp_setsockopt_del_key(struct sock *sk,
char __user *optval,
int optlen)
{
struct sctp_authkeyid val;
struct sctp_association *asoc;
if (optlen != sizeof(struct sctp_authkeyid))
return -EINVAL;
if (copy_from_user(&val, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, val.scact_assoc_id);
if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
val.scact_keynumber);
} | 1 | [] | linux-2.6 | 5e739d1752aca4e8f3e794d431503bfca3162df4 | 29,167,471,840,805,623,000,000,000,000,000,000,000 | 20 | sctp: fix potential panics in the SCTP-AUTH API.
All of the SCTP-AUTH socket options could cause a panic
if the extension is disabled and the API is envoked.
Additionally, there were some additional assumptions that
certain pointers would always be valid which may not
always be the case.
This patch hardens the API and address all of the crash
scenarios.
Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net> |
static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_authchunks __user *p = (void __user *)optval;
struct sctp_authchunks val;
struct sctp_association *asoc;
struct sctp_chunks_param *ch;
u32 num_chunks;
char __user *to;
if (len <= sizeof(struct sctp_authchunks))
return -EINVAL;
if (copy_from_user(&val, p, sizeof(struct sctp_authchunks)))
return -EFAULT;
to = p->gauth_chunks;
asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc)
ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
else
ch = sctp_sk(sk)->ep->auth_chunk_list;
num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
if (len < num_chunks)
return -EINVAL;
len = num_chunks;
if (put_user(len, optlen))
return -EFAULT;
if (put_user(num_chunks, &p->gauth_number_of_chunks))
return -EFAULT;
if (copy_to_user(to, ch->chunks, len))
return -EFAULT;
return 0;
} | 1 | [] | linux-2.6 | 5e739d1752aca4e8f3e794d431503bfca3162df4 | 256,269,229,194,112,840,000,000,000,000,000,000,000 | 40 | sctp: fix potential panics in the SCTP-AUTH API.
All of the SCTP-AUTH socket options could cause a panic
if the extension is disabled and the API is envoked.
Additionally, there were some additional assumptions that
certain pointers would always be valid which may not
always be the case.
This patch hardens the API and address all of the crash
scenarios.
Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net> |
static struct sctp_endpoint *sctp_endpoint_init(struct sctp_endpoint *ep,
struct sock *sk,
gfp_t gfp)
{
struct sctp_hmac_algo_param *auth_hmacs = NULL;
struct sctp_chunks_param *auth_chunks = NULL;
struct sctp_shared_key *null_key;
int err;
memset(ep, 0, sizeof(struct sctp_endpoint));
ep->digest = kzalloc(SCTP_SIGNATURE_SIZE, gfp);
if (!ep->digest)
return NULL;
if (sctp_auth_enable) {
/* Allocate space for HMACS and CHUNKS authentication
* variables. There are arrays that we encode directly
* into parameters to make the rest of the operations easier.
*/
auth_hmacs = kzalloc(sizeof(sctp_hmac_algo_param_t) +
sizeof(__u16) * SCTP_AUTH_NUM_HMACS, gfp);
if (!auth_hmacs)
goto nomem;
auth_chunks = kzalloc(sizeof(sctp_chunks_param_t) +
SCTP_NUM_CHUNK_TYPES, gfp);
if (!auth_chunks)
goto nomem;
/* Initialize the HMACS parameter.
* SCTP-AUTH: Section 3.3
* Every endpoint supporting SCTP chunk authentication MUST
* support the HMAC based on the SHA-1 algorithm.
*/
auth_hmacs->param_hdr.type = SCTP_PARAM_HMAC_ALGO;
auth_hmacs->param_hdr.length =
htons(sizeof(sctp_paramhdr_t) + 2);
auth_hmacs->hmac_ids[0] = htons(SCTP_AUTH_HMAC_ID_SHA1);
/* Initialize the CHUNKS parameter */
auth_chunks->param_hdr.type = SCTP_PARAM_CHUNKS;
/* If the Add-IP functionality is enabled, we must
* authenticate, ASCONF and ASCONF-ACK chunks
*/
if (sctp_addip_enable) {
auth_chunks->chunks[0] = SCTP_CID_ASCONF;
auth_chunks->chunks[1] = SCTP_CID_ASCONF_ACK;
auth_chunks->param_hdr.length =
htons(sizeof(sctp_paramhdr_t) + 2);
}
}
/* Initialize the base structure. */
/* What type of endpoint are we? */
ep->base.type = SCTP_EP_TYPE_SOCKET;
/* Initialize the basic object fields. */
atomic_set(&ep->base.refcnt, 1);
ep->base.dead = 0;
ep->base.malloced = 1;
/* Create an input queue. */
sctp_inq_init(&ep->base.inqueue);
/* Set its top-half handler */
sctp_inq_set_th_handler(&ep->base.inqueue, sctp_endpoint_bh_rcv);
/* Initialize the bind addr area */
sctp_bind_addr_init(&ep->base.bind_addr, 0);
/* Remember who we are attached to. */
ep->base.sk = sk;
sock_hold(ep->base.sk);
/* Create the lists of associations. */
INIT_LIST_HEAD(&ep->asocs);
/* Use SCTP specific send buffer space queues. */
ep->sndbuf_policy = sctp_sndbuf_policy;
sk->sk_write_space = sctp_write_space;
sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
/* Get the receive buffer policy for this endpoint */
ep->rcvbuf_policy = sctp_rcvbuf_policy;
/* Initialize the secret key used with cookie. */
get_random_bytes(&ep->secret_key[0], SCTP_SECRET_SIZE);
ep->last_key = ep->current_key = 0;
ep->key_changed_at = jiffies;
/* SCTP-AUTH extensions*/
INIT_LIST_HEAD(&ep->endpoint_shared_keys);
null_key = sctp_auth_shkey_create(0, GFP_KERNEL);
if (!null_key)
goto nomem;
list_add(&null_key->key_list, &ep->endpoint_shared_keys);
/* Allocate and initialize transorms arrays for suported HMACs. */
err = sctp_auth_init_hmacs(ep, gfp);
if (err)
goto nomem_hmacs;
/* Add the null key to the endpoint shared keys list and
* set the hmcas and chunks pointers.
*/
ep->auth_hmacs_list = auth_hmacs;
ep->auth_chunk_list = auth_chunks;
return ep;
nomem_hmacs:
sctp_auth_destroy_keys(&ep->endpoint_shared_keys);
nomem:
/* Free all allocations */
kfree(auth_hmacs);
kfree(auth_chunks);
kfree(ep->digest);
return NULL;
} | 1 | [] | linux-2.6 | 5e739d1752aca4e8f3e794d431503bfca3162df4 | 198,083,940,795,556,120,000,000,000,000,000,000,000 | 124 | sctp: fix potential panics in the SCTP-AUTH API.
All of the SCTP-AUTH socket options could cause a panic
if the extension is disabled and the API is envoked.
Additionally, there were some additional assumptions that
certain pointers would always be valid which may not
always be the case.
This patch hardens the API and address all of the crash
scenarios.
Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net> |
static int sctp_setsockopt_hmac_ident(struct sock *sk,
char __user *optval,
int optlen)
{
struct sctp_hmacalgo *hmacs;
int err;
if (optlen < sizeof(struct sctp_hmacalgo))
return -EINVAL;
hmacs = kmalloc(optlen, GFP_KERNEL);
if (!hmacs)
return -ENOMEM;
if (copy_from_user(hmacs, optval, optlen)) {
err = -EFAULT;
goto out;
}
if (hmacs->shmac_num_idents == 0 ||
hmacs->shmac_num_idents > SCTP_AUTH_NUM_HMACS) {
err = -EINVAL;
goto out;
}
err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
out:
kfree(hmacs);
return err;
} | 1 | [] | linux-2.6 | 5e739d1752aca4e8f3e794d431503bfca3162df4 | 320,537,195,004,432,940,000,000,000,000,000,000,000 | 30 | sctp: fix potential panics in the SCTP-AUTH API.
All of the SCTP-AUTH socket options could cause a panic
if the extension is disabled and the API is envoked.
Additionally, there were some additional assumptions that
certain pointers would always be valid which may not
always be the case.
This patch hardens the API and address all of the crash
scenarios.
Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net> |
static int sctp_getsockopt_active_key(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_authkeyid val;
struct sctp_association *asoc;
if (len < sizeof(struct sctp_authkeyid))
return -EINVAL;
if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
return -EFAULT;
asoc = sctp_id2assoc(sk, val.scact_assoc_id);
if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc)
val.scact_keynumber = asoc->active_key_id;
else
val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
return 0;
} | 1 | [] | linux-2.6 | 5e739d1752aca4e8f3e794d431503bfca3162df4 | 167,409,291,288,390,750,000,000,000,000,000,000,000 | 22 | sctp: fix potential panics in the SCTP-AUTH API.
All of the SCTP-AUTH socket options could cause a panic
if the extension is disabled and the API is envoked.
Additionally, there were some additional assumptions that
certain pointers would always be valid which may not
always be the case.
This patch hardens the API and address all of the crash
scenarios.
Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net> |
static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_hmac_algo_param *hmacs;
__u16 param_len;
hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
param_len = ntohs(hmacs->param_hdr.length);
if (len < param_len)
return -EINVAL;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, hmacs->hmac_ids, len))
return -EFAULT;
return 0;
} | 1 | [] | linux-2.6 | 5e739d1752aca4e8f3e794d431503bfca3162df4 | 141,042,695,876,717,770,000,000,000,000,000,000,000 | 18 | sctp: fix potential panics in the SCTP-AUTH API.
All of the SCTP-AUTH socket options could cause a panic
if the extension is disabled and the API is envoked.
Additionally, there were some additional assumptions that
certain pointers would always be valid which may not
always be the case.
This patch hardens the API and address all of the crash
scenarios.
Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net> |
static int sctp_setsockopt_active_key(struct sock *sk,
char __user *optval,
int optlen)
{
struct sctp_authkeyid val;
struct sctp_association *asoc;
if (optlen != sizeof(struct sctp_authkeyid))
return -EINVAL;
if (copy_from_user(&val, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, val.scact_assoc_id);
if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
val.scact_keynumber);
} | 1 | [] | linux-2.6 | 5e739d1752aca4e8f3e794d431503bfca3162df4 | 108,795,425,358,976,810,000,000,000,000,000,000,000 | 19 | sctp: fix potential panics in the SCTP-AUTH API.
All of the SCTP-AUTH socket options could cause a panic
if the extension is disabled and the API is envoked.
Additionally, there were some additional assumptions that
certain pointers would always be valid which may not
always be the case.
This patch hardens the API and address all of the crash
scenarios.
Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net> |
static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_authchunks __user *p = (void __user *)optval;
struct sctp_authchunks val;
struct sctp_association *asoc;
struct sctp_chunks_param *ch;
u32 num_chunks;
char __user *to;
if (len <= sizeof(struct sctp_authchunks))
return -EINVAL;
if (copy_from_user(&val, p, sizeof(struct sctp_authchunks)))
return -EFAULT;
to = p->gauth_chunks;
asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
if (!asoc)
return -EINVAL;
ch = asoc->peer.peer_chunks;
/* See if the user provided enough room for all the data */
num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
if (len < num_chunks)
return -EINVAL;
len = num_chunks;
if (put_user(len, optlen))
return -EFAULT;
if (put_user(num_chunks, &p->gauth_number_of_chunks))
return -EFAULT;
if (copy_to_user(to, ch->chunks, len))
return -EFAULT;
return 0;
} | 1 | [] | linux-2.6 | 5e739d1752aca4e8f3e794d431503bfca3162df4 | 162,429,049,330,514,960,000,000,000,000,000,000,000 | 38 | sctp: fix potential panics in the SCTP-AUTH API.
All of the SCTP-AUTH socket options could cause a panic
if the extension is disabled and the API is envoked.
Additionally, there were some additional assumptions that
certain pointers would always be valid which may not
always be the case.
This patch hardens the API and address all of the crash
scenarios.
Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net> |
static int sctp_setsockopt_auth_key(struct sock *sk,
char __user *optval,
int optlen)
{
struct sctp_authkey *authkey;
struct sctp_association *asoc;
int ret;
if (!sctp_auth_enable)
return -EACCES;
if (optlen <= sizeof(struct sctp_authkey))
return -EINVAL;
authkey = kmalloc(optlen, GFP_KERNEL);
if (!authkey)
return -ENOMEM;
if (copy_from_user(authkey, optval, optlen)) {
ret = -EFAULT;
goto out;
}
asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
ret = -EINVAL;
goto out;
}
ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
out:
kfree(authkey);
return ret;
} | 1 | [
"CWE-189"
] | linux-2.6 | 30c2235cbc477d4629983d440cdc4f496fec9246 | 320,251,325,783,795,120,000,000,000,000,000,000,000 | 34 | sctp: add verification checks to SCTP_AUTH_KEY option
The structure used for SCTP_AUTH_KEY option contains a
length that needs to be verfied to prevent buffer overflow
conditions. Spoted by Eugene Teo <eteo@redhat.com>.
Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net> |
static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
{
struct sctp_auth_bytes *key;
/* Allocate the shared key */
key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
if (!key)
return NULL;
key->len = key_len;
atomic_set(&key->refcnt, 1);
SCTP_DBG_OBJCNT_INC(keys);
return key;
} | 1 | [
"CWE-189"
] | linux-2.6 | 30c2235cbc477d4629983d440cdc4f496fec9246 | 259,229,604,442,576,920,000,000,000,000,000,000,000 | 15 | sctp: add verification checks to SCTP_AUTH_KEY option
The structure used for SCTP_AUTH_KEY option contains a
length that needs to be verfied to prevent buffer overflow
conditions. Spoted by Eugene Teo <eteo@redhat.com>.
Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net> |
static int sctp_setsockopt_auth_key(struct sock *sk,
char __user *optval,
int optlen)
{
struct sctp_authkey *authkey;
struct sctp_association *asoc;
int ret;
if (!sctp_auth_enable)
return -EACCES;
if (optlen <= sizeof(struct sctp_authkey))
return -EINVAL;
authkey = kmalloc(optlen, GFP_KERNEL);
if (!authkey)
return -ENOMEM;
if (copy_from_user(authkey, optval, optlen)) {
ret = -EFAULT;
goto out;
}
if (authkey->sca_keylength > optlen) {
ret = -EINVAL;
goto out;
}
asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
ret = -EINVAL;
goto out;
}
ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
out:
kfree(authkey);
return ret;
} | 1 | [
"CWE-189"
] | linux-2.6 | 328fc47ea0bcc27d9afa69c3ad6e52431cadd76c | 298,384,647,623,776,260,000,000,000,000,000,000,000 | 39 | sctp: correct bounds check in sctp_setsockopt_auth_key
The bonds check to prevent buffer overlflow was not exactly
right. It still allowed overflow of up to 8 bytes which is
sizeof(struct sctp_authkey).
Since optlen is already checked against the size of that struct,
we are guaranteed not to cause interger overflow either.
Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net> |
int __init sysenter_setup(void)
{
syscall_page = (void *)get_zeroed_page(GFP_ATOMIC);
#ifdef CONFIG_COMPAT_VDSO
__set_fixmap(FIX_VDSO, __pa(syscall_page), PAGE_READONLY);
printk("Compat vDSO mapped to %08lx.\n", __fix_to_virt(FIX_VDSO));
#endif
if (!boot_cpu_has(X86_FEATURE_SEP)) {
memcpy(syscall_page,
&vsyscall_int80_start,
&vsyscall_int80_end - &vsyscall_int80_start);
return 0;
}
memcpy(syscall_page,
&vsyscall_sysenter_start,
&vsyscall_sysenter_end - &vsyscall_sysenter_start);
return 0;
} | 1 | [
"CWE-264"
] | linux-2.6 | 7d91d531900bfa1165d445390b3b13a8013f98f7 | 304,618,310,520,352,100,000,000,000,000,000,000,000 | 22 | [PATCH] i386 vDSO: use install_special_mapping
This patch uses install_special_mapping for the i386 vDSO setup, consolidating
duplicated code.
Signed-off-by: Roland McGrath <roland@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
static void syscall_vma_close(struct vm_area_struct *vma)
{
} | 1 | [
"CWE-264"
] | linux-2.6 | 7d91d531900bfa1165d445390b3b13a8013f98f7 | 251,536,074,404,728,970,000,000,000,000,000,000,000 | 3 | [PATCH] i386 vDSO: use install_special_mapping
This patch uses install_special_mapping for the i386 vDSO setup, consolidating
duplicated code.
Signed-off-by: Roland McGrath <roland@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
static struct page *syscall_nopage(struct vm_area_struct *vma,
unsigned long adr, int *type)
{
struct page *p = virt_to_page(adr - vma->vm_start + syscall_page);
get_page(p);
return p;
} | 1 | [
"CWE-264"
] | linux-2.6 | 7d91d531900bfa1165d445390b3b13a8013f98f7 | 39,399,206,799,500,275,000,000,000,000,000,000,000 | 7 | [PATCH] i386 vDSO: use install_special_mapping
This patch uses install_special_mapping for the i386 vDSO setup, consolidating
duplicated code.
Signed-off-by: Roland McGrath <roland@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
int arch_setup_additional_pages(struct linux_binprm *bprm, int exstack)
{
struct vm_area_struct *vma;
struct mm_struct *mm = current->mm;
unsigned long addr;
int ret;
down_write(&mm->mmap_sem);
addr = get_unmapped_area(NULL, 0, PAGE_SIZE, 0, 0);
if (IS_ERR_VALUE(addr)) {
ret = addr;
goto up_fail;
}
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (!vma) {
ret = -ENOMEM;
goto up_fail;
}
vma->vm_start = addr;
vma->vm_end = addr + PAGE_SIZE;
/* MAYWRITE to allow gdb to COW and set breakpoints */
vma->vm_flags = VM_READ|VM_EXEC|VM_MAYREAD|VM_MAYEXEC|VM_MAYWRITE;
/*
* Make sure the vDSO gets into every core dump.
* Dumping its contents makes post-mortem fully interpretable later
* without matching up the same kernel and hardware config to see
* what PC values meant.
*/
vma->vm_flags |= VM_ALWAYSDUMP;
vma->vm_flags |= mm->def_flags;
vma->vm_page_prot = protection_map[vma->vm_flags & 7];
vma->vm_ops = &syscall_vm_ops;
vma->vm_mm = mm;
ret = insert_vm_struct(mm, vma);
if (unlikely(ret)) {
kmem_cache_free(vm_area_cachep, vma);
goto up_fail;
}
current->mm->context.vdso = (void *)addr;
current_thread_info()->sysenter_return =
(void *)VDSO_SYM(&SYSENTER_RETURN);
mm->total_vm++;
up_fail:
up_write(&mm->mmap_sem);
return ret;
} | 1 | [
"CWE-264"
] | linux-2.6 | 7d91d531900bfa1165d445390b3b13a8013f98f7 | 29,249,122,729,569,090,000,000,000,000,000,000,000 | 50 | [PATCH] i386 vDSO: use install_special_mapping
This patch uses install_special_mapping for the i386 vDSO setup, consolidating
duplicated code.
Signed-off-by: Roland McGrath <roland@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
sbni_ioctl( struct net_device *dev, struct ifreq *ifr, int cmd )
{
struct net_local *nl = (struct net_local *) dev->priv;
struct sbni_flags flags;
int error = 0;
#ifdef CONFIG_SBNI_MULTILINE
struct net_device *slave_dev;
char slave_name[ 8 ];
#endif
switch( cmd ) {
case SIOCDEVGETINSTATS :
if (copy_to_user( ifr->ifr_data, &nl->in_stats,
sizeof(struct sbni_in_stats) ))
error = -EFAULT;
break;
case SIOCDEVRESINSTATS :
if( current->euid != 0 ) /* root only */
return -EPERM;
memset( &nl->in_stats, 0, sizeof(struct sbni_in_stats) );
break;
case SIOCDEVGHWSTATE :
flags.mac_addr = *(u32 *)(dev->dev_addr + 3);
flags.rate = nl->csr1.rate;
flags.slow_mode = (nl->state & FL_SLOW_MODE) != 0;
flags.rxl = nl->cur_rxl_index;
flags.fixed_rxl = nl->delta_rxl == 0;
if (copy_to_user( ifr->ifr_data, &flags, sizeof flags ))
error = -EFAULT;
break;
case SIOCDEVSHWSTATE :
if( current->euid != 0 ) /* root only */
return -EPERM;
spin_lock( &nl->lock );
flags = *(struct sbni_flags*) &ifr->ifr_ifru;
if( flags.fixed_rxl )
nl->delta_rxl = 0,
nl->cur_rxl_index = flags.rxl;
else
nl->delta_rxl = DEF_RXL_DELTA,
nl->cur_rxl_index = DEF_RXL;
nl->csr1.rxl = rxl_tab[ nl->cur_rxl_index ];
nl->csr1.rate = flags.rate;
outb( *(u8 *)&nl->csr1 | PR_RES, dev->base_addr + CSR1 );
spin_unlock( &nl->lock );
break;
#ifdef CONFIG_SBNI_MULTILINE
case SIOCDEVENSLAVE :
if( current->euid != 0 ) /* root only */
return -EPERM;
if (copy_from_user( slave_name, ifr->ifr_data, sizeof slave_name ))
return -EFAULT;
slave_dev = dev_get_by_name(&init_net, slave_name );
if( !slave_dev || !(slave_dev->flags & IFF_UP) ) {
printk( KERN_ERR "%s: trying to enslave non-active "
"device %s\n", dev->name, slave_name );
return -EPERM;
}
return enslave( dev, slave_dev );
case SIOCDEVEMANSIPATE :
if( current->euid != 0 ) /* root only */
return -EPERM;
return emancipate( dev );
#endif /* CONFIG_SBNI_MULTILINE */
default :
return -EOPNOTSUPP;
}
return error;
} | 1 | [
"CWE-264"
] | linux-2.6 | f2455eb176ac87081bbfc9a44b21c7cd2bc1967e | 334,362,285,214,514,800,000,000,000,000,000,000,000 | 85 | wan: Missing capability checks in sbni_ioctl()
There are missing capability checks in the following code:
1300 static int
1301 sbni_ioctl( struct net_device *dev, struct ifreq *ifr, int cmd)
1302 {
[...]
1319 case SIOCDEVRESINSTATS :
1320 if( current->euid != 0 ) /* root only */
1321 return -EPERM;
[...]
1336 case SIOCDEVSHWSTATE :
1337 if( current->euid != 0 ) /* root only */
1338 return -EPERM;
[...]
1357 case SIOCDEVENSLAVE :
1358 if( current->euid != 0 ) /* root only */
1359 return -EPERM;
[...]
1372 case SIOCDEVEMANSIPATE :
1373 if( current->euid != 0 ) /* root only */
1374 return -EPERM;
Here's my proposed fix:
Missing capability checks.
Signed-off-by: Eugene Teo <eugeneteo@kernel.sg>
Signed-off-by: David S. Miller <davem@davemloft.net> |
__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
struct block_device *bdev, const struct iovec *iov, loff_t offset,
unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
int dio_lock_type)
{
int seg;
size_t size;
unsigned long addr;
unsigned blkbits = inode->i_blkbits;
unsigned bdev_blkbits = 0;
unsigned blocksize_mask = (1 << blkbits) - 1;
ssize_t retval = -EINVAL;
loff_t end = offset;
struct dio *dio;
int release_i_mutex = 0;
int acquire_i_mutex = 0;
if (rw & WRITE)
rw = WRITE_SYNC;
if (bdev)
bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev));
if (offset & blocksize_mask) {
if (bdev)
blkbits = bdev_blkbits;
blocksize_mask = (1 << blkbits) - 1;
if (offset & blocksize_mask)
goto out;
}
/* Check the memory alignment. Blocks cannot straddle pages */
for (seg = 0; seg < nr_segs; seg++) {
addr = (unsigned long)iov[seg].iov_base;
size = iov[seg].iov_len;
end += size;
if ((addr & blocksize_mask) || (size & blocksize_mask)) {
if (bdev)
blkbits = bdev_blkbits;
blocksize_mask = (1 << blkbits) - 1;
if ((addr & blocksize_mask) || (size & blocksize_mask))
goto out;
}
}
dio = kmalloc(sizeof(*dio), GFP_KERNEL);
retval = -ENOMEM;
if (!dio)
goto out;
/*
* For block device access DIO_NO_LOCKING is used,
* neither readers nor writers do any locking at all
* For regular files using DIO_LOCKING,
* readers need to grab i_mutex and i_alloc_sem
* writers need to grab i_alloc_sem only (i_mutex is already held)
* For regular files using DIO_OWN_LOCKING,
* neither readers nor writers take any locks here
*/
dio->lock_type = dio_lock_type;
if (dio_lock_type != DIO_NO_LOCKING) {
/* watch out for a 0 len io from a tricksy fs */
if (rw == READ && end > offset) {
struct address_space *mapping;
mapping = iocb->ki_filp->f_mapping;
if (dio_lock_type != DIO_OWN_LOCKING) {
mutex_lock(&inode->i_mutex);
release_i_mutex = 1;
}
retval = filemap_write_and_wait_range(mapping, offset,
end - 1);
if (retval) {
kfree(dio);
goto out;
}
if (dio_lock_type == DIO_OWN_LOCKING) {
mutex_unlock(&inode->i_mutex);
acquire_i_mutex = 1;
}
}
if (dio_lock_type == DIO_LOCKING)
/* lockdep: not the owner will release it */
down_read_non_owner(&inode->i_alloc_sem);
}
/*
* For file extending writes updating i_size before data
* writeouts complete can expose uninitialized blocks. So
* even for AIO, we need to wait for i/o to complete before
* returning in this case.
*/
dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
(end > i_size_read(inode)));
retval = direct_io_worker(rw, iocb, inode, iov, offset,
nr_segs, blkbits, get_block, end_io, dio);
if (rw == READ && dio_lock_type == DIO_LOCKING)
release_i_mutex = 0;
out:
if (release_i_mutex)
mutex_unlock(&inode->i_mutex);
else if (acquire_i_mutex)
mutex_lock(&inode->i_mutex);
return retval;
} | 1 | [] | linux-2.6 | 848c4dd5153c7a0de55470ce99a8e13a63b4703f | 2,182,172,615,268,076,500,000,000,000,000,000,000 | 111 | dio: zero struct dio with kzalloc instead of manually
This patch uses kzalloc to zero all of struct dio rather than manually
trying to track which fields we rely on being zero. It passed aio+dio
stress testing and some bug regression testing on ext3.
This patch was introduced by Linus in the conversation that lead up to
Badari's minimal fix to manually zero .map_bh.b_state in commit:
6a648fa72161d1f6468dabd96c5d3c0db04f598a
It makes the code a bit smaller. Maybe a couple fewer cachelines to
load, if we're lucky:
text data bss dec hex filename
3285925 568506 1304616 5159047 4eb887 vmlinux
3285797 568506 1304616 5158919 4eb807 vmlinux.patched
I was unable to measure a stable difference in the number of cpu cycles
spent in blockdev_direct_IO() when pushing aio+dio 256K reads at
~340MB/s.
So the resulting intent of the patch isn't a performance gain but to
avoid exposing ourselves to the risk of finding another field like
.map_bh.b_state where we rely on zeroing but don't enforce it in the
code.
Signed-off-by: Zach Brown <zach.brown@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
const struct iovec *iov, loff_t offset, unsigned long nr_segs,
unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
struct dio *dio)
{
unsigned long user_addr;
unsigned long flags;
int seg;
ssize_t ret = 0;
ssize_t ret2;
size_t bytes;
dio->bio = NULL;
dio->inode = inode;
dio->rw = rw;
dio->blkbits = blkbits;
dio->blkfactor = inode->i_blkbits - blkbits;
dio->start_zero_done = 0;
dio->size = 0;
dio->block_in_file = offset >> blkbits;
dio->blocks_available = 0;
dio->cur_page = NULL;
dio->boundary = 0;
dio->reap_counter = 0;
dio->get_block = get_block;
dio->end_io = end_io;
dio->map_bh.b_private = NULL;
dio->map_bh.b_state = 0;
dio->final_block_in_bio = -1;
dio->next_block_for_io = -1;
dio->page_errors = 0;
dio->io_error = 0;
dio->result = 0;
dio->iocb = iocb;
dio->i_size = i_size_read(inode);
spin_lock_init(&dio->bio_lock);
dio->refcount = 1;
dio->bio_list = NULL;
dio->waiter = NULL;
/*
* In case of non-aligned buffers, we may need 2 more
* pages since we need to zero out first and last block.
*/
if (unlikely(dio->blkfactor))
dio->pages_in_io = 2;
else
dio->pages_in_io = 0;
for (seg = 0; seg < nr_segs; seg++) {
user_addr = (unsigned long)iov[seg].iov_base;
dio->pages_in_io +=
((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
- user_addr/PAGE_SIZE);
}
for (seg = 0; seg < nr_segs; seg++) {
user_addr = (unsigned long)iov[seg].iov_base;
dio->size += bytes = iov[seg].iov_len;
/* Index into the first page of the first block */
dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
dio->final_block_in_request = dio->block_in_file +
(bytes >> blkbits);
/* Page fetching state */
dio->head = 0;
dio->tail = 0;
dio->curr_page = 0;
dio->total_pages = 0;
if (user_addr & (PAGE_SIZE-1)) {
dio->total_pages++;
bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
}
dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
dio->curr_user_address = user_addr;
ret = do_direct_IO(dio);
dio->result += iov[seg].iov_len -
((dio->final_block_in_request - dio->block_in_file) <<
blkbits);
if (ret) {
dio_cleanup(dio);
break;
}
} /* end iovec loop */
if (ret == -ENOTBLK && (rw & WRITE)) {
/*
* The remaining part of the request will be
* be handled by buffered I/O when we return
*/
ret = 0;
}
/*
* There may be some unwritten disk at the end of a part-written
* fs-block-sized block. Go zero that now.
*/
dio_zero_block(dio, 1);
if (dio->cur_page) {
ret2 = dio_send_cur_page(dio);
if (ret == 0)
ret = ret2;
page_cache_release(dio->cur_page);
dio->cur_page = NULL;
}
if (dio->bio)
dio_bio_submit(dio);
/* All IO is now issued, send it on its way */
blk_run_address_space(inode->i_mapping);
/*
* It is possible that, we return short IO due to end of file.
* In that case, we need to release all the pages we got hold on.
*/
dio_cleanup(dio);
/*
* All block lookups have been performed. For READ requests
* we can let i_mutex go now that its achieved its purpose
* of protecting us from looking up uninitialized blocks.
*/
if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
mutex_unlock(&dio->inode->i_mutex);
/*
* The only time we want to leave bios in flight is when a successful
* partial aio read or full aio write have been setup. In that case
* bio completion will call aio_complete. The only time it's safe to
* call aio_complete is when we return -EIOCBQUEUED, so we key on that.
* This had *better* be the only place that raises -EIOCBQUEUED.
*/
BUG_ON(ret == -EIOCBQUEUED);
if (dio->is_async && ret == 0 && dio->result &&
((rw & READ) || (dio->result == dio->size)))
ret = -EIOCBQUEUED;
if (ret != -EIOCBQUEUED)
dio_await_completion(dio);
/*
* Sync will always be dropping the final ref and completing the
* operation. AIO can if it was a broken operation described above or
* in fact if all the bios race to complete before we get here. In
* that case dio_complete() translates the EIOCBQUEUED into the proper
* return code that the caller will hand to aio_complete().
*
* This is managed by the bio_lock instead of being an atomic_t so that
* completion paths can drop their ref and use the remaining count to
* decide to wake the submission path atomically.
*/
spin_lock_irqsave(&dio->bio_lock, flags);
ret2 = --dio->refcount;
spin_unlock_irqrestore(&dio->bio_lock, flags);
if (ret2 == 0) {
ret = dio_complete(dio, offset, ret);
kfree(dio);
} else
BUG_ON(ret != -EIOCBQUEUED);
return ret;
} | 1 | [] | linux-2.6 | 848c4dd5153c7a0de55470ce99a8e13a63b4703f | 75,191,065,739,547,030,000,000,000,000,000,000,000 | 170 | dio: zero struct dio with kzalloc instead of manually
This patch uses kzalloc to zero all of struct dio rather than manually
trying to track which fields we rely on being zero. It passed aio+dio
stress testing and some bug regression testing on ext3.
This patch was introduced by Linus in the conversation that lead up to
Badari's minimal fix to manually zero .map_bh.b_state in commit:
6a648fa72161d1f6468dabd96c5d3c0db04f598a
It makes the code a bit smaller. Maybe a couple fewer cachelines to
load, if we're lucky:
text data bss dec hex filename
3285925 568506 1304616 5159047 4eb887 vmlinux
3285797 568506 1304616 5158919 4eb807 vmlinux.patched
I was unable to measure a stable difference in the number of cpu cycles
spent in blockdev_direct_IO() when pushing aio+dio 256K reads at
~340MB/s.
So the resulting intent of the patch isn't a performance gain but to
avoid exposing ourselves to the risk of finding another field like
.map_bh.b_state where we rely on zeroing but don't enforce it in the
code.
Signed-off-by: Zach Brown <zach.brown@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
init_state(struct posix_acl_state *state, int cnt)
{
int alloc;
memset(state, 0, sizeof(struct posix_acl_state));
state->empty = 1;
/*
* In the worst case, each individual acl could be for a distinct
* named user or group, but we don't no which, so we allocate
* enough space for either:
*/
alloc = sizeof(struct posix_ace_state_array)
+ cnt*sizeof(struct posix_ace_state);
state->users = kzalloc(alloc, GFP_KERNEL);
if (!state->users)
return -ENOMEM;
state->groups = kzalloc(alloc, GFP_KERNEL);
if (!state->groups) {
kfree(state->users);
return -ENOMEM;
}
return 0;
} | 1 | [
"CWE-119"
] | linux-2.6 | 91b80969ba466ba4b915a4a1d03add8c297add3f | 335,186,061,217,322,500,000,000,000,000,000,000,000 | 23 | nfsd: fix buffer overrun decoding NFSv4 acl
The array we kmalloc() here is not large enough.
Thanks to Johann Dahm and David Richter for bug report and testing.
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Cc: David Richter <richterd@citi.umich.edu>
Tested-by: Johann Dahm <jdahm@umich.edu> |
static int jas_icctxtdesc_input(jas_iccattrval_t *attrval, jas_stream_t *in,
int cnt)
{
int n;
int c;
jas_icctxtdesc_t *txtdesc = &attrval->data.txtdesc;
txtdesc->ascdata = 0;
txtdesc->ucdata = 0;
if (jas_iccgetuint32(in, &txtdesc->asclen))
goto error;
if (!(txtdesc->ascdata = jas_malloc(txtdesc->asclen)))
goto error;
if (jas_stream_read(in, txtdesc->ascdata, txtdesc->asclen) !=
JAS_CAST(int, txtdesc->asclen))
goto error;
txtdesc->ascdata[txtdesc->asclen - 1] = '\0';
if (jas_iccgetuint32(in, &txtdesc->uclangcode) ||
jas_iccgetuint32(in, &txtdesc->uclen))
goto error;
if (!(txtdesc->ucdata = jas_malloc(txtdesc->uclen * 2)))
goto error;
if (jas_stream_read(in, txtdesc->ucdata, txtdesc->uclen * 2) !=
JAS_CAST(int, txtdesc->uclen * 2))
goto error;
if (jas_iccgetuint16(in, &txtdesc->sccode))
goto error;
if ((c = jas_stream_getc(in)) == EOF)
goto error;
txtdesc->maclen = c;
if (jas_stream_read(in, txtdesc->macdata, 67) != 67)
goto error;
txtdesc->asclen = strlen(txtdesc->ascdata) + 1;
#define WORKAROUND_BAD_PROFILES
#ifdef WORKAROUND_BAD_PROFILES
n = txtdesc->asclen + txtdesc->uclen * 2 + 15 + 67;
if (n > cnt) {
return -1;
}
if (n < cnt) {
if (jas_stream_gobble(in, cnt - n) != cnt - n)
goto error;
}
#else
if (txtdesc->asclen + txtdesc->uclen * 2 + 15 + 67 != cnt)
return -1;
#endif
return 0;
error:
jas_icctxtdesc_destroy(attrval);
return -1;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 218,594,749,881,907,920,000,000,000,000,000,000,000 | 51 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
void jpc_qmfb_split_row(jpc_fix_t *a, int numcols, int parity)
{
int bufsize = JPC_CEILDIVPOW2(numcols, 1);
jpc_fix_t splitbuf[QMFB_SPLITBUFSIZE];
jpc_fix_t *buf = splitbuf;
register jpc_fix_t *srcptr;
register jpc_fix_t *dstptr;
register int n;
register int m;
int hstartcol;
/* Get a buffer. */
if (bufsize > QMFB_SPLITBUFSIZE) {
if (!(buf = jas_malloc(bufsize * sizeof(jpc_fix_t)))) {
/* We have no choice but to commit suicide in this case. */
abort();
}
}
if (numcols >= 2) {
hstartcol = (numcols + 1 - parity) >> 1;
m = (parity) ? hstartcol : (numcols - hstartcol);
/* Save the samples destined for the highpass channel. */
n = m;
dstptr = buf;
srcptr = &a[1 - parity];
while (n-- > 0) {
*dstptr = *srcptr;
++dstptr;
srcptr += 2;
}
/* Copy the appropriate samples into the lowpass channel. */
dstptr = &a[1 - parity];
srcptr = &a[2 - parity];
n = numcols - m - (!parity);
while (n-- > 0) {
*dstptr = *srcptr;
++dstptr;
srcptr += 2;
}
/* Copy the saved samples into the highpass channel. */
dstptr = &a[hstartcol];
srcptr = buf;
n = m;
while (n-- > 0) {
*dstptr = *srcptr;
++dstptr;
++srcptr;
}
}
/* If the split buffer was allocated on the heap, free this memory. */
if (buf != splitbuf) {
jas_free(buf);
}
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 124,557,072,342,642,550,000,000,000,000,000,000,000 | 58 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jas_image_growcmpts(jas_image_t *image, int maxcmpts)
{
jas_image_cmpt_t **newcmpts;
int cmptno;
newcmpts = (!image->cmpts_) ? jas_malloc(maxcmpts * sizeof(jas_image_cmpt_t *)) :
jas_realloc(image->cmpts_, maxcmpts * sizeof(jas_image_cmpt_t *));
if (!newcmpts) {
return -1;
}
image->cmpts_ = newcmpts;
image->maxcmpts_ = maxcmpts;
for (cmptno = image->numcmpts_; cmptno < image->maxcmpts_; ++cmptno) {
image->cmpts_[cmptno] = 0;
}
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 301,459,550,013,057,560,000,000,000,000,000,000,000 | 17 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jas_iccprof_gettagtab(jas_stream_t *in, jas_icctagtab_t *tagtab)
{
int i;
jas_icctagtabent_t *tagtabent;
if (tagtab->ents) {
jas_free(tagtab->ents);
tagtab->ents = 0;
}
if (jas_iccgetuint32(in, &tagtab->numents))
goto error;
if (!(tagtab->ents = jas_malloc(tagtab->numents *
sizeof(jas_icctagtabent_t))))
goto error;
tagtabent = tagtab->ents;
for (i = 0; i < JAS_CAST(long, tagtab->numents); ++i) {
if (jas_iccgetuint32(in, &tagtabent->tag) ||
jas_iccgetuint32(in, &tagtabent->off) ||
jas_iccgetuint32(in, &tagtabent->len))
goto error;
++tagtabent;
}
return 0;
error:
if (tagtab->ents) {
jas_free(tagtab->ents);
tagtab->ents = 0;
}
return -1;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 62,203,188,007,078,680,000,000,000,000,000,000,000 | 30 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jp2_cmap_getdata(jp2_box_t *box, jas_stream_t *in)
{
jp2_cmap_t *cmap = &box->data.cmap;
jp2_cmapent_t *ent;
unsigned int i;
cmap->numchans = (box->datalen) / 4;
if (!(cmap->ents = jas_malloc(cmap->numchans * sizeof(jp2_cmapent_t)))) {
return -1;
}
for (i = 0; i < cmap->numchans; ++i) {
ent = &cmap->ents[i];
if (jp2_getuint16(in, &ent->cmptno) ||
jp2_getuint8(in, &ent->map) ||
jp2_getuint8(in, &ent->pcol)) {
return -1;
}
}
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 129,392,917,367,985,300,000,000,000,000,000,000,000 | 21 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
jpc_mqdec_t *jpc_mqdec_create(int maxctxs, jas_stream_t *in)
{
jpc_mqdec_t *mqdec;
/* There must be at least one context. */
assert(maxctxs > 0);
/* Allocate memory for the MQ decoder. */
if (!(mqdec = jas_malloc(sizeof(jpc_mqdec_t)))) {
goto error;
}
mqdec->in = in;
mqdec->maxctxs = maxctxs;
/* Allocate memory for the per-context state information. */
if (!(mqdec->ctxs = jas_malloc(mqdec->maxctxs * sizeof(jpc_mqstate_t *)))) {
goto error;
}
/* Set the current context to the first context. */
mqdec->curctx = mqdec->ctxs;
/* If an input stream has been associated with the MQ decoder,
initialize the decoder state from the stream. */
if (mqdec->in) {
jpc_mqdec_init(mqdec);
}
/* Initialize the per-context state information. */
jpc_mqdec_setctxs(mqdec, 0, 0);
return mqdec;
error:
/* Oops... Something has gone wrong. */
if (mqdec) {
jpc_mqdec_destroy(mqdec);
}
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 113,827,245,081,707,280,000,000,000,000,000,000,000 | 37 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static bmp_info_t *bmp_getinfo(jas_stream_t *in)
{
bmp_info_t *info;
int i;
bmp_palent_t *palent;
if (!(info = bmp_info_create())) {
return 0;
}
if (bmp_getint32(in, &info->len) || info->len != 40 ||
bmp_getint32(in, &info->width) || bmp_getint32(in, &info->height) ||
bmp_getint16(in, &info->numplanes) ||
bmp_getint16(in, &info->depth) || bmp_getint32(in, &info->enctype) ||
bmp_getint32(in, &info->siz) ||
bmp_getint32(in, &info->hres) || bmp_getint32(in, &info->vres) ||
bmp_getint32(in, &info->numcolors) ||
bmp_getint32(in, &info->mincolors)) {
bmp_info_destroy(info);
return 0;
}
if (info->height < 0) {
info->topdown = 1;
info->height = -info->height;
} else {
info->topdown = 0;
}
if (info->width <= 0 || info->height <= 0 || info->numplanes <= 0 ||
info->depth <= 0 || info->numcolors < 0 || info->mincolors < 0) {
bmp_info_destroy(info);
return 0;
}
if (info->enctype != BMP_ENC_RGB) {
jas_eprintf("unsupported BMP encoding\n");
bmp_info_destroy(info);
return 0;
}
if (info->numcolors > 0) {
if (!(info->palents = jas_malloc(info->numcolors *
sizeof(bmp_palent_t)))) {
bmp_info_destroy(info);
return 0;
}
} else {
info->palents = 0;
}
for (i = 0; i < info->numcolors; ++i) {
palent = &info->palents[i];
if ((palent->blu = jas_stream_getc(in)) == EOF ||
(palent->grn = jas_stream_getc(in)) == EOF ||
(palent->red = jas_stream_getc(in)) == EOF ||
(palent->res = jas_stream_getc(in)) == EOF) {
bmp_info_destroy(info);
return 0;
}
}
return info;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 252,652,376,149,407,600,000,000,000,000,000,000,000 | 64 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
void *jas_realloc(void *ptr, size_t size)
{
return realloc(ptr, size);
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 231,449,319,745,387,340,000,000,000,000,000,000,000 | 4 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jas_icclut8_input(jas_iccattrval_t *attrval, jas_stream_t *in,
int cnt)
{
int i;
int j;
int clutsize;
jas_icclut8_t *lut8 = &attrval->data.lut8;
lut8->clut = 0;
lut8->intabs = 0;
lut8->intabsbuf = 0;
lut8->outtabs = 0;
lut8->outtabsbuf = 0;
if (jas_iccgetuint8(in, &lut8->numinchans) ||
jas_iccgetuint8(in, &lut8->numoutchans) ||
jas_iccgetuint8(in, &lut8->clutlen) ||
jas_stream_getc(in) == EOF)
goto error;
for (i = 0; i < 3; ++i) {
for (j = 0; j < 3; ++j) {
if (jas_iccgetsint32(in, &lut8->e[i][j]))
goto error;
}
}
if (jas_iccgetuint16(in, &lut8->numintabents) ||
jas_iccgetuint16(in, &lut8->numouttabents))
goto error;
clutsize = jas_iccpowi(lut8->clutlen, lut8->numinchans) * lut8->numoutchans;
if (!(lut8->clut = jas_malloc(clutsize * sizeof(jas_iccuint8_t))) ||
!(lut8->intabsbuf = jas_malloc(lut8->numinchans *
lut8->numintabents * sizeof(jas_iccuint8_t))) ||
!(lut8->intabs = jas_malloc(lut8->numinchans *
sizeof(jas_iccuint8_t *))))
goto error;
for (i = 0; i < lut8->numinchans; ++i)
lut8->intabs[i] = &lut8->intabsbuf[i * lut8->numintabents];
if (!(lut8->outtabsbuf = jas_malloc(lut8->numoutchans *
lut8->numouttabents * sizeof(jas_iccuint8_t))) ||
!(lut8->outtabs = jas_malloc(lut8->numoutchans *
sizeof(jas_iccuint8_t *))))
goto error;
for (i = 0; i < lut8->numoutchans; ++i)
lut8->outtabs[i] = &lut8->outtabsbuf[i * lut8->numouttabents];
for (i = 0; i < lut8->numinchans; ++i) {
for (j = 0; j < JAS_CAST(int, lut8->numintabents); ++j) {
if (jas_iccgetuint8(in, &lut8->intabs[i][j]))
goto error;
}
}
for (i = 0; i < lut8->numoutchans; ++i) {
for (j = 0; j < JAS_CAST(int, lut8->numouttabents); ++j) {
if (jas_iccgetuint8(in, &lut8->outtabs[i][j]))
goto error;
}
}
for (i = 0; i < clutsize; ++i) {
if (jas_iccgetuint8(in, &lut8->clut[i]))
goto error;
}
if (JAS_CAST(int, 44 + lut8->numinchans * lut8->numintabents +
lut8->numoutchans * lut8->numouttabents +
jas_iccpowi(lut8->clutlen, lut8->numinchans) * lut8->numoutchans) !=
cnt)
goto error;
return 0;
error:
jas_icclut8_destroy(attrval);
return -1;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 188,364,245,888,660,340,000,000,000,000,000,000,000 | 68 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jpc_enc_encodemainhdr(jpc_enc_t *enc)
{
jpc_siz_t *siz;
jpc_cod_t *cod;
jpc_qcd_t *qcd;
int i;
long startoff;
long mainhdrlen;
jpc_enc_cp_t *cp;
jpc_qcc_t *qcc;
jpc_enc_tccp_t *tccp;
uint_fast16_t cmptno;
jpc_tsfb_band_t bandinfos[JPC_MAXBANDS];
jpc_fix_t mctsynweight;
jpc_enc_tcp_t *tcp;
jpc_tsfb_t *tsfb;
jpc_tsfb_band_t *bandinfo;
uint_fast16_t numbands;
uint_fast16_t bandno;
uint_fast16_t rlvlno;
uint_fast16_t analgain;
jpc_fix_t absstepsize;
char buf[1024];
jpc_com_t *com;
cp = enc->cp;
startoff = jas_stream_getrwcount(enc->out);
/* Write SOC marker segment. */
if (!(enc->mrk = jpc_ms_create(JPC_MS_SOC))) {
return -1;
}
if (jpc_putms(enc->out, enc->cstate, enc->mrk)) {
jas_eprintf("cannot write SOC marker\n");
return -1;
}
jpc_ms_destroy(enc->mrk);
enc->mrk = 0;
/* Write SIZ marker segment. */
if (!(enc->mrk = jpc_ms_create(JPC_MS_SIZ))) {
return -1;
}
siz = &enc->mrk->parms.siz;
siz->caps = 0;
siz->xoff = cp->imgareatlx;
siz->yoff = cp->imgareatly;
siz->width = cp->refgrdwidth;
siz->height = cp->refgrdheight;
siz->tilexoff = cp->tilegrdoffx;
siz->tileyoff = cp->tilegrdoffy;
siz->tilewidth = cp->tilewidth;
siz->tileheight = cp->tileheight;
siz->numcomps = cp->numcmpts;
siz->comps = jas_malloc(siz->numcomps * sizeof(jpc_sizcomp_t));
assert(siz->comps);
for (i = 0; i < JAS_CAST(int, cp->numcmpts); ++i) {
siz->comps[i].prec = cp->ccps[i].prec;
siz->comps[i].sgnd = cp->ccps[i].sgnd;
siz->comps[i].hsamp = cp->ccps[i].sampgrdstepx;
siz->comps[i].vsamp = cp->ccps[i].sampgrdstepy;
}
if (jpc_putms(enc->out, enc->cstate, enc->mrk)) {
jas_eprintf("cannot write SIZ marker\n");
return -1;
}
jpc_ms_destroy(enc->mrk);
enc->mrk = 0;
if (!(enc->mrk = jpc_ms_create(JPC_MS_COM))) {
return -1;
}
sprintf(buf, "Creator: JasPer Version %s", jas_getversion());
com = &enc->mrk->parms.com;
com->len = strlen(buf);
com->regid = JPC_COM_LATIN;
if (!(com->data = JAS_CAST(uchar *, jas_strdup(buf)))) {
abort();
}
if (jpc_putms(enc->out, enc->cstate, enc->mrk)) {
jas_eprintf("cannot write COM marker\n");
return -1;
}
jpc_ms_destroy(enc->mrk);
enc->mrk = 0;
#if 0
if (!(enc->mrk = jpc_ms_create(JPC_MS_CRG))) {
return -1;
}
crg = &enc->mrk->parms.crg;
crg->comps = jas_malloc(crg->numcomps * sizeof(jpc_crgcomp_t));
if (jpc_putms(enc->out, enc->cstate, enc->mrk)) {
jas_eprintf("cannot write CRG marker\n");
return -1;
}
jpc_ms_destroy(enc->mrk);
enc->mrk = 0;
#endif
tcp = &cp->tcp;
tccp = &cp->tccp;
for (cmptno = 0; cmptno < cp->numcmpts; ++cmptno) {
tsfb = jpc_cod_gettsfb(tccp->qmfbid, tccp->maxrlvls - 1);
jpc_tsfb_getbands(tsfb, 0, 0, 1 << tccp->maxrlvls, 1 << tccp->maxrlvls,
bandinfos);
jpc_tsfb_destroy(tsfb);
mctsynweight = jpc_mct_getsynweight(tcp->mctid, cmptno);
numbands = 3 * tccp->maxrlvls - 2;
for (bandno = 0, bandinfo = bandinfos; bandno < numbands;
++bandno, ++bandinfo) {
rlvlno = (bandno) ? ((bandno - 1) / 3 + 1) : 0;
analgain = JPC_NOMINALGAIN(tccp->qmfbid, tccp->maxrlvls,
rlvlno, bandinfo->orient);
if (!tcp->intmode) {
absstepsize = jpc_fix_div(jpc_inttofix(1 <<
(analgain + 1)), bandinfo->synenergywt);
} else {
absstepsize = jpc_inttofix(1);
}
cp->ccps[cmptno].stepsizes[bandno] =
jpc_abstorelstepsize(absstepsize,
cp->ccps[cmptno].prec + analgain);
}
cp->ccps[cmptno].numstepsizes = numbands;
}
if (!(enc->mrk = jpc_ms_create(JPC_MS_COD))) {
return -1;
}
cod = &enc->mrk->parms.cod;
cod->csty = cp->tccp.csty | cp->tcp.csty;
cod->compparms.csty = cp->tccp.csty | cp->tcp.csty;
cod->compparms.numdlvls = cp->tccp.maxrlvls - 1;
cod->compparms.numrlvls = cp->tccp.maxrlvls;
cod->prg = cp->tcp.prg;
cod->numlyrs = cp->tcp.numlyrs;
cod->compparms.cblkwidthval = JPC_COX_CBLKSIZEEXPN(cp->tccp.cblkwidthexpn);
cod->compparms.cblkheightval = JPC_COX_CBLKSIZEEXPN(cp->tccp.cblkheightexpn);
cod->compparms.cblksty = cp->tccp.cblksty;
cod->compparms.qmfbid = cp->tccp.qmfbid;
cod->mctrans = (cp->tcp.mctid != JPC_MCT_NONE);
if (tccp->csty & JPC_COX_PRT) {
for (rlvlno = 0; rlvlno < tccp->maxrlvls; ++rlvlno) {
cod->compparms.rlvls[rlvlno].parwidthval = tccp->prcwidthexpns[rlvlno];
cod->compparms.rlvls[rlvlno].parheightval = tccp->prcheightexpns[rlvlno];
}
}
if (jpc_putms(enc->out, enc->cstate, enc->mrk)) {
jas_eprintf("cannot write COD marker\n");
return -1;
}
jpc_ms_destroy(enc->mrk);
enc->mrk = 0;
if (!(enc->mrk = jpc_ms_create(JPC_MS_QCD))) {
return -1;
}
qcd = &enc->mrk->parms.qcd;
qcd->compparms.qntsty = (tccp->qmfbid == JPC_COX_INS) ?
JPC_QCX_SEQNT : JPC_QCX_NOQNT;
qcd->compparms.numstepsizes = cp->ccps[0].numstepsizes;
qcd->compparms.numguard = cp->tccp.numgbits;
qcd->compparms.stepsizes = cp->ccps[0].stepsizes;
if (jpc_putms(enc->out, enc->cstate, enc->mrk)) {
return -1;
}
/* We do not want the step size array to be freed! */
qcd->compparms.stepsizes = 0;
jpc_ms_destroy(enc->mrk);
enc->mrk = 0;
tccp = &cp->tccp;
for (cmptno = 1; cmptno < cp->numcmpts; ++cmptno) {
if (!(enc->mrk = jpc_ms_create(JPC_MS_QCC))) {
return -1;
}
qcc = &enc->mrk->parms.qcc;
qcc->compno = cmptno;
qcc->compparms.qntsty = (tccp->qmfbid == JPC_COX_INS) ?
JPC_QCX_SEQNT : JPC_QCX_NOQNT;
qcc->compparms.numstepsizes = cp->ccps[cmptno].numstepsizes;
qcc->compparms.numguard = cp->tccp.numgbits;
qcc->compparms.stepsizes = cp->ccps[cmptno].stepsizes;
if (jpc_putms(enc->out, enc->cstate, enc->mrk)) {
return -1;
}
/* We do not want the step size array to be freed! */
qcc->compparms.stepsizes = 0;
jpc_ms_destroy(enc->mrk);
enc->mrk = 0;
}
#define MAINTLRLEN 2
mainhdrlen = jas_stream_getrwcount(enc->out) - startoff;
enc->len += mainhdrlen;
if (enc->cp->totalsize != UINT_FAST32_MAX) {
uint_fast32_t overhead;
overhead = mainhdrlen + MAINTLRLEN;
enc->mainbodysize = (enc->cp->totalsize >= overhead) ?
(enc->cp->totalsize - overhead) : 0;
} else {
enc->mainbodysize = UINT_FAST32_MAX;
}
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 107,928,124,986,230,030,000,000,000,000,000,000,000 | 208 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
int jas_iccprof_save(jas_iccprof_t *prof, jas_stream_t *out)
{
long curoff;
long reloff;
long newoff;
int i;
int j;
jas_icctagtabent_t *tagtabent;
jas_icctagtabent_t *sharedtagtabent;
jas_icctagtabent_t *tmptagtabent;
jas_iccuint32_t attrname;
jas_iccattrval_t *attrval;
jas_icctagtab_t *tagtab;
tagtab = &prof->tagtab;
if (!(tagtab->ents = jas_malloc(prof->attrtab->numattrs *
sizeof(jas_icctagtabent_t))))
goto error;
tagtab->numents = prof->attrtab->numattrs;
curoff = JAS_ICC_HDRLEN + 4 + 12 * tagtab->numents;
for (i = 0; i < JAS_CAST(int, tagtab->numents); ++i) {
tagtabent = &tagtab->ents[i];
if (jas_iccattrtab_get(prof->attrtab, i, &attrname, &attrval))
goto error;
assert(attrval->ops->output);
tagtabent->tag = attrname;
tagtabent->data = &attrval->data;
sharedtagtabent = 0;
for (j = 0; j < i; ++j) {
tmptagtabent = &tagtab->ents[j];
if (tagtabent->data == tmptagtabent->data) {
sharedtagtabent = tmptagtabent;
break;
}
}
if (sharedtagtabent) {
tagtabent->off = sharedtagtabent->off;
tagtabent->len = sharedtagtabent->len;
tagtabent->first = sharedtagtabent;
} else {
tagtabent->off = curoff;
tagtabent->len = (*attrval->ops->getsize)(attrval) + 8;
tagtabent->first = 0;
if (i < JAS_CAST(int, tagtab->numents - 1)) {
curoff = jas_iccpadtomult(curoff + tagtabent->len, 4);
} else {
curoff += tagtabent->len;
}
}
jas_iccattrval_destroy(attrval);
}
prof->hdr.size = curoff;
if (jas_iccprof_writehdr(out, &prof->hdr))
goto error;
if (jas_iccprof_puttagtab(out, &prof->tagtab))
goto error;
curoff = JAS_ICC_HDRLEN + 4 + 12 * tagtab->numents;
for (i = 0; i < JAS_CAST(int, tagtab->numents);) {
tagtabent = &tagtab->ents[i];
assert(curoff == JAS_CAST(long, tagtabent->off));
if (jas_iccattrtab_get(prof->attrtab, i, &attrname, &attrval))
goto error;
if (jas_iccputuint32(out, attrval->type) || jas_stream_pad(out,
4, 0) != 4)
goto error;
if ((*attrval->ops->output)(attrval, out))
goto error;
jas_iccattrval_destroy(attrval);
curoff += tagtabent->len;
++i;
while (i < JAS_CAST(int, tagtab->numents) &&
tagtab->ents[i].first)
++i;
newoff = (i < JAS_CAST(int, tagtab->numents)) ?
tagtab->ents[i].off : prof->hdr.size;
reloff = newoff - curoff;
assert(reloff >= 0);
if (reloff > 0) {
if (jas_stream_pad(out, reloff, 0) != reloff)
goto error;
curoff += reloff;
}
}
return 0;
error:
/* XXX - need to free some resources here */
return -1;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 117,695,959,715,689,280,000,000,000,000,000,000,000 | 88 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
void jpc_qmfb_split_colgrp(jpc_fix_t *a, int numrows, int stride,
int parity)
{
int bufsize = JPC_CEILDIVPOW2(numrows, 1);
jpc_fix_t splitbuf[QMFB_SPLITBUFSIZE * JPC_QMFB_COLGRPSIZE];
jpc_fix_t *buf = splitbuf;
jpc_fix_t *srcptr;
jpc_fix_t *dstptr;
register jpc_fix_t *srcptr2;
register jpc_fix_t *dstptr2;
register int n;
register int i;
int m;
int hstartcol;
/* Get a buffer. */
if (bufsize > QMFB_SPLITBUFSIZE) {
if (!(buf = jas_malloc(bufsize * sizeof(jpc_fix_t)))) {
/* We have no choice but to commit suicide in this case. */
abort();
}
}
if (numrows >= 2) {
hstartcol = (numrows + 1 - parity) >> 1;
m = (parity) ? hstartcol : (numrows - hstartcol);
/* Save the samples destined for the highpass channel. */
n = m;
dstptr = buf;
srcptr = &a[(1 - parity) * stride];
while (n-- > 0) {
dstptr2 = dstptr;
srcptr2 = srcptr;
for (i = 0; i < JPC_QMFB_COLGRPSIZE; ++i) {
*dstptr2 = *srcptr2;
++dstptr2;
++srcptr2;
}
dstptr += JPC_QMFB_COLGRPSIZE;
srcptr += stride << 1;
}
/* Copy the appropriate samples into the lowpass channel. */
dstptr = &a[(1 - parity) * stride];
srcptr = &a[(2 - parity) * stride];
n = numrows - m - (!parity);
while (n-- > 0) {
dstptr2 = dstptr;
srcptr2 = srcptr;
for (i = 0; i < JPC_QMFB_COLGRPSIZE; ++i) {
*dstptr2 = *srcptr2;
++dstptr2;
++srcptr2;
}
dstptr += stride;
srcptr += stride << 1;
}
/* Copy the saved samples into the highpass channel. */
dstptr = &a[hstartcol * stride];
srcptr = buf;
n = m;
while (n-- > 0) {
dstptr2 = dstptr;
srcptr2 = srcptr;
for (i = 0; i < JPC_QMFB_COLGRPSIZE; ++i) {
*dstptr2 = *srcptr2;
++dstptr2;
++srcptr2;
}
dstptr += stride;
srcptr += JPC_QMFB_COLGRPSIZE;
}
}
/* If the split buffer was allocated on the heap, free this memory. */
if (buf != splitbuf) {
jas_free(buf);
}
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 227,178,466,579,110,170,000,000,000,000,000,000,000 | 80 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jas_cmshapmatlut_set(jas_cmshapmatlut_t *lut, jas_icccurv_t *curv)
{
jas_cmreal_t gamma;
int i;
gamma = 0;
jas_cmshapmatlut_cleanup(lut);
if (curv->numents == 0) {
lut->size = 2;
if (!(lut->data = jas_malloc(lut->size * sizeof(jas_cmreal_t))))
goto error;
lut->data[0] = 0.0;
lut->data[1] = 1.0;
} else if (curv->numents == 1) {
lut->size = 256;
if (!(lut->data = jas_malloc(lut->size * sizeof(jas_cmreal_t))))
goto error;
gamma = curv->ents[0] / 256.0;
for (i = 0; i < lut->size; ++i) {
lut->data[i] = gammafn(i / (double) (lut->size - 1), gamma);
}
} else {
lut->size = curv->numents;
if (!(lut->data = jas_malloc(lut->size * sizeof(jas_cmreal_t))))
goto error;
for (i = 0; i < lut->size; ++i) {
lut->data[i] = curv->ents[i] / 65535.0;
}
}
return 0;
error:
return -1;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 214,971,702,359,969,880,000,000,000,000,000,000,000 | 32 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int mem_resize(jas_stream_memobj_t *m, int bufsize)
{
unsigned char *buf;
assert(m->buf_);
if (!(buf = jas_realloc(m->buf_, bufsize * sizeof(unsigned char)))) {
return -1;
}
m->buf_ = buf;
m->bufsize_ = bufsize;
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 203,493,757,926,343,200,000,000,000,000,000,000,000 | 12 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jp2_colr_getdata(jp2_box_t *box, jas_stream_t *in)
{
jp2_colr_t *colr = &box->data.colr;
colr->csid = 0;
colr->iccp = 0;
colr->iccplen = 0;
if (jp2_getuint8(in, &colr->method) || jp2_getuint8(in, &colr->pri) ||
jp2_getuint8(in, &colr->approx)) {
return -1;
}
switch (colr->method) {
case JP2_COLR_ENUM:
if (jp2_getuint32(in, &colr->csid)) {
return -1;
}
break;
case JP2_COLR_ICC:
colr->iccplen = box->datalen - 3;
if (!(colr->iccp = jas_malloc(colr->iccplen * sizeof(uint_fast8_t)))) {
return -1;
}
if (jas_stream_read(in, colr->iccp, colr->iccplen) != colr->iccplen) {
return -1;
}
break;
}
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 10,507,462,339,931,509,000,000,000,000,000,000,000 | 29 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
jpc_mqenc_t *jpc_mqenc_create(int maxctxs, jas_stream_t *out)
{
jpc_mqenc_t *mqenc;
/* Allocate memory for the MQ encoder. */
if (!(mqenc = jas_malloc(sizeof(jpc_mqenc_t)))) {
goto error;
}
mqenc->out = out;
mqenc->maxctxs = maxctxs;
/* Allocate memory for the per-context state information. */
if (!(mqenc->ctxs = jas_malloc(mqenc->maxctxs * sizeof(jpc_mqstate_t *)))) {
goto error;
}
/* Set the current context to the first one. */
mqenc->curctx = mqenc->ctxs;
jpc_mqenc_init(mqenc);
/* Initialize the per-context state information to something sane. */
jpc_mqenc_setctxs(mqenc, 0, 0);
return mqenc;
error:
if (mqenc) {
jpc_mqenc_destroy(mqenc);
}
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 189,704,110,536,595,960,000,000,000,000,000,000,000 | 32 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static jpc_enc_rlvl_t *rlvl_create(jpc_enc_rlvl_t *rlvl, jpc_enc_cp_t *cp,
jpc_enc_tcmpt_t *tcmpt, jpc_tsfb_band_t *bandinfos)
{
uint_fast16_t rlvlno;
uint_fast32_t tlprctlx;
uint_fast32_t tlprctly;
uint_fast32_t brprcbrx;
uint_fast32_t brprcbry;
uint_fast16_t bandno;
jpc_enc_band_t *band;
/* Deduce the resolution level. */
rlvlno = rlvl - tcmpt->rlvls;
/* Initialize members required for error recovery. */
rlvl->bands = 0;
rlvl->tcmpt = tcmpt;
/* Compute the coordinates of the top-left and bottom-right
corners of the tile-component at this resolution. */
rlvl->tlx = JPC_CEILDIVPOW2(jas_seq2d_xstart(tcmpt->data), tcmpt->numrlvls -
1 - rlvlno);
rlvl->tly = JPC_CEILDIVPOW2(jas_seq2d_ystart(tcmpt->data), tcmpt->numrlvls -
1 - rlvlno);
rlvl->brx = JPC_CEILDIVPOW2(jas_seq2d_xend(tcmpt->data), tcmpt->numrlvls -
1 - rlvlno);
rlvl->bry = JPC_CEILDIVPOW2(jas_seq2d_yend(tcmpt->data), tcmpt->numrlvls -
1 - rlvlno);
if (rlvl->tlx >= rlvl->brx || rlvl->tly >= rlvl->bry) {
rlvl->numhprcs = 0;
rlvl->numvprcs = 0;
rlvl->numprcs = 0;
return rlvl;
}
rlvl->numbands = (!rlvlno) ? 1 : 3;
rlvl->prcwidthexpn = cp->tccp.prcwidthexpns[rlvlno];
rlvl->prcheightexpn = cp->tccp.prcheightexpns[rlvlno];
if (!rlvlno) {
rlvl->cbgwidthexpn = rlvl->prcwidthexpn;
rlvl->cbgheightexpn = rlvl->prcheightexpn;
} else {
rlvl->cbgwidthexpn = rlvl->prcwidthexpn - 1;
rlvl->cbgheightexpn = rlvl->prcheightexpn - 1;
}
rlvl->cblkwidthexpn = JAS_MIN(cp->tccp.cblkwidthexpn, rlvl->cbgwidthexpn);
rlvl->cblkheightexpn = JAS_MIN(cp->tccp.cblkheightexpn, rlvl->cbgheightexpn);
/* Compute the number of precincts. */
tlprctlx = JPC_FLOORTOMULTPOW2(rlvl->tlx, rlvl->prcwidthexpn);
tlprctly = JPC_FLOORTOMULTPOW2(rlvl->tly, rlvl->prcheightexpn);
brprcbrx = JPC_CEILTOMULTPOW2(rlvl->brx, rlvl->prcwidthexpn);
brprcbry = JPC_CEILTOMULTPOW2(rlvl->bry, rlvl->prcheightexpn);
rlvl->numhprcs = JPC_FLOORDIVPOW2(brprcbrx - tlprctlx, rlvl->prcwidthexpn);
rlvl->numvprcs = JPC_FLOORDIVPOW2(brprcbry - tlprctly, rlvl->prcheightexpn);
rlvl->numprcs = rlvl->numhprcs * rlvl->numvprcs;
if (!(rlvl->bands = jas_malloc(rlvl->numbands * sizeof(jpc_enc_band_t)))) {
goto error;
}
for (bandno = 0, band = rlvl->bands; bandno < rlvl->numbands;
++bandno, ++band) {
band->prcs = 0;
band->data = 0;
band->rlvl = rlvl;
}
for (bandno = 0, band = rlvl->bands; bandno < rlvl->numbands;
++bandno, ++band) {
if (!band_create(band, cp, rlvl, bandinfos)) {
goto error;
}
}
return rlvl;
error:
rlvl_destroy(rlvl);
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 38,196,079,346,687,973,000,000,000,000,000,000,000 | 80 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
void *jas_malloc(size_t size)
{
#if defined(MEMALLOC_ALIGN2)
void *ptr;
abort();
if (posix_memalign(&ptr, MEMALLOC_ALIGNMENT, size)) {
return 0;
}
return ptr;
#endif
return malloc(size);
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 315,102,395,686,225,260,000,000,000,000,000,000,000 | 12 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
jpc_pi_t *jpc_enc_pi_create(jpc_enc_cp_t *cp, jpc_enc_tile_t *tile)
{
jpc_pi_t *pi;
int compno;
jpc_picomp_t *picomp;
jpc_pirlvl_t *pirlvl;
jpc_enc_tcmpt_t *tcomp;
int rlvlno;
jpc_enc_rlvl_t *rlvl;
int prcno;
int *prclyrno;
if (!(pi = jpc_pi_create0())) {
return 0;
}
pi->pktno = -1;
pi->numcomps = cp->numcmpts;
if (!(pi->picomps = jas_malloc(pi->numcomps * sizeof(jpc_picomp_t)))) {
jpc_pi_destroy(pi);
return 0;
}
for (compno = 0, picomp = pi->picomps; compno < pi->numcomps; ++compno,
++picomp) {
picomp->pirlvls = 0;
}
for (compno = 0, tcomp = tile->tcmpts, picomp = pi->picomps;
compno < pi->numcomps; ++compno, ++tcomp, ++picomp) {
picomp->numrlvls = tcomp->numrlvls;
if (!(picomp->pirlvls = jas_malloc(picomp->numrlvls *
sizeof(jpc_pirlvl_t)))) {
jpc_pi_destroy(pi);
return 0;
}
for (rlvlno = 0, pirlvl = picomp->pirlvls; rlvlno <
picomp->numrlvls; ++rlvlno, ++pirlvl) {
pirlvl->prclyrnos = 0;
}
for (rlvlno = 0, pirlvl = picomp->pirlvls, rlvl = tcomp->rlvls;
rlvlno < picomp->numrlvls; ++rlvlno, ++pirlvl, ++rlvl) {
/* XXX sizeof(long) should be sizeof different type */
pirlvl->numprcs = rlvl->numprcs;
if (rlvl->numprcs) {
if (!(pirlvl->prclyrnos = jas_malloc(pirlvl->numprcs *
sizeof(long)))) {
jpc_pi_destroy(pi);
return 0;
}
} else {
pirlvl->prclyrnos = 0;
}
}
}
pi->maxrlvls = 0;
for (compno = 0, tcomp = tile->tcmpts, picomp = pi->picomps;
compno < pi->numcomps; ++compno, ++tcomp, ++picomp) {
picomp->hsamp = cp->ccps[compno].sampgrdstepx;
picomp->vsamp = cp->ccps[compno].sampgrdstepy;
for (rlvlno = 0, pirlvl = picomp->pirlvls, rlvl = tcomp->rlvls;
rlvlno < picomp->numrlvls; ++rlvlno, ++pirlvl, ++rlvl) {
pirlvl->prcwidthexpn = rlvl->prcwidthexpn;
pirlvl->prcheightexpn = rlvl->prcheightexpn;
for (prcno = 0, prclyrno = pirlvl->prclyrnos;
prcno < pirlvl->numprcs; ++prcno, ++prclyrno) {
*prclyrno = 0;
}
pirlvl->numhprcs = rlvl->numhprcs;
}
if (pi->maxrlvls < tcomp->numrlvls) {
pi->maxrlvls = tcomp->numrlvls;
}
}
pi->numlyrs = tile->numlyrs;
pi->xstart = tile->tlx;
pi->ystart = tile->tly;
pi->xend = tile->brx;
pi->yend = tile->bry;
pi->picomp = 0;
pi->pirlvl = 0;
pi->x = 0;
pi->y = 0;
pi->compno = 0;
pi->rlvlno = 0;
pi->prcno = 0;
pi->lyrno = 0;
pi->xstep = 0;
pi->ystep = 0;
pi->pchgno = -1;
pi->defaultpchg.prgord = tile->prg;
pi->defaultpchg.compnostart = 0;
pi->defaultpchg.compnoend = pi->numcomps;
pi->defaultpchg.rlvlnostart = 0;
pi->defaultpchg.rlvlnoend = pi->maxrlvls;
pi->defaultpchg.lyrnoend = pi->numlyrs;
pi->pchg = 0;
pi->valid = 0;
return pi;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 322,403,319,431,920,260,000,000,000,000,000,000,000 | 105 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
int jpc_atoaf(char *s, int *numvalues, double **values)
{
static char delim[] = ", \t\n";
char buf[4096];
int n;
double *vs;
char *cp;
strncpy(buf, s, sizeof(buf));
buf[sizeof(buf) - 1] = '\0';
n = 0;
if ((cp = strtok(buf, delim))) {
++n;
while ((cp = strtok(0, delim))) {
if (cp != '\0') {
++n;
}
}
}
if (n) {
if (!(vs = jas_malloc(n * sizeof(double)))) {
return -1;
}
strncpy(buf, s, sizeof(buf));
buf[sizeof(buf) - 1] = '\0';
n = 0;
if ((cp = strtok(buf, delim))) {
vs[n] = atof(cp);
++n;
while ((cp = strtok(0, delim))) {
if (cp != '\0') {
vs[n] = atof(cp);
++n;
}
}
}
} else {
vs = 0;
}
*numvalues = n;
*values = vs;
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 149,006,591,013,805,150,000,000,000,000,000,000,000 | 47 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
void jpc_qmfb_join_colres(jpc_fix_t *a, int numrows, int numcols,
int stride, int parity)
{
int bufsize = JPC_CEILDIVPOW2(numrows, 1);
jpc_fix_t joinbuf[QMFB_JOINBUFSIZE * JPC_QMFB_COLGRPSIZE];
jpc_fix_t *buf = joinbuf;
jpc_fix_t *srcptr;
jpc_fix_t *dstptr;
register jpc_fix_t *srcptr2;
register jpc_fix_t *dstptr2;
register int n;
register int i;
int hstartcol;
/* Allocate memory for the join buffer from the heap. */
if (bufsize > QMFB_JOINBUFSIZE) {
if (!(buf = jas_malloc(bufsize * numcols * sizeof(jpc_fix_t)))) {
/* We have no choice but to commit suicide. */
abort();
}
}
hstartcol = (numrows + 1 - parity) >> 1;
/* Save the samples from the lowpass channel. */
n = hstartcol;
srcptr = &a[0];
dstptr = buf;
while (n-- > 0) {
dstptr2 = dstptr;
srcptr2 = srcptr;
for (i = 0; i < numcols; ++i) {
*dstptr2 = *srcptr2;
++dstptr2;
++srcptr2;
}
srcptr += stride;
dstptr += numcols;
}
/* Copy the samples from the highpass channel into place. */
srcptr = &a[hstartcol * stride];
dstptr = &a[(1 - parity) * stride];
n = numrows - hstartcol;
while (n-- > 0) {
dstptr2 = dstptr;
srcptr2 = srcptr;
for (i = 0; i < numcols; ++i) {
*dstptr2 = *srcptr2;
++dstptr2;
++srcptr2;
}
dstptr += 2 * stride;
srcptr += stride;
}
/* Copy the samples from the lowpass channel into place. */
srcptr = buf;
dstptr = &a[parity * stride];
n = hstartcol;
while (n-- > 0) {
dstptr2 = dstptr;
srcptr2 = srcptr;
for (i = 0; i < numcols; ++i) {
*dstptr2 = *srcptr2;
++dstptr2;
++srcptr2;
}
dstptr += 2 * stride;
srcptr += numcols;
}
/* If the join buffer was allocated on the heap, free this memory. */
if (buf != joinbuf) {
jas_free(buf);
}
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 227,345,678,084,229,020,000,000,000,000,000,000,000 | 77 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int mif_hdr_growcmpts(mif_hdr_t *hdr, int maxcmpts)
{
int cmptno;
mif_cmpt_t **newcmpts;
assert(maxcmpts >= hdr->numcmpts);
newcmpts = (!hdr->cmpts) ? jas_malloc(maxcmpts * sizeof(mif_cmpt_t *)) :
jas_realloc(hdr->cmpts, maxcmpts * sizeof(mif_cmpt_t *));
if (!newcmpts) {
return -1;
}
hdr->maxcmpts = maxcmpts;
hdr->cmpts = newcmpts;
for (cmptno = hdr->numcmpts; cmptno < hdr->maxcmpts; ++cmptno) {
hdr->cmpts[cmptno] = 0;
}
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 81,346,589,365,334,110,000,000,000,000,000,000,000 | 17 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jas_icccurv_input(jas_iccattrval_t *attrval, jas_stream_t *in,
int cnt)
{
jas_icccurv_t *curv = &attrval->data.curv;
unsigned int i;
curv->numents = 0;
curv->ents = 0;
if (jas_iccgetuint32(in, &curv->numents))
goto error;
if (!(curv->ents = jas_malloc(curv->numents * sizeof(jas_iccuint16_t))))
goto error;
for (i = 0; i < curv->numents; ++i) {
if (jas_iccgetuint16(in, &curv->ents[i]))
goto error;
}
if (JAS_CAST(int, 4 + 2 * curv->numents) != cnt)
goto error;
return 0;
error:
jas_icccurv_destroy(attrval);
return -1;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 60,058,086,348,133,480,000,000,000,000,000,000,000 | 26 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jpc_dec_tileinit(jpc_dec_t *dec, jpc_dec_tile_t *tile)
{
jpc_dec_tcomp_t *tcomp;
int compno;
int rlvlno;
jpc_dec_rlvl_t *rlvl;
jpc_dec_band_t *band;
jpc_dec_prc_t *prc;
int bndno;
jpc_tsfb_band_t *bnd;
int bandno;
jpc_dec_ccp_t *ccp;
int prccnt;
jpc_dec_cblk_t *cblk;
int cblkcnt;
uint_fast32_t tlprcxstart;
uint_fast32_t tlprcystart;
uint_fast32_t brprcxend;
uint_fast32_t brprcyend;
uint_fast32_t tlcbgxstart;
uint_fast32_t tlcbgystart;
uint_fast32_t brcbgxend;
uint_fast32_t brcbgyend;
uint_fast32_t cbgxstart;
uint_fast32_t cbgystart;
uint_fast32_t cbgxend;
uint_fast32_t cbgyend;
uint_fast32_t tlcblkxstart;
uint_fast32_t tlcblkystart;
uint_fast32_t brcblkxend;
uint_fast32_t brcblkyend;
uint_fast32_t cblkxstart;
uint_fast32_t cblkystart;
uint_fast32_t cblkxend;
uint_fast32_t cblkyend;
uint_fast32_t tmpxstart;
uint_fast32_t tmpystart;
uint_fast32_t tmpxend;
uint_fast32_t tmpyend;
jpc_dec_cp_t *cp;
jpc_tsfb_band_t bnds[64];
jpc_pchg_t *pchg;
int pchgno;
jpc_dec_cmpt_t *cmpt;
cp = tile->cp;
tile->realmode = 0;
if (cp->mctid == JPC_MCT_ICT) {
tile->realmode = 1;
}
for (compno = 0, tcomp = tile->tcomps, cmpt = dec->cmpts; compno <
dec->numcomps; ++compno, ++tcomp, ++cmpt) {
ccp = &tile->cp->ccps[compno];
if (ccp->qmfbid == JPC_COX_INS) {
tile->realmode = 1;
}
tcomp->numrlvls = ccp->numrlvls;
if (!(tcomp->rlvls = jas_malloc(tcomp->numrlvls *
sizeof(jpc_dec_rlvl_t)))) {
return -1;
}
if (!(tcomp->data = jas_seq2d_create(JPC_CEILDIV(tile->xstart,
cmpt->hstep), JPC_CEILDIV(tile->ystart, cmpt->vstep),
JPC_CEILDIV(tile->xend, cmpt->hstep), JPC_CEILDIV(tile->yend,
cmpt->vstep)))) {
return -1;
}
if (!(tcomp->tsfb = jpc_cod_gettsfb(ccp->qmfbid,
tcomp->numrlvls - 1))) {
return -1;
}
{
jpc_tsfb_getbands(tcomp->tsfb, jas_seq2d_xstart(tcomp->data), jas_seq2d_ystart(tcomp->data), jas_seq2d_xend(tcomp->data), jas_seq2d_yend(tcomp->data), bnds);
}
for (rlvlno = 0, rlvl = tcomp->rlvls; rlvlno < tcomp->numrlvls;
++rlvlno, ++rlvl) {
rlvl->bands = 0;
rlvl->xstart = JPC_CEILDIVPOW2(tcomp->xstart,
tcomp->numrlvls - 1 - rlvlno);
rlvl->ystart = JPC_CEILDIVPOW2(tcomp->ystart,
tcomp->numrlvls - 1 - rlvlno);
rlvl->xend = JPC_CEILDIVPOW2(tcomp->xend,
tcomp->numrlvls - 1 - rlvlno);
rlvl->yend = JPC_CEILDIVPOW2(tcomp->yend,
tcomp->numrlvls - 1 - rlvlno);
rlvl->prcwidthexpn = ccp->prcwidthexpns[rlvlno];
rlvl->prcheightexpn = ccp->prcheightexpns[rlvlno];
tlprcxstart = JPC_FLOORDIVPOW2(rlvl->xstart,
rlvl->prcwidthexpn) << rlvl->prcwidthexpn;
tlprcystart = JPC_FLOORDIVPOW2(rlvl->ystart,
rlvl->prcheightexpn) << rlvl->prcheightexpn;
brprcxend = JPC_CEILDIVPOW2(rlvl->xend,
rlvl->prcwidthexpn) << rlvl->prcwidthexpn;
brprcyend = JPC_CEILDIVPOW2(rlvl->yend,
rlvl->prcheightexpn) << rlvl->prcheightexpn;
rlvl->numhprcs = (brprcxend - tlprcxstart) >>
rlvl->prcwidthexpn;
rlvl->numvprcs = (brprcyend - tlprcystart) >>
rlvl->prcheightexpn;
rlvl->numprcs = rlvl->numhprcs * rlvl->numvprcs;
if (rlvl->xstart >= rlvl->xend || rlvl->ystart >= rlvl->yend) {
rlvl->bands = 0;
rlvl->numprcs = 0;
rlvl->numhprcs = 0;
rlvl->numvprcs = 0;
continue;
}
if (!rlvlno) {
tlcbgxstart = tlprcxstart;
tlcbgystart = tlprcystart;
brcbgxend = brprcxend;
brcbgyend = brprcyend;
rlvl->cbgwidthexpn = rlvl->prcwidthexpn;
rlvl->cbgheightexpn = rlvl->prcheightexpn;
} else {
tlcbgxstart = JPC_CEILDIVPOW2(tlprcxstart, 1);
tlcbgystart = JPC_CEILDIVPOW2(tlprcystart, 1);
brcbgxend = JPC_CEILDIVPOW2(brprcxend, 1);
brcbgyend = JPC_CEILDIVPOW2(brprcyend, 1);
rlvl->cbgwidthexpn = rlvl->prcwidthexpn - 1;
rlvl->cbgheightexpn = rlvl->prcheightexpn - 1;
}
rlvl->cblkwidthexpn = JAS_MIN(ccp->cblkwidthexpn,
rlvl->cbgwidthexpn);
rlvl->cblkheightexpn = JAS_MIN(ccp->cblkheightexpn,
rlvl->cbgheightexpn);
rlvl->numbands = (!rlvlno) ? 1 : 3;
if (!(rlvl->bands = jas_malloc(rlvl->numbands *
sizeof(jpc_dec_band_t)))) {
return -1;
}
for (bandno = 0, band = rlvl->bands;
bandno < rlvl->numbands; ++bandno, ++band) {
bndno = (!rlvlno) ? 0 : (3 * (rlvlno - 1) +
bandno + 1);
bnd = &bnds[bndno];
band->orient = bnd->orient;
band->stepsize = ccp->stepsizes[bndno];
band->analgain = JPC_NOMINALGAIN(ccp->qmfbid,
tcomp->numrlvls - 1, rlvlno, band->orient);
band->absstepsize = jpc_calcabsstepsize(band->stepsize,
cmpt->prec + band->analgain);
band->numbps = ccp->numguardbits +
JPC_QCX_GETEXPN(band->stepsize) - 1;
band->roishift = (ccp->roishift + band->numbps >= JPC_PREC) ?
(JPC_PREC - 1 - band->numbps) : ccp->roishift;
band->data = 0;
band->prcs = 0;
if (bnd->xstart == bnd->xend || bnd->ystart == bnd->yend) {
continue;
}
if (!(band->data = jas_seq2d_create(0, 0, 0, 0))) {
return -1;
}
jas_seq2d_bindsub(band->data, tcomp->data, bnd->locxstart, bnd->locystart, bnd->locxend, bnd->locyend);
jas_seq2d_setshift(band->data, bnd->xstart, bnd->ystart);
assert(rlvl->numprcs);
if (!(band->prcs = jas_malloc(rlvl->numprcs * sizeof(jpc_dec_prc_t)))) {
return -1;
}
/************************************************/
cbgxstart = tlcbgxstart;
cbgystart = tlcbgystart;
for (prccnt = rlvl->numprcs, prc = band->prcs;
prccnt > 0; --prccnt, ++prc) {
cbgxend = cbgxstart + (1 << rlvl->cbgwidthexpn);
cbgyend = cbgystart + (1 << rlvl->cbgheightexpn);
prc->xstart = JAS_MAX(cbgxstart, JAS_CAST(uint_fast32_t, jas_seq2d_xstart(band->data)));
prc->ystart = JAS_MAX(cbgystart, JAS_CAST(uint_fast32_t, jas_seq2d_ystart(band->data)));
prc->xend = JAS_MIN(cbgxend, JAS_CAST(uint_fast32_t, jas_seq2d_xend(band->data)));
prc->yend = JAS_MIN(cbgyend, JAS_CAST(uint_fast32_t, jas_seq2d_yend(band->data)));
if (prc->xend > prc->xstart && prc->yend > prc->ystart) {
tlcblkxstart = JPC_FLOORDIVPOW2(prc->xstart,
rlvl->cblkwidthexpn) << rlvl->cblkwidthexpn;
tlcblkystart = JPC_FLOORDIVPOW2(prc->ystart,
rlvl->cblkheightexpn) << rlvl->cblkheightexpn;
brcblkxend = JPC_CEILDIVPOW2(prc->xend,
rlvl->cblkwidthexpn) << rlvl->cblkwidthexpn;
brcblkyend = JPC_CEILDIVPOW2(prc->yend,
rlvl->cblkheightexpn) << rlvl->cblkheightexpn;
prc->numhcblks = (brcblkxend - tlcblkxstart) >>
rlvl->cblkwidthexpn;
prc->numvcblks = (brcblkyend - tlcblkystart) >>
rlvl->cblkheightexpn;
prc->numcblks = prc->numhcblks * prc->numvcblks;
assert(prc->numcblks > 0);
if (!(prc->incltagtree = jpc_tagtree_create(prc->numhcblks, prc->numvcblks))) {
return -1;
}
if (!(prc->numimsbstagtree = jpc_tagtree_create(prc->numhcblks, prc->numvcblks))) {
return -1;
}
if (!(prc->cblks = jas_malloc(prc->numcblks * sizeof(jpc_dec_cblk_t)))) {
return -1;
}
cblkxstart = cbgxstart;
cblkystart = cbgystart;
for (cblkcnt = prc->numcblks, cblk = prc->cblks; cblkcnt > 0;) {
cblkxend = cblkxstart + (1 << rlvl->cblkwidthexpn);
cblkyend = cblkystart + (1 << rlvl->cblkheightexpn);
tmpxstart = JAS_MAX(cblkxstart, prc->xstart);
tmpystart = JAS_MAX(cblkystart, prc->ystart);
tmpxend = JAS_MIN(cblkxend, prc->xend);
tmpyend = JAS_MIN(cblkyend, prc->yend);
if (tmpxend > tmpxstart && tmpyend > tmpystart) {
cblk->firstpassno = -1;
cblk->mqdec = 0;
cblk->nulldec = 0;
cblk->flags = 0;
cblk->numpasses = 0;
cblk->segs.head = 0;
cblk->segs.tail = 0;
cblk->curseg = 0;
cblk->numimsbs = 0;
cblk->numlenbits = 3;
cblk->flags = 0;
if (!(cblk->data = jas_seq2d_create(0, 0, 0, 0))) {
return -1;
}
jas_seq2d_bindsub(cblk->data, band->data, tmpxstart, tmpystart, tmpxend, tmpyend);
++cblk;
--cblkcnt;
}
cblkxstart += 1 << rlvl->cblkwidthexpn;
if (cblkxstart >= cbgxend) {
cblkxstart = cbgxstart;
cblkystart += 1 << rlvl->cblkheightexpn;
}
}
} else {
prc->cblks = 0;
prc->incltagtree = 0;
prc->numimsbstagtree = 0;
}
cbgxstart += 1 << rlvl->cbgwidthexpn;
if (cbgxstart >= brcbgxend) {
cbgxstart = tlcbgxstart;
cbgystart += 1 << rlvl->cbgheightexpn;
}
}
/********************************************/
}
}
}
if (!(tile->pi = jpc_dec_pi_create(dec, tile)))
{
return -1;
}
for (pchgno = 0; pchgno < jpc_pchglist_numpchgs(tile->cp->pchglist);
++pchgno) {
pchg = jpc_pchg_copy(jpc_pchglist_get(tile->cp->pchglist, pchgno));
assert(pchg);
jpc_pi_addpchg(tile->pi, pchg);
}
jpc_pi_init(tile->pi);
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 319,621,987,108,748,350,000,000,000,000,000,000,000 | 271 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jpc_qcx_getcompparms(jpc_qcxcp_t *compparms, jpc_cstate_t *cstate,
jas_stream_t *in, uint_fast16_t len)
{
uint_fast8_t tmp;
int n;
int i;
/* Eliminate compiler warning about unused variables. */
cstate = 0;
n = 0;
if (jpc_getuint8(in, &tmp)) {
return -1;
}
++n;
compparms->qntsty = tmp & 0x1f;
compparms->numguard = (tmp >> 5) & 7;
switch (compparms->qntsty) {
case JPC_QCX_SIQNT:
compparms->numstepsizes = 1;
break;
case JPC_QCX_NOQNT:
compparms->numstepsizes = (len - n);
break;
case JPC_QCX_SEQNT:
/* XXX - this is a hack */
compparms->numstepsizes = (len - n) / 2;
break;
}
if (compparms->numstepsizes > 0) {
compparms->stepsizes = jas_malloc(compparms->numstepsizes *
sizeof(uint_fast16_t));
assert(compparms->stepsizes);
for (i = 0; i < compparms->numstepsizes; ++i) {
if (compparms->qntsty == JPC_QCX_NOQNT) {
if (jpc_getuint8(in, &tmp)) {
return -1;
}
compparms->stepsizes[i] = JPC_QCX_EXPN(tmp >> 3);
} else {
if (jpc_getuint16(in, &compparms->stepsizes[i])) {
return -1;
}
}
}
} else {
compparms->stepsizes = 0;
}
if (jas_stream_error(in) || jas_stream_eof(in)) {
jpc_qcx_destroycompparms(compparms);
return -1;
}
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 81,398,054,198,756,780,000,000,000,000,000,000,000 | 54 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
void jpc_qmfb_split_col(jpc_fix_t *a, int numrows, int stride,
int parity)
{
int bufsize = JPC_CEILDIVPOW2(numrows, 1);
jpc_fix_t splitbuf[QMFB_SPLITBUFSIZE];
jpc_fix_t *buf = splitbuf;
register jpc_fix_t *srcptr;
register jpc_fix_t *dstptr;
register int n;
register int m;
int hstartcol;
/* Get a buffer. */
if (bufsize > QMFB_SPLITBUFSIZE) {
if (!(buf = jas_malloc(bufsize * sizeof(jpc_fix_t)))) {
/* We have no choice but to commit suicide in this case. */
abort();
}
}
if (numrows >= 2) {
hstartcol = (numrows + 1 - parity) >> 1;
m = (parity) ? hstartcol : (numrows - hstartcol);
/* Save the samples destined for the highpass channel. */
n = m;
dstptr = buf;
srcptr = &a[(1 - parity) * stride];
while (n-- > 0) {
*dstptr = *srcptr;
++dstptr;
srcptr += stride << 1;
}
/* Copy the appropriate samples into the lowpass channel. */
dstptr = &a[(1 - parity) * stride];
srcptr = &a[(2 - parity) * stride];
n = numrows - m - (!parity);
while (n-- > 0) {
*dstptr = *srcptr;
dstptr += stride;
srcptr += stride << 1;
}
/* Copy the saved samples into the highpass channel. */
dstptr = &a[hstartcol * stride];
srcptr = buf;
n = m;
while (n-- > 0) {
*dstptr = *srcptr;
dstptr += stride;
++srcptr;
}
}
/* If the split buffer was allocated on the heap, free this memory. */
if (buf != splitbuf) {
jas_free(buf);
}
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 33,925,845,307,094,970,000,000,000,000,000,000,000 | 59 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
void jas_matrix_bindsub(jas_matrix_t *mat0, jas_matrix_t *mat1, int r0, int c0,
int r1, int c1)
{
int i;
if (mat0->data_) {
if (!(mat0->flags_ & JAS_MATRIX_REF)) {
jas_free(mat0->data_);
}
mat0->data_ = 0;
mat0->datasize_ = 0;
}
if (mat0->rows_) {
jas_free(mat0->rows_);
mat0->rows_ = 0;
}
mat0->flags_ |= JAS_MATRIX_REF;
mat0->numrows_ = r1 - r0 + 1;
mat0->numcols_ = c1 - c0 + 1;
mat0->maxrows_ = mat0->numrows_;
mat0->rows_ = jas_malloc(mat0->maxrows_ * sizeof(jas_seqent_t *));
for (i = 0; i < mat0->numrows_; ++i) {
mat0->rows_[i] = mat1->rows_[r0 + i] + c0;
}
mat0->xstart_ = mat1->xstart_ + c0;
mat0->ystart_ = mat1->ystart_ + r0;
mat0->xend_ = mat0->xstart_ + mat0->numcols_;
mat0->yend_ = mat0->ystart_ + mat0->numrows_;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 323,202,212,214,647,750,000,000,000,000,000,000,000 | 30 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jas_cmpxformseq_resize(jas_cmpxformseq_t *pxformseq, int n)
{
jas_cmpxform_t **p;
assert(n >= pxformseq->numpxforms);
p = (!pxformseq->pxforms) ? jas_malloc(n * sizeof(jas_cmpxform_t *)) :
jas_realloc(pxformseq->pxforms, n * sizeof(jas_cmpxform_t *));
if (!p) {
return -1;
}
pxformseq->pxforms = p;
pxformseq->maxpxforms = n;
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 70,403,315,533,974,105,000,000,000,000,000,000,000 | 13 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jpc_ppt_getparms(jpc_ms_t *ms, jpc_cstate_t *cstate, jas_stream_t *in)
{
jpc_ppt_t *ppt = &ms->parms.ppt;
/* Eliminate compiler warning about unused variables. */
cstate = 0;
ppt->data = 0;
if (ms->len < 1) {
goto error;
}
if (jpc_getuint8(in, &ppt->ind)) {
goto error;
}
ppt->len = ms->len - 1;
if (ppt->len > 0) {
if (!(ppt->data = jas_malloc(ppt->len * sizeof(unsigned char)))) {
goto error;
}
if (jas_stream_read(in, (char *) ppt->data, ppt->len) != JAS_CAST(int, ppt->len)) {
goto error;
}
} else {
ppt->data = 0;
}
return 0;
error:
jpc_ppt_destroyparms(ms);
return -1;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 95,817,719,738,855,050,000,000,000,000,000,000,000 | 32 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
jas_image_t *jas_image_create(int numcmpts, jas_image_cmptparm_t *cmptparms,
int clrspc)
{
jas_image_t *image;
uint_fast32_t rawsize;
uint_fast32_t inmem;
int cmptno;
jas_image_cmptparm_t *cmptparm;
if (!(image = jas_image_create0())) {
return 0;
}
image->clrspc_ = clrspc;
image->maxcmpts_ = numcmpts;
image->inmem_ = true;
/* Allocate memory for the per-component information. */
if (!(image->cmpts_ = jas_malloc(image->maxcmpts_ *
sizeof(jas_image_cmpt_t *)))) {
jas_image_destroy(image);
return 0;
}
/* Initialize in case of failure. */
for (cmptno = 0; cmptno < image->maxcmpts_; ++cmptno) {
image->cmpts_[cmptno] = 0;
}
/* Compute the approximate raw size of the image. */
rawsize = 0;
for (cmptno = 0, cmptparm = cmptparms; cmptno < numcmpts; ++cmptno,
++cmptparm) {
rawsize += cmptparm->width * cmptparm->height *
(cmptparm->prec + 7) / 8;
}
/* Decide whether to buffer the image data in memory, based on the
raw size of the image. */
inmem = (rawsize < JAS_IMAGE_INMEMTHRESH);
/* Create the individual image components. */
for (cmptno = 0, cmptparm = cmptparms; cmptno < numcmpts; ++cmptno,
++cmptparm) {
if (!(image->cmpts_[cmptno] = jas_image_cmpt_create(cmptparm->tlx,
cmptparm->tly, cmptparm->hstep, cmptparm->vstep,
cmptparm->width, cmptparm->height, cmptparm->prec,
cmptparm->sgnd, inmem))) {
jas_image_destroy(image);
return 0;
}
++image->numcmpts_;
}
/* Determine the bounding box for all of the components on the
reference grid (i.e., the image area) */
jas_image_setbbox(image);
return image;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 209,917,582,141,541,670,000,000,000,000,000,000,000 | 58 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jpc_ppm_getparms(jpc_ms_t *ms, jpc_cstate_t *cstate, jas_stream_t *in)
{
jpc_ppm_t *ppm = &ms->parms.ppm;
/* Eliminate compiler warning about unused variables. */
cstate = 0;
ppm->data = 0;
if (ms->len < 1) {
goto error;
}
if (jpc_getuint8(in, &ppm->ind)) {
goto error;
}
ppm->len = ms->len - 1;
if (ppm->len > 0) {
if (!(ppm->data = jas_malloc(ppm->len * sizeof(unsigned char)))) {
goto error;
}
if (JAS_CAST(uint, jas_stream_read(in, ppm->data, ppm->len)) != ppm->len) {
goto error;
}
} else {
ppm->data = 0;
}
return 0;
error:
jpc_ppm_destroyparms(ms);
return -1;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 331,283,868,074,004,670,000,000,000,000,000,000,000 | 33 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jpc_poc_getparms(jpc_ms_t *ms, jpc_cstate_t *cstate, jas_stream_t *in)
{
jpc_poc_t *poc = &ms->parms.poc;
jpc_pocpchg_t *pchg;
int pchgno;
uint_fast8_t tmp;
poc->numpchgs = (cstate->numcomps > 256) ? (ms->len / 9) :
(ms->len / 7);
if (!(poc->pchgs = jas_malloc(poc->numpchgs * sizeof(jpc_pocpchg_t)))) {
goto error;
}
for (pchgno = 0, pchg = poc->pchgs; pchgno < poc->numpchgs; ++pchgno,
++pchg) {
if (jpc_getuint8(in, &pchg->rlvlnostart)) {
goto error;
}
if (cstate->numcomps > 256) {
if (jpc_getuint16(in, &pchg->compnostart)) {
goto error;
}
} else {
if (jpc_getuint8(in, &tmp)) {
goto error;
};
pchg->compnostart = tmp;
}
if (jpc_getuint16(in, &pchg->lyrnoend) ||
jpc_getuint8(in, &pchg->rlvlnoend)) {
goto error;
}
if (cstate->numcomps > 256) {
if (jpc_getuint16(in, &pchg->compnoend)) {
goto error;
}
} else {
if (jpc_getuint8(in, &tmp)) {
goto error;
}
pchg->compnoend = tmp;
}
if (jpc_getuint8(in, &pchg->prgord)) {
goto error;
}
if (pchg->rlvlnostart > pchg->rlvlnoend ||
pchg->compnostart > pchg->compnoend) {
goto error;
}
}
return 0;
error:
jpc_poc_destroyparms(ms);
return -1;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 205,964,450,034,102,300,000,000,000,000,000,000,000 | 54 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
jpc_streamlist_t *jpc_streamlist_create()
{
jpc_streamlist_t *streamlist;
int i;
if (!(streamlist = jas_malloc(sizeof(jpc_streamlist_t)))) {
return 0;
}
streamlist->numstreams = 0;
streamlist->maxstreams = 100;
if (!(streamlist->streams = jas_malloc(streamlist->maxstreams *
sizeof(jas_stream_t *)))) {
jas_free(streamlist);
return 0;
}
for (i = 0; i < streamlist->maxstreams; ++i) {
streamlist->streams[i] = 0;
}
return streamlist;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 207,290,438,828,305,460,000,000,000,000,000,000,000 | 20 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static jpc_enc_band_t *band_create(jpc_enc_band_t *band, jpc_enc_cp_t *cp,
jpc_enc_rlvl_t *rlvl, jpc_tsfb_band_t *bandinfos)
{
uint_fast16_t bandno;
uint_fast16_t gblbandno;
uint_fast16_t rlvlno;
jpc_tsfb_band_t *bandinfo;
jpc_enc_tcmpt_t *tcmpt;
uint_fast32_t prcno;
jpc_enc_prc_t *prc;
tcmpt = rlvl->tcmpt;
band->data = 0;
band->prcs = 0;
band->rlvl = rlvl;
/* Deduce the resolution level and band number. */
rlvlno = rlvl - rlvl->tcmpt->rlvls;
bandno = band - rlvl->bands;
gblbandno = (!rlvlno) ? 0 : (3 * (rlvlno - 1) + bandno + 1);
bandinfo = &bandinfos[gblbandno];
if (bandinfo->xstart != bandinfo->xend && bandinfo->ystart != bandinfo->yend) {
if (!(band->data = jas_seq2d_create(0, 0, 0, 0))) {
goto error;
}
jas_seq2d_bindsub(band->data, tcmpt->data, bandinfo->locxstart,
bandinfo->locystart, bandinfo->locxend, bandinfo->locyend);
jas_seq2d_setshift(band->data, bandinfo->xstart, bandinfo->ystart);
}
band->orient = bandinfo->orient;
band->analgain = JPC_NOMINALGAIN(cp->tccp.qmfbid, tcmpt->numrlvls, rlvlno,
band->orient);
band->numbps = 0;
band->absstepsize = 0;
band->stepsize = 0;
band->synweight = bandinfo->synenergywt;
if (band->data) {
if (!(band->prcs = jas_malloc(rlvl->numprcs * sizeof(jpc_enc_prc_t)))) {
goto error;
}
for (prcno = 0, prc = band->prcs; prcno < rlvl->numprcs; ++prcno,
++prc) {
prc->cblks = 0;
prc->incltree = 0;
prc->nlibtree = 0;
prc->savincltree = 0;
prc->savnlibtree = 0;
prc->band = band;
}
for (prcno = 0, prc = band->prcs; prcno < rlvl->numprcs; ++prcno,
++prc) {
if (!prc_create(prc, cp, band)) {
goto error;
}
}
}
return band;
error:
band_destroy(band);
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 42,133,249,686,166,737,000,000,000,000,000,000,000 | 66 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
jas_image_t *jp2_decode(jas_stream_t *in, char *optstr)
{
jp2_box_t *box;
int found;
jas_image_t *image;
jp2_dec_t *dec;
bool samedtype;
int dtype;
unsigned int i;
jp2_cmap_t *cmapd;
jp2_pclr_t *pclrd;
jp2_cdef_t *cdefd;
unsigned int channo;
int newcmptno;
int_fast32_t *lutents;
#if 0
jp2_cdefchan_t *cdefent;
int cmptno;
#endif
jp2_cmapent_t *cmapent;
jas_icchdr_t icchdr;
jas_iccprof_t *iccprof;
dec = 0;
box = 0;
image = 0;
if (!(dec = jp2_dec_create())) {
goto error;
}
/* Get the first box. This should be a JP box. */
if (!(box = jp2_box_get(in))) {
jas_eprintf("error: cannot get box\n");
goto error;
}
if (box->type != JP2_BOX_JP) {
jas_eprintf("error: expecting signature box\n");
goto error;
}
if (box->data.jp.magic != JP2_JP_MAGIC) {
jas_eprintf("incorrect magic number\n");
goto error;
}
jp2_box_destroy(box);
box = 0;
/* Get the second box. This should be a FTYP box. */
if (!(box = jp2_box_get(in))) {
goto error;
}
if (box->type != JP2_BOX_FTYP) {
jas_eprintf("expecting file type box\n");
goto error;
}
jp2_box_destroy(box);
box = 0;
/* Get more boxes... */
found = 0;
while ((box = jp2_box_get(in))) {
if (jas_getdbglevel() >= 1) {
jas_eprintf("box type %s\n", box->info->name);
}
switch (box->type) {
case JP2_BOX_JP2C:
found = 1;
break;
case JP2_BOX_IHDR:
if (!dec->ihdr) {
dec->ihdr = box;
box = 0;
}
break;
case JP2_BOX_BPCC:
if (!dec->bpcc) {
dec->bpcc = box;
box = 0;
}
break;
case JP2_BOX_CDEF:
if (!dec->cdef) {
dec->cdef = box;
box = 0;
}
break;
case JP2_BOX_PCLR:
if (!dec->pclr) {
dec->pclr = box;
box = 0;
}
break;
case JP2_BOX_CMAP:
if (!dec->cmap) {
dec->cmap = box;
box = 0;
}
break;
case JP2_BOX_COLR:
if (!dec->colr) {
dec->colr = box;
box = 0;
}
break;
}
if (box) {
jp2_box_destroy(box);
box = 0;
}
if (found) {
break;
}
}
if (!found) {
jas_eprintf("error: no code stream found\n");
goto error;
}
if (!(dec->image = jpc_decode(in, optstr))) {
jas_eprintf("error: cannot decode code stream\n");
goto error;
}
/* An IHDR box must be present. */
if (!dec->ihdr) {
jas_eprintf("error: missing IHDR box\n");
goto error;
}
/* Does the number of components indicated in the IHDR box match
the value specified in the code stream? */
if (dec->ihdr->data.ihdr.numcmpts != JAS_CAST(uint, jas_image_numcmpts(dec->image))) {
jas_eprintf("warning: number of components mismatch\n");
}
/* At least one component must be present. */
if (!jas_image_numcmpts(dec->image)) {
jas_eprintf("error: no components\n");
goto error;
}
/* Determine if all components have the same data type. */
samedtype = true;
dtype = jas_image_cmptdtype(dec->image, 0);
for (i = 1; i < JAS_CAST(uint, jas_image_numcmpts(dec->image)); ++i) {
if (jas_image_cmptdtype(dec->image, i) != dtype) {
samedtype = false;
break;
}
}
/* Is the component data type indicated in the IHDR box consistent
with the data in the code stream? */
if ((samedtype && dec->ihdr->data.ihdr.bpc != JP2_DTYPETOBPC(dtype)) ||
(!samedtype && dec->ihdr->data.ihdr.bpc != JP2_IHDR_BPCNULL)) {
jas_eprintf("warning: component data type mismatch\n");
}
/* Is the compression type supported? */
if (dec->ihdr->data.ihdr.comptype != JP2_IHDR_COMPTYPE) {
jas_eprintf("error: unsupported compression type\n");
goto error;
}
if (dec->bpcc) {
/* Is the number of components indicated in the BPCC box
consistent with the code stream data? */
if (dec->bpcc->data.bpcc.numcmpts != JAS_CAST(uint, jas_image_numcmpts(
dec->image))) {
jas_eprintf("warning: number of components mismatch\n");
}
/* Is the component data type information indicated in the BPCC
box consistent with the code stream data? */
if (!samedtype) {
for (i = 0; i < JAS_CAST(uint, jas_image_numcmpts(dec->image)); ++i) {
if (jas_image_cmptdtype(dec->image, i) != JP2_BPCTODTYPE(dec->bpcc->data.bpcc.bpcs[i])) {
jas_eprintf("warning: component data type mismatch\n");
}
}
} else {
jas_eprintf("warning: superfluous BPCC box\n");
}
}
/* A COLR box must be present. */
if (!dec->colr) {
jas_eprintf("error: no COLR box\n");
goto error;
}
switch (dec->colr->data.colr.method) {
case JP2_COLR_ENUM:
jas_image_setclrspc(dec->image, jp2_getcs(&dec->colr->data.colr));
break;
case JP2_COLR_ICC:
iccprof = jas_iccprof_createfrombuf(dec->colr->data.colr.iccp,
dec->colr->data.colr.iccplen);
if (!iccprof) {
jas_eprintf("error: failed to parse ICC profile\n");
goto error;
}
jas_iccprof_gethdr(iccprof, &icchdr);
jas_eprintf("ICC Profile CS %08x\n", icchdr.colorspc);
jas_image_setclrspc(dec->image, fromiccpcs(icchdr.colorspc));
dec->image->cmprof_ = jas_cmprof_createfromiccprof(iccprof);
assert(dec->image->cmprof_);
jas_iccprof_destroy(iccprof);
break;
}
/* If a CMAP box is present, a PCLR box must also be present. */
if (dec->cmap && !dec->pclr) {
jas_eprintf("warning: missing PCLR box or superfluous CMAP box\n");
jp2_box_destroy(dec->cmap);
dec->cmap = 0;
}
/* If a CMAP box is not present, a PCLR box must not be present. */
if (!dec->cmap && dec->pclr) {
jas_eprintf("warning: missing CMAP box or superfluous PCLR box\n");
jp2_box_destroy(dec->pclr);
dec->pclr = 0;
}
/* Determine the number of channels (which is essentially the number
of components after any palette mappings have been applied). */
dec->numchans = dec->cmap ? dec->cmap->data.cmap.numchans : JAS_CAST(uint, jas_image_numcmpts(dec->image));
/* Perform a basic sanity check on the CMAP box if present. */
if (dec->cmap) {
for (i = 0; i < dec->numchans; ++i) {
/* Is the component number reasonable? */
if (dec->cmap->data.cmap.ents[i].cmptno >= JAS_CAST(uint, jas_image_numcmpts(dec->image))) {
jas_eprintf("error: invalid component number in CMAP box\n");
goto error;
}
/* Is the LUT index reasonable? */
if (dec->cmap->data.cmap.ents[i].pcol >= dec->pclr->data.pclr.numchans) {
jas_eprintf("error: invalid CMAP LUT index\n");
goto error;
}
}
}
/* Allocate space for the channel-number to component-number LUT. */
if (!(dec->chantocmptlut = jas_malloc(dec->numchans * sizeof(uint_fast16_t)))) {
jas_eprintf("error: no memory\n");
goto error;
}
if (!dec->cmap) {
for (i = 0; i < dec->numchans; ++i) {
dec->chantocmptlut[i] = i;
}
} else {
cmapd = &dec->cmap->data.cmap;
pclrd = &dec->pclr->data.pclr;
cdefd = &dec->cdef->data.cdef;
for (channo = 0; channo < cmapd->numchans; ++channo) {
cmapent = &cmapd->ents[channo];
if (cmapent->map == JP2_CMAP_DIRECT) {
dec->chantocmptlut[channo] = channo;
} else if (cmapent->map == JP2_CMAP_PALETTE) {
lutents = jas_malloc(pclrd->numlutents * sizeof(int_fast32_t));
for (i = 0; i < pclrd->numlutents; ++i) {
lutents[i] = pclrd->lutdata[cmapent->pcol + i * pclrd->numchans];
}
newcmptno = jas_image_numcmpts(dec->image);
jas_image_depalettize(dec->image, cmapent->cmptno, pclrd->numlutents, lutents, JP2_BPCTODTYPE(pclrd->bpc[cmapent->pcol]), newcmptno);
dec->chantocmptlut[channo] = newcmptno;
jas_free(lutents);
#if 0
if (dec->cdef) {
cdefent = jp2_cdef_lookup(cdefd, channo);
if (!cdefent) {
abort();
}
jas_image_setcmpttype(dec->image, newcmptno, jp2_getct(jas_image_clrspc(dec->image), cdefent->type, cdefent->assoc));
} else {
jas_image_setcmpttype(dec->image, newcmptno, jp2_getct(jas_image_clrspc(dec->image), 0, channo + 1));
}
#endif
}
}
}
/* Mark all components as being of unknown type. */
for (i = 0; i < JAS_CAST(uint, jas_image_numcmpts(dec->image)); ++i) {
jas_image_setcmpttype(dec->image, i, JAS_IMAGE_CT_UNKNOWN);
}
/* Determine the type of each component. */
if (dec->cdef) {
for (i = 0; i < dec->numchans; ++i) {
/* Is the channel number reasonable? */
if (dec->cdef->data.cdef.ents[i].channo >= dec->numchans) {
jas_eprintf("error: invalid channel number in CDEF box\n");
goto error;
}
jas_image_setcmpttype(dec->image,
dec->chantocmptlut[dec->cdef->data.cdef.ents[i].channo],
jp2_getct(jas_image_clrspc(dec->image),
dec->cdef->data.cdef.ents[i].type, dec->cdef->data.cdef.ents[i].assoc));
}
} else {
for (i = 0; i < dec->numchans; ++i) {
jas_image_setcmpttype(dec->image, dec->chantocmptlut[i],
jp2_getct(jas_image_clrspc(dec->image), 0, i + 1));
}
}
/* Delete any components that are not of interest. */
for (i = jas_image_numcmpts(dec->image); i > 0; --i) {
if (jas_image_cmpttype(dec->image, i - 1) == JAS_IMAGE_CT_UNKNOWN) {
jas_image_delcmpt(dec->image, i - 1);
}
}
/* Ensure that some components survived. */
if (!jas_image_numcmpts(dec->image)) {
jas_eprintf("error: no components\n");
goto error;
}
#if 0
jas_eprintf("no of components is %d\n", jas_image_numcmpts(dec->image));
#endif
/* Prevent the image from being destroyed later. */
image = dec->image;
dec->image = 0;
jp2_dec_destroy(dec);
return image;
error:
if (box) {
jp2_box_destroy(box);
}
if (dec) {
jp2_dec_destroy(dec);
}
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 4,782,013,726,251,466,000,000,000,000,000,000,000 | 346 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jas_cmshapmatlut_invert(jas_cmshapmatlut_t *invlut,
jas_cmshapmatlut_t *lut, int n)
{
int i;
int j;
int k;
jas_cmreal_t ax;
jas_cmreal_t ay;
jas_cmreal_t bx;
jas_cmreal_t by;
jas_cmreal_t sx;
jas_cmreal_t sy;
assert(n >= 2);
if (invlut->data) {
jas_free(invlut->data);
invlut->data = 0;
}
/* The sample values should be nondecreasing. */
for (i = 1; i < lut->size; ++i) {
if (lut->data[i - 1] > lut->data[i]) {
assert(0);
return -1;
}
}
if (!(invlut->data = jas_malloc(n * sizeof(jas_cmreal_t))))
return -1;
invlut->size = n;
for (i = 0; i < invlut->size; ++i) {
sy = ((double) i) / (invlut->size - 1);
sx = 1.0;
for (j = 0; j < lut->size; ++j) {
ay = lut->data[j];
if (sy == ay) {
for (k = j + 1; k < lut->size; ++k) {
by = lut->data[k];
if (by != sy)
break;
#if 0
assert(0);
#endif
}
if (k < lut->size) {
--k;
ax = ((double) j) / (lut->size - 1);
bx = ((double) k) / (lut->size - 1);
sx = (ax + bx) / 2.0;
}
break;
}
if (j < lut->size - 1) {
by = lut->data[j + 1];
if (sy > ay && sy < by) {
ax = ((double) j) / (lut->size - 1);
bx = ((double) j + 1) / (lut->size - 1);
sx = ax +
(sy - ay) / (by - ay) * (bx - ax);
break;
}
}
}
invlut->data[i] = sx;
}
#if 0
for (i=0;i<lut->size;++i)
jas_eprintf("lut[%d]=%f ", i, lut->data[i]);
for (i=0;i<invlut->size;++i)
jas_eprintf("invlut[%d]=%f ", i, invlut->data[i]);
#endif
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 316,851,227,356,121,570,000,000,000,000,000,000,000 | 70 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jpc_crg_getparms(jpc_ms_t *ms, jpc_cstate_t *cstate, jas_stream_t *in)
{
jpc_crg_t *crg = &ms->parms.crg;
jpc_crgcomp_t *comp;
uint_fast16_t compno;
crg->numcomps = cstate->numcomps;
if (!(crg->comps = jas_malloc(cstate->numcomps * sizeof(uint_fast16_t)))) {
return -1;
}
for (compno = 0, comp = crg->comps; compno < cstate->numcomps;
++compno, ++comp) {
if (jpc_getuint16(in, &comp->hoff) ||
jpc_getuint16(in, &comp->voff)) {
jpc_crg_destroyparms(ms);
return -1;
}
}
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 293,461,723,910,544,420,000,000,000,000,000,000,000 | 19 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
int jp2_encode(jas_image_t *image, jas_stream_t *out, char *optstr)
{
jp2_box_t *box;
jp2_ftyp_t *ftyp;
jp2_ihdr_t *ihdr;
jas_stream_t *tmpstream;
int allcmptssame;
jp2_bpcc_t *bpcc;
long len;
uint_fast16_t cmptno;
jp2_colr_t *colr;
char buf[4096];
uint_fast32_t overhead;
jp2_cdefchan_t *cdefchanent;
jp2_cdef_t *cdef;
int i;
uint_fast32_t typeasoc;
jas_iccprof_t *iccprof;
jas_stream_t *iccstream;
int pos;
int needcdef;
int prec;
int sgnd;
box = 0;
tmpstream = 0;
allcmptssame = 1;
sgnd = jas_image_cmptsgnd(image, 0);
prec = jas_image_cmptprec(image, 0);
for (i = 1; i < jas_image_numcmpts(image); ++i) {
if (jas_image_cmptsgnd(image, i) != sgnd ||
jas_image_cmptprec(image, i) != prec) {
allcmptssame = 0;
break;
}
}
/* Output the signature box. */
if (!(box = jp2_box_create(JP2_BOX_JP))) {
goto error;
}
box->data.jp.magic = JP2_JP_MAGIC;
if (jp2_box_put(box, out)) {
goto error;
}
jp2_box_destroy(box);
box = 0;
/* Output the file type box. */
if (!(box = jp2_box_create(JP2_BOX_FTYP))) {
goto error;
}
ftyp = &box->data.ftyp;
ftyp->majver = JP2_FTYP_MAJVER;
ftyp->minver = JP2_FTYP_MINVER;
ftyp->numcompatcodes = 1;
ftyp->compatcodes[0] = JP2_FTYP_COMPATCODE;
if (jp2_box_put(box, out)) {
goto error;
}
jp2_box_destroy(box);
box = 0;
/*
* Generate the data portion of the JP2 header box.
* We cannot simply output the header for this box
* since we do not yet know the correct value for the length
* field.
*/
if (!(tmpstream = jas_stream_memopen(0, 0))) {
goto error;
}
/* Generate image header box. */
if (!(box = jp2_box_create(JP2_BOX_IHDR))) {
goto error;
}
ihdr = &box->data.ihdr;
ihdr->width = jas_image_width(image);
ihdr->height = jas_image_height(image);
ihdr->numcmpts = jas_image_numcmpts(image);
ihdr->bpc = allcmptssame ? JP2_SPTOBPC(jas_image_cmptsgnd(image, 0),
jas_image_cmptprec(image, 0)) : JP2_IHDR_BPCNULL;
ihdr->comptype = JP2_IHDR_COMPTYPE;
ihdr->csunk = 0;
ihdr->ipr = 0;
if (jp2_box_put(box, tmpstream)) {
goto error;
}
jp2_box_destroy(box);
box = 0;
/* Generate bits per component box. */
if (!allcmptssame) {
if (!(box = jp2_box_create(JP2_BOX_BPCC))) {
goto error;
}
bpcc = &box->data.bpcc;
bpcc->numcmpts = jas_image_numcmpts(image);
if (!(bpcc->bpcs = jas_malloc(bpcc->numcmpts *
sizeof(uint_fast8_t)))) {
goto error;
}
for (cmptno = 0; cmptno < bpcc->numcmpts; ++cmptno) {
bpcc->bpcs[cmptno] = JP2_SPTOBPC(jas_image_cmptsgnd(image,
cmptno), jas_image_cmptprec(image, cmptno));
}
if (jp2_box_put(box, tmpstream)) {
goto error;
}
jp2_box_destroy(box);
box = 0;
}
/* Generate color specification box. */
if (!(box = jp2_box_create(JP2_BOX_COLR))) {
goto error;
}
colr = &box->data.colr;
switch (jas_image_clrspc(image)) {
case JAS_CLRSPC_SRGB:
case JAS_CLRSPC_SYCBCR:
case JAS_CLRSPC_SGRAY:
colr->method = JP2_COLR_ENUM;
colr->csid = clrspctojp2(jas_image_clrspc(image));
colr->pri = JP2_COLR_PRI;
colr->approx = 0;
break;
default:
colr->method = JP2_COLR_ICC;
colr->pri = JP2_COLR_PRI;
colr->approx = 0;
iccprof = jas_iccprof_createfromcmprof(jas_image_cmprof(image));
assert(iccprof);
iccstream = jas_stream_memopen(0, 0);
assert(iccstream);
if (jas_iccprof_save(iccprof, iccstream))
abort();
if ((pos = jas_stream_tell(iccstream)) < 0)
abort();
colr->iccplen = pos;
colr->iccp = jas_malloc(pos);
assert(colr->iccp);
jas_stream_rewind(iccstream);
if (jas_stream_read(iccstream, colr->iccp, colr->iccplen) != colr->iccplen)
abort();
jas_stream_close(iccstream);
jas_iccprof_destroy(iccprof);
break;
}
if (jp2_box_put(box, tmpstream)) {
goto error;
}
jp2_box_destroy(box);
box = 0;
needcdef = 1;
switch (jas_clrspc_fam(jas_image_clrspc(image))) {
case JAS_CLRSPC_FAM_RGB:
if (jas_image_cmpttype(image, 0) ==
JAS_IMAGE_CT_COLOR(JAS_CLRSPC_CHANIND_RGB_R) &&
jas_image_cmpttype(image, 1) ==
JAS_IMAGE_CT_COLOR(JAS_CLRSPC_CHANIND_RGB_G) &&
jas_image_cmpttype(image, 2) ==
JAS_IMAGE_CT_COLOR(JAS_CLRSPC_CHANIND_RGB_B))
needcdef = 0;
break;
case JAS_CLRSPC_FAM_YCBCR:
if (jas_image_cmpttype(image, 0) ==
JAS_IMAGE_CT_COLOR(JAS_CLRSPC_CHANIND_YCBCR_Y) &&
jas_image_cmpttype(image, 1) ==
JAS_IMAGE_CT_COLOR(JAS_CLRSPC_CHANIND_YCBCR_CB) &&
jas_image_cmpttype(image, 2) ==
JAS_IMAGE_CT_COLOR(JAS_CLRSPC_CHANIND_YCBCR_CR))
needcdef = 0;
break;
case JAS_CLRSPC_FAM_GRAY:
if (jas_image_cmpttype(image, 0) ==
JAS_IMAGE_CT_COLOR(JAS_IMAGE_CT_GRAY_Y))
needcdef = 0;
break;
default:
abort();
break;
}
if (needcdef) {
if (!(box = jp2_box_create(JP2_BOX_CDEF))) {
goto error;
}
cdef = &box->data.cdef;
cdef->numchans = jas_image_numcmpts(image);
cdef->ents = jas_malloc(cdef->numchans * sizeof(jp2_cdefchan_t));
for (i = 0; i < jas_image_numcmpts(image); ++i) {
cdefchanent = &cdef->ents[i];
cdefchanent->channo = i;
typeasoc = jp2_gettypeasoc(jas_image_clrspc(image), jas_image_cmpttype(image, i));
cdefchanent->type = typeasoc >> 16;
cdefchanent->assoc = typeasoc & 0x7fff;
}
if (jp2_box_put(box, tmpstream)) {
goto error;
}
jp2_box_destroy(box);
box = 0;
}
/* Determine the total length of the JP2 header box. */
len = jas_stream_tell(tmpstream);
jas_stream_rewind(tmpstream);
/*
* Output the JP2 header box and all of the boxes which it contains.
*/
if (!(box = jp2_box_create(JP2_BOX_JP2H))) {
goto error;
}
box->len = len + JP2_BOX_HDRLEN(false);
if (jp2_box_put(box, out)) {
goto error;
}
jp2_box_destroy(box);
box = 0;
if (jas_stream_copy(out, tmpstream, len)) {
goto error;
}
jas_stream_close(tmpstream);
tmpstream = 0;
/*
* Output the contiguous code stream box.
*/
if (!(box = jp2_box_create(JP2_BOX_JP2C))) {
goto error;
}
box->len = 0;
if (jp2_box_put(box, out)) {
goto error;
}
jp2_box_destroy(box);
box = 0;
/* Output the JPEG-2000 code stream. */
overhead = jas_stream_getrwcount(out);
sprintf(buf, "%s\n_jp2overhead=%lu\n", (optstr ? optstr : ""),
(unsigned long) overhead);
if (jpc_encode(image, out, buf)) {
goto error;
}
return 0;
error:
if (box) {
jp2_box_destroy(box);
}
if (tmpstream) {
jas_stream_close(tmpstream);
}
return -1;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 200,279,060,816,577,100,000,000,000,000,000,000,000 | 276 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
void jpc_qmfb_join_row(jpc_fix_t *a, int numcols, int parity)
{
int bufsize = JPC_CEILDIVPOW2(numcols, 1);
jpc_fix_t joinbuf[QMFB_JOINBUFSIZE];
jpc_fix_t *buf = joinbuf;
register jpc_fix_t *srcptr;
register jpc_fix_t *dstptr;
register int n;
int hstartcol;
/* Allocate memory for the join buffer from the heap. */
if (bufsize > QMFB_JOINBUFSIZE) {
if (!(buf = jas_malloc(bufsize * sizeof(jpc_fix_t)))) {
/* We have no choice but to commit suicide. */
abort();
}
}
hstartcol = (numcols + 1 - parity) >> 1;
/* Save the samples from the lowpass channel. */
n = hstartcol;
srcptr = &a[0];
dstptr = buf;
while (n-- > 0) {
*dstptr = *srcptr;
++srcptr;
++dstptr;
}
/* Copy the samples from the highpass channel into place. */
srcptr = &a[hstartcol];
dstptr = &a[1 - parity];
n = numcols - hstartcol;
while (n-- > 0) {
*dstptr = *srcptr;
dstptr += 2;
++srcptr;
}
/* Copy the samples from the lowpass channel into place. */
srcptr = buf;
dstptr = &a[parity];
n = hstartcol;
while (n-- > 0) {
*dstptr = *srcptr;
dstptr += 2;
++srcptr;
}
/* If the join buffer was allocated on the heap, free this memory. */
if (buf != joinbuf) {
jas_free(buf);
}
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 191,509,043,773,661,800,000,000,000,000,000,000,000 | 55 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
int jpc_streamlist_insert(jpc_streamlist_t *streamlist, int streamno,
jas_stream_t *stream)
{
jas_stream_t **newstreams;
int newmaxstreams;
int i;
/* Grow the array of streams if necessary. */
if (streamlist->numstreams >= streamlist->maxstreams) {
newmaxstreams = streamlist->maxstreams + 1024;
if (!(newstreams = jas_realloc(streamlist->streams,
(newmaxstreams + 1024) * sizeof(jas_stream_t *)))) {
return -1;
}
for (i = streamlist->numstreams; i < streamlist->maxstreams; ++i) {
streamlist->streams[i] = 0;
}
streamlist->maxstreams = newmaxstreams;
streamlist->streams = newstreams;
}
if (streamno != streamlist->numstreams) {
/* Can only handle insertion at start of list. */
return -1;
}
streamlist->streams[streamno] = stream;
++streamlist->numstreams;
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 273,597,631,560,492,560,000,000,000,000,000,000,000 | 27 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
jpc_enc_tile_t *jpc_enc_tile_create(jpc_enc_cp_t *cp, jas_image_t *image, int tileno)
{
jpc_enc_tile_t *tile;
uint_fast32_t htileno;
uint_fast32_t vtileno;
uint_fast16_t lyrno;
uint_fast16_t cmptno;
jpc_enc_tcmpt_t *tcmpt;
if (!(tile = jas_malloc(sizeof(jpc_enc_tile_t)))) {
goto error;
}
/* Initialize a few members used in error recovery. */
tile->tcmpts = 0;
tile->lyrsizes = 0;
tile->numtcmpts = cp->numcmpts;
tile->pi = 0;
tile->tileno = tileno;
htileno = tileno % cp->numhtiles;
vtileno = tileno / cp->numhtiles;
/* Calculate the coordinates of the top-left and bottom-right
corners of the tile. */
tile->tlx = JAS_MAX(cp->tilegrdoffx + htileno * cp->tilewidth,
cp->imgareatlx);
tile->tly = JAS_MAX(cp->tilegrdoffy + vtileno * cp->tileheight,
cp->imgareatly);
tile->brx = JAS_MIN(cp->tilegrdoffx + (htileno + 1) * cp->tilewidth,
cp->refgrdwidth);
tile->bry = JAS_MIN(cp->tilegrdoffy + (vtileno + 1) * cp->tileheight,
cp->refgrdheight);
/* Initialize some tile coding parameters. */
tile->intmode = cp->tcp.intmode;
tile->csty = cp->tcp.csty;
tile->prg = cp->tcp.prg;
tile->mctid = cp->tcp.mctid;
tile->numlyrs = cp->tcp.numlyrs;
if (!(tile->lyrsizes = jas_malloc(tile->numlyrs *
sizeof(uint_fast32_t)))) {
goto error;
}
for (lyrno = 0; lyrno < tile->numlyrs; ++lyrno) {
tile->lyrsizes[lyrno] = 0;
}
/* Allocate an array for the per-tile-component information. */
if (!(tile->tcmpts = jas_malloc(cp->numcmpts * sizeof(jpc_enc_tcmpt_t)))) {
goto error;
}
/* Initialize a few members critical for error recovery. */
for (cmptno = 0, tcmpt = tile->tcmpts; cmptno < cp->numcmpts;
++cmptno, ++tcmpt) {
tcmpt->rlvls = 0;
tcmpt->tsfb = 0;
tcmpt->data = 0;
}
/* Initialize the per-tile-component information. */
for (cmptno = 0, tcmpt = tile->tcmpts; cmptno < cp->numcmpts;
++cmptno, ++tcmpt) {
if (!tcmpt_create(tcmpt, cp, image, tile)) {
goto error;
}
}
/* Initialize the synthesis weights for the MCT. */
switch (tile->mctid) {
case JPC_MCT_RCT:
tile->tcmpts[0].synweight = jpc_dbltofix(sqrt(3.0));
tile->tcmpts[1].synweight = jpc_dbltofix(sqrt(0.6875));
tile->tcmpts[2].synweight = jpc_dbltofix(sqrt(0.6875));
break;
case JPC_MCT_ICT:
tile->tcmpts[0].synweight = jpc_dbltofix(sqrt(3.0000));
tile->tcmpts[1].synweight = jpc_dbltofix(sqrt(3.2584));
tile->tcmpts[2].synweight = jpc_dbltofix(sqrt(2.4755));
break;
default:
case JPC_MCT_NONE:
for (cmptno = 0, tcmpt = tile->tcmpts; cmptno < cp->numcmpts;
++cmptno, ++tcmpt) {
tcmpt->synweight = JPC_FIX_ONE;
}
break;
}
if (!(tile->pi = jpc_enc_pi_create(cp, tile))) {
goto error;
}
return tile;
error:
if (tile) {
jpc_enc_tile_destroy(tile);
}
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 281,449,265,000,076,830,000,000,000,000,000,000,000 | 102 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
jpc_tagtree_t *jpc_tagtree_create(int numleafsh, int numleafsv)
{
int nplh[JPC_TAGTREE_MAXDEPTH];
int nplv[JPC_TAGTREE_MAXDEPTH];
jpc_tagtreenode_t *node;
jpc_tagtreenode_t *parentnode;
jpc_tagtreenode_t *parentnode0;
jpc_tagtree_t *tree;
int i;
int j;
int k;
int numlvls;
int n;
assert(numleafsh > 0 && numleafsv > 0);
if (!(tree = jpc_tagtree_alloc())) {
return 0;
}
tree->numleafsh_ = numleafsh;
tree->numleafsv_ = numleafsv;
numlvls = 0;
nplh[0] = numleafsh;
nplv[0] = numleafsv;
do {
n = nplh[numlvls] * nplv[numlvls];
nplh[numlvls + 1] = (nplh[numlvls] + 1) / 2;
nplv[numlvls + 1] = (nplv[numlvls] + 1) / 2;
tree->numnodes_ += n;
++numlvls;
} while (n > 1);
if (!(tree->nodes_ = jas_malloc(tree->numnodes_ * sizeof(jpc_tagtreenode_t)))) {
return 0;
}
/* Initialize the parent links for all nodes in the tree. */
node = tree->nodes_;
parentnode = &tree->nodes_[tree->numleafsh_ * tree->numleafsv_];
parentnode0 = parentnode;
for (i = 0; i < numlvls - 1; ++i) {
for (j = 0; j < nplv[i]; ++j) {
k = nplh[i];
while (--k >= 0) {
node->parent_ = parentnode;
++node;
if (--k >= 0) {
node->parent_ = parentnode;
++node;
}
++parentnode;
}
if ((j & 1) || j == nplv[i] - 1) {
parentnode0 = parentnode;
} else {
parentnode = parentnode0;
parentnode0 += nplh[i];
}
}
}
node->parent_ = 0;
/* Initialize the data values to something sane. */
jpc_tagtree_reset(tree);
return tree;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 280,405,223,613,555,500,000,000,000,000,000,000,000 | 71 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static jpc_dec_cp_t *jpc_dec_cp_create(uint_fast16_t numcomps)
{
jpc_dec_cp_t *cp;
jpc_dec_ccp_t *ccp;
int compno;
if (!(cp = jas_malloc(sizeof(jpc_dec_cp_t)))) {
return 0;
}
cp->flags = 0;
cp->numcomps = numcomps;
cp->prgord = 0;
cp->numlyrs = 0;
cp->mctid = 0;
cp->csty = 0;
if (!(cp->ccps = jas_malloc(cp->numcomps * sizeof(jpc_dec_ccp_t)))) {
return 0;
}
if (!(cp->pchglist = jpc_pchglist_create())) {
jas_free(cp->ccps);
return 0;
}
for (compno = 0, ccp = cp->ccps; compno < cp->numcomps;
++compno, ++ccp) {
ccp->flags = 0;
ccp->numrlvls = 0;
ccp->cblkwidthexpn = 0;
ccp->cblkheightexpn = 0;
ccp->qmfbid = 0;
ccp->numstepsizes = 0;
ccp->numguardbits = 0;
ccp->roishift = 0;
ccp->cblkctx = 0;
}
return cp;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 33,251,505,250,021,864,000,000,000,000,000,000,000 | 36 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
int jpc_pchglist_insert(jpc_pchglist_t *pchglist, int pchgno, jpc_pchg_t *pchg)
{
int i;
int newmaxpchgs;
jpc_pchg_t **newpchgs;
if (pchgno < 0) {
pchgno = pchglist->numpchgs;
}
if (pchglist->numpchgs >= pchglist->maxpchgs) {
newmaxpchgs = pchglist->maxpchgs + 128;
if (!(newpchgs = jas_realloc(pchglist->pchgs, newmaxpchgs * sizeof(jpc_pchg_t *)))) {
return -1;
}
pchglist->maxpchgs = newmaxpchgs;
pchglist->pchgs = newpchgs;
}
for (i = pchglist->numpchgs; i > pchgno; --i) {
pchglist->pchgs[i] = pchglist->pchgs[i - 1];
}
pchglist->pchgs[pchgno] = pchg;
++pchglist->numpchgs;
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 18,352,459,021,286,762,000,000,000,000,000,000,000 | 23 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jpc_unk_getparms(jpc_ms_t *ms, jpc_cstate_t *cstate, jas_stream_t *in)
{
jpc_unk_t *unk = &ms->parms.unk;
/* Eliminate compiler warning about unused variables. */
cstate = 0;
if (ms->len > 0) {
if (!(unk->data = jas_malloc(ms->len * sizeof(unsigned char)))) {
return -1;
}
if (jas_stream_read(in, (char *) unk->data, ms->len) != JAS_CAST(int, ms->len)) {
jas_free(unk->data);
return -1;
}
unk->len = ms->len;
} else {
unk->data = 0;
unk->len = 0;
}
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 213,869,555,503,483,260,000,000,000,000,000,000,000 | 22 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
int jpc_enc_enccblk(jpc_enc_t *enc, jas_stream_t *out, jpc_enc_tcmpt_t *tcmpt, jpc_enc_band_t *band, jpc_enc_cblk_t *cblk)
{
jpc_enc_pass_t *pass;
jpc_enc_pass_t *endpasses;
int bitpos;
int n;
int adjust;
int ret;
int passtype;
int t;
jpc_bitstream_t *bout;
jpc_enc_pass_t *termpass;
jpc_enc_rlvl_t *rlvl;
int vcausal;
int segsym;
int termmode;
int c;
bout = 0;
rlvl = band->rlvl;
cblk->stream = jas_stream_memopen(0, 0);
assert(cblk->stream);
cblk->mqenc = jpc_mqenc_create(JPC_NUMCTXS, cblk->stream);
assert(cblk->mqenc);
jpc_mqenc_setctxs(cblk->mqenc, JPC_NUMCTXS, jpc_mqctxs);
cblk->numpasses = (cblk->numbps > 0) ? (3 * cblk->numbps - 2) : 0;
if (cblk->numpasses > 0) {
cblk->passes = jas_malloc(cblk->numpasses * sizeof(jpc_enc_pass_t));
assert(cblk->passes);
} else {
cblk->passes = 0;
}
endpasses = (cblk->passes) ? &cblk->passes[cblk->numpasses] : 0;
for (pass = cblk->passes; pass != endpasses; ++pass) {
pass->start = 0;
pass->end = 0;
pass->term = JPC_ISTERMINATED(pass - cblk->passes, 0, cblk->numpasses, (tcmpt->cblksty & JPC_COX_TERMALL) != 0, (tcmpt->cblksty & JPC_COX_LAZY) != 0);
pass->type = JPC_SEGTYPE(pass - cblk->passes, 0, (tcmpt->cblksty & JPC_COX_LAZY) != 0);
pass->lyrno = -1;
if (pass == endpasses - 1) {
assert(pass->term == 1);
pass->term = 1;
}
}
cblk->flags = jas_matrix_create(jas_matrix_numrows(cblk->data) + 2,
jas_matrix_numcols(cblk->data) + 2);
assert(cblk->flags);
bitpos = cblk->numbps - 1;
pass = cblk->passes;
n = cblk->numpasses;
while (--n >= 0) {
if (pass->type == JPC_SEG_MQ) {
/* NOP */
} else {
assert(pass->type == JPC_SEG_RAW);
if (!bout) {
bout = jpc_bitstream_sopen(cblk->stream, "w");
assert(bout);
}
}
#if 1
passtype = (pass - cblk->passes + 2) % 3;
#else
passtype = JPC_PASSTYPE(pass - cblk->passes + 2);
#endif
pass->start = jas_stream_tell(cblk->stream);
#if 0
assert(jas_stream_tell(cblk->stream) == jas_stream_getrwcount(cblk->stream));
#endif
assert(bitpos >= 0);
vcausal = (tcmpt->cblksty & JPC_COX_VSC) != 0;
segsym = (tcmpt->cblksty & JPC_COX_SEGSYM) != 0;
if (pass->term) {
termmode = ((tcmpt->cblksty & JPC_COX_PTERM) ?
JPC_MQENC_PTERM : JPC_MQENC_DEFTERM) + 1;
} else {
termmode = 0;
}
switch (passtype) {
case JPC_SIGPASS:
ret = (pass->type == JPC_SEG_MQ) ? jpc_encsigpass(cblk->mqenc,
bitpos, band->orient, vcausal, cblk->flags,
cblk->data, termmode, &pass->nmsedec) :
jpc_encrawsigpass(bout, bitpos, vcausal, cblk->flags,
cblk->data, termmode, &pass->nmsedec);
break;
case JPC_REFPASS:
ret = (pass->type == JPC_SEG_MQ) ? jpc_encrefpass(cblk->mqenc,
bitpos, vcausal, cblk->flags, cblk->data, termmode,
&pass->nmsedec) : jpc_encrawrefpass(bout, bitpos,
vcausal, cblk->flags, cblk->data, termmode,
&pass->nmsedec);
break;
case JPC_CLNPASS:
assert(pass->type == JPC_SEG_MQ);
ret = jpc_encclnpass(cblk->mqenc, bitpos, band->orient,
vcausal, segsym, cblk->flags, cblk->data, termmode,
&pass->nmsedec);
break;
default:
assert(0);
break;
}
if (pass->type == JPC_SEG_MQ) {
if (pass->term) {
jpc_mqenc_init(cblk->mqenc);
}
jpc_mqenc_getstate(cblk->mqenc, &pass->mqencstate);
pass->end = jas_stream_tell(cblk->stream);
if (tcmpt->cblksty & JPC_COX_RESET) {
jpc_mqenc_setctxs(cblk->mqenc, JPC_NUMCTXS, jpc_mqctxs);
}
} else {
if (pass->term) {
if (jpc_bitstream_pending(bout)) {
jpc_bitstream_outalign(bout, 0x2a);
}
jpc_bitstream_close(bout);
bout = 0;
pass->end = jas_stream_tell(cblk->stream);
} else {
pass->end = jas_stream_tell(cblk->stream) +
jpc_bitstream_pending(bout);
/* NOTE - This will not work. need to adjust by # of pending output bytes */
}
}
#if 0
/* XXX - This assertion fails sometimes when various coding modes are used.
This seems to be harmless, but why does it happen at all? */
assert(jas_stream_tell(cblk->stream) == jas_stream_getrwcount(cblk->stream));
#endif
pass->wmsedec = jpc_fixtodbl(band->rlvl->tcmpt->synweight) *
jpc_fixtodbl(band->rlvl->tcmpt->synweight) *
jpc_fixtodbl(band->synweight) *
jpc_fixtodbl(band->synweight) *
jpc_fixtodbl(band->absstepsize) * jpc_fixtodbl(band->absstepsize) *
((double) (1 << bitpos)) * ((double)(1 << bitpos)) *
jpc_fixtodbl(pass->nmsedec);
pass->cumwmsedec = pass->wmsedec;
if (pass != cblk->passes) {
pass->cumwmsedec += pass[-1].cumwmsedec;
}
if (passtype == JPC_CLNPASS) {
--bitpos;
}
++pass;
}
#if 0
dump_passes(cblk->passes, cblk->numpasses, cblk);
#endif
n = 0;
endpasses = (cblk->passes) ? &cblk->passes[cblk->numpasses] : 0;
for (pass = cblk->passes; pass != endpasses; ++pass) {
if (pass->start < n) {
pass->start = n;
}
if (pass->end < n) {
pass->end = n;
}
if (!pass->term) {
termpass = pass;
while (termpass - pass < cblk->numpasses &&
!termpass->term) {
++termpass;
}
if (pass->type == JPC_SEG_MQ) {
t = (pass->mqencstate.lastbyte == 0xff) ? 1 : 0;
if (pass->mqencstate.ctreg >= 5) {
adjust = 4 + t;
} else {
adjust = 5 + t;
}
pass->end += adjust;
}
if (pass->end > termpass->end) {
pass->end = termpass->end;
}
if ((c = getthebyte(cblk->stream, pass->end - 1)) == EOF) {
abort();
}
if (c == 0xff) {
++pass->end;
}
n = JAS_MAX(n, pass->end);
} else {
n = JAS_MAX(n, pass->end);
}
}
#if 0
dump_passes(cblk->passes, cblk->numpasses, cblk);
#endif
if (bout) {
jpc_bitstream_close(bout);
}
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 123,428,018,505,788,780,000,000,000,000,000,000,000 | 210 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static jpc_enc_cp_t *cp_create(char *optstr, jas_image_t *image)
{
jpc_enc_cp_t *cp;
jas_tvparser_t *tvp;
int ret;
int numilyrrates;
double *ilyrrates;
int i;
int tagid;
jpc_enc_tcp_t *tcp;
jpc_enc_tccp_t *tccp;
jpc_enc_ccp_t *ccp;
int cmptno;
uint_fast16_t rlvlno;
uint_fast16_t prcwidthexpn;
uint_fast16_t prcheightexpn;
bool enablemct;
uint_fast32_t jp2overhead;
uint_fast16_t lyrno;
uint_fast32_t hsteplcm;
uint_fast32_t vsteplcm;
bool mctvalid;
tvp = 0;
cp = 0;
ilyrrates = 0;
numilyrrates = 0;
if (!(cp = jas_malloc(sizeof(jpc_enc_cp_t)))) {
goto error;
}
prcwidthexpn = 15;
prcheightexpn = 15;
enablemct = true;
jp2overhead = 0;
cp->ccps = 0;
cp->debug = 0;
cp->imgareatlx = UINT_FAST32_MAX;
cp->imgareatly = UINT_FAST32_MAX;
cp->refgrdwidth = 0;
cp->refgrdheight = 0;
cp->tilegrdoffx = UINT_FAST32_MAX;
cp->tilegrdoffy = UINT_FAST32_MAX;
cp->tilewidth = 0;
cp->tileheight = 0;
cp->numcmpts = jas_image_numcmpts(image);
hsteplcm = 1;
vsteplcm = 1;
for (cmptno = 0; cmptno < jas_image_numcmpts(image); ++cmptno) {
if (jas_image_cmptbrx(image, cmptno) + jas_image_cmpthstep(image, cmptno) <=
jas_image_brx(image) || jas_image_cmptbry(image, cmptno) +
jas_image_cmptvstep(image, cmptno) <= jas_image_bry(image)) {
jas_eprintf("unsupported image type\n");
goto error;
}
/* Note: We ought to be calculating the LCMs here. Fix some day. */
hsteplcm *= jas_image_cmpthstep(image, cmptno);
vsteplcm *= jas_image_cmptvstep(image, cmptno);
}
if (!(cp->ccps = jas_malloc(cp->numcmpts * sizeof(jpc_enc_ccp_t)))) {
goto error;
}
for (cmptno = 0, ccp = cp->ccps; cmptno < JAS_CAST(int, cp->numcmpts); ++cmptno,
++ccp) {
ccp->sampgrdstepx = jas_image_cmpthstep(image, cmptno);
ccp->sampgrdstepy = jas_image_cmptvstep(image, cmptno);
/* XXX - this isn't quite correct for more general image */
ccp->sampgrdsubstepx = 0;
ccp->sampgrdsubstepx = 0;
ccp->prec = jas_image_cmptprec(image, cmptno);
ccp->sgnd = jas_image_cmptsgnd(image, cmptno);
ccp->numstepsizes = 0;
memset(ccp->stepsizes, 0, sizeof(ccp->stepsizes));
}
cp->rawsize = jas_image_rawsize(image);
cp->totalsize = UINT_FAST32_MAX;
tcp = &cp->tcp;
tcp->csty = 0;
tcp->intmode = true;
tcp->prg = JPC_COD_LRCPPRG;
tcp->numlyrs = 1;
tcp->ilyrrates = 0;
tccp = &cp->tccp;
tccp->csty = 0;
tccp->maxrlvls = 6;
tccp->cblkwidthexpn = 6;
tccp->cblkheightexpn = 6;
tccp->cblksty = 0;
tccp->numgbits = 2;
if (!(tvp = jas_tvparser_create(optstr ? optstr : ""))) {
goto error;
}
while (!(ret = jas_tvparser_next(tvp))) {
switch (jas_taginfo_nonull(jas_taginfos_lookup(encopts,
jas_tvparser_gettag(tvp)))->id) {
case OPT_DEBUG:
cp->debug = atoi(jas_tvparser_getval(tvp));
break;
case OPT_IMGAREAOFFX:
cp->imgareatlx = atoi(jas_tvparser_getval(tvp));
break;
case OPT_IMGAREAOFFY:
cp->imgareatly = atoi(jas_tvparser_getval(tvp));
break;
case OPT_TILEGRDOFFX:
cp->tilegrdoffx = atoi(jas_tvparser_getval(tvp));
break;
case OPT_TILEGRDOFFY:
cp->tilegrdoffy = atoi(jas_tvparser_getval(tvp));
break;
case OPT_TILEWIDTH:
cp->tilewidth = atoi(jas_tvparser_getval(tvp));
break;
case OPT_TILEHEIGHT:
cp->tileheight = atoi(jas_tvparser_getval(tvp));
break;
case OPT_PRCWIDTH:
prcwidthexpn = jpc_floorlog2(atoi(jas_tvparser_getval(tvp)));
break;
case OPT_PRCHEIGHT:
prcheightexpn = jpc_floorlog2(atoi(jas_tvparser_getval(tvp)));
break;
case OPT_CBLKWIDTH:
tccp->cblkwidthexpn =
jpc_floorlog2(atoi(jas_tvparser_getval(tvp)));
break;
case OPT_CBLKHEIGHT:
tccp->cblkheightexpn =
jpc_floorlog2(atoi(jas_tvparser_getval(tvp)));
break;
case OPT_MODE:
if ((tagid = jas_taginfo_nonull(jas_taginfos_lookup(modetab,
jas_tvparser_getval(tvp)))->id) < 0) {
jas_eprintf("ignoring invalid mode %s\n",
jas_tvparser_getval(tvp));
} else {
tcp->intmode = (tagid == MODE_INT);
}
break;
case OPT_PRG:
if ((tagid = jas_taginfo_nonull(jas_taginfos_lookup(prgordtab,
jas_tvparser_getval(tvp)))->id) < 0) {
jas_eprintf("ignoring invalid progression order %s\n",
jas_tvparser_getval(tvp));
} else {
tcp->prg = tagid;
}
break;
case OPT_NOMCT:
enablemct = false;
break;
case OPT_MAXRLVLS:
tccp->maxrlvls = atoi(jas_tvparser_getval(tvp));
break;
case OPT_SOP:
cp->tcp.csty |= JPC_COD_SOP;
break;
case OPT_EPH:
cp->tcp.csty |= JPC_COD_EPH;
break;
case OPT_LAZY:
tccp->cblksty |= JPC_COX_LAZY;
break;
case OPT_TERMALL:
tccp->cblksty |= JPC_COX_TERMALL;
break;
case OPT_SEGSYM:
tccp->cblksty |= JPC_COX_SEGSYM;
break;
case OPT_VCAUSAL:
tccp->cblksty |= JPC_COX_VSC;
break;
case OPT_RESET:
tccp->cblksty |= JPC_COX_RESET;
break;
case OPT_PTERM:
tccp->cblksty |= JPC_COX_PTERM;
break;
case OPT_NUMGBITS:
cp->tccp.numgbits = atoi(jas_tvparser_getval(tvp));
break;
case OPT_RATE:
if (ratestrtosize(jas_tvparser_getval(tvp), cp->rawsize,
&cp->totalsize)) {
jas_eprintf("ignoring bad rate specifier %s\n",
jas_tvparser_getval(tvp));
}
break;
case OPT_ILYRRATES:
if (jpc_atoaf(jas_tvparser_getval(tvp), &numilyrrates,
&ilyrrates)) {
jas_eprintf("warning: invalid intermediate layer rates specifier ignored (%s)\n",
jas_tvparser_getval(tvp));
}
break;
case OPT_JP2OVERHEAD:
jp2overhead = atoi(jas_tvparser_getval(tvp));
break;
default:
jas_eprintf("warning: ignoring invalid option %s\n",
jas_tvparser_gettag(tvp));
break;
}
}
jas_tvparser_destroy(tvp);
tvp = 0;
if (cp->totalsize != UINT_FAST32_MAX) {
cp->totalsize = (cp->totalsize > jp2overhead) ?
(cp->totalsize - jp2overhead) : 0;
}
if (cp->imgareatlx == UINT_FAST32_MAX) {
cp->imgareatlx = 0;
} else {
if (hsteplcm != 1) {
jas_eprintf("warning: overriding imgareatlx value\n");
}
cp->imgareatlx *= hsteplcm;
}
if (cp->imgareatly == UINT_FAST32_MAX) {
cp->imgareatly = 0;
} else {
if (vsteplcm != 1) {
jas_eprintf("warning: overriding imgareatly value\n");
}
cp->imgareatly *= vsteplcm;
}
cp->refgrdwidth = cp->imgareatlx + jas_image_width(image);
cp->refgrdheight = cp->imgareatly + jas_image_height(image);
if (cp->tilegrdoffx == UINT_FAST32_MAX) {
cp->tilegrdoffx = cp->imgareatlx;
}
if (cp->tilegrdoffy == UINT_FAST32_MAX) {
cp->tilegrdoffy = cp->imgareatly;
}
if (!cp->tilewidth) {
cp->tilewidth = cp->refgrdwidth - cp->tilegrdoffx;
}
if (!cp->tileheight) {
cp->tileheight = cp->refgrdheight - cp->tilegrdoffy;
}
if (cp->numcmpts == 3) {
mctvalid = true;
for (cmptno = 0; cmptno < jas_image_numcmpts(image); ++cmptno) {
if (jas_image_cmptprec(image, cmptno) != jas_image_cmptprec(image, 0) ||
jas_image_cmptsgnd(image, cmptno) != jas_image_cmptsgnd(image, 0) ||
jas_image_cmptwidth(image, cmptno) != jas_image_cmptwidth(image, 0) ||
jas_image_cmptheight(image, cmptno) != jas_image_cmptheight(image, 0)) {
mctvalid = false;
}
}
} else {
mctvalid = false;
}
if (mctvalid && enablemct && jas_clrspc_fam(jas_image_clrspc(image)) != JAS_CLRSPC_FAM_RGB) {
jas_eprintf("warning: color space apparently not RGB\n");
}
if (mctvalid && enablemct && jas_clrspc_fam(jas_image_clrspc(image)) == JAS_CLRSPC_FAM_RGB) {
tcp->mctid = (tcp->intmode) ? (JPC_MCT_RCT) : (JPC_MCT_ICT);
} else {
tcp->mctid = JPC_MCT_NONE;
}
tccp->qmfbid = (tcp->intmode) ? (JPC_COX_RFT) : (JPC_COX_INS);
for (rlvlno = 0; rlvlno < tccp->maxrlvls; ++rlvlno) {
tccp->prcwidthexpns[rlvlno] = prcwidthexpn;
tccp->prcheightexpns[rlvlno] = prcheightexpn;
}
if (prcwidthexpn != 15 || prcheightexpn != 15) {
tccp->csty |= JPC_COX_PRT;
}
/* Ensure that the tile width and height is valid. */
if (!cp->tilewidth) {
jas_eprintf("invalid tile width %lu\n", (unsigned long)
cp->tilewidth);
goto error;
}
if (!cp->tileheight) {
jas_eprintf("invalid tile height %lu\n", (unsigned long)
cp->tileheight);
goto error;
}
/* Ensure that the tile grid offset is valid. */
if (cp->tilegrdoffx > cp->imgareatlx ||
cp->tilegrdoffy > cp->imgareatly ||
cp->tilegrdoffx + cp->tilewidth < cp->imgareatlx ||
cp->tilegrdoffy + cp->tileheight < cp->imgareatly) {
jas_eprintf("invalid tile grid offset (%lu, %lu)\n",
(unsigned long) cp->tilegrdoffx, (unsigned long)
cp->tilegrdoffy);
goto error;
}
cp->numhtiles = JPC_CEILDIV(cp->refgrdwidth - cp->tilegrdoffx,
cp->tilewidth);
cp->numvtiles = JPC_CEILDIV(cp->refgrdheight - cp->tilegrdoffy,
cp->tileheight);
cp->numtiles = cp->numhtiles * cp->numvtiles;
if (ilyrrates && numilyrrates > 0) {
tcp->numlyrs = numilyrrates + 1;
if (!(tcp->ilyrrates = jas_malloc((tcp->numlyrs - 1) *
sizeof(jpc_fix_t)))) {
goto error;
}
for (i = 0; i < JAS_CAST(int, tcp->numlyrs - 1); ++i) {
tcp->ilyrrates[i] = jpc_dbltofix(ilyrrates[i]);
}
}
/* Ensure that the integer mode is used in the case of lossless
coding. */
if (cp->totalsize == UINT_FAST32_MAX && (!cp->tcp.intmode)) {
jas_eprintf("cannot use real mode for lossless coding\n");
goto error;
}
/* Ensure that the precinct width is valid. */
if (prcwidthexpn > 15) {
jas_eprintf("invalid precinct width\n");
goto error;
}
/* Ensure that the precinct height is valid. */
if (prcheightexpn > 15) {
jas_eprintf("invalid precinct height\n");
goto error;
}
/* Ensure that the code block width is valid. */
if (cp->tccp.cblkwidthexpn < 2 || cp->tccp.cblkwidthexpn > 12) {
jas_eprintf("invalid code block width %d\n",
JPC_POW2(cp->tccp.cblkwidthexpn));
goto error;
}
/* Ensure that the code block height is valid. */
if (cp->tccp.cblkheightexpn < 2 || cp->tccp.cblkheightexpn > 12) {
jas_eprintf("invalid code block height %d\n",
JPC_POW2(cp->tccp.cblkheightexpn));
goto error;
}
/* Ensure that the code block size is not too large. */
if (cp->tccp.cblkwidthexpn + cp->tccp.cblkheightexpn > 12) {
jas_eprintf("code block size too large\n");
goto error;
}
/* Ensure that the number of layers is valid. */
if (cp->tcp.numlyrs > 16384) {
jas_eprintf("too many layers\n");
goto error;
}
/* There must be at least one resolution level. */
if (cp->tccp.maxrlvls < 1) {
jas_eprintf("must be at least one resolution level\n");
goto error;
}
/* Ensure that the number of guard bits is valid. */
if (cp->tccp.numgbits > 8) {
jas_eprintf("invalid number of guard bits\n");
goto error;
}
/* Ensure that the rate is within the legal range. */
if (cp->totalsize != UINT_FAST32_MAX && cp->totalsize > cp->rawsize) {
jas_eprintf("warning: specified rate is unreasonably large (%lu > %lu)\n", (unsigned long) cp->totalsize, (unsigned long) cp->rawsize);
}
/* Ensure that the intermediate layer rates are valid. */
if (tcp->numlyrs > 1) {
/* The intermediate layers rates must increase monotonically. */
for (lyrno = 0; lyrno + 2 < tcp->numlyrs; ++lyrno) {
if (tcp->ilyrrates[lyrno] >= tcp->ilyrrates[lyrno + 1]) {
jas_eprintf("intermediate layer rates must increase monotonically\n");
goto error;
}
}
/* The intermediate layer rates must be less than the overall rate. */
if (cp->totalsize != UINT_FAST32_MAX) {
for (lyrno = 0; lyrno < tcp->numlyrs - 1; ++lyrno) {
if (jpc_fixtodbl(tcp->ilyrrates[lyrno]) > ((double) cp->totalsize)
/ cp->rawsize) {
jas_eprintf("warning: intermediate layer rates must be less than overall rate\n");
goto error;
}
}
}
}
if (ilyrrates) {
jas_free(ilyrrates);
}
return cp;
error:
if (ilyrrates) {
jas_free(ilyrrates);
}
if (tvp) {
jas_tvparser_destroy(tvp);
}
if (cp) {
jpc_enc_cp_destroy(cp);
}
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 125,396,284,344,187,150,000,000,000,000,000,000,000 | 427 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
int jpc_ppxstab_grow(jpc_ppxstab_t *tab, int maxents)
{
jpc_ppxstabent_t **newents;
if (tab->maxents < maxents) {
newents = (tab->ents) ? jas_realloc(tab->ents, maxents *
sizeof(jpc_ppxstabent_t *)) : jas_malloc(maxents * sizeof(jpc_ppxstabent_t *));
if (!newents) {
return -1;
}
tab->ents = newents;
tab->maxents = maxents;
}
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 99,597,830,161,967,300,000,000,000,000,000,000,000 | 14 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jp2_cdef_getdata(jp2_box_t *box, jas_stream_t *in)
{
jp2_cdef_t *cdef = &box->data.cdef;
jp2_cdefchan_t *chan;
unsigned int channo;
if (jp2_getuint16(in, &cdef->numchans)) {
return -1;
}
if (!(cdef->ents = jas_malloc(cdef->numchans * sizeof(jp2_cdefchan_t)))) {
return -1;
}
for (channo = 0; channo < cdef->numchans; ++channo) {
chan = &cdef->ents[channo];
if (jp2_getuint16(in, &chan->channo) || jp2_getuint16(in, &chan->type) ||
jp2_getuint16(in, &chan->assoc)) {
return -1;
}
}
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 222,193,464,067,967,000,000,000,000,000,000,000,000 | 20 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jas_iccattrtab_resize(jas_iccattrtab_t *tab, int maxents)
{
jas_iccattr_t *newattrs;
assert(maxents >= tab->numattrs);
newattrs = tab->attrs ? jas_realloc(tab->attrs, maxents *
sizeof(jas_iccattr_t)) : jas_malloc(maxents * sizeof(jas_iccattr_t));
if (!newattrs)
return -1;
tab->attrs = newattrs;
tab->maxattrs = maxents;
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 54,012,279,870,042,910,000,000,000,000,000,000,000 | 12 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jpc_dec_process_sot(jpc_dec_t *dec, jpc_ms_t *ms)
{
jpc_dec_tile_t *tile;
jpc_sot_t *sot = &ms->parms.sot;
jas_image_cmptparm_t *compinfos;
jas_image_cmptparm_t *compinfo;
jpc_dec_cmpt_t *cmpt;
int cmptno;
if (dec->state == JPC_MH) {
compinfos = jas_malloc(dec->numcomps * sizeof(jas_image_cmptparm_t));
assert(compinfos);
for (cmptno = 0, cmpt = dec->cmpts, compinfo = compinfos;
cmptno < dec->numcomps; ++cmptno, ++cmpt, ++compinfo) {
compinfo->tlx = 0;
compinfo->tly = 0;
compinfo->prec = cmpt->prec;
compinfo->sgnd = cmpt->sgnd;
compinfo->width = cmpt->width;
compinfo->height = cmpt->height;
compinfo->hstep = cmpt->hstep;
compinfo->vstep = cmpt->vstep;
}
if (!(dec->image = jas_image_create(dec->numcomps, compinfos,
JAS_CLRSPC_UNKNOWN))) {
return -1;
}
jas_free(compinfos);
/* Is the packet header information stored in PPM marker segments in
the main header? */
if (dec->ppmstab) {
/* Convert the PPM marker segment data into a collection of streams
(one stream per tile-part). */
if (!(dec->pkthdrstreams = jpc_ppmstabtostreams(dec->ppmstab))) {
abort();
}
jpc_ppxstab_destroy(dec->ppmstab);
dec->ppmstab = 0;
}
}
if (sot->len > 0) {
dec->curtileendoff = jas_stream_getrwcount(dec->in) - ms->len -
4 + sot->len;
} else {
dec->curtileendoff = 0;
}
if (JAS_CAST(int, sot->tileno) >= dec->numtiles) {
jas_eprintf("invalid tile number in SOT marker segment\n");
return -1;
}
/* Set the current tile. */
dec->curtile = &dec->tiles[sot->tileno];
tile = dec->curtile;
/* Ensure that this is the expected part number. */
if (sot->partno != tile->partno) {
return -1;
}
if (tile->numparts > 0 && sot->partno >= tile->numparts) {
return -1;
}
if (!tile->numparts && sot->numparts > 0) {
tile->numparts = sot->numparts;
}
tile->pptstab = 0;
switch (tile->state) {
case JPC_TILE_INIT:
/* This is the first tile-part for this tile. */
tile->state = JPC_TILE_ACTIVE;
assert(!tile->cp);
if (!(tile->cp = jpc_dec_cp_copy(dec->cp))) {
return -1;
}
jpc_dec_cp_resetflags(dec->cp);
break;
default:
if (sot->numparts == sot->partno - 1) {
tile->state = JPC_TILE_ACTIVELAST;
}
break;
}
/* Note: We do not increment the expected tile-part number until
all processing for this tile-part is complete. */
/* We should expect to encounter other tile-part header marker
segments next. */
dec->state = JPC_TPH;
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 291,119,543,631,133,420,000,000,000,000,000,000,000 | 97 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |
static int jpc_dec_process_siz(jpc_dec_t *dec, jpc_ms_t *ms)
{
jpc_siz_t *siz = &ms->parms.siz;
int compno;
int tileno;
jpc_dec_tile_t *tile;
jpc_dec_tcomp_t *tcomp;
int htileno;
int vtileno;
jpc_dec_cmpt_t *cmpt;
dec->xstart = siz->xoff;
dec->ystart = siz->yoff;
dec->xend = siz->width;
dec->yend = siz->height;
dec->tilewidth = siz->tilewidth;
dec->tileheight = siz->tileheight;
dec->tilexoff = siz->tilexoff;
dec->tileyoff = siz->tileyoff;
dec->numcomps = siz->numcomps;
if (!(dec->cp = jpc_dec_cp_create(dec->numcomps))) {
return -1;
}
if (!(dec->cmpts = jas_malloc(dec->numcomps * sizeof(jpc_dec_cmpt_t)))) {
return -1;
}
for (compno = 0, cmpt = dec->cmpts; compno < dec->numcomps; ++compno,
++cmpt) {
cmpt->prec = siz->comps[compno].prec;
cmpt->sgnd = siz->comps[compno].sgnd;
cmpt->hstep = siz->comps[compno].hsamp;
cmpt->vstep = siz->comps[compno].vsamp;
cmpt->width = JPC_CEILDIV(dec->xend, cmpt->hstep) -
JPC_CEILDIV(dec->xstart, cmpt->hstep);
cmpt->height = JPC_CEILDIV(dec->yend, cmpt->vstep) -
JPC_CEILDIV(dec->ystart, cmpt->vstep);
cmpt->hsubstep = 0;
cmpt->vsubstep = 0;
}
dec->image = 0;
dec->numhtiles = JPC_CEILDIV(dec->xend - dec->tilexoff, dec->tilewidth);
dec->numvtiles = JPC_CEILDIV(dec->yend - dec->tileyoff, dec->tileheight);
dec->numtiles = dec->numhtiles * dec->numvtiles;
if (!(dec->tiles = jas_malloc(dec->numtiles * sizeof(jpc_dec_tile_t)))) {
return -1;
}
for (tileno = 0, tile = dec->tiles; tileno < dec->numtiles; ++tileno,
++tile) {
htileno = tileno % dec->numhtiles;
vtileno = tileno / dec->numhtiles;
tile->realmode = 0;
tile->state = JPC_TILE_INIT;
tile->xstart = JAS_MAX(dec->tilexoff + htileno * dec->tilewidth,
dec->xstart);
tile->ystart = JAS_MAX(dec->tileyoff + vtileno * dec->tileheight,
dec->ystart);
tile->xend = JAS_MIN(dec->tilexoff + (htileno + 1) *
dec->tilewidth, dec->xend);
tile->yend = JAS_MIN(dec->tileyoff + (vtileno + 1) *
dec->tileheight, dec->yend);
tile->numparts = 0;
tile->partno = 0;
tile->pkthdrstream = 0;
tile->pkthdrstreampos = 0;
tile->pptstab = 0;
tile->cp = 0;
if (!(tile->tcomps = jas_malloc(dec->numcomps *
sizeof(jpc_dec_tcomp_t)))) {
return -1;
}
for (compno = 0, cmpt = dec->cmpts, tcomp = tile->tcomps;
compno < dec->numcomps; ++compno, ++cmpt, ++tcomp) {
tcomp->rlvls = 0;
tcomp->data = 0;
tcomp->xstart = JPC_CEILDIV(tile->xstart, cmpt->hstep);
tcomp->ystart = JPC_CEILDIV(tile->ystart, cmpt->vstep);
tcomp->xend = JPC_CEILDIV(tile->xend, cmpt->hstep);
tcomp->yend = JPC_CEILDIV(tile->yend, cmpt->vstep);
tcomp->tsfb = 0;
}
}
dec->pkthdrstreams = 0;
/* We should expect to encounter other main header marker segments
or an SOT marker segment next. */
dec->state = JPC_MH;
return 0;
} | 1 | [
"CWE-189"
] | jasper | 3c55b399c36ef46befcb21e4ebc4799367f89684 | 201,810,773,123,124,160,000,000,000,000,000,000,000 | 95 | At many places in the code, jas_malloc or jas_recalloc was being
invoked with the size argument being computed in a manner that would not
allow integer overflow to be detected. Now, these places in the code
have been modified to use special-purpose memory allocation functions
(e.g., jas_alloc2, jas_alloc3, jas_realloc2) that check for overflow.
This should fix many security problems. |