task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Processing
Processing
int a = 7, b = 5;   println(a + " + " + b + " = " + (a + b)); println(a + " - " + b + " = " + (a - b)); println(a + " * " + b + " = " + (a * b)); println(a + " / " + b + " = " + (a / b)); //Rounds towards zero println(a + " % " + b + " = " + (a % b)); //Same sign as first operand
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#ProDOS
ProDOS
IGNORELINE Note: This example includes the math module. include arithmeticmodule :a editvar /newvar /value=a /title=Enter first integer: editvar /newvar /value=b /title=Enter second integer: editvar /newvar /value=c do add -a-,-b-=-c- printline -c- do subtract a,b printline -c- do multiply a,b printline -c- do divide a,b printline -c- do modulus a,b printline -c- editvar /newvar /value=d /title=Do you want to calculate more numbers? if -d- /hasvalue yes goto :a else goto :end :end
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#360_Assembly
360 Assembly
* Arrays 04/09/2015 ARRAYS PROLOG * we use TA array with 1 as origin. So TA(1) to TA(20) * ta(i)=ta(j) L R1,J j BCTR R1,0 -1 SLA R1,2 r1=(j-1)*4 (*4 by shift left) L R0,TA(R1) load r0 with ta(j) L R1,I i BCTR R1,0 -1 SLA R1,2 r1=(i-1)*4 (*4 by shift left) ST R0,TA(R1) store r0 to ta(i) EPILOG * Array of 20 integers (32 bits) (4 bytes) TA DS 20F * Initialized array of 10 integers (32 bits) TB DC 10F'0' * Initialized array of 10 integers (32 bits) TC DC F'1',F'2',F'3',F'4',F'5',F'6',F'7',F'8',F'9',F'10' * Array of 10 integers (16 bits) TD DS 10H * Array of 10 strings of 8 characters (initialized) TE DC 10CL8' ' * Array of 10 double precision floating point reals (64 bits) TF DS 10D * I DC F'2' J DC F'4' YREGS END ARRAYS
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Prolog
Prolog
    print_expression_and_result(M, N, Operator) :- Expression =.. [Operator, M, N], Result is Expression, format('~w ~8|is ~d~n', [Expression, Result]).   arithmetic_integer :- read(M), read(N), maplist( print_expression_and_result(M, N), [+,-,*,//,rem,^] ).    
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#6502_Assembly
6502 Assembly
Array: db 5,10,15,20,25,30,35,40,45,50
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#PureBasic
PureBasic
OpenConsole()   Define a, b   Print("Number 1: "): a = Val(Input()) Print("Number 2: "): b = Val(Input())   PrintN("Sum: " + Str(a + b)) PrintN("Difference: " + Str(a - b)) PrintN("Product: " + Str(a * b)) PrintN("Quotient: " + Str(a / b)) ; Integer division (rounding mode=truncate) PrintN("Remainder: " + Str(a % b)) PrintN("Power: " + Str(Pow(a, b)))   Input()   CloseConsole()
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#68000_Assembly
68000 Assembly
MOVE.L #$00100000,A0 ;define an array at memory address $100000
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Python
Python
x = int(raw_input("Number 1: ")) y = int(raw_input("Number 2: "))   print "Sum: %d" % (x + y) print "Difference: %d" % (x - y) print "Product: %d" % (x * y) print "Quotient: %d" % (x / y) # or x // y for newer python versions. # truncates towards negative infinity print "Remainder: %d" % (x % y) # same sign as second operand print "Quotient: %d with Remainder: %d" % divmod(x, y) print "Power: %d" % x**y   ## Only used to keep the display up when the program ends raw_input( )
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#8051_Assembly
8051 Assembly
; constant array (elements are unchangeable) - the array is stored in the CODE segment myarray db 'Array' ; db = define bytes - initializes 5 bytes with values 41, 72, 72, etc. (the ascii characters A,r,r,a,y) myarray2 dw 'A','r','r','a','y' ; dw = define words - initializes 5 words (1 word = 2 bytes) with values 41 00 , 72 00, 72 00, etc. ; how to read index a of the array push acc push dph push dpl mov dpl,#low(myarray) ; location of array mov dph,#high(myarray) movc a,@a+dptr ; a = element a mov r0, a ; r0 = element a pop dpl pop dph pop acc ; a = original index again   ; array stored in internal RAM (A_START is the first register of the array, A_END is the last) ; initalise array data (with 0's) push 0 mov r0, #A_START clear: mov @r0, #0 inc r0 cjne r0, #A_END, clear pop 0 ; how to read index r1 of array push psw mov a, #A_START add a, r1 ; a = memory location of element r1 push 0 mov r0, a mov a, @r0 ; a = element r1 pop 0 pop psw ; how to write value of acc into index r1 of array push psw push 0 push acc mov a, #A_START add a, r1 mov r0, a pop acc mov @r0, a ; element r1 = a pop 0 pop psw   ; array stored in external RAM (A_START is the first memory location of the array, LEN is the length) ; initalise array data (with 0's) push dph push dpl push acc push 0 mov dptr, #A_START clr a mov r0, #LEN clear: movx @dptr, a inc dptr djnz r0, clear pop 0 pop acc pop dpl pop dph ; how to read index r1 of array push dph push dpl push 0 mov dptr, #A_START-1 mov r0, r1 inc r0 loop: inc dptr djnz r0, loop movx a, @dptr ; a = element r1 pop 0 pop dpl pop dph ; how to write value of acc into index r1 of array push dph push dpl push 0 mov dptr, #A_START-1 mov r0, r1 inc r0 loop: inc dptr djnz r0, loop movx @dptr, a ; element r1 = a pop 0 pop dpl pop dph    
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Python_3.x_Long_Form
Python 3.x Long Form
input1 = 18 # input1 = input() input2 = 7 # input2 = input()   qq = input1 + input2 print("Sum: " + str(qq)) ww = input1 - input2 print("Difference: " + str(ww)) ee = input1 * input2 print("Product: " + str(ee)) rr = input1 / input2 print("Integer quotient: " + str(int(rr))) print("Float quotient: " + str(float(rr))) tt = float(input1 / input2) uu = (int(tt) - float(tt))*-10 #print(tt) print("Whole Remainder: " + str(int(uu))) print("Actual Remainder: " + str(uu)) yy = input1 ** input2 print("Exponentiation: " + str(yy))
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#8th
8th
  [ 1 , 2 ,3 ] \ an array holding three numbers 1 a:@ \ this will be '2', the element at index 1 drop 1 123 a:@ \ this will store the value '123' at index 1, so now . \ will print [1,123,3]   [1,2,3] 45 a:push \ gives us [1,2,3,45] \ and empty spots are filled with null: [1,2,3] 5 15 a:! \ gives [1,2,3,null,15]   \ arrays don't have to be homogenous: [1,"one", 2, "two"]  
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#QB64
QB64
START: INPUT "Enter two integers (a,b):"; a!, b! IF a = 0 THEN END IF b = 0 THEN PRINT "Second integer is zero. Zero not allowed for Quotient or Remainder." GOTO START END IF PRINT PRINT " Sum = "; a + b PRINT " Difference = "; a - b PRINT " Product = "; a * b ' Notice the use of the INTEGER Divisor "\" as opposed to the regular divisor "/". PRINT "Integer Quotient = "; a \ b, , "* Rounds toward 0." PRINT " Remainder = "; a MOD b, , "* Sign matches first operand." PRINT " Exponentiation = "; a ^ b PRINT INPUT "Again? (y/N)"; a$ IF UCASE$(a$) = "Y" THEN CLS: GOTO START CLS END
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#AArch64_Assembly
AArch64 Assembly
  /* ARM assembly AARCH64 Raspberry PI 3B */ /* program areaString64.s */   /*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly*/ .include "../includeConstantesARM64.inc" /*******************************************/ /* Initialized data */ /*******************************************/ .data szMessStringsch: .ascii "The string is at item : @ \n" szCarriageReturn: .asciz "\n" szMessStringNfound: .asciz "The string is not found in this area.\n"   /* areas strings */ szString1: .asciz "Apples" szString2: .asciz "Oranges" szString3: .asciz "Pommes" szString4: .asciz "Raisins" szString5: .asciz "Abricots"   /* pointer items area 1*/ tablesPoi1: pt1_1: .quad szString1 pt1_2: .quad szString2 pt1_3: .quad szString3 pt1_4: .quad szString4 ptVoid_1: .quad 0 ptVoid_2: .quad 0 ptVoid_3: .quad 0 ptVoid_4: .quad 0 ptVoid_5: .quad 0   szStringSch: .asciz "Raisins" szStringSch1: .asciz "Ananas" /*******************************************/ /* UnInitialized data */ /*******************************************/ .bss sZoneConv: .skip 30 /*******************************************/ /* code section */ /*******************************************/ .text .global main main: // entry of program   // add string 5 to area ldr x1,qAdrtablesPoi1 // begin pointer area 1 mov x0,0 // counter 1: // search first void pointer ldr x2,[x1,x0,lsl 3] // read string pointer address item x0 (4 bytes by pointer) cmp x2,0 // is null ? cinc x0,x0,ne // no increment counter bne 1b // and loop   // store pointer string 5 in area at position x0 ldr x2,qAdrszString5 // address string 5 str x2,[x1,x0,lsl 3] // store address   // display string at item 3 mov x2,2 // pointers begin in position 0 ldr x1,qAdrtablesPoi1 // begin pointer area 1 ldr x0,[x1,x2,lsl 3] bl affichageMess ldr x0,qAdrszCarriageReturn bl affichageMess   // search string in area ldr x1,qAdrszStringSch //ldr x1,qAdrszStringSch1 // uncomment for other search : not found !! ldr x2,qAdrtablesPoi1 // begin pointer area 1 mov x3,0 2: // search ldr x0,[x2,x3,lsl 3] // read string pointer address item x0 (4 bytes by pointer) cbz x0,3f // is null ? end search bl comparString cmp x0,0 // string = ? cinc x3,x3,ne // no increment counter bne 2b // and loop mov x0,x3 // position item string ldr x1,qAdrsZoneConv // conversion decimal bl conversion10S ldr x0,qAdrszMessStringsch ldr x1,qAdrsZoneConv bl strInsertAtCharInc // insert result at @ character bl affichageMess b 100f 3: // end search string not found ldr x0,qAdrszMessStringNfound bl affichageMess   100: // standard end of the program mov x0, 0 // return code mov x8,EXIT // request to exit program svc 0 // perform the system call qAdrtablesPoi1: .quad tablesPoi1 qAdrszMessStringsch: .quad szMessStringsch qAdrszString5: .quad szString5 qAdrszStringSch: .quad szStringSch qAdrszStringSch1: .quad szStringSch1 qAdrsZoneConv: .quad sZoneConv qAdrszMessStringNfound: .quad szMessStringNfound qAdrszCarriageReturn: .quad szCarriageReturn /************************************/ /* Strings comparaison */ /************************************/ /* x0 et x1 contains strings addresses */ /* x0 return 0 if equal */ /* return -1 if string x0 < string x1 */ /* return 1 if string x0 > string x1 */ comparString: stp x2,lr,[sp,-16]! // save registers stp x3,x4,[sp,-16]! // save registers mov x2,#0 // indice 1: ldrb w3,[x0,x2] // one byte string 1 ldrb w4,[x1,x2] // one byte string 2 cmp w3,w4 blt 2f // less bgt 3f // greather cmp w3,#0 // 0 final beq 4f // equal and end add x2,x2,#1 // b 1b // else loop 2: mov x0,#-1 // less b 100f 3: mov x0,#1 // greather b 100f 4: mov x0,#0 // equal b 100f 100: ldp x3,x4,[sp],16 // restaur 2 registers ldp x2,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc"  
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Quackery
Quackery
$ "Please enter two integers separated by a space. " input quackery 2dup say "Their sum is: " + echo cr 2dup say "Their difference is: " - echo cr 2dup say "Their product is: " " * echo cr 2dup say "Their integer quotient is: " / echo cr 2dup say "Their remainder is: " mod echo cr say "Their exponentiation is: " ** echo cr cr say "Quotient rounds towards negative infinity." cr say "Remainder matches the sign of the second argument."
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#ABAP
ABAP
  TYPES: tty_int TYPE STANDARD TABLE OF i WITH NON-UNIQUE DEFAULT KEY.   DATA(itab) = VALUE tty_int( ( 1 ) ( 2 ) ( 3 ) ).   INSERT 4 INTO TABLE itab. APPEND 5 TO itab. DELETE itab INDEX 1.   cl_demo_output=>display( itab ). cl_demo_output=>display( itab[ 2 ] ).  
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#R
R
cat("insert number ") a <- scan(nmax=1, quiet=TRUE) cat("insert number ") b <- scan(nmax=1, quiet=TRUE) print(paste('a+b=', a+b)) print(paste('a-b=', a-b)) print(paste('a*b=', a*b)) print(paste('a%/%b=', a%/%b)) print(paste('a%%b=', a%%b)) print(paste('a^b=', a^b))  
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#ACL2
ACL2
;; Create an array and store it in array-example (assign array-example (compress1 'array-example (list '(:header :dimensions (10) :maximum-length 11))))   ;; Set a[5] to 22 (assign array-example (aset1 'array-example (@ array-example) 5 22))   ;; Get a[5] (aref1 'array-example (@ array-example) 5)
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Racket
Racket
  #lang racket/base   (define (arithmetic x y) (for ([op (list + - * / quotient remainder modulo max min gcd lcm)]) (printf "~s => ~s\n" `(,(object-name op) ,x ,y) (op x y))))   (arithmetic 8 12)  
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Raku
Raku
my Int $a = get.floor; my Int $b = get.floor;   say 'sum: ', $a + $b; say 'difference: ', $a - $b; say 'product: ', $a * $b; say 'integer quotient: ', $a div $b; say 'remainder: ', $a % $b; say 'exponentiation: ', $a**$b;
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#Action.21
Action!
PROC Main() BYTE i    ;array storing 4 INT items with initialized values  ;negative values must be written as 16-bit unsigned numbers INT ARRAY a=[3 5 71 65535]    ;array storing 4 CARD items whithout initialization of values CARD ARRAY b(3)    ;array of BYTE items without allocation,  ;it may be used as an pointer for another array BYTE ARRAY c    ;array of 1+7 CHAR items or a string  ;the first item stores length of the string CHAR ARRAY s="abcde"   PrintE("Array with initialized values:") FOR i=0 TO 3 DO PrintF("a(%I)=%I ",i,a(i)) OD PutE() PutE()   PrintE("Array before initialization of items:") FOR i=0 TO 3 DO PrintF("b(%I)=%B ",i,b(i)) OD PutE() PutE()   FOR i=0 TO 3 DO b(i)=100+i OD PrintE("After initialization:") FOR i=0 TO 3 DO PrintF("b(%I)=%B ",i,b(i)) OD PutE() PutE()   PrintE("Array of chars. The first item stores the length of string:") FOR i=0 TO s(0) DO PrintF("s(%B)='%C ",i,s(i)) OD PutE() PutE()   PrintE("As the string:") PrintF("s=""%S""%E%E",s)   c=s PrintE("Unallocated array as a pointer to another array. In this case c=s:") FOR i=0 TO s(0) DO PrintF("c(%B)=%B ",i,c(i)) OD RETURN
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Raven
Raven
' Number 1: ' print expect 0 prefer as x ' Number 2: ' print expect 0 prefer as y   x y + " sum: %d\n" print x y - "difference: %d\n" print x y * " product: %d\n" print x y / " quotient: %d\n" print x y % " remainder: %d\n" print
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#REBOL
REBOL
rebol [ Title: "Integer" URL: http://rosettacode.org/wiki/Arithmetic/Integer ]   x: to-integer ask "Please type in an integer, and press [enter]: " y: to-integer ask "Please enter another integer: " print ""   print ["Sum:" x + y] print ["Difference:" x - y] print ["Product:" x * y]   print ["Integer quotient (coercion)  :" to-integer x / y] print ["Integer quotient (away from zero)  :" round x / y] print ["Integer quotient (halves round towards even digits)  :" round/even x / y] print ["Integer quotient (halves round towards zero)  :" round/half-down x / y] print ["Integer quotient (round in negative direction)  :" round/floor x / y] print ["Integer quotient (round in positive direction)  :" round/ceiling x / y] print ["Integer quotient (halves round in positive direction):" round/half-ceiling x / y]   print ["Remainder:" r: x // y]   ; REBOL evaluates infix expressions from left to right. There are no ; precedence rules -- whatever is first gets evaluated. Therefore when ; performing this comparison, I put parens around the first term ; ("sign? a") of the expression so that the value of /a/ isn't ; compared to the sign of /b/. To make up for it, notice that I don't ; have to use a specific return keyword. The final value in the ; function is returned automatically.   match?: func [a b][(sign? a) = sign? b]   result: copy [] if match? r x [append result "first"] if match? r y [append result "second"]   ; You can evaluate arbitrary expressions in the middle of a print, so ; I use a "switch" to provide a more readable result based on the ; length of the /results/ list.   print [ "Remainder sign matches:" switch length? result [ 0 ["neither"] 1 [result/1] 2 ["both"] ] ]   print ["Exponentiation:" x ** y]
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#ActionScript
ActionScript
//creates an array of length 10 var array1:Array = new Array(10); //creates an array with the values 1, 2 var array2:Array = new Array(1,2); //arrays can also be set using array literals var array3:Array = ["foo", "bar"]; //to resize an array, modify the length property array2.length = 3; //arrays can contain objects of multiple types. array2[2] = "Hello"; //get a value from an array trace(array2[2]); //append a value to an array array2.push(4); //get and remove the last element of an array trace(array2.pop());
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Relation
Relation
  set a = -17 set b = 4 echo "a+b = ".format(a+b,"%1d") echo "a-b = ".format(a-b,"%1d") echo "a*b = ".format(a*b,"%1d") echo "a DIV b = ".format(floor(a/b),"%1d") echo "a MOD b = ".format(a mod b,"%1d") echo "a^b = ".format(pow(a,b),"%1d")  
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#ReScript
ReScript
let a = int_of_string(Sys.argv[2]) let b = int_of_string(Sys.argv[3])   let sum = a + b let difference = a - b let product = a * b let division = a / b let remainder = mod(a, b)   Js.log("a + b = " ++ string_of_int(sum)) Js.log("a - b = " ++ string_of_int(difference)) Js.log("a * b = " ++ string_of_int(product)) Js.log("a / b = " ++ string_of_int(division)) Js.log("a % b = " ++ string_of_int(remainder))
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#Ada
Ada
procedure Array_Test is   A, B : array (1..20) of Integer;   -- Ada array indices may begin at any value, not just 0 or 1 C : array (-37..20) of integer   -- Ada arrays may be indexed by enumerated types, which are -- discrete non-numeric types type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun); type Activities is (Work, Fish); type Daily_Activities is array(Days) of Activities; This_Week : Daily_Activities := (Mon..Fri => Work, Others => Fish);   -- Or any numeric type type Fingers is range 1..4; -- exclude thumb type Fingers_Extended_Type is array(fingers) of Boolean; Fingers_Extended : Fingers_Extended_Type;   -- Array types may be unconstrained. The variables of the type -- must be constrained type Arr is array (Integer range <>) of Integer; Uninitialized : Arr (1 .. 10); Initialized_1 : Arr (1 .. 20) := (others => 1); Initialized_2 : Arr := (1 .. 30 => 2); Const  : constant Arr := (1 .. 10 => 1, 11 .. 20 => 2, 21 | 22 => 3); Centered  : Arr (-50..50) := (0 => 1, Others => 0);   Result  : Integer begin   A := (others => 0); -- Assign whole array B := (1 => 1, 2 => 1, 3 => 2, others => 0); -- Assign whole array, different values A (1) := -1; -- Assign individual element A (2..4) := B (1..3); -- Assign a slice A (3..5) := (2, 4, -1); -- Assign a constant slice A (3..5) := A (4..6); -- It is OK to overlap slices when assigned   Fingers_Extended'First := False; -- Set first element of array Fingers_Extended'Last := False; -- Set last element of array   end Array_Test;
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Retro
Retro
:arithmetic (ab-) over '\na_______=_%n s:put dup '\nb_______=_%n s:put dup-pair + '\na_+_b___=_%n s:put dup-pair - '\na_-_b___=_%n s:put dup-pair * '\na_*_b___=_%n s:put /mod '\na_/_b___=_%n s:put '\na_mod_b_=_%n\n" s:put ;
http://rosettacode.org/wiki/Arithmetic-geometric_mean/Calculate_Pi
Arithmetic-geometric mean/Calculate Pi
Almkvist Berndt 1988 begins with an investigation of why the agm is such an efficient algorithm, and proves that it converges quadratically. This is an efficient method to calculate π {\displaystyle \pi } . With the same notations used in Arithmetic-geometric mean, we can summarize the paper by writing: π = 4 a g m ( 1 , 1 / 2 ) 2 1 − ∑ n = 1 ∞ 2 n + 1 ( a n 2 − g n 2 ) {\displaystyle \pi ={\frac {4\;\mathrm {agm} (1,1/{\sqrt {2}})^{2}}{1-\sum \limits _{n=1}^{\infty }2^{n+1}(a_{n}^{2}-g_{n}^{2})}}} This allows you to make the approximation, for any large   N: π ≈ 4 a N 2 1 − ∑ k = 1 N 2 k + 1 ( a k 2 − g k 2 ) {\displaystyle \pi \approx {\frac {4\;a_{N}^{2}}{1-\sum \limits _{k=1}^{N}2^{k+1}(a_{k}^{2}-g_{k}^{2})}}} The purpose of this task is to demonstrate how to use this approximation in order to compute a large number of decimals of π {\displaystyle \pi } .
#C
C
#include "gmp.h"   void agm (const mpf_t in1, const mpf_t in2, mpf_t out1, mpf_t out2) { mpf_add (out1, in1, in2); mpf_div_ui (out1, out1, 2); mpf_mul (out2, in1, in2); mpf_sqrt (out2, out2); }   int main (void) { mpf_set_default_prec (300000); mpf_t x0, y0, resA, resB, Z, var;   mpf_init_set_ui (x0, 1); mpf_init_set_d (y0, 0.5); mpf_sqrt (y0, y0); mpf_init (resA); mpf_init (resB); mpf_init_set_d (Z, 0.25); mpf_init (var);   int n = 1; int i; for(i=0; i<8; i++){ agm(x0, y0, resA, resB); mpf_sub(var, resA, x0); mpf_mul(var, var, var); mpf_mul_ui(var, var, n); mpf_sub(Z, Z, var); n += n; agm(resA, resB, x0, y0); mpf_sub(var, x0, resA); mpf_mul(var, var, var); mpf_mul_ui(var, var, n); mpf_sub(Z, Z, var); n += n; } mpf_mul(x0, x0, x0); mpf_div(x0, x0, Z); gmp_printf ("%.100000Ff\n", x0); return 0; }
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#Aikido
Aikido
  var arr1 = [1,2,3,4] // initialize with array literal var arr2 = new [10] // empty array of 10 elements (each element has value none) var arr3 = new int [40] // array of 40 integers var arr4 = new Object (1,2) [10] // array of 10 instances of Object   arr1.append (5) // add to array var b = 4 in arr1 // check for inclusion arr1 <<= 2 // remove first 2 elements from array var arrx = arr1[1:3] // get slice of array var s = arr1.size() // or sizeof(arr1) delete arr4[2] // remove an element from an array   var arr5 = arr1 + arr2 // append arrays var arr6 = arr1 | arr2 // union var arr7 = arr1 & arr2 // intersection    
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#REXX
REXX
/*REXX program obtains two integers from the C.L. (a prompt); displays some operations.*/ numeric digits 20 /*#s are round at 20th significant dig.*/ parse arg x y . /*maybe the integers are on the C.L. */   do while \datatype(x,'W') | \datatype(y,'W') /*both X and Y must be integers. */ say "─────Enter two integer values (separated by blanks):" parse pull x y . /*accept two thingys from command line.*/ end /*while*/ /* [↓] perform this DO loop twice. */ do j=1 for 2 /*show A oper B, then B oper A.*/ call show 'addition' , "+", x+y call show 'subtraction' , "-", x-y call show 'multiplication' , "*", x*y call show 'int division' , "%", x%y, ' [rounds down]' call show 'real division' , "/", x/y call show 'division remainder', "//", x//y, ' [sign from 1st operand]' call show 'power' , "**", x**y   parse value x y with y x /*swap the two values and perform again*/ if j==1 then say copies('═', 79) /*display a fence after the 1st round. */ end /*j*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ show: parse arg c,o,#,?; say right(c,25)' ' x center(o,4) y " ───► " #  ?; return
http://rosettacode.org/wiki/Arithmetic-geometric_mean/Calculate_Pi
Arithmetic-geometric mean/Calculate Pi
Almkvist Berndt 1988 begins with an investigation of why the agm is such an efficient algorithm, and proves that it converges quadratically. This is an efficient method to calculate π {\displaystyle \pi } . With the same notations used in Arithmetic-geometric mean, we can summarize the paper by writing: π = 4 a g m ( 1 , 1 / 2 ) 2 1 − ∑ n = 1 ∞ 2 n + 1 ( a n 2 − g n 2 ) {\displaystyle \pi ={\frac {4\;\mathrm {agm} (1,1/{\sqrt {2}})^{2}}{1-\sum \limits _{n=1}^{\infty }2^{n+1}(a_{n}^{2}-g_{n}^{2})}}} This allows you to make the approximation, for any large   N: π ≈ 4 a N 2 1 − ∑ k = 1 N 2 k + 1 ( a k 2 − g k 2 ) {\displaystyle \pi \approx {\frac {4\;a_{N}^{2}}{1-\sum \limits _{k=1}^{N}2^{k+1}(a_{k}^{2}-g_{k}^{2})}}} The purpose of this task is to demonstrate how to use this approximation in order to compute a large number of decimals of π {\displaystyle \pi } .
#C.23
C#
using System; using System.Numerics;   class AgmPie { static BigInteger IntSqRoot(BigInteger valu, BigInteger guess) { BigInteger term; do { term = valu / guess; if (BigInteger.Abs(term - guess) <= 1) break; guess += term; guess >>= 1; } while (true); return guess; }   static BigInteger ISR(BigInteger term, BigInteger guess) { BigInteger valu = term * guess; do { if (BigInteger.Abs(term - guess) <= 1) break; guess += term; guess >>= 1; term = valu / guess; } while (true); return guess; }   static BigInteger CalcAGM(BigInteger lam, BigInteger gm, ref BigInteger z, BigInteger ep) { BigInteger am, zi; ulong n = 1; do { am = (lam + gm) >> 1; gm = ISR(lam, gm); BigInteger v = am - lam; if ((zi = v * v * n) < ep) break; z -= zi; n <<= 1; lam = am; } while (true); return am; }   static BigInteger BIP(int exp, ulong man = 1) { BigInteger rv = BigInteger.Pow(10, exp); return man == 1 ? rv : man * rv; }   static void Main(string[] args) { int d = 25000; if (args.Length > 0) { int.TryParse(args[0], out d); if (d < 1 || d > 999999) d = 25000; } DateTime st = DateTime.Now; BigInteger am = BIP(d), gm = IntSqRoot(BIP(d + d - 1, 5), BIP(d - 15, (ulong)(Math.Sqrt(0.5) * 1e+15))), z = BIP(d + d - 2, 25), agm = CalcAGM(am, gm, ref z, BIP(d + 1)), pi = agm * agm * BIP(d - 2) / z; Console.WriteLine("Computation time: {0:0.0000} seconds ", (DateTime.Now - st).TotalMilliseconds / 1000); string s = pi.ToString(); Console.WriteLine("{0}.{1}", s[0], s.Substring(1)); if (System.Diagnostics.Debugger.IsAttached) Console.ReadKey(); } }
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#Aime
Aime
list l;
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#11l
11l
V z1 = 1.5 + 3i V z2 = 1.5 + 1.5i print(z1 + z2) print(z1 - z2) print(z1 * z2) print(z1 / z2) print(-z1) print(conjugate(z1)) print(abs(z1)) print(z1 ^ z2) print(z1.real) print(z1.imag)
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Ring
Ring
  func Test a,b see "a+b" + ( a + b ) + nl see "a-b" + ( a - b ) + nl see "a*b" + ( a * b ) + nl // The quotient isn't integer, so we use the Ceil() function, which truncates it downward. see "a/b" + Ceil( a / b ) + nl // Remainder: see "a%b" + ( a % b ) + nl see "a**b" + pow(a,b ) + nl  
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Robotic
Robotic
  input string "Enter number 1:" set "a" to "input" input string "Enter number 2:" set "b" to "input"   [ "Sum: ('a' + 'b')" [ "Difference: ('a' - 'b')" [ "Product: ('a' * 'b')" [ "Integer Quotient: ('a' / 'b')" [ "Remainder: ('a' % 'b')" [ "Exponentiation: ('a'^'b')"  
http://rosettacode.org/wiki/Arithmetic-geometric_mean/Calculate_Pi
Arithmetic-geometric mean/Calculate Pi
Almkvist Berndt 1988 begins with an investigation of why the agm is such an efficient algorithm, and proves that it converges quadratically. This is an efficient method to calculate π {\displaystyle \pi } . With the same notations used in Arithmetic-geometric mean, we can summarize the paper by writing: π = 4 a g m ( 1 , 1 / 2 ) 2 1 − ∑ n = 1 ∞ 2 n + 1 ( a n 2 − g n 2 ) {\displaystyle \pi ={\frac {4\;\mathrm {agm} (1,1/{\sqrt {2}})^{2}}{1-\sum \limits _{n=1}^{\infty }2^{n+1}(a_{n}^{2}-g_{n}^{2})}}} This allows you to make the approximation, for any large   N: π ≈ 4 a N 2 1 − ∑ k = 1 N 2 k + 1 ( a k 2 − g k 2 ) {\displaystyle \pi \approx {\frac {4\;a_{N}^{2}}{1-\sum \limits _{k=1}^{N}2^{k+1}(a_{k}^{2}-g_{k}^{2})}}} The purpose of this task is to demonstrate how to use this approximation in order to compute a large number of decimals of π {\displaystyle \pi } .
#C.2B.2B
C++
#include <gmpxx.h> #include <chrono>   using namespace std; using namespace chrono;   void agm(mpf_class& rop1, mpf_class& rop2, const mpf_class& op1, const mpf_class& op2) { rop1 = (op1 + op2) / 2; rop2 = op1 * op2; mpf_sqrt(rop2.get_mpf_t(), rop2.get_mpf_t()); }   int main(void) { auto st = steady_clock::now(); mpf_set_default_prec(300000); mpf_class x0, y0, resA, resB, Z;   x0 = 1; y0 = 0.5; Z = 0.25; mpf_sqrt(y0.get_mpf_t(), y0.get_mpf_t());   int n = 1; for (int i = 0; i < 8; i++) { agm(resA, resB, x0, y0); Z -= n * (resA - x0) * (resA - x0); n *= 2;   agm(x0, y0, resA, resB); Z -= n * (x0 - resA) * (x0 - resA); n *= 2; }   x0 = x0 * x0 / Z; printf("Took %f ms for computation.\n", duration<double>(steady_clock::now() - st).count() * 1000.0); st = steady_clock::now(); gmp_printf ("%.89412Ff\n", x0.get_mpf_t()); printf("Took %f ms for output.\n", duration<double>(steady_clock::now() - st).count() * 1000.0); return 0; }
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#ALGOL_60
ALGOL 60
begin comment arrays - Algol 60;   procedure static; begin integer array x[0:4]; x[0]:=10; x[1]:=11; x[2]:=12; x[3]:=13; x[4]:=x[0]; outstring(1,"static at 4: "); outinteger(1,x[4]); outstring(1,"\n") end static;   procedure dynamic(n); value n; integer n; begin integer array x[0:n-1]; x[0]:=10; x[1]:=11; x[2]:=12; x[3]:=13; x[4]:=x[0]; outstring(1,"dynamic at 4: "); outinteger(1,x[4]); outstring(1,"\n") end dynamic;   static; dynamic(5)   end arrays
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Action.21
Action!
INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit   DEFINE R_="+0" DEFINE I_="+6" TYPE Complex=[CARD cr1,cr2,cr3,ci1,ci2,ci3]   BYTE FUNC Positive(REAL POINTER x) BYTE ARRAY tmp   tmp=x IF (tmp(0)&$80)=$00 THEN RETURN (1) FI RETURN (0)   PROC PrintComplex(Complex POINTER x) PrintR(x R_) IF Positive(x I_) THEN Put('+) FI PrintR(x I_) Put('i) RETURN   PROC PrintComplexXYZ(Complex POINTER x,y,z CHAR ARRAY s) Print("(") PrintComplex(x) Print(") ") Print(s) Print(" (") PrintComplex(y) Print(") = ") PrintComplex(z) PutE() RETURN   PROC PrintComplexXY(Complex POINTER x,y CHAR ARRAY s) Print(s) Print("(") PrintComplex(x) Print(") = ") PrintComplex(y) PutE() RETURN   PROC ComplexAdd(Complex POINTER x,y,res) RealAdd(x R_,y R_,res R_) ;res.r=x.r+y.r RealAdd(x I_,y I_,res I_) ;res.i=x.i+y.i RETURN   PROC ComplexSub(Complex POINTER x,y,res) RealSub(x R_,y R_,res R_) ;res.r=x.r-y.r RealSub(x I_,y I_,res I_) ;res.i=x.i-y.i RETURN   PROC ComplexMult(Complex POINTER x,y,res) REAL tmp1,tmp2   RealMult(x R_,y R_,tmp1)  ;tmp1=x.r*y.r RealMult(x I_,y I_,tmp2)  ;tmp2=x.i*y.i RealSub(tmp1,tmp2,res R_) ;res.r=x.r*y.r-x.i*y.i   RealMult(x R_,y I_,tmp1)  ;tmp1=x.r*y.i RealMult(x I_,y R_,tmp2)  ;tmp2=x.i*y.r RealAdd(tmp1,tmp2,res I_) ;res.i=x.r*y.i+x.i*y.r RETURN   PROC ComplexDiv(Complex POINTER x,y,res) REAL tmp1,tmp2,tmp3,tmp4   RealMult(x R_,y R_,tmp1)  ;tmp1=x.r*y.r RealMult(x I_,y I_,tmp2)  ;tmp2=x.i*y.i RealAdd(tmp1,tmp2,tmp3)  ;tmp3=x.r*y.r+x.i*y.i RealMult(y R_,y R_,tmp1)  ;tmp1=y.r^2 RealMult(y I_,y I_,tmp2)  ;tmp2=y.i^2 RealAdd(tmp1,tmp2,tmp4)  ;tmp4=y.r^2+y.i^2 RealDiv(tmp3,tmp4,res R_) ;res.r=(x.r*y.r+x.i*y.i)/(y.r^2+y.i^2)   RealMult(x I_,y R_,tmp1)  ;tmp1=x.i*y.r RealMult(x R_,y I_,tmp2)  ;tmp2=x.r*y.i RealSub(tmp1,tmp2,tmp3)  ;tmp3=x.i*y.r-x.r*y.i RealDiv(tmp3,tmp4,res I_) ;res.i=(x.i*y.r-x.r*y.i)/(y.r^2+y.i^2) RETURN   PROC ComplexNeg(Complex POINTER x,res) REAL neg   ValR("-1",neg)  ;neg=-1 RealMult(x R_,neg,res R_) ;res.r=-x.r RealMult(x I_,neg,res I_) ;res.r=-x.r RETURN   PROC ComplexInv(Complex POINTER x,res) REAL tmp1,tmp2,tmp3   RealMult(x R_,x R_,tmp1)  ;tmp1=x.r^2 RealMult(x I_,x I_,tmp2)  ;tmp2=x.i^2 RealAdd(tmp1,tmp2,tmp3)  ;tmp3=x.r^2+x.i^2 RealDiv(x R_,tmp3,res R_) ;res.r=x.r/(x.r^2+x.i^2)   ValR("-1",tmp1)  ;tmp1=-1 RealMult(x I_,tmp1,tmp2)  ;tmp2=-x.i RealDiv(tmp2,tmp3,res I_) ;res.i=-x.i/(x.r^2+x.i^2) RETURN   PROC ComplexConj(Complex POINTER x,res) REAL neg   ValR("-1",neg)  ;neg=-1 RealAssign(x R_,res R_)  ;res.r=x.r RealMult(x I_,neg,res I_) ;res.i=-x.i RETURN   PROC Main() Complex x,y,res   IntToReal(5,x R_) IntToReal(3,x I_) IntToReal(4,y R_) ValR("-3",y I_)   Put(125) PutE() ;clear screen   ComplexAdd(x,y,res) PrintComplexXYZ(x,y,res,"+")   ComplexSub(x,y,res) PrintComplexXYZ(x,y,res,"-")   ComplexMult(x,y,res) PrintComplexXYZ(x,y,res,"*")   ComplexDiv(x,y,res) PrintComplexXYZ(x,y,res,"/")   ComplexNeg(y,res) PrintComplexXY(y,res," -")   ComplexInv(y,res) PrintComplexXY(y,res," 1 / ")   ComplexConj(y,res) PrintComplexXY(y,res," conj") RETURN
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Ruby
Ruby
puts 'Enter x and y' x = gets.to_i # to check errors, use x=Integer(gets) y = gets.to_i   puts "Sum: #{x+y}", "Difference: #{x-y}", "Product: #{x*y}", "Quotient: #{x/y}", # truncates towards negative infinity "Quotient: #{x.fdiv(y)}", # float "Remainder: #{x%y}", # same sign as second operand "Exponentiation: #{x**y}"
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Run_BASIC
Run BASIC
input "1st integer: "; i1 input "2nd integer: "; i2   print " Sum"; i1 + i2 print " Diff"; i1 - i2 print " Product"; i1 * i2 if i2 <>0 then print " Quotent "; int( i1 / i2); else print "Cannot divide by zero." print "Remainder"; i1 MOD i2 print "1st raised to power of 2nd"; i1 ^ i2
http://rosettacode.org/wiki/Arithmetic-geometric_mean/Calculate_Pi
Arithmetic-geometric mean/Calculate Pi
Almkvist Berndt 1988 begins with an investigation of why the agm is such an efficient algorithm, and proves that it converges quadratically. This is an efficient method to calculate π {\displaystyle \pi } . With the same notations used in Arithmetic-geometric mean, we can summarize the paper by writing: π = 4 a g m ( 1 , 1 / 2 ) 2 1 − ∑ n = 1 ∞ 2 n + 1 ( a n 2 − g n 2 ) {\displaystyle \pi ={\frac {4\;\mathrm {agm} (1,1/{\sqrt {2}})^{2}}{1-\sum \limits _{n=1}^{\infty }2^{n+1}(a_{n}^{2}-g_{n}^{2})}}} This allows you to make the approximation, for any large   N: π ≈ 4 a N 2 1 − ∑ k = 1 N 2 k + 1 ( a k 2 − g k 2 ) {\displaystyle \pi \approx {\frac {4\;a_{N}^{2}}{1-\sum \limits _{k=1}^{N}2^{k+1}(a_{k}^{2}-g_{k}^{2})}}} The purpose of this task is to demonstrate how to use this approximation in order to compute a large number of decimals of π {\displaystyle \pi } .
#Clojure
Clojure
(ns async-example.core (:use [criterium.core]) (:gen-class))   ; Java Arbitray Precision Library (import '(org.apfloat Apfloat ApfloatMath))   (def precision 8192)   ; Define big constants (i.e. 1, 2, 4, 0.5, .25, 1/sqrt(2)) (def one (Apfloat. 1M precision)) (def two (Apfloat. 2M precision)) (def four (Apfloat. 4M precision)) (def half (Apfloat. 0.5M precision)) (def quarter (Apfloat. 0.25M precision)) (def isqrt2 (.divide one (ApfloatMath/pow two half)))   (defn compute-pi [iterations] (loop [i 0, n one, [a g] [one isqrt2], z quarter] (if (> i iterations) (.divide (.multiply a a) z) (let [x [(.multiply (.add a g) half) (ApfloatMath/pow (.multiply a g) half)] v (.subtract (first x) a)] (recur (inc i) (.add n n) x (.subtract z (.multiply (.multiply v v) n)))))))   (doseq [q (partition-all 200 (str (compute-pi 18)))] (println (apply str q)))  
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#ALGOL_68
ALGOL 68
PROC array_test = VOID: ( [1:20]INT a; a := others; # assign whole array # a[1] := -1; # assign individual element # a[3:5] := (2, 4, -1); # assign a slice # [1:3]INT slice = a[3:5]; # copy a slice #   REF []INT rslice = a[3:5]; # create a reference to a slice # print((LWB rslice, UPB slice)); # query the bounds of the slice # rslice := (2, 4, -1); # assign to the slice, modifying original array #   [1:3, 1:3]INT matrix; # create a two dimensional array # REF []INT hvector = matrix[2,]; # create a reference to a row # REF []INT vvector = matrix[,2]; # create a reference to a column # REF [,]INT block = matrix[1:2, 1:2]; # create a reference to an area of the array #   FLEX []CHAR string := "Hello, world!"; # create an array with variable bounds # string := "shorter" # flexible arrays automatically resize themselves on assignment # )
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Ada
Ada
with Ada.Numerics.Generic_Complex_Types; with Ada.Text_IO.Complex_IO;   procedure Complex_Operations is -- Ada provides a pre-defined generic package for complex types -- That package contains definitions for composition, -- negation, addition, subtraction, multiplication, division, -- conjugation, exponentiation, and absolute value, as well as -- basic comparison operations. -- Ada provides a second pre-defined package for sin, cos, tan, cot, -- arcsin, arccos, arctan, arccot, and the hyperbolic versions of -- those trigonometric functions.   -- The package Ada.Numerics.Generic_Complex_Types requires definition -- with the real type to be used in the complex type definition.   package Complex_Types is new Ada.Numerics.Generic_Complex_Types (Long_Float); use Complex_Types; package Complex_IO is new Ada.Text_IO.Complex_IO (Complex_Types); use Complex_IO; use Ada.Text_IO;   A : Complex := Compose_From_Cartesian (Re => 1.0, Im => 1.0); B : Complex := Compose_From_Polar (Modulus => 1.0, Argument => 3.14159); C : Complex;   begin -- Addition C := A + B; Put("A + B = "); Put(C); New_Line; -- Multiplication C := A * B; Put("A * B = "); Put(C); New_Line; -- Inversion C := 1.0 / A; Put("1.0 / A = "); Put(C); New_Line; -- Negation C := -A; Put("-A = "); Put(C); New_Line; -- Conjugation Put("Conjugate(-A) = "); C := Conjugate (C); Put(C); end Complex_Operations;
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Rust
Rust
use std::env;   fn main() { let args: Vec<_> = env::args().collect(); let a = args[1].parse::<i32>().unwrap(); let b = args[2].parse::<i32>().unwrap();   println!("sum: {}", a + b); println!("difference: {}", a - b); println!("product: {}", a * b); println!("integer quotient: {}", a / b); // truncates towards zero println!("remainder: {}", a % b); // same sign as first operand }
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Sass.2FSCSS
Sass/SCSS
  @function arithmetic($a,$b) { @return $a + $b, $a - $b, $a * $b, ($a - ($a % $b))/$b, $a % $b; }  
http://rosettacode.org/wiki/Arithmetic-geometric_mean/Calculate_Pi
Arithmetic-geometric mean/Calculate Pi
Almkvist Berndt 1988 begins with an investigation of why the agm is such an efficient algorithm, and proves that it converges quadratically. This is an efficient method to calculate π {\displaystyle \pi } . With the same notations used in Arithmetic-geometric mean, we can summarize the paper by writing: π = 4 a g m ( 1 , 1 / 2 ) 2 1 − ∑ n = 1 ∞ 2 n + 1 ( a n 2 − g n 2 ) {\displaystyle \pi ={\frac {4\;\mathrm {agm} (1,1/{\sqrt {2}})^{2}}{1-\sum \limits _{n=1}^{\infty }2^{n+1}(a_{n}^{2}-g_{n}^{2})}}} This allows you to make the approximation, for any large   N: π ≈ 4 a N 2 1 − ∑ k = 1 N 2 k + 1 ( a k 2 − g k 2 ) {\displaystyle \pi \approx {\frac {4\;a_{N}^{2}}{1-\sum \limits _{k=1}^{N}2^{k+1}(a_{k}^{2}-g_{k}^{2})}}} The purpose of this task is to demonstrate how to use this approximation in order to compute a large number of decimals of π {\displaystyle \pi } .
#Common_Lisp
Common Lisp
(load "bf.fasl")   ;;(setf mma::bigfloat-bin-prec 1000)   (let ((A (mma:bigfloat-convert 1.0d0)) (N (mma:bigfloat-convert 1.0d0)) (Z (mma:bigfloat-convert 0.25d0)) (G (mma:bigfloat-/ (mma:bigfloat-convert 1.0d0) (mma:bigfloat-sqrt (mma:bigfloat-convert 2.0d0))))) (loop repeat 18 do (let* ((X1 (mma:bigfloat-* (mma:bigfloat-+ A G) (mma:bigfloat-convert 0.5d0))) (X2 (mma:bigfloat-sqrt (mma:bigfloat-* A G))) (V (mma:bigfloat-- X1 A))) (setf Z (mma:bigfloat-- Z (mma:bigfloat-* (mma:bigfloat-/ (mma:bigfloat-* V V) (mma:bigfloat-convert 1.0d0)) N) )) (setf N (mma:bigfloat-+ N N)) (setf A X1) (setf G X2))) (mma:bigfloat-/ (mma:bigfloat-* A A) Z))
http://rosettacode.org/wiki/Arithmetic-geometric_mean/Calculate_Pi
Arithmetic-geometric mean/Calculate Pi
Almkvist Berndt 1988 begins with an investigation of why the agm is such an efficient algorithm, and proves that it converges quadratically. This is an efficient method to calculate π {\displaystyle \pi } . With the same notations used in Arithmetic-geometric mean, we can summarize the paper by writing: π = 4 a g m ( 1 , 1 / 2 ) 2 1 − ∑ n = 1 ∞ 2 n + 1 ( a n 2 − g n 2 ) {\displaystyle \pi ={\frac {4\;\mathrm {agm} (1,1/{\sqrt {2}})^{2}}{1-\sum \limits _{n=1}^{\infty }2^{n+1}(a_{n}^{2}-g_{n}^{2})}}} This allows you to make the approximation, for any large   N: π ≈ 4 a N 2 1 − ∑ k = 1 N 2 k + 1 ( a k 2 − g k 2 ) {\displaystyle \pi \approx {\frac {4\;a_{N}^{2}}{1-\sum \limits _{k=1}^{N}2^{k+1}(a_{k}^{2}-g_{k}^{2})}}} The purpose of this task is to demonstrate how to use this approximation in order to compute a large number of decimals of π {\displaystyle \pi } .
#D
D
import std.bigint; import std.conv; import std.math; import std.stdio;   BigInt IntSqRoot(BigInt value, BigInt guess) { BigInt term; do { term = value / guess; auto temp = term - guess; if (temp < 0) { temp = -temp; } if (temp <= 1) { break; } guess += term; guess >>= 1; term = value / guess; } while (true); return guess; }   BigInt ISR(BigInt term, BigInt guess) { BigInt value = term * guess; do { auto temp = term - guess; if (temp < 0) { temp = -temp; } if (temp <= 1) { break; } guess += term; guess >>= 1; term = value / guess; } while (true); return guess; }   BigInt CalcAGM(BigInt lam, BigInt gm, ref BigInt z, BigInt ep) { BigInt am, zi; ulong n = 1; do { am = (lam + gm) >> 1; gm = ISR(lam, gm); BigInt v = am - lam; if ((zi = v * v * n) < ep) { break; } z -= zi; n <<= 1; lam = am; } while(true); return am; }   BigInt BIP(int exp, ulong man = 1) { BigInt rv = BigInt(10) ^^ exp; return man == 1 ? rv : man * rv; }   void main() { int d = 25000; // ignore setting d from commandline for now BigInt am = BIP(d); BigInt gm = IntSqRoot(BIP(d + d - 1, 5), BIP(d - 15, cast(ulong)(sqrt(0.5) * 1e15))); BigInt z = BIP(d + d - 2, 25); BigInt agm = CalcAGM(am, gm, z, BIP(d + 1)); BigInt pi = agm * agm * BIP(d - 2) / z;   string piStr = to!string(pi); writeln(piStr[0], '.', piStr[1..$]); }
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#ALGOL_W
ALGOL W
begin  % declare an array % integer array a ( 1 :: 10 );  % set the values % for i := 1 until 10 do a( i ) := i;  % change the 3rd element % a( 3 ) := 27;  % display the 4th element % write( a( 4 ) ); % would show 4 %  % arrays with sizes not known at compile-time must be created in inner-blocks or procedures % begin integer array b ( a( 3 ) - 2 :: a( 3 ) ); % b has bounds 25 :: 27 % for i := a( 3 ) - 2 until a( 3 ) do b( i ) := i end  % arrays cannot be part of records and cannot be returned by procecures though they can be passed %  % as parameters to procedures  %  % multi-dimension arrays are supported  % end.
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#ALGOL_68
ALGOL 68
main:( FORMAT compl fmt = $g(-7,5)"⊥"g(-7,5)$;   PROC compl operations = VOID: ( LONG COMPL a = 1.0 ⊥ 1.0; LONG COMPL b = 3.14159 ⊥ 1.2;   LONG COMPL c;   printf(($x"a="f(compl fmt)l$,a)); printf(($x"b="f(compl fmt)l$,b));   # addition # c := a + b; printf(($x"a+b="f(compl fmt)l$,c)); # multiplication # c := a * b; printf(($x"a*b="f(compl fmt)l$,c)); # inversion # c := 1.0 / a; printf(($x"1/c="f(compl fmt)l$,c)); # negation # c := -a; printf(($x"-a="f(compl fmt)l$,c)) ); compl operations )
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Scala
Scala
val a = Console.readInt val b = Console.readInt   val sum = a + b //integer addition is discouraged in print statements due to confusion with String concatenation println("a + b = " + sum) println("a - b = " + (a - b)) println("a * b = " + (a * b)) println("quotient of a / b = " + (a / b)) // truncates towards 0 println("remainder of a / b = " + (a % b)) // same sign as first operand
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Scheme
Scheme
(define (arithmetic x y) (for-each (lambda (op) (write (list op x y)) (display " => ") (write ((eval op) x y)) (newline)) '(+ - * / quotient remainder modulo max min gcd lcm)))   (arithmetic 8 12)
http://rosettacode.org/wiki/Arithmetic-geometric_mean/Calculate_Pi
Arithmetic-geometric mean/Calculate Pi
Almkvist Berndt 1988 begins with an investigation of why the agm is such an efficient algorithm, and proves that it converges quadratically. This is an efficient method to calculate π {\displaystyle \pi } . With the same notations used in Arithmetic-geometric mean, we can summarize the paper by writing: π = 4 a g m ( 1 , 1 / 2 ) 2 1 − ∑ n = 1 ∞ 2 n + 1 ( a n 2 − g n 2 ) {\displaystyle \pi ={\frac {4\;\mathrm {agm} (1,1/{\sqrt {2}})^{2}}{1-\sum \limits _{n=1}^{\infty }2^{n+1}(a_{n}^{2}-g_{n}^{2})}}} This allows you to make the approximation, for any large   N: π ≈ 4 a N 2 1 − ∑ k = 1 N 2 k + 1 ( a k 2 − g k 2 ) {\displaystyle \pi \approx {\frac {4\;a_{N}^{2}}{1-\sum \limits _{k=1}^{N}2^{k+1}(a_{k}^{2}-g_{k}^{2})}}} The purpose of this task is to demonstrate how to use this approximation in order to compute a large number of decimals of π {\displaystyle \pi } .
#Delphi
Delphi
  program Calculate_Pi;   {$APPTYPE CONSOLE}   uses System.SysUtils, Velthuis.BigIntegers, System.Diagnostics;   function IntSqRoot(value, guess: BigInteger): BigInteger; var term: BigInteger; begin while True do begin term := value div guess; if (BigInteger.Abs(term - guess) <= 1) then break; guess := (guess + term) shr 1; end; Result := guess; end;   function ISR(term, guess: BigInteger): BigInteger; var value: BigInteger; begin value := term * guess; while (True) do begin if (BigInteger.Abs(term - guess) <= 1) then break; guess := (guess + term) shr 1; term := value div guess; end; Result := guess; end;   function CalcAGM(lam, gm: BigInteger; var z: BigInteger; ep: BigInteger): BigInteger; var am, zi, v: BigInteger; n: UInt32; begin n := 1; while True do begin am := (lam + gm) shr 1; gm := ISR(lam, gm); v := am - lam; zi := v * v * n; if (zi < ep) then break; z := z - zi; n := n shl 1; lam := am; end; Result := am; end;   function BIP(exp: Integer; man: UInt32 = 1): BigInteger; begin Result := man * BigInteger.Pow(10, exp); end;   function Compress(val: string; size: Integer): string; begin result := val.Remove(size, val.Length - size * 2).Insert(size, '...'); end;   const DEFAULT_DIGITS = 25000;   var d: Integer; am, gm, z, agm, pi: BigInteger; StopWatch: TStopwatch; s: string;   begin StopWatch := TStopwatch.Create;   d := DEFAULT_DIGITS; if (ParamCount > 0) then begin d := StrToIntDef(ParamStr(1), d);   if ((d < 1) or (d > 999999)) then d := DEFAULT_DIGITS; end;   StopWatch.Start;   am := BIP(d);   gm := IntSqRoot(BIP(d + d - 1, 5), BIP(d - 15, Trunc(Sqrt(0.5) * 1e+15)));   z := BIP(d + d - 2, 25); agm := CalcAGM(am, gm, z, BIP(d + 1));   pi := (agm * agm * BIP(d - 2)) div z; s := pi.ToString.Insert(1, '.');   StopWatch.Stop; Writeln(Format('Computation time: %.3f seconds ', [StopWatch.ElapsedMilliseconds / 1000]));   Writeln(Compress(s, 20)); readln; end.  
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#AmigaE
AmigaE
DEF ai[100] : ARRAY OF CHAR, -> static da: PTR TO CHAR, la: PTR TO CHAR   PROC main() da := New(100) -> or NEW la[100] IF da <> NIL ai[0] := da[0] -> first is 0 ai[99] := da[99] -> last is "size"-1 Dispose(da) ENDIF -> using NEW, we must specify the size even when -> "deallocating" the array IF la <> NIL THEN END la[100] ENDPROC
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#ALGOL_W
ALGOL W
begin  % show some complex arithmetic  %  % returns c + d, using the builtin complex + operator  % complex procedure cAdd ( complex value c, d ) ; c + d;  % returns c * d, using the builtin complex * operator  % complex procedure cMul ( complex value c, d ) ; c * d;  % returns the negation of c, using the builtin complex unary - operator % complex procedure cNeg ( complex value c ) ; - c;  % returns the inverse of c, using the builtin complex / operatror  % complex procedure cInv ( complex value c ) ; 1 / c;  % returns the conjugate of c  % complex procedure cConj ( complex value c ) ; realpart( c ) - imag( imagpart( c ) ); complex c, d; c := 1 + 2i; d := 3 + 4i;  % set I/O format for real aand complex numbers  % r_format := "A"; s_w := 0; r_w := 6; r_d := 2; write( "c  : ", c ); write( "d  : ", d ); write( "c + d  : ", cAdd( c, d ) ); write( "c * d  : ", cMul( c, d ) ); write( "-c  : ", cNeg( c ) ); write( "1/c  : ", cInv( c ) ); write( "conj c : ", cConj( c ) ) end.
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Seed7
Seed7
$ include "seed7_05.s7i";   const proc: main is func local var integer: a is 0; var integer: b is 0; begin write("a = "); readln(a); write("b = "); readln(b);   writeln("a + b = " <& a + b); writeln("a - b = " <& a - b); writeln("a * b = " <& a * b); writeln("a div b = " <& a div b); # Rounds towards zero writeln("a rem b = " <& a rem b); # Sign of the first operand writeln("a mdiv b = " <& a mdiv b); # Rounds towards negative infinity writeln("a mod b = " <& a mod b); # Sign of the second operand end func;
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#SenseTalk
SenseTalk
ask "Enter the first number:" put it into number1   ask "Enter the second number:" put it into number2   put "Sum: " & number1 plus number2 put "Difference: " & number1 minus number2 put "Product: " & number1 multiplied by number2 put "Integer quotient: " & number1 div number2 -- Rounding towards 0 put "Remainder: " & number1 rem number2 put "Exponentiation: " & number1 to the power of number2
http://rosettacode.org/wiki/Arithmetic-geometric_mean/Calculate_Pi
Arithmetic-geometric mean/Calculate Pi
Almkvist Berndt 1988 begins with an investigation of why the agm is such an efficient algorithm, and proves that it converges quadratically. This is an efficient method to calculate π {\displaystyle \pi } . With the same notations used in Arithmetic-geometric mean, we can summarize the paper by writing: π = 4 a g m ( 1 , 1 / 2 ) 2 1 − ∑ n = 1 ∞ 2 n + 1 ( a n 2 − g n 2 ) {\displaystyle \pi ={\frac {4\;\mathrm {agm} (1,1/{\sqrt {2}})^{2}}{1-\sum \limits _{n=1}^{\infty }2^{n+1}(a_{n}^{2}-g_{n}^{2})}}} This allows you to make the approximation, for any large   N: π ≈ 4 a N 2 1 − ∑ k = 1 N 2 k + 1 ( a k 2 − g k 2 ) {\displaystyle \pi \approx {\frac {4\;a_{N}^{2}}{1-\sum \limits _{k=1}^{N}2^{k+1}(a_{k}^{2}-g_{k}^{2})}}} The purpose of this task is to demonstrate how to use this approximation in order to compute a large number of decimals of π {\displaystyle \pi } .
#Erlang
Erlang
  -module(pi). -export([agmPi/1, agmPiBody/5]).   agmPi(Loops) -> % Tail recursive function that produces pi from the Arithmetic Geometric Mean method A = 1, B = 1/math:sqrt(2), J = 1, Running_divisor = 0.25, A_n_plus_one = 0.5*(A+B), B_n_plus_one = math:sqrt(A*B), Step_difference = A_n_plus_one - A, agmPiBody(Loops-1, Running_divisor-(math:pow(Step_difference, 2)*J), A_n_plus_one, B_n_plus_one, J+J).   agmPiBody(0, Running_divisor, A, _, _) -> math:pow(A, 2)/Running_divisor; agmPiBody(Loops, Running_divisor, A, B, J) -> A_n_plus_one = 0.5*(A+B), B_n_plus_one = math:sqrt(A*B), Step_difference = A_n_plus_one - A, agmPiBody(Loops-1, Running_divisor-(math:pow(Step_difference, 2)*J), A_n_plus_one, B_n_plus_one, J+J).  
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#AntLang
AntLang
/ Create an immutable sequence (array) arr: <1;2;3>   / Get the head an tail part h: head[arr] t: tail[arr]   / Get everything except the last element and the last element nl: first[arr] l: last[arr]   / Get the nth element (index origin = 0) nth:arr[n]
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#APL
APL
  x←1j1 ⍝assignment y←5.25j1.5 x+y ⍝addition 6.25J2.5 x×y ⍝multiplication 3.75J6.75 ⌹x ⍝inversion 0.5j_0.5 -x ⍝negation ¯1J¯1  
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#App_Inventor
App Inventor
a: to :complex [1 1] b: to :complex @[pi 1.2]   print ["a:" a] print ["b:" b]   print ["a + b:" a + b] print ["a * b:" a * b] print ["1 / a:" 1 / a] print ["neg a:" neg a] print ["conj a:" conj a]
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Action.21
Action!
INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit   TYPE Frac=[INT num,den]   REAL half   PROC PrintFrac(Frac POINTER x) PrintI(x.num) Put('/) PrintI(x.den) RETURN   INT FUNC Gcd(INT a,b) INT tmp   IF a<b THEN tmp=a a=b b=tmp FI   WHILE b#0 DO tmp=a MOD b a=b b=tmp OD RETURN (a)   PROC Init(INT n,d Frac POINTER res) IF d>0 THEN res.num=n res.den=d ELSEIF d<0 THEN res.num=-n res.den=-d ELSE Print("Denominator cannot be zero!") Break() FI RETURN   PROC Assign(Frac POINTER x,res) Init(x.num,x.den,res) RETURN   PROC Neg(Frac POINTER x,res) Init(-x.num,x.den,res) RETURN   PROC Inverse(Frac POINTER x,res) Init(x.den,x.num) RETURN   PROC Abs(Frac POINTER x,res) IF x.num<0 THEN Neg(x,res) ELSE Assign(x,res) FI RETURN   PROC Add(Frac POINTER x,y,res) INT common,xDen,yDen   common=Gcd(x.den,y.den) xDen=x.den/common yDen=y.den/common Init(x.num*yDen+y.num*xDen,xDen*y.den,res) RETURN   PROC Sub(Frac POINTER x,y,res) Frac n   Neg(y,n) Add(x,n,res) RETURN   PROC Mult(Frac POINTER x,y,res) Init(x.num*y.num,x.den*y.den,res) RETURN   PROC Div(Frac POINTER x,y,res) Frac i   Inverse(y,i) Mult(x,i,res) RETURN   BYTE FUNC Greater(Frac POINTER x,y) Frac diff   Sub(x,y,diff) IF diff.num>0 THEN RETURN (1) FI RETURN (0)   BYTE FUNC Less(Frac POINTER x,y) RETURN (Greater(y,x))   BYTE FUNC GreaterEqual(Frac POINTER x,y) Frac diff   Sub(x,y,diff) IF diff.num>=0 THEN RETURN (1) FI RETURN (0)   BYTE FUNC LessEqual(Frac POINTER x,y) RETURN (GreaterEqual(y,x))   BYTE FUNC Equal(Frac POINTER x,y) Frac diff   Sub(x,y,diff) IF diff.num=0 THEN RETURN (1) FI RETURN (0)   BYTE FUNC NotEqual(Frac POINTER x,y) IF Equal(x,y) THEN RETURN (0) FI RETURN (1)   INT FUNC Sqrt(INT x) REAL r1,r2   IF x=0 THEN RETURN (0) FI IntToReal(x,r1) Power(r1,half,r2) RETURN (RealToInt(r2))   PROC Main() DEFINE MAXINT="32767" INT i,f,max2 Frac sum,tmp1,tmp2,tmp3,one   Put(125) PutE() ;clear screen ValR("0.5",half) Init(1,1,one) FOR i=2 TO MAXINT DO Init(1,i,sum) ;sum=1/i max2=Sqrt(i) FOR f=2 TO max2 DO IF i MOD f=0 THEN Init(1,f,tmp1)  ;tmp1=1/f Add(sum,tmp1,tmp2) ;tmp2=sum+1/f Init(f,i,tmp3)  ;tmp3=f/i Add(tmp2,tmp3,sum) ;sum=sum+1/f+f/i FI OD   IF Equal(sum,one) THEN PrintF("%I is perfect%E",i) FI OD RETURN
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#11l
11l
F agm(a0, g0, tolerance = 1e-10) V an = (a0 + g0) / 2.0 V gn = sqrt(a0 * g0) L abs(an - gn) > tolerance (an, gn) = ((an + gn) / 2.0, sqrt(an * gn)) R an   print(agm(1, 1 / sqrt(2)))
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Sidef
Sidef
var a = Sys.scanln("First number: ").to_i; var b = Sys.scanln("Second number: ").to_i;   %w'+ - * // % ** ^ | & << >>'.each { |op| "#{a} #{op} #{b} = #{a.$op(b)}".say; }
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Slate
Slate
[| :a :b | inform: (a + b) printString. inform: (a - b) printString. inform: (a * b) printString. inform: (a / b) printString. inform: (a // b) printString. inform: (a \\ b) printString.   ] applyTo: {Integer readFrom: (query: 'Enter a: '). Integer readFrom: (query: 'Enter b: ')}.
http://rosettacode.org/wiki/Arithmetic-geometric_mean/Calculate_Pi
Arithmetic-geometric mean/Calculate Pi
Almkvist Berndt 1988 begins with an investigation of why the agm is such an efficient algorithm, and proves that it converges quadratically. This is an efficient method to calculate π {\displaystyle \pi } . With the same notations used in Arithmetic-geometric mean, we can summarize the paper by writing: π = 4 a g m ( 1 , 1 / 2 ) 2 1 − ∑ n = 1 ∞ 2 n + 1 ( a n 2 − g n 2 ) {\displaystyle \pi ={\frac {4\;\mathrm {agm} (1,1/{\sqrt {2}})^{2}}{1-\sum \limits _{n=1}^{\infty }2^{n+1}(a_{n}^{2}-g_{n}^{2})}}} This allows you to make the approximation, for any large   N: π ≈ 4 a N 2 1 − ∑ k = 1 N 2 k + 1 ( a k 2 − g k 2 ) {\displaystyle \pi \approx {\frac {4\;a_{N}^{2}}{1-\sum \limits _{k=1}^{N}2^{k+1}(a_{k}^{2}-g_{k}^{2})}}} The purpose of this task is to demonstrate how to use this approximation in order to compute a large number of decimals of π {\displaystyle \pi } .
#Go
Go
package main   import ( "fmt" "math/big" )   func main() { one := big.NewFloat(1) two := big.NewFloat(2) four := big.NewFloat(4) prec := uint(768) // say   a := big.NewFloat(1).SetPrec(prec) g := new(big.Float).SetPrec(prec)   // temporary variables t := new(big.Float).SetPrec(prec) u := new(big.Float).SetPrec(prec)   g.Quo(a, t.Sqrt(two)) sum := new(big.Float) pow := big.NewFloat(2)   for a.Cmp(g) != 0 { t.Add(a, g) t.Quo(t, two) g.Sqrt(u.Mul(a, g)) a.Set(t) pow.Mul(pow, two) t.Sub(t.Mul(a, a), u.Mul(g, g)) sum.Add(sum, t.Mul(t, pow)) }   t.Mul(a, a) t.Mul(t, four) pi := t.Quo(t, u.Sub(one, sum)) fmt.Println(pi) }
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#Apex
Apex
Integer[] array = new Integer[10]; // optionally, append a braced list of Integers like "{1, 2, 3}" array[0] = 42; System.debug(array[0]); // Prints 42
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Arturo
Arturo
a: to :complex [1 1] b: to :complex @[pi 1.2]   print ["a:" a] print ["b:" b]   print ["a + b:" a + b] print ["a * b:" a * b] print ["1 / a:" 1 / a] print ["neg a:" neg a] print ["conj a:" conj a]
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Ada
Ada
generic type Number is range <>; package Generic_Rational is type Rational is private;   function "abs" (A : Rational) return Rational; function "+" (A : Rational) return Rational; function "-" (A : Rational) return Rational; function Inverse (A : Rational) return Rational;   function "+" (A : Rational; B : Rational) return Rational; function "+" (A : Rational; B : Number ) return Rational; function "+" (A : Number; B : Rational) return Rational;   function "-" (A : Rational; B : Rational) return Rational; function "-" (A : Rational; B : Number ) return Rational; function "-" (A : Number; B : Rational) return Rational;   function "*" (A : Rational; B : Rational) return Rational; function "*" (A : Rational; B : Number ) return Rational; function "*" (A : Number; B : Rational) return Rational;   function "/" (A : Rational; B : Rational) return Rational; function "/" (A : Rational; B : Number ) return Rational; function "/" (A : Number; B : Rational) return Rational; function "/" (A : Number; B : Number) return Rational;   function ">" (A : Rational; B : Rational) return Boolean; function ">" (A : Number; B : Rational) return Boolean; function ">" (A : Rational; B : Number) return Boolean;   function "<" (A : Rational; B : Rational) return Boolean; function "<" (A : Number; B : Rational) return Boolean; function "<" (A : Rational; B : Number) return Boolean;   function ">=" (A : Rational; B : Rational) return Boolean; function ">=" (A : Number; B : Rational) return Boolean; function ">=" (A : Rational; B : Number) return Boolean;   function "<=" (A : Rational; B : Rational) return Boolean; function "<=" (A : Number; B : Rational) return Boolean; function "<=" (A : Rational; B : Number) return Boolean;   function "=" (A : Number; B : Rational) return Boolean; function "=" (A : Rational; B : Number) return Boolean;   function Numerator (A : Rational) return Number; function Denominator (A : Rational) return Number;   Zero : constant Rational; One  : constant Rational; private type Rational is record Numerator  : Number; Denominator : Number; end record;   Zero : constant Rational := (0, 1); One  : constant Rational := (1, 1); end Generic_Rational;
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#360_Assembly
360 Assembly
AGM CSECT USING AGM,R13 SAVEAREA B STM-SAVEAREA(R15) DC 17F'0' DC CL8'AGM' STM STM R14,R12,12(R13) ST R13,4(R15) ST R15,8(R13) LR R13,R15 ZAP A,K a=1 ZAP PWL8,K MP PWL8,K DP PWL8,=P'2' ZAP PWL8,PWL8(7) BAL R14,SQRT ZAP G,PWL8 g=sqrt(1/2) WHILE1 EQU * while a!=g ZAP PWL8,A SP PWL8,G CP PWL8,=P'0' (a-g)!=0 BE EWHILE1 ZAP PWL8,A AP PWL8,G DP PWL8,=P'2' ZAP AN,PWL8(7) an=(a+g)/2 ZAP PWL8,A MP PWL8,G BAL R14,SQRT ZAP G,PWL8 g=sqrt(a*g) ZAP A,AN a=an B WHILE1 EWHILE1 EQU * ZAP PWL8,A UNPK ZWL16,PWL8 MVC CWL16,ZWL16 OI CWL16+15,X'F0' MVI CWL16,C'+' CP PWL8,=P'0' BNM *+8 MVI CWL16,C'-' MVC CWL80+0(15),CWL16 MVC CWL80+9(1),=C'.' /k (15-6=9) XPRNT CWL80,80 display a L R13,4(0,R13) LM R14,R12,12(R13) XR R15,R15 BR R14 DS 0F K DC PL8'1000000' 10^6 A DS PL8 G DS PL8 AN DS PL8 * ****** SQRT ******************* SQRT CNOP 0,4 function sqrt(x) ZAP X,PWL8 ZAP X0,=P'0' x0=0 ZAP X1,=P'1' x1=1 WHILE2 EQU * while x0!=x1 ZAP PWL8,X0 SP PWL8,X1 CP PWL8,=P'0' (x0-x1)!=0 BE EWHILE2 ZAP X0,X1 x0=x1 ZAP PWL16,X DP PWL16,X1 ZAP XW,PWL16(8) xw=x/x1 ZAP PWL8,X1 AP PWL8,XW DP PWL8,=P'2' ZAP PWL8,PWL8(7) ZAP X2,PWL8 x2=(x1+xw)/2 ZAP X1,X2 x1=x2 B WHILE2 EWHILE2 EQU * ZAP PWL8,X1 return x1 BR R14 DS 0F X DS PL8 X0 DS PL8 X1 DS PL8 X2 DS PL8 XW DS PL8 * end SQRT PWL8 DC PL8'0' PWL16 DC PL16'0' CWL80 DC CL80' ' CWL16 DS CL16 ZWL16 DS ZL16 LTORG YREGS END AGM
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#8th
8th
: epsilon 1.0e-12 ;   with: n   : iter \ n1 n2 -- n1 n2 2dup * sqrt >r + 2 / r> ;   : agn \ n1 n2 -- n repeat iter 2dup epsilon ~= not while! drop ;   "agn(1, 1/sqrt(2)) = " . 1 1 2 sqrt / agn "%.10f" s:strfmt . cr   ;with bye  
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#Smalltalk
Smalltalk
| a b | 'Input number a: ' display. a := (stdin nextLine) asInteger. 'Input number b: ' display. b := (stdin nextLine) asInteger. ('a+b=%1' % { a + b }) displayNl. ('a-b=%1' % { a - b }) displayNl. ('a*b=%1' % { a * b }) displayNl. ('a/b=%1' % { a // b }) displayNl. ('a%%b=%1' % { a \\ b }) displayNl.
http://rosettacode.org/wiki/Arithmetic-geometric_mean/Calculate_Pi
Arithmetic-geometric mean/Calculate Pi
Almkvist Berndt 1988 begins with an investigation of why the agm is such an efficient algorithm, and proves that it converges quadratically. This is an efficient method to calculate π {\displaystyle \pi } . With the same notations used in Arithmetic-geometric mean, we can summarize the paper by writing: π = 4 a g m ( 1 , 1 / 2 ) 2 1 − ∑ n = 1 ∞ 2 n + 1 ( a n 2 − g n 2 ) {\displaystyle \pi ={\frac {4\;\mathrm {agm} (1,1/{\sqrt {2}})^{2}}{1-\sum \limits _{n=1}^{\infty }2^{n+1}(a_{n}^{2}-g_{n}^{2})}}} This allows you to make the approximation, for any large   N: π ≈ 4 a N 2 1 − ∑ k = 1 N 2 k + 1 ( a k 2 − g k 2 ) {\displaystyle \pi \approx {\frac {4\;a_{N}^{2}}{1-\sum \limits _{k=1}^{N}2^{k+1}(a_{k}^{2}-g_{k}^{2})}}} The purpose of this task is to demonstrate how to use this approximation in order to compute a large number of decimals of π {\displaystyle \pi } .
#Groovy
Groovy
import java.math.MathContext   class CalculatePi { private static final MathContext con1024 = new MathContext(1024) private static final BigDecimal bigTwo = new BigDecimal(2) private static final BigDecimal bigFour = new BigDecimal(4)   private static BigDecimal bigSqrt(BigDecimal bd, MathContext con) { BigDecimal x0 = BigDecimal.ZERO BigDecimal x1 = BigDecimal.valueOf(Math.sqrt(bd.doubleValue())) while (!Objects.equals(x0, x1)) { x0 = x1 x1 = (bd.divide(x0, con) + x0).divide(bigTwo, con) } return x1 }   static void main(String[] args) { BigDecimal a = BigDecimal.ONE BigDecimal g = a.divide(bigSqrt(bigTwo, con1024), con1024) BigDecimal t BigDecimal sum = BigDecimal.ZERO BigDecimal pow = bigTwo while (!Objects.equals(a, g)) { t = (a + g).divide(bigTwo, con1024) g = bigSqrt(a * g, con1024) a = t pow = pow * bigTwo sum = sum + (a * a - g * g) * pow } BigDecimal pi = (bigFour * (a * a)).divide(BigDecimal.ONE - sum, con1024) System.out.println(pi) } }
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#APL
APL
+/ 1 2 3
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#AutoHotkey
AutoHotkey
Cset(C,1,1) MsgBox % Cstr(C) ; 1 + i*1 Cneg(C,C) MsgBox % Cstr(C) ; -1 - i*1 Cadd(C,C,C) MsgBox % Cstr(C) ; -2 - i*2 Cinv(D,C) MsgBox % Cstr(D) ; -0.25 + 0.25*i Cmul(C,C,D) MsgBox % Cstr(C) ; 1 + i*0   Cset(ByRef C, re, im) { VarSetCapacity(C,16) NumPut(re,C,0,"double") NumPut(im,C,8,"double") } Cre(ByRef C) { Return NumGet(C,0,"double") } Cim(ByRef C) { Return NumGet(C,8,"double") } Cstr(ByRef C) { Return Cre(C) ((i:=Cim(C))<0 ? " - i*" . -i : " + i*" . i) } Cadd(ByRef C, ByRef A, ByRef B) { VarSetCapacity(C,16) NumPut(Cre(A)+Cre(B),C,0,"double") NumPut(Cim(A)+Cim(B),C,8,"double") } Cmul(ByRef C, ByRef A, ByRef B) { VarSetCapacity(C,16) t := Cre(A)*Cim(B)+Cim(A)*Cre(B) NumPut(Cre(A)*Cre(B)-Cim(A)*Cim(B),C,0,"double") NumPut(t,C,8,"double") ; A or B can be C! } Cneg(ByRef C, ByRef A) { VarSetCapacity(C,16) NumPut(-Cre(A),C,0,"double") NumPut(-Cim(A),C,8,"double") } Cinv(ByRef C, ByRef A) { VarSetCapacity(C,16) d := Cre(A)**2 + Cim(A)**2 NumPut( Cre(A)/d,C,0,"double") NumPut(-Cim(A)/d,C,8,"double") }
http://rosettacode.org/wiki/Arena_storage_pool
Arena storage pool
Dynamically allocated objects take their memory from a heap. The memory for an object is provided by an allocator which maintains the storage pool used for the heap. Often a call to allocator is denoted as P := new T where   T   is the type of an allocated object,   and   P   is a reference to the object. The storage pool chosen by the allocator can be determined by either: the object type   T the type of pointer   P In the former case objects can be allocated only in one storage pool. In the latter case objects of the type can be allocated in any storage pool or on the stack. Task The task is to show how allocators and user-defined storage pools are supported by the language. In particular: define an arena storage pool.   An arena is a pool in which objects are allocated individually, but freed by groups. allocate some objects (e.g., integers) in the pool. Explain what controls the storage pool choice in the language.
#Ada
Ada
type My_Pointer is access My_Object; for My_Pointer'Storage_Pool use My_Pool;
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#ALGOL_68
ALGOL 68
MODE FRAC = STRUCT( INT num #erator#, den #ominator#); FORMAT frac repr = $g(-0)"//"g(-0)$;   PROC gcd = (INT a, b) INT: # greatest common divisor # (a = 0 | b |: b = 0 | a |: ABS a > ABS b | gcd(b, a MOD b) | gcd(a, b MOD a));   PROC lcm = (INT a, b)INT: # least common multiple # a OVER gcd(a, b) * b;   PROC raise not implemented error = ([]STRING args)VOID: ( put(stand error, ("Not implemented error: ",args, newline)); stop );   PRIO // = 9; # higher then the ** operator # OP // = (INT num, den)FRAC: ( # initialise and normalise # INT common = gcd(num, den); IF den < 0 THEN ( -num OVER common, -den OVER common) ELSE ( num OVER common, den OVER common) FI );   OP + = (FRAC a, b)FRAC: ( INT common = lcm(den OF a, den OF b); FRAC result := ( common OVER den OF a * num OF a + common OVER den OF b * num OF b, common ); num OF result//den OF result );   OP - = (FRAC a, b)FRAC: a + -b, * = (FRAC a, b)FRAC: ( INT num = num OF a * num OF b, den = den OF a * den OF b; INT common = gcd(num, den); (num OVER common) // (den OVER common) );   OP / = (FRAC a, b)FRAC: a * FRAC(den OF b, num OF b),# real division # % = (FRAC a, b)INT: ENTIER (a / b), # integer divison # %* = (FRAC a, b)FRAC: a/b - FRACINIT ENTIER (a/b), # modulo division # ** = (FRAC a, INT exponent)FRAC: IF exponent >= 0 THEN (num OF a ** exponent, den OF a ** exponent ) ELSE (den OF a ** exponent, num OF a ** exponent ) FI;   OP REALINIT = (FRAC frac)REAL: num OF frac / den OF frac, FRACINIT = (INT num)FRAC: num // 1, FRACINIT = (REAL num)FRAC: ( # express real number as a fraction # # a future execise! # raise not implemented error(("Convert a REAL to a FRAC","!")); SKIP );   OP < = (FRAC a, b)BOOL: num OF (a - b) < 0, > = (FRAC a, b)BOOL: num OF (a - b) > 0, <= = (FRAC a, b)BOOL: NOT ( a > b ), >= = (FRAC a, b)BOOL: NOT ( a < b ), = = (FRAC a, b)BOOL: (num OF a, den OF a) = (num OF b, den OF b), /= = (FRAC a, b)BOOL: (num OF a, den OF a) /= (num OF b, den OF b);   # Unary operators # OP - = (FRAC frac)FRAC: (-num OF frac, den OF frac), ABS = (FRAC frac)FRAC: (ABS num OF frac, ABS den OF frac), ENTIER = (FRAC frac)INT: (num OF frac OVER den OF frac) * den OF frac;   COMMENT Operators for extended characters set, and increment/decrement: OP +:= = (REF FRAC a, FRAC b)REF FRAC: ( a := a + b ), +=: = (FRAC a, REF FRAC b)REF FRAC: ( b := a + b ), -:= = (REF FRAC a, FRAC b)REF FRAC: ( a := a - b ), *:= = (REF FRAC a, FRAC b)REF FRAC: ( a := a * b ), /:= = (REF FRAC a, FRAC b)REF FRAC: ( a := a / b ), %:= = (REF FRAC a, FRAC b)REF FRAC: ( a := FRACINIT (a % b) ), %*:= = (REF FRAC a, FRAC b)REF FRAC: ( a := a %* b );   # OP aliases for extended character sets (eg: Unicode, APL, ALCOR and GOST 10859) # OP × = (FRAC a, b)FRAC: a * b, ÷ = (FRAC a, b)INT: a OVER b, ÷× = (FRAC a, b)FRAC: a MOD b, ÷* = (FRAC a, b)FRAC: a MOD b, %× = (FRAC a, b)FRAC: a MOD b, ≤ = (FRAC a, b)FRAC: a <= b, ≥ = (FRAC a, b)FRAC: a >= b, ≠ = (FRAC a, b)BOOL: a /= b, ↑ = (FRAC frac, INT exponent)FRAC: frac ** exponent,   ÷×:= = (REF FRAC a, FRAC b)REF FRAC: ( a := a MOD b ), %×:= = (REF FRAC a, FRAC b)REF FRAC: ( a := a MOD b ), ÷*:= = (REF FRAC a, FRAC b)REF FRAC: ( a := a MOD b );   # BOLD aliases for CPU that only support uppercase for 6-bit bytes - wrist watches # OP OVER = (FRAC a, b)INT: a % b, MOD = (FRAC a, b)FRAC: a %*b, LT = (FRAC a, b)BOOL: a < b, GT = (FRAC a, b)BOOL: a > b, LE = (FRAC a, b)BOOL: a <= b, GE = (FRAC a, b)BOOL: a >= b, EQ = (FRAC a, b)BOOL: a = b, NE = (FRAC a, b)BOOL: a /= b, UP = (FRAC frac, INT exponent)FRAC: frac**exponent;   # the required standard assignment operators # OP PLUSAB = (REF FRAC a, FRAC b)REF FRAC: ( a +:= b ), # PLUS # PLUSTO = (FRAC a, REF FRAC b)REF FRAC: ( a +=: b ), # PRUS # MINUSAB = (REF FRAC a, FRAC b)REF FRAC: ( a *:= b ), DIVAB = (REF FRAC a, FRAC b)REF FRAC: ( a /:= b ), OVERAB = (REF FRAC a, FRAC b)REF FRAC: ( a %:= b ), MODAB = (REF FRAC a, FRAC b)REF FRAC: ( a %*:= b );   END COMMENT Example: searching for Perfect Numbers. FRAC sum:= FRACINIT 0; FORMAT perfect = $b(" perfect!","")$;   FOR i FROM 2 TO 2**19 DO INT candidate := i; FRAC sum := 1 // candidate; REAL real sum := 1 / candidate; FOR factor FROM 2 TO ENTIER sqrt(candidate) DO IF candidate MOD factor = 0 THEN sum := sum + 1 // factor + 1 // ( candidate OVER factor); real sum +:= 1 / factor + 1 / ( candidate OVER factor) FI OD; IF den OF sum = 1 THEN printf(($"Sum of reciprocal factors of "g(-0)" = "g(-0)" exactly, about "g(0,real width) f(perfect)l$, candidate, ENTIER sum, real sum, ENTIER sum = 1)) FI OD
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Action.21
Action!
INCLUDE "H6:REALMATH.ACT"   PROC Agm(REAL POINTER a0,g0,result) REAL a,g,prevA,tmp,r2   RealAssign(a0,a) RealAssign(g0,g) IntToReal(2,r2) DO RealAssign(a,prevA) RealAdd(a,g,tmp) RealDiv(tmp,r2,a) RealMult(prevA,g,tmp) Sqrt(tmp,g) IF RealGreaterOrEqual(a,prevA) THEN EXIT FI OD RealAssign(a,result) RETURN   PROC Main() REAL r1,r2,tmp,g,res   Put(125) PutE() ;clear screen   MathInit() IntToReal(1,r1) IntToReal(2,r2) Sqrt(r2,tmp) RealDiv(r1,tmp,g) Agm(r1,g,res)   Print("agm(") PrintR(r1) Print(",") PrintR(g) Print(")=") PrintRE(res) RETURN
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Ada
Ada
with Ada.Text_IO, Ada.Numerics.Generic_Elementary_Functions;   procedure Arith_Geom_Mean is   type Num is digits 18; -- the largest value gnat/gcc allows package N_IO is new Ada.Text_IO.Float_IO(Num); package Math is new Ada.Numerics.Generic_Elementary_Functions(Num);   function AGM(A, G: Num) return Num is Old_G: Num; New_G: Num := G; New_A: Num := A; begin loop Old_G := New_G; New_G := Math.Sqrt(New_A*New_G); New_A := (Old_G + New_A) * 0.5; exit when (New_A - New_G) <= Num'Epsilon; -- Num'Epsilon denotes the relative error when performing arithmetic over Num end loop; return New_G; end AGM;   begin N_IO.Put(AGM(1.0, 1.0/Math.Sqrt(2.0)), Fore => 1, Aft => 17, Exp => 0); end Arith_Geom_Mean;
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#smart_BASIC
smart BASIC
INPUT "Enter first number.":first INPUT "Enter second number.":second PRINT "The sum of";first;"and";second;"is ";first+second&"." PRINT "The difference between";first;"and";second;"is ";ABS(first-second)&"." PRINT "The product of";first;"and";second;"is ";first*second&"." IF second THEN PRINT "The integer quotient of";first;"and";second;"is ";INTEG(first/second)&"." ELSE PRINT "Division by zero not cool." ENDIF PRINT "The remainder being...";first%second&"." PRINT STR$(first);"raised to the power of";second;"is ";first^second&"."
http://rosettacode.org/wiki/Arithmetic-geometric_mean/Calculate_Pi
Arithmetic-geometric mean/Calculate Pi
Almkvist Berndt 1988 begins with an investigation of why the agm is such an efficient algorithm, and proves that it converges quadratically. This is an efficient method to calculate π {\displaystyle \pi } . With the same notations used in Arithmetic-geometric mean, we can summarize the paper by writing: π = 4 a g m ( 1 , 1 / 2 ) 2 1 − ∑ n = 1 ∞ 2 n + 1 ( a n 2 − g n 2 ) {\displaystyle \pi ={\frac {4\;\mathrm {agm} (1,1/{\sqrt {2}})^{2}}{1-\sum \limits _{n=1}^{\infty }2^{n+1}(a_{n}^{2}-g_{n}^{2})}}} This allows you to make the approximation, for any large   N: π ≈ 4 a N 2 1 − ∑ k = 1 N 2 k + 1 ( a k 2 − g k 2 ) {\displaystyle \pi \approx {\frac {4\;a_{N}^{2}}{1-\sum \limits _{k=1}^{N}2^{k+1}(a_{k}^{2}-g_{k}^{2})}}} The purpose of this task is to demonstrate how to use this approximation in order to compute a large number of decimals of π {\displaystyle \pi } .
#Haskell
Haskell
import Prelude hiding (pi) import Data.Number.MPFR hiding (sqrt, pi, div) import Data.Number.MPFR.Instances.Near ()   -- A generous overshoot of the number of bits needed for a -- given number of digits. digitBits :: (Integral a, Num a) => a -> a digitBits n = (n + 1) `div` 2 * 8   -- Calculate pi accurate to a given number of digits. pi :: Integer -> MPFR pi digits = let eps = fromString ("1e-" ++ show digits) (fromInteger $ digitBits digits) 0 two = fromInt Near (getPrec eps) 2 twoi = 2 :: Int twoI = 2 :: Integer pis a g s n = let aB = (a + g) / two gB = sqrt (a * g) aB2 = aB ^^ twoi sB = s + (two ^^ n) * (aB2 - gB ^^ twoi) num = 4 * aB2 den = 1 - sB in (num / den) : pis aB gB sB (n + 1) puntil f (a:b:xs) = if f a b then b else puntil f (b:xs) in puntil (\a b -> abs (a - b) < eps) $ pis one (one / sqrt two) zero twoI   main :: IO () main = do -- The last decimal is rounded. putStrLn $ toString 1000 $ pi 1000
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#App_Inventor
App Inventor
set empty to {} set ints to {1, 2, 3}
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#AWK
AWK
# simulate a struct using associative arrays function complex(arr, re, im) { arr["re"] = re arr["im"] = im }   function re(cmplx) { return cmplx["re"] }   function im(cmplx) { return cmplx["im"] }   function printComplex(cmplx) { print re(cmplx), im(cmplx) }   function abs2(cmplx) { return re(cmplx) * re(cmplx) + im(cmplx) * im(cmplx) }   function abs(cmplx) { return sqrt(abs2(cmplx)) }   function add(res, cmplx1, cmplx2) { complex(res, re(cmplx1) + re(cmplx2), im(cmplx1) + im(cmplx2)) }   function mult(res, cmplx1, cmplx2) { complex(res, re(cmplx1) * re(cmplx2) - im(cmplx1) * im(cmplx2), re(cmplx1) * im(cmplx2) + im(cmplx1) * re(cmplx2)) }   function scale(res, cmplx, scalar) { complex(res, re(cmplx) * scalar, im(cmplx) * scalar) }   function negate(res, cmplx) { scale(res, cmplx, -1) }   function conjugate(res, cmplx) { complex(res, re(cmplx), -im(cmplx)) }   function invert(res, cmplx) { conjugate(res, cmplx) scale(res, res, 1 / abs(cmplx)) }   BEGIN { complex(i, 0, 1) mult(i, i, i) printComplex(i) }
http://rosettacode.org/wiki/Arena_storage_pool
Arena storage pool
Dynamically allocated objects take their memory from a heap. The memory for an object is provided by an allocator which maintains the storage pool used for the heap. Often a call to allocator is denoted as P := new T where   T   is the type of an allocated object,   and   P   is a reference to the object. The storage pool chosen by the allocator can be determined by either: the object type   T the type of pointer   P In the former case objects can be allocated only in one storage pool. In the latter case objects of the type can be allocated in any storage pool or on the stack. Task The task is to show how allocators and user-defined storage pools are supported by the language. In particular: define an arena storage pool.   An arena is a pool in which objects are allocated individually, but freed by groups. allocate some objects (e.g., integers) in the pool. Explain what controls the storage pool choice in the language.
#C
C
#include <stdlib.h>
http://rosettacode.org/wiki/Arena_storage_pool
Arena storage pool
Dynamically allocated objects take their memory from a heap. The memory for an object is provided by an allocator which maintains the storage pool used for the heap. Often a call to allocator is denoted as P := new T where   T   is the type of an allocated object,   and   P   is a reference to the object. The storage pool chosen by the allocator can be determined by either: the object type   T the type of pointer   P In the former case objects can be allocated only in one storage pool. In the latter case objects of the type can be allocated in any storage pool or on the stack. Task The task is to show how allocators and user-defined storage pools are supported by the language. In particular: define an arena storage pool.   An arena is a pool in which objects are allocated individually, but freed by groups. allocate some objects (e.g., integers) in the pool. Explain what controls the storage pool choice in the language.
#C.2B.2B
C++
T* foo = new(arena) T;
http://rosettacode.org/wiki/Arena_storage_pool
Arena storage pool
Dynamically allocated objects take their memory from a heap. The memory for an object is provided by an allocator which maintains the storage pool used for the heap. Often a call to allocator is denoted as P := new T where   T   is the type of an allocated object,   and   P   is a reference to the object. The storage pool chosen by the allocator can be determined by either: the object type   T the type of pointer   P In the former case objects can be allocated only in one storage pool. In the latter case objects of the type can be allocated in any storage pool or on the stack. Task The task is to show how allocators and user-defined storage pools are supported by the language. In particular: define an arena storage pool.   An arena is a pool in which objects are allocated individually, but freed by groups. allocate some objects (e.g., integers) in the pool. Explain what controls the storage pool choice in the language.
#Delphi
Delphi
  program Arena_storage_pool;   {$APPTYPE CONSOLE}   uses Winapi.Windows, System.SysUtils, system.generics.collections;   type TPool = class private FStorage: TList<Pointer>; public constructor Create; destructor Destroy; override; function Allocate(aSize: Integer): Pointer; function Release(P: Pointer): Integer; end;   { TPool }   function TPool.Allocate(aSize: Integer): Pointer; begin Result := GetMemory(aSize); if Assigned(Result) then FStorage.Add(Result); end;   constructor TPool.Create; begin FStorage := TList<Pointer>.Create; end;   destructor TPool.Destroy; var p: Pointer; begin while FStorage.Count > 0 do begin p := FStorage[0]; Release(p); end; FStorage.Free; inherited; end;   function TPool.Release(P: Pointer): Integer; var index: Integer; begin index := FStorage.IndexOf(P); if index > -1 then FStorage.Delete(index); FreeMemory(P) end;   var Manager: TPool; int1, int2: PInteger; str: PChar;   begin Manager := TPool.Create; int1 := Manager.Allocate(sizeof(Integer)); int1^ := 5;   int2 := Manager.Allocate(sizeof(Integer)); int2^ := 3;   writeln('Allocate at addres ', cardinal(int1).ToHexString, ' with value of ', int1^); writeln('Allocate at addres ', cardinal(int2).ToHexString, ' with value of ', int2^);   Manager.Free; readln; end.
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Arturo
Arturo
a: to :rational [1 2] b: to :rational [3 4]   print ["a:" a] print ["b:" b]   print ["a + b  :" a + b] print ["a - b  :" a - b] print ["a * b  :" a * b] print ["a / b  :" a / b] print ["a // b :" a // b] print ["a % b  :" a % b]   print ["reciprocal b:" reciprocal b] print ["neg a:" neg a]   print ["pi ~=" to :rational 3.14]
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#ALGOL_68
ALGOL 68
  BEGIN PROC agm = (LONG REAL x, y) LONG REAL : BEGIN IF x < LONG 0.0 OR y < LONG 0.0 THEN -LONG 1.0 ELIF x + y = LONG 0.0 THEN LONG 0.0 CO Edge cases CO ELSE LONG REAL a := x, g := y; LONG REAL epsilon := a + g; LONG REAL next a := (a + g) / LONG 2.0, next g := long sqrt (a * g); LONG REAL next epsilon := ABS (a - g); WHILE next epsilon < epsilon DO print ((epsilon, " ", next epsilon, newline)); epsilon := next epsilon; a := next a; g := next g; next a := (a + g) / LONG 2.0; next g := long sqrt (a * g); next epsilon := ABS (a - g) OD; a FI END; printf (($l(-35,33)l$, agm (LONG 1.0, LONG 1.0 / long sqrt (LONG 2.0)))) END  
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#SNOBOL4
SNOBOL4
  output = "Enter first integer:" first = input output = "Enter second integer:" second = input output = "sum = " first + second output = "diff = " first - second output = "prod = " first * second output = "quot = " (qout = first / second) output = "rem = " first - (qout * second) output = "expo = " first ** second end
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#SNUSP
SNUSP
$\ , @ \=@@@-@-----# atoi > , @ \=@@@-@-----# < @ # 4 copies \=!/?!/->>+>>+>>+>>+<<<<<<<<?\# > | #\?<<<<<<<<+>>+>>+>>+>>-/ @ | \==/ \>>>>\ />>>>/ @ \==!/===?\# add < \>+<-/ @ \=@@@+@+++++# itoa . < @ \==!/===?\# subtract < \>-<-/ @ \=@@@+@+++++# .  ! /\  ?- multiply \/ #/?<<+>+>-==\ /==-<+<+>>?\# /==-<<+>>?\# < \->+>+<<!/?/# #\?\!>>+<+<-/ #\?\!>>+<<-/ @ /==|=========|=====\ /-\ | \======<?!/>@/<-?!\>>>@/<<<-?\=>!\?/>!/@/<# < \=======|==========/ /-\ | @ \done======>>>!\?/<=/ \=@@@+@+++++# .  ! /\  ?- zero \/ < divmod @ /-\ \?\<!\?/#!===+<<<\ /-\ | \<==@\>@\>>!/?!/=<?\>!\?/<<# | | | #\->->+</ | \=!\=?!/->>+<<?\# @ #\?<<+>>-/ \=@@@+@+++++# . < @ \=@@@+@+++++# . #
http://rosettacode.org/wiki/Arithmetic-geometric_mean/Calculate_Pi
Arithmetic-geometric mean/Calculate Pi
Almkvist Berndt 1988 begins with an investigation of why the agm is such an efficient algorithm, and proves that it converges quadratically. This is an efficient method to calculate π {\displaystyle \pi } . With the same notations used in Arithmetic-geometric mean, we can summarize the paper by writing: π = 4 a g m ( 1 , 1 / 2 ) 2 1 − ∑ n = 1 ∞ 2 n + 1 ( a n 2 − g n 2 ) {\displaystyle \pi ={\frac {4\;\mathrm {agm} (1,1/{\sqrt {2}})^{2}}{1-\sum \limits _{n=1}^{\infty }2^{n+1}(a_{n}^{2}-g_{n}^{2})}}} This allows you to make the approximation, for any large   N: π ≈ 4 a N 2 1 − ∑ k = 1 N 2 k + 1 ( a k 2 − g k 2 ) {\displaystyle \pi \approx {\frac {4\;a_{N}^{2}}{1-\sum \limits _{k=1}^{N}2^{k+1}(a_{k}^{2}-g_{k}^{2})}}} The purpose of this task is to demonstrate how to use this approximation in order to compute a large number of decimals of π {\displaystyle \pi } .
#J
J
DP=: 100   round=: DP&$: : (4 : 0) b %~ <.1r2+y*b=. 10x^x )   sqrt=: DP&$: : (4 : 0) " 0 assert. 0<:y  %/ <.@%: (2 x: (2*x) round y)*10x^2*x+0>.>.10^.y )   pi =: 3 : 0 A =. N =. 1x 'G Z HALF' =. (% sqrt 2) , 1r4 1r2 for_I. i.18 do. X =. ((A + G) * HALF) , sqrt A * G VAR =. ({.X) - A Z =. Z - VAR * VAR * N N =. +: N 'A G' =. X PI =: A * A % Z smoutput (0j100":PI) , 4 ": I end. PI )
http://rosettacode.org/wiki/Arithmetic-geometric_mean/Calculate_Pi
Arithmetic-geometric mean/Calculate Pi
Almkvist Berndt 1988 begins with an investigation of why the agm is such an efficient algorithm, and proves that it converges quadratically. This is an efficient method to calculate π {\displaystyle \pi } . With the same notations used in Arithmetic-geometric mean, we can summarize the paper by writing: π = 4 a g m ( 1 , 1 / 2 ) 2 1 − ∑ n = 1 ∞ 2 n + 1 ( a n 2 − g n 2 ) {\displaystyle \pi ={\frac {4\;\mathrm {agm} (1,1/{\sqrt {2}})^{2}}{1-\sum \limits _{n=1}^{\infty }2^{n+1}(a_{n}^{2}-g_{n}^{2})}}} This allows you to make the approximation, for any large   N: π ≈ 4 a N 2 1 − ∑ k = 1 N 2 k + 1 ( a k 2 − g k 2 ) {\displaystyle \pi \approx {\frac {4\;a_{N}^{2}}{1-\sum \limits _{k=1}^{N}2^{k+1}(a_{k}^{2}-g_{k}^{2})}}} The purpose of this task is to demonstrate how to use this approximation in order to compute a large number of decimals of π {\displaystyle \pi } .
#Java
Java
import java.math.BigDecimal; import java.math.MathContext; import java.util.Objects;   public class Calculate_Pi { private static final MathContext con1024 = new MathContext(1024); private static final BigDecimal bigTwo = new BigDecimal(2); private static final BigDecimal bigFour = new BigDecimal(4);   private static BigDecimal bigSqrt(BigDecimal bd, MathContext con) { BigDecimal x0 = BigDecimal.ZERO; BigDecimal x1 = BigDecimal.valueOf(Math.sqrt(bd.doubleValue())); while (!Objects.equals(x0, x1)) { x0 = x1; x1 = bd.divide(x0, con).add(x0).divide(bigTwo, con); } return x1; }   public static void main(String[] args) { BigDecimal a = BigDecimal.ONE; BigDecimal g = a.divide(bigSqrt(bigTwo, con1024), con1024); BigDecimal t; BigDecimal sum = BigDecimal.ZERO; BigDecimal pow = bigTwo; while (!Objects.equals(a, g)) { t = a.add(g).divide(bigTwo, con1024); g = bigSqrt(a.multiply(g), con1024); a = t; pow = pow.multiply(bigTwo); sum = sum.add(a.multiply(a).subtract(g.multiply(g)).multiply(pow)); } BigDecimal pi = bigFour.multiply(a.multiply(a)).divide(BigDecimal.ONE.subtract(sum), con1024); System.out.println(pi); } }
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#AppleScript
AppleScript
set empty to {} set ints to {1, 2, 3}
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#BASIC
BASIC
TYPE complex real AS DOUBLE imag AS DOUBLE END TYPE   DECLARE SUB suma (a AS complex, b AS complex, c AS complex) DECLARE SUB rest (a AS complex, b AS complex, c AS complex) DECLARE SUB mult (a AS complex, b AS complex, c AS complex) DECLARE SUB divi (a AS complex, b AS complex, c AS complex) DECLARE SUB neg (a AS complex, b AS complex) DECLARE SUB inv (a AS complex, b AS complex) DECLARE SUB conj (a AS complex, b AS complex)   CLS DIM x AS complex DIM y AS complex DIM z AS complex x.real = 1 x.imag = 1 y.real = 2 y.imag = 2   PRINT "Siendo x = "; x.real; "+"; x.imag; "i" PRINT " e y = "; y.real; "+"; y.imag; "i" PRINT CALL suma(x, y, z) PRINT "x + y = "; z.real; "+"; z.imag; "i" CALL rest(x, y, z) PRINT "x - y = "; z.real; "+"; z.imag; "i" CALL mult(x, y, z) PRINT "x * y = "; z.real; "+"; z.imag; "i" CALL divi(x, y, z) PRINT "x / y = "; z.real; "+"; z.imag; "i" CALL neg(x, z) PRINT " -x = "; z.real; "+"; z.imag; "i" CALL inv(x, z) PRINT "1 / x = "; z.real; "+"; z.imag; "i" CALL conj(x, z) PRINT " x* = "; z.real; "+"; z.imag; "i" END   SUB suma (a AS complex, b AS complex, c AS complex) c.real = a.real + b.real c.imag = a.imag + b.imag END SUB   SUB inv (a AS complex, b AS complex) denom = a.real ^ 2 + a.imag ^ 2 b.real = a.real / denom b.imag = -a.imag / denom END SUB   SUB mult (a AS complex, b AS complex, c AS complex) c.real = a.real * b.real - a.imag * b.imag c.imag = a.real * b.imag + a.imag * b.real END SUB   SUB neg (a AS complex, b AS complex) b.real = -a.real b.imag = -a.imag END SUB   SUB conj (a AS complex, b AS complex) b.real = a.real b.imag = -a.imag END SUB   SUB divi (a AS complex, b AS complex, c AS complex) c.real = ((a.real * b.real + b.imag * a.imag) / (b.real ^ 2 + b.imag ^ 2)) c.imag = ((a.imag * b.real - a.real * b.imag) / (b.real ^ 2 + b.imag ^ 2)) END SUB   SUB rest (a AS complex, b AS complex, c AS complex) c.real = a.real - b.real c.imag = a.imag - b.imag END SUB  
http://rosettacode.org/wiki/Arena_storage_pool
Arena storage pool
Dynamically allocated objects take their memory from a heap. The memory for an object is provided by an allocator which maintains the storage pool used for the heap. Often a call to allocator is denoted as P := new T where   T   is the type of an allocated object,   and   P   is a reference to the object. The storage pool chosen by the allocator can be determined by either: the object type   T the type of pointer   P In the former case objects can be allocated only in one storage pool. In the latter case objects of the type can be allocated in any storage pool or on the stack. Task The task is to show how allocators and user-defined storage pools are supported by the language. In particular: define an arena storage pool.   An arena is a pool in which objects are allocated individually, but freed by groups. allocate some objects (e.g., integers) in the pool. Explain what controls the storage pool choice in the language.
#Erlang
Erlang
  -module( arena_storage_pool ).   -export( [task/0] ).   task() -> Pid = erlang:spawn_opt( fun() -> loop([]) end, [{min_heap_size, 10000}] ), set( Pid, 1, ett ), set( Pid, "kalle", "hobbe" ), V1 = get( Pid, 1 ), V2 = get( Pid, "kalle" ), true = (V1 =:= ett) and (V2 =:= "hobbe"), erlang:exit( Pid, normal ).       get( Pid, Key ) -> Pid ! {get, Key, erlang:self()}, receive {value, Value, Pid} -> Value end.   loop( List ) -> receive {set, Key, Value} -> loop( [{Key, Value} | proplists:delete(Key, List)] ); {get, Key, Pid} -> Pid ! {value, proplists:get_value(Key, List), erlang:self()}, loop( List ) end.   set( Pid, Key, Value ) -> Pid ! {set, Key, Value}.  
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#BBC_BASIC
BBC BASIC
*FLOAT64 DIM frac{num, den} DIM Sum{} = frac{}, Kf{} = frac{}, One{} = frac{} One.num = 1 : One.den = 1   FOR n% = 2 TO 2^19-1 Sum.num = 1 : Sum.den = n% FOR k% = 2 TO SQR(n%) IF (n% MOD k%) = 0 THEN Kf.num = 1 : Kf.den = k% PROCadd(Sum{}, Kf{}) PROCnormalise(Sum{}) Kf.den = n% DIV k% PROCadd(Sum{}, Kf{}) PROCnormalise(Sum{}) ENDIF NEXT IF FNeq(Sum{}, One{}) PRINT n% " is perfect" NEXT n% END   DEF PROCabs(a{}) : a.num = ABS(a.num) : ENDPROC DEF PROCneg(a{}) : a.num = -a.num : ENDPROC   DEF PROCadd(a{}, b{}) LOCAL t : t = a.den * b.den a.num = a.num * b.den + b.num * a.den a.den = t ENDPROC   DEF PROCsub(a{}, b{}) LOCAL t : t = a.den * b.den a.num = a.num * b.den - b.num * a.den a.den = t ENDPROC   DEF PROCmul(a{}, b{}) a.num *= b.num : a.den *= b.den ENDPROC   DEF PROCdiv(a{}, b{}) a.num *= b.den : a.den *= b.num ENDPROC   DEF FNeq(a{}, b{}) = a.num * b.den = b.num * a.den DEF FNlt(a{}, b{}) = a.num * b.den < b.num * a.den DEF FNgt(a{}, b{}) = a.num * b.den > b.num * a.den DEF FNne(a{}, b{}) = a.num * b.den <> b.num * a.den DEF FNle(a{}, b{}) = a.num * b.den <= b.num * a.den DEF FNge(a{}, b{}) = a.num * b.den >= b.num * a.den   DEF PROCnormalise(a{}) LOCAL a, b, t a = a.num : b = a.den WHILE b <> 0 t = a a = b b = t - b * INT(t / b) ENDWHILE a.num /= a : a.den /= a IF a.den < 0 a.num *= -1 : a.den *= -1 ENDPROC
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#APL
APL
  agd←{(⍺-⍵)<10*¯8:⍺⋄((⍺+⍵)÷2)∇(⍺×⍵)*÷2} 1 agd ÷2*÷2  
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#AppleScript
AppleScript
-- ARITHMETIC GEOMETRIC MEAN -------------------------------------------------   property tolerance : 1.0E-5   -- agm :: Num a => a -> a -> a on agm(a, g) script withinTolerance on |λ|(m) tell m to ((its an) - (its gn)) < tolerance end |λ| end script   script nextRefinement on |λ|(m) tell m set {an, gn} to {its an, its gn} {an:(an + gn) / 2, gn:(an * gn) ^ 0.5} end tell end |λ| end script   an of |until|(withinTolerance, ¬ nextRefinement, {an:(a + g) / 2, gn:(a * g) ^ 0.5}) end agm   -- TEST ---------------------------------------------------------------------- on run   agm(1, 1 / (2 ^ 0.5))   --> 0.847213084835   end run   -- GENERIC FUNCTIONS ---------------------------------------------------------   -- until :: (a -> Bool) -> (a -> a) -> a -> a on |until|(p, f, x) set mp to mReturn(p) set v to x tell mReturn(f) repeat until mp's |λ|(v) set v to |λ|(v) end repeat end tell return v end |until|   -- Lift 2nd class handler function into 1st class script wrapper -- mReturn :: Handler -> Script on mReturn(f) if class of f is script then f else script property |λ| : f end script end if end mReturn
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Get two integers from the user,   and then (for those two integers), display their:   sum   difference   product   integer quotient   remainder   exponentiation   (if the operator exists) Don't include error handling. For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.). For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
#SQL
SQL
  -- test.sql -- Tested in SQL*plus   DROP TABLE test;   CREATE TABLE test (a INTEGER, b INTEGER);   INSERT INTO test VALUES ('&&A','&&B');   commit;   SELECT a-b difference FROM test;   SELECT a*b product FROM test;   SELECT trunc(a/b) integer_quotient FROM test;   SELECT MOD(a,b) remainder FROM test;   SELECT POWER(a,b) exponentiation FROM test;  
http://rosettacode.org/wiki/Arithmetic-geometric_mean/Calculate_Pi
Arithmetic-geometric mean/Calculate Pi
Almkvist Berndt 1988 begins with an investigation of why the agm is such an efficient algorithm, and proves that it converges quadratically. This is an efficient method to calculate π {\displaystyle \pi } . With the same notations used in Arithmetic-geometric mean, we can summarize the paper by writing: π = 4 a g m ( 1 , 1 / 2 ) 2 1 − ∑ n = 1 ∞ 2 n + 1 ( a n 2 − g n 2 ) {\displaystyle \pi ={\frac {4\;\mathrm {agm} (1,1/{\sqrt {2}})^{2}}{1-\sum \limits _{n=1}^{\infty }2^{n+1}(a_{n}^{2}-g_{n}^{2})}}} This allows you to make the approximation, for any large   N: π ≈ 4 a N 2 1 − ∑ k = 1 N 2 k + 1 ( a k 2 − g k 2 ) {\displaystyle \pi \approx {\frac {4\;a_{N}^{2}}{1-\sum \limits _{k=1}^{N}2^{k+1}(a_{k}^{2}-g_{k}^{2})}}} The purpose of this task is to demonstrate how to use this approximation in order to compute a large number of decimals of π {\displaystyle \pi } .
#jq
jq
# include "rational"; # a reminder   def pi(precision): (precision | (. + log) | ceil) as $digits | def sq: . as $in | rmult($in; $in) | rround($digits); {an: r(1;1), bn: (r(1;2) | rsqrt($digits)), tn: r(1;4), pn: 1 } | until (.pn > $digits; .an as $prevAn | .an = (rmult(radd(.bn; .an); r(1;2)) | rround($digits) ) | .bn = ([.bn, $prevAn] | rmult | rsqrt($digits) ) | .tn = rminus(.tn; rmult(rminus($prevAn; .an)|sq; .pn)) | .pn *= 2 ) | rdiv( radd(.an; .bn)|sq; rmult(.tn; 4)) | r_to_decimal(precision);   pi(500)
http://rosettacode.org/wiki/Arithmetic-geometric_mean/Calculate_Pi
Arithmetic-geometric mean/Calculate Pi
Almkvist Berndt 1988 begins with an investigation of why the agm is such an efficient algorithm, and proves that it converges quadratically. This is an efficient method to calculate π {\displaystyle \pi } . With the same notations used in Arithmetic-geometric mean, we can summarize the paper by writing: π = 4 a g m ( 1 , 1 / 2 ) 2 1 − ∑ n = 1 ∞ 2 n + 1 ( a n 2 − g n 2 ) {\displaystyle \pi ={\frac {4\;\mathrm {agm} (1,1/{\sqrt {2}})^{2}}{1-\sum \limits _{n=1}^{\infty }2^{n+1}(a_{n}^{2}-g_{n}^{2})}}} This allows you to make the approximation, for any large   N: π ≈ 4 a N 2 1 − ∑ k = 1 N 2 k + 1 ( a k 2 − g k 2 ) {\displaystyle \pi \approx {\frac {4\;a_{N}^{2}}{1-\sum \limits _{k=1}^{N}2^{k+1}(a_{k}^{2}-g_{k}^{2})}}} The purpose of this task is to demonstrate how to use this approximation in order to compute a large number of decimals of π {\displaystyle \pi } .
#Julia
Julia
using Printf   agm1step(x, y) = (x + y) / 2, sqrt(x * y)   function approxπstep(x, y, z, n::Integer) a, g = agm1step(x, y) k = n + 1 s = z + 2 ^ (k + 1) * (a ^ 2 - g ^ 2) return a, g, s, k end   approxπ(a, g, s) = 4a ^ 2 / (1 - s)   function testmakepi() setprecision(512) a, g, s, k = BigFloat(1.0), 1 / √BigFloat(2.0), BigFloat(0.0), 0 oldπ = BigFloat(0.0) println("Approximating π using ", precision(BigFloat), "-bit floats.") println(" k Error Result") for i in 1:100 a, g, s, k = approxπstep(a, g, s, k) estπ = approxπ(a, g, s) if abs(estπ - oldπ) < 2eps(estπ) break end oldπ = estπ err = abs(π - estπ) @printf("%4d%10.1e%68.60e\n", i, err, estπ) end end   testmakepi()