code
stringlengths
10
805k
def_use_chains
sequencelengths
0
667
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Faster R-CNN meta-architecture definition. General tensorflow implementation of Faster R-CNN detection models. See Faster R-CNN: Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015. We allow for three modes: number_of_stages={1, 2, 3}. In case of 1 stage, all of the user facing methods (e.g., predict, postprocess, loss) can be used as if the model consisted only of the RPN, returning class agnostic proposals (these can be thought of as approximate detections with no associated class information). In case of 2 stages, proposals are computed, then passed through a second stage "box classifier" to yield (multi-class) detections. Finally, in case of 3 stages which is only used during eval, proposals are computed, then passed through a second stage "box classifier" that will compute refined boxes and classes, and then features are pooled from the refined and non-maximum suppressed boxes and are passed through the box classifier again. If number of stages is 3 during training it will be reduced to two automatically. Implementations of Faster R-CNN models must define a new FasterRCNNFeatureExtractor and override three methods: `preprocess`, `_extract_proposal_features` (the first stage of the model), and `_extract_box_classifier_features` (the second stage of the model). Optionally, the `restore_fn` method can be overridden. See tests for an example. A few important notes: + Batching conventions: We support batched inference and training where all images within a batch have the same resolution. Batch sizes are determined dynamically via the shape of the input tensors (rather than being specified directly as, e.g., a model constructor). A complication is that due to non-max suppression, we are not guaranteed to get the same number of proposals from the first stage RPN (region proposal network) for each image (though in practice, we should often get the same number of proposals). For this reason we pad to a max number of proposals per image within a batch. This `self.max_num_proposals` property is set to the `first_stage_max_proposals` parameter at inference time and the `second_stage_batch_size` at training time since we subsample the batch to be sent through the box classifier during training. For the second stage of the pipeline, we arrange the proposals for all images within the batch along a single batch dimension. For example, the input to _extract_box_classifier_features is a tensor of shape `[total_num_proposals, crop_height, crop_width, depth]` where total_num_proposals is batch_size * self.max_num_proposals. (And note that per the above comment, a subset of these entries correspond to zero paddings.) + Coordinate representations: Following the API (see model.DetectionModel definition), our outputs after postprocessing operations are always normalized boxes however, internally, we sometimes convert to absolute --- e.g. for loss computation. In particular, anchors and proposal_boxes are both represented as absolute coordinates. Images are resized in the `preprocess` method. The Faster R-CNN meta architecture has two post-processing methods `_postprocess_rpn` which is applied after first stage and `_postprocess_box_classifier` which is applied after second stage. There are three different ways post-processing can happen depending on number_of_stages configured in the meta architecture: 1. When number_of_stages is 1: `_postprocess_rpn` is run as part of the `postprocess` method where true_image_shapes is used to clip proposals, perform non-max suppression and normalize them. 2. When number of stages is 2: `_postprocess_rpn` is run as part of the `_predict_second_stage` method where `resized_image_shapes` is used to clip proposals, perform non-max suppression and normalize them. In this case `postprocess` method skips `_postprocess_rpn` and only runs `_postprocess_box_classifier` using `true_image_shapes` to clip detections, perform non-max suppression and normalize them. 3. When number of stages is 3: `_postprocess_rpn` is run as part of the `_predict_second_stage` using `resized_image_shapes` to clip proposals, perform non-max suppression and normalize them. Subsequently, `_postprocess_box_classifier` is run as part of `_predict_third_stage` using `true_image_shapes` to clip detections, peform non-max suppression and normalize them. In this case, the `postprocess` method skips both `_postprocess_rpn` and `_postprocess_box_classifier`. """ from abc import abstractmethod from functools import partial import tensorflow as tf import json import numpy as np from object_detection.anchor_generators import grid_anchor_generator from object_detection.builders import box_predictor_builder from object_detection.core import box_list from object_detection.core import box_list_ops from object_detection.core import box_predictor from object_detection.core import losses from object_detection.core import model from object_detection.core import post_processing from object_detection.core import standard_fields as fields from object_detection.core import target_assigner from object_detection.utils import ops from object_detection.utils import shape_utils import sys # for debug sys.path.append("/notebooks/text-renderer/") import data_util slim = tf.contrib.slim class FasterRCNNFeatureExtractor(object): """Faster R-CNN Feature Extractor definition.""" def __init__(self, is_training, first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0): """Constructor. Args: is_training: A boolean indicating whether the training version of the computation graph should be constructed. first_stage_features_stride: Output stride of extracted RPN feature map. batch_norm_trainable: Whether to update batch norm parameters during training or not. When training with a relative large batch size (e.g. 8), it could be desirable to enable batch norm update. reuse_weights: Whether to reuse variables. Default is None. weight_decay: float weight decay for feature extractor (default: 0.0). """ self._is_training = is_training self._first_stage_features_stride = first_stage_features_stride self._train_batch_norm = (batch_norm_trainable and is_training) self._reuse_weights = reuse_weights self._weight_decay = weight_decay @abstractmethod def preprocess(self, resized_inputs): """Feature-extractor specific preprocessing (minus image resizing).""" pass def extract_proposal_features(self, preprocessed_inputs, scope): """Extracts first stage RPN features. This function is responsible for extracting feature maps from preprocessed images. These features are used by the region proposal network (RPN) to predict proposals. Args: preprocessed_inputs: A [batch, height, width, channels] float tensor representing a batch of images. scope: A scope name. Returns: rpn_feature_map: A tensor with shape [batch, height, width, depth] activations: A dictionary mapping activation tensor names to tensors. """ with tf.variable_scope(scope, values=[preprocessed_inputs]): return self._extract_proposal_features(preprocessed_inputs, scope) @abstractmethod def _extract_proposal_features(self, preprocessed_inputs, scope): """Extracts first stage RPN features, to be overridden.""" pass def extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name. Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ with tf.variable_scope( scope, values=[proposal_feature_maps], reuse=tf.AUTO_REUSE): return self._extract_box_classifier_features(proposal_feature_maps, scope) @abstractmethod def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features, to be overridden.""" pass def restore_from_classification_checkpoint_fn( self, first_stage_feature_extractor_scope, second_stage_feature_extractor_scope): """Returns a map of variables to load from a foreign checkpoint. Args: first_stage_feature_extractor_scope: A scope name for the first stage feature extractor. second_stage_feature_extractor_scope: A scope name for the second stage feature extractor. Returns: A dict mapping variable names (to load from a checkpoint) to variables in the model graph. """ variables_to_restore = {} for variable in tf.global_variables(): for scope_name in [first_stage_feature_extractor_scope, second_stage_feature_extractor_scope]: if variable.op.name.startswith(scope_name): var_name = variable.op.name.replace(scope_name + '/', '') variables_to_restore[var_name] = variable return variables_to_restore class FasterRCNNMetaArchOverrideRPN(model.DetectionModel): """Faster R-CNN Meta-architecture definition.""" def __init__(self, is_training, num_classes, image_resizer_fn, feature_extractor, number_of_stages, first_stage_anchor_generator, first_stage_target_assigner, first_stage_atrous_rate, first_stage_box_predictor_arg_scope_fn, first_stage_box_predictor_kernel_size, first_stage_box_predictor_depth, first_stage_minibatch_size, first_stage_sampler, first_stage_nms_score_threshold, first_stage_nms_iou_threshold, first_stage_max_proposals, first_stage_proposals_path, first_stage_localization_loss_weight, first_stage_objectness_loss_weight, initial_crop_size, maxpool_kernel_size, maxpool_stride, second_stage_target_assigner, second_stage_mask_rcnn_box_predictor, second_stage_batch_size, second_stage_sampler, second_stage_non_max_suppression_fn, second_stage_score_conversion_fn, second_stage_localization_loss_weight, second_stage_classification_loss_weight, second_stage_classification_loss, second_stage_mask_prediction_loss_weight=1.0, hard_example_miner=None, parallel_iterations=16, add_summaries=True, use_matmul_crop_and_resize=False, clip_anchors_to_image=False): """FasterRCNNMetaArch Constructor. Args: is_training: A boolean indicating whether the training version of the computation graph should be constructed. num_classes: Number of classes. Note that num_classes *does not* include the background category, so if groundtruth labels take values in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the assigned classification targets can range from {0,... K}). image_resizer_fn: A callable for image resizing. This callable takes a rank-3 image tensor of shape [height, width, channels] (corresponding to a single image), an optional rank-3 instance mask tensor of shape [num_masks, height, width] and returns a resized rank-3 image tensor, a resized mask tensor if one was provided in the input. In addition this callable must also return a 1-D tensor of the form [height, width, channels] containing the size of the true image, as the image resizer can perform zero padding. See protos/image_resizer.proto. feature_extractor: A FasterRCNNFeatureExtractor object. number_of_stages: An integer values taking values in {1, 2, 3}. If 1, the function will construct only the Region Proposal Network (RPN) part of the model. If 2, the function will perform box refinement and other auxiliary predictions all in the second stage. If 3, it will extract features from refined boxes and perform the auxiliary predictions on the non-maximum suppressed refined boxes. If is_training is true and the value of number_of_stages is 3, it is reduced to 2 since all the model heads are trained in parallel in second stage during training. first_stage_anchor_generator: An anchor_generator.AnchorGenerator object (note that currently we only support grid_anchor_generator.GridAnchorGenerator objects) first_stage_target_assigner: Target assigner to use for first stage of Faster R-CNN (RPN). first_stage_atrous_rate: A single integer indicating the atrous rate for the single convolution op which is applied to the `rpn_features_to_crop` tensor to obtain a tensor to be used for box prediction. Some feature extractors optionally allow for producing feature maps computed at denser resolutions. The atrous rate is used to compensate for the denser feature maps by using an effectively larger receptive field. (This should typically be set to 1). first_stage_box_predictor_arg_scope_fn: A function to construct tf-slim arg_scope for conv2d, separable_conv2d and fully_connected ops for the RPN box predictor. first_stage_box_predictor_kernel_size: Kernel size to use for the convolution op just prior to RPN box predictions. first_stage_box_predictor_depth: Output depth for the convolution op just prior to RPN box predictions. first_stage_minibatch_size: The "batch size" to use for computing the objectness and location loss of the region proposal network. This "batch size" refers to the number of anchors selected as contributing to the loss function for any given image within the image batch and is only called "batch_size" due to terminology from the Faster R-CNN paper. first_stage_sampler: Sampler to use for first stage loss (RPN loss). first_stage_nms_score_threshold: Score threshold for non max suppression for the Region Proposal Network (RPN). This value is expected to be in [0, 1] as it is applied directly after a softmax transformation. The recommended value for Faster R-CNN is 0. first_stage_nms_iou_threshold: The Intersection Over Union (IOU) threshold for performing Non-Max Suppression (NMS) on the boxes predicted by the Region Proposal Network (RPN). first_stage_max_proposals: Maximum number of boxes to retain after performing Non-Max Suppression (NMS) on the boxes predicted by the Region Proposal Network (RPN). first_stage_localization_loss_weight: A float first_stage_objectness_loss_weight: A float initial_crop_size: A single integer indicating the output size (width and height are set to be the same) of the initial bilinear interpolation based cropping during ROI pooling. maxpool_kernel_size: A single integer indicating the kernel size of the max pool op on the cropped feature map during ROI pooling. maxpool_stride: A single integer indicating the stride of the max pool op on the cropped feature map during ROI pooling. second_stage_target_assigner: Target assigner to use for second stage of Faster R-CNN. If the model is configured with multiple prediction heads, this target assigner is used to generate targets for all heads (with the correct `unmatched_class_label`). second_stage_mask_rcnn_box_predictor: Mask R-CNN box predictor to use for the second stage. second_stage_batch_size: The batch size used for computing the classification and refined location loss of the box classifier. This "batch size" refers to the number of proposals selected as contributing to the loss function for any given image within the image batch and is only called "batch_size" due to terminology from the Faster R-CNN paper. second_stage_sampler: Sampler to use for second stage loss (box classifier loss). second_stage_non_max_suppression_fn: batch_multiclass_non_max_suppression callable that takes `boxes`, `scores`, optional `clip_window` and optional (kwarg) `mask` inputs (with all other inputs already set) and returns a dictionary containing tensors with keys: `detection_boxes`, `detection_scores`, `detection_classes`, `num_detections`, and (optionally) `detection_masks`. See `post_processing.batch_multiclass_non_max_suppression` for the type and shape of these tensors. second_stage_score_conversion_fn: Callable elementwise nonlinearity (that takes tensors as inputs and returns tensors). This is usually used to convert logits to probabilities. second_stage_localization_loss_weight: A float indicating the scale factor for second stage localization loss. second_stage_classification_loss_weight: A float indicating the scale factor for second stage classification loss. second_stage_classification_loss: Classification loss used by the second stage classifier. Either losses.WeightedSigmoidClassificationLoss or losses.WeightedSoftmaxClassificationLoss. second_stage_mask_prediction_loss_weight: A float indicating the scale factor for second stage mask prediction loss. This is applicable only if second stage box predictor is configured to predict masks. hard_example_miner: A losses.HardExampleMiner object (can be None). parallel_iterations: (Optional) The number of iterations allowed to run in parallel for calls to tf.map_fn. add_summaries: boolean (default: True) controlling whether summary ops should be added to tensorflow graph. use_matmul_crop_and_resize: Force the use of matrix multiplication based crop and resize instead of standard tf.image.crop_and_resize while computing second stage input feature maps. clip_anchors_to_image: Normally, anchors generated for a given image size are pruned during training if they lie outside the image window. This option clips the anchors to be within the image instead of pruning. Raises: ValueError: If `second_stage_batch_size` > `first_stage_max_proposals` at training time. ValueError: If first_stage_anchor_generator is not of type grid_anchor_generator.GridAnchorGenerator. """ # TODO(rathodv): add_summaries is currently unused. Respect that directive # in the future. print("Running FasterRCNN with overriden RPN") super(FasterRCNNMetaArchOverrideRPN, self).__init__(num_classes=num_classes) # There is no RPN in this implementation! if (number_of_stages==1): raise ValueError('Number of stages = 1 is not allowed for overriden RPN proposals') if is_training and second_stage_batch_size > first_stage_max_proposals: raise ValueError('second_stage_batch_size should be no greater than ' 'first_stage_max_proposals.') if not isinstance(first_stage_anchor_generator, grid_anchor_generator.GridAnchorGenerator): raise ValueError('first_stage_anchor_generator must be of type ' 'grid_anchor_generator.GridAnchorGenerator.') # Michele: Proposals that override the RPN first_stage_proposals_path = os.path.join(first_stage_proposals_path, '') xml_root = data_util.read_xml_batch(first_stage_proposals_path)[0]['annot'] _, self.proposals = data_util.xml_to_numpy(None, xml_root) print("Shape of overriding proposals",self.proposals.shape) self._is_training = is_training self._image_resizer_fn = image_resizer_fn self._feature_extractor = feature_extractor self._number_of_stages = number_of_stages self._proposal_target_assigner = first_stage_target_assigner self._detector_target_assigner = second_stage_target_assigner # Both proposal and detector target assigners use the same box coder self._box_coder = self._proposal_target_assigner.box_coder # (First stage) Region proposal network parameters self._first_stage_anchor_generator = first_stage_anchor_generator self._first_stage_atrous_rate = first_stage_atrous_rate self._first_stage_box_predictor_arg_scope_fn = ( first_stage_box_predictor_arg_scope_fn) self._first_stage_box_predictor_kernel_size = ( first_stage_box_predictor_kernel_size) self._first_stage_box_predictor_depth = first_stage_box_predictor_depth self._first_stage_minibatch_size = first_stage_minibatch_size self._first_stage_sampler = first_stage_sampler self._first_stage_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=self._is_training, num_classes=1, conv_hyperparams_fn=self._first_stage_box_predictor_arg_scope_fn, use_dropout=False, dropout_keep_prob=1.0, box_code_size=self._box_coder.code_size, kernel_size=1, num_layers_before_predictor=0, min_depth=0, max_depth=0)) self._first_stage_nms_score_threshold = first_stage_nms_score_threshold self._first_stage_nms_iou_threshold = first_stage_nms_iou_threshold self._first_stage_max_proposals = first_stage_max_proposals self._first_stage_localization_loss = ( losses.WeightedSmoothL1LocalizationLoss()) self._first_stage_objectness_loss = ( losses.WeightedSoftmaxClassificationLoss()) self._first_stage_loc_loss_weight = first_stage_localization_loss_weight self._first_stage_obj_loss_weight = first_stage_objectness_loss_weight # Per-region cropping parameters self._initial_crop_size = initial_crop_size self._maxpool_kernel_size = maxpool_kernel_size self._maxpool_stride = maxpool_stride self._mask_rcnn_box_predictor = second_stage_mask_rcnn_box_predictor self._second_stage_batch_size = second_stage_batch_size self._second_stage_sampler = second_stage_sampler self._second_stage_nms_fn = second_stage_non_max_suppression_fn self._second_stage_score_conversion_fn = second_stage_score_conversion_fn self._second_stage_localization_loss = ( losses.WeightedSmoothL1LocalizationLoss()) self._second_stage_classification_loss = second_stage_classification_loss self._second_stage_mask_loss = ( losses.WeightedSigmoidClassificationLoss()) self._second_stage_loc_loss_weight = second_stage_localization_loss_weight self._second_stage_cls_loss_weight = second_stage_classification_loss_weight self._second_stage_mask_loss_weight = ( second_stage_mask_prediction_loss_weight) self._use_matmul_crop_and_resize = use_matmul_crop_and_resize self._hard_example_miner = hard_example_miner self._parallel_iterations = parallel_iterations self.clip_anchors_to_image = clip_anchors_to_image if self._number_of_stages <= 0 or self._number_of_stages > 3: raise ValueError('Number of stages should be a value in {1, 2, 3}.') @property def first_stage_feature_extractor_scope(self): return 'FirstStageFeatureExtractor' @property def second_stage_feature_extractor_scope(self): return 'SecondStageFeatureExtractor' @property def first_stage_box_predictor_scope(self): return 'FirstStageBoxPredictor' @property def second_stage_box_predictor_scope(self): return 'SecondStageBoxPredictor' @property def max_num_proposals(self): """Max number of proposals (to pad to) for each image in the input batch. At training time, this is set to be the `second_stage_batch_size` if hard example miner is not configured, else it is set to `first_stage_max_proposals`. At inference time, this is always set to `first_stage_max_proposals`. Returns: A positive integer. """ if self._is_training and not self._hard_example_miner: return self._second_stage_batch_size #return self._first_stage_max_proposals return self.proposals.shape[1] @property def anchors(self): if not self._anchors: raise RuntimeError('anchors have not been constructed yet!') if not isinstance(self._anchors, box_list.BoxList): raise RuntimeError('anchors should be a BoxList object, but is not.') return self._anchors def preprocess(self, inputs): """Feature-extractor specific preprocessing. See base class. For Faster R-CNN, we perform image resizing in the base class --- each class subclassing FasterRCNNMetaArch is responsible for any additional preprocessing (e.g., scaling pixel values to be in [-1, 1]). Args: inputs: a [batch, height_in, width_in, channels] float tensor representing a batch of images with values between 0 and 255.0. Returns: preprocessed_inputs: a [batch, height_out, width_out, channels] float tensor representing a batch of images. true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. Raises: ValueError: if inputs tensor does not have type tf.float32 """ if inputs.dtype is not tf.float32: raise ValueError('`preprocess` expects a tf.float32 tensor') with tf.name_scope('Preprocessor'): outputs = shape_utils.static_or_dynamic_map_fn( self._image_resizer_fn, elems=inputs, dtype=[tf.float32, tf.int32], parallel_iterations=self._parallel_iterations) resized_inputs = outputs[0] true_image_shapes = outputs[1] return (self._feature_extractor.preprocess(resized_inputs), true_image_shapes) def _compute_clip_window(self, image_shapes): """Computes clip window for non max suppression based on image shapes. This function assumes that the clip window's left top corner is at (0, 0). Args: image_shapes: A 2-D int32 tensor of shape [batch_size, 3] containing shapes of images in the batch. Each row represents [height, width, channels] of an image. Returns: A 2-D float32 tensor of shape [batch_size, 4] containing the clip window for each image in the form [ymin, xmin, ymax, xmax]. """ clip_heights = image_shapes[:, 0] clip_widths = image_shapes[:, 1] clip_window = tf.to_float(tf.stack([tf.zeros_like(clip_heights), tf.zeros_like(clip_heights), clip_heights, clip_widths], axis=1)) return clip_window def predict(self, preprocessed_inputs, true_image_shapes): """Predicts unpostprocessed tensors from input tensor. This function takes an input batch of images and runs it through the forward pass of the network to yield "raw" un-postprocessed predictions. If `number_of_stages` is 1, this function only returns first stage RPN predictions (un-postprocessed). Otherwise it returns both first stage RPN predictions as well as second stage box classifier predictions. Other remarks: + Anchor pruning vs. clipping: following the recommendation of the Faster R-CNN paper, we prune anchors that venture outside the image window at training time and clip anchors to the image window at inference time. + Proposal padding: as described at the top of the file, proposals are padded to self._max_num_proposals and flattened so that proposals from all images within the input batch are arranged along the same batch dimension. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. Returns: prediction_dict: a dictionary holding "raw" prediction tensors: 1) rpn_box_predictor_features: A 4-D float32 tensor with shape [batch_size, height, width, depth] to be used for predicting proposal boxes and corresponding objectness scores. 2) rpn_features_to_crop: A 4-D float32 tensor with shape [batch_size, height, width, depth] representing image features to crop using the proposal boxes predicted by the RPN. 3) image_shape: a 1-D tensor of shape [4] representing the input image shape. 4) rpn_box_encodings: 3-D float tensor of shape [batch_size, num_anchors, self._box_coder.code_size] containing predicted boxes. 5) rpn_objectness_predictions_with_background: 3-D float tensor of shape [batch_size, num_anchors, 2] containing class predictions (logits) for each of the anchors. Note that this tensor *includes* background class predictions (at class index 0). 6) anchors: A 2-D tensor of shape [num_anchors, 4] representing anchors for the first stage RPN (in absolute coordinates). Note that `num_anchors` can differ depending on whether the model is created in training or inference mode. (and if number_of_stages > 1): 7) refined_box_encodings: a 3-D tensor with shape [total_num_proposals, num_classes, self._box_coder.code_size] representing predicted (final) refined box encodings, where total_num_proposals=batch_size*self._max_num_proposals. If using a shared box across classes the shape will instead be [total_num_proposals, 1, self._box_coder.code_size]. 8) class_predictions_with_background: a 3-D tensor with shape [total_num_proposals, num_classes + 1] containing class predictions (logits) for each of the anchors, where total_num_proposals=batch_size*self._max_num_proposals. Note that this tensor *includes* background class predictions (at class index 0). 9) num_proposals: An int32 tensor of shape [batch_size] representing the number of proposals generated by the RPN. `num_proposals` allows us to keep track of which entries are to be treated as zero paddings and which are not since we always pad the number of proposals to be `self.max_num_proposals` for each image. 10) proposal_boxes: A float32 tensor of shape [batch_size, self.max_num_proposals, 4] representing decoded proposal bounding boxes in absolute coordinates. 11) mask_predictions: (optional) a 4-D tensor with shape [total_num_padded_proposals, num_classes, mask_height, mask_width] containing instance mask predictions. Raises: ValueError: If `predict` is called before `preprocess`. """ '''(rpn_box_predictor_features, rpn_features_to_crop, anchors_boxlist, image_shape) = self._extract_rpn_feature_maps(preprocessed_inputs)''' print("Predict running") image_shape = tf.shape(preprocessed_inputs) rpn_features_to_crop, _ = self._feature_extractor.extract_proposal_features( preprocessed_inputs, scope=self.first_stage_feature_extractor_scope) #(rpn_box_encodings, rpn_objectness_predictions_with_background #) = self._predict_rpn_proposals(rpn_box_predictor_features) # The Faster R-CNN paper recommends pruning anchors that venture outside # the image window at training time and clipping at inference time. '''clip_window = tf.to_float(tf.stack([0, 0, image_shape[1], image_shape[2]])) if self._is_training: if self.clip_anchors_to_image: anchors_boxlist = box_list_ops.clip_to_window( anchors_boxlist, clip_window, filter_nonoverlapping=False) else: (rpn_box_encodings, rpn_objectness_predictions_with_background, anchors_boxlist) = self._remove_invalid_anchors_and_predictions( rpn_box_encodings, rpn_objectness_predictions_with_background, anchors_boxlist, clip_window) else: anchors_boxlist = box_list_ops.clip_to_window( anchors_boxlist, clip_window) self._anchors = anchors_boxlist''' prediction_dict = { #'rpn_box_predictor_features': rpn_box_predictor_features, 'rpn_features_to_crop': rpn_features_to_crop, 'image_shape': image_shape, #'rpn_box_encodings': rpn_box_encodings, #'rpn_objectness_predictions_with_background': #rpn_objectness_predictions_with_background, #'anchors': self._anchors.get() } if self._number_of_stages >= 2: '''prediction_dict.update(self._predict_second_stage( rpn_box_encodings, rpn_objectness_predictions_with_background, rpn_features_to_crop, self._anchors.get(), image_shape, true_image_shapes))''' prediction_dict.update(self._predict_second_stage( rpn_features_to_crop, image_shape, true_image_shapes)) if self._number_of_stages == 3: prediction_dict = self._predict_third_stage( prediction_dict, true_image_shapes) return prediction_dict def _image_batch_shape_2d(self, image_batch_shape_1d): """Takes a 1-D image batch shape tensor and converts it to a 2-D tensor. Example: If 1-D image batch shape tensor is [2, 300, 300, 3]. The corresponding 2-D image batch tensor would be [[300, 300, 3], [300, 300, 3]] Args: image_batch_shape_1d: 1-D tensor of the form [batch_size, height, width, channels]. Returns: image_batch_shape_2d: 2-D tensor of shape [batch_size, 3] were each row is of the form [height, width, channels]. """ return tf.tile(tf.expand_dims(image_batch_shape_1d[1:], 0), [image_batch_shape_1d[0], 1]) '''def _predict_second_stage(self, rpn_box_encodings, rpn_objectness_predictions_with_background, rpn_features_to_crop, anchors, image_shape, true_image_shapes): """Predicts the output tensors from second stage of Faster R-CNN. Args: rpn_box_encodings: 4-D float tensor of shape [batch_size, num_valid_anchors, self._box_coder.code_size] containing predicted boxes. rpn_objectness_predictions_with_background: 2-D float tensor of shape [batch_size, num_valid_anchors, 2] containing class predictions (logits) for each of the anchors. Note that this tensor *includes* background class predictions (at class index 0). rpn_features_to_crop: A 4-D float32 tensor with shape [batch_size, height, width, depth] representing image features to crop using the proposal boxes predicted by the RPN. anchors: 2-D float tensor of shape [num_anchors, self._box_coder.code_size]. image_shape: A 1D int32 tensors of size [4] containing the image shape. true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. Returns: prediction_dict: a dictionary holding "raw" prediction tensors: 1) refined_box_encodings: a 3-D tensor with shape [total_num_proposals, num_classes, self._box_coder.code_size] representing predicted (final) refined box encodings, where total_num_proposals=batch_size*self._max_num_proposals. If using a shared box across classes the shape will instead be [total_num_proposals, 1, self._box_coder.code_size]. 2) class_predictions_with_background: a 3-D tensor with shape [total_num_proposals, num_classes + 1] containing class predictions (logits) for each of the anchors, where total_num_proposals=batch_size*self._max_num_proposals. Note that this tensor *includes* background class predictions (at class index 0). 3) num_proposals: An int32 tensor of shape [batch_size] representing the number of proposals generated by the RPN. `num_proposals` allows us to keep track of which entries are to be treated as zero paddings and which are not since we always pad the number of proposals to be `self.max_num_proposals` for each image. 4) proposal_boxes: A float32 tensor of shape [batch_size, self.max_num_proposals, 4] representing decoded proposal bounding boxes in absolute coordinates. 5) proposal_boxes_normalized: A float32 tensor of shape [batch_size, self.max_num_proposals, 4] representing decoded proposal bounding boxes in normalized coordinates. Can be used to override the boxes proposed by the RPN, thus enabling one to extract features and get box classification and prediction for externally selected areas of the image. 6) box_classifier_features: a 4-D float32 tensor representing the features for each proposal. """ image_shape_2d = self._image_batch_shape_2d(image_shape) proposal_boxes_normalized, _, num_proposals = self._postprocess_rpn( rpn_box_encodings, rpn_objectness_predictions_with_background, anchors, image_shape_2d, true_image_shapes) # Override RPN proposals # proposal_boxes_normalized = tf.Print(proposal_boxes_normalized, [], message=("original size= " + str(proposal_boxes_normalized.shape[1]))) # proposal_boxes_normalized = tf.constant(self.proposals, dtype='float32') flattened_proposal_feature_maps = ( self._compute_second_stage_input_feature_maps( rpn_features_to_crop, proposal_boxes_normalized)) box_classifier_features = ( self._feature_extractor.extract_box_classifier_features( flattened_proposal_feature_maps, scope=self.second_stage_feature_extractor_scope)) if self._mask_rcnn_box_predictor.is_keras_model: box_predictions = self._mask_rcnn_box_predictor( [box_classifier_features], prediction_stage=2) else: box_predictions = self._mask_rcnn_box_predictor.predict( [box_classifier_features], num_predictions_per_location=[1], scope=self.second_stage_box_predictor_scope, prediction_stage=2) refined_box_encodings = tf.squeeze( box_predictions[box_predictor.BOX_ENCODINGS], axis=1, name='all_refined_box_encodings') class_predictions_with_background = tf.squeeze( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1, name='all_class_predictions_with_background') absolute_proposal_boxes = ops.normalized_to_image_coordinates( proposal_boxes_normalized, image_shape, self._parallel_iterations) prediction_dict = { 'refined_box_encodings': refined_box_encodings, 'class_predictions_with_background': class_predictions_with_background, 'num_proposals': num_proposals, 'proposal_boxes': absolute_proposal_boxes, 'box_classifier_features': box_classifier_features, 'proposal_boxes_normalized': proposal_boxes_normalized, } return prediction_dict''' def _predict_second_stage(self, rpn_features_to_crop, image_shape, true_image_shapes): """Predicts the output tensors from second stage of Faster R-CNN. Args: rpn_features_to_crop: A 4-D float32 tensor with shape [batch_size, height, width, depth] representing image features to crop using the proposal boxes predicted by the RPN. image_shape: A 1D int32 tensors of size [4] containing the image shape. true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. Returns: prediction_dict: a dictionary holding "raw" prediction tensors: 1) refined_box_encodings: a 3-D tensor with shape [total_num_proposals, num_classes, self._box_coder.code_size] representing predicted (final) refined box encodings, where total_num_proposals=batch_size*self._max_num_proposals. If using a shared box across classes the shape will instead be [total_num_proposals, 1, self._box_coder.code_size]. 2) class_predictions_with_background: a 3-D tensor with shape [total_num_proposals, num_classes + 1] containing class predictions (logits) for each of the anchors, where total_num_proposals=batch_size*self._max_num_proposals. Note that this tensor *includes* background class predictions (at class index 0). 3) num_proposals: An int32 tensor of shape [batch_size] representing the number of proposals generated by the RPN. `num_proposals` allows us to keep track of which entries are to be treated as zero paddings and which are not since we always pad the number of proposals to be `self.max_num_proposals` for each image. 4) proposal_boxes: A float32 tensor of shape [batch_size, self.max_num_proposals, 4] representing decoded proposal bounding boxes in absolute coordinates. 5) proposal_boxes_normalized: A float32 tensor of shape [batch_size, self.max_num_proposals, 4] representing decoded proposal bounding boxes in normalized coordinates. Can be used to override the boxes proposed by the RPN, thus enabling one to extract features and get box classification and prediction for externally selected areas of the image. 6) box_classifier_features: a 4-D float32 tensor representing the features for each proposal. """ image_shape_2d = self._image_batch_shape_2d(image_shape) # same as true shape '''proposal_boxes_normalized, _, num_proposals = self._postprocess_rpn( rpn_box_encodings, rpn_objectness_predictions_with_background, anchors, image_shape_2d, true_image_shapes)''' # Override RPN proposals # proposal_boxes_normalized = tf.Print(proposal_boxes_normalized, [], message=("original size= " + str(proposal_boxes_normalized.shape[1]))) # normalize proposal boxes def normalize_boxes(args): proposal_boxes_per_image = args[0] image_shape = args[1] normalized_boxes_per_image = box_list_ops.to_normalized_coordinates( box_list.BoxList(proposal_boxes_per_image), image_shape[0], image_shape[1], check_range=False).get() return normalized_boxes_per_image def to_absolute_boxes(args): proposal_boxes_per_image = args[0] image_shape = args[1] normalized_boxes_per_image = box_list_ops.to_absolute_coordinates( box_list.BoxList(proposal_boxes_per_image), image_shape[0], image_shape[1], check_range=False).get() return normalized_boxes_per_image proposal_boxes = tf.constant(self.proposals, dtype='float32') proposal_boxes = shape_utils.static_or_dynamic_map_fn( to_absolute_boxes, elems=[proposal_boxes, true_image_shapes], dtype=tf.float32) num_proposals = tf.constant([proposal_boxes.shape[1]], dtype='int32') # single_image_boxlist = box_list.BoxList(proposals_absolute) # proposal_boxes = self._sample_box_classifier_minibatch_single_image(single_image_boxlist, num_proposals, groundtruth_boxlists[0], # groundtruth_classes_with_background_list[0], groundtruth_weights_list[0]).get() # Minibatch sampling during training if self._is_training: proposal_boxes = tf.stop_gradient(proposal_boxes) if not self._hard_example_miner: placeholder_scores = tf.zeros((1, proposal_boxes.shape[1], 2)) #proposal_boxes = tf.Print(proposal_boxes, [proposal_boxes], message="1: ") (groundtruth_boxlists, groundtruth_classes_with_background_list, _, groundtruth_weights_list ) = self._format_groundtruth_data(true_image_shapes) (proposal_boxes, _, num_proposals) = self._sample_box_classifier_batch(proposal_boxes, placeholder_scores, num_proposals, groundtruth_boxlists, groundtruth_classes_with_background_list, groundtruth_weights_list, true_image_shapes[0]) #proposal_boxes = tf.Print(proposal_boxes, [proposal_boxes], message="2: ") #proposal_boxes = tf.Print(proposal_boxes, [], message=("Shape of pboxes " + str(proposal_boxes.shape[1]))) #num_proposals = tf.Print(num_proposals, [num_proposals]) proposal_boxes_normalized = shape_utils.static_or_dynamic_map_fn( normalize_boxes, elems=[proposal_boxes, true_image_shapes], dtype=tf.float32) #proposal_boxes_normalized = tf.Print(proposal_boxes_normalized, [proposal_boxes_normalized], message="3: ") #proposal_boxes_normalized = tf.Print(proposal_boxes_normalized, [tf.shape(proposal_boxes_normalized)], message=("Shape of pboxes ")) #proposal_boxes_normalized = tf.constant(self.proposals[:, 0:64, :], dtype='float32') #proposal_boxes_normalized = tf.Print(proposal_boxes_normalized, [], message=("Shape of minibatch " + str(proposal_boxes_normalized.shape[1]))) flattened_proposal_feature_maps = ( self._compute_second_stage_input_feature_maps( rpn_features_to_crop, proposal_boxes_normalized)) #flattened_proposal_feature_maps = tf.stop_gradient(flattened_proposal_feature_maps) #flattened_proposal_feature_maps = tf.Print(flattened_proposal_feature_maps, [], message=("Cropped props : " + str(flattened_proposal_feature_maps.shape))) box_classifier_features = ( self._feature_extractor.extract_box_classifier_features( flattened_proposal_feature_maps, scope=self.second_stage_feature_extractor_scope)) if self._mask_rcnn_box_predictor.is_keras_model: box_predictions = self._mask_rcnn_box_predictor( [box_classifier_features], prediction_stage=2) else: box_predictions = self._mask_rcnn_box_predictor.predict( [box_classifier_features], num_predictions_per_location=[1], scope=self.second_stage_box_predictor_scope, prediction_stage=2) refined_box_encodings = tf.squeeze( box_predictions[box_predictor.BOX_ENCODINGS], axis=1, name='all_refined_box_encodings') class_predictions_with_background = tf.squeeze( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1, name='all_class_predictions_with_background') absolute_proposal_boxes = ops.normalized_to_image_coordinates( proposal_boxes_normalized, image_shape, self._parallel_iterations) prediction_dict = { 'refined_box_encodings': refined_box_encodings, 'class_predictions_with_background': class_predictions_with_background, 'num_proposals': num_proposals, 'proposal_boxes': absolute_proposal_boxes, 'box_classifier_features': box_classifier_features, 'proposal_boxes_normalized': proposal_boxes_normalized, } return prediction_dict def _predict_third_stage(self, prediction_dict, image_shapes): """Predicts non-box, non-class outputs using refined detections. For training, masks as predicted directly on the box_classifier_features, which are region-features from the initial anchor boxes. For inference, this happens after calling the post-processing stage, such that masks are only calculated for the top scored boxes. Args: prediction_dict: a dictionary holding "raw" prediction tensors: 1) refined_box_encodings: a 3-D tensor with shape [total_num_proposals, num_classes, self._box_coder.code_size] representing predicted (final) refined box encodings, where total_num_proposals=batch_size*self._max_num_proposals. If using a shared box across classes the shape will instead be [total_num_proposals, 1, self._box_coder.code_size]. 2) class_predictions_with_background: a 3-D tensor with shape [total_num_proposals, num_classes + 1] containing class predictions (logits) for each of the anchors, where total_num_proposals=batch_size*self._max_num_proposals. Note that this tensor *includes* background class predictions (at class index 0). 3) num_proposals: An int32 tensor of shape [batch_size] representing the number of proposals generated by the RPN. `num_proposals` allows us to keep track of which entries are to be treated as zero paddings and which are not since we always pad the number of proposals to be `self.max_num_proposals` for each image. 4) proposal_boxes: A float32 tensor of shape [batch_size, self.max_num_proposals, 4] representing decoded proposal bounding boxes in absolute coordinates. 5) box_classifier_features: a 4-D float32 tensor representing the features for each proposal. image_shapes: A 2-D int32 tensors of shape [batch_size, 3] containing shapes of images in the batch. Returns: prediction_dict: a dictionary that in addition to the input predictions does hold the following predictions as well: 1) mask_predictions: a 4-D tensor with shape [batch_size, max_detection, mask_height, mask_width] containing instance mask predictions. """ if self._is_training: curr_box_classifier_features = prediction_dict['box_classifier_features'] detection_classes = prediction_dict['class_predictions_with_background'] if self._mask_rcnn_box_predictor.is_keras_model: mask_predictions = self._mask_rcnn_box_predictor( [curr_box_classifier_features], prediction_stage=3) else: mask_predictions = self._mask_rcnn_box_predictor.predict( [curr_box_classifier_features], num_predictions_per_location=[1], scope=self.second_stage_box_predictor_scope, prediction_stage=3) prediction_dict['mask_predictions'] = tf.squeeze(mask_predictions[ box_predictor.MASK_PREDICTIONS], axis=1) else: detections_dict = self._postprocess_box_classifier( prediction_dict['refined_box_encodings'], prediction_dict['class_predictions_with_background'], prediction_dict['proposal_boxes'], prediction_dict['num_proposals'], image_shapes) prediction_dict.update(detections_dict) detection_boxes = detections_dict[ fields.DetectionResultFields.detection_boxes] detection_classes = detections_dict[ fields.DetectionResultFields.detection_classes] rpn_features_to_crop = prediction_dict['rpn_features_to_crop'] batch_size = tf.shape(detection_boxes)[0] max_detection = tf.shape(detection_boxes)[1] flattened_detected_feature_maps = ( self._compute_second_stage_input_feature_maps( rpn_features_to_crop, detection_boxes)) curr_box_classifier_features = ( self._feature_extractor.extract_box_classifier_features( flattened_detected_feature_maps, scope=self.second_stage_feature_extractor_scope)) if self._mask_rcnn_box_predictor.is_keras_model: mask_predictions = self._mask_rcnn_box_predictor( [curr_box_classifier_features], prediction_stage=3) else: mask_predictions = self._mask_rcnn_box_predictor.predict( [curr_box_classifier_features], num_predictions_per_location=[1], scope=self.second_stage_box_predictor_scope, prediction_stage=3) detection_masks = tf.squeeze(mask_predictions[ box_predictor.MASK_PREDICTIONS], axis=1) _, num_classes, mask_height, mask_width = ( detection_masks.get_shape().as_list()) _, max_detection = detection_classes.get_shape().as_list() if num_classes > 1: detection_masks = self._gather_instance_masks( detection_masks, detection_classes) prediction_dict[fields.DetectionResultFields.detection_masks] = ( tf.reshape(detection_masks, [batch_size, max_detection, mask_height, mask_width])) return prediction_dict def _gather_instance_masks(self, instance_masks, classes): """Gathers the masks that correspond to classes. Args: instance_masks: A 4-D float32 tensor with shape [K, num_classes, mask_height, mask_width]. classes: A 2-D int32 tensor with shape [batch_size, max_detection]. Returns: masks: a 3-D float32 tensor with shape [K, mask_height, mask_width]. """ _, num_classes, height, width = instance_masks.get_shape().as_list() k = tf.shape(instance_masks)[0] instance_masks = tf.reshape(instance_masks, [-1, height, width]) classes = tf.to_int32(tf.reshape(classes, [-1])) gather_idx = tf.range(k) * num_classes + classes return tf.gather(instance_masks, gather_idx) def _extract_rpn_feature_maps(self, preprocessed_inputs): """Extracts RPN features. This function extracts two feature maps: a feature map to be directly fed to a box predictor (to predict location and objectness scores for proposals) and a feature map from which to crop regions which will then be sent to the second stage box classifier. Args: preprocessed_inputs: a [batch, height, width, channels] image tensor. Returns: rpn_box_predictor_features: A 4-D float32 tensor with shape [batch, height, width, depth] to be used for predicting proposal boxes and corresponding objectness scores. rpn_features_to_crop: A 4-D float32 tensor with shape [batch, height, width, depth] representing image features to crop using the proposals boxes. anchors: A BoxList representing anchors (for the RPN) in absolute coordinates. image_shape: A 1-D tensor representing the input image shape. """ image_shape = tf.shape(preprocessed_inputs) rpn_features_to_crop, _ = self._feature_extractor.extract_proposal_features( preprocessed_inputs, scope=self.first_stage_feature_extractor_scope) feature_map_shape = tf.shape(rpn_features_to_crop) anchors = box_list_ops.concatenate( self._first_stage_anchor_generator.generate([(feature_map_shape[1], feature_map_shape[2])])) with slim.arg_scope(self._first_stage_box_predictor_arg_scope_fn()): kernel_size = self._first_stage_box_predictor_kernel_size rpn_box_predictor_features = slim.conv2d( rpn_features_to_crop, self._first_stage_box_predictor_depth, kernel_size=[kernel_size, kernel_size], rate=self._first_stage_atrous_rate, activation_fn=tf.nn.relu6) return (rpn_box_predictor_features, rpn_features_to_crop, anchors, image_shape) def _predict_rpn_proposals(self, rpn_box_predictor_features): """Adds box predictors to RPN feature map to predict proposals. Note resulting tensors will not have been postprocessed. Args: rpn_box_predictor_features: A 4-D float32 tensor with shape [batch, height, width, depth] to be used for predicting proposal boxes and corresponding objectness scores. Returns: box_encodings: 3-D float tensor of shape [batch_size, num_anchors, self._box_coder.code_size] containing predicted boxes. objectness_predictions_with_background: 3-D float tensor of shape [batch_size, num_anchors, 2] containing class predictions (logits) for each of the anchors. Note that this tensor *includes* background class predictions (at class index 0). Raises: RuntimeError: if the anchor generator generates anchors corresponding to multiple feature maps. We currently assume that a single feature map is generated for the RPN. """ num_anchors_per_location = ( self._first_stage_anchor_generator.num_anchors_per_location()) if len(num_anchors_per_location) != 1: raise RuntimeError('anchor_generator is expected to generate anchors ' 'corresponding to a single feature map.') if self._first_stage_box_predictor.is_keras_model: box_predictions = self._first_stage_box_predictor( [rpn_box_predictor_features]) else: box_predictions = self._first_stage_box_predictor.predict( [rpn_box_predictor_features], num_anchors_per_location, scope=self.first_stage_box_predictor_scope) box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions_with_background = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (tf.squeeze(box_encodings, axis=2), objectness_predictions_with_background) def _remove_invalid_anchors_and_predictions( self, box_encodings, objectness_predictions_with_background, anchors_boxlist, clip_window): """Removes anchors that (partially) fall outside an image. Also removes associated box encodings and objectness predictions. Args: box_encodings: 3-D float tensor of shape [batch_size, num_anchors, self._box_coder.code_size] containing predicted boxes. objectness_predictions_with_background: 3-D float tensor of shape [batch_size, num_anchors, 2] containing class predictions (logits) for each of the anchors. Note that this tensor *includes* background class predictions (at class index 0). anchors_boxlist: A BoxList representing num_anchors anchors (for the RPN) in absolute coordinates. clip_window: a 1-D tensor representing the [ymin, xmin, ymax, xmax] extent of the window to clip/prune to. Returns: box_encodings: 4-D float tensor of shape [batch_size, num_valid_anchors, self._box_coder.code_size] containing predicted boxes, where num_valid_anchors <= num_anchors objectness_predictions_with_background: 2-D float tensor of shape [batch_size, num_valid_anchors, 2] containing class predictions (logits) for each of the anchors, where num_valid_anchors <= num_anchors. Note that this tensor *includes* background class predictions (at class index 0). anchors: A BoxList representing num_valid_anchors anchors (for the RPN) in absolute coordinates. """ pruned_anchors_boxlist, keep_indices = box_list_ops.prune_outside_window( anchors_boxlist, clip_window) def _batch_gather_kept_indices(predictions_tensor): return shape_utils.static_or_dynamic_map_fn( partial(tf.gather, indices=keep_indices), elems=predictions_tensor, dtype=tf.float32, parallel_iterations=self._parallel_iterations, back_prop=True) return (_batch_gather_kept_indices(box_encodings), _batch_gather_kept_indices(objectness_predictions_with_background), pruned_anchors_boxlist) def _flatten_first_two_dimensions(self, inputs): """Flattens `K-d` tensor along batch dimension to be a `(K-1)-d` tensor. Converts `inputs` with shape [A, B, ..., depth] into a tensor of shape [A * B, ..., depth]. Args: inputs: A float tensor with shape [A, B, ..., depth]. Note that the first two and last dimensions must be statically defined. Returns: A float tensor with shape [A * B, ..., depth] (where the first and last dimension are statically defined. """ combined_shape = shape_utils.combined_static_and_dynamic_shape(inputs) flattened_shape = tf.stack([combined_shape[0] * combined_shape[1]] + combined_shape[2:]) return tf.reshape(inputs, flattened_shape) def postprocess(self, prediction_dict, true_image_shapes): """Convert prediction tensors to final detections. This function converts raw predictions tensors to final detection results. See base class for output format conventions. Note also that by default, scores are to be interpreted as logits, but if a score_converter is used, then scores are remapped (and may thus have a different interpretation). If number_of_stages=1, the returned results represent proposals from the first stage RPN and are padded to have self.max_num_proposals for each image; otherwise, the results can be interpreted as multiclass detections from the full two-stage model and are padded to self._max_detections. Args: prediction_dict: a dictionary holding prediction tensors (see the documentation for the predict method. If number_of_stages=1, we expect prediction_dict to contain `rpn_box_encodings`, `rpn_objectness_predictions_with_background`, `rpn_features_to_crop`, and `anchors` fields. Otherwise we expect prediction_dict to additionally contain `refined_box_encodings`, `class_predictions_with_background`, `num_proposals`, `proposal_boxes` and, optionally, `mask_predictions` fields. true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. Returns: detections: a dictionary containing the following fields detection_boxes: [batch, max_detection, 4] detection_scores: [batch, max_detections] detection_classes: [batch, max_detections] (this entry is only created if rpn_mode=False) num_detections: [batch] Raises: ValueError: If `predict` is called before `preprocess`. """ with tf.name_scope('FirstStagePostprocessor'): if self._number_of_stages == 1: # Michele's addition proposal_boxes, proposal_scores, num_proposals = self._postprocess_rpn( prediction_dict['rpn_box_encodings'], prediction_dict['rpn_objectness_predictions_with_background'], prediction_dict['anchors'], true_image_shapes, true_image_shapes) return { fields.DetectionResultFields.detection_boxes: proposal_boxes, fields.DetectionResultFields.detection_scores: proposal_scores, fields.DetectionResultFields.num_detections: tf.to_float(num_proposals), } # TODO(jrru): Remove mask_predictions from _post_process_box_classifier. with tf.name_scope('SecondStagePostprocessor'): if (self._number_of_stages == 2 or (self._number_of_stages == 3 and self._is_training)): mask_predictions = prediction_dict.get(box_predictor.MASK_PREDICTIONS) detections_dict = self._postprocess_box_classifier( prediction_dict['refined_box_encodings'], prediction_dict['class_predictions_with_background'], prediction_dict['proposal_boxes'], prediction_dict['num_proposals'], true_image_shapes, mask_predictions=mask_predictions) return detections_dict if self._number_of_stages == 3: # Post processing is already performed in 3rd stage. We need to transfer # postprocessed tensors from `prediction_dict` to `detections_dict`. detections_dict = {} for key in prediction_dict: if key == fields.DetectionResultFields.detection_masks: detections_dict[key] = tf.sigmoid(prediction_dict[key]) elif 'detection' in key: detections_dict[key] = prediction_dict[key] return detections_dict def _postprocess_rpn(self, rpn_box_encodings_batch, rpn_objectness_predictions_with_background_batch, anchors, image_shapes, true_image_shapes): """Converts first stage prediction tensors from the RPN to proposals. This function decodes the raw RPN predictions, runs non-max suppression on the result. Note that the behavior of this function is slightly modified during training --- specifically, we stop the gradient from passing through the proposal boxes and we only return a balanced sampled subset of proposals with size `second_stage_batch_size`. Args: rpn_box_encodings_batch: A 3-D float32 tensor of shape [batch_size, num_anchors, self._box_coder.code_size] containing predicted proposal box encodings. rpn_objectness_predictions_with_background_batch: A 3-D float tensor of shape [batch_size, num_anchors, 2] containing objectness predictions (logits) for each of the anchors with 0 corresponding to background and 1 corresponding to object. anchors: A 2-D tensor of shape [num_anchors, 4] representing anchors for the first stage RPN. Note that `num_anchors` can differ depending on whether the model is created in training or inference mode. image_shapes: A 2-D tensor of shape [batch, 3] containing the shapes of images in the batch. true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. Returns: proposal_boxes: A float tensor with shape [batch_size, max_num_proposals, 4] representing the (potentially zero padded) proposal boxes for all images in the batch. These boxes are represented as normalized coordinates. proposal_scores: A float tensor with shape [batch_size, max_num_proposals] representing the (potentially zero padded) proposal objectness scores for all images in the batch. num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch] representing the number of proposals predicted for each image in the batch. """ rpn_box_encodings_batch = tf.expand_dims(rpn_box_encodings_batch, axis=2) rpn_encodings_shape = shape_utils.combined_static_and_dynamic_shape( rpn_box_encodings_batch) tiled_anchor_boxes = tf.tile( tf.expand_dims(anchors, 0), [rpn_encodings_shape[0], 1, 1]) proposal_boxes = self._batch_decode_boxes(rpn_box_encodings_batch, tiled_anchor_boxes) proposal_boxes = tf.squeeze(proposal_boxes, axis=2) rpn_objectness_softmax_without_background = tf.nn.softmax( rpn_objectness_predictions_with_background_batch)[:, :, 1] clip_window = self._compute_clip_window(image_shapes) (proposal_boxes, proposal_scores, _, _, _, num_proposals) = post_processing.batch_multiclass_non_max_suppression( tf.expand_dims(proposal_boxes, axis=2), tf.expand_dims(rpn_objectness_softmax_without_background, axis=2), self._first_stage_nms_score_threshold, self._first_stage_nms_iou_threshold, self._first_stage_max_proposals, self._first_stage_max_proposals, clip_window=clip_window) if self._is_training: proposal_boxes = tf.stop_gradient(proposal_boxes) if not self._hard_example_miner: (groundtruth_boxlists, groundtruth_classes_with_background_list, _, groundtruth_weights_list ) = self._format_groundtruth_data(true_image_shapes) (proposal_boxes, proposal_scores, num_proposals) = self._sample_box_classifier_batch( proposal_boxes, proposal_scores, num_proposals, groundtruth_boxlists, groundtruth_classes_with_background_list, groundtruth_weights_list) # normalize proposal boxes def normalize_boxes(args): proposal_boxes_per_image = args[0] image_shape = args[1] normalized_boxes_per_image = box_list_ops.to_normalized_coordinates( box_list.BoxList(proposal_boxes_per_image), image_shape[0], image_shape[1], check_range=False).get() return normalized_boxes_per_image normalized_proposal_boxes = shape_utils.static_or_dynamic_map_fn( normalize_boxes, elems=[proposal_boxes, image_shapes], dtype=tf.float32) return normalized_proposal_boxes, proposal_scores, num_proposals def _sample_box_classifier_batch( self, proposal_boxes, proposal_scores, num_proposals, groundtruth_boxlists, groundtruth_classes_with_background_list, groundtruth_weights_list, debug=None): """Samples a minibatch for second stage. Args: proposal_boxes: A float tensor with shape [batch_size, num_proposals, 4] representing the (potentially zero padded) proposal boxes for all images in the batch. These boxes are represented in absolute coordinates. proposal_scores: A float tensor with shape [batch_size, num_proposals] representing the (potentially zero padded) proposal objectness scores for all images in the batch. num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch] representing the number of proposals predicted for each image in the batch. groundtruth_boxlists: A list of BoxLists containing (absolute) coordinates of the groundtruth boxes. groundtruth_classes_with_background_list: A list of 2-D one-hot (or k-hot) tensors of shape [num_boxes, num_classes+1] containing the class targets with the 0th index assumed to map to the background class. groundtruth_weights_list: A list of 1-D tensors of shape [num_boxes] indicating the weight associated with the groundtruth boxes. Returns: proposal_boxes: A float tensor with shape [batch_size, second_stage_batch_size, 4] representing the (potentially zero padded) proposal boxes for all images in the batch. These boxes are represented in absolute coordinates. proposal_scores: A float tensor with shape [batch_size, second_stage_batch_size] representing the (potentially zero padded) proposal objectness scores for all images in the batch. num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch] representing the number of proposals predicted for each image in the batch. """ single_image_proposal_box_sample = [] single_image_proposal_score_sample = [] single_image_num_proposals_sample = [] for (single_image_proposal_boxes, single_image_proposal_scores, single_image_num_proposals, single_image_groundtruth_boxlist, single_image_groundtruth_classes_with_background, single_image_groundtruth_weights) in zip( tf.unstack(proposal_boxes), tf.unstack(proposal_scores), tf.unstack(num_proposals), groundtruth_boxlists, groundtruth_classes_with_background_list, groundtruth_weights_list): single_image_boxlist = box_list.BoxList(single_image_proposal_boxes) single_image_boxlist.add_field(fields.BoxListFields.scores, single_image_proposal_scores) sampled_boxlist = self._sample_box_classifier_minibatch_single_image( single_image_boxlist, single_image_num_proposals, single_image_groundtruth_boxlist, single_image_groundtruth_classes_with_background, single_image_groundtruth_weights, debug) # sampled_boxlist.set(tf.Print(sampled_boxlist.get(), [sampled_boxlist.num_boxes()], message="sample size ")) sampled_padded_boxlist = box_list_ops.pad_or_clip_box_list( sampled_boxlist, num_boxes=self._second_stage_batch_size) single_image_num_proposals_sample.append(tf.minimum( sampled_boxlist.num_boxes(), self._second_stage_batch_size)) bb = sampled_padded_boxlist.get() #bb = tf.Print(bb, [single_image_groundtruth_boxlist.num_boxes()], message=("After padding and num of GT" + str(bb.shape))) single_image_proposal_box_sample.append(bb) single_image_proposal_score_sample.append( sampled_padded_boxlist.get_field(fields.BoxListFields.scores)) return (tf.stack(single_image_proposal_box_sample), tf.stack(single_image_proposal_score_sample), tf.stack(single_image_num_proposals_sample)) def _format_groundtruth_data(self, true_image_shapes, stage='detection'): """Helper function for preparing groundtruth data for target assignment. In order to be consistent with the model.DetectionModel interface, groundtruth boxes are specified in normalized coordinates and classes are specified as label indices with no assumed background category. To prepare for target assignment, we: 1) convert boxes to absolute coordinates, 2) add a background class at class index 0 3) groundtruth instance masks, if available, are resized to match image_shape. Args: true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. Returns: groundtruth_boxlists: A list of BoxLists containing (absolute) coordinates of the groundtruth boxes. groundtruth_classes_with_background_list: A list of 2-D one-hot (or k-hot) tensors of shape [num_boxes, num_classes+1] containing the class targets with the 0th index assumed to map to the background class. groundtruth_masks_list: If present, a list of 3-D tf.float32 tensors of shape [num_boxes, image_height, image_width] containing instance masks. This is set to None if no masks exist in the provided groundtruth. """ groundtruth_boxlists = [ box_list_ops.to_absolute_coordinates( box_list.BoxList(boxes), true_image_shapes[i, 0], true_image_shapes[i, 1]) for i, boxes in enumerate( self.groundtruth_lists(fields.BoxListFields.boxes)) ] groundtruth_classes_with_background_list = [ tf.to_float( tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT')) for one_hot_encoding in self.groundtruth_lists( fields.BoxListFields.classes)] groundtruth_masks_list = self._groundtruth_lists.get( fields.BoxListFields.masks) if groundtruth_masks_list is not None: resized_masks_list = [] for mask in groundtruth_masks_list: _, resized_mask, _ = self._image_resizer_fn( # Reuse the given `image_resizer_fn` to resize groundtruth masks. # `mask` tensor for an image is of the shape [num_masks, # image_height, image_width]. Below we create a dummy image of the # the shape [image_height, image_width, 1] to use with # `image_resizer_fn`. image=tf.zeros(tf.stack([tf.shape(mask)[1], tf.shape(mask)[2], 1])), masks=mask) resized_masks_list.append(resized_mask) groundtruth_masks_list = resized_masks_list if self.groundtruth_has_field(fields.BoxListFields.weights): groundtruth_weights_list = self.groundtruth_lists( fields.BoxListFields.weights) else: # Set weights for all batch elements equally to 1.0 groundtruth_weights_list = [] for groundtruth_classes in groundtruth_classes_with_background_list: num_gt = tf.shape(groundtruth_classes)[0] groundtruth_weights = tf.ones(num_gt) groundtruth_weights_list.append(groundtruth_weights) return (groundtruth_boxlists, groundtruth_classes_with_background_list, groundtruth_masks_list, groundtruth_weights_list) def _sample_box_classifier_minibatch_single_image( self, proposal_boxlist, num_valid_proposals, groundtruth_boxlist, groundtruth_classes_with_background, groundtruth_weights, debug=None): """Samples a mini-batch of proposals to be sent to the box classifier. Helper function for self._postprocess_rpn. Args: proposal_boxlist: A BoxList containing K proposal boxes in absolute coordinates. num_valid_proposals: Number of valid proposals in the proposal boxlist. groundtruth_boxlist: A Boxlist containing N groundtruth object boxes in absolute coordinates. groundtruth_classes_with_background: A tensor with shape `[N, self.num_classes + 1]` representing groundtruth classes. The classes are assumed to be k-hot encoded, and include background as the zero-th class. groundtruth_weights: Weights attached to the groundtruth_boxes. debug: contains (optional) true_image_shape Returns: a BoxList contained sampled proposals. """ (cls_targets, cls_weights, _, _, _) = self._detector_target_assigner.assign( proposal_boxlist, groundtruth_boxlist, groundtruth_classes_with_background, unmatched_class_label=tf.constant( [1] + self._num_classes * [0], dtype=tf.float32), groundtruth_weights=groundtruth_weights) # Selects all boxes as candidates if none of them is selected according # to cls_weights. This could happen as boxes within certain IOU ranges # are ignored. If triggered, the selected boxes will still be ignored # during loss computation. positive_indicator = tf.greater(tf.argmax(cls_targets, axis=1), 0) # Debug target mapping #positive_indicator = tf.Print(positive_indicator, [positive_indicator, box_list_ops.to_normalized_coordinates(groundtruth_boxlist, debug[0], debug[1]).get()], summarize=999999) valid_indicator = tf.logical_and( tf.range(proposal_boxlist.num_boxes()) < num_valid_proposals, cls_weights > 0 ) sampled_indices = self._second_stage_sampler.subsample( valid_indicator, self._second_stage_batch_size, positive_indicator) return box_list_ops.boolean_mask(proposal_boxlist, sampled_indices) def _compute_second_stage_input_feature_maps(self, features_to_crop, proposal_boxes_normalized): """Crops to a set of proposals from the feature map for a batch of images. Helper function for self._postprocess_rpn. This function calls `tf.image.crop_and_resize` to create the feature map to be passed to the second stage box classifier for each proposal. Args: features_to_crop: A float32 tensor with shape [batch_size, height, width, depth] proposal_boxes_normalized: A float32 tensor with shape [batch_size, num_proposals, box_code_size] containing proposal boxes in normalized coordinates. Returns: A float32 tensor with shape [K, new_height, new_width, depth]. """ def get_box_inds(proposals): proposals_shape = proposals.get_shape().as_list() if any(dim is None for dim in proposals_shape): proposals_shape = tf.shape(proposals) ones_mat = tf.ones(proposals_shape[:2], dtype=tf.int32) multiplier = tf.expand_dims( tf.range(start=0, limit=proposals_shape[0]), 1) return tf.reshape(ones_mat * multiplier, [-1]) if self._use_matmul_crop_and_resize: def _single_image_crop_and_resize(inputs): single_image_features_to_crop, proposal_boxes_normalized = inputs return ops.matmul_crop_and_resize( tf.expand_dims(single_image_features_to_crop, 0), proposal_boxes_normalized, [self._initial_crop_size, self._initial_crop_size]) cropped_regions = self._flatten_first_two_dimensions( shape_utils.static_or_dynamic_map_fn( _single_image_crop_and_resize, elems=[features_to_crop, proposal_boxes_normalized], dtype=tf.float32, parallel_iterations=self._parallel_iterations)) else: cropped_regions = tf.image.crop_and_resize( features_to_crop, self._flatten_first_two_dimensions(proposal_boxes_normalized), get_box_inds(proposal_boxes_normalized), (self._initial_crop_size, self._initial_crop_size)) return slim.max_pool2d( cropped_regions, [self._maxpool_kernel_size, self._maxpool_kernel_size], # Michele: Being specific to text, we want to preserve width more than height stride=[self._maxpool_stride, 1]) def _postprocess_box_classifier(self, refined_box_encodings, class_predictions_with_background, proposal_boxes, num_proposals, image_shapes, mask_predictions=None): """Converts predictions from the second stage box classifier to detections. Args: refined_box_encodings: a 3-D float tensor with shape [total_num_padded_proposals, num_classes, self._box_coder.code_size] representing predicted (final) refined box encodings. If using a shared box across classes the shape will instead be [total_num_padded_proposals, 1, 4] class_predictions_with_background: a 3-D tensor float with shape [total_num_padded_proposals, num_classes + 1] containing class predictions (logits) for each of the proposals. Note that this tensor *includes* background class predictions (at class index 0). proposal_boxes: a 3-D float tensor with shape [batch_size, self.max_num_proposals, 4] representing decoded proposal bounding boxes in absolute coordinates. num_proposals: a 1-D int32 tensor of shape [batch] representing the number of proposals predicted for each image in the batch. image_shapes: a 2-D int32 tensor containing shapes of input image in the batch. mask_predictions: (optional) a 4-D float tensor with shape [total_num_padded_proposals, num_classes, mask_height, mask_width] containing instance mask prediction logits. Returns: A dictionary containing: `detection_boxes`: [batch, max_detection, 4] `detection_scores`: [batch, max_detections] `detection_classes`: [batch, max_detections] `num_detections`: [batch] `detection_masks`: (optional) [batch, max_detections, mask_height, mask_width]. Note that a pixel-wise sigmoid score converter is applied to the detection masks. """ refined_box_encodings_batch = tf.reshape( refined_box_encodings, [-1, self.max_num_proposals, refined_box_encodings.shape[1], self._box_coder.code_size]) class_predictions_with_background_batch = tf.reshape( class_predictions_with_background, [-1, self.max_num_proposals, self.num_classes + 1] ) refined_decoded_boxes_batch = self._batch_decode_boxes( refined_box_encodings_batch, proposal_boxes) class_predictions_with_background_batch = ( self._second_stage_score_conversion_fn( class_predictions_with_background_batch)) class_predictions_batch = tf.reshape( tf.slice(class_predictions_with_background_batch, [0, 0, 1], [-1, -1, -1]), [-1, self.max_num_proposals, self.num_classes]) clip_window = self._compute_clip_window(image_shapes) mask_predictions_batch = None if mask_predictions is not None: mask_height = mask_predictions.shape[2].value mask_width = mask_predictions.shape[3].value mask_predictions = tf.sigmoid(mask_predictions) mask_predictions_batch = tf.reshape( mask_predictions, [-1, self.max_num_proposals, self.num_classes, mask_height, mask_width]) (nmsed_boxes, nmsed_scores, nmsed_classes, nmsed_masks, _, num_detections) = self._second_stage_nms_fn( refined_decoded_boxes_batch, class_predictions_batch, clip_window=clip_window, change_coordinate_frame=True, num_valid_boxes=num_proposals, masks=mask_predictions_batch) detections = { fields.DetectionResultFields.detection_boxes: nmsed_boxes, fields.DetectionResultFields.detection_scores: nmsed_scores, fields.DetectionResultFields.detection_classes: nmsed_classes, fields.DetectionResultFields.num_detections: tf.to_float(num_detections) } if nmsed_masks is not None: detections[fields.DetectionResultFields.detection_masks] = nmsed_masks return detections def _batch_decode_boxes(self, box_encodings, anchor_boxes): """Decodes box encodings with respect to the anchor boxes. Args: box_encodings: a 4-D tensor with shape [batch_size, num_anchors, num_classes, self._box_coder.code_size] representing box encodings. anchor_boxes: [batch_size, num_anchors, self._box_coder.code_size] representing decoded bounding boxes. If using a shared box across classes the shape will instead be [total_num_proposals, 1, self._box_coder.code_size]. Returns: decoded_boxes: a [batch_size, num_anchors, num_classes, self._box_coder.code_size] float tensor representing bounding box predictions (for each image in batch, proposal and class). If using a shared box across classes the shape will instead be [batch_size, num_anchors, 1, self._box_coder.code_size]. """ combined_shape = shape_utils.combined_static_and_dynamic_shape( box_encodings) num_classes = combined_shape[2] tiled_anchor_boxes = tf.tile( tf.expand_dims(anchor_boxes, 2), [1, 1, num_classes, 1]) tiled_anchors_boxlist = box_list.BoxList( tf.reshape(tiled_anchor_boxes, [-1, 4])) decoded_boxes = self._box_coder.decode( tf.reshape(box_encodings, [-1, self._box_coder.code_size]), tiled_anchors_boxlist) return tf.reshape(decoded_boxes.get(), tf.stack([combined_shape[0], combined_shape[1], num_classes, 4])) '''def loss(self, prediction_dict, true_image_shapes, scope=None): """Compute scalar loss tensors given prediction tensors. If number_of_stages=1, only RPN related losses are computed (i.e., `rpn_localization_loss` and `rpn_objectness_loss`). Otherwise all losses are computed. Args: prediction_dict: a dictionary holding prediction tensors (see the documentation for the predict method. If number_of_stages=1, we expect prediction_dict to contain `rpn_box_encodings`, `rpn_objectness_predictions_with_background`, `rpn_features_to_crop`, `image_shape`, and `anchors` fields. Otherwise we expect prediction_dict to additionally contain `refined_box_encodings`, `class_predictions_with_background`, `num_proposals`, and `proposal_boxes` fields. true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. scope: Optional scope name. Returns: a dictionary mapping loss keys (`first_stage_localization_loss`, `first_stage_objectness_loss`, 'second_stage_localization_loss', 'second_stage_classification_loss') to scalar tensors representing corresponding loss values. """ with tf.name_scope(scope, 'Loss', prediction_dict.values()): (groundtruth_boxlists, groundtruth_classes_with_background_list, groundtruth_masks_list, groundtruth_weights_list ) = self._format_groundtruth_data(true_image_shapes) loss_dict = self._loss_rpn( prediction_dict['rpn_box_encodings'], prediction_dict['rpn_objectness_predictions_with_background'], prediction_dict['anchors'], groundtruth_boxlists, groundtruth_classes_with_background_list, groundtruth_weights_list) if self._number_of_stages > 1: loss_dict.update( self._loss_box_classifier( prediction_dict['refined_box_encodings'], prediction_dict['class_predictions_with_background'], prediction_dict['proposal_boxes'], prediction_dict['num_proposals'], groundtruth_boxlists, groundtruth_classes_with_background_list, groundtruth_weights_list, prediction_dict['image_shape'], prediction_dict.get('mask_predictions'), groundtruth_masks_list, )) return loss_dict''' def loss(self, prediction_dict, true_image_shapes, scope=None): """Compute scalar loss tensors given prediction tensors. If number_of_stages=1, only RPN related losses are computed (i.e., `rpn_localization_loss` and `rpn_objectness_loss`). Otherwise all losses are computed. Args: prediction_dict: a dictionary holding prediction tensors (see the documentation for the predict method. If number_of_stages=1, we expect prediction_dict to contain `rpn_box_encodings`, `rpn_objectness_predictions_with_background`, `rpn_features_to_crop`, `image_shape`, and `anchors` fields. Otherwise we expect prediction_dict to additionally contain `refined_box_encodings`, `class_predictions_with_background`, `num_proposals`, and `proposal_boxes` fields. true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. scope: Optional scope name. Returns: a dictionary mapping loss keys (`first_stage_localization_loss`, `first_stage_objectness_loss`, 'second_stage_localization_loss', 'second_stage_classification_loss') to scalar tensors representing corresponding loss values. """ with tf.name_scope(scope, 'Loss', prediction_dict.values()): (groundtruth_boxlists, groundtruth_classes_with_background_list, groundtruth_masks_list, groundtruth_weights_list ) = self._format_groundtruth_data(true_image_shapes) '''loss_dict = self._loss_rpn( prediction_dict['rpn_box_encodings'], prediction_dict['rpn_objectness_predictions_with_background'], prediction_dict['anchors'], groundtruth_boxlists, groundtruth_classes_with_background_list, groundtruth_weights_list)''' #if self._number_of_stages > 1: # loss_dict.update( loss_dict = self._loss_box_classifier( prediction_dict['refined_box_encodings'], prediction_dict['class_predictions_with_background'], prediction_dict['proposal_boxes'], prediction_dict['num_proposals'], groundtruth_boxlists, groundtruth_classes_with_background_list, groundtruth_weights_list, prediction_dict['image_shape'], prediction_dict.get('mask_predictions'), groundtruth_masks_list, )#) return loss_dict def _loss_rpn(self, rpn_box_encodings, rpn_objectness_predictions_with_background, anchors, groundtruth_boxlists, groundtruth_classes_with_background_list, groundtruth_weights_list): """Computes scalar RPN loss tensors. Uses self._proposal_target_assigner to obtain regression and classification targets for the first stage RPN, samples a "minibatch" of anchors to participate in the loss computation, and returns the RPN losses. Args: rpn_box_encodings: A 4-D float tensor of shape [batch_size, num_anchors, self._box_coder.code_size] containing predicted proposal box encodings. rpn_objectness_predictions_with_background: A 2-D float tensor of shape [batch_size, num_anchors, 2] containing objectness predictions (logits) for each of the anchors with 0 corresponding to background and 1 corresponding to object. anchors: A 2-D tensor of shape [num_anchors, 4] representing anchors for the first stage RPN. Note that `num_anchors` can differ depending on whether the model is created in training or inference mode. groundtruth_boxlists: A list of BoxLists containing coordinates of the groundtruth boxes. groundtruth_classes_with_background_list: A list of 2-D one-hot (or k-hot) tensors of shape [num_boxes, num_classes+1] containing the class targets with the 0th index assumed to map to the background class. groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape [num_boxes] containing weights for groundtruth boxes. Returns: a dictionary mapping loss keys (`first_stage_localization_loss`, `first_stage_objectness_loss`) to scalar tensors representing corresponding loss values. """ with tf.name_scope('RPNLoss'): (batch_cls_targets, batch_cls_weights, batch_reg_targets, batch_reg_weights, _) = target_assigner.batch_assign_targets( target_assigner=self._proposal_target_assigner, anchors_batch=box_list.BoxList(anchors), gt_box_batch=groundtruth_boxlists, gt_class_targets_batch=(len(groundtruth_boxlists) * [None]), gt_weights_batch=groundtruth_weights_list) batch_cls_targets = tf.squeeze(batch_cls_targets, axis=2) def _minibatch_subsample_fn(inputs): cls_targets, cls_weights = inputs return self._first_stage_sampler.subsample( tf.cast(cls_weights, tf.bool), self._first_stage_minibatch_size, tf.cast(cls_targets, tf.bool)) batch_sampled_indices = tf.to_float(shape_utils.static_or_dynamic_map_fn( _minibatch_subsample_fn, [batch_cls_targets, batch_cls_weights], dtype=tf.bool, parallel_iterations=self._parallel_iterations, back_prop=True)) # Normalize by number of examples in sampled minibatch normalizer = tf.reduce_sum(batch_sampled_indices, axis=1) batch_one_hot_targets = tf.one_hot( tf.to_int32(batch_cls_targets), depth=2) sampled_reg_indices = tf.multiply(batch_sampled_indices, batch_reg_weights) localization_losses = self._first_stage_localization_loss( rpn_box_encodings, batch_reg_targets, weights=sampled_reg_indices) objectness_losses = self._first_stage_objectness_loss( rpn_objectness_predictions_with_background, batch_one_hot_targets, weights=batch_sampled_indices) localization_loss = tf.reduce_mean( tf.reduce_sum(localization_losses, axis=1) / normalizer) objectness_loss = tf.reduce_mean( tf.reduce_sum(objectness_losses, axis=1) / normalizer) localization_loss = tf.multiply(self._first_stage_loc_loss_weight, localization_loss, name='localization_loss') objectness_loss = tf.multiply(self._first_stage_obj_loss_weight, objectness_loss, name='objectness_loss') loss_dict = {localization_loss.op.name: localization_loss, objectness_loss.op.name: objectness_loss} return loss_dict def _loss_box_classifier(self, refined_box_encodings, class_predictions_with_background, proposal_boxes, num_proposals, groundtruth_boxlists, groundtruth_classes_with_background_list, groundtruth_weights_list, image_shape, prediction_masks=None, groundtruth_masks_list=None): """Computes scalar box classifier loss tensors. Uses self._detector_target_assigner to obtain regression and classification targets for the second stage box classifier, optionally performs hard mining, and returns losses. All losses are computed independently for each image and then averaged across the batch. Please note that for boxes and masks with multiple labels, the box regression and mask prediction losses are only computed for one label. This function assumes that the proposal boxes in the "padded" regions are actually zero (and thus should not be matched to). Args: refined_box_encodings: a 3-D tensor with shape [total_num_proposals, num_classes, box_coder.code_size] representing predicted (final) refined box encodings. If using a shared box across classes this will instead have shape [total_num_proposals, 1, box_coder.code_size]. class_predictions_with_background: a 2-D tensor with shape [total_num_proposals, num_classes + 1] containing class predictions (logits) for each of the anchors. Note that this tensor *includes* background class predictions (at class index 0). proposal_boxes: [batch_size, self.max_num_proposals, 4] representing decoded proposal bounding boxes. num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch] representing the number of proposals predicted for each image in the batch. groundtruth_boxlists: a list of BoxLists containing coordinates of the groundtruth boxes. groundtruth_classes_with_background_list: a list of 2-D one-hot (or k-hot) tensors of shape [num_boxes, num_classes + 1] containing the class targets with the 0th index assumed to map to the background class. groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape [num_boxes] containing weights for groundtruth boxes. image_shape: a 1-D tensor of shape [4] representing the image shape. prediction_masks: an optional 4-D tensor with shape [total_num_proposals, num_classes, mask_height, mask_width] containing the instance masks for each box. groundtruth_masks_list: an optional list of 3-D tensors of shape [num_boxes, image_height, image_width] containing the instance masks for each of the boxes. Returns: a dictionary mapping loss keys ('second_stage_localization_loss', 'second_stage_classification_loss') to scalar tensors representing corresponding loss values. Raises: ValueError: if `predict_instance_masks` in second_stage_mask_rcnn_box_predictor is True and `groundtruth_masks_list` is not provided. """ with tf.name_scope('BoxClassifierLoss'): paddings_indicator = self._padded_batched_proposals_indicator( num_proposals, self.max_num_proposals) proposal_boxlists = [ box_list.BoxList(proposal_boxes_single_image) for proposal_boxes_single_image in tf.unstack(proposal_boxes)] batch_size = len(proposal_boxlists) num_proposals_or_one = tf.to_float(tf.expand_dims( tf.maximum(num_proposals, tf.ones_like(num_proposals)), 1)) normalizer = tf.tile(num_proposals_or_one, [1, self.max_num_proposals]) * batch_size (batch_cls_targets_with_background, batch_cls_weights, batch_reg_targets, batch_reg_weights, _) = target_assigner.batch_assign_targets( target_assigner=self._detector_target_assigner, anchors_batch=proposal_boxlists, gt_box_batch=groundtruth_boxlists, gt_class_targets_batch=groundtruth_classes_with_background_list, unmatched_class_label=tf.constant( [1] + self._num_classes * [0], dtype=tf.float32), gt_weights_batch=groundtruth_weights_list) class_predictions_with_background = tf.reshape( class_predictions_with_background, [batch_size, self.max_num_proposals, -1]) flat_cls_targets_with_background = tf.reshape( batch_cls_targets_with_background, [batch_size * self.max_num_proposals, -1]) one_hot_flat_cls_targets_with_background = tf.argmax( flat_cls_targets_with_background, axis=1) one_hot_flat_cls_targets_with_background = tf.one_hot( one_hot_flat_cls_targets_with_background, flat_cls_targets_with_background.get_shape()[1]) # If using a shared box across classes use directly if refined_box_encodings.shape[1] == 1: reshaped_refined_box_encodings = tf.reshape( refined_box_encodings, [batch_size, self.max_num_proposals, self._box_coder.code_size]) # For anchors with multiple labels, picks refined_location_encodings # for just one class to avoid over-counting for regression loss and # (optionally) mask loss. else: # We only predict refined location encodings for the non background # classes, but we now pad it to make it compatible with the class # predictions refined_box_encodings_with_background = tf.pad( refined_box_encodings, [[0, 0], [1, 0], [0, 0]]) refined_box_encodings_masked_by_class_targets = tf.boolean_mask( refined_box_encodings_with_background, tf.greater(one_hot_flat_cls_targets_with_background, 0)) reshaped_refined_box_encodings = tf.reshape( refined_box_encodings_masked_by_class_targets, [batch_size, self.max_num_proposals, self._box_coder.code_size]) second_stage_loc_losses = self._second_stage_localization_loss( reshaped_refined_box_encodings, batch_reg_targets, weights=batch_reg_weights) / normalizer second_stage_cls_losses = ops.reduce_sum_trailing_dimensions( self._second_stage_classification_loss( class_predictions_with_background, batch_cls_targets_with_background, weights=batch_cls_weights), ndims=2) / normalizer second_stage_loc_loss = tf.reduce_sum( tf.boolean_mask(second_stage_loc_losses, paddings_indicator)) second_stage_cls_loss = tf.reduce_sum( tf.boolean_mask(second_stage_cls_losses, paddings_indicator)) if self._hard_example_miner: (second_stage_loc_loss, second_stage_cls_loss ) = self._unpad_proposals_and_apply_hard_mining( proposal_boxlists, second_stage_loc_losses, second_stage_cls_losses, num_proposals) localization_loss = tf.multiply(self._second_stage_loc_loss_weight, second_stage_loc_loss, name='localization_loss') classification_loss = tf.multiply(self._second_stage_cls_loss_weight, second_stage_cls_loss, name='classification_loss') loss_dict = {localization_loss.op.name: localization_loss, classification_loss.op.name: classification_loss} second_stage_mask_loss = None if prediction_masks is not None: if groundtruth_masks_list is None: raise ValueError('Groundtruth instance masks not provided. ' 'Please configure input reader.') unmatched_mask_label = tf.zeros(image_shape[1:3], dtype=tf.float32) (batch_mask_targets, _, _, batch_mask_target_weights, _) = target_assigner.batch_assign_targets( target_assigner=self._detector_target_assigner, anchors_batch=proposal_boxlists, gt_box_batch=groundtruth_boxlists, gt_class_targets_batch=groundtruth_masks_list, unmatched_class_label=unmatched_mask_label, gt_weights_batch=groundtruth_weights_list) # Pad the prediction_masks with to add zeros for background class to be # consistent with class predictions. if prediction_masks.get_shape().as_list()[1] == 1: # Class agnostic masks or masks for one-class prediction. Logic for # both cases is the same since background predictions are ignored # through the batch_mask_target_weights. prediction_masks_masked_by_class_targets = prediction_masks else: prediction_masks_with_background = tf.pad( prediction_masks, [[0, 0], [1, 0], [0, 0], [0, 0]]) prediction_masks_masked_by_class_targets = tf.boolean_mask( prediction_masks_with_background, tf.greater(one_hot_flat_cls_targets_with_background, 0)) mask_height = prediction_masks.shape[2].value mask_width = prediction_masks.shape[3].value reshaped_prediction_masks = tf.reshape( prediction_masks_masked_by_class_targets, [batch_size, -1, mask_height * mask_width]) batch_mask_targets_shape = tf.shape(batch_mask_targets) flat_gt_masks = tf.reshape(batch_mask_targets, [-1, batch_mask_targets_shape[2], batch_mask_targets_shape[3]]) # Use normalized proposals to crop mask targets from image masks. flat_normalized_proposals = box_list_ops.to_normalized_coordinates( box_list.BoxList(tf.reshape(proposal_boxes, [-1, 4])), image_shape[1], image_shape[2]).get() flat_cropped_gt_mask = tf.image.crop_and_resize( tf.expand_dims(flat_gt_masks, -1), flat_normalized_proposals, tf.range(flat_normalized_proposals.shape[0].value), [mask_height, mask_width]) batch_cropped_gt_mask = tf.reshape( flat_cropped_gt_mask, [batch_size, -1, mask_height * mask_width]) second_stage_mask_losses = ops.reduce_sum_trailing_dimensions( self._second_stage_mask_loss( reshaped_prediction_masks, batch_cropped_gt_mask, weights=batch_mask_target_weights), ndims=2) / ( mask_height * mask_width * tf.maximum( tf.reduce_sum( batch_mask_target_weights, axis=1, keep_dims=True ), tf.ones((batch_size, 1)))) second_stage_mask_loss = tf.reduce_sum( tf.boolean_mask(second_stage_mask_losses, paddings_indicator)) if second_stage_mask_loss is not None: mask_loss = tf.multiply(self._second_stage_mask_loss_weight, second_stage_mask_loss, name='mask_loss') loss_dict[mask_loss.op.name] = mask_loss return loss_dict def _padded_batched_proposals_indicator(self, num_proposals, max_num_proposals): """Creates indicator matrix of non-pad elements of padded batch proposals. Args: num_proposals: Tensor of type tf.int32 with shape [batch_size]. max_num_proposals: Maximum number of proposals per image (integer). Returns: A Tensor of type tf.bool with shape [batch_size, max_num_proposals]. """ batch_size = tf.size(num_proposals) tiled_num_proposals = tf.tile( tf.expand_dims(num_proposals, 1), [1, max_num_proposals]) tiled_proposal_index = tf.tile( tf.expand_dims(tf.range(max_num_proposals), 0), [batch_size, 1]) return tf.greater(tiled_num_proposals, tiled_proposal_index) def _unpad_proposals_and_apply_hard_mining(self, proposal_boxlists, second_stage_loc_losses, second_stage_cls_losses, num_proposals): """Unpads proposals and applies hard mining. Args: proposal_boxlists: A list of `batch_size` BoxLists each representing `self.max_num_proposals` representing decoded proposal bounding boxes for each image. second_stage_loc_losses: A Tensor of type `float32`. A tensor of shape `[batch_size, self.max_num_proposals]` representing per-anchor second stage localization loss values. second_stage_cls_losses: A Tensor of type `float32`. A tensor of shape `[batch_size, self.max_num_proposals]` representing per-anchor second stage classification loss values. num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch] representing the number of proposals predicted for each image in the batch. Returns: second_stage_loc_loss: A scalar float32 tensor representing the second stage localization loss. second_stage_cls_loss: A scalar float32 tensor representing the second stage classification loss. """ for (proposal_boxlist, single_image_loc_loss, single_image_cls_loss, single_image_num_proposals) in zip( proposal_boxlists, tf.unstack(second_stage_loc_losses), tf.unstack(second_stage_cls_losses), tf.unstack(num_proposals)): proposal_boxlist = box_list.BoxList( tf.slice(proposal_boxlist.get(), [0, 0], [single_image_num_proposals, -1])) single_image_loc_loss = tf.slice(single_image_loc_loss, [0], [single_image_num_proposals]) single_image_cls_loss = tf.slice(single_image_cls_loss, [0], [single_image_num_proposals]) return self._hard_example_miner( location_losses=tf.expand_dims(single_image_loc_loss, 0), cls_losses=tf.expand_dims(single_image_cls_loss, 0), decoded_boxlist_list=[proposal_boxlist]) def restore_map(self, fine_tune_checkpoint_type='detection', load_all_detection_checkpoint_vars=False): """Returns a map of variables to load from a foreign checkpoint. See parent class for details. Args: fine_tune_checkpoint_type: whether to restore from a full detection checkpoint (with compatible variable names) or to restore from a classification checkpoint for initialization prior to training. Valid values: `detection`, `classification`. Default 'detection'. load_all_detection_checkpoint_vars: whether to load all variables (when `fine_tune_checkpoint_type` is `detection`). If False, only variables within the feature extractor scopes are included. Default False. Returns: A dict mapping variable names (to load from a checkpoint) to variables in the model graph. Raises: ValueError: if fine_tune_checkpoint_type is neither `classification` nor `detection`. """ if fine_tune_checkpoint_type not in ['detection', 'classification']: raise ValueError('Not supported fine_tune_checkpoint_type: {}'.format( fine_tune_checkpoint_type)) if fine_tune_checkpoint_type == 'classification': return self._feature_extractor.restore_from_classification_checkpoint_fn( self.first_stage_feature_extractor_scope, self.second_stage_feature_extractor_scope) variables_to_restore = tf.global_variables() variables_to_restore.append(slim.get_or_create_global_step()) # Only load feature extractor variables to be consistent with loading from # a classification checkpoint. include_patterns = None if not load_all_detection_checkpoint_vars: include_patterns = [ self.first_stage_feature_extractor_scope, self.second_stage_feature_extractor_scope ] feature_extractor_variables = tf.contrib.framework.filter_variables( variables_to_restore, include_patterns=include_patterns) return {var.op.name: var for var in feature_extractor_variables}
[ [ [ 5282, 5296 ], [ 7243, 7257 ], [ 8138, 8152 ], [ 9063, 9077 ] ], [ [ 5319, 5326 ], [ 60781, 60788 ] ], [ [ 5334, 5350 ], [ 6070, 6072 ], [ 8005, 8007 ], [ 8890, 8892 ], [ 8962, 8964 ], [ 9851, 9853 ], [ 26852, 26854 ], [ 26940, 26942 ], [ 27100, 27102 ], [ 27112, 27114 ], [ 27995, 27997 ], [ 28007, 28009 ], [ 28017, 28019 ], [ 28086, 28088 ], [ 32689, 32691 ], [ 35360, 35362 ], [ 35368, 35370 ], [ 44851, 44853 ], [ 45029, 45031 ], [ 45063, 45065 ], [ 45495, 45497 ], [ 45597, 45599 ], [ 46560, 46562 ], [ 48120, 48122 ], [ 48276, 48278 ], [ 52012, 52014 ], [ 52721, 52723 ], [ 52772, 52774 ], [ 53643, 53645 ], [ 54100, 54102 ], [ 54715, 54717 ], [ 54764, 54766 ], [ 54826, 54828 ], [ 54838, 54840 ], [ 54882, 54884 ], [ 54929, 54931 ], [ 55978, 55980 ], [ 56191, 56193 ], [ 56804, 56806 ], [ 58619, 58621 ], [ 58737, 58739 ], [ 58850, 58852 ], [ 61761, 61763 ], [ 61874, 61876 ], [ 63850, 63852 ], [ 64508, 64510 ], [ 64633, 64635 ], [ 65591, 65593 ], [ 68139, 68141 ], [ 68318, 68320 ], [ 68335, 68337 ], [ 68553, 68555 ], [ 68636, 68638 ], [ 68908, 68910 ], [ 68957, 68959 ], [ 69309, 69311 ], [ 70338, 70340 ], [ 72868, 72870 ], [ 72909, 72911 ], [ 72951, 72953 ], [ 73934, 73936 ], [ 74381, 74383 ], [ 74437, 74439 ], [ 74495, 74497 ], [ 76326, 76328 ], [ 76351, 76353 ], [ 77119, 77121 ], [ 77128, 77130 ], [ 77138, 77140 ], [ 77157, 77159 ], [ 77663, 77665 ], [ 77726, 77728 ], [ 79197, 79199 ], [ 79259, 79261 ], [ 79602, 79604 ], [ 79613, 79615 ], [ 79881, 79883 ], [ 79905, 79907 ], [ 82024, 82026 ], [ 82132, 82134 ], [ 84757, 84759 ], [ 84970, 84972 ], [ 85383, 85385 ], [ 85403, 85405 ], [ 85809, 85811 ], [ 85869, 85871 ], [ 86627, 86629 ], [ 87855, 87857 ], [ 87872, 87874 ], [ 87983, 87985 ], [ 88076, 88078 ], [ 88178, 88180 ], [ 88232, 88234 ], [ 92305, 92307 ], [ 95346, 95348 ], [ 95814, 95816 ], [ 96140, 96142 ], [ 96291, 96293 ], [ 96465, 96467 ], [ 96540, 96542 ], [ 96562, 96564 ], [ 96631, 96633 ], [ 97073, 97075 ], [ 97099, 97101 ], [ 97180, 97182 ], [ 97206, 97208 ], [ 97288, 97290 ], [ 97480, 97482 ], [ 101077, 101079 ], [ 101360, 101362 ], [ 101460, 101462 ], [ 101472, 101474 ], [ 101498, 101500 ], [ 101524, 101526 ], [ 101577, 101579 ], [ 102084, 102086 ], [ 102149, 102151 ], [ 102259, 102261 ], [ 102410, 102412 ], [ 102569, 102571 ], [ 102681, 102683 ], [ 102950, 102952 ], [ 103487, 103489 ], [ 103612, 103614 ], [ 103692, 103694 ], [ 103790, 103792 ], [ 104441, 104443 ], [ 104466, 104468 ], [ 104558, 104560 ], [ 104583, 104585 ], [ 104926, 104928 ], [ 105128, 105130 ], [ 105724, 105726 ], [ 105757, 105759 ], [ 106730, 106732 ], [ 106857, 106859 ], [ 106936, 106938 ], [ 107137, 107139 ], [ 107295, 107297 ], [ 107348, 107350 ], [ 107694, 107696 ], [ 107814, 107816 ], [ 107852, 107854 ], [ 107938, 107940 ], [ 108062, 108064 ], [ 108480, 108482 ], [ 108512, 108514 ], [ 108624, 108626 ], [ 108684, 108686 ], [ 108711, 108713 ], [ 108840, 108842 ], [ 109549, 109551 ], [ 109598, 109600 ], [ 109615, 109617 ], [ 109700, 109702 ], [ 109717, 109719 ], [ 109732, 109734 ], [ 109793, 109795 ], [ 111369, 111371 ], [ 111419, 111421 ], [ 111469, 111471 ], [ 111550, 111552 ], [ 111675, 111677 ], [ 111811, 111813 ], [ 111982, 111984 ], [ 112045, 112047 ], [ 113613, 113615 ], [ 114063, 114065 ], [ 60789, 60791 ], [ 60875, 60877 ], [ 81182, 81184 ], [ 81219, 81221 ], [ 81254, 81256 ], [ 81283, 81285 ], [ 81309, 81311 ], [ 81370, 81372 ], [ 81630, 81632 ], [ 96002, 96004 ], [ 96023, 96025 ], [ 96079, 96081 ], [ 96100, 96102 ] ], [ [ 5358, 5362 ] ], [ [ 5370, 5381 ] ], [ [ 5430, 5451 ], [ 20628, 20649 ] ], [ [ 5490, 5511 ], [ 22219, 22240 ] ], [ [ 5546, 5554 ], [ 25771, 25779 ], [ 73137, 73145 ], [ 76077, 76085 ], [ 87957, 87965 ], [ 95589, 95597 ], [ 101269, 101277 ], [ 107677, 107685 ], [ 111522, 111530 ], [ 44335, 44343 ], [ 44669, 44677 ], [ 70048, 70056 ] ], [ [ 5589, 5601 ], [ 56236, 56248 ], [ 60591, 60603 ], [ 73774, 73786 ], [ 76027, 76039 ], [ 80160, 80172 ], [ 107625, 107637 ], [ 44287, 44299 ], [ 44621, 44633 ], [ 69998, 70010 ] ], [ [ 5636, 5649 ], [ 48156, 48169 ], [ 48312, 48325 ], [ 52051, 52064 ], [ 53682, 53695 ], [ 58654, 58667 ], [ 58772, 58785 ], [ 64828, 64841 ] ], [ [ 5684, 5690 ], [ 22930, 22936 ], [ 23023, 23029 ], [ 23789, 23795 ], [ 23955, 23961 ] ], [ [ 5725, 5730 ], [ 10242, 10247 ] ], [ [ 5765, 5780 ], [ 68845, 68860 ] ], [ [ 5815, 5840 ], [ 52486, 52492 ], [ 52585, 52591 ], [ 54040, 54046 ], [ 64297, 64303 ], [ 64371, 64377 ], [ 64447, 64453 ], [ 65512, 65518 ], [ 73220, 73226 ], [ 74339, 74345 ], [ 76234, 76240 ], [ 76480, 76486 ], [ 76578, 76584 ], [ 77339, 77345 ], [ 77437, 77443 ], [ 86375, 86381 ], [ 86442, 86448 ], [ 86511, 86517 ], [ 86582, 86588 ], [ 86710, 86716 ] ], [ [ 5875, 5890 ], [ 95467, 95482 ], [ 101788, 101803 ], [ 105845, 105860 ] ], [ [ 5926, 5929 ], [ 48455, 48458 ], [ 104152, 104155 ], [ 108200, 108203 ], [ 81590, 81593 ] ], [ [ 5965, 5976 ], [ 26987, 26998 ], [ 44917, 44928 ], [ 46450, 46461 ], [ 61685, 61696 ], [ 68213, 68224 ], [ 70231, 70242 ], [ 81854, 81865 ], [ 87724, 87735 ], [ 96152, 96163 ], [ 60733, 60744 ] ], [ [ 5984, 5987 ], [ 6000, 6003 ] ], [ [ 6052, 6061 ], [ 20953, 20962 ], [ 21042, 21051 ] ], [ [ 6063, 6067 ], [ 56427, 56431 ], [ 56590, 56594 ], [ 82383, 82387 ], [ 113667, 113671 ] ], [ [ 6094, 6120 ] ], [ [ 10212, 10241 ], [ 20110, 20139 ] ] ]
"""Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'translate.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ [ [ 69, 71 ], [ 137, 139 ] ], [ [ 79, 82 ], [ 593, 596 ] ], [ [ 89, 93 ], [ 636, 640 ] ] ]
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: Dusan Klinec, ph4r05, 2018 import binascii from binascii import unhexlify import unittest import aiounittest from monero_glue.xmr import common, crypto from monero_glue.xmr.core import ec_py class CryptoTest(aiounittest.AsyncTestCase): """Simple tests""" def __init__(self, *args, **kwargs): super(CryptoTest, self).__init__(*args, **kwargs) def test_ed_crypto(self): sqr = ec_py.fe_expmod(ec_py.py_fe_sqrtm1, 2) self.assertEqual(sqr, ec_py.fe_mod(-1)) self.assertEqual( ec_py.py_fe_A, ec_py.fe_mod(2 * (1 - ec_py.d) * ec_py.inv(1 + ec_py.py_d)) ) self.assertEqual( ec_py.fe_expmod(ec_py.py_fe_fffb1, 2), ec_py.fe_mod(-2 * ec_py.py_fe_A * (ec_py.py_fe_A + 2)), ) self.assertEqual( ec_py.fe_expmod(ec_py.py_fe_fffb2, 2), ec_py.fe_mod(2 * ec_py.py_fe_A * (ec_py.py_fe_A + 2)), ) self.assertEqual( ec_py.fe_expmod(ec_py.py_fe_fffb3, 2), ec_py.fe_mod(-ec_py.py_fe_sqrtm1 * ec_py.py_fe_A * (ec_py.py_fe_A + 2)), ) self.assertEqual( ec_py.fe_expmod(ec_py.py_fe_fffb4, 2), ec_py.fe_mod(ec_py.py_fe_sqrtm1 * ec_py.py_fe_A * (ec_py.py_fe_A + 2)), ) def test_encoding(self): point = unhexlify( b"2486224797d05cae3cba4be043be2db0df381f3f19cfa113f86ab38e3d8d2bd0" ) self.assertEqual(point, crypto.encodepoint(crypto.decodepoint(point))) self.assertTrue( crypto.point_eq( crypto.decodepoint(point), crypto.decodepoint(crypto.encodepoint(crypto.decodepoint(point))), ) ) def test_scalarmult_base(self): scalar = crypto.decodeint( unhexlify( b"a0eea49140a3b036da30eacf64bd9d56ce3ef68ba82ef13571ec511edbcf8303" ) ) exp = unhexlify( b"16bb4a3c44e2ced511fc0d4cd86b13b3af21efc99fb0356199fac489f2544c09" ) res = crypto.scalarmult_base(scalar) self.assertEqual(exp, crypto.encodepoint(res)) self.assertTrue(crypto.point_eq(crypto.decodepoint(exp), res)) scalar = crypto.decodeint( unhexlify( b"fd290dce39f781aebbdbd24584ed6d48bd300de19d9c3decfda0a6e2c6751d0f" ) ) exp = unhexlify( b"123daf90fc26f13c6529e6b49bfed498995ac383ef19c0db6771143f24ba8dd5" ) res = crypto.scalarmult_base(scalar) self.assertEqual(exp, crypto.encodepoint(res)) self.assertTrue(crypto.point_eq(crypto.decodepoint(exp), res)) def test_scalarmult(self): priv = unhexlify( b"3482fb9735ef879fcae5ec7721b5d3646e155c4fb58d6cc11c732c9c9b76620a" ) pub = unhexlify( b"2486224797d05cae3cba4be043be2db0df381f3f19cfa113f86ab38e3d8d2bd0" ) exp = unhexlify( b"adcd1f5881f46f254900a03c654e71950a88a0236fa0a3a946c9b8daed6ef43d" ) res = crypto.scalarmult(crypto.decodepoint(pub), crypto.decodeint(priv)) self.assertEqual(exp, crypto.encodepoint(res)) self.assertTrue(crypto.point_eq(crypto.decodepoint(exp), res)) def test_cn_fast_hash(self): inp = unhexlify( b"259ef2aba8feb473cf39058a0fe30b9ff6d245b42b6826687ebd6b63128aff6405" ) res = crypto.cn_fast_hash(inp) self.assertEqual( res, unhexlify( b"86db87b83fb1246efca5f3b0db09ce3fa4d605b0d10e6507cac253dd31a3ec16" ), ) def test_hash_to_scalar(self): inp = unhexlify( b"259ef2aba8feb473cf39058a0fe30b9ff6d245b42b6826687ebd6b63128aff6405" ) res = crypto.hash_to_scalar(inp) exp = crypto.decodeint(binascii.unhexlify( b"9907925b254e12162609fc0dfd0fef2aa4d605b0d10e6507cac253dd31a3ec06")) self.assertTrue(crypto.sc_eq(res, exp)) def test_hash_to_point(self): data = unhexlify( b"42f6835bf83114a1f5f6076fe79bdfa0bd67c74b88f127d54572d3910dd09201" ) res = crypto.hash_to_point(data) res_p = crypto.encodepoint(res) self.assertEqual( res_p, unhexlify( b"54863a0464c008acc99cffb179bc6cf34eb1bbdf6c29f7a070a7c6376ae30ab5" ), ) def test_derivation_to_scalar(self): derivation = unhexlify( b"e720a09f2e3a0bbf4e4ba7ad93653bb296885510121f806acb2a5f9168fafa01" ) scalar = unhexlify( b"25d08763414c379aa9cf989cdcb3cadd36bd5193b500107d6bf5f921f18e470e" ) sc_int = crypto.derivation_to_scalar(crypto.decodepoint(derivation), 0) self.assertEqual(scalar, crypto.encodeint(sc_int)) def test_generate_key_derivation(self): key_pub = crypto.decodepoint( unhexlify( b"7739c95d3298e2f87362dba9e0e0b3980a692ae8e2f16796b0e382098cd6bd83" ) ) key_priv = crypto.decodeint( unhexlify( b"3482fb9735ef879fcae5ec7721b5d3646e155c4fb58d6cc11c732c9c9b76620a" ) ) deriv_exp = unhexlify( b"fa188a45a0e4daccc0e6d4f6f6858fd46392104be74183ec0047e7e9f4eaf739" ) self.assertEqual( deriv_exp, crypto.encodepoint(crypto.generate_key_derivation(key_pub, key_priv)), ) def test_h(self): H = unhexlify( b"8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94" ) self.assertEqual(crypto.encodepoint(crypto.xmr_H()), H) def test_h_pow(self): hp = crypto.gen_Hpow(10) self.assertEqual(crypto.encodepoint(hp[0]), crypto.encodepoint(crypto.xmr_H())) for i in range(1, 10): crypto.check_ed25519point(hp[i]) self.assertEqual( crypto.encodepoint(hp[i]), crypto.encodepoint( crypto.scalarmult(crypto.xmr_H(), crypto.sc_init(2 ** i)) ), ) def test_signature(self): for i in range(10): priv = crypto.random_scalar() data = crypto.cn_fast_hash(bytes(bytearray([i]))) c, r, pub = crypto.generate_signature(data, priv) res = crypto.check_signature(data, c, r, pub) self.assertEqual(res, 1) res2 = crypto.check_signature( data, crypto.sc_add(c, crypto.sc_init(1)), r, pub ) self.assertEqual(res2, 0) def test_edhex(self): inputs = [crypto.q - 2 ** 9, crypto.q - 10, 0, 100, 2 ** 200 + 10] + [ common.rand.randrange(0, crypto.q - 2) for _ in range(20) ] for x in inputs: l = crypto.encode_ed25519(x) d = crypto.decode_ed25519(l) self.assertEqual(x, d) def test_modm(self): inputs = [crypto.l - 2 ** 9, crypto.l - 10, 0, 100, 2 ** 200 + 10] + [ common.rand.randrange(0, crypto.l - 2) for _ in range(20) ] for x in inputs: l = crypto.encode_modm(x) d = crypto.decode_modm(l) self.assertEqual(x, d) def test_ge25519_double_scalarmult_vartime2(self): for i in range(10): ap = crypto.random_scalar() bp = crypto.random_scalar() A = crypto.scalarmult_base(ap) B = crypto.scalarmult_base(bp) a = crypto.random_scalar() b = crypto.random_scalar() R = crypto.ge_double_scalarmult_base_vartime2(a, A, b, B) R_exp = crypto.point_add(crypto.scalarmult(A, a), crypto.scalarmult(B, b)) self.assertTrue(crypto.point_eq(R, R_exp)) def test_ge25519_double_scalarmult_vartime(self): for i in range(10): ap = crypto.random_scalar() A = crypto.scalarmult_base(ap) a = crypto.random_scalar() b = crypto.random_scalar() R = crypto.ge_double_scalarmult_base_vartime(a, A, b) R_exp = crypto.point_add(crypto.scalarmult(A, a), crypto.scalarmult_base(b)) self.assertTrue(crypto.point_eq(R, R_exp)) def test_pointadd(self): a = crypto.random_scalar() A = crypto.scalarmult_base(a) A2 = crypto.point_add(A, A) A3 = crypto.point_add(A2, A) A4 = crypto.point_add(A3, A) A8 = crypto.scalarmult(A4, crypto.sc_init(2)) A8p = crypto.point_mul8(A) self.assertTrue(crypto.point_eq(A8p, A8)) self.assertTrue(crypto.point_eq(A4, crypto.scalarmult(A, crypto.sc_init(4)))) self.assertTrue(crypto.point_eq(A3, crypto.scalarmult(A, crypto.sc_init(3)))) def test_sc_inversion(self): res = crypto.new_scalar() inp = crypto.decodeint( unhexlify( b"3482fb9735ef879fcae5ec7721b5d3646e155c4fb58d6cc11c732c9c9b76620a" ) ) crypto.sc_inv_into(res, inp) self.assertEqual( binascii.hexlify(crypto.encodeint(res)), b"bcf365a551e6358f3f281a6241d4a25eded60230b60a1d48c67b51a85e33d70e", ) if __name__ == "__main__": unittest.main() # pragma: no cover
[ [ [ 91, 99 ], [ 3874, 3882 ], [ 9105, 9113 ] ], [ [ 121, 130 ], [ 1373, 1382 ], [ 1841, 1850 ], [ 1974, 1983 ], [ 2294, 2303 ], [ 2427, 2436 ], [ 2746, 2755 ], [ 2861, 2870 ], [ 2976, 2985 ], [ 3332, 3341 ], [ 3529, 3538 ], [ 3699, 3708 ], [ 4074, 4083 ], [ 4313, 4322 ], [ 4496, 4505 ], [ 4614, 4623 ], [ 4949, 4958 ], [ 5117, 5126 ], [ 5256, 5265 ], [ 5534, 5543 ], [ 8910, 8919 ] ], [ [ 138, 146 ], [ 9278, 9286 ] ], [ [ 155, 166 ], [ 268, 279 ] ], [ [ 195, 201 ], [ 6744, 6750 ], [ 7072, 7078 ] ], [ [ 203, 209 ], [ 1506, 1512 ], [ 1525, 1531 ], [ 1590, 1596 ], [ 1623, 1629 ], [ 1666, 1672 ], [ 1685, 1691 ], [ 1704, 1710 ], [ 1811, 1817 ], [ 2089, 2095 ], [ 2150, 2156 ], [ 2199, 2205 ], [ 2215, 2221 ], [ 2264, 2270 ], [ 2542, 2548 ], [ 2603, 2609 ], [ 2652, 2658 ], [ 2668, 2674 ], [ 3091, 3097 ], [ 3109, 3115 ], [ 3134, 3140 ], [ 3188, 3194 ], [ 3237, 3243 ], [ 3253, 3259 ], [ 3449, 3455 ], [ 3816, 3822 ], [ 3857, 3863 ], [ 4000, 4006 ], [ 4189, 4195 ], [ 4232, 4238 ], [ 4732, 4738 ], [ 4760, 4766 ], [ 4828, 4834 ], [ 4917, 4923 ], [ 5087, 5093 ], [ 5418, 5424 ], [ 5437, 5443 ], [ 5660, 5666 ], [ 5679, 5685 ], [ 5739, 5745 ], [ 5784, 5790 ], [ 5811, 5817 ], [ 5830, 5836 ], [ 5890, 5896 ], [ 5969, 5975 ], [ 6012, 6018 ], [ 6052, 6058 ], [ 6070, 6076 ], [ 6086, 6092 ], [ 6221, 6227 ], [ 6263, 6269 ], [ 6331, 6337 ], [ 6387, 6393 ], [ 6484, 6490 ], [ 6530, 6536 ], [ 6547, 6553 ], [ 6671, 6677 ], [ 6690, 6696 ], [ 6769, 6775 ], [ 6854, 6860 ], [ 6895, 6901 ], [ 6999, 7005 ], [ 7018, 7024 ], [ 7097, 7103 ], [ 7182, 7188 ], [ 7220, 7226 ], [ 7378, 7384 ], [ 7418, 7424 ], [ 7457, 7463 ], [ 7500, 7506 ], [ 7543, 7549 ], [ 7582, 7588 ], [ 7622, 7628 ], [ 7696, 7702 ], [ 7713, 7719 ], [ 7738, 7744 ], [ 7791, 7797 ], [ 7918, 7924 ], [ 7957, 7963 ], [ 8000, 8006 ], [ 8039, 8045 ], [ 8079, 8085 ], [ 8149, 8155 ], [ 8166, 8172 ], [ 8191, 8197 ], [ 8246, 8252 ], [ 8315, 8321 ], [ 8350, 8356 ], [ 8389, 8395 ], [ 8425, 8431 ], [ 8462, 8468 ], [ 8499, 8505 ], [ 8521, 8527 ], [ 8555, 8561 ], [ 8600, 8606 ], [ 8650, 8656 ], [ 8670, 8676 ], [ 8691, 8697 ], [ 8736, 8742 ], [ 8756, 8762 ], [ 8777, 8783 ], [ 8846, 8852 ], [ 8880, 8886 ], [ 9038, 9044 ], [ 9122, 9128 ] ], [ [ 243, 248 ], [ 464, 469 ], [ 480, 485 ], [ 533, 538 ], [ 589, 594 ], [ 604, 609 ], [ 626, 631 ], [ 637, 642 ], [ 651, 656 ], [ 713, 718 ], [ 729, 734 ], [ 764, 769 ], [ 782, 787 ], [ 799, 804 ], [ 868, 873 ], [ 884, 889 ], [ 919, 924 ], [ 936, 941 ], [ 953, 958 ], [ 1022, 1027 ], [ 1038, 1043 ], [ 1073, 1078 ], [ 1087, 1092 ], [ 1108, 1113 ], [ 1125, 1130 ], [ 1194, 1199 ], [ 1210, 1215 ], [ 1245, 1250 ], [ 1258, 1263 ], [ 1279, 1284 ], [ 1296, 1301 ] ], [ [ 257, 267 ], [ 375, 385 ] ] ]
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange import hashlib from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import AccountNotEnabled from ccxt.base.errors import AccountSuspended from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import BadRequest from ccxt.base.errors import BadSymbol from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import NotSupported from ccxt.base.errors import RateLimitExceeded from ccxt.base.errors import ExchangeNotAvailable from ccxt.base.decimal_to_precision import TICK_SIZE from ccxt.base.precise import Precise class gateio(Exchange): def describe(self): return self.deep_extend(super(gateio, self).describe(), { 'id': 'gateio', 'name': 'Gate.io', 'countries': ['KR'], 'rateLimit': 10 / 3, # 300 requests per second or 3.33ms 'version': 'v4', 'certified': True, 'pro': True, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/31784029-0313c702-b509-11e7-9ccc-bc0da6a0e435.jpg', 'doc': 'https://www.gate.io/docs/apiv4/en/index.html', 'www': 'https://gate.io/', 'api': { 'public': { 'wallet': 'https://api.gateio.ws/api/v4', 'futures': 'https://api.gateio.ws/api/v4', 'margin': 'https://api.gateio.ws/api/v4', 'delivery': 'https://api.gateio.ws/api/v4', 'spot': 'https://api.gateio.ws/api/v4', 'options': 'https://api.gateio.ws/api/v4', }, 'private': { 'withdrawals': 'https://api.gateio.ws/api/v4', 'wallet': 'https://api.gateio.ws/api/v4', 'futures': 'https://api.gateio.ws/api/v4', 'margin': 'https://api.gateio.ws/api/v4', 'delivery': 'https://api.gateio.ws/api/v4', 'spot': 'https://api.gateio.ws/api/v4', 'options': 'https://api.gateio.ws/api/v4', }, }, 'test': { 'public': { 'futures': 'https://fx-api-testnet.gateio.ws/api/v4', 'delivery': 'https://fx-api-testnet.gateio.ws/api/v4', }, 'private': { 'futures': 'https://fx-api-testnet.gateio.ws/api/v4', 'delivery': 'https://fx-api-testnet.gateio.ws/api/v4', }, }, 'referral': { 'url': 'https://www.gate.io/ref/2436035', 'discount': 0.2, }, }, 'has': { 'CORS': None, 'spot': True, 'margin': True, 'swap': True, 'future': True, 'option': None, 'cancelAllOrders': True, 'cancelOrder': True, 'createMarketOrder': False, 'createOrder': True, 'createPostOnlyOrder': True, 'createStopLimitOrder': True, 'createStopMarketOrder': False, 'createStopOrder': True, 'fetchBalance': True, 'fetchBorrowRate': False, 'fetchBorrowRateHistories': False, 'fetchBorrowRateHistory': False, 'fetchBorrowRates': False, 'fetchClosedOrders': True, 'fetchCurrencies': True, 'fetchDepositAddress': True, 'fetchDeposits': True, 'fetchFundingHistory': True, 'fetchFundingRate': True, 'fetchFundingRateHistory': True, 'fetchFundingRates': True, 'fetchIndexOHLCV': True, 'fetchLeverage': False, 'fetchLeverageTiers': True, 'fetchMarketLeverageTiers': 'emulated', 'fetchMarkets': True, 'fetchMarkOHLCV': True, 'fetchMyTrades': True, 'fetchNetworkDepositAddress': True, 'fetchOHLCV': True, 'fetchOpenOrders': True, 'fetchOrder': True, 'fetchOrderBook': True, 'fetchPositions': True, 'fetchPremiumIndexOHLCV': False, 'fetchTicker': True, 'fetchTickers': True, 'fetchTime': False, 'fetchTrades': True, 'fetchTradingFee': True, 'fetchTradingFees': True, 'fetchTransactionFees': True, 'fetchWithdrawals': True, 'setLeverage': True, 'setMarginMode': False, 'transfer': True, 'withdraw': True, }, 'api': { 'public': { 'wallet': { 'get': { 'wallet/currency_chains': 1.5, }, }, 'spot': { 'get': { 'currencies': 1, 'currencies/{currency}': 1, 'currency_pairs': 1, 'currency_pairs/{currency_pair}': 1, 'tickers': 1, 'order_book': 1, 'trades': 1, 'candlesticks': 1, }, }, 'margin': { 'get': { 'currency_pairs': 1, 'currency_pairs/{currency_pair}': 1, 'cross/currencies': 1, 'cross/currencies/{currency}': 1, 'funding_book': 1, }, }, 'futures': { 'get': { '{settle}/contracts': 1.5, '{settle}/contracts/{contract}': 1.5, '{settle}/order_book': 1.5, '{settle}/trades': 1.5, '{settle}/candlesticks': 1.5, '{settle}/tickers': 1.5, '{settle}/funding_rate': 1.5, '{settle}/insurance': 1.5, '{settle}/contract_stats': 1.5, '{settle}/liq_orders': 1.5, }, }, 'delivery': { 'get': { '{settle}/contracts': 1.5, '{settle}/contracts/{contract}': 1.5, '{settle}/order_book': 1.5, '{settle}/trades': 1.5, '{settle}/candlesticks': 1.5, '{settle}/tickers': 1.5, '{settle}/insurance': 1.5, }, }, 'options': { 'get': { 'underlyings': 1.5, 'expirations': 1.5, 'contracts': 1.5, 'contracts/{contract}': 1.5, 'settlements': 1.5, 'settlements/{contract}': 1.5, 'order_book': 1.5, 'tickers': 1.5, 'underlying/tickers/{underlying}': 1.5, 'candlesticks': 1.5, 'underlying/candlesticks': 1.5, 'trades': 1.5, }, }, }, 'private': { 'withdrawals': { 'post': { '': 3000, # 3000 = 10 seconds }, 'delete': { '{withdrawal_id}': 300, }, }, 'wallet': { 'get': { 'deposit_address': 300, 'withdrawals': 300, 'deposits': 300, 'sub_account_transfers': 300, 'withdraw_status': 300, 'sub_account_balances': 300, 'fee': 300, 'total_balance': 300, }, 'post': { 'transfers': 300, 'sub_account_transfers': 300, }, }, 'spot': { 'get': { 'accounts': 1, 'open_orders': 1, 'orders': 1, 'orders/{order_id}': 1, 'my_trades': 1, 'price_orders': 1, 'price_orders/{order_id}': 1, }, 'post': { 'batch_orders': 1, 'orders': 1, 'cancel_batch_orders': 1, 'price_orders': 1, }, 'delete': { 'orders': 1, 'orders/{order_id}': 1, 'price_orders': 1, 'price_orders/{order_id}': 1, }, }, 'margin': { 'get': { 'accounts': 1.5, 'account_book': 1.5, 'funding_accounts': 1.5, 'loans': 1.5, 'loans/{loan_id}': 1.5, 'loans/{loan_id}/repayment': 1.5, 'loan_records': 1.5, 'loan_records/{load_record_id}': 1.5, 'auto_repay': 1.5, 'transferable': 1.5, 'cross/accounts': 1.5, 'cross/account_book': 1.5, 'cross/loans': 1.5, 'cross/loans/{loan_id}': 1.5, 'cross/loans/repayments': 1.5, 'cross/transferable': 1.5, 'loan_records/{loan_record_id}': 1.5, 'borrowable': 1.5, 'cross/repayments': 1.5, 'cross/borrowable': 1.5, }, 'post': { 'loans': 1.5, 'merged_loans': 1.5, 'loans/{loan_id}/repayment': 1.5, 'auto_repay': 1.5, 'cross/loans': 1.5, 'cross/loans/repayments': 1.5, 'cross/repayments': 1.5, }, 'patch': { 'loans/{loan_id}': 1.5, 'loan_records/{loan_record_id}': 1.5, }, 'delete': { 'loans/{loan_id}': 1.5, }, }, 'futures': { 'get': { '{settle}/accounts': 1.5, '{settle}/account_book': 1.5, '{settle}/positions': 1.5, '{settle}/positions/{contract}': 1.5, '{settle}/orders': 1.5, '{settle}/orders/{order_id}': 1.5, '{settle}/my_trades': 1.5, '{settle}/position_close': 1.5, '{settle}/liquidates': 1.5, '{settle}/price_orders': 1.5, '{settle}/price_orders/{order_id}': 1.5, '{settle}/dual_comp/positions/{contract}': 1.5, }, 'post': { '{settle}/positions/{contract}/margin': 1.5, '{settle}/positions/{contract}/leverage': 1.5, '{settle}/positions/{contract}/risk_limit': 1.5, '{settle}/dual_mode': 1.5, '{settle}/dual_comp/positions/{contract}': 1.5, '{settle}/dual_comp/positions/{contract}/margin': 1.5, '{settle}/dual_comp/positions/{contract}/leverage': 1.5, '{settle}/dual_comp/positions/{contract}/risk_limit': 1.5, '{settle}/orders': 1.5, '{settle}/price_orders': 1.5, }, 'delete': { '{settle}/orders': 1.5, '{settle}/orders/{order_id}': 1.5, '{settle}/price_orders': 1.5, '{settle}/price_orders/{order_id}': 1.5, }, }, 'delivery': { 'get': { '{settle}/accounts': 1.5, '{settle}/account_book': 1.5, '{settle}/positions': 1.5, '{settle}/positions/{contract}': 1.5, '{settle}/orders': 1.5, '{settle}/orders/{order_id}': 1.5, '{settle}/my_trades': 1.5, '{settle}/position_close': 1.5, '{settle}/liquidates': 1.5, '{settle}/price_orders': 1.5, '{settle}/price_orders/{order_id}': 1.5, '{settle}/settlements': 1.5, }, 'post': { '{settle}/positions/{contract}/margin': 1.5, '{settle}/positions/{contract}/leverage': 1.5, '{settle}/positions/{contract}/risk_limit': 1.5, '{settle}/orders': 1.5, '{settle}/price_orders': 1.5, }, 'delete': { '{settle}/orders': 1.5, '{settle}/orders/{order_id}': 1.5, '{settle}/price_orders': 1.5, '{settle}/price_orders/{order_id}': 1.5, }, }, 'options': { 'get': { 'accounts': 1.5, 'account_book': 1.5, 'positions': 1.5, 'positions/{contract}': 1.5, 'position_close': 1.5, 'orders': 1.5, 'orders/{order_id}': 1.5, 'my_trades': 1.5, }, 'post': { 'orders': 1.5, }, 'delete': { 'orders': 1.5, 'orders/{order_id}': 1.5, }, }, }, }, 'timeframes': { '10s': '10s', '1m': '1m', '5m': '5m', '15m': '15m', '30m': '30m', '1h': '1h', '4h': '4h', '8h': '8h', '1d': '1d', '7d': '7d', '1w': '7d', }, # copied from gateiov2 'commonCurrencies': { '88MPH': 'MPH', 'AXIS': 'Axis DeFi', 'BIFI': 'Bitcoin File', 'BOX': 'DefiBox', 'BTCBEAR': 'BEAR', 'BTCBULL': 'BULL', 'BYN': 'BeyondFi', 'EGG': 'Goose Finance', 'GTC': 'Game.com', # conflict with Gitcoin and Gastrocoin 'GTC_HT': 'Game.com HT', 'GTC_BSC': 'Game.com BSC', 'HIT': 'HitChain', 'MM': 'Million', # conflict with MilliMeter 'MPH': 'Morpher', # conflict with 88MPH 'RAI': 'Rai Reflex Index', # conflict with RAI Finance 'SBTC': 'Super Bitcoin', 'TNC': 'Trinity Network Credit', 'TON': 'TONToken', 'VAI': 'VAIOT', }, 'requiredCredentials': { 'apiKey': True, 'secret': True, }, 'headers': { 'X-Gate-Channel-Id': 'ccxt', }, 'options': { 'createOrder': { 'expiration': 86400, # for conditional orders }, 'networks': { 'TRC20': 'TRX', 'ERC20': 'ETH', 'BEP20': 'BSC', }, 'accountsByType': { 'funding': 'spot', 'spot': 'spot', 'margin': 'margin', 'cross_margin': 'cross_margin', 'cross': 'cross_margin', 'isolated': 'margin', 'swap': 'futures', 'future': 'delivery', 'futures': 'futures', 'delivery': 'delivery', }, 'defaultType': 'spot', 'swap': { 'fetchMarkets': { 'settlementCurrencies': ['usdt', 'btc'], }, }, 'future': { 'fetchMarkets': { 'settlementCurrencies': ['usdt', 'btc'], }, }, }, 'precisionMode': TICK_SIZE, 'fees': { 'trading': { 'tierBased': True, 'feeSide': 'get', 'percentage': True, 'maker': self.parse_number('0.002'), 'taker': self.parse_number('0.002'), 'tiers': { # volume is in BTC 'maker': [ [self.parse_number('0'), self.parse_number('0.002')], [self.parse_number('1.5'), self.parse_number('0.00185')], [self.parse_number('3'), self.parse_number('0.00175')], [self.parse_number('6'), self.parse_number('0.00165')], [self.parse_number('12.5'), self.parse_number('0.00155')], [self.parse_number('25'), self.parse_number('0.00145')], [self.parse_number('75'), self.parse_number('0.00135')], [self.parse_number('200'), self.parse_number('0.00125')], [self.parse_number('500'), self.parse_number('0.00115')], [self.parse_number('1250'), self.parse_number('0.00105')], [self.parse_number('2500'), self.parse_number('0.00095')], [self.parse_number('3000'), self.parse_number('0.00085')], [self.parse_number('6000'), self.parse_number('0.00075')], [self.parse_number('11000'), self.parse_number('0.00065')], [self.parse_number('20000'), self.parse_number('0.00055')], [self.parse_number('40000'), self.parse_number('0.00055')], [self.parse_number('75000'), self.parse_number('0.00055')], ], 'taker': [ [self.parse_number('0'), self.parse_number('0.002')], [self.parse_number('1.5'), self.parse_number('0.00195')], [self.parse_number('3'), self.parse_number('0.00185')], [self.parse_number('6'), self.parse_number('0.00175')], [self.parse_number('12.5'), self.parse_number('0.00165')], [self.parse_number('25'), self.parse_number('0.00155')], [self.parse_number('75'), self.parse_number('0.00145')], [self.parse_number('200'), self.parse_number('0.00135')], [self.parse_number('500'), self.parse_number('0.00125')], [self.parse_number('1250'), self.parse_number('0.00115')], [self.parse_number('2500'), self.parse_number('0.00105')], [self.parse_number('3000'), self.parse_number('0.00095')], [self.parse_number('6000'), self.parse_number('0.00085')], [self.parse_number('11000'), self.parse_number('0.00075')], [self.parse_number('20000'), self.parse_number('0.00065')], [self.parse_number('40000'), self.parse_number('0.00065')], [self.parse_number('75000'), self.parse_number('0.00065')], ], }, }, 'swap': { 'tierBased': True, 'feeSide': 'base', 'percentage': True, 'maker': self.parse_number('0.0'), 'taker': self.parse_number('0.0005'), 'tiers': { 'maker': [ [self.parse_number('0'), self.parse_number('0.0000')], [self.parse_number('1.5'), self.parse_number('-0.00005')], [self.parse_number('3'), self.parse_number('-0.00005')], [self.parse_number('6'), self.parse_number('-0.00005')], [self.parse_number('12.5'), self.parse_number('-0.00005')], [self.parse_number('25'), self.parse_number('-0.00005')], [self.parse_number('75'), self.parse_number('-0.00005')], [self.parse_number('200'), self.parse_number('-0.00005')], [self.parse_number('500'), self.parse_number('-0.00005')], [self.parse_number('1250'), self.parse_number('-0.00005')], [self.parse_number('2500'), self.parse_number('-0.00005')], [self.parse_number('3000'), self.parse_number('-0.00008')], [self.parse_number('6000'), self.parse_number('-0.01000')], [self.parse_number('11000'), self.parse_number('-0.01002')], [self.parse_number('20000'), self.parse_number('-0.01005')], [self.parse_number('40000'), self.parse_number('-0.02000')], [self.parse_number('75000'), self.parse_number('-0.02005')], ], 'taker': [ [self.parse_number('0'), self.parse_number('0.00050')], [self.parse_number('1.5'), self.parse_number('0.00048')], [self.parse_number('3'), self.parse_number('0.00046')], [self.parse_number('6'), self.parse_number('0.00044')], [self.parse_number('12.5'), self.parse_number('0.00042')], [self.parse_number('25'), self.parse_number('0.00040')], [self.parse_number('75'), self.parse_number('0.00038')], [self.parse_number('200'), self.parse_number('0.00036')], [self.parse_number('500'), self.parse_number('0.00034')], [self.parse_number('1250'), self.parse_number('0.00032')], [self.parse_number('2500'), self.parse_number('0.00030')], [self.parse_number('3000'), self.parse_number('0.00030')], [self.parse_number('6000'), self.parse_number('0.00030')], [self.parse_number('11000'), self.parse_number('0.00030')], [self.parse_number('20000'), self.parse_number('0.00030')], [self.parse_number('40000'), self.parse_number('0.00030')], [self.parse_number('75000'), self.parse_number('0.00030')], ], }, }, }, # https://www.gate.io/docs/apiv4/en/index.html#label-list 'exceptions': { 'exact': { 'INVALID_PARAM_VALUE': BadRequest, 'INVALID_PROTOCOL': BadRequest, 'INVALID_ARGUMENT': BadRequest, 'INVALID_REQUEST_BODY': BadRequest, 'MISSING_REQUIRED_PARAM': ArgumentsRequired, 'BAD_REQUEST': BadRequest, 'INVALID_CONTENT_TYPE': BadRequest, 'NOT_ACCEPTABLE': BadRequest, 'METHOD_NOT_ALLOWED': BadRequest, 'NOT_FOUND': ExchangeError, 'INVALID_CREDENTIALS': AuthenticationError, 'INVALID_KEY': AuthenticationError, 'IP_FORBIDDEN': AuthenticationError, 'READ_ONLY': PermissionDenied, 'INVALID_SIGNATURE': AuthenticationError, 'MISSING_REQUIRED_HEADER': AuthenticationError, 'REQUEST_EXPIRED': AuthenticationError, 'ACCOUNT_LOCKED': AccountSuspended, 'FORBIDDEN': PermissionDenied, 'SUB_ACCOUNT_NOT_FOUND': ExchangeError, 'SUB_ACCOUNT_LOCKED': AccountSuspended, 'MARGIN_BALANCE_EXCEPTION': ExchangeError, 'MARGIN_TRANSFER_FAILED': ExchangeError, 'TOO_MUCH_FUTURES_AVAILABLE': ExchangeError, 'FUTURES_BALANCE_NOT_ENOUGH': InsufficientFunds, 'ACCOUNT_EXCEPTION': ExchangeError, 'SUB_ACCOUNT_TRANSFER_FAILED': ExchangeError, 'ADDRESS_NOT_USED': ExchangeError, 'TOO_FAST': RateLimitExceeded, 'WITHDRAWAL_OVER_LIMIT': ExchangeError, 'API_WITHDRAW_DISABLED': ExchangeNotAvailable, 'INVALID_WITHDRAW_ID': ExchangeError, 'INVALID_WITHDRAW_CANCEL_STATUS': ExchangeError, 'INVALID_PRECISION': InvalidOrder, 'INVALID_CURRENCY': BadSymbol, 'INVALID_CURRENCY_PAIR': BadSymbol, 'POC_FILL_IMMEDIATELY': ExchangeError, 'ORDER_NOT_FOUND': OrderNotFound, 'CLIENT_ID_NOT_FOUND': OrderNotFound, 'ORDER_CLOSED': InvalidOrder, 'ORDER_CANCELLED': InvalidOrder, 'QUANTITY_NOT_ENOUGH': InvalidOrder, 'BALANCE_NOT_ENOUGH': InsufficientFunds, 'MARGIN_NOT_SUPPORTED': InvalidOrder, 'MARGIN_BALANCE_NOT_ENOUGH': InsufficientFunds, 'AMOUNT_TOO_LITTLE': InvalidOrder, 'AMOUNT_TOO_MUCH': InvalidOrder, 'REPEATED_CREATION': InvalidOrder, 'LOAN_NOT_FOUND': OrderNotFound, 'LOAN_RECORD_NOT_FOUND': OrderNotFound, 'NO_MATCHED_LOAN': ExchangeError, 'NOT_MERGEABLE': ExchangeError, 'NO_CHANGE': ExchangeError, 'REPAY_TOO_MUCH': ExchangeError, 'TOO_MANY_CURRENCY_PAIRS': InvalidOrder, 'TOO_MANY_ORDERS': InvalidOrder, 'MIXED_ACCOUNT_TYPE': InvalidOrder, 'AUTO_BORROW_TOO_MUCH': ExchangeError, 'TRADE_RESTRICTED': InsufficientFunds, 'USER_NOT_FOUND': AccountNotEnabled, 'CONTRACT_NO_COUNTER': ExchangeError, 'CONTRACT_NOT_FOUND': BadSymbol, 'RISK_LIMIT_EXCEEDED': ExchangeError, 'INSUFFICIENT_AVAILABLE': InsufficientFunds, 'LIQUIDATE_IMMEDIATELY': InvalidOrder, 'LEVERAGE_TOO_HIGH': InvalidOrder, 'LEVERAGE_TOO_LOW': InvalidOrder, 'ORDER_NOT_OWNED': ExchangeError, 'ORDER_FINISHED': ExchangeError, 'POSITION_CROSS_MARGIN': ExchangeError, 'POSITION_IN_LIQUIDATION': ExchangeError, 'POSITION_IN_CLOSE': ExchangeError, 'POSITION_EMPTY': InvalidOrder, 'REMOVE_TOO_MUCH': ExchangeError, 'RISK_LIMIT_NOT_MULTIPLE': ExchangeError, 'RISK_LIMIT_TOO_HIGH': ExchangeError, 'RISK_LIMIT_TOO_lOW': ExchangeError, 'PRICE_TOO_DEVIATED': InvalidOrder, 'SIZE_TOO_LARGE': InvalidOrder, 'SIZE_TOO_SMALL': InvalidOrder, 'PRICE_OVER_LIQUIDATION': InvalidOrder, 'PRICE_OVER_BANKRUPT': InvalidOrder, 'ORDER_POC_IMMEDIATE': InvalidOrder, 'INCREASE_POSITION': InvalidOrder, 'CONTRACT_IN_DELISTING': ExchangeError, 'INTERNAL': ExchangeNotAvailable, 'SERVER_ERROR': ExchangeNotAvailable, 'TOO_BUSY': ExchangeNotAvailable, 'CROSS_ACCOUNT_NOT_FOUND': ExchangeError, }, }, 'broad': {}, }) async def fetch_markets(self, params={}): result = [] type, query = self.handle_market_type_and_params('fetchMarkets', None, params) if type == 'spot' or type == 'margin': result = await self.fetch_spot_markets(query) if type == 'swap' or type == 'future': result = await self.fetch_contract_markets(query) # futures and swaps if type == 'option': result = await self.fetch_option_markets(query) resultLength = len(result) if resultLength == 0: raise ExchangeError(self.id + " does not support '" + type + "' type, set exchange.options['defaultType'] to " + "'spot', 'margin', 'swap', 'future' or 'option'") # eslint-disable-line quotes return result async def fetch_spot_markets(self, params): marginResponse = await self.publicMarginGetCurrencyPairs(params) spotMarketsResponse = await self.publicSpotGetCurrencyPairs(params) marginMarkets = self.index_by(marginResponse, 'id') # # Spot # # [ # { # "id": "QTUM_ETH", # "base": "QTUM", # "quote": "ETH", # "fee": "0.2", # "min_base_amount": "0.01", # "min_quote_amount": "0.001", # "amount_precision": 3, # "precision": 6, # "trade_status": "tradable", # "sell_start": 0, # "buy_start": 0 # } # ] # # Margin # # [ # { # "id": "ETH_USDT", # "base": "ETH", # "quote": "USDT", # "leverage": 3, # "min_base_amount": "0.01", # "min_quote_amount": "100", # "max_quote_amount": "1000000" # } # ] # result = [] for i in range(0, len(spotMarketsResponse)): spotMarket = spotMarketsResponse[i] id = self.safe_string(spotMarket, 'id') marginMarket = self.safe_value(marginMarkets, id) market = self.deep_extend(marginMarket, spotMarket) baseId, quoteId = id.split('_') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) takerPercent = self.safe_string(market, 'fee') makerPercent = self.safe_string(market, 'maker_fee_rate', takerPercent) amountPrecisionString = self.safe_string(market, 'amount_precision') pricePrecisionString = self.safe_string(market, 'precision') tradeStatus = self.safe_string(market, 'trade_status') leverage = self.safe_number(market, 'leverage') defaultMinAmountLimit = self.parse_number(self.parse_precision(amountPrecisionString)) margin = leverage is not None result.append({ 'id': id, 'symbol': base + '/' + quote, 'base': base, 'quote': quote, 'settle': None, 'baseId': baseId, 'quoteId': quoteId, 'settleId': None, 'type': 'spot', 'spot': True, 'margin': margin, 'swap': False, 'future': False, 'option': False, 'active': (tradeStatus == 'tradable'), 'contract': False, 'linear': None, 'inverse': None, # Fee is in %, so divide by 100 'taker': self.parse_number(Precise.string_div(takerPercent, '100')), 'maker': self.parse_number(Precise.string_div(makerPercent, '100')), 'contractSize': None, 'expiry': None, 'expiryDatetime': None, 'strike': None, 'optionType': None, 'precision': { 'amount': self.parse_number(self.parse_precision(amountPrecisionString)), 'price': self.parse_number(self.parse_precision(pricePrecisionString)), }, 'limits': { 'leverage': { 'min': self.parse_number('1'), 'max': self.safe_number(market, 'leverage', 1), }, 'amount': { 'min': self.safe_number(spotMarket, 'min_base_amount', defaultMinAmountLimit), 'max': None, }, 'price': { 'min': None, 'max': None, }, 'cost': { 'min': self.safe_number(market, 'min_quote_amount'), 'max': self.safe_number(market, 'max_quote_amount'), }, }, 'info': market, }) return result async def fetch_contract_markets(self, params): result = [] swapSettlementCurrencies = self.get_settlement_currencies('swap', 'fetchMarkets') futureSettlementCurrencies = self.get_settlement_currencies('future', 'fetchMarkets') for c in range(0, len(swapSettlementCurrencies)): settleId = swapSettlementCurrencies[c] query = params query['settle'] = settleId response = await self.publicFuturesGetSettleContracts(query) for i in range(0, len(response)): parsedMarket = self.parse_contract_market(response[i], settleId) result.append(parsedMarket) for c in range(0, len(futureSettlementCurrencies)): settleId = futureSettlementCurrencies[c] query = params query['settle'] = settleId response = await self.publicDeliveryGetSettleContracts(query) for i in range(0, len(response)): parsedMarket = self.parse_contract_market(response[i], settleId) result.append(parsedMarket) return result def parse_contract_market(self, market, settleId): # # Perpetual swap # # { # "name": "BTC_USDT", # "type": "direct", # "quanto_multiplier": "0.0001", # "ref_discount_rate": "0", # "order_price_deviate": "0.5", # "maintenance_rate": "0.005", # "mark_type": "index", # "last_price": "38026", # "mark_price": "37985.6", # "index_price": "37954.92", # "funding_rate_indicative": "0.000219", # "mark_price_round": "0.01", # "funding_offset": 0, # "in_delisting": False, # "risk_limit_base": "1000000", # "interest_rate": "0.0003", # "order_price_round": "0.1", # "order_size_min": 1, # "ref_rebate_rate": "0.2", # "funding_interval": 28800, # "risk_limit_step": "1000000", # "leverage_min": "1", # "leverage_max": "100", # "risk_limit_max": "8000000", # "maker_fee_rate": "-0.00025", # "taker_fee_rate": "0.00075", # "funding_rate": "0.002053", # "order_size_max": 1000000, # "funding_next_apply": 1610035200, # "short_users": 977, # "config_change_time": 1609899548, # "trade_size": 28530850594, # "position_size": 5223816, # "long_users": 455, # "funding_impact_value": "60000", # "orders_limit": 50, # "trade_id": 10851092, # "orderbook_id": 2129638396 # } # # Delivery Futures # # { # "name": "BTC_USDT_20200814", # "underlying": "BTC_USDT", # "cycle": "WEEKLY", # "type": "direct", # "quanto_multiplier": "0.0001", # "mark_type": "index", # "last_price": "9017", # "mark_price": "9019", # "index_price": "9005.3", # "basis_rate": "0.185095", # "basis_value": "13.7", # "basis_impact_value": "100000", # "settle_price": "0", # "settle_price_interval": 60, # "settle_price_duration": 1800, # "settle_fee_rate": "0.0015", # "expire_time": 1593763200, # "order_price_round": "0.1", # "mark_price_round": "0.1", # "leverage_min": "1", # "leverage_max": "100", # "maintenance_rate": "1000000", # "risk_limit_base": "140.726652109199", # "risk_limit_step": "1000000", # "risk_limit_max": "8000000", # "maker_fee_rate": "-0.00025", # "taker_fee_rate": "0.00075", # "ref_discount_rate": "0", # "ref_rebate_rate": "0.2", # "order_price_deviate": "0.5", # "order_size_min": 1, # "order_size_max": 1000000, # "orders_limit": 50, # "orderbook_id": 63, # "trade_id": 26, # "trade_size": 435, # "position_size": 130, # "config_change_time": 1593158867, # "in_delisting": False # } # id = self.safe_string(market, 'name') parts = id.split('_') baseId = self.safe_string(parts, 0) quoteId = self.safe_string(parts, 1) date = self.safe_string(parts, 2) base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) settle = self.safe_currency_code(settleId) expiry = self.safe_timestamp(market, 'expire_time') symbol = '' marketType = 'swap' if date is not None: symbol = base + '/' + quote + ':' + settle + '-' + self.yymmdd(expiry, '') marketType = 'future' else: symbol = base + '/' + quote + ':' + settle priceDeviate = self.safe_string(market, 'order_price_deviate') markPrice = self.safe_string(market, 'mark_price') minMultiplier = Precise.string_sub('1', priceDeviate) maxMultiplier = Precise.string_add('1', priceDeviate) minPrice = Precise.string_mul(minMultiplier, markPrice) maxPrice = Precise.string_mul(maxMultiplier, markPrice) takerPercent = self.safe_string(market, 'taker_fee_rate') makerPercent = self.safe_string(market, 'maker_fee_rate', takerPercent) isLinear = quote == settle return { 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'settle': settle, 'baseId': baseId, 'quoteId': quoteId, 'settleId': settleId, 'type': marketType, 'spot': False, 'margin': False, 'swap': marketType == 'swap', 'future': marketType == 'future', 'option': marketType == 'option', 'active': True, 'contract': True, 'linear': isLinear, 'inverse': not isLinear, 'taker': self.parse_number(Precise.string_div(takerPercent, '100')), # Fee is in %, so divide by 100 'maker': self.parse_number(Precise.string_div(makerPercent, '100')), 'contractSize': self.safe_number(market, 'quanto_multiplier'), 'expiry': expiry, 'expiryDatetime': self.iso8601(expiry), 'strike': None, 'optionType': None, 'precision': { 'amount': self.parse_number('1'), 'price': self.safe_number(market, 'order_price_round'), }, 'limits': { 'leverage': { 'min': self.safe_number(market, 'leverage_min'), 'max': self.safe_number(market, 'leverage_max'), }, 'amount': { 'min': self.safe_number(market, 'order_size_min'), 'max': self.safe_number(market, 'order_size_max'), }, 'price': { 'min': self.parse_number(minPrice), 'max': self.parse_number(maxPrice), }, 'cost': { 'min': None, 'max': None, }, }, 'info': market, } async def fetch_option_markets(self, params={}): result = [] underlyings = await self.fetch_option_underlyings() for i in range(0, len(underlyings)): underlying = underlyings[i] query = params query['underlying'] = underlying response = await self.publicOptionsGetContracts(query) # # [ # { # "orders_limit": "50", # "order_size_max": "100000", # "mark_price_round": "0.1", # "order_size_min": "1", # "position_limit": "1000000", # "orderbook_id": "575967", # "order_price_deviate": "0.9", # "is_call": True, # True means Call False means Put # "last_price": "93.9", # "bid1_size": "0", # "bid1_price": "0", # "taker_fee_rate": "0.0004", # "underlying": "BTC_USDT", # "create_time": "1646381188", # "price_limit_fee_rate": "0.1", # "maker_fee_rate": "0.0004", # "trade_id": "727", # "order_price_round": "0.1", # "settle_fee_rate": "0.0001", # "trade_size": "1982", # "ref_rebate_rate": "0", # "name": "BTC_USDT-20220311-44000-C", # "underlying_price": "39194.26", # "strike_price": "44000", # "multiplier": "0.0001", # "ask1_price": "0", # "ref_discount_rate": "0", # "expiration_time": "1646985600", # "mark_price": "12.15", # "position_size": "4", # "ask1_size": "0", # "tag": "WEEK" # } # ] # for i in range(0, len(response)): market = response[i] id = self.safe_string(market, 'name') parts = underlying.split('_') baseId = self.safe_string(parts, 0) quoteId = self.safe_string(parts, 1) base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote expiry = self.safe_timestamp(market, 'expiration_time') strike = self.safe_string(market, 'strike_price') isCall = self.safe_value(market, 'is_call') optionLetter = 'C' if isCall else 'P' optionType = 'call' if isCall else 'put' symbol = symbol + ':' + quote + '-' + self.yymmdd(expiry) + ':' + strike + ':' + optionLetter priceDeviate = self.safe_string(market, 'order_price_deviate') markPrice = self.safe_string(market, 'mark_price') minMultiplier = Precise.string_sub('1', priceDeviate) maxMultiplier = Precise.string_add('1', priceDeviate) minPrice = Precise.string_mul(minMultiplier, markPrice) maxPrice = Precise.string_mul(maxMultiplier, markPrice) takerPercent = self.safe_string(market, 'taker_fee_rate') makerPercent = self.safe_string(market, 'maker_fee_rate', takerPercent) result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'settle': quote, 'baseId': baseId, 'quoteId': quoteId, 'settleId': quoteId, 'type': 'option', 'spot': False, 'margin': False, 'swap': False, 'future': False, 'option': True, 'active': True, 'contract': True, 'linear': True, 'inverse': False, 'taker': self.parse_number(Precise.string_div(takerPercent, '100')), # Fee is in %, so divide by 100 'maker': self.parse_number(Precise.string_div(makerPercent, '100')), 'contractSize': self.parse_number('1'), 'expiry': expiry, 'expiryDatetime': self.iso8601(expiry), 'strike': strike, 'optionType': optionType, 'precision': { 'amount': self.parse_number('1'), 'price': self.safe_number(market, 'order_price_round'), }, 'limits': { 'leverage': { 'min': None, 'max': None, }, 'amount': { 'min': self.safe_number(market, 'order_size_min'), 'max': self.safe_number(market, 'order_size_max'), }, 'price': { 'min': self.parse_number(minPrice), 'max': self.parse_number(maxPrice), }, 'cost': { 'min': None, 'max': None, }, }, 'info': market, }) return result async def fetch_option_underlyings(self): underlyingsResponse = await self.publicOptionsGetUnderlyings() # # [ # { # "index_time": "1646915796", # "name": "BTC_USDT", # "index_price": "39142.73" # } # ] # underlyings = [] for i in range(0, len(underlyingsResponse)): underlying = underlyingsResponse[i] name = self.safe_string(underlying, 'name') if name is not None: underlyings.append(name) return underlyings def prepare_request(self, market=None, type=None, params={}): """ * @ignore Fills request params contract, settle, currency_pair, market and account where applicable :param dict market: CCXT market, required when type is None :param str type: 'spot', 'swap', or 'future', required when market is None :param dict params: request parameters :returns: the api request object, and the new params object with non-needed parameters removed """ # * Do not call for multi spot order methods like cancelAllOrders and fetchOpenOrders. Use multiOrderSpotPrepareRequest instead request = {} if market is not None: if market['contract']: request['contract'] = market['id'] request['settle'] = market['settleId'] else: request['currency_pair'] = market['id'] else: swap = type == 'swap' future = type == 'future' if swap or future: defaultSettle = 'usdt' if swap else 'btc' settle = self.safe_string_lower(params, 'settle', defaultSettle) params = self.omit(params, 'settle') request['settle'] = settle return [request, params] def spot_order_prepare_request(self, market=None, stop=False, params={}): """ * @ignore Fills request params currency_pair, market and account where applicable for spot order methods like fetchOpenOrders, cancelAllOrders :param dict market: CCXT market :param bool stop: True if for a stop order :param dict params: request parameters :returns: the api request object, and the new params object with non-needed parameters removed """ marginMode, query = self.get_margin_mode(stop, params) request = {} if not stop: if market is None: raise ArgumentsRequired(self.id + ' spotOrderPrepareRequest() requires a market argument for non-stop orders') request['account'] = marginMode request['currency_pair'] = market['id'] # Should always be set for non-stop return [request, query] def multi_order_spot_prepare_request(self, market=None, stop=False, params={}): """ * @ignore Fills request params currency_pair, market and account where applicable for spot order methods like fetchOpenOrders, cancelAllOrders :param dict market: CCXT market :param bool stop: True if for a stop order :param dict params: request parameters :returns: the api request object, and the new params object with non-needed parameters removed """ marginMode, query = self.get_margin_mode(stop, params) request = { 'account': marginMode, } if market is not None: if stop: # gateio spot and margin stop orders use the term market instead of currency_pair, and normal instead of spot. Neither parameter is used when fetching/cancelling a single order. They are used for creating a single stop order, but createOrder does not call self method request['market'] = market['id'] else: request['currency_pair'] = market['id'] return [request, query] def get_margin_mode(self, stop, params): """ * @ignore Gets the margin type for self api call :param bool stop: True if for a stop order :param dict params: Request params :returns: The marginMode and the updated request params with marginMode removed, marginMode value is the value that can be read by the "account" property specified in gateios api docs """ defaultMarginMode = self.safe_string_lower_2(self.options, 'defaultMarginMode', 'marginMode', 'spot') # 'margin' is isolated margin on gateio's api marginMode = self.safe_string_lower_2(params, 'marginMode', 'account', defaultMarginMode) params = self.omit(params, ['marginMode', 'account']) if marginMode == 'cross': marginMode = 'cross_margin' elif marginMode == 'isolated': marginMode = 'margin' elif marginMode == '': marginMode = 'spot' if stop: if marginMode == 'spot': # gateio spot stop orders use the term normal instead of spot marginMode = 'normal' if marginMode == 'cross_margin': raise BadRequest(self.id + ' getMarginMode() does not support stop orders for cross margin') return [marginMode, params] def get_settlement_currencies(self, type, method): options = self.safe_value(self.options, type, {}) # ['BTC', 'USDT'] unified codes fetchMarketsContractOptions = self.safe_value(options, method, {}) defaultSettle = ['usdt'] if (type == 'swap') else ['btc'] return self.safe_value(fetchMarketsContractOptions, 'settlementCurrencies', defaultSettle) async def fetch_currencies(self, params={}): # sandbox/testnet only supports future markets apiBackup = self.safe_value(self.urls, 'apiBackup') if apiBackup is not None: return None response = await self.publicSpotGetCurrencies(params) # # { # "currency": "BCN", # "delisted": False, # "withdraw_disabled": True, # "withdraw_delayed": False, # "deposit_disabled": True, # "trade_disabled": False # } # result = {} # TODO: remove magic constants amountPrecision = self.parse_number('1e-6') for i in range(0, len(response)): entry = response[i] currencyId = self.safe_string(entry, 'currency') currencyIdLower = self.safe_string_lower(entry, 'currency') code = self.safe_currency_code(currencyId) delisted = self.safe_value(entry, 'delisted') withdrawDisabled = self.safe_value(entry, 'withdraw_disabled', False) depositDisabled = self.safe_value(entry, 'deposit_disabled', False) tradeDisabled = self.safe_value(entry, 'trade_disabled', False) withdrawEnabled = not withdrawDisabled depositEnabled = not depositDisabled tradeEnabled = not tradeDisabled listed = not delisted active = listed and tradeEnabled and withdrawEnabled and depositEnabled result[code] = { 'id': currencyId, 'lowerCaseId': currencyIdLower, 'name': None, 'code': code, 'precision': amountPrecision, 'info': entry, 'active': active, 'deposit': depositEnabled, 'withdraw': withdrawEnabled, 'fee': None, 'fees': [], 'limits': self.limits, } return result async def fetch_funding_rate(self, symbol, params={}): await self.load_markets() market = self.market(symbol) if not market['swap']: raise BadSymbol(self.id + ' fetchFundingRate() supports swap contracts only') request, query = self.prepare_request(market, None, params) response = await self.publicFuturesGetSettleContractsContract(self.extend(request, query)) # # [ # { # "name": "BTC_USDT", # "type": "direct", # "quanto_multiplier": "0.0001", # "ref_discount_rate": "0", # "order_price_deviate": "0.5", # "maintenance_rate": "0.005", # "mark_type": "index", # "last_price": "38026", # "mark_price": "37985.6", # "index_price": "37954.92", # "funding_rate_indicative": "0.000219", # "mark_price_round": "0.01", # "funding_offset": 0, # "in_delisting": False, # "risk_limit_base": "1000000", # "interest_rate": "0.0003", # "order_price_round": "0.1", # "order_size_min": 1, # "ref_rebate_rate": "0.2", # "funding_interval": 28800, # "risk_limit_step": "1000000", # "leverage_min": "1", # "leverage_max": "100", # "risk_limit_max": "8000000", # "maker_fee_rate": "-0.00025", # "taker_fee_rate": "0.00075", # "funding_rate": "0.002053", # "order_size_max": 1000000, # "funding_next_apply": 1610035200, # "short_users": 977, # "config_change_time": 1609899548, # "trade_size": 28530850594, # "position_size": 5223816, # "long_users": 455, # "funding_impact_value": "60000", # "orders_limit": 50, # "trade_id": 10851092, # "orderbook_id": 2129638396 # } # ] # return self.parse_funding_rate(response) async def fetch_funding_rates(self, symbols=None, params={}): await self.load_markets() request, query = self.prepare_request(None, 'swap', params) response = await self.publicFuturesGetSettleContracts(self.extend(request, query)) # # [ # { # "name": "BTC_USDT", # "type": "direct", # "quanto_multiplier": "0.0001", # "ref_discount_rate": "0", # "order_price_deviate": "0.5", # "maintenance_rate": "0.005", # "mark_type": "index", # "last_price": "38026", # "mark_price": "37985.6", # "index_price": "37954.92", # "funding_rate_indicative": "0.000219", # "mark_price_round": "0.01", # "funding_offset": 0, # "in_delisting": False, # "risk_limit_base": "1000000", # "interest_rate": "0.0003", # "order_price_round": "0.1", # "order_size_min": 1, # "ref_rebate_rate": "0.2", # "funding_interval": 28800, # "risk_limit_step": "1000000", # "leverage_min": "1", # "leverage_max": "100", # "risk_limit_max": "8000000", # "maker_fee_rate": "-0.00025", # "taker_fee_rate": "0.00075", # "funding_rate": "0.002053", # "order_size_max": 1000000, # "funding_next_apply": 1610035200, # "short_users": 977, # "config_change_time": 1609899548, # "trade_size": 28530850594, # "position_size": 5223816, # "long_users": 455, # "funding_impact_value": "60000", # "orders_limit": 50, # "trade_id": 10851092, # "orderbook_id": 2129638396 # } # ] # result = self.parse_funding_rates(response) return self.filter_by_array(result, 'symbol', symbols) def parse_funding_rate(self, contract, market=None): # # { # "name": "BTC_USDT", # "type": "direct", # "quanto_multiplier": "0.0001", # "ref_discount_rate": "0", # "order_price_deviate": "0.5", # "maintenance_rate": "0.005", # "mark_type": "index", # "last_price": "38026", # "mark_price": "37985.6", # "index_price": "37954.92", # "funding_rate_indicative": "0.000219", # "mark_price_round": "0.01", # "funding_offset": 0, # "in_delisting": False, # "risk_limit_base": "1000000", # "interest_rate": "0.0003", # "order_price_round": "0.1", # "order_size_min": 1, # "ref_rebate_rate": "0.2", # "funding_interval": 28800, # "risk_limit_step": "1000000", # "leverage_min": "1", # "leverage_max": "100", # "risk_limit_max": "8000000", # "maker_fee_rate": "-0.00025", # "taker_fee_rate": "0.00075", # "funding_rate": "0.002053", # "order_size_max": 1000000, # "funding_next_apply": 1610035200, # "short_users": 977, # "config_change_time": 1609899548, # "trade_size": 28530850594, # "position_size": 5223816, # "long_users": 455, # "funding_impact_value": "60000", # "orders_limit": 50, # "trade_id": 10851092, # "orderbook_id": 2129638396 # } # marketId = self.safe_string(contract, 'name') symbol = self.safe_symbol(marketId, market) markPrice = self.safe_number(contract, 'mark_price') indexPrice = self.safe_number(contract, 'index_price') interestRate = self.safe_number(contract, 'interest_rate') fundingRate = self.safe_number(contract, 'funding_rate') fundingTime = self.safe_integer(contract, 'funding_next_apply') * 1000 fundingRateIndicative = self.safe_number(contract, 'funding_rate_indicative') return { 'info': contract, 'symbol': symbol, 'markPrice': markPrice, 'indexPrice': indexPrice, 'interestRate': interestRate, 'estimatedSettlePrice': None, 'timestamp': None, 'datetime': None, 'fundingRate': fundingRate, 'fundingTimestamp': fundingTime, 'fundingDatetime': self.iso8601(fundingTime), 'nextFundingRate': fundingRateIndicative, 'nextFundingTimestamp': None, 'nextFundingDatetime': None, 'previousFundingRate': None, 'previousFundingTimestamp': None, 'previousFundingDatetime': None, } async def fetch_network_deposit_address(self, code, params={}): await self.load_markets() currency = self.currency(code) request = { 'currency': currency['id'], } response = await self.privateWalletGetDepositAddress(self.extend(request, params)) addresses = self.safe_value(response, 'multichain_addresses') currencyId = self.safe_string(response, 'currency') code = self.safe_currency_code(currencyId) result = {} for i in range(0, len(addresses)): entry = addresses[i] # # { # "chain": "ETH", # "address": "0x359a697945E79C7e17b634675BD73B33324E9408", # "payment_id": "", # "payment_name": "", # "obtain_failed": "0" # } # obtainFailed = self.safe_integer(entry, 'obtain_failed') if obtainFailed: continue network = self.safe_string(entry, 'chain') address = self.safe_string(entry, 'address') tag = self.safe_string(entry, 'payment_id') tagLength = len(tag) tag = tag if tagLength else None result[network] = { 'info': entry, 'code': code, 'address': address, 'tag': tag, } return result async def fetch_deposit_address(self, code, params={}): await self.load_markets() currency = self.currency(code) request = { 'currency': currency['id'], } response = await self.privateWalletGetDepositAddress(self.extend(request, params)) # # { # "currency": "XRP", # "address": "rHcFoo6a9qT5NHiVn1THQRhsEGcxtYCV4d 391331007", # "multichain_addresses": [ # { # "chain": "XRP", # "address": "rHcFoo6a9qT5NHiVn1THQRhsEGcxtYCV4d", # "payment_id": "391331007", # "payment_name": "Tag", # "obtain_failed": 0 # } # ] # } # currencyId = self.safe_string(response, 'currency') code = self.safe_currency_code(currencyId) addressField = self.safe_string(response, 'address') tag = None address = None if addressField.find(' ') >= 0: splitted = addressField.split(' ') address = splitted[0] tag = splitted[1] else: address = addressField return { 'info': response, 'code': code, 'address': address, 'tag': tag, 'network': None, } async def fetch_trading_fee(self, symbol, params={}): await self.load_markets() market = self.market(symbol) request = { 'currency_pair': market['id'], } response = await self.privateWalletGetFee(self.extend(request, params)) # # { # "user_id": 1486602, # "taker_fee": "0.002", # "maker_fee": "0.002", # "gt_discount": True, # "gt_taker_fee": "0.0015", # "gt_maker_fee": "0.0015", # "loan_fee": "0.18", # "point_type": "0", # "futures_taker_fee": "0.0005", # "futures_maker_fee": "0" # } # return self.parse_trading_fee(response, market) async def fetch_trading_fees(self, params={}): await self.load_markets() response = await self.privateWalletGetFee(params) # # { # "user_id": 1486602, # "taker_fee": "0.002", # "maker_fee": "0.002", # "gt_discount": True, # "gt_taker_fee": "0.0015", # "gt_maker_fee": "0.0015", # "loan_fee": "0.18", # "point_type": "0", # "futures_taker_fee": "0.0005", # "futures_maker_fee": "0" # } # return self.parse_trading_fees(response) def parse_trading_fees(self, response): result = {} for i in range(0, len(self.symbols)): symbol = self.symbols[i] market = self.market(symbol) result[symbol] = self.parse_trading_fee(response, market) return result def parse_trading_fee(self, info, market=None): # # { # "user_id": 1486602, # "taker_fee": "0.002", # "maker_fee": "0.002", # "gt_discount": True, # "gt_taker_fee": "0.0015", # "gt_maker_fee": "0.0015", # "loan_fee": "0.18", # "point_type": "0", # "futures_taker_fee": "0.0005", # "futures_maker_fee": "0" # } # contract = self.safe_value(market, 'contract') takerKey = 'futures_taker_fee' if contract else 'taker_fee' makerKey = 'futures_maker_fee' if contract else 'maker_fee' return { 'info': info, 'symbol': self.safe_string(market, 'symbol'), 'maker': self.safe_number(info, makerKey), 'taker': self.safe_number(info, takerKey), } async def fetch_transaction_fees(self, codes=None, params={}): await self.load_markets() response = await self.privateWalletGetWithdrawStatus(params) # # { # "currency": "MTN", # "name": "Medicalchain", # "name_cn": "Medicalchain", # "deposit": "0", # "withdraw_percent": "0%", # "withdraw_fix": "900", # "withdraw_day_limit": "500000", # "withdraw_day_limit_remain": "500000", # "withdraw_amount_mini": "900.1", # "withdraw_eachtime_limit": "90000000000", # "withdraw_fix_on_chains": { # "ETH": "900" # } # } # withdrawFees = {} for i in range(0, len(response)): entry = response[i] currencyId = self.safe_string(entry, 'currency') code = self.safe_currency_code(currencyId) withdrawFees[code] = {} withdrawFix = self.safe_value(entry, 'withdraw_fix_on_chains') if withdrawFix is None: withdrawFix = {} withdrawFix[code] = self.safe_number(entry, 'withdraw_fix') keys = list(withdrawFix.keys()) for i in range(0, len(keys)): key = keys[i] withdrawFees[code][key] = self.parse_number(withdrawFix[key]) return { 'info': response, 'withdraw': withdrawFees, 'deposit': {}, } async def fetch_funding_history(self, symbol=None, since=None, limit=None, params={}): await self.load_markets() # defaultType = 'future' market = None if symbol is not None: market = self.market(symbol) type, query = self.handle_market_type_and_params('fetchFundingHistory', market, params) request, requestParams = self.prepare_request(market, type, query) request['type'] = 'fund' # 'dnw' 'pnl' 'fee' 'refr' 'fund' 'point_dnw' 'point_fee' 'point_refr' if since is not None: request['from'] = since / 1000 if limit is not None: request['limit'] = limit method = self.get_supported_mapping(type, { 'swap': 'privateFuturesGetSettleAccountBook', 'future': 'privateDeliveryGetSettleAccountBook', }) response = await getattr(self, method)(self.extend(request, requestParams)) # # [ # { # "time": 1646899200, # "change": "-0.027722", # "balance": "11.653120591841", # "text": "XRP_USDT", # "type": "fund" # }, # ... # ] # return self.parse_funding_histories(response, symbol, since, limit) def parse_funding_histories(self, response, symbol, since, limit): result = [] for i in range(0, len(response)): entry = response[i] funding = self.parse_funding_history(entry) result.append(funding) sorted = self.sort_by(result, 'timestamp') return self.filter_by_symbol_since_limit(sorted, symbol, since, limit) def parse_funding_history(self, info, market=None): # # { # "time": 1646899200, # "change": "-0.027722", # "balance": "11.653120591841", # "text": "XRP_USDT", # "type": "fund" # } # timestamp = self.safe_timestamp(info, 'time') marketId = self.safe_string(info, 'text') market = self.safe_market(marketId, market) return { 'info': info, 'symbol': self.safe_string(market, 'symbol'), 'code': self.safe_string(market, 'settle'), 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'id': None, 'amount': self.safe_number(info, 'change'), } async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() market = self.market(symbol) # # request = { # 'currency_pair': market['id'], # 'interval': '0', # depth, 0 means no aggregation is applied, default to 0 # 'limit': limit, # maximum number of order depth data in asks or bids # 'with_id': True, # return order book ID # } # request, query = self.prepare_request(market, None, params) method = self.get_supported_mapping(market['type'], { 'spot': 'publicSpotGetOrderBook', 'margin': 'publicSpotGetOrderBook', 'swap': 'publicFuturesGetSettleOrderBook', 'future': 'publicDeliveryGetSettleOrderBook', }) if limit is not None: request['limit'] = limit # default 10, max 100 request['with_id'] = True response = await getattr(self, method)(self.extend(request, query)) # # SPOT # # { # "id": 6358770031 # "current": 1634345973275, # "update": 1634345973271, # "asks": [ # ["2.2241","12449.827"], # ["2.2242","200"], # ["2.2244","826.931"], # ["2.2248","3876.107"], # ["2.225","2377.252"], # ["2.22509","439.484"], # ["2.2251","1489.313"], # ["2.2253","714.582"], # ["2.2254","1349.784"], # ["2.2256","234.701"]], # "bids": [ # ["2.2236","32.465"], # ["2.2232","243.983"], # ["2.2231","32.207"], # ["2.223","449.827"], # ["2.2228","7.918"], # ["2.2227","12703.482"], # ["2.2226","143.033"], # ["2.2225","143.027"], # ["2.2224","1369.352"], # ["2.2223","756.063"] # ] # } # # Perpetual Swap # # { # "id": 6358770031 # "current": 1634350208.745, # "asks": [ # {"s": 24909, "p": "61264.8"}, # {"s": 81, "p": "61266.6"}, # {"s": 2000, "p": "61267.6"}, # {"s": 490, "p": "61270.2"}, # {"s": 12, "p": "61270.4"}, # {"s": 11782, "p": "61273.2"}, # {"s": 14666, "p": "61273.3"}, # {"s": 22541, "p": "61273.4"}, # {"s": 33, "p": "61273.6"}, # {"s": 11980, "p": "61274.5"} # ], # "bids": [ # {"s": 41844, "p": "61264.7"}, # {"s": 13783, "p": "61263.3"}, # {"s": 1143, "p": "61259.8"}, # {"s": 81, "p": "61258.7"}, # {"s": 2471, "p": "61257.8"}, # {"s": 2471, "p": "61257.7"}, # {"s": 2471, "p": "61256.5"}, # {"s": 3, "p": "61254.2"}, # {"s": 114, "p": "61252.4"}, # {"s": 14372, "p": "61248.6"} # ], # "update": 1634350208.724 # } # timestamp = self.safe_integer(response, 'current') if not market['spot']: timestamp = timestamp * 1000 priceKey = 0 if market['spot'] else 'p' amountKey = 1 if market['spot'] else 's' nonce = self.safe_integer(response, 'id') result = self.parse_order_book(response, symbol, timestamp, 'bids', 'asks', priceKey, amountKey) result['nonce'] = nonce return result async def fetch_ticker(self, symbol, params={}): await self.load_markets() market = self.market(symbol) request, query = self.prepare_request(market, None, params) method = self.get_supported_mapping(market['type'], { 'spot': 'publicSpotGetTickers', 'margin': 'publicSpotGetTickers', 'swap': 'publicFuturesGetSettleTickers', 'future': 'publicDeliveryGetSettleTickers', }) response = await getattr(self, method)(self.extend(request, query)) ticker = self.safe_value(response, 0) return self.parse_ticker(ticker, market) def parse_ticker(self, ticker, market=None): # # SPOT # # { # "currency_pair": "KFC_USDT", # "last": "7.255", # "lowest_ask": "7.298", # "highest_bid": "7.218", # "change_percentage": "-1.18", # "base_volume": "1219.053687865", # "quote_volume": "8807.40299875455", # "high_24h": "7.262", # "low_24h": "7.095" # } # # LINEAR/DELIVERY # # { # "contract": "BTC_USDT", # "last": "6432", # "low_24h": "6278", # "high_24h": "6790", # "change_percentage": "4.43", # "total_size": "32323904", # "volume_24h": "184040233284", # "volume_24h_btc": "28613220", # "volume_24h_usd": "184040233284", # "volume_24h_base": "28613220", # "volume_24h_quote": "184040233284", # "volume_24h_settle": "28613220", # "mark_price": "6534", # "funding_rate": "0.0001", # "funding_rate_indicative": "0.0001", # "index_price": "6531" # } # marketId = self.safe_string_2(ticker, 'currency_pair', 'contract') symbol = self.safe_symbol(marketId, market) last = self.safe_string(ticker, 'last') ask = self.safe_string(ticker, 'lowest_ask') bid = self.safe_string(ticker, 'highest_bid') high = self.safe_string(ticker, 'high_24h') low = self.safe_string(ticker, 'low_24h') baseVolume = self.safe_string_2(ticker, 'base_volume', 'volume_24h_base') quoteVolume = self.safe_string_2(ticker, 'quote_volume', 'volume_24h_quote') percentage = self.safe_string(ticker, 'change_percentage') return self.safe_ticker({ 'symbol': symbol, 'timestamp': None, 'datetime': None, 'high': high, 'low': low, 'bid': bid, 'bidVolume': None, 'ask': ask, 'askVolume': None, 'vwap': None, 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': percentage, 'average': None, 'baseVolume': baseVolume, 'quoteVolume': quoteVolume, 'info': ticker, }, market, False) async def fetch_tickers(self, symbols=None, params={}): await self.load_markets() type, query = self.handle_market_type_and_params('fetchTickers', None, params) request, requestParams = self.prepare_request(None, type, query) method = self.get_supported_mapping(type, { 'spot': 'publicSpotGetTickers', 'margin': 'publicSpotGetTickers', 'swap': 'publicFuturesGetSettleTickers', 'future': 'publicDeliveryGetSettleTickers', }) response = await getattr(self, method)(self.extend(request, requestParams)) return self.parse_tickers(response, symbols) def fetch_balance_helper(self, entry): account = self.account() account['used'] = self.safe_string_2(entry, 'freeze', 'locked') account['free'] = self.safe_string(entry, 'available') account['total'] = self.safe_string(entry, 'total') return account async def fetch_balance(self, params={}): """ :param dict params: exchange specific parameters :param str params['type']: spot, margin, swap or future, if not provided self.options['defaultType'] is used :param str params['settle']: 'btc' or 'usdt' - settle currency for perpetual swap and future - default="usdt" for swap and "btc" for future :param str params['marginMode']: 'cross' or 'isolated' - marginMode for margin trading if not provided self.options['defaultMarginMode'] is used :param str params['symbol']: margin only - unified ccxt symbol """ await self.load_markets() symbol = self.safe_string(params, 'symbol') params = self.omit(params, 'symbol') type, query = self.handle_market_type_and_params('fetchBalance', None, params) request, requestParams = self.prepare_request(None, type, query) marginMode, requestQuery = self.get_margin_mode(False, requestParams) if symbol is not None: market = self.market(symbol) request['currency_pair'] = market['id'] method = self.get_supported_mapping(type, { 'spot': self.get_supported_mapping(marginMode, { 'spot': 'privateSpotGetAccounts', 'margin': 'privateMarginGetAccounts', 'cross_margin': 'privateMarginGetCrossAccounts', }), 'funding': 'privateMarginGetFundingAccounts', 'swap': 'privateFuturesGetSettleAccounts', 'future': 'privateDeliveryGetSettleAccounts', }) response = await getattr(self, method)(self.extend(request, requestQuery)) contract = (type == 'swap' or type == 'future') if contract: response = [response] # # Spot / margin funding # # [ # { # "currency": "DBC", # "available": "0", # "locked": "0" # "lent": "0", # margin funding only # "total_lent": "0" # margin funding only # }, # ... # ] # # Margin # # [ # { # "currency_pair": "DOGE_USDT", # "locked": False, # "risk": "9999.99", # "base": { # "currency": "DOGE", # "available": "0", # "locked": "0", # "borrowed": "0", # "interest": "0" # }, # "quote": { # "currency": "USDT", # "available": "0.73402", # "locked": "0", # "borrowed": "0", # "interest": "0" # } # }, # ... # ] # # Cross margin # # { # "user_id": 10406147, # "locked": False, # "balances": { # "USDT": { # "available": "1", # "freeze": "0", # "borrowed": "0", # "interest": "0" # } # }, # "total": "1", # "borrowed": "0", # "interest": "0", # "risk": "9999.99" # } # # Perpetual Swap # # { # order_margin: "0", # point: "0", # bonus: "0", # history: { # dnw: "2.1321", # pnl: "11.5351", # refr: "0", # point_fee: "0", # fund: "-0.32340576684", # bonus_dnw: "0", # point_refr: "0", # bonus_offset: "0", # fee: "-0.20132775", # point_dnw: "0", # }, # unrealised_pnl: "13.315100000006", # total: "12.51345151332", # available: "0", # in_dual_mode: False, # currency: "USDT", # position_margin: "12.51345151332", # user: "6333333", # } # # Delivery Future # # { # order_margin: "0", # point: "0", # history: { # dnw: "1", # pnl: "0", # refr: "0", # point_fee: "0", # point_dnw: "0", # settle: "0", # settle_fee: "0", # point_refr: "0", # fee: "0", # }, # unrealised_pnl: "0", # total: "1", # available: "1", # currency: "USDT", # position_margin: "0", # user: "6333333", # } # result = { 'info': response, } crossMargin = marginMode == 'cross_margin' margin = marginMode == 'margin' data = response if 'balances' in data: # True for cross_margin flatBalances = [] balances = self.safe_value(data, 'balances', []) # inject currency and create an artificial balance object # so it can follow the existent flow keys = list(balances.keys()) for i in range(0, len(keys)): currencyId = keys[i] content = balances[currencyId] content['currency'] = currencyId flatBalances.append(content) data = flatBalances for i in range(0, len(data)): entry = data[i] if margin and not crossMargin: marketId = self.safe_string(entry, 'currency_pair') symbol = self.safe_symbol(marketId, None, '_') base = self.safe_value(entry, 'base', {}) quote = self.safe_value(entry, 'quote', {}) baseCode = self.safe_currency_code(self.safe_string(base, 'currency', {})) quoteCode = self.safe_currency_code(self.safe_string(quote, 'currency', {})) subResult = {} subResult[baseCode] = self.fetch_balance_helper(base) subResult[quoteCode] = self.fetch_balance_helper(quote) result[symbol] = self.safe_balance(subResult) else: code = self.safe_currency_code(self.safe_string(entry, 'currency', {})) result[code] = self.fetch_balance_helper(entry) return result if (margin and not crossMargin) else self.safe_balance(result) async def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) price = self.safe_string(params, 'price') request = {} request, params = self.prepare_request(market, None, params) request['interval'] = self.timeframes[timeframe] method = 'publicSpotGetCandlesticks' if market['contract']: maxLimit = 1999 limit = maxLimit if (limit is None) else min(limit, maxLimit) if market['future']: method = 'publicDeliveryGetSettleCandlesticks' elif market['swap']: method = 'publicFuturesGetSettleCandlesticks' isMark = (price == 'mark') isIndex = (price == 'index') if isMark or isIndex: request['contract'] = price + '_' + market['id'] params = self.omit(params, 'price') else: maxLimit = 1000 limit = maxLimit if (limit is None) else min(limit, maxLimit) request['limit'] = limit if since is not None: duration = self.parse_timeframe(timeframe) request['from'] = int(since / 1000) toTimestamp = self.sum(request['from'], limit * duration - 1) currentTimestamp = self.seconds() request['to'] = min(toTimestamp, currentTimestamp) response = await getattr(self, method)(self.extend(request, params)) return self.parse_ohlcvs(response, market, timeframe, since, limit) async def fetch_mark_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): request = { 'price': 'mark', } return await self.fetch_ohlcv(symbol, timeframe, since, limit, self.extend(request, params)) async def fetch_funding_rate_history(self, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchFundingRateHistory() requires a symbol argument') await self.load_markets() market = self.market(symbol) if not market['swap']: raise BadSymbol(self.id + ' fetchFundingRateHistory() supports swap contracts only') request, query = self.prepare_request(market, None, params) if limit is not None: request['limit'] = limit method = 'publicFuturesGetSettleFundingRate' response = await getattr(self, method)(self.extend(request, query)) # # { # "r": "0.00063521", # "t": "1621267200000", # } # rates = [] for i in range(0, len(response)): entry = response[i] timestamp = self.safe_timestamp(entry, 't') rates.append({ 'info': entry, 'symbol': symbol, 'fundingRate': self.safe_number(entry, 'r'), 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), }) sorted = self.sort_by(rates, 'timestamp') return self.filter_by_symbol_since_limit(sorted, market['symbol'], since, limit) async def fetch_index_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): request = { 'price': 'index', } return await self.fetch_ohlcv(symbol, timeframe, since, limit, self.extend(request, params)) def parse_ohlcv(self, ohlcv, market=None): # # Spot market candles # # [ # "1626163200", # Unix timestamp in seconds # "346711.933138181617", # Trading volume # "33165.23", # Close price # "33260", # Highest price # "33117.6", # Lowest price # "33184.47" # Open price # ] # # Mark and Index price candles # # { # "t":1632873600, # Unix timestamp in seconds # "o": "41025", # Open price # "h": "41882.17", # Highest price # "c": "41776.92", # Close price # "l": "40783.94" # Lowest price # } # if isinstance(ohlcv, list): return [ self.safe_timestamp(ohlcv, 0), # unix timestamp in seconds self.safe_number(ohlcv, 5), # open price self.safe_number(ohlcv, 3), # highest price self.safe_number(ohlcv, 4), # lowest price self.safe_number(ohlcv, 2), # close price self.safe_number(ohlcv, 1), # trading volume ] else: # Mark and Index price candles return [ self.safe_timestamp(ohlcv, 't'), # unix timestamp in seconds self.safe_number(ohlcv, 'o'), # open price self.safe_number(ohlcv, 'h'), # highest price self.safe_number(ohlcv, 'l'), # lowest price self.safe_number(ohlcv, 'c'), # close price self.safe_number(ohlcv, 'v'), # trading volume, None for mark or index price ] async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) # # spot # # request = { # 'currency_pair': market['id'], # 'limit': limit, # maximum number of records to be returned in a single list # 'last_id': 'id', # specify list staring point using the id of last record in previous list-query results # 'reverse': False, # True to retrieve records where id is smaller than the specified last_id, False to retrieve records where id is larger than the specified last_id # } # # swap, future # # request = { # 'settle': market['settleId'], # 'contract': market['id'], # 'limit': limit, # maximum number of records to be returned in a single list # 'last_id': 'id', # specify list staring point using the id of last record in previous list-query results # 'from': since / 1000), # starting time in seconds, if not specified, to and limit will be used to limit response items # 'to': self.seconds(), # end time in seconds, default to current time # } # request, query = self.prepare_request(market, None, params) method = self.get_supported_mapping(market['type'], { 'spot': 'publicSpotGetTrades', 'margin': 'publicSpotGetTrades', 'swap': 'publicFuturesGetSettleTrades', 'future': 'publicDeliveryGetSettleTrades', }) if limit is not None: request['limit'] = limit # default 100, max 1000 if since is not None and (market['contract']): request['from'] = int(since / 1000) response = await getattr(self, method)(self.extend(request, query)) # # spot # # [ # { # id: "1852958144", # create_time: "1634673259", # create_time_ms: "1634673259378.105000", # currency_pair: "ADA_USDT", # side: "sell", # amount: "307.078", # price: "2.104", # } # ] # # perpetual swap # # [ # { # size: "2", # id: "2522911", # create_time_ms: "1634673380.182", # create_time: "1634673380.182", # contract: "ADA_USDT", # price: "2.10486", # } # ] # return self.parse_trades(response, market, since, limit) async def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): """ Fetch personal trading history :param str symbol: The symbol for the market to fetch trades for :param int since: The earliest timestamp, in ms, that fetched trades were made :param int limit: The max number of trades to fetch :param dict params: Exchange specific parameters :param str params['marginMode']: 'cross' or 'isolated' - marginMode for margin trading if not provided self.options['defaultMarginMode'] is used :param str params['type']: 'spot', 'swap', or 'future', if not provided self.options['defaultMarginMode'] is used :param int params['till']: The latest timestamp, in ms, that fetched trades were made :param int params['page']: *spot only* Page number :param str params['order_id']: *spot only* Filter trades with specified order ID. symbol is also required if self field is present :param str params['order']: *contract only* Futures order ID, return related data only if specified :param int params['offset']: *contract only* list offset, starting from 0 :param str params['last_id']: *contract only* specify list staring point using the id of last record in previous list-query results :param int params['count_total']: *contract only* whether to return total number matched, default to 0(no return) :returns: a list of `order structures <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ await self.load_markets() type = None marginMode = None request = {} market = self.market(symbol) if (symbol is not None) else None till = self.safe_number(params, 'till') params = self.omit(params, 'till') type, params = self.handle_market_type_and_params('fetchMyTrades', market, params) contract = (type == 'swap') or (type == 'future') if contract: request, params = self.prepare_request(market, type, params) else: if market is not None: request['currency_pair'] = market['id'] # Should always be set for non-stop marginMode, params = self.get_margin_mode(False, params) request['account'] = marginMode if limit is not None: request['limit'] = limit # default 100, max 1000 if since is not None: request['from'] = int(since / 1000) if till is not None: request['to'] = int(till / 1000) method = self.get_supported_mapping(type, { 'spot': 'privateSpotGetMyTrades', 'margin': 'privateSpotGetMyTrades', 'swap': 'privateFuturesGetSettleMyTrades', 'future': 'privateDeliveryGetSettleMyTrades', }) response = await getattr(self, method)(self.extend(request, params)) # # spot # # [ # { # "id": "2876130500", # "create_time": "1645464610", # "create_time_ms": "1645464610777.399200", # "currency_pair": "DOGE_USDT", # "side": "sell", # "role": "taker", # "amount": "10.97", # "price": "0.137384", # "order_id": "125924049993", # "fee": "0.00301420496", # "fee_currency": "USDT", # "point_fee": "0", # "gt_fee": "0" # } # ] # # perpetual swap # # [ # { # "size": -5, # "order_id": "130264979823", # "id": 26884791, # "role": "taker", # "create_time": 1645465199.5472, # "contract": "DOGE_USDT", # "price": "0.136888" # } # ] # # future # # [ # { # "id": 121234231, # "create_time": 1514764800.123, # "contract": "BTC_USDT", # "order_id": "21893289839", # "size": 100, # "price": "100.123", # "role": "taker" # } # ] # return self.parse_trades(response, market, since, limit) def parse_trade(self, trade, market=None): # # public # # { # "id": "1334253759", # "create_time": "1626342738", # "create_time_ms": "1626342738331.497000", # "currency_pair": "BTC_USDT", # "side": "sell", # "amount": "0.0022", # "price": "32452.16" # } # # public ws # # { # id: 221994511, # time: 1580311438.618647, # price: '9309', # amount: '0.0019', # type: 'sell' # } # # spot rest # # { # "id": "2876130500", # "create_time": "1645464610", # "create_time_ms": "1645464610777.399200", # "currency_pair": "DOGE_USDT", # "side": "sell", # "role": "taker", # "amount": "10.97", # "price": "0.137384", # "order_id": "125924049993", # "fee": "0.00301420496", # "fee_currency": "USDT", # "point_fee": "0","gt_fee":"0" # } # # perpetual swap rest # # { # "size": -5, # "order_id": "130264979823", # "id": 26884791, # "role": "taker", # "create_time": 1645465199.5472, # "contract": "DOGE_USDT", # "price": "0.136888" # } # # future rest # # { # "id": 121234231, # "create_time": 1514764800.123, # "contract": "BTC_USDT", # "order_id": "21893289839", # "size": 100, # "price": "100.123", # "role": "taker" # } # id = self.safe_string(trade, 'id') timestamp = self.safe_timestamp_2(trade, 'time', 'create_time') timestamp = self.safe_integer(trade, 'create_time_ms', timestamp) marketId = self.safe_string_2(trade, 'currency_pair', 'contract') symbol = self.safe_symbol(marketId, market) amountString = self.safe_string_2(trade, 'amount', 'size') priceString = self.safe_string(trade, 'price') contractSide = 'sell' if Precise.string_lt(amountString, '0') else 'buy' amountString = Precise.string_abs(amountString) side = self.safe_string_2(trade, 'side', 'type', contractSide) orderId = self.safe_string(trade, 'order_id') gtFee = self.safe_string(trade, 'gt_fee') feeCurrency = None feeCostString = None if gtFee == '0': feeCurrency = self.safe_string(trade, 'fee_currency') feeCostString = self.safe_string(trade, 'fee') else: feeCurrency = 'GT' feeCostString = gtFee fee = { 'cost': feeCostString, 'currency': feeCurrency, } takerOrMaker = self.safe_string(trade, 'role') return self.safe_trade({ 'info': trade, 'id': id, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'order': orderId, 'type': None, 'side': side, 'takerOrMaker': takerOrMaker, 'price': priceString, 'amount': amountString, 'cost': None, 'fee': fee, }, market) async def fetch_deposits(self, code=None, since=None, limit=None, params={}): await self.load_markets() request = {} currency = None if code is not None: currency = self.currency(code) request['currency'] = currency['id'] if limit is not None: request['limit'] = limit if since is not None: start = int(since / 1000) request['from'] = start request['to'] = self.sum(start, 30 * 24 * 60 * 60) response = await self.privateWalletGetDeposits(self.extend(request, params)) return self.parse_transactions(response, currency) async def fetch_withdrawals(self, code=None, since=None, limit=None, params={}): await self.load_markets() request = {} currency = None if code is not None: currency = self.currency(code) request['currency'] = currency['id'] if limit is not None: request['limit'] = limit if since is not None: start = int(since / 1000) request['from'] = start request['to'] = self.sum(start, 30 * 24 * 60 * 60) response = await self.privateWalletGetWithdrawals(self.extend(request, params)) return self.parse_transactions(response, currency) async def withdraw(self, code, amount, address, tag=None, params={}): tag, params = self.handle_withdraw_tag_and_params(tag, params) self.check_address(address) await self.load_markets() currency = self.currency(code) request = { 'currency': currency['id'], 'address': address, 'amount': self.currency_to_precision(code, amount), } if tag is not None: request['memo'] = tag networks = self.safe_value(self.options, 'networks', {}) network = self.safe_string_upper(params, 'network') # self line allows the user to specify either ERC20 or ETH network = self.safe_string_lower(networks, network, network) # handle ETH>ERC20 alias if network is not None: request['chain'] = network params = self.omit(params, 'network') response = await self.privateWithdrawalsPost(self.extend(request, params)) # # { # "id": "w13389675", # "currency": "USDT", # "amount": "50", # "address": "TUu2rLFrmzUodiWfYki7QCNtv1akL682p1", # "memo": null # } # return self.parse_transaction(response, currency) def parse_transaction_status(self, status): statuses = { 'PEND': 'pending', 'REQUEST': 'pending', 'DMOVE': 'pending', 'CANCEL': 'failed', 'DONE': 'ok', 'BCODE': 'ok', # GateCode withdrawal } return self.safe_string(statuses, status, status) def parse_transaction_type(self, type): types = { 'd': 'deposit', 'w': 'withdrawal', } return self.safe_string(types, type, type) def parse_transaction(self, transaction, currency=None): # # deposits # # { # "id": "d33361395", # "currency": "USDT_TRX", # "address": "TErdnxenuLtXfnMafLbfappYdHtnXQ5U4z", # "amount": "100", # "txid": "ae9374de34e558562fe18cbb1bf9ab4d9eb8aa7669d65541c9fa2a532c1474a0", # "timestamp": "1626345819", # "status": "DONE", # "memo": "" # } # # withdraw # # { # "id": "w13389675", # "currency": "USDT", # "amount": "50", # "address": "TUu2rLFrmzUodiWfYki7QCNtv1akL682p1", # "memo": null # } # id = self.safe_string(transaction, 'id') type = None amount = self.safe_string(transaction, 'amount') if id[0] == 'b': # GateCode handling type = 'deposit' if Precise.string_gt(amount, '0') else 'withdrawal' amount = Precise.string_abs(amount) elif id is not None: type = self.parse_transaction_type(id[0]) currencyId = self.safe_string(transaction, 'currency') code = self.safe_currency_code(currencyId) txid = self.safe_string(transaction, 'txid') rawStatus = self.safe_string(transaction, 'status') status = self.parse_transaction_status(rawStatus) address = self.safe_string(transaction, 'address') fee = self.safe_number(transaction, 'fee') tag = self.safe_string(transaction, 'memo') if tag == '': tag = None timestamp = self.safe_timestamp(transaction, 'timestamp') return { 'info': transaction, 'id': id, 'txid': txid, 'currency': code, 'amount': self.parse_number(amount), 'network': None, 'address': address, 'addressTo': None, 'addressFrom': None, 'tag': tag, 'tagTo': None, 'tagFrom': None, 'status': status, 'type': type, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'updated': None, 'fee': fee, } async def create_order(self, symbol, type, side, amount, price=None, params={}): """ Create an order on the exchange :param str symbol: Unified CCXT market symbol :param str type: "limit" or "market" *"market" is contract only* :param str side: "buy" or "sell" :param float amount: the amount of currency to trade :param float price: *ignored in "market" orders* the price at which the order is to be fullfilled at in units of the quote currency :param dict params: Extra parameters specific to the exchange API endpoint :param float params['stopPrice']: The price at which a trigger order is triggered at :param str params['timeInForce']: "GTC", "IOC", or "PO" :param str params['marginMode']: 'cross' or 'isolated' - marginMode for margin trading if not provided self.options['defaultMarginMode'] is used :param int params['iceberg']: Amount to display for the iceberg order, Null or 0 for normal orders, Set to -1 to hide the order completely :param str params['text']: User defined information :param str params['account']: *spot and margin only* "spot", "margin" or "cross_margin" :param bool params['auto_borrow']: *margin only* Used in margin or cross margin trading to allow automatic loan of insufficient amount if balance is not enough :param str params['settle']: *contract only* Unified Currency Code for settle currency :param bool params['reduceOnly']: *contract only* Indicates if self order is to reduce the size of a position :param bool params['close']: *contract only* Set as True to close the position, with size set to 0 :param bool params['auto_size']: *contract only* Set side to close dual-mode position, close_long closes the long side, while close_short the short one, size also needs to be set to 0 :returns: `An order structure <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ await self.load_markets() market = self.market(symbol) contract = market['contract'] stopPrice = self.safe_number(params, 'stopPrice') methodTail = 'Orders' reduceOnly = self.safe_value_2(params, 'reduce_only', 'reduceOnly') defaultTimeInForce = self.safe_value_2(params, 'tif', 'time_in_force', 'gtc') timeInForce = self.safe_value(params, 'timeInForce', defaultTimeInForce) postOnly = False type, postOnly, timeInForce, params = self.is_post_only(type, timeInForce, None, params) params = self.omit(params, ['stopPrice', 'reduce_only', 'reduceOnly', 'tif', 'time_in_force', 'timeInForce']) if postOnly: timeInForce = 'poc' isLimitOrder = (type == 'limit') isMarketOrder = (type == 'market') if isLimitOrder and price is None: raise ArgumentsRequired(self.id + ' createOrder() requires a price argument for ' + type + ' orders') if contract: amountToPrecision = self.amount_to_precision(symbol, amount) signedAmount = Precise.string_neg(amountToPrecision) if (side == 'sell') else amountToPrecision amount = int(signedAmount) if isMarketOrder: timeInForce = 'ioc' price = 0 elif not isLimitOrder: # Gateio doesn't have market orders for spot raise InvalidOrder(self.id + ' createOrder() does not support ' + type + ' orders for ' + market['type'] + ' markets') request = None trigger = self.safe_value(params, 'trigger') if stopPrice is None and trigger is None: if contract: # contract order request = { 'contract': market['id'], # filled in prepareRequest above 'size': amount, # int64, positive = bid, negative = ask # 'iceberg': 0, # int64, display size for iceberg order, 0 for non-iceberg, note that you will have to pay the taker fee for the hidden size 'price': self.price_to_precision(symbol, price), # 0 for market order with tif set as ioc # 'close': False, # True to close the position, with size set to 0 # 'reduce_only': False, # St as True to be reduce-only order # 'tif': 'gtc', # gtc, ioc, poc PendingOrCancelled == postOnly order # 'text': clientOrderId, # 't-abcdef1234567890', # 'auto_size': '', # close_long, close_short, note size also needs to be set to 0 'settle': market['settleId'], # filled in prepareRequest above } if reduceOnly is not None: request['reduce_only'] = reduceOnly if timeInForce is not None: request['tif'] = timeInForce else: marginMode = None marginMode, params = self.get_margin_mode(False, params) # spot order request = { # 'text': clientOrderId, # 't-abcdef1234567890', 'currency_pair': market['id'], # filled in prepareRequest above 'type': type, 'account': marginMode, # 'spot', 'margin', 'cross_margin' 'side': side, 'amount': self.amount_to_precision(symbol, amount), 'price': self.price_to_precision(symbol, price), # 'time_in_force': 'gtc', # gtc, ioc, poc PendingOrCancelled == postOnly order # 'iceberg': 0, # amount to display for the iceberg order, null or 0 for normal orders, set to -1 to hide the order completely # 'auto_borrow': False, # used in margin or cross margin trading to allow automatic loan of insufficient amount if balance is not enough # 'auto_repay': False, # automatic repayment for automatic borrow loan generated by cross margin order, diabled by default } if timeInForce is not None: request['time_in_force'] = timeInForce clientOrderId = self.safe_string_2(params, 'text', 'clientOrderId') if clientOrderId is not None: # user-defined, must follow the rules if not empty # prefixed with t- # no longer than 28 bytes without t- prefix # can only include 0-9, A-Z, a-z, underscores(_), hyphens(-) or dots(.) if len(clientOrderId) > 28: raise BadRequest(self.id + ' createOrder() clientOrderId or text param must be up to 28 characters') params = self.omit(params, ['text', 'clientOrderId']) if clientOrderId[0] != 't': clientOrderId = 't-' + clientOrderId request['text'] = clientOrderId else: if contract: # contract conditional order rule = 1 if (side == 'buy') else 2 request = { 'initial': { 'contract': market['id'], 'size': amount, # positive = buy, negative = sell, set to 0 to close the position 'price': self.price_to_precision(symbol, price), # set to 0 to use market price # 'close': False, # set to True if trying to close the position # 'tif': 'gtc', # gtc, ioc, if using market price, only ioc is supported # 'text': clientOrderId, # web, api, app # 'reduce_only': False, }, 'trigger': { # 'strategy_type': 0, # 0 = by price, 1 = by price gap, only 0 is supported currently # 'price_type': 0, # 0 latest deal price, 1 mark price, 2 index price 'price': self.price_to_precision(symbol, stopPrice), # price or gap 'rule': rule, # 1 means price_type >= price, 2 means price_type <= price # 'expiration': expiration, how many seconds to wait for the condition to be triggered before cancelling the order }, 'settle': market['settleId'], } expiration = self.safe_integer(params, 'expiration') if expiration is not None: request['trigger']['expiration'] = expiration params = self.omit(params, 'expiration') if reduceOnly is not None: request['initial']['reduce_only'] = reduceOnly if timeInForce is not None: request['initial']['tif'] = timeInForce else: # spot conditional order options = self.safe_value(self.options, 'createOrder', {}) marginMode = None marginMode, params = self.get_margin_mode(True, params) defaultExpiration = self.safe_integer(options, 'expiration') expiration = self.safe_integer(params, 'expiration', defaultExpiration) rule = '>=' if (side == 'buy') else '<=' triggerPrice = self.safe_value(trigger, 'price', stopPrice) request = { 'trigger': { 'price': self.price_to_precision(symbol, triggerPrice), 'rule': rule, # >= triggered when market price larger than or equal to price field, <= triggered when market price less than or equal to price field 'expiration': expiration, # required, how long(in seconds) to wait for the condition to be triggered before cancelling the order }, 'put': { 'type': type, 'side': side, 'price': self.price_to_precision(symbol, price), 'amount': self.amount_to_precision(symbol, amount), 'account': marginMode, 'time_in_force': timeInForce, # gtc, ioc for taker only }, 'market': market['id'], } methodTail = 'PriceOrders' method = self.get_supported_mapping(market['type'], { 'spot': 'privateSpotPost' + methodTail, 'margin': 'privateSpotPost' + methodTail, 'swap': 'privateFuturesPostSettle' + methodTail, 'future': 'privateDeliveryPostSettle' + methodTail, }) response = await getattr(self, method)(self.deep_extend(request, params)) # # spot # # { # "id": "95282841887", # "text": "apiv4", # "create_time": "1637383156", # "update_time": "1637383156", # "create_time_ms": 1637383156017, # "update_time_ms": 1637383156017, # "status": "open", # "currency_pair": "ETH_USDT", # "type": "limit", # "account": "spot", # "side": "buy", # "amount": "0.01", # "price": "3500", # "time_in_force": "gtc", # "iceberg": "0", # "left": "0.01", # "fill_price": "0", # "filled_total": "0", # "fee": "0", # "fee_currency": "ETH", # "point_fee": "0", # "gt_fee": "0", # "gt_discount": False, # "rebated_fee": "0", # "rebated_fee_currency": "USDT" # } # # spot conditional # # {"id": 5891843} # # future and perpetual swaps # # { # "id": 95938572327, # "contract": "ETH_USDT", # "mkfr": "0", # "tkfr": "0.0005", # "tif": "gtc", # "is_reduce_only": False, # "create_time": 1637384600.08, # "price": "3000", # "size": 1, # "refr": "0", # "left": 1, # "text": "api", # "fill_price": "0", # "user": 2436035, # "status": "open", # "is_liq": False, # "refu": 0, # "is_close": False, # "iceberg": 0 # } # # futures and perpetual swaps conditionals # # {"id": 7615567} # return self.parse_order(response, market) def parse_order_status(self, status): statuses = { '_new': 'open', 'filled': 'closed', 'cancelled': 'canceled', 'liquidated': 'closed', } return self.safe_string(statuses, status, status) def parse_order(self, order, market=None): # # SPOT # createOrder/cancelOrder/fetchOrder # # { # "id": "62364648575", # "text": "apiv4", # "create_time": "1626354834", # "update_time": "1626354834", # "create_time_ms": "1626354833544", # "update_time_ms": "1626354833544", # "status": "open", # "currency_pair": "BTC_USDT", # "type": "limit", # "account": "spot", # "side": "buy", # "amount": "0.0001", # "price": "30000", # "time_in_force": "gtc", # "iceberg": "0", # "left": "0.0001", # "fill_price": "0", # "filled_total": "0", # "fee": "0", # "fee_currency": "BTC", # "point_fee": "0", # "gt_fee": "0", # "gt_discount": True, # "rebated_fee": "0", # "rebated_fee_currency": "USDT" # } # # SPOT TRIGGER ORDERS # createOrder # # { # "id": 12604556 # } # # fetchOrder/cancelOrder # # { # "market": "ADA_USDT", # "user": 6392049, # "trigger": { # "price": "1.08", # stopPrice # "rule": "\u003e=", # "expiration": 86400 # }, # "put": { # "type": "limit", # "side": "buy", # "price": "1.08", # order price # "amount": "1.00000000000000000000", # "account": "normal", # "time_in_force": "gtc" # }, # "id": 71639298, # "ctime": 1643945985, # "status": "open" # } # # FUTURE AND SWAP # createOrder/cancelOrder/fetchOrder # # { # "id": 123028481731, # "contract": "ADA_USDT", # "mkfr": "-0.00005", # "tkfr": "0.00048", # "tif": "ioc", # "is_reduce_only": False, # "create_time": 1643950262.68, # "finish_time": 1643950262.68, # "price": "0", # "size": 1, # "refr": "0", # "left":0, # "text": "api", # "fill_price": "1.05273", # "user":6329238, # "finish_as": "filled", # "status": "finished", # "is_liq": False, # "refu":0, # "is_close": False, # "iceberg": 0 # } # # TRIGGER ORDERS(FUTURE AND SWAP) # createOrder # # { # "id": 12604556 # } # # fetchOrder/cancelOrder # # { # "user": 6320300, # "trigger": { # "strategy_type": 0, # "price_type": 0, # "price": "1.03", # stopPrice # "rule": 2, # "expiration": 0 # }, # "initial": { # "contract": "ADA_USDT", # "size": -1, # "price": "1.02", # "tif": "gtc", # "text": "", # "iceberg": 0, # "is_close": False, # "is_reduce_only": False, # "auto_size": "" # }, # "id": 126393906, # "trade_id": 0, # "status": "open", # "reason": "", # "create_time": 1643953482, # "finish_time": 1643953482, # "is_stop_order": False, # "stop_trigger": { # "rule": 0, # "trigger_price": "", # "order_price": "" # }, # "me_order_id": 0, # "order_type": "" # } # put = self.safe_value_2(order, 'put', 'initial') trigger = self.safe_value(order, 'trigger') contract = self.safe_string(put, 'contract') type = self.safe_string(put, 'type') timeInForce = self.safe_string_upper_2(put, 'time_in_force', 'tif') amount = self.safe_string_2(put, 'amount', 'size') side = self.safe_string(put, 'side') price = self.safe_string(put, 'price') contract = self.safe_string(order, 'contract', contract) type = self.safe_string(order, 'type', type) timeInForce = self.safe_string_upper_2(order, 'time_in_force', 'tif', timeInForce) if timeInForce == 'POC': timeInForce = 'PO' postOnly = (timeInForce == 'PO') amount = self.safe_string_2(order, 'amount', 'size', amount) side = self.safe_string(order, 'side', side) price = self.safe_string(order, 'price', price) remaining = self.safe_string(order, 'left') filled = Precise.string_sub(amount, remaining) cost = self.safe_string(order, 'filled_total') rawStatus = None average = None if put: remaining = amount filled = '0' cost = '0' if contract: isMarketOrder = Precise.string_equals(price, '0') and (timeInForce == 'IOC') type = 'market' if isMarketOrder else 'limit' side = 'buy' if Precise.string_gt(amount, '0') else 'sell' rawStatus = self.safe_string(order, 'finish_as', 'open') average = self.safe_number(order, 'fill_price') else: rawStatus = self.safe_string(order, 'status') timestamp = self.safe_integer(order, 'create_time_ms') if timestamp is None: timestamp = self.safe_timestamp_2(order, 'create_time', 'ctime') lastTradeTimestamp = self.safe_integer(order, 'update_time_ms') if lastTradeTimestamp is None: lastTradeTimestamp = self.safe_timestamp_2(order, 'update_time', 'finish_time') exchangeSymbol = self.safe_string_2(order, 'currency_pair', 'market', contract) # Everything below self(above return) is related to fees fees = [] gtFee = self.safe_string(order, 'gt_fee') if gtFee: fees.append({ 'currency': 'GT', 'cost': gtFee, }) fee = self.safe_string(order, 'fee') if fee: fees.append({ 'currency': self.safe_currency_code(self.safe_string(order, 'fee_currency')), 'cost': fee, }) rebate = self.safe_string(order, 'rebated_fee') if rebate: fees.append({ 'currency': self.safe_currency_code(self.safe_string(order, 'rebated_fee_currency')), 'cost': Precise.string_neg(rebate), }) numFeeCurrencies = len(fees) multipleFeeCurrencies = numFeeCurrencies > 1 status = self.parse_order_status(rawStatus) return self.safe_order({ 'id': self.safe_string(order, 'id'), 'clientOrderId': self.safe_string(order, 'text'), 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': lastTradeTimestamp, 'status': status, 'symbol': self.safe_symbol(exchangeSymbol), 'type': type, 'timeInForce': timeInForce, 'postOnly': postOnly, 'side': side, 'price': self.parse_number(price), 'stopPrice': self.safe_number(trigger, 'price'), 'average': average, 'amount': self.parse_number(Precise.string_abs(amount)), 'cost': Precise.string_abs(cost), 'filled': self.parse_number(Precise.string_abs(filled)), 'remaining': self.parse_number(Precise.string_abs(remaining)), 'fee': None if multipleFeeCurrencies else self.safe_value(fees, 0), 'fees': fees if multipleFeeCurrencies else [], 'trades': None, 'info': order, }, market) async def create_reduce_only_order(self, symbol, type, side, amount, price=None, params={}): request = { 'reduceOnly': True, } return await self.create_order(symbol, type, side, amount, price, self.extend(request, params)) async def fetch_order(self, id, symbol=None, params={}): """ Retrieves information on an order :param str id: Order id :param str symbol: Unified market symbol, *required for spot and margin* :param dict params: Parameters specified by the exchange api :param bool params['stop']: True if the order being fetched is a trigger order :param str params['marginMode']: 'cross' or 'isolated' - marginMode for margin trading if not provided self.options['defaultMarginMode'] is used :param str params['type']: 'spot', 'swap', or 'future', if not provided self.options['defaultMarginMode'] is used :param str params['settle']: 'btc' or 'usdt' - settle currency for perpetual swap and future - market settle currency is used if symbol is not None, default="usdt" for swap and "btc" for future :returns: An `order structure <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ await self.load_markets() stop = self.safe_value_2(params, 'is_stop_order', 'stop', False) params = self.omit(params, ['is_stop_order', 'stop']) clientOrderId = self.safe_string_2(params, 'text', 'clientOrderId') orderId = id if clientOrderId is not None: params = self.omit(params, ['text', 'clientOrderId']) if clientOrderId[0] != 't': clientOrderId = 't-' + clientOrderId orderId = clientOrderId market = None if (symbol is None) else self.market(symbol) type, query = self.handle_market_type_and_params('fetchOrder', market, params) contract = (type == 'swap') or (type == 'future') request, requestParams = self.prepare_request(market, type, query) if contract else self.spot_order_prepare_request(market, stop, query) request['order_id'] = orderId methodMiddle = 'PriceOrders' if stop else 'Orders' method = self.get_supported_mapping(type, { 'spot': 'privateSpotGet' + methodMiddle + 'OrderId', 'margin': 'privateSpotGet' + methodMiddle + 'OrderId', 'swap': 'privateFuturesGetSettle' + methodMiddle + 'OrderId', 'future': 'privateDeliveryGetSettle' + methodMiddle + 'OrderId', }) response = await getattr(self, method)(self.extend(request, requestParams)) return self.parse_order(response, market) async def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): """ fetches all open orders :param str symbol: Unified market symbol :param int since: earliest time in ms for orders in the response :param int limit: max number of order structures to return :param dict params: exchange specific params :param bool params['stop']: True for fetching stop orders :param str params['type']: spot, margin, swap or future, if not provided self.options['defaultType'] is used :param str params['marginMode']: 'cross' or 'isolated' - marginMode for type='margin', if not provided self.options['defaultMarginMode'] is used :returns: An array of order structures """ return await self.fetch_orders_by_status('open', symbol, since, limit, params) async def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): """ fetches all closed orders :param str symbol: Unified market symbol of the market to fetch orders for :param int since: earliest time in ms for orders in the response :param int limit: max number of order structures to return :param dict params: exchange specific params :param bool params['stop']: True for fetching stop orders :param str params['type']: spot, swap or future, if not provided self.options['defaultType'] is used :param str params['marginMode']: 'cross' or 'isolated' - marginMode for margin trading if not provided self.options['defaultMarginMode'] is used :returns: An array of `order structures <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ return await self.fetch_orders_by_status('finished', symbol, since, limit, params) async def fetch_orders_by_status(self, status, symbol=None, since=None, limit=None, params={}): await self.load_markets() market = None if (symbol is None) else self.market(symbol) stop = self.safe_value(params, 'stop') params = self.omit(params, 'stop') type, query = self.handle_market_type_and_params('fetchOrdersByStatus', market, params) spot = (type == 'spot') or (type == 'margin') request, requestParams = self.multi_order_spot_prepare_request(market, stop, query) if spot else self.prepare_request(market, type, query) if status == 'closed': status = 'finished' request['status'] = status if limit is not None: request['limit'] = limit if since is not None and spot: request['from'] = int(since / 1000) methodTail = 'PriceOrders' if stop else 'Orders' openSpotOrders = spot and (status == 'open') and not stop if openSpotOrders: methodTail = 'OpenOrders' method = self.get_supported_mapping(type, { 'spot': 'privateSpotGet' + methodTail, 'margin': 'privateSpotGet' + methodTail, 'swap': 'privateFuturesGetSettle' + methodTail, 'future': 'privateDeliveryGetSettle' + methodTail, }) response = await getattr(self, method)(self.extend(request, requestParams)) # # SPOT Open Orders # # [ # { # "currency_pair": "ADA_USDT", # "total": 2, # "orders": [ # { # "id": "155498539874", # "text": "apiv4", # "create_time": "1652406843", # "update_time": "1652406843", # "create_time_ms": 1652406843295, # "update_time_ms": 1652406843295, # "status": "open", # "currency_pair": "ADA_USDT", # "type": "limit", # "account": "spot", # "side": "buy", # "amount": "3", # "price": "0.35", # "time_in_force": "gtc", # "iceberg": "0", # "left": "3", # "fill_price": "0", # "filled_total": "0", # "fee": "0", # "fee_currency": "ADA", # "point_fee": "0", # "gt_fee": "0", # "gt_discount": False, # "rebated_fee": "0", # "rebated_fee_currency": "USDT" # }, # ... # ] # }, # ... # ] # # SPOT # # [ # { # "id": "8834234273", # "text": "3", # "create_time": "1635406193", # "update_time": "1635406193", # "create_time_ms": 1635406193361, # "update_time_ms": 1635406193361, # "status": "closed", # "currency_pair": "BTC_USDT", # "type": "limit", # "account": "spot", # margin for margin orders # "side": "sell", # "amount": "0.0002", # "price": "58904.01", # "time_in_force": "gtc", # "iceberg": "0", # "left": "0.0000", # "fill_price": "11.790516", # "filled_total": "11.790516", # "fee": "0.023581032", # "fee_currency": "USDT", # "point_fee": "0", # "gt_fee": "0", # "gt_discount": False, # "rebated_fee_currency": "BTC" # } # ] # # Spot Stop # # [ # { # "market": "ADA_USDT", # "user": 10406147, # "trigger": { # "price": "0.65", # "rule": "\u003c=", # "expiration": 86400 # }, # "put": { # "type": "limit", # "side": "sell", # "price": "0.65", # "amount": "2.00000000000000000000", # "account": "normal", # margin for margin orders # "time_in_force": "gtc" # }, # "id": 8449909, # "ctime": 1652188982, # "status": "open" # } # ] # # Perpetual Swap # # [ # { # "status": "finished", # "size": -1, # "left": 0, # "id": 82750739203, # "is_liq": False, # "is_close": False, # "contract": "BTC_USDT", # "text": "web", # "fill_price": "60721.3", # "finish_as": "filled", # "iceberg": 0, # "tif": "ioc", # "is_reduce_only": True, # "create_time": 1635403475.412, # "finish_time": 1635403475.4127, # "price": "0" # } # ] # result = response if openSpotOrders: result = [] for i in range(0, len(response)): orders = self.safe_value(response[i], 'orders') result = self.array_concat(result, orders) orders = self.parse_orders(result, market, since, limit) return self.filter_by_symbol_since_limit(orders, symbol, since, limit) async def cancel_order(self, id, symbol=None, params={}): """ Cancels an open order :param str id: Order id :param str symbol: Unified market symbol :param dict params: Parameters specified by the exchange api :param bool params['stop']: True if the order to be cancelled is a trigger order :returns: An `order structure <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ await self.load_markets() market = None if (symbol is None) else self.market(symbol) stop = self.safe_value_2(params, 'is_stop_order', 'stop', False) params = self.omit(params, ['is_stop_order', 'stop']) type, query = self.handle_market_type_and_params('cancelOrder', market, params) request, requestParams = self.spot_order_prepare_request(market, stop, query) if (type == 'spot' or type == 'margin') else self.prepare_request(market, type, query) request['order_id'] = id pathMiddle = 'Price' if stop else '' method = self.get_supported_mapping(type, { 'spot': 'privateSpotDelete' + pathMiddle + 'OrdersOrderId', 'margin': 'privateSpotDelete' + pathMiddle + 'OrdersOrderId', 'swap': 'privateFuturesDeleteSettle' + pathMiddle + 'OrdersOrderId', 'future': 'privateDeliveryDeleteSettle' + pathMiddle + 'OrdersOrderId', }) response = await getattr(self, method)(self.extend(request, requestParams)) # # spot # # { # "id": "95282841887", # "text": "apiv4", # "create_time": "1637383156", # "update_time": "1637383235", # "create_time_ms": 1637383156017, # "update_time_ms": 1637383235085, # "status": "cancelled", # "currency_pair": "ETH_USDT", # "type": "limit", # "account": "spot", # "side": "buy", # "amount": "0.01", # "price": "3500", # "time_in_force": "gtc", # "iceberg": "0", # "left": "0.01", # "fill_price": "0", # "filled_total": "0", # "fee": "0", # "fee_currency": "ETH", # "point_fee": "0", # "gt_fee": "0", # "gt_discount": False, # "rebated_fee": "0", # "rebated_fee_currency": "USDT" # } # # spot conditional # # { # "market": "ETH_USDT", # "user": 2436035, # "trigger": { # "price": "3500", # "rule": "\u003c=", # "expiration": 86400 # }, # "put": { # "type": "limit", # "side": "buy", # "price": "3500", # "amount": "0.01000000000000000000", # "account": "normal", # "time_in_force": "gtc" # }, # "id": 5891843, # "ctime": 1637382379, # "ftime": 1637382673, # "status": "canceled" # } # # perpetual swaps # # { # id: "82241928192", # contract: "BTC_USDT", # mkfr: "0", # tkfr: "0.0005", # tif: "gtc", # is_reduce_only: False, # create_time: "1635196145.06", # finish_time: "1635196233.396", # price: "61000", # size: "4", # refr: "0", # left: "4", # text: "web", # fill_price: "0", # user: "6693577", # finish_as: "cancelled", # status: "finished", # is_liq: False, # refu: "0", # is_close: False, # iceberg: "0", # } # return self.parse_order(response, market) async def cancel_all_orders(self, symbol=None, params={}): await self.load_markets() market = None if (symbol is None) else self.market(symbol) stop = self.safe_value(params, 'stop') params = self.omit(params, 'stop') type, query = self.handle_market_type_and_params('cancelAllOrders', market, params) request, requestParams = self.multi_order_spot_prepare_request(market, stop, query) if (type == 'spot') else self.prepare_request(market, type, query) methodTail = 'PriceOrders' if stop else 'Orders' method = self.get_supported_mapping(type, { 'spot': 'privateSpotDelete' + methodTail, 'margin': 'privateSpotDelete' + methodTail, 'swap': 'privateFuturesDeleteSettle' + methodTail, 'future': 'privateDeliveryDeleteSettle' + methodTail, }) response = await getattr(self, method)(self.extend(request, requestParams)) # # [ # { # "id": 139797004085, # "contract": "ADA_USDT", # "mkfr": "0", # "tkfr": "0.0005", # "tif": "gtc", # "is_reduce_only": False, # "create_time": 1647911169.343, # "finish_time": 1647911226.849, # "price": "0.8", # "size": 1, # "refr": "0.3", # "left": 1, # "text": "api", # "fill_price": "0", # "user": 6693577, # "finish_as": "cancelled", # "status": "finished", # "is_liq": False, # "refu": 2436035, # "is_close": False, # "iceberg": 0 # } # ... # ] # return self.parse_orders(response, market) async def transfer(self, code, amount, fromAccount, toAccount, params={}): """ makes internal transfers of funds between accounts on the same exchange :param str code: unified currency code for currency being transferred :param float amount: the amount of currency to transfer :param str fromAccount: the account to transfer currency from :param str toAccount: the account to transfer currency to :param dict params: Exchange specific parameters :param dict params['symbol']: Unified market symbol *required for type == margin* :returns: A `transfer structure <https://docs.ccxt.com/en/latest/manual.html#transfer-structure>` """ await self.load_markets() currency = self.currency(code) fromId = self.parse_account(fromAccount) toId = self.parse_account(toAccount) truncated = self.currency_to_precision(code, amount) request = { 'currency': currency['id'], 'amount': truncated, } if not (fromId in self.options['accountsByType']): request['from'] = 'margin' request['currency_pair'] = fromId else: request['from'] = fromId if not (toId in self.options['accountsByType']): request['to'] = 'margin' request['currency_pair'] = toId else: request['to'] = toId if fromId == 'margin' or toId == 'margin': symbol = self.safe_string_2(params, 'symbol', 'currency_pair') if symbol is None: raise ArgumentsRequired(self.id + ' transfer requires params["symbol"] for isolated margin transfers') market = self.market(symbol) request['currency_pair'] = market['id'] params = self.omit(params, 'symbol') if (toId == 'futures') or (toId == 'delivery') or (fromId == 'futures') or (fromId == 'delivery'): request['settle'] = currency['lowerCaseId'] response = await self.privateWalletPostTransfers(self.extend(request, params)) # # according to the docs(however actual response seems to be an empty string '') # # { # "currency": "BTC", # "from": "spot", # "to": "margin", # "amount": "1", # "currency_pair": "BTC_USDT" # } # transfer = self.parse_transfer(response, currency) return self.extend(transfer, { 'fromAccount': fromAccount, 'toAccount': toAccount, 'amount': self.parse_number(truncated), }) def parse_account(self, account): accountsByType = self.options['accountsByType'] if account in accountsByType: return accountsByType[account] elif account in self.markets: market = self.market(account) return market['id'] else: keys = list(accountsByType.keys()) raise ExchangeError(self.id + ' accounts must be one of ' + ', '.join(keys) + ' or an isolated margin symbol') def parse_transfer(self, transfer, currency=None): timestamp = self.milliseconds() return { 'id': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'currency': self.safe_currency_code(None, currency), 'amount': None, 'fromAccount': None, 'toAccount': None, 'status': None, 'info': transfer, } async def set_leverage(self, leverage, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' setLeverage() requires a symbol argument') # WARNING: THIS WILL INCREASE LIQUIDATION PRICE FOR OPEN ISOLATED LONG POSITIONS # AND DECREASE LIQUIDATION PRICE FOR OPEN ISOLATED SHORT POSITIONS if (leverage < 0) or (leverage > 100): raise BadRequest(self.id + ' setLeverage() leverage should be between 1 and 100') await self.load_markets() market = self.market(symbol) method = self.get_supported_mapping(market['type'], { 'swap': 'privateFuturesPostSettlePositionsContractLeverage', 'future': 'privateDeliveryPostSettlePositionsContractLeverage', }) request, query = self.prepare_request(market, None, params) defaultMarginMode = self.safe_string_2(self.options, 'marginMode', 'defaultMarginMode') crossLeverageLimit = self.safe_string(query, 'cross_leverage_limit') marginMode = self.safe_string(query, 'marginMode', defaultMarginMode) if crossLeverageLimit is not None: marginMode = 'cross' leverage = crossLeverageLimit if marginMode == 'cross' or marginMode == 'cross_margin': request['query'] = { 'cross_leverage_limit': str(leverage), 'leverage': '0', } else: request['query'] = { 'leverage': str(leverage), } response = await getattr(self, method)(self.extend(request, query)) # # { # "value": "0", # "leverage": "5", # "mode": "single", # "realised_point": "0", # "contract": "BTC_USDT", # "entry_price": "0", # "mark_price": "62035.86", # "history_point": "0", # "realised_pnl": "0", # "close_order": null, # "size": 0, # "cross_leverage_limit": "0", # "pending_orders": 0, # "adl_ranking": 6, # "maintenance_rate": "0.005", # "unrealised_pnl": "0", # "user": 2436035, # "leverage_max": "100", # "history_pnl": "0", # "risk_limit": "1000000", # "margin": "0", # "last_close_pnl": "0", # "liq_price": "0" # } # return response def parse_position(self, position, market=None): # # { # value: "12.475572", # leverage: "0", # mode: "single", # realised_point: "0", # contract: "BTC_USDT", # entry_price: "62422.6", # mark_price: "62377.86", # history_point: "0", # realised_pnl: "-0.00624226", # close_order: null, # size: "2", # cross_leverage_limit: "25", # pending_orders: "0", # adl_ranking: "5", # maintenance_rate: "0.005", # unrealised_pnl: "-0.008948", # user: "663337", # leverage_max: "100", # history_pnl: "14.98868396636", # risk_limit: "1000000", # margin: "0.740721495056", # last_close_pnl: "-0.041996015", # liq_price: "59058.58" # } # contract = self.safe_string(position, 'contract') market = self.safe_market(contract, market) size = self.safe_string(position, 'size') side = None if Precise.string_gt(size, '0'): side = 'long' elif Precise.string_lt(size, '0'): side = 'short' maintenanceRate = self.safe_string(position, 'maintenance_rate') notional = self.safe_string(position, 'value') leverage = self.safe_string(position, 'leverage') marginMode = None if leverage == '0': marginMode = 'cross' else: marginMode = 'isolated' unrealisedPnl = self.safe_string(position, 'unrealised_pnl') # Initial Position Margin = ( Position Value / Leverage ) + Close Position Fee # *The default leverage under the full position is the highest leverage in the market. # *Trading fee is charged as Taker Fee Rate(0.075%). takerFee = '0.00075' feePaid = Precise.string_mul(takerFee, notional) initialMarginString = Precise.string_add(Precise.string_div(notional, leverage), feePaid) percentage = Precise.string_mul(Precise.string_div(unrealisedPnl, initialMarginString), '100') return { 'info': position, 'symbol': self.safe_string(market, 'symbol'), 'timestamp': None, 'datetime': None, 'initialMargin': self.parse_number(initialMarginString), 'initialMarginPercentage': self.parse_number(Precise.string_div(initialMarginString, notional)), 'maintenanceMargin': self.parse_number(Precise.string_mul(maintenanceRate, notional)), 'maintenanceMarginPercentage': self.parse_number(maintenanceRate), 'entryPrice': self.safe_number(position, 'entry_price'), 'notional': self.parse_number(notional), 'leverage': self.safe_number(position, 'leverage'), 'unrealizedPnl': self.parse_number(unrealisedPnl), 'contracts': self.parse_number(Precise.string_abs(size)), 'contractSize': self.safe_value(market, 'contractSize'), # 'realisedPnl': position['realised_pnl'], 'marginRatio': None, 'liquidationPrice': self.safe_number(position, 'liq_price'), 'markPrice': self.safe_number(position, 'mark_price'), 'collateral': self.safe_number(position, 'margin'), 'marginMode': marginMode, 'marginType': marginMode, # deprecated 'side': side, 'percentage': self.parse_number(percentage), } def parse_positions(self, positions): result = [] for i in range(0, len(positions)): result.append(self.parse_position(positions[i])) return result async def fetch_positions(self, symbols=None, params={}): """ Fetch trades positions * @param {[str]} symbols Not used by Gateio, but parsed internally by CCXT :param dict params: exchange specific parameters :param str params['settle']: 'btc' or 'usdt' - settle currency for perpetual swap and future - default="usdt" for swap and "btc" for future :param str params['type']: swap or future, if not provided self.options['defaultType'] is used :returns: An array of `position structures <https://docs.ccxt.com/en/latest/manual.html#position-structure>` """ await self.load_markets() type, query = self.handle_market_type_and_params('fetchPositions', None, params) request, requestParams = self.prepare_request(None, type, query) method = self.get_supported_mapping(type, { 'swap': 'privateFuturesGetSettlePositions', 'future': 'privateDeliveryGetSettlePositions', }) response = await getattr(self, method)(self.extend(request, requestParams)) # # [ # { # value: "12.475572", # leverage: "0", # mode: "single", # realised_point: "0", # contract: "BTC_USDT", # entry_price: "62422.6", # mark_price: "62377.86", # history_point: "0", # realised_pnl: "-0.00624226", # close_order: null, # size: "2", # cross_leverage_limit: "25", # pending_orders: "0", # adl_ranking: "5", # maintenance_rate: "0.005", # unrealised_pnl: "-0.008948", # user: "6693577", # leverage_max: "100", # history_pnl: "14.98868396636", # risk_limit: "1000000", # margin: "0.740721495056", # last_close_pnl: "-0.041996015", # liq_price: "59058.58" # } # ] # result = self.parse_positions(response) return self.filter_by_array(result, 'symbol', symbols, False) async def fetch_leverage_tiers(self, symbols=None, params={}): await self.load_markets() type, query = self.handle_market_type_and_params('fetchLeverageTiers', None, params) request, requestParams = self.prepare_request(None, type, query) if type != 'future' and type != 'swap': raise BadRequest(self.id + ' fetchLeverageTiers only supports swap and future') method = self.get_supported_mapping(type, { 'swap': 'publicFuturesGetSettleContracts', 'future': 'publicDeliveryGetSettleContracts', }) response = await getattr(self, method)(self.extend(request, requestParams)) # # Perpetual swap # # [ # { # "name": "BTC_USDT", # "type": "direct", # "quanto_multiplier": "0.0001", # "ref_discount_rate": "0", # "order_price_deviate": "0.5", # "maintenance_rate": "0.005", # "mark_type": "index", # "last_price": "38026", # "mark_price": "37985.6", # "index_price": "37954.92", # "funding_rate_indicative": "0.000219", # "mark_price_round": "0.01", # "funding_offset": 0, # "in_delisting": False, # "risk_limit_base": "1000000", # "interest_rate": "0.0003", # "order_price_round": "0.1", # "order_size_min": 1, # "ref_rebate_rate": "0.2", # "funding_interval": 28800, # "risk_limit_step": "1000000", # "leverage_min": "1", # "leverage_max": "100", # "risk_limit_max": "8000000", # "maker_fee_rate": "-0.00025", # "taker_fee_rate": "0.00075", # "funding_rate": "0.002053", # "order_size_max": 1000000, # "funding_next_apply": 1610035200, # "short_users": 977, # "config_change_time": 1609899548, # "trade_size": 28530850594, # "position_size": 5223816, # "long_users": 455, # "funding_impact_value": "60000", # "orders_limit": 50, # "trade_id": 10851092, # "orderbook_id": 2129638396 # } # ] # # Delivery Futures # # [ # { # "name": "BTC_USDT_20200814", # "underlying": "BTC_USDT", # "cycle": "WEEKLY", # "type": "direct", # "quanto_multiplier": "0.0001", # "mark_type": "index", # "last_price": "9017", # "mark_price": "9019", # "index_price": "9005.3", # "basis_rate": "0.185095", # "basis_value": "13.7", # "basis_impact_value": "100000", # "settle_price": "0", # "settle_price_interval": 60, # "settle_price_duration": 1800, # "settle_fee_rate": "0.0015", # "expire_time": 1593763200, # "order_price_round": "0.1", # "mark_price_round": "0.1", # "leverage_min": "1", # "leverage_max": "100", # "maintenance_rate": "1000000", # "risk_limit_base": "140.726652109199", # "risk_limit_step": "1000000", # "risk_limit_max": "8000000", # "maker_fee_rate": "-0.00025", # "taker_fee_rate": "0.00075", # "ref_discount_rate": "0", # "ref_rebate_rate": "0.2", # "order_price_deviate": "0.5", # "order_size_min": 1, # "order_size_max": 1000000, # "orders_limit": 50, # "orderbook_id": 63, # "trade_id": 26, # "trade_size": 435, # "position_size": 130, # "config_change_time": 1593158867, # "in_delisting": False # } # ] # return self.parse_leverage_tiers(response, symbols, 'name') def parse_market_leverage_tiers(self, info, market=None): """ * @ignore https://www.gate.io/help/futures/perpetual/22162/instrctions-of-risk-limit :param dict info: Exchange market response for 1 market :param dict market: CCXT market """ # # Perpetual swap # # { # "name": "BTC_USDT", # "type": "direct", # "quanto_multiplier": "0.0001", # "ref_discount_rate": "0", # "order_price_deviate": "0.5", # "maintenance_rate": "0.005", # "mark_type": "index", # "last_price": "38026", # "mark_price": "37985.6", # "index_price": "37954.92", # "funding_rate_indicative": "0.000219", # "mark_price_round": "0.01", # "funding_offset": 0, # "in_delisting": False, # "risk_limit_base": "1000000", # "interest_rate": "0.0003", # "order_price_round": "0.1", # "order_size_min": 1, # "ref_rebate_rate": "0.2", # "funding_interval": 28800, # "risk_limit_step": "1000000", # "leverage_min": "1", # "leverage_max": "100", # "risk_limit_max": "8000000", # "maker_fee_rate": "-0.00025", # "taker_fee_rate": "0.00075", # "funding_rate": "0.002053", # "order_size_max": 1000000, # "funding_next_apply": 1610035200, # "short_users": 977, # "config_change_time": 1609899548, # "trade_size": 28530850594, # "position_size": 5223816, # "long_users": 455, # "funding_impact_value": "60000", # "orders_limit": 50, # "trade_id": 10851092, # "orderbook_id": 2129638396 # } # # Delivery Futures # # { # "name": "BTC_USDT_20200814", # "underlying": "BTC_USDT", # "cycle": "WEEKLY", # "type": "direct", # "quanto_multiplier": "0.0001", # "mark_type": "index", # "last_price": "9017", # "mark_price": "9019", # "index_price": "9005.3", # "basis_rate": "0.185095", # "basis_value": "13.7", # "basis_impact_value": "100000", # "settle_price": "0", # "settle_price_interval": 60, # "settle_price_duration": 1800, # "settle_fee_rate": "0.0015", # "expire_time": 1593763200, # "order_price_round": "0.1", # "mark_price_round": "0.1", # "leverage_min": "1", # "leverage_max": "100", # "maintenance_rate": "1000000", # "risk_limit_base": "140.726652109199", # "risk_limit_step": "1000000", # "risk_limit_max": "8000000", # "maker_fee_rate": "-0.00025", # "taker_fee_rate": "0.00075", # "ref_discount_rate": "0", # "ref_rebate_rate": "0.2", # "order_price_deviate": "0.5", # "order_size_min": 1, # "order_size_max": 1000000, # "orders_limit": 50, # "orderbook_id": 63, # "trade_id": 26, # "trade_size": 435, # "position_size": 130, # "config_change_time": 1593158867, # "in_delisting": False # } # maintenanceMarginUnit = self.safe_string(info, 'maintenance_rate') # '0.005', leverageMax = self.safe_string(info, 'leverage_max') # '100', riskLimitStep = self.safe_string(info, 'risk_limit_step') # '1000000', riskLimitMax = self.safe_string(info, 'risk_limit_max') # '16000000', initialMarginUnit = Precise.string_div('1', leverageMax) maintenanceMarginRate = maintenanceMarginUnit initialMarginRatio = initialMarginUnit floor = '0' tiers = [] while(Precise.string_lt(floor, riskLimitMax)): cap = Precise.string_add(floor, riskLimitStep) tiers.append({ 'tier': self.parse_number(Precise.string_div(cap, riskLimitStep)), 'currency': self.safe_string(market, 'settle'), 'minNotional': self.parse_number(floor), 'maxNotional': self.parse_number(cap), 'maintenanceMarginRate': self.parse_number(maintenanceMarginRate), 'maxLeverage': self.parse_number(Precise.string_div('1', initialMarginRatio)), 'info': info, }) maintenanceMarginRate = Precise.string_add(maintenanceMarginRate, maintenanceMarginUnit) initialMarginRatio = Precise.string_add(initialMarginRatio, initialMarginUnit) floor = cap return tiers def sign(self, path, api=[], method='GET', params={}, headers=None, body=None): authentication = api[0] # public, private type = api[1] # spot, margin, future, delivery query = self.omit(params, self.extract_params(path)) path = self.implode_params(path, params) endPart = '' if (path == '') else ('/' + path) entirePath = '/' + type + endPart url = self.urls['api'][authentication][type] if url is None: raise NotSupported(self.id + ' does not have a testnet for the ' + type + ' market type.') url += entirePath if authentication == 'public': if query: url += '?' + self.urlencode(query) else: queryString = '' if (method == 'GET') or (method == 'DELETE'): if query: queryString = self.urlencode(query) url += '?' + queryString else: urlQueryParams = self.safe_value(query, 'query', {}) if urlQueryParams: queryString = self.urlencode(urlQueryParams) url += '?' + queryString query = self.omit(query, 'query') body = self.json(query) bodyPayload = '' if (body is None) else body bodySignature = self.hash(self.encode(bodyPayload), 'sha512') timestamp = self.seconds() timestampString = str(timestamp) signaturePath = '/api/' + self.version + entirePath payloadArray = [method.upper(), signaturePath, queryString, bodySignature, timestampString] # eslint-disable-next-line quotes payload = "\n".join(payloadArray) signature = self.hmac(self.encode(payload), self.encode(self.secret), hashlib.sha512) headers = { 'KEY': self.apiKey, 'Timestamp': timestampString, 'SIGN': signature, 'Content-Type': 'application/json', } return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, code, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return # # {"label": "ORDER_NOT_FOUND", "message": "Order not found"} # {"label": "INVALID_PARAM_VALUE", "message": "invalid argument: status"} # {"label": "INVALID_PARAM_VALUE", "message": "invalid argument: Trigger.rule"} # {"label": "INVALID_PARAM_VALUE", "message": "invalid argument: trigger.expiration invalid range"} # {"label": "INVALID_ARGUMENT", "detail": "invalid size"} # label = self.safe_string(response, 'label') if label is not None: feedback = self.id + ' ' + body self.throw_exactly_matched_exception(self.exceptions['exact'], label, feedback) raise ExchangeError(feedback)
[ [ [ 226, 234 ], [ 984, 992 ] ], [ [ 242, 249 ], [ 173881, 173888 ] ], [ [ 279, 292 ], [ 26805, 26818 ], [ 27390, 27403 ], [ 27513, 27526 ], [ 27574, 27587 ], [ 27639, 27652 ], [ 27764, 27777 ], [ 27830, 27843 ], [ 27885, 27898 ], [ 27996, 28009 ], [ 28121, 28134 ], [ 28190, 28203 ], [ 28411, 28424 ], [ 29200, 29213 ], [ 29252, 29265 ], [ 29300, 29313 ], [ 29353, 29366 ], [ 29582, 29595 ], [ 29756, 29769 ], [ 29867, 29880 ], [ 30154, 30167 ], [ 30207, 30220 ], [ 30267, 30280 ], [ 30329, 30342 ], [ 30385, 30398 ], [ 30491, 30504 ], [ 30553, 30566 ], [ 30611, 30624 ], [ 30668, 30681 ], [ 31117, 31130 ], [ 31345, 31358 ], [ 31991, 32004 ], [ 153027, 153040 ], [ 175027, 175040 ] ], [ [ 322, 341 ], [ 26863, 26882 ], [ 26919, 26938 ], [ 26976, 26995 ], [ 27089, 27108 ], [ 27157, 27176 ], [ 27217, 27236 ] ], [ [ 371, 387 ], [ 27030, 27046 ], [ 27327, 27343 ] ], [ [ 417, 434 ], [ 29694, 29711 ] ], [ [ 464, 480 ], [ 27276, 27292 ], [ 27447, 27463 ] ], [ [ 510, 527 ], [ 26546, 26563 ], [ 52680, 52697 ], [ 91937, 91954 ], [ 114558, 114575 ], [ 151607, 151624 ], [ 153693, 153710 ] ], [ [ 557, 567 ], [ 26328, 26338 ], [ 26380, 26390 ], [ 26432, 26442 ], [ 26488, 26498 ], [ 26600, 26610 ], [ 26656, 26666 ], [ 26706, 26716 ], [ 26760, 26770 ], [ 55265, 55275 ], [ 118325, 118335 ], [ 153995, 154005 ], [ 162650, 162660 ] ], [ [ 597, 606 ], [ 28300, 28309 ], [ 28356, 28365 ], [ 29813, 29822 ], [ 57968, 57977 ], [ 92142, 92151 ] ], [ [ 636, 653 ], [ 27704, 27721 ], [ 28740, 28757 ], [ 28866, 28883 ], [ 29637, 29654 ], [ 29928, 29945 ] ], [ [ 683, 695 ], [ 28246, 28258 ], [ 28574, 28586 ], [ 28627, 28639 ], [ 28684, 28696 ], [ 28803, 28815 ], [ 28926, 28938 ], [ 28979, 28991 ], [ 29034, 29046 ], [ 29415, 29427 ], [ 29468, 29480 ], [ 29524, 29536 ], [ 29992, 30004 ], [ 30047, 30059 ], [ 30101, 30113 ], [ 30438, 30450 ], [ 30725, 30737 ], [ 30777, 30789 ], [ 30829, 30841 ], [ 30889, 30901 ], [ 30946, 30958 ], [ 31003, 31015 ], [ 31058, 31070 ], [ 115093, 115105 ] ], [ [ 725, 738 ], [ 28465, 28478 ], [ 28523, 28536 ], [ 29086, 29099 ], [ 29146, 29159 ] ], [ [ 768, 780 ], [ 172551, 172563 ] ], [ [ 810, 827 ], [ 27932, 27949 ] ], [ [ 857, 877 ], [ 28056, 28076 ], [ 31164, 31184 ], [ 31222, 31242 ], [ 31276, 31296 ] ], [ [ 921, 930 ], [ 19279, 19288 ] ], [ [ 961, 968 ], [ 35199, 35206 ], [ 35284, 35291 ], [ 42058, 42065 ], [ 42120, 42127 ], [ 42177, 42184 ], [ 42241, 42248 ], [ 43104, 43111 ], [ 43218, 43225 ], [ 47507, 47514 ], [ 47577, 47584 ], [ 47642, 47649 ], [ 47714, 47721 ], [ 48660, 48667 ], [ 48782, 48789 ], [ 105047, 105054 ], [ 105118, 105125 ], [ 110359, 110366 ], [ 110429, 110436 ], [ 114775, 114782 ], [ 130055, 130062 ], [ 130340, 130347 ], [ 130487, 130494 ], [ 131901, 131908 ], [ 132761, 132768 ], [ 132810, 132817 ], [ 132876, 132883 ], [ 132948, 132955 ], [ 157376, 157383 ], [ 157445, 157452 ], [ 158184, 158191 ], [ 158253, 158260 ], [ 158272, 158279 ], [ 158342, 158349 ], [ 158361, 158368 ], [ 158716, 158723 ], [ 158819, 158826 ], [ 159238, 159245 ], [ 171020, 171027 ], [ 171211, 171218 ], [ 171270, 171277 ], [ 171380, 171387 ], [ 171729, 171736 ], [ 171856, 171863 ], [ 171954, 171961 ] ], [ [ 977, 983 ], [ 1058, 1064 ] ] ]
from prometheus_client import CollectorRegistry from asyncworker.conf import settings from asyncworker.metrics.collectors.gc import GCCollector from asyncworker.metrics.collectors.platform import PlatformCollector from asyncworker.metrics.collectors.process import ProcessCollector NAMESPACE = ( f"{settings.METRICS_NAMESPACE}_{settings.METRICS_APPPREFIX}" if settings.METRICS_APPPREFIX else f"{settings.METRICS_NAMESPACE}" ) REGISTRY = CollectorRegistry(auto_describe=True) PLATFORM_COLLECTOR = PlatformCollector(registry=REGISTRY, namespace=NAMESPACE) PROCESS_COLLECTOR = ProcessCollector(namespace=NAMESPACE, registry=REGISTRY) GC_COLLECTOR = GCCollector(registry=REGISTRY, namespace=NAMESPACE)
[ [ [ 30, 47 ], [ 453, 470 ] ], [ [ 78, 86 ], [ 370, 378 ], [ 305, 313 ], [ 334, 342 ], [ 409, 417 ] ], [ [ 133, 144 ], [ 663, 674 ] ], [ [ 197, 214 ], [ 513, 530 ] ], [ [ 266, 282 ], [ 591, 607 ] ], [ [ 284, 293 ], [ 560, 569 ], [ 618, 627 ], [ 704, 713 ] ], [ [ 442, 450 ], [ 540, 548 ], [ 638, 646 ], [ 684, 692 ] ], [ [ 492, 510 ] ], [ [ 571, 588 ] ], [ [ 648, 660 ] ] ]
from typing import Dict, Optional, Union from ...error import GraphQLError from ...language import ( OperationTypeDefinitionNode, OperationType, SchemaDefinitionNode, SchemaExtensionNode, ) from ...type import GraphQLObjectType from . import SDLValidationContext, SDLValidationRule __all__ = ["UniqueOperationTypesRule"] class UniqueOperationTypesRule(SDLValidationRule): """Unique operation types A GraphQL document is only valid if it has only one type per operation. """ def __init__(self, context: SDLValidationContext): super().__init__(context) schema = context.schema self.defined_operation_types: Dict[ OperationType, OperationTypeDefinitionNode ] = {} self.existing_operation_types: Dict[ OperationType, Optional[GraphQLObjectType] ] = ( { OperationType.QUERY: schema.query_type, OperationType.MUTATION: schema.mutation_type, OperationType.SUBSCRIPTION: schema.subscription_type, } if schema else {} ) self.schema = schema def check_operation_types( self, node: Union[SchemaDefinitionNode, SchemaExtensionNode], *_args ): for operation_type in node.operation_types or []: operation = operation_type.operation already_defined_operation_type = self.defined_operation_types.get(operation) if self.existing_operation_types.get(operation): self.report_error( GraphQLError( f"Type for {operation.value} already defined in the schema." " It cannot be redefined.", operation_type, ) ) elif already_defined_operation_type: self.report_error( GraphQLError( f"There can be only one {operation.value} type in schema.", [already_defined_operation_type, operation_type], ) ) else: self.defined_operation_types[operation] = operation_type return self.SKIP enter_schema_definition = enter_schema_extension = check_operation_types
[ [ [ 19, 23 ], [ 667, 671 ], [ 782, 786 ] ], [ [ 25, 33 ], [ 815, 823 ] ], [ [ 35, 40 ], [ 1206, 1211 ] ], [ [ 63, 75 ], [ 1583, 1595 ], [ 1918, 1930 ] ], [ [ 106, 133 ], [ 700, 727 ] ], [ [ 139, 152 ], [ 685, 698 ], [ 887, 900 ], [ 943, 956 ], [ 1005, 1018 ], [ 800, 813 ] ], [ [ 158, 178 ], [ 1212, 1232 ] ], [ [ 184, 203 ], [ 1234, 1253 ] ], [ [ 227, 244 ], [ 824, 841 ] ], [ [ 259, 279 ], [ 540, 560 ] ], [ [ 281, 298 ], [ 372, 389 ] ], [ [ 300, 307 ] ], [ [ 347, 371 ] ] ]
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** from enum import Enum __all__ = [ 'CostAllocationPolicyType', 'CostAllocationResourceType', 'RuleStatus', ] class CostAllocationPolicyType(str, Enum): """ Method of cost allocation for the rule """ FIXED_PROPORTION = "FixedProportion" class CostAllocationResourceType(str, Enum): """ Type of resources contained in this cost allocation rule """ DIMENSION = "Dimension" TAG = "Tag" class RuleStatus(str, Enum): """ Status of the rule """ NOT_ACTIVE = "NotActive" ACTIVE = "Active" PROCESSING = "Processing"
[ [ [ 186, 190 ], [ 328, 332 ], [ 475, 479 ], [ 627, 631 ] ], [ [ 192, 199 ] ], [ [ 298, 322 ] ], [ [ 443, 469 ] ], [ [ 611, 621 ] ] ]
import os import numpy as np import torch import torch.nn.functional as F from lib.utils.bbox_transform import decode_bbox_target from tools.kitti_object_eval_python.evaluate import evaluate as kitti_evaluate from lib.config import cfg import lib.utils.kitti_utils as kitti_utils import lib.utils.iou3d.iou3d_utils as iou3d_utils from datetime import datetime from tensorboardX import SummaryWriter import tqdm np.random.seed(1024) # set the same seed def save_kitti_format(sample_id, calib, bbox3d, kitti_output_dir, scores, img_shape): corners3d = kitti_utils.boxes3d_to_corners3d(bbox3d) img_boxes, _ = calib.corners3d_to_img_boxes(corners3d) img_boxes[:, 0] = np.clip(img_boxes[:, 0], 0, img_shape[1] - 1) img_boxes[:, 1] = np.clip(img_boxes[:, 1], 0, img_shape[0] - 1) img_boxes[:, 2] = np.clip(img_boxes[:, 2], 0, img_shape[1] - 1) img_boxes[:, 3] = np.clip(img_boxes[:, 3], 0, img_shape[0] - 1) img_boxes_w = img_boxes[:, 2] - img_boxes[:, 0] img_boxes_h = img_boxes[:, 3] - img_boxes[:, 1] box_valid_mask = np.logical_and( img_boxes_w < img_shape[1] * 0.8, img_boxes_h < img_shape[0] * 0.8) kitti_output_file = os.path.join(kitti_output_dir, '%06d.txt' % sample_id) with open(kitti_output_file, 'w') as f: for k in range(bbox3d.shape[0]): if box_valid_mask[k] == 0: continue x, z, ry = bbox3d[k, 0], bbox3d[k, 2], bbox3d[k, 6] beta = np.arctan2(z, x) alpha = -np.sign(beta) * np.pi / 2 + beta + ry print('%s -1 -1 %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f' % (cfg.CLASSES, alpha, img_boxes[k, 0], img_boxes[k, 1], img_boxes[k, 2], img_boxes[k, 3], bbox3d[k, 3], bbox3d[k, 4], bbox3d[k, 5], bbox3d[k, 0], bbox3d[k, 1], bbox3d[k, 2], bbox3d[k, 6], scores[k]), file=f) def eval_one_epoch_joint(model, dataloader, epoch_id, result_dir): # print("-----------------joint____________________________*******") np.random.seed(666) MEAN_SIZE = torch.from_numpy(cfg.CLS_MEAN_SIZE[0]).cuda() mode = 'EVAL' final_output_dir = os.path.join(result_dir, 'final_result', 'data') os.makedirs(final_output_dir, exist_ok=True) if True: # print("------------save_result__________________*******") roi_output_dir = os.path.join(result_dir, 'roi_result', 'data') refine_output_dir = os.path.join(result_dir, 'refine_result', 'data') rpn_output_dir = os.path.join(result_dir, 'rpn_result', 'data') os.makedirs(rpn_output_dir, exist_ok=True) os.makedirs(roi_output_dir, exist_ok=True) os.makedirs(refine_output_dir, exist_ok=True) model.eval() thresh_list = [0.1, 0.3, 0.5, 0.7, 0.9] total_recalled_bbox_list, total_gt_bbox = [0] * 5, 0 total_roi_recalled_bbox_list = [0] * 5 dataset = dataloader.dataset cnt = final_total = total_cls_acc = total_cls_acc_refined = total_rpn_iou = 0 progress_bar = tqdm.tqdm(total=len(dataloader), leave=True, desc='eval') for data in dataloader: cnt += 1 calib = data['calib'] sample_id, pts_rect, pts_features, pts_input = \ data['sample_id'], data['pts_rect'], data['pts_features'], data['pts_input'] batch_size = len(sample_id) inputs = torch.from_numpy(pts_input).cuda(non_blocking=True).float() input_data = {'pts_input': inputs, 'calib': calib} # model inference ret_dict = model(input_data) print(ret_dict.key()) roi_scores_raw = ret_dict['roi_scores_raw'] # (B, M) roi_boxes3d = ret_dict['rois'] # (B, M, 7) seg_result = ret_dict['seg_result'].long() # (B, N) rcnn_cls = ret_dict['rcnn_cls'].view( batch_size, -1, ret_dict['rcnn_cls'].shape[1]) rcnn_reg = ret_dict['rcnn_reg'].view( batch_size, -1, ret_dict['rcnn_reg'].shape[1]) # (B, M, C) # bounding box regression anchor_size = MEAN_SIZE if cfg.RCNN.SIZE_RES_ON_ROI: assert False pred_boxes3d = decode_bbox_target(roi_boxes3d.view(-1, 7), rcnn_reg.view(-1, rcnn_reg.shape[-1]), anchor_size=anchor_size, loc_scope=cfg.RCNN.LOC_SCOPE, loc_bin_size=cfg.RCNN.LOC_BIN_SIZE, num_head_bin=cfg.RCNN.NUM_HEAD_BIN, get_xz_fine=True, get_y_by_bin=cfg.RCNN.LOC_Y_BY_BIN, loc_y_scope=cfg.RCNN.LOC_Y_SCOPE, loc_y_bin_size=cfg.RCNN.LOC_Y_BIN_SIZE, get_ry_fine=True).view(batch_size, -1, 7) # scoring if rcnn_cls.shape[2] == 1: raw_scores = rcnn_cls # (B, M, 1) norm_scores = torch.sigmoid(raw_scores) pred_classes = (norm_scores > cfg.RCNN.SCORE_THRESH).long() else: pred_classes = torch.argmax(rcnn_cls, dim=1).view(-1) cls_norm_scores = F.softmax(rcnn_cls, dim=1) raw_scores = rcnn_cls[:, pred_classes] norm_scores = cls_norm_scores[:, pred_classes] # evaluation recalled_num = gt_num = rpn_iou = 0 if not False: if not cfg.RPN.FIXED: rpn_cls_label, rpn_reg_label = data['rpn_cls_label'], data['rpn_reg_label'] rpn_cls_label = torch.from_numpy( rpn_cls_label).cuda(non_blocking=True).long() gt_boxes3d = data['gt_boxes3d'] for k in range(batch_size): # calculate recall cur_gt_boxes3d = gt_boxes3d[k] tmp_idx = cur_gt_boxes3d.__len__() - 1 while tmp_idx >= 0 and cur_gt_boxes3d[tmp_idx].sum() == 0: tmp_idx -= 1 if tmp_idx >= 0: cur_gt_boxes3d = cur_gt_boxes3d[:tmp_idx + 1] cur_gt_boxes3d = torch.from_numpy( cur_gt_boxes3d).cuda(non_blocking=True).float() iou3d = iou3d_utils.boxes_iou3d_gpu( pred_boxes3d[k], cur_gt_boxes3d) gt_max_iou, _ = iou3d.max(dim=0) refined_iou, _ = iou3d.max(dim=1) for idx, thresh in enumerate(thresh_list): total_recalled_bbox_list[idx] += ( gt_max_iou > thresh).sum().item() recalled_num += (gt_max_iou > 0.7).sum().item() gt_num += cur_gt_boxes3d.shape[0] total_gt_bbox += cur_gt_boxes3d.shape[0] # original recall iou3d_in = iou3d_utils.boxes_iou3d_gpu( roi_boxes3d[k], cur_gt_boxes3d) gt_max_iou_in, _ = iou3d_in.max(dim=0) for idx, thresh in enumerate(thresh_list): total_roi_recalled_bbox_list[idx] += ( gt_max_iou_in > thresh).sum().item() if not cfg.RPN.FIXED: fg_mask = rpn_cls_label > 0 correct = ((seg_result == rpn_cls_label) & fg_mask).sum().float() union = fg_mask.sum().float() + (seg_result > 0).sum().float() - correct rpn_iou = correct / torch.clamp(union, min=1.0) total_rpn_iou += rpn_iou.item() disp_dict = { 'mode': mode, 'recall': '%d/%d' % (total_recalled_bbox_list[3], total_gt_bbox)} progress_bar.set_postfix(disp_dict) progress_bar.update() if True: # save roi and refine results roi_boxes3d_np = roi_boxes3d.cpu().numpy() pred_boxes3d_np = pred_boxes3d.cpu().numpy() roi_scores_raw_np = roi_scores_raw.cpu().numpy() raw_scores_np = raw_scores.cpu().numpy() rpn_cls_np = ret_dict['rpn_cls'].cpu().numpy() rpn_xyz_np = ret_dict['backbone_xyz'].cpu().numpy() seg_result_np = seg_result.cpu().numpy() output_data = np.concatenate((rpn_xyz_np, rpn_cls_np.reshape(batch_size, -1, 1), seg_result_np.reshape(batch_size, -1, 1)), axis=2) for k in range(batch_size): cur_sample_id = sample_id[k] calib = dataset.get_calib(cur_sample_id) image_shape = dataset.get_image_shape(cur_sample_id) save_kitti_format(cur_sample_id, calib, roi_boxes3d_np[k], roi_output_dir, roi_scores_raw_np[k], image_shape) save_kitti_format(cur_sample_id, calib, pred_boxes3d_np[k], refine_output_dir, raw_scores_np[k], image_shape) output_file = os.path.join( rpn_output_dir, '%06d.npy' % cur_sample_id) np.save(output_file, output_data.astype(np.float32)) # scores thresh inds = norm_scores > cfg.RCNN.SCORE_THRESH for k in range(batch_size): cur_inds = inds[k].view(-1) if cur_inds.sum() == 0: continue pred_boxes3d_selected = pred_boxes3d[k, cur_inds] raw_scores_selected = raw_scores[k, cur_inds] norm_scores_selected = norm_scores[k, cur_inds] # NMS thresh # rotated nms boxes_bev_selected = kitti_utils.boxes3d_to_bev_torch( pred_boxes3d_selected) keep_idx = iou3d_utils.nms_gpu( boxes_bev_selected, raw_scores_selected, cfg.RCNN.NMS_THRESH).view(-1) pred_boxes3d_selected = pred_boxes3d_selected[keep_idx] scores_selected = raw_scores_selected[keep_idx] pred_boxes3d_selected, scores_selected = pred_boxes3d_selected.cpu( ).numpy(), scores_selected.cpu().numpy() cur_sample_id = sample_id[k] calib = dataset.get_calib(cur_sample_id) final_total += pred_boxes3d_selected.shape[0] image_shape = dataset.get_image_shape(cur_sample_id) save_kitti_format(cur_sample_id, calib, pred_boxes3d_selected, final_output_dir, scores_selected, image_shape) progress_bar.close() # dump empty files split_file = os.path.join(dataset.imageset_dir, '..', '..', 'ImageSets', dataset.split + '.txt') split_file = os.path.abspath(split_file) image_idx_list = [x.strip() for x in open(split_file).readlines()] empty_cnt = 0 for k in range(image_idx_list.__len__()): cur_file = os.path.join(final_output_dir, '%s.txt' % image_idx_list[k]) if not os.path.exists(cur_file): with open(cur_file, 'w') as temp_f: pass empty_cnt += 1 ret_dict = {'empty_cnt': empty_cnt} avg_rpn_iou = (total_rpn_iou / max(cnt, 1.0)) avg_cls_acc = (total_cls_acc / max(cnt, 1.0)) avg_cls_acc_refined = (total_cls_acc_refined / max(cnt, 1.0)) avg_det_num = (final_total / max(len(dataset), 1.0)) ret_dict['rpn_iou'] = avg_rpn_iou ret_dict['rcnn_cls_acc'] = avg_cls_acc ret_dict['rcnn_cls_acc_refined'] = avg_cls_acc_refined ret_dict['rcnn_avg_num'] = avg_det_num for idx, thresh in enumerate(thresh_list): cur_roi_recall = total_roi_recalled_bbox_list[idx] / max( total_gt_bbox, 1.0) ret_dict['rpn_recall(thresh=%.2f)' % thresh] = cur_roi_recall for idx, thresh in enumerate(thresh_list): cur_recall = total_recalled_bbox_list[idx] / max(total_gt_bbox, 1.0) ret_dict['rcnn_recall(thresh=%.2f)' % thresh] = cur_recall if cfg.TEST.SPLIT != 'test': name_to_class = {'Car': 0, 'Pedestrian': 1, 'Cyclist': 2} ap_result_str, ap_dict = kitti_evaluate(dataset.label_dir, final_output_dir, label_split_file=split_file, current_class=name_to_class[cfg.CLASSES]) ret_dict.update(ap_dict) return ap_result_str
[ [ [ 7, 9 ], [ 1175, 1177 ], [ 2222, 2224 ], [ 2275, 2277 ], [ 2427, 2429 ], [ 2502, 2504 ], [ 2577, 2579 ], [ 2632, 2634 ], [ 2683, 2685 ], [ 2734, 2736 ], [ 9026, 9028 ], [ 10555, 10557 ], [ 10686, 10688 ], [ 10868, 10870 ], [ 10944, 10946 ] ], [ [ 17, 28 ], [ 413, 415 ], [ 682, 684 ], [ 750, 752 ], [ 818, 820 ], [ 886, 888 ], [ 1058, 1060 ], [ 1462, 1464 ], [ 1500, 1502 ], [ 1516, 1518 ], [ 2098, 2100 ], [ 8303, 8305 ], [ 9120, 9122 ], [ 9160, 9162 ] ], [ [ 36, 41 ], [ 2134, 2139 ], [ 3410, 3415 ], [ 4978, 4983 ], [ 5117, 5122 ], [ 5569, 5574 ], [ 6123, 6128 ], [ 7545, 7550 ] ], [ [ 49, 73 ], [ 5186, 5187 ] ], [ [ 111, 129 ], [ 4176, 4194 ] ], [ [ 182, 208 ], [ 12058, 12072 ] ], [ [ 233, 236 ], [ 1654, 1657 ], [ 2151, 2154 ], [ 4101, 4104 ], [ 4378, 4381 ], [ 4453, 4456 ], [ 4531, 4534 ], [ 4627, 4630 ], [ 4704, 4707 ], [ 4741, 4744 ], [ 5046, 5049 ], [ 5430, 5433 ], [ 7232, 7235 ], [ 9227, 9230 ], [ 9827, 9830 ], [ 11933, 11936 ], [ 12215, 12218 ] ], [ [ 244, 280 ], [ 559, 570 ], [ 9653, 9664 ] ], [ [ 288, 330 ], [ 6241, 6252 ], [ 6872, 6883 ], [ 9749, 9760 ] ], [ [ 352, 360 ] ], [ [ 386, 399 ] ], [ [ 407, 411 ], [ 3078, 3082 ] ], [ [ 461, 478 ], [ 8691, 8708 ], [ 8851, 8868 ], [ 10348, 10365 ] ], [ [ 1958, 1978 ] ] ]
from math import log10 from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import Matern import numpy as np from .utils import create_rng class BO: """ Bayesian Optimization framework """ def __init__(self, k, hidden_dim=(100, 10000), spectral_radius=(.9, 1.3), p=(0, 1), alpha=(0, 1), beta=(1e-5, 1e3), random_state=None): """ Parameters ---------- k : tuple Range of values for nearest neighbors in small-world network hidden_dim : tuple, optional Range values for the number of nodes in the reservoir spectral_radius : tuple, optional Range of values for the spectral radius for the reservoir p : tuple, optional Range of values to consider for the rewire probability alpha : tuple, optional Range of values for the leaking rate beta : tuple, optional Range of values for the L2 regression regularization random_state : int or np.random.RandomState, optional Random state initializer """ # Check that all the hyper-parameters are tuples with two entries # which define the lower and upper bounds for the search space hyper_params = [k, hidden_dim, spectral_radius, p, alpha, beta] for param in hyper_params: assert isinstance(param, tuple), "{} must be a tuple".format(param) assert len(param) == 2, "{} must have two arguments; the upper" \ "and lower bound".format(param) self.lwr_k = k[0] self.upr_k = k[1] self.lwr_hidden_dim = hidden_dim[0] self.upr_hidden_dim = hidden_dim[1] self.lwr_spectral_radius = spectral_radius[0] self.upr_spectral_radius = spectral_radius[1] self.lwr_p = p[0] self.upr_p = p[1] self.lwr_alpha = alpha[0] self.upr_alpha = alpha[1] self.lwr_beta = beta[0] self.upr_beta = beta[1] self.rng = create_rng(random_state) self.gpr = GaussianProcessRegressor(kernel=Matern(), random_state=self.rng) # We need a placeholder for different hyper-parameter values that # arrive and the corresponding error values self.H = [] self.y = [] def update_gpr(self, X, y): """ Updates the Gaussian process with new data and error value Updates the Gaussian process by adding, `H`, the list of hyper-parameter values that were used with true function and y is the resulting error from the model Parameters ---------- X : list Hyper-parameter values that were tried y : float Error that resulted from using X on the true function Returns ------- None """ self.H.append(X) self.y.append(y) self.gpr.fit(self.H, self.y) def _sample_uniformly(self, num_samples, lwr_bound, upr_bound): """ Samples uniformly from a non-uniform space Parameters ---------- num_samples : int Number of samples to generate lwr_bound : float Hyper-parameter lower bound upr_bound : float Hyper-parameter upper bound Returns ------- param_vals : np.ndarray Uniformly sampled hyper-parameter values """ # To sample in a uniform fashion we need the base ten representation # of the upper and lower bounds and then we treat this as a region # to sample new_lwr_bound = log10(lwr_bound) new_upr_bound = log10(upr_bound) samples = self.rng.uniform(low=new_lwr_bound, high=new_upr_bound, size=(num_samples, 1)) param_vals = np.power(10, samples) return param_vals def _build_options(self, num_samples=1000): """ Builds matrix which defines possible options for this iteration Parameters ---------- num_samples : int, optional Number of hyper-parameter samples to generate Returns ------- H_space : np.ndarray Matrix of options for the ESN hyper-parameters """ k_vals = self.rng.randint(low=self.lwr_k, high=self.upr_k, size=(num_samples, 1), dtype=np.int32) hidden_dim_vals = self.rng.randint(low=self.lwr_hidden_dim, high=self.upr_hidden_dim, size=(num_samples, 1), dtype=np.int32) spectral_radius_vals = self.rng.uniform(low=self.lwr_spectral_radius, high=self.upr_spectral_radius, size=(num_samples, 1)) p_vals = self.rng.uniform(low=self.lwr_p, high=self.upr_p, size=(num_samples, 1)) alpha_vals = self.rng.uniform(low=self.lwr_alpha, high=self.upr_alpha, size=(num_samples, 1)) beta_vals = self._sample_uniformly(num_samples, self.lwr_beta, self.upr_beta) H_space = np.concatenate([k_vals, hidden_dim_vals, spectral_radius_vals, p_vals, alpha_vals, beta_vals], axis=1) return H_space def find_best_choices(self, num_samples=1000, num_choices=1): """ Finds the best hyper-parameter combination Parameters ---------- num_samples : int, optional Number of hyper-parameter samples to generate num_choices : int, optional Number of choices to select Returns ------- param_vals : dict Best hyper-parameter values for the current Gaussian process """ H_space = self._build_options(num_samples) # For the first MPI iteration because there is no prior, randomly # sample num_choices points if num_choices > 1: idx = self.rng.choice(np.arange(num_samples), size=num_choices, replace=False) best_vals = H_space[idx, :] else: y_pred = self.gpr.sample_y(H_space, random_state=self.rng) choices = np.argmin(y_pred) best_vals = H_space[choices, :] hyper_parameters = ['k', 'hidden_dim', 'spectral_radius', 'p', 'alpha', 'beta'] param_vals = {} for (i, val) in enumerate(hyper_parameters): if num_choices == 1: param_vals[val] = best_vals[i] if (val == 'k') or (val == 'hidden_dim'): param_vals[val] = int(param_vals[val]) else: param_vals[val] = best_vals[:, i] if (val == 'k') or (val == 'hidden_dim'): param_vals[val] = param_vals[val].astype(int) return param_vals def return_best_parameters(self): min_error = min(self.y) index = self.y.index(min_error) print("Minimum Validation Error = ", min_error) print("Best parameters found = ", self.H[index]) return min_error, self.H[index]
[ [ [ 17, 22 ], [ 3747, 3752 ], [ 3788, 3793 ] ], [ [ 60, 84 ], [ 2140, 2164 ] ], [ [ 130, 136 ], [ 2172, 2178 ] ], [ [ 144, 155 ], [ 3958, 3960 ], [ 4536, 4538 ], [ 4799, 4801 ], [ 5453, 5455 ], [ 6355, 6357 ], [ 6593, 6595 ] ], [ [ 175, 185 ], [ 2096, 2106 ] ], [ [ 194, 196 ] ] ]
# coding=utf-8 # Copyright 2022 The Deeplab2 Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests of model exports for axial_resnet_instances.""" import os from absl import flags from absl.testing import parameterized import tensorflow as tf from deeplab2.model.encoder import axial_resnet_instances FLAGS = flags.FLAGS class ModelExportTest(tf.test.TestCase, parameterized.TestCase): @parameterized.parameters( ('resnet50',), ('resnet50_beta',), ('max_deeplab_s_backbone',), ('max_deeplab_l_backbone',), ('axial_resnet_s',), ('axial_resnet_l',), ('axial_deeplab_s',), ('axial_deeplab_l',), ('swidernet',), ('axial_swidernet',), ) def test_model_export(self, model_name): model = axial_resnet_instances.get_model( model_name, output_stride=16, backbone_layer_multiplier=1.0, bn_layer=tf.keras.layers.BatchNormalization, conv_kernel_weight_decay=0.0001, # Test with small models only. num_blocks=[2, 2, 2, 2], # Disable drop path as it is not compatible with model exporting. block_group_config={'drop_path_keep_prob': 1.0}) model(tf.keras.Input([257, 257, 3], batch_size=1), training=False) export_dir = os.path.join( FLAGS.test_tmpdir, 'test_model_export', model_name) model.save(export_dir) if __name__ == '__main__': tf.test.main()
[ [ [ 666, 668 ], [ 1777, 1779 ] ], [ [ 687, 692 ], [ 824, 829 ] ], [ [ 718, 731 ], [ 878, 891 ], [ 907, 920 ] ], [ [ 739, 755 ], [ 860, 862 ], [ 1909, 1911 ], [ 1409, 1411 ], [ 1699, 1701 ] ], [ [ 792, 814 ], [ 1273, 1295 ] ], [ [ 816, 821 ], [ 1799, 1804 ] ], [ [ 844, 859 ] ] ]
from rip_pages import rip_pages from read_pages import read_pages from format_csv import format_csv # STEP 1: CONFIG VARIABLES SOURCE_DOC = '114sdoc7' FILE_NAME = "GPO-CDOC-" + SOURCE_DOC + ".pdf" OUT_FILE = 'senate_data.csv' MISSING_FILE = 'missing_data.json' START_PAGE = 17 END_PAGE = 2259 # STEP 2: Rip text, read pages, format output rip_pages(FILE_NAME, START_PAGE, END_PAGE) read_pages(START_PAGE, END_PAGE, OUT_FILE, MISSING_FILE) format_csv(SOURCE_DOC, OUT_FILE) # STEP 3: Reconcile data in MISSING_FILE
[ [ [ 22, 31 ], [ 341, 350 ] ], [ [ 55, 65 ], [ 384, 394 ] ], [ [ 89, 99 ], [ 441, 451 ] ], [ [ 128, 138 ], [ 178, 188 ], [ 452, 462 ] ], [ [ 152, 161 ], [ 351, 360 ] ], [ [ 198, 206 ], [ 417, 425 ], [ 464, 472 ] ], [ [ 227, 239 ], [ 427, 439 ] ], [ [ 262, 272 ], [ 362, 372 ], [ 395, 405 ] ], [ [ 278, 286 ], [ 374, 382 ], [ 407, 415 ] ] ]
my_list = [1, 2, 2, 4, 6] #print reverse print(my_list[::-1]) student = {'user': 'Lubo', 'pass': 'admin', 'course': ['C# Fundamentals', 'C# ASP', 'Algorithms']} for key in student: print(key) for kvp in student.items(): print(f'the key is: {kvp[0]}, and values are: {kvp[1]} ') print(student['pass']) print(student.get('Pass', 'Sorry mate no such key')) if 'pass' in student.keys(): print('Here') else: print('Not here') second_part_student = { 'age': 25 } student.update(second_part_student) print(student)
[ [ [ 0, 7 ], [ 47, 54 ] ], [ [ 63, 70 ], [ 196, 203 ], [ 232, 239 ], [ 319, 326 ], [ 342, 349 ], [ 403, 410 ], [ 506, 513 ], [ 548, 555 ] ], [ [ 189, 192 ], [ 215, 218 ] ], [ [ 225, 228 ], [ 274, 277 ], [ 300, 303 ] ], [ [ 466, 485 ], [ 521, 540 ] ] ]
import datetime from dateutil.relativedelta import relativedelta print("Programa para calcular o prazo de exame de ultrassom...\nO mesmo deve ser feito entre 22 e 24 semanas de gestação") print("você deverá informar com quantas semanasa de gestação a paciente se encontra, no formato aaaa/mm/dd") semanas = int(input("Com quantas semanas de gestação a paciente se encontra hoje? ")) exameInicio = 22-semanas exameFinal = 24 - semanas morfologicoInicio = datetime.date.today()+ relativedelta(weeks=exameInicio) morfologicoFinal = datetime.date.today() + relativedelta(weeks=exameFinal) dfinal = morfologicoFinal.strftime('%d/%m/%Y') dinicial = morfologicoInicio.strftime('%d/%m/%Y') print("O exame deverá ser feito entre ",dinicial, " e ", dfinal)
[ [ [ 7, 15 ], [ 456, 464 ], [ 531, 539 ] ], [ [ 51, 64 ], [ 479, 492 ], [ 555, 568 ] ], [ [ 298, 305 ], [ 401, 408 ], [ 427, 434 ] ], [ [ 384, 395 ], [ 499, 510 ] ], [ [ 409, 419 ], [ 575, 585 ] ], [ [ 436, 453 ], [ 645, 662 ] ], [ [ 512, 528 ], [ 596, 612 ] ], [ [ 587, 593 ], [ 742, 748 ] ], [ [ 634, 642 ], [ 725, 733 ] ] ]
from __future__ import annotations from typing import Generator, NoReturn class StdReader: def __init__( self, ) -> NoReturn: import sys self.buf = sys.stdin.buffer self.lines = self.async_readlines() self.chunks: Generator def async_readlines( self, ) -> Generator: while True: gen = self.line_chunks() yield gen def line_chunks( self, ) -> Generator: ln = self.buf.readline() for chunk in ln.split(): yield chunk def __call__( self, ) -> bytes: try: chunk = next(self.chunks) except: self.chunks = next( self.lines, ) chunk = self() return chunk def str( self, ) -> str: b = self() return b.decode() def int( self, ) -> int: return int(self.str()) from abc import ABC, abstractmethod class Solver(ABC): def __init__(self): self.reader = StdReader() def __call__( self, ): self.prepare() self.solve() @abstractmethod def prepare(self): ... @abstractmethod def solve(self): ... import numpy as np from scipy.sparse import csr_matrix from scipy.sparse.csgraph import floyd_warshall class Problem( Solver, ): def prepare(self): reader = self.reader n = reader.int() m = reader.int() a = [reader.int() for _ in range(3 * m)] a = np.array( a, ).reshape(m, 3) a, b, t = a.T self.n, self.m = n, m self.a = a - 1 self.b = b - 1 self.t = t def solve(self): self.compute_dist_mat() dist = self.dist d = dist.max(axis=1).min() print(int(d)) def compute_dist_mat( self, ): n = self.n a = self.a b = self.b t = self.t g = csr_matrix( (t, (a, b)), shape=(n, n), ) dist = floyd_warshall( csgraph=g, directed=False, ) self.dist = dist def main(): t = 1 # t = StdReader().int() for _ in range(t): Problem()() if __name__ == "__main__": main()
[ [ [ 23, 34 ] ], [ [ 55, 64 ], [ 266, 275 ], [ 325, 334 ], [ 460, 469 ] ], [ [ 66, 74 ], [ 135, 143 ] ], [ [ 83, 92 ], [ 1064, 1073 ] ], [ [ 977, 980 ], [ 1012, 1015 ] ], [ [ 982, 996 ], [ 1166, 1180 ], [ 1222, 1236 ] ], [ [ 1005, 1011 ], [ 1396, 1402 ] ], [ [ 1279, 1290 ], [ 1570, 1572 ] ], [ [ 1316, 1326 ], [ 2008, 2018 ] ], [ [ 1360, 1374 ], [ 2096, 2110 ] ], [ [ 1383, 1390 ], [ 2281, 2288 ] ], [ [ 2204, 2208 ], [ 2326, 2330 ] ] ]
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Tests for the astropylibrarian.reducers.utils module. """ from __future__ import annotations from typing import TYPE_CHECKING from astropylibrarian.reducers.utils import iter_sphinx_sections if TYPE_CHECKING: from .conftest import HtmlTestData def test_iter_sphinx_sections(color_excess_tutorial: HtmlTestData) -> None: """Test the iter_sphinx_sections algorithm using the color-excess.html notebook tutorial example. This example is made complicated by the fact that the heading levels are not strictly hierarchical. There are multiple "h1" tags. """ doc = color_excess_tutorial.parse() root = doc.cssselect(".card .section")[0] sections = [] for s in iter_sphinx_sections( root_section=root, base_url=color_excess_tutorial.url, headers=[], header_callback=lambda x: x.rstrip("¶"), content_callback=lambda x: x.strip(), ): sections.append(s) assert len(sections) == 5 assert sections[0].headings == [ "Analyzing interstellar reddening and calculating synthetic " "photometry", "Learning Goals", ] assert sections[0].header_level == 2 assert sections[0].url == ( "http://learn.astropy.org/rst-tutorials/color-excess.html" "#learning-goals" ) assert sections[0].content.startswith( "Investigate extinction curve shapes" ) assert sections[1].headings[-1] == "Keywords" assert sections[1].header_level == 2 assert sections[1].content.startswith( "dust extinction, synphot, astroquery, units, photometry, extinction," ) assert sections[2].headings[-1] == "Companion Content" assert sections[2].header_level == 2 assert sections[2].content.startswith("Bessell & Murphy") assert sections[3].headings[-1] == "Summary" assert sections[3].header_level == 2 assert sections[3].content.startswith( "In this tutorial, we will look at some extinction curves from the" ) assert sections[4].headings[-1] == ( "Analyzing interstellar reddening and calculating synthetic " "photometry" ) assert sections[4].header_level == 1 # Demonstrate finding addition h1 sections on a page (that are supposed # to be additional h2 sections in a hierarchical sense). h1_heading = sections[-1].headings[-1] for sibling in root.itersiblings(tag="div"): if "section" in sibling.classes: for s in iter_sphinx_sections( root_section=sibling, base_url=color_excess_tutorial.url, headers=[h1_heading], header_callback=lambda x: x.rstrip("¶"), content_callback=lambda x: x.strip(), ): sections.append(s) assert sections[5].header_level == 2 assert sections[5].headings == [ "Analyzing interstellar reddening and calculating synthetic " "photometry", "Introduction", ] assert sections[6].header_level == 2 assert sections[6].headings == [ "Analyzing interstellar reddening and calculating synthetic " "photometry", "Example 1: Investigate Extinction Models", ] assert sections[7].header_level == 2 assert sections[7].headings == [ "Analyzing interstellar reddening and calculating synthetic " "photometry", "Example 2: Deredden a Spectrum", ] assert sections[8].header_level == 3 assert sections[8].headings == [ "Analyzing interstellar reddening and calculating synthetic " "photometry", "Example 3: Calculate Color Excess with synphot", "Exercise", ] assert sections[9].header_level == 2 assert sections[9].headings == [ "Analyzing interstellar reddening and calculating synthetic " "photometry", "Example 3: Calculate Color Excess with synphot", ]
[ [ [ 149, 160 ] ], [ [ 181, 194 ], [ 265, 278 ] ], [ [ 240, 260 ], [ 768, 788 ], [ 2541, 2561 ] ], [ [ 306, 318 ], [ 374, 386 ] ], [ [ 325, 350 ] ] ]
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tf.contrib.layers.sparse_feature_cross.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy from tensorflow.contrib import layers from tensorflow.contrib.layers.python.ops import sparse_feature_cross_op from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import sparse_ops from tensorflow.python.platform import test class SparseCrossOpTest(test.TestCase): def test_simple(self): """Tests a simple scenario. """ op = sparse_feature_cross_op.sparse_feature_cross([ self._sparse_tensor([['batch1-FC1-F1'], ['batch2-FC1-F1', 'batch2-FC1-F2']]), self._sparse_tensor([['batch1-FC2-F1'], ['batch2-FC2-F1', 'batch2-FC2-F2']]) ]) expected_out = self._sparse_tensor([['batch1-FC1-F1_X_batch1-FC2-F1'], [ 'batch2-FC1-F1_X_batch2-FC2-F1', 'batch2-FC1-F1_X_batch2-FC2-F2', 'batch2-FC1-F2_X_batch2-FC2-F1', 'batch2-FC1-F2_X_batch2-FC2-F2' ]]) with self.test_session() as sess: self._assert_sparse_tensor_equals(expected_out, sess.run(op)) def test_dense(self): """Tests only dense inputs. """ op = sparse_feature_cross_op.sparse_feature_cross([ constant_op.constant([['batch1-FC1-F1', 'batch1-FC1-F2'], ['batch2-FC1-F1', 'batch2-FC1-F2']], dtypes.string), constant_op.constant([['batch1-FC2-F1', 'batch1-FC2-F2'], ['batch2-FC2-F1', 'batch2-FC2-F2']], dtypes.string), ]) expected_out = self._sparse_tensor([[ 'batch1-FC1-F1_X_batch1-FC2-F1', 'batch1-FC1-F1_X_batch1-FC2-F2', 'batch1-FC1-F2_X_batch1-FC2-F1', 'batch1-FC1-F2_X_batch1-FC2-F2' ], [ 'batch2-FC1-F1_X_batch2-FC2-F1', 'batch2-FC1-F1_X_batch2-FC2-F2', 'batch2-FC1-F2_X_batch2-FC2-F1', 'batch2-FC1-F2_X_batch2-FC2-F2' ]]) with self.test_session() as sess: self._assert_sparse_tensor_equals(expected_out, sess.run(op)) def test_integer_mixed_string_sparse(self): """Tests mixed type.""" op = sparse_feature_cross_op.sparse_feature_cross([ self._sparse_tensor([[11], [333, 55555]]), self._sparse_tensor([['batch1-FC2-F1'], ['batch2-FC2-F1', 'batch2-FC2-F2']]) ]) expected_out = self._sparse_tensor([['11_X_batch1-FC2-F1'], [ '333_X_batch2-FC2-F1', '333_X_batch2-FC2-F2', '55555_X_batch2-FC2-F1', '55555_X_batch2-FC2-F2' ]]) with self.test_session() as sess: self._assert_sparse_tensor_equals(expected_out, sess.run(op)) def test_integer_mixed_string_dense(self): """Tests mixed dense inputs. """ op = sparse_feature_cross_op.sparse_feature_cross([ constant_op.constant([[11, 333], [55555, 999999]], dtypes.int64), constant_op.constant([['batch1-FC2-F1', 'batch1-FC2-F2'], ['batch2-FC2-F1', 'batch2-FC2-F2']], dtypes.string), ]) expected_out = self._sparse_tensor([[ '11_X_batch1-FC2-F1', '11_X_batch1-FC2-F2', '333_X_batch1-FC2-F1', '333_X_batch1-FC2-F2' ], [ '55555_X_batch2-FC2-F1', '55555_X_batch2-FC2-F2', '999999_X_batch2-FC2-F1', '999999_X_batch2-FC2-F2' ]]) with self.test_session() as sess: self._assert_sparse_tensor_equals(expected_out, sess.run(op)) def test_sparse_cross_dense(self): """Tests sparse and dense inputs. """ op = sparse_feature_cross_op.sparse_feature_cross([ self._sparse_tensor([['batch1-FC1-F1'], ['batch2-FC1-F1', 'batch2-FC1-F2']]), constant_op.constant([['batch1-FC2-F1', 'batch1-FC2-F2'], ['batch2-FC2-F1', 'batch2-FC2-F2']], dtypes.string), ]) expected_out = self._sparse_tensor( [['batch1-FC1-F1_X_batch1-FC2-F1', 'batch1-FC1-F1_X_batch1-FC2-F2'], [ 'batch2-FC1-F1_X_batch2-FC2-F1', 'batch2-FC1-F1_X_batch2-FC2-F2', 'batch2-FC1-F2_X_batch2-FC2-F1', 'batch2-FC1-F2_X_batch2-FC2-F2' ]]) with self.test_session() as sess: self._assert_sparse_tensor_equals(expected_out, sess.run(op)) def test_integer_sparse_input(self): """Tests mixed type sparse and dense inputs.""" op = sparse_feature_cross_op.sparse_feature_cross([ self._sparse_tensor([[11], [333, 5555]]), constant_op.constant([['batch1-FC2-F1', 'batch1-FC2-F2'], ['batch2-FC2-F1', 'batch2-FC2-F2']], dtypes.string), ]) expected_out = self._sparse_tensor( [['11_X_batch1-FC2-F1', '11_X_batch1-FC2-F2'], [ '333_X_batch2-FC2-F1', '333_X_batch2-FC2-F2', '5555_X_batch2-FC2-F1', '5555_X_batch2-FC2-F2' ]]) with self.test_session() as sess: self._assert_sparse_tensor_equals(expected_out, sess.run(op)) def test_permutation_3x3x3(self): """Tests 3x3x3 permutation. """ op = sparse_feature_cross_op.sparse_feature_cross([ self._sparse_tensor( [['batch1-FC1-F1', 'batch1-FC1-F2', 'batch1-FC1-F3']]), self._sparse_tensor( [['batch1-FC2-F1', 'batch1-FC2-F2', 'batch1-FC2-F3']]), self._sparse_tensor( [['batch1-FC3-F1', 'batch1-FC3-F2', 'batch1-FC3-F3']]) ]) expected_out = self._sparse_tensor([[ 'batch1-FC1-F1_X_batch1-FC2-F1_X_batch1-FC3-F1', 'batch1-FC1-F1_X_batch1-FC2-F1_X_batch1-FC3-F2', 'batch1-FC1-F1_X_batch1-FC2-F1_X_batch1-FC3-F3', 'batch1-FC1-F1_X_batch1-FC2-F2_X_batch1-FC3-F1', 'batch1-FC1-F1_X_batch1-FC2-F2_X_batch1-FC3-F2', 'batch1-FC1-F1_X_batch1-FC2-F2_X_batch1-FC3-F3', 'batch1-FC1-F1_X_batch1-FC2-F3_X_batch1-FC3-F1', 'batch1-FC1-F1_X_batch1-FC2-F3_X_batch1-FC3-F2', 'batch1-FC1-F1_X_batch1-FC2-F3_X_batch1-FC3-F3', 'batch1-FC1-F2_X_batch1-FC2-F1_X_batch1-FC3-F1', 'batch1-FC1-F2_X_batch1-FC2-F1_X_batch1-FC3-F2', 'batch1-FC1-F2_X_batch1-FC2-F1_X_batch1-FC3-F3', 'batch1-FC1-F2_X_batch1-FC2-F2_X_batch1-FC3-F1', 'batch1-FC1-F2_X_batch1-FC2-F2_X_batch1-FC3-F2', 'batch1-FC1-F2_X_batch1-FC2-F2_X_batch1-FC3-F3', 'batch1-FC1-F2_X_batch1-FC2-F3_X_batch1-FC3-F1', 'batch1-FC1-F2_X_batch1-FC2-F3_X_batch1-FC3-F2', 'batch1-FC1-F2_X_batch1-FC2-F3_X_batch1-FC3-F3', 'batch1-FC1-F3_X_batch1-FC2-F1_X_batch1-FC3-F1', 'batch1-FC1-F3_X_batch1-FC2-F1_X_batch1-FC3-F2', 'batch1-FC1-F3_X_batch1-FC2-F1_X_batch1-FC3-F3', 'batch1-FC1-F3_X_batch1-FC2-F2_X_batch1-FC3-F1', 'batch1-FC1-F3_X_batch1-FC2-F2_X_batch1-FC3-F2', 'batch1-FC1-F3_X_batch1-FC2-F2_X_batch1-FC3-F3', 'batch1-FC1-F3_X_batch1-FC2-F3_X_batch1-FC3-F1', 'batch1-FC1-F3_X_batch1-FC2-F3_X_batch1-FC3-F2', 'batch1-FC1-F3_X_batch1-FC2-F3_X_batch1-FC3-F3' ]]) with self.test_session() as sess: self._assert_sparse_tensor_equals(expected_out, sess.run(op)) def test_permutation_3x1x2(self): """Tests 3x1x2 permutation. """ op = sparse_feature_cross_op.sparse_feature_cross([ self._sparse_tensor( [['batch1-FC1-F1', 'batch1-FC1-F2', 'batch1-FC1-F3']]), self._sparse_tensor([['batch1-FC2-F1']]), self._sparse_tensor([['batch1-FC3-F1', 'batch1-FC3-F2']]) ]) expected_out = self._sparse_tensor([[ 'batch1-FC1-F1_X_batch1-FC2-F1_X_batch1-FC3-F1', 'batch1-FC1-F1_X_batch1-FC2-F1_X_batch1-FC3-F2', 'batch1-FC1-F2_X_batch1-FC2-F1_X_batch1-FC3-F1', 'batch1-FC1-F2_X_batch1-FC2-F1_X_batch1-FC3-F2', 'batch1-FC1-F3_X_batch1-FC2-F1_X_batch1-FC3-F1', 'batch1-FC1-F3_X_batch1-FC2-F1_X_batch1-FC3-F2' ]]) with self.test_session() as sess: self._assert_sparse_tensor_equals(expected_out, sess.run(op)) def test_large_batch(self): """Tests with large batch size to force multithreding. """ batch_size = 5000 col1 = [] col2 = [] col3 = [] for b in range(batch_size): col1.append( ['batch%d-FC1-F1' % b, 'batch%d-FC1-F2' % b, 'batch%d-FC1-F3' % b]) col2.append(['batch%d-FC2-F1' % b]) col3.append(['batch%d-FC3-F1' % b, 'batch%d-FC3-F2' % b]) op = sparse_feature_cross_op.sparse_feature_cross([ self._sparse_tensor(col1), self._sparse_tensor(col2), self._sparse_tensor(col3) ]) col_out = [] for b in range(batch_size): col_out.append([ 'batch%d-FC1-F1_X_batch%d-FC2-F1_X_batch%d-FC3-F1' % (b, b, b), 'batch%d-FC1-F1_X_batch%d-FC2-F1_X_batch%d-FC3-F2' % (b, b, b), 'batch%d-FC1-F2_X_batch%d-FC2-F1_X_batch%d-FC3-F1' % (b, b, b), 'batch%d-FC1-F2_X_batch%d-FC2-F1_X_batch%d-FC3-F2' % (b, b, b), 'batch%d-FC1-F3_X_batch%d-FC2-F1_X_batch%d-FC3-F1' % (b, b, b), 'batch%d-FC1-F3_X_batch%d-FC2-F1_X_batch%d-FC3-F2' % (b, b, b) ]) expected_out = self._sparse_tensor(col_out) with self.test_session() as sess: self._assert_sparse_tensor_equals(expected_out, sess.run(op)) def test_one_column_empty(self): """Tests when one column is empty. The crossed tensor should be empty. """ op = sparse_feature_cross_op.sparse_feature_cross([ self._sparse_tensor([['batch1-FC1-F1', 'batch1-FC1-F2']]), self._sparse_tensor([], 1), self._sparse_tensor([['batch1-FC3-F1', 'batch1-FC3-F2']]) ]) with self.test_session() as sess: self._assert_sparse_tensor_empty(sess.run(op)) def test_some_columns_empty(self): """Tests when more than one columns are empty. Cross for the corresponding batch should be empty. """ op = sparse_feature_cross_op.sparse_feature_cross([ self._sparse_tensor([['batch1-FC1-F1', 'batch1-FC1-F2']], 2), self._sparse_tensor([['batch1-FC2-F1'], ['batch2-FC2-F1']], 2), self._sparse_tensor([['batch1-FC3-F1', 'batch1-FC3-F2']], 2) ]) expected_out = self._sparse_tensor([[ 'batch1-FC1-F1_X_batch1-FC2-F1_X_batch1-FC3-F1', 'batch1-FC1-F1_X_batch1-FC2-F1_X_batch1-FC3-F2', 'batch1-FC1-F2_X_batch1-FC2-F1_X_batch1-FC3-F1', 'batch1-FC1-F2_X_batch1-FC2-F1_X_batch1-FC3-F2' ]], 2) with self.test_session() as sess: self._assert_sparse_tensor_equals(expected_out, sess.run(op)) def test_all_columns_empty(self): """Tests when all columns are empty. The crossed tensor should be empty. """ op = sparse_feature_cross_op.sparse_feature_cross([ self._sparse_tensor([]), self._sparse_tensor([]), self._sparse_tensor([]) ]) with self.test_session() as sess: self._assert_sparse_tensor_empty(sess.run(op)) def test_hashed_output_zero_bucket(self): """Tests a simple scenario. """ op = sparse_feature_cross_op.sparse_feature_cross( [ self._sparse_tensor([['batch1-FC1-F1']]), self._sparse_tensor([['batch1-FC2-F1']]), self._sparse_tensor([['batch1-FC3-F1']]) ], hashed_output=True) # Check actual hashed output to prevent unintentional hashing changes. expected_out = self._sparse_tensor([[3735511728867393167]]) with self.test_session() as sess: self._assert_sparse_tensor_equals(expected_out, sess.run(op)) def test_hashed_output_zero_bucket_v2(self): """Tests a simple scenario. """ op = sparse_feature_cross_op.sparse_feature_cross( [ self._sparse_tensor([['batch1-FC1-F1']]), self._sparse_tensor([['batch1-FC2-F1']]), self._sparse_tensor([['batch1-FC3-F1']]) ], hashed_output=True, hash_key=layers.SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY) # Check actual hashed output to prevent unintentional hashing changes. expected_out = self._sparse_tensor([[1971693436396284976]]) with self.test_session() as sess: self._assert_sparse_tensor_equals(expected_out, sess.run(op)) # TODO(sibyl-Aix6ihai): Add benchmark to compare Hashed vs Non-hashed. def test_hashed_output(self): """Tests a simple scenario. """ op = sparse_feature_cross_op.sparse_feature_cross( [ self._sparse_tensor([['batch1-FC1-F1']]), self._sparse_tensor([['batch1-FC2-F1']]), self._sparse_tensor([['batch1-FC3-F1']]) ], hashed_output=True, num_buckets=100) # Check actual hashed output to prevent unintentional hashing changes. expected_out = self._sparse_tensor([[74]]) with self.test_session() as sess: self._assert_sparse_tensor_equals(expected_out, sess.run(op)) def test_hashed_output_v2(self): """Tests a simple scenario. """ op = sparse_feature_cross_op.sparse_feature_cross( [ self._sparse_tensor([['batch1-FC1-F1']]), self._sparse_tensor([['batch1-FC2-F1']]), self._sparse_tensor([['batch1-FC3-F1']]) ], hashed_output=True, num_buckets=100, hash_key=layers.SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY) # Check actual hashed output to prevent unintentional hashing changes. expected_out = self._sparse_tensor([[83]]) with self.test_session() as sess: self._assert_sparse_tensor_equals(expected_out, sess.run(op)) def test_hashed_output_v1_has_collision(self): """Tests the old version of the fingerprint concatenation has collisions. """ # The last 10 bits of 359 and 1024+359 are identical. # As a result, all the crosses collide. t1 = constant_op.constant([[359], [359 + 1024]]) t2 = constant_op.constant([list(range(10)), list(range(10))]) cross = sparse_feature_cross_op.sparse_feature_cross( [t2, t1], hashed_output=True, num_buckets=1024) cross_dense = sparse_ops.sparse_tensor_to_dense(cross) with session.Session(): values = cross_dense.eval() self.assertTrue(numpy.equal(values[0], values[1]).all()) def test_hashed_output_v2_has_no_collision(self): """Tests the new version of the fingerprint concatenation has no collisions. """ # Although the last 10 bits of 359 and 1024+359 are identical. # As a result, all the crosses shouldn't collide. t1 = constant_op.constant([[359], [359 + 1024]]) t2 = constant_op.constant([list(range(10)), list(range(10))]) cross = sparse_feature_cross_op.sparse_feature_cross( [t2, t1], hashed_output=True, num_buckets=1024, hash_key=layers.SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY) cross_dense = sparse_ops.sparse_tensor_to_dense(cross) with session.Session(): values = cross_dense.eval() self.assertTrue(numpy.not_equal(values[0], values[1]).all()) def test_hashed_3x1x2(self): """Tests 3x1x2 permutation with hashed output. """ op = sparse_feature_cross_op.sparse_feature_cross( [ self._sparse_tensor( [['batch1-FC1-F1', 'batch1-FC1-F2', 'batch1-FC1-F3']]), self._sparse_tensor([['batch1-FC2-F1']]), self._sparse_tensor([['batch1-FC3-F1', 'batch1-FC3-F2']]) ], hashed_output=True, num_buckets=1000) with self.test_session() as sess: out = sess.run(op) self.assertEqual(6, len(out.values)) self.assertAllEqual([[0, i] for i in range(6)], out.indices) self.assertTrue(all(x < 1000 and x >= 0 for x in out.values)) all_values_are_different = len(out.values) == len(set(out.values)) self.assertTrue(all_values_are_different) def _assert_sparse_tensor_empty(self, sp): self.assertEquals(0, sp.indices.size) self.assertEquals(0, sp.values.size) # TODO(zakaria): check if we can ignore the first dim of the shape. self.assertEquals(0, sp.dense_shape[1]) def _assert_sparse_tensor_equals(self, sp1, sp2): self.assertAllEqual(sp1.indices.eval(), sp2.indices) self.assertAllEqual(sp1.values.eval(), sp2.values) self.assertAllEqual(sp1.dense_shape.eval(), sp2.dense_shape) def _sparse_tensor(self, data, batch_size=-1): """Generates a SparseTensor. Args: data: Should be a list of list of strings or int64. Each item of the outer list represents a batch. Each item of the batch is a feature of a specific feature column. batch_size: optional batch size, especially for cases when data has no entry for some batches. Returns: A SparseTensor. """ indices = [] values = [] max_col_count = 0 for batch, batch_ix in zip(data, range(len(data))): for column, column_ix in zip(batch, range(len(batch))): indices.append([batch_ix, column_ix]) values.append(column) max_col_count = max(max_col_count, column_ix + 1) shape = [batch_size if batch_size != -1 else len(data), max_col_count] value_type = (dtypes.string if not values or isinstance(values[0], str) else dtypes.int64) return sparse_tensor.SparseTensor( constant_op.constant(indices, dtypes.int64, [len(indices), 2]), constant_op.constant(values, value_type, [len(indices)]), constant_op.constant(shape, dtypes.int64)) if __name__ == '__main__': test.main()
[ [ [ 769, 784 ] ], [ [ 808, 816 ] ], [ [ 840, 854 ] ], [ [ 863, 868 ], [ 14912, 14917 ], [ 15671, 15676 ] ], [ [ 901, 907 ], [ 12686, 12692 ], [ 14024, 14030 ], [ 15482, 15488 ] ], [ [ 957, 980 ], [ 1385, 1408 ], [ 2080, 2103 ], [ 3033, 3056 ], [ 3639, 3662 ], [ 4425, 4448 ], [ 5265, 5288 ], [ 5965, 5988 ], [ 8089, 8112 ], [ 9260, 9283 ], [ 10223, 10246 ], [ 10699, 10722 ], [ 11486, 11509 ], [ 11815, 11838 ], [ 12413, 12436 ], [ 13132, 13155 ], [ 13726, 13749 ], [ 14667, 14690 ], [ 15347, 15370 ], [ 15816, 15839 ] ], [ [ 1018, 1025 ], [ 14837, 14844 ], [ 15596, 15603 ] ], [ [ 1066, 1077 ], [ 2135, 2146 ], [ 2313, 2324 ], [ 3694, 3705 ], [ 3768, 3779 ], [ 4595, 4606 ], [ 5370, 5381 ], [ 14545, 14556 ], [ 14598, 14609 ], [ 15225, 15236 ], [ 15278, 15289 ], [ 17985, 17996 ], [ 18057, 18068 ], [ 18123, 18134 ] ], [ [ 1118, 1124 ], [ 2289, 2295 ], [ 2467, 2473 ], [ 3745, 3751 ], [ 3922, 3928 ], [ 4749, 4755 ], [ 5524, 5530 ], [ 17843, 17849 ], [ 17924, 17930 ], [ 18015, 18021 ], [ 18151, 18157 ] ], [ [ 1165, 1178 ], [ 17949, 17962 ] ], [ [ 1213, 1223 ], [ 14787, 14797 ], [ 15546, 15556 ] ], [ [ 1263, 1267 ], [ 1294, 1298 ], [ 18197, 18201 ] ], [ [ 1276, 1293 ] ] ]
__all__ = ["ChangeScene", "Runner", "WindowRunner", "NonInteractiveRunner", "newRunner"] from .. import config, render, Logger from ..events import EventLoopManager, WaitForUpdate, WaitForFixedUpdate, WaitForRender from ..errors import PyUnityException import copy import os class ChangeScene(Exception): pass class Runner: def __init__(self): self.scene = None self.next = None self.opened = False def setScene(self, scene): if self.opened: raise PyUnityException("Cannot set scene after opening runner") self.scene = copy.deepcopy(scene) def setNext(self, scene): if self.scene is None: raise PyUnityException("Cannot set next before first scene") self.next = copy.deepcopy(scene) raise ChangeScene def open(self): if self.scene is None: raise PyUnityException("Cannot open runner before setting a scene") if self.opened: Logger.Save() self.opened = True def setup(self): pass def load(self): if self.scene is None: raise PyUnityException("Cannot load runner before setting a scene") Logger.LogLine(Logger.DEBUG, "Starting scene") self.eventLoopManager = EventLoopManager() self.eventLoopManager.schedule(self.scene.updateFixed, ups=50, waitFor=WaitForFixedUpdate) self.eventLoopManager.addLoop(self.scene.startScripts()) def start(self): while True: try: self.eventLoopManager.start() break except ChangeScene: if self.next is None: raise self.eventLoopManager.quit() self.scene.cleanUp() self.scene = self.next self.next = None self.load() def quit(self): self.eventLoopManager.quit() self.scene.cleanUp() self.scene = None self.opened = False class WindowRunner(Runner): def open(self): super(WindowRunner, self).open() os.environ["PYUNITY_GL_CONTEXT"] = "1" self.window = config.windowProvider(self.scene.name) # front buffer self.window.refresh() render.fillScreen() # back buffer self.window.refresh() render.fillScreen() def setup(self): Logger.LogSpecial(Logger.INFO, Logger.ELAPSED_TIME) Logger.LogLine(Logger.DEBUG, "Compiling objects") Logger.LogLine(Logger.INFO, "Compiling shaders") render.compileShaders() Logger.LogSpecial(Logger.INFO, Logger.ELAPSED_TIME) Logger.LogLine(Logger.INFO, "Loading skyboxes") render.compileSkyboxes() Logger.LogSpecial(Logger.INFO, Logger.ELAPSED_TIME) def load(self): super(WindowRunner, self).load() self.eventLoopManager.schedule( self.scene.updateScripts, self.window.updateFunc, ups=config.fps, waitFor=WaitForUpdate) self.eventLoopManager.schedule( self.window.refresh, self.scene.Render, main=True, waitFor=WaitForRender) if self.scene.mainCamera is not None: self.window.setResize(self.scene.mainCamera.Resize) self.scene.startOpenGL() self.scene.startLoop() def start(self): super(WindowRunner, self).start() def quit(self): super(WindowRunner, self).quit() del self.window del os.environ["PYUNITY_GL_CONTEXT"] render.resetShaders() Logger.LogLine(Logger.INFO, "Reset shaders") render.resetSkyboxes() Logger.LogLine(Logger.INFO, "Reset skyboxes") class NonInteractiveRunner(Runner): def load(self): super(NonInteractiveRunner, self).load() self.eventLoopManager.schedule( self.scene.updateScripts, ups=config.fps, waitFor=WaitForUpdate) self.scene.startLoop() def newRunner(): if os.environ["PYUNITY_INTERACTIVE"] == "1": return WindowRunner() else: return NonInteractiveRunner()
[ [ [ 0, 7 ] ], [ [ 105, 111 ], [ 2163, 2169 ], [ 2983, 2989 ], [ 3894, 3900 ] ], [ [ 113, 119 ], [ 2263, 2269 ], [ 2343, 2349 ], [ 2569, 2575 ], [ 2718, 2724 ], [ 3534, 3540 ], [ 3617, 3623 ] ], [ [ 121, 127 ], [ 978, 984 ], [ 1194, 1200 ], [ 1209, 1215 ], [ 2393, 2399 ], [ 2411, 2417 ], [ 2424, 2430 ], [ 2453, 2459 ], [ 2468, 2474 ], [ 2512, 2518 ], [ 2527, 2533 ], [ 2601, 2607 ], [ 2619, 2625 ], [ 2632, 2638 ], [ 2662, 2668 ], [ 2677, 2683 ], [ 2751, 2757 ], [ 2769, 2775 ], [ 2782, 2788 ], [ 3564, 3570 ], [ 3579, 3585 ], [ 3648, 3654 ], [ 3663, 3669 ] ], [ [ 149, 165 ], [ 1273, 1289 ] ], [ [ 167, 180 ], [ 3003, 3016 ], [ 3914, 3927 ] ], [ [ 182, 200 ], [ 1371, 1389 ] ], [ [ 202, 215 ], [ 3141, 3154 ] ], [ [ 237, 253 ], [ 508, 524 ], [ 688, 704 ], [ 880, 896 ], [ 1124, 1140 ] ], [ [ 261, 265 ], [ 587, 591 ], [ 763, 767 ] ], [ [ 273, 275 ], [ 2101, 2103 ], [ 3493, 3495 ], [ 3985, 3987 ] ], [ [ 283, 294 ], [ 798, 809 ], [ 1602, 1613 ] ], [ [ 323, 329 ], [ 2023, 2029 ], [ 3722, 3728 ] ], [ [ 2010, 2022 ], [ 2066, 2078 ], [ 2838, 2850 ], [ 3366, 3378 ], [ 3429, 3441 ], [ 4042, 4054 ] ], [ [ 3701, 3721 ], [ 3765, 3785 ], [ 4082, 4102 ] ], [ [ 3965, 3974 ] ] ]
""" Sphinx plugins for RapidSMS documentation. """ try: import json except ImportError: try: import simplejson as json except ImportError: try: from django.utils import simplejson as json except ImportError: json = None from sphinx import addnodes, roles from docutils.parsers.rst import Directive def setup(app): app.add_crossref_type( directivename = "setting", rolename = "setting", indextemplate = "pair: %s; setting", ) app.add_crossref_type( directivename = "templatetag", rolename = "ttag", indextemplate = "pair: %s; template tag" ) app.add_crossref_type( directivename = "templatefilter", rolename = "tfilter", indextemplate = "pair: %s; template filter" ) app.add_crossref_type( directivename = "router", rolename = "router", indextemplate = "pair: %s; router", ) app.add_config_value('rapidsms_next_version', '0.0', True) app.add_directive('versionadded', VersionDirective) app.add_directive('versionchanged', VersionDirective) class VersionDirective(Directive): has_content = True required_arguments = 1 optional_arguments = 1 final_argument_whitespace = True option_spec = {} def run(self): env = self.state.document.settings.env arg0 = self.arguments[0] is_nextversion = env.config.rapidsms_next_version == arg0 ret = [] node = addnodes.versionmodified() ret.append(node) if not is_nextversion: if len(self.arguments) == 1: linktext = 'Please, see the release notes </releases/%s>' % (arg0) xrefs = roles.XRefRole()('doc', linktext, linktext, self.lineno, self.state) node.extend(xrefs[0]) node['version'] = arg0 else: node['version'] = "Development version" node['type'] = self.name if len(self.arguments) == 2: inodes, messages = self.state.inline_text(self.arguments[1], self.lineno+1) node.extend(inodes) if self.content: self.state.nested_parse(self.content, self.content_offset, node) ret = ret + messages env.note_versionchange(node['type'], node['version'], node, self.lineno) return ret
[ [ [ 68, 72 ] ], [ [ 117, 135 ] ], [ [ 210, 228 ] ], [ [ 269, 273 ] ], [ [ 301, 309 ], [ 1533, 1541 ] ], [ [ 311, 316 ], [ 1764, 1769 ] ], [ [ 350, 359 ], [ 1188, 1197 ] ], [ [ 366, 371 ] ], [ [ 1171, 1187 ], [ 1087, 1103 ], [ 1145, 1161 ] ] ]
#!/usr/bin/env python3 # pylint: disable=unused-import import collections import functools import io import itertools import operator as op import re import timeit import numpy as np import aocd YEAR = 2021 DAY = 11 def step(grid): grid += 1 flash = np.zeros_like(grid, dtype=bool) while np.any(grid[~flash] > 9): new_flash = (grid > 9) ^ flash grid[:-1, :-1] += new_flash[1:, 1:] grid[:-1, :] += new_flash[1:, :] grid[:-1, 1:] += new_flash[1:, :-1] grid[:, :-1] += new_flash[:, 1:] grid[:, 1:] += new_flash[:, :-1] grid[1:, :-1] += new_flash[:-1, 1:] grid[1:, :] += new_flash[:-1, :] grid[1:, 1:] += new_flash[:-1, :-1] flash |= new_flash grid[flash] = 0 return flash def main(): data = """5483143223 2745854711 5264556173 6141336146 6357385478 4167524645 2176841721 6882881134 4846848554 5283751526""" data = aocd.get_data(day=DAY, year=YEAR) inlist = np.array([list(map(int, l)) for l in data.split('\n')]) print(inlist) grid = inlist.copy() num_flashes = 0 for i in range(100): num_flashes += np.sum(step(grid)) print(num_flashes) answer = num_flashes aocd.submit(answer, part='a', day=DAY, year=YEAR) grid = inlist.copy() for i in itertools.count(1): flash = step(grid) if np.all(flash): answer = i break print(answer) aocd.submit(answer, part='b', day=DAY, year=YEAR) if __name__ == '__main__': main()
[ [ [ 63, 74 ] ], [ [ 82, 91 ] ], [ [ 99, 101 ] ], [ [ 109, 118 ], [ 1302, 1311 ] ], [ [ 126, 140 ] ], [ [ 148, 150 ] ], [ [ 158, 164 ] ], [ [ 173, 184 ], [ 263, 265 ], [ 305, 307 ], [ 973, 975 ], [ 1141, 1143 ], [ 1360, 1362 ] ], [ [ 192, 196 ], [ 926, 930 ], [ 1213, 1217 ], [ 1438, 1442 ] ], [ [ 198, 202 ], [ 954, 958 ], [ 1257, 1261 ], [ 1482, 1486 ] ], [ [ 210, 213 ], [ 944, 947 ], [ 1247, 1250 ], [ 1472, 1475 ] ], [ [ 225, 229 ], [ 1148, 1152 ], [ 1338, 1342 ] ], [ [ 780, 784 ], [ 1521, 1525 ] ] ]
import unittest.mock as mock import pytest import requests_mock from openeo.rest.auth.auth import NullAuth, BearerAuth from openeo.rest.connection import Connection, RestApiConnection, connect, OpenEoApiError API_URL = "https://oeo.net/" @pytest.mark.parametrize( ["base", "paths", "expected_path"], [ # Simple ("https://oeo.net", ["foo", "/foo"], "https://oeo.net/foo"), ("https://oeo.net/", ["foo", "/foo"], "https://oeo.net/foo"), # With trailing slash ("https://oeo.net", ["foo/", "/foo/"], "https://oeo.net/foo/"), ("https://oeo.net/", ["foo/", "/foo/"], "https://oeo.net/foo/"), # Deeper ("https://oeo.net/api/v04", ["foo/bar", "/foo/bar"], "https://oeo.net/api/v04/foo/bar"), ("https://oeo.net/api/v04/", ["foo/bar", "/foo/bar"], "https://oeo.net/api/v04/foo/bar"), ("https://oeo.net/api/v04", ["foo/bar/", "/foo/bar/"], "https://oeo.net/api/v04/foo/bar/"), ("https://oeo.net/api/v04/", ["foo/bar/", "/foo/bar/"], "https://oeo.net/api/v04/foo/bar/"), ] ) def test_rest_api_connection_url_handling(requests_mock, base, paths, expected_path): """Test connection __init__ and proper joining of root url and API path""" conn = RestApiConnection(base) requests_mock.get(expected_path, text="payload") requests_mock.post(expected_path, text="payload") for path in paths: assert conn.get(path).text == "payload" assert conn.post(path, {"foo": "bar"}).text == "payload" def test_rest_api_headers(): conn = RestApiConnection(API_URL) with requests_mock.Mocker() as m: def text(request, context): assert request.headers["User-Agent"].startswith("openeo-python-client") assert request.headers["X-Openeo-Bar"] == "XY123" m.get("/foo", text=text) m.post("/foo", text=text) conn.get("/foo", headers={"X-Openeo-Bar": "XY123"}) conn.post("/foo", {}, headers={"X-Openeo-Bar": "XY123"}) def test_connection_with_session(): session = mock.Mock() response = session.request.return_value response.status_code = 200 response.json.return_value = {"foo": "bar"} conn = Connection("https://oeo.net/", session=session) assert conn.capabilities().capabilities == {"foo": "bar"} session.request.assert_any_call( url="https://oeo.net/", method="get", headers=mock.ANY, stream=mock.ANY, auth=mock.ANY ) def test_connect_with_session(): session = mock.Mock() response = session.request.return_value response.status_code = 200 response.json.return_value = {"foo": "bar"} conn = connect("https://oeo.net/", session=session) assert conn.capabilities().capabilities == {"foo": "bar"} session.request.assert_any_call( url="https://oeo.net/", method="get", headers=mock.ANY, stream=mock.ANY, auth=mock.ANY ) def test_api_error(requests_mock): conn = Connection(API_URL) requests_mock.get('https://oeo.net/collections/foobar', status_code=404, json={ "code": "CollectionNotFound", "message": "No such things as a collection 'foobar'", "id": "54321" }) with pytest.raises(OpenEoApiError) as exc_info: conn.describe_collection("foobar") exc = exc_info.value assert exc.http_status_code == 404 assert exc.code == "CollectionNotFound" assert exc.message == "No such things as a collection 'foobar'" assert exc.id == "54321" assert exc.url is None def test_api_error_non_json(requests_mock): conn = Connection(API_URL) requests_mock.get('https://oeo.net/collections/foobar', status_code=500, text="olapola") with pytest.raises(OpenEoApiError) as exc_info: conn.describe_collection("foobar") exc = exc_info.value assert exc.http_status_code == 500 assert exc.code == "unknown" assert exc.message == "olapola" assert exc.id is None assert exc.url is None def test_authenticate_basic(requests_mock): conn = Connection(API_URL) def text_callback(request, context): assert request.headers["Authorization"] == "Basic am9objpqMGhu" return '{"access_token":"w3lc0m3"}' requests_mock.get('https://oeo.net/credentials/basic', text=text_callback) assert isinstance(conn.auth, NullAuth) conn.authenticate_basic(username="john", password="j0hn") assert isinstance(conn.auth, BearerAuth) assert conn.auth.bearer == "w3lc0m3" def test_authenticate_oidc(oidc_test_setup): # see test/rest/conftest.py for `oidc_test_setup` fixture client_id = "myclient" oidc_discovery_url = "https://oeo.net/credentials/oidc" state, webbrowser_open = oidc_test_setup(client_id=client_id, oidc_discovery_url=oidc_discovery_url) # With all this set up, kick off the openid connect flow conn = Connection(API_URL) assert isinstance(conn.auth, NullAuth) conn.authenticate_OIDC(client_id=client_id, webbrowser_open=webbrowser_open) assert isinstance(conn.auth, BearerAuth) assert conn.auth.bearer == state["access_token"] def test_load_collection_arguments(requests_mock): conn = Connection(API_URL) requests_mock.get(API_URL, json={"version": "0.4.0"}) requests_mock.get(API_URL + "collections/FOO", json={ "properties": {"eo:bands": [{"name": "red"}, {"name": "green"}, {"name": "blue"}]} }) spatial_extent = {"west": 1, "south": 2, "east": 3, "north": 4} temporal_extent = ["2019-01-01", "2019-01-22"] im = conn.load_collection( "FOO", spatial_extent=spatial_extent, temporal_extent=temporal_extent, bands=["red", "green"] ) node = im.graph[im.node_id] assert node["process_id"] == "load_collection" assert node["arguments"] == { "id": "FOO", "spatial_extent": spatial_extent, "temporal_extent": temporal_extent, "bands": ["red", "green"] }
[ [ [ 7, 28 ], [ 2044, 2048 ], [ 2391, 2395 ], [ 2408, 2412 ], [ 2423, 2427 ], [ 2487, 2491 ], [ 2831, 2835 ], [ 2848, 2852 ], [ 2863, 2867 ] ], [ [ 37, 43 ], [ 244, 250 ], [ 3152, 3158 ], [ 3649, 3655 ] ], [ [ 51, 64 ], [ 1588, 1601 ] ], [ [ 100, 108 ], [ 4270, 4278 ], [ 4855, 4863 ] ], [ [ 110, 120 ], [ 4375, 4385 ], [ 4979, 4989 ] ], [ [ 156, 166 ], [ 2190, 2200 ], [ 2926, 2936 ], [ 3527, 3537 ], [ 3978, 3988 ], [ 4802, 4812 ], [ 5108, 5118 ] ], [ [ 168, 185 ], [ 1243, 1260 ], [ 1552, 1569 ] ], [ [ 187, 194 ], [ 2633, 2640 ] ], [ [ 196, 210 ], [ 3166, 3180 ], [ 3663, 3677 ] ], [ [ 212, 219 ], [ 1570, 1577 ], [ 2937, 2944 ], [ 3538, 3545 ], [ 3989, 3996 ], [ 4813, 4820 ], [ 5119, 5126 ], [ 5150, 5157 ], [ 5208, 5215 ] ], [ [ 1071, 1108 ] ], [ [ 1516, 1537 ] ], [ [ 1998, 2026 ] ], [ [ 2444, 2469 ] ], [ [ 2884, 2898 ] ], [ [ 3476, 3499 ] ], [ [ 3927, 3950 ] ], [ [ 4434, 4456 ] ], [ [ 5050, 5080 ] ] ]
import asyncio import json import logging from datetime import datetime from typing import Any, Dict, Iterable, List, Optional, Set, Union import httpx import websockets from websockets import exceptions logger = logging.getLogger("yufuquantsdk") class WebsocketAPIClient: def __init__(self, uri: str, ws: websockets.WebSocketClientProtocol = None) -> None: self._uri: str = uri self._ws: websockets.WebSocketClientProtocol = ws self._authed: bool = False self._api_key = "" self._sub_topics: Set[str] = set() self._inputs: asyncio.Queue[str] = asyncio.Queue() self._outputs: asyncio.Queue[str] = asyncio.Queue(maxsize=100) self._run_task: asyncio.Task[Any] = asyncio.get_event_loop().create_task( self._run() ) async def auth(self, api_key: str): message = { "cmd": "auth", "api_key": api_key, } await self._deliver(json.dumps(message)) self._authed = True self._api_key = api_key async def sub(self, topics: Iterable[str]): # Remove duplicated topics if not isinstance(topics, set): topics = set(topics) message = { "cmd": "sub", "topics": list(topics), # Object of type set is not JSON serializable } await self._deliver(json.dumps(message)) self._sub_topics = topics async def unsub(self, topics: Iterable[str]): # Remove duplicated topics if not isinstance(topics, set): topics = set(topics) message = { "cmd": "unsub", "topics": list(topics), } await self._deliver(json.dumps(message)) self._sub_topics = self._sub_topics - topics async def robot_ping(self): data = {"timestamp": int(datetime.now().timestamp() * 1000)} message = {"category": "robotPing", "data": data} await self._broadcast(message) async def robot_log(self, text: str, level: str = "info"): data = { "text": text, "level": level, "timestamp": int(datetime.now().timestamp()) * 1000, } message = {"category": "robotLog", "data": data} await self._broadcast(message) async def robot_position_store(self, positions): data = { "updatedAt": datetime.now().isoformat(), "positions": positions, } message = {"category": "robotPositionStore", "data": data} await self._broadcast(message) async def robot_order_store(self, orders): data = { "updatedAt": datetime.now().isoformat(), "orders": orders, } message = {"category": "robotOrderStore", "data": data} await self._broadcast(message) async def robot_strategy_store(self, data): d = { "updatedAt": datetime.now().isoformat(), "data": data, } message = {"category": "robotStrategyStore", "data": d} await self._broadcast(message) async def _connect(self, **kwargs): # disable ping kwargs["ping_interval"] = None retry_count = 0 for i in range(3): try: self._ws = await websockets.connect(self._uri, **kwargs) break except Exception as exc: logger.exception("Failed to connect to %s: %s.", self._uri, exc) retry_count += 1 if retry_count >= 3: raise await asyncio.sleep(10) logger.info("Connected to %s.", self._uri) async def _reconnect(self): await self._connect() if self._authed: await self.auth(self._api_key) if len(self._sub_topics) > 0: await self.sub(self._sub_topics) logger.info("Reconnected to %s.", self._uri) async def _deliver(self, s: str): await self._inputs.put(s) async def _send(self, s: str): assert self._ws is not None, "No connection!" try: await self._ws.send(s) logger.debug(">>> %s", s) except websockets.ConnectionClosed as exc: logger.exception(exc) await self._reconnect() async def _broadcast(self, message: Dict): data = {"cmd": "broadcast", "message": message} await self._deliver(json.dumps(data)) async def _pong(self, message: Dict[str, int]): await self._send(json.dumps({"pong": message["ping"]})) # todo: handle stop signal async def _run(self): await self._connect() try: while True: incoming: asyncio.Task[Any] = asyncio.create_task(self._ws.recv()) outgoing: asyncio.Task[Any] = asyncio.create_task(self._inputs.get()) done: Set[asyncio.Future[Any]] pending: Set[asyncio.Future[Any]] done, pending = await asyncio.wait( [incoming, outgoing], return_when=asyncio.FIRST_COMPLETED ) # Cancel pending tasks to avoid leaking them. if incoming in pending: incoming.cancel() if outgoing in pending: outgoing.cancel() if incoming in done: try: message = incoming.result() logger.debug("<<< %s", message) except websockets.ConnectionClosed as exc: logger.exception(exc) await self._reconnect() else: decoded = json.loads(message) if "ping" in decoded: await self._pong(decoded) else: try: self._outputs.put_nowait(decoded) except asyncio.QueueFull: logger.warning("The outputs queue is full.") if outgoing in done: message = outgoing.result() await self._send(message) finally: await self.close() async def close(self): ws = self._ws self._ws = None await ws.close() close_status = exceptions.format_close(ws.close_code, ws.close_reason) logger.info(f"Connection closed: {close_status}.") ROBOT_REQ_PATH = "/robots/{robot_id}/" ROBOT_PING_REQ_PATH = "/robots/{robot_id}/ping/" ROBOT_ASSET_RECORD_REQ_PATH = "/robots/{robot_id}/assetRecord/" ROBOT_STRATEGY_PARAMETERS_REQ_PATH = "/robots/{robot_id}/strategyParameters/" ROBOT_CREDENTIAL_KEY_REQ_PATH = "/robots/{robot_id}/credentialKey/" ROBOT_POSITION_STORE_REQ_PATH = "/robots/{robot_id}/positionStore/" ROBOT_ORDER_STORE_REQ_PATH = "/robots/{robot_id}/orderStore/" ROBOT_STRATEGY_STORE_REQ_PATH = "/robots/{robot_id}/strategyStore/" class RESTAPIClient: def __init__(self, base_url: str, api_key: str): self._base_url: str = base_url.rstrip("/") self._api_key: str = api_key async def get_robot(self, robot_id: int): req_path = ROBOT_REQ_PATH.format(robot_id=robot_id) return await self._request("GET", req_path) async def update_robot_asset_record(self, robot_id: int, data: Dict[str, Any]): req_path = ROBOT_ASSET_RECORD_REQ_PATH.format(robot_id=robot_id) return await self._request("PATCH", req_path, data=data) async def update_robot_strategy_store(self, robot_id: int, data: Dict[str, Any]): req_path = ROBOT_STRATEGY_STORE_REQ_PATH.format(robot_id=robot_id) return await self._request("PUT", req_path, data=data) async def update_robot_position_store( self, robot_id: int, data: List[Dict[str, Any]] ): req_path = ROBOT_POSITION_STORE_REQ_PATH.format(robot_id=robot_id) return await self._request("PUT", req_path, data=data) async def update_robot_order_store(self, robot_id: int, data: List[Dict[str, Any]]): req_path = ROBOT_ORDER_STORE_REQ_PATH.format(robot_id=robot_id) return await self._request("PUT", req_path, data=data) async def ping_robot(self, robot_id: int): req_path = ROBOT_PING_REQ_PATH.format(robot_id=robot_id) return await self._request("POST", req_path) async def get_robot_strategy_parameters(self, robot_id: int): req_path = ROBOT_STRATEGY_PARAMETERS_REQ_PATH.format(robot_id=robot_id) return await self._request("GET", req_path) async def get_robot_credential_key(self, robot_id: int): req_path = ROBOT_CREDENTIAL_KEY_REQ_PATH.format(robot_id=robot_id) return await self._request("GET", req_path) async def _request( self, method: str, req_path: str, headers: Optional[Dict[str, str]] = None, params: Optional[Dict[str, str]] = None, data: Optional[Union[Dict, List]] = None, auth: bool = True, ): req_headers = {"Content-Type": "application/json"} if auth: req_headers["X-Api-Key"] = self._api_key if headers is not None: req_headers.update(headers) url = self._base_url + req_path async with httpx.AsyncClient() as client: logger.debug( "%s %s, Request<headers=%s params=%s data=%s>", method, url, req_headers, params, data, ) res = await client.request( method, url, headers=req_headers, params=params, json=data, timeout=5, ) http_text = res.text logger.debug( "%s %s, Response<status_code=%s headers=%s http_text=%s>", method, url, res.status_code, req_headers, http_text, ) res.raise_for_status() if res.status_code == "204": return None return res.json()
[ [ [ 7, 14 ], [ 601, 608 ], [ 580, 587 ], [ 661, 668 ], [ 640, 647 ], [ 732, 739 ], [ 712, 719 ], [ 3578, 3585 ], [ 4725, 4732 ], [ 4705, 4712 ], [ 4808, 4815 ], [ 4788, 4795 ], [ 4875, 4882 ], [ 4925, 4932 ], [ 4984, 4991 ], [ 5052, 5059 ], [ 5985, 5992 ] ], [ [ 22, 26 ], [ 962, 966 ], [ 1368, 1372 ], [ 1705, 1709 ], [ 4419, 4423 ], [ 4515, 4519 ], [ 5701, 5705 ] ], [ [ 34, 41 ], [ 215, 222 ] ], [ [ 63, 71 ], [ 1845, 1853 ], [ 2142, 2150 ], [ 2380, 2388 ], [ 2650, 2658 ], [ 2909, 2917 ] ], [ [ 91, 94 ], [ 725, 728 ], [ 4718, 4721 ], [ 4801, 4804 ], [ 4890, 4893 ], [ 4940, 4943 ], [ 7397, 7400 ], [ 7622, 7625 ], [ 7861, 7864 ], [ 8094, 8097 ] ], [ [ 96, 100 ], [ 4328, 4332 ], [ 4473, 4477 ], [ 7387, 7391 ], [ 7612, 7616 ], [ 7851, 7855 ], [ 8084, 8088 ], [ 8900, 8904 ], [ 8949, 8953 ], [ 9002, 9006 ] ], [ [ 102, 110 ], [ 1076, 1084 ], [ 1458, 1466 ] ], [ [ 112, 116 ], [ 7846, 7850 ], [ 8079, 8083 ], [ 9008, 9012 ] ], [ [ 118, 126 ], [ 8891, 8899 ], [ 8940, 8948 ], [ 8987, 8995 ] ], [ [ 128, 131 ], [ 541, 544 ], [ 4871, 4874 ], [ 4921, 4924 ] ], [ [ 133, 138 ], [ 8996, 9001 ] ], [ [ 147, 152 ], [ 9318, 9323 ] ], [ [ 160, 170 ], [ 314, 324 ], [ 413, 423 ], [ 3280, 3290 ], [ 4181, 4191 ], [ 5511, 5521 ] ], [ [ 194, 204 ], [ 6383, 6393 ] ], [ [ 206, 212 ], [ 3395, 3401 ], [ 3604, 3610 ], [ 3872, 3878 ], [ 4140, 4146 ], [ 4229, 4235 ], [ 5452, 5458 ], [ 6036, 6042 ], [ 5571, 5577 ], [ 6447, 6453 ], [ 9361, 9367 ], [ 9839, 9845 ] ], [ [ 257, 275 ] ], [ [ 6500, 6514 ], [ 7226, 7240 ] ], [ [ 6539, 6558 ], [ 8304, 8323 ] ], [ [ 6588, 6615 ], [ 7423, 7450 ] ], [ [ 6652, 6686 ], [ 8489, 8523 ] ], [ [ 6730, 6759 ], [ 8683, 8712 ] ], [ [ 6798, 6827 ], [ 7893, 7922 ] ], [ [ 6866, 6892 ], [ 8121, 8147 ] ], [ [ 6928, 6957 ], [ 7648, 7677 ] ], [ [ 7004, 7017 ] ] ]
import discord from discord.ext import commands import os intents = discord.Intents.default() intents.members = True testing = False client = commands.Bot(command_prefix = "-", case_insensitive = True, intents=intents) client.remove_command('help') for filename in os.listdir('./cogs'): if filename.endswith('.py'): client.load_extension(f'cogs.{filename[:-3]}') client.run('# Discord Bot Token here')
[ [ [ 7, 14 ], [ 73, 80 ] ], [ [ 40, 48 ], [ 154, 162 ] ], [ [ 57, 59 ], [ 283, 285 ] ], [ [ 63, 70 ], [ 100, 107 ], [ 222, 229 ] ], [ [ 126, 133 ] ], [ [ 145, 151 ], [ 234, 240 ], [ 348, 354 ], [ 398, 404 ] ], [ [ 271, 279 ], [ 313, 321 ], [ 378, 386 ] ] ]
# -*- coding: utf-8 -*- import logging import math import os import random import shutil import tensorflow as tf from jack import readers from jack.core.tensorflow import TFReader from jack.eval import evaluate_reader, pretty_print_results from jack.util.hooks import LossHook, ExamplesPerSecHook, ETAHook logger = logging.getLogger(__name__) def train(reader, train_data, test_data, dev_data, configuration: dict, debug=False): if isinstance(reader, TFReader): train_tensorflow(reader, train_data, test_data, dev_data, configuration, debug) else: train_pytorch(reader, train_data, test_data, dev_data, configuration, debug) def train_tensorflow(reader, train_data, test_data, dev_data, configuration: dict, debug=False): import tensorflow as tf seed = configuration.get('seed', 0) # make everything deterministic random.seed(seed) tf.set_random_seed(seed) clip_value = configuration.get('clip_value') batch_size = configuration.get('batch_size') dev_batch_size = configuration.get('dev_batch_size') or batch_size epochs = configuration.get('epochs') l2 = configuration.get('l2') optimizer = configuration.get('optimizer') learning_rate = configuration.get('learning_rate') min_learning_rate = configuration.get('min_learning_rate') learning_rate_decay = configuration.get('learning_rate_decay') log_interval = configuration.get('log_interval') validation_interval = configuration.get('validation_interval') tensorboard_folder = configuration.get('tensorboard_folder') reader_type = configuration.get('reader') save_dir = configuration.get('save_dir') write_metrics_to = configuration.get('write_metrics_to') if clip_value != 0.0: clip_value = - abs(clip_value), abs(clip_value) learning_rate = tf.get_variable("learning_rate", initializer=learning_rate, dtype=tf.float32, trainable=False) lr_decay_op = learning_rate.assign(tf.maximum(learning_rate_decay * learning_rate, min_learning_rate)) name_to_optimizer = { 'gd': tf.train.GradientDescentOptimizer, 'adam': tf.train.AdamOptimizer, 'adagrad': tf.train.AdagradOptimizer, 'adadelta': tf.train.AdadeltaOptimizer, 'rmsprop': tf.train.RMSPropOptimizer } if optimizer not in name_to_optimizer: raise ValueError('Unknown optimizer: {}'.format(optimizer)) tf_optimizer_class = name_to_optimizer[optimizer] tf_optimizer = tf_optimizer_class(learning_rate=learning_rate) sw = None if tensorboard_folder is not None: if os.path.exists(tensorboard_folder): shutil.rmtree(tensorboard_folder) sw = tf.summary.FileWriter(tensorboard_folder) # Hooks iter_interval = 1 if debug else log_interval hooks = [LossHook(reader, iter_interval, summary_writer=sw), ETAHook(reader, iter_interval, int(math.ceil(len(train_data) / batch_size)), epochs), ExamplesPerSecHook(reader, batch_size, iter_interval, sw)] preferred_metric, best_metric = readers.eval_hooks[reader_type].preferred_metric_and_initial_score() def side_effect(metrics, prev_metric): """Returns: a state (in this case a metric) that is used as input for the next call""" if prev_metric is None: # store whole reader only at beginning of training reader.store(save_dir) m = metrics[preferred_metric] if prev_metric is not None and m < prev_metric: reader.session.run(lr_decay_op) logger.info("Decayed learning rate to: %.5f" % reader.session.run(learning_rate)) elif m > best_metric[0] and save_dir is not None: best_metric[0] = m reader.model_module.store(os.path.join(save_dir, "model_module")) logger.info("Saving reader to: %s" % save_dir) return m # this is the standard hook for the reader hooks.append(readers.eval_hooks[reader_type]( reader, dev_data, dev_batch_size, summary_writer=sw, side_effect=side_effect, iter_interval=validation_interval, epoch_interval=(1 if validation_interval is None else None), write_metrics_to=write_metrics_to)) # Train reader.train(tf_optimizer, train_data, batch_size, max_epochs=epochs, hooks=hooks, l2=l2, clip=clip_value, clip_op=tf.clip_by_value, summary_writer=sw) # Test final reader if dev_data is not None and save_dir is not None: reader.load(save_dir) result_dict = evaluate_reader(reader, dev_data, batch_size) logger.info("############### Results on the Dev Set##############") pretty_print_results(result_dict) if test_data is not None and save_dir is not None: reader.load(save_dir) result_dict = evaluate_reader(reader, test_data, batch_size) logger.info("############### Results on the Test Set##############") pretty_print_results(result_dict) def train_pytorch(reader, train_data, test_data, dev_data, configuration: dict, debug=False): import torch seed = configuration.get('seed') # make everything deterministic random.seed(seed) torch.manual_seed(seed) clip_value = configuration.get('clip_value') batch_size = configuration.get('batch_size') epochs = configuration.get('epochs') l2 = configuration.get('l2') optimizer = configuration.get('optimizer') learning_rate = configuration.get('learning_rate') learning_rate_decay = configuration.get('learning_rate_decay') log_interval = configuration.get('log_interval') validation_interval = configuration.get('validation_interval') tensorboard_folder = configuration.get('tensorboard_folder') model = configuration.get('reader') save_dir = configuration.get('save_dir') write_metrics_to = configuration.get('write_metrics_to') # need setup here already :( reader.setup_from_data(train_data, is_training=True) if clip_value != 0.0: clip_value = - abs(clip_value), abs(clip_value) name_to_optimizer = { 'gd': torch.optim.SGD, 'adam': torch.optim.Adam, 'adagrad': torch.optim.Adagrad, 'adadelta': torch.optim.Adadelta } if optimizer not in name_to_optimizer: raise ValueError('Unknown optimizer: {}'.format(optimizer)) torch_optimizer_class = name_to_optimizer[optimizer] params = list(reader.model_module.prediction_module.parameters()) params.extend(reader.model_module.loss_module.parameters()) torch_optimizer = torch_optimizer_class(params, lr=learning_rate) sw = None if tensorboard_folder is not None: if os.path.exists(tensorboard_folder): shutil.rmtree(tensorboard_folder) sw = tf.summary.FileWriter(tensorboard_folder) # Hooks iter_interval = 1 if debug else log_interval hooks = [LossHook(reader, iter_interval, summary_writer=sw), ExamplesPerSecHook(reader, batch_size, iter_interval, sw)] preferred_metric, best_metric = readers.eval_hooks[model].preferred_metric_and_initial_score() def side_effect(metrics, prev_metric): """Returns: a state (in this case a metric) that is used as input for the next call""" m = metrics[preferred_metric] if prev_metric is not None and m < prev_metric: for param_group in torch_optimizer.param_groups: param_group['lr'] *= learning_rate_decay logger.info("Decayed learning rate to: %.5f" % param_group['lr']) elif m > best_metric[0] and save_dir is not None: best_metric[0] = m if prev_metric is None: # store whole model only at beginning of training reader.store(save_dir) else: reader.model_module.store(os.path.join(save_dir, "model_module")) logger.info("Saving model to: %s" % save_dir) return m # this is the standard hook for the model hooks.append(readers.eval_hooks[model]( reader, dev_data, batch_size, summary_writer=sw, side_effect=side_effect, iter_interval=validation_interval, epoch_interval=(1 if validation_interval is None else None), write_metrics_to=write_metrics_to)) # Train reader.train(torch_optimizer, train_data, batch_size, max_epochs=epochs, hooks=hooks, l2=l2, clip=clip_value) # Test final model if dev_data is not None and save_dir is not None: reader.load(save_dir) result_dict = evaluate_reader(reader, dev_data, batch_size) logger.info("############### Results on the Dev Set##############") pretty_print_results(result_dict) if test_data is not None and save_dir is not None: reader.load(save_dir) result_dict = evaluate_reader(reader, test_data, batch_size) logger.info("############### Results on the Test Set##############") pretty_print_results(result_dict)
[ [ [ 32, 39 ], [ 319, 326 ] ], [ [ 47, 51 ], [ 2901, 2905 ] ], [ [ 59, 61 ], [ 2589, 2591 ], [ 6663, 6665 ], [ 3747, 3749 ], [ 7807, 7809 ] ], [ [ 69, 75 ], [ 863, 869 ], [ 5151, 5157 ] ], [ [ 83, 89 ], [ 2637, 2643 ], [ 6711, 6717 ] ], [ [ 98, 114 ], [ 6758, 6760 ] ], [ [ 133, 140 ], [ 3061, 3068 ], [ 3928, 3935 ], [ 7036, 7043 ], [ 7986, 7993 ] ], [ [ 174, 182 ], [ 461, 469 ] ], [ [ 205, 220 ], [ 4520, 4535 ], [ 4793, 4808 ], [ 8525, 8540 ], [ 8798, 8813 ] ], [ [ 222, 242 ], [ 4651, 4671 ], [ 4926, 4946 ], [ 8656, 8676 ], [ 8931, 8951 ] ], [ [ 271, 279 ], [ 2801, 2809 ], [ 6875, 6883 ] ], [ [ 281, 299 ], [ 2965, 2983 ], [ 6940, 6958 ] ], [ [ 301, 308 ], [ 2866, 2873 ] ], [ [ 310, 316 ], [ 4575, 4581 ], [ 4849, 4855 ], [ 8580, 8586 ], [ 8854, 8860 ], [ 3538, 3544 ], [ 3799, 3805 ], [ 7466, 7472 ], [ 7859, 7865 ] ], [ [ 353, 358 ] ], [ [ 661, 677 ], [ 480, 496 ] ], [ [ 4966, 4979 ], [ 578, 591 ] ] ]
#!/usr/bin/env python3 # Copyright 2019 Christian Henning # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ - **title** :utils/batchnorm_layer.py - **author** :ch - **contact** :henningc@ethz.ch - **created** :09/02/2019 - **version** :1.0 - **python_version** :3.6.8 Implementation of a hypernet compatible batchnorm layer. The joint use of batch-normalization and hypernetworks is not straight forward, mainly due to the statistics accumulated by the batch-norm operation which expect the weights of the main network to only change slowly. If a hypernetwork replaces the whole set of weights, the statistics previously estimated by the batch-norm layer might be completely off. To circumvent this problem, we provide multiple solutions: - In a continual learning setting with one set of weights per task, we can simply estimate and store statistics per task (hence, the batch-norm operation has to be conditioned on the task). - The statistics are distilled into the hypernetwork. This would require the addition of an extra loss term. - The statistics can be treated as parameters that are outputted by the hypernetwork. In this case, nothing enforces that these "statistics" behave similar to statistics that would result from a running estimate (hence, the resulting operation might have nothing in common with batch- norm). - Always use the statistics estimated on the current batch. Note, we also provide the option of turning off the statistics, in which case the statistics will be set to zero mean and unit variance. This is helpful when interpreting batch-normalization as a general form of gain modulation (i.e., just applying a shift and scale to neural activities). """ from warnings import warn import torch import torch.nn as nn import torch.nn.functional as F class BatchNormLayer(nn.Module): r"""Hypernetwork-compatible batch-normalization layer. Note, batch normalization performs the following operation .. math:: y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \ \gamma + \beta This class allows to deviate from this standard implementation in order to provide the flexibility required when using hypernetworks. Therefore, we slightly change the notation to .. math:: y = \frac{x - m_{\text{stats}}^{(t)}}{\sqrt{v_{\text{stats}}^{(t)} + \ \epsilon}} * \gamma^{(t)} + \beta^{(t)} We use this notation to highlight that the running statistics :math:`m_{\text{stats}}^{(t)}` and :math:`v_{\text{stats}}^{(t)}` are not necessarily estimates resulting from mean and variance computation but might be learned parameters (e.g., the outputs of a hypernetwork). We additionally use the superscript :math:`(t)` to denote that the gain :math:`\gamma`, offset :math:`\beta` and statistics may be dynamically selected based on some external context information. This class provides the possibility to checkpoint statistics :math:`m_{\text{stats}}^{(t)}` and :math:`v_{\text{stats}}^{(t)}`, but **not** gains and offsets. .. note:: If context-dependent gains :math:`\gamma^{(t)}` and offsets :math:`\beta^{(t)}` are required, then they have to be maintained externally, e.g., via a task-conditioned hypernetwork (see `this paper`_ for an example) and passed to the :meth:`forward` method. .. _this paper: https://arxiv.org/abs/1906.00695 Attributes: weights: A list of all internal weights of this layer. If all weights are assumed to be generated externally, then this attribute will be ``None``. param_shapes: A list of list of integers. Each list represents the shape of a parameter tensor. Note, this attribute is independent of the attribute :attr:`weights`, it always comprises the shapes of all weight tensors as if the network would be stand- alone (i.e., no weights being passed to the :meth:`forward` method). Note, unless ``learnable_stats`` is enabled, the layer statistics are not considered here. hyper_shapes: A list of list of integers. Each list represents the shape of a weight tensor that can be passed to the :meth:`forward` method. If all weights are maintained internally, then this attribute will be ``None``. Specifically, this attribute is controlled by the argument ``affine``. If ``affine`` is ``True``, this attribute will be ``None``. Otherwise this attribute contains the shape of :math:`\gamma` and :math:`\beta`. num_stats: The number :math:`T` of internally managed statistics :math:`\{(m_{\text{stats}}^{(1)}, v_{\text{stats}}^{(1)}), \dots, \ (m_{\text{stats}}^{(T)}, v_{\text{stats}}^{(T)}) \}`. This number is incremented everytime the method :meth:`checkpoint_stats` is called. """ def __init__(self, num_features, momentum=0.1, affine=True, track_running_stats=True, frozen_stats=False, learnable_stats=False): r""" Args: num_features: See argument ``num_features``, for instance, of class :class:`torch.nn.BatchNorm1d`. momentum: See argument ``momentum`` of class :class:`torch.nn.BatchNorm1d`. affine: See argument ``affine`` of class :class:`torch.nn.BatchNorm1d`. If set to :code:`False`, the input activity will simply be "whitened" according to the applied layer statistics (except if gain :math:`\gamma` and offset :math:`\beta` are passed to the :meth:`forward` method). Note, if ``learnable_stats`` is :code:`False`, then setting ``affine`` to :code:`False` results in no learnable weights for this layer (running stats might still be updated, but not via gradient descent). Note, even if this option is ``False``, one may still pass a gain :math:`\gamma` and offset :math:`\beta` to the :meth:`forward` method. track_running_stats: See argument ``track_running_stats`` of class :class:`torch.nn.BatchNorm1d`. frozen_stats: If ``True``, the layer statistics are frozen at their initial values of :math:`\gamma = 1` and :math:`\beta = 0`, i.e., layer activity will not be whitened. Note, this option requires ``track_running_stats`` to be set to ``False``. learnable_stats: If ``True``, the layer statistics are initialized as learnable parameters (:code:`requires_grad=True`). Note, these extra parameters will be maintained internally and not added to the :attr:`weights`. Statistics can always be maintained externally and passed to the :meth:`forward` method. Note, this option requires ``track_running_stats`` to be set to ``False``. """ super(BatchNormLayer, self).__init__() if learnable_stats: # FIXME We need our custom stats computation for this. # The running stats updated by `torch.nn.functional.batch_norm` do # not allow backpropagation. # See here on how they are computed: # https://github.com/pytorch/pytorch/blob/96fe2b4ecbbd02143d95f467655a2d697282ac32/aten/src/ATen/native/Normalization.cpp#L137 raise NotImplementedError('Option "learnable_stats" has not been ' + 'implemented yet!') if momentum is None: # If one wants to implement this, then please note that the # attribute `num_batches_tracked` has to be added. Also, note the # extra code for computing the momentum value in the forward method # of class `_BatchNorm`: # https://pytorch.org/docs/stable/_modules/torch/nn/modules/batchnorm.html#_BatchNorm raise NotImplementedError('This reimplementation of PyTorch its ' + 'batchnorm layer does not support ' + 'setting "momentum" to None.') if learnable_stats and track_running_stats: raise ValueError('Option "track_running_stats" must be set to ' + 'False when enabling "learnable_stats".') if frozen_stats and track_running_stats: raise ValueError('Option "track_running_stats" must be set to ' + 'False when enabling "frozen_stats".') self._num_features = num_features self._momentum = momentum self._affine = affine self._track_running_stats = track_running_stats self._frozen_stats = frozen_stats self._learnable_stats = learnable_stats self.register_buffer('_num_stats', torch.tensor(0, dtype=torch.long)) self._weights = nn.ParameterList() self._param_shapes = [[num_features], [num_features]] if affine: # Gamma self.register_parameter('scale', nn.Parameter( \ torch.Tensor(num_features), requires_grad=True)) # Beta self.register_parameter('bias', nn.Parameter( \ torch.Tensor(num_features), requires_grad=True)) self._weights.append(self.scale) self._weights.append(self.bias) nn.init.ones_(self.scale) nn.init.zeros_(self.bias) elif not learnable_stats: self._weights = None if learnable_stats: # Don't forget to add the new params to `self._weights`. # Don't forget to add shapes to `self._param_shapes`. raise NotImplementedError() elif track_running_stats or frozen_stats: # Note, in case of frozen stats, we just don't update the stats # initialized here later on. self.checkpoint_stats() else: mname, vname = self._stats_names(0) self.register_buffer(mname, None) self.register_buffer(vname, None) @property def weights(self): """Getter for read-only attribute :attr:`weights`. Returns: A :class:`torch.nn.ParameterList` or ``None``, if no parameters are internally maintained. """ return self._weights @property def param_shapes(self): """Getter for read-only attribute :attr:`param_shapes`. Returns: A list of lists of integers. """ return self._param_shapes @property def hyper_shapes(self): """Getter for read-only attribute :attr:`hyper_shapes`. Returns: A list of lists of integers. """ # FIXME not implemented attribute. Do we even need the attribute, given # that all components are individually passed to the forward method? raise NotImplementedError('Not implemented yet!') return self._hyper_shapes @property def num_stats(self): """Getter for read-only attribute :attr:`num_stats`. Returns: (int) """ return self._num_stats def forward(self, inputs, running_mean=None, running_var=None, weight=None, bias=None, stats_id=None): r"""Apply batch normalization to given layer activations. Based on the state if this module (attribute :attr:`training`), the configuration of this layer and the parameters currently passed, the behavior of this function will be different. The core of this method still relies on the function :func:`torch.nn.functional.batch_norm`. In the following we list the different behaviors of this method based on the context. **In training mode:** We first consider the case that this module is in training mode, i.e., :meth:`torch.nn.Module.train` has been called. Usually, during training, the running statistics are not used when computing the output, instead the statistics computed on the current batch are used (denoted by *use batch stats* in the table below). However, the batch statistics are typically updated during training (denoted by *update running stats* in the table below). The above described scenario would correspond to passing batch statistics to the function :func:`torch.nn.functional.batch_norm` and setting the parameter ``training`` to ``True``. +----------------------+---------------------+-------------------------+ | **training mode** | **use batch stats** | **update running stats**| +----------------------+---------------------+-------------------------+ | given stats | Yes | Yes | +----------------------+---------------------+-------------------------+ | track running stats | Yes | Yes | +----------------------+---------------------+-------------------------+ | frozen stats | No | No | +----------------------+---------------------+-------------------------+ | learnable stats | Yes | Yes [1]_ | +----------------------+---------------------+-------------------------+ |no track running stats| Yes | No | +----------------------+---------------------+-------------------------+ The meaning of each row in this table is as follows: - **given stats**: External stats are provided via the parameters ``running_mean`` and ``running_var``. - **track running stats**: If ``track_running_stats`` was set to ``True`` in the constructor and no stats were given. - **frozen stats**: If ``frozen_stats`` was set to ``True`` in the constructor and no stats were given. - **learnable stats**: If ``learnable_stats`` was set to ``True`` in the constructor and no stats were given. - **no track running stats**: If none of the above options apply, then the statistics will always be computed from the current batch (also in eval mode). .. note:: If provided, running stats specified via ``running_mean`` and ``running_var`` always have priority. .. [1] We use a custom implementation to update the running statistics, that is compatible with backpropagation. **In evaluation mode:** We now consider the case that this module is in evaluation mode, i.e., :meth:`torch.nn.Module.eval` has been called. Here is the same table as above just for the evaluation mode. +----------------------+---------------------+-------------------------+ | **evaluation mode** | **use batch stats** | **update running stats**| +----------------------+---------------------+-------------------------+ | track running stats | No | No | +----------------------+---------------------+-------------------------+ | frozen stats | No | No | +----------------------+---------------------+-------------------------+ | learnable stats | No | No | +----------------------+---------------------+-------------------------+ | given stats | No | No | +----------------------+---------------------+-------------------------+ |no track running stats| Yes | No | +----------------------+---------------------+-------------------------+ Args: inputs: The inputs to the batchnorm layer. running_mean (optional): Running mean stats :math:`m_{\text{stats}}`. This option has priority, i.e., any internally maintained statistics are ignored if given. .. note:: If specified, then ``running_var`` also has to be specified. running_var (optional): Similar to option ``running_mean``, but for the running variance stats :math:`v_{\text{stats}}` .. note:: If specified, then ``running_mean`` also has to be specified. weight (optional): The gain factors :math:`\gamma`. If given, any internal gains are ignored. If option ``affine`` was set to ``False`` in the constructor and this option remains ``None``, then no gains are multiplied to the "whitened" inputs. bias (optional): The behavior of this option is similar to option ``weight``, except that this option represents the offsets :math:`\beta`. stats_id: This argument is optional except if multiple running stats checkpoints exist (i.e., attribute :attr:`num_stats` is greater than 1) and no running stats have been provided to this method. .. note:: This argument is ignored if running stats have been passed. Returns: The layer activation ``inputs`` after batch-norm has been applied. """ assert (running_mean is None and running_var is None or \ running_mean is not None and running_var is not None) if not self._affine: if weight is None or bias is None: raise ValueError('Layer was generated in non-affine mode. ' + 'Therefore, arguments "weight" and "bias" ' + 'may not be None.') # No gains given but we have internal gains. # Otherwise, if no gains are given we leave `weight` as None. if weight is None and self._affine: weight = self.scale if bias is None and self._affine: bias = self.bias stats_given = running_mean is not None if (running_mean is None or running_var is None): if stats_id is None and self.num_stats > 1: raise ValueError('Parameter "stats_id" is not defined but ' + 'multiple running stats are available.') elif self._track_running_stats: if stats_id is None: stats_id = 0 assert (stats_id < self.num_stats) rm, rv = self.get_stats(stats_id) if running_mean is None: running_mean = rm if running_var is None: running_var = rv elif stats_id is not None: warn('Parameter "stats_id" is ignored since running stats have ' + 'been provided.') momentum = self._momentum if stats_given or self._track_running_stats: return F.batch_norm(inputs, running_mean, running_var, weight=weight, bias=bias, training=self.training, momentum=momentum) if self._learnable_stats: raise NotImplementedError() if self._frozen_stats: return F.batch_norm(inputs, running_mean, running_var, weight=weight, bias=bias, training=False) # TODO implement scale and shift here. Note, that `running_mean` and # `running_var` are always 0 and 1, resp. Therefore, the call to # `F.batch_norm` is a waste of computation. # ret = inputs # if weight is not None: # # Multiply `ret` with `weight` such that dimensions are # # respected. # pass # if bias is not None: # # Add `bias` to modified `ret` such that dimensions are # # respected. # pass # return ret else: assert (not self._track_running_stats) # Always compute statistics based on current batch. return F.batch_norm(inputs, None, None, weight=weight, bias=bias, training=True, momentum=momentum) def checkpoint_stats(self, device=None): """Buffers for a new set of running stats will be registered. Calling this function will also increment the attribute :attr:`num_stats`. Args: device (optional): If not provided, the newly created statistics will either be moved to the device of the most recent statistics or to CPU if no prior statistics exist. """ assert (self._track_running_stats or \ self._frozen_stats and self._num_stats == 0) if device is None: if self.num_stats > 0: mname_old, _ = self._stats_names(self._num_stats - 1) device = getattr(self, mname_old).device if self._learnable_stats: raise NotImplementedError() mname, vname = self._stats_names(self._num_stats) self._num_stats += 1 self.register_buffer(mname, torch.zeros(self._num_features, device=device)) self.register_buffer(vname, torch.ones(self._num_features, device=device)) def get_stats(self, stats_id=None): """Get a set of running statistics (means and variances). Args: stats_id (optional): ID of stats. If not provided, the most recent stats are returned. Returns: (tuple): Tuple containing: - **running_mean** - **running_var** """ if stats_id is None: stats_id = self.num_stats - 1 assert (stats_id < self.num_stats) mname, vname = self._stats_names(stats_id) running_mean = getattr(self, mname) running_var = getattr(self, vname) return running_mean, running_var def _stats_names(self, stats_id): """Get the buffer names for mean and variance statistics depending on the ``stats_id``, i.e., the ID of the stats checkpoint. Args: stats_id: ID of stats. Returns: (tuple): Tuple containing: - **mean_name** - **var_name** """ mean_name = 'mean_%d' % stats_id var_name = 'var_%d' % stats_id return mean_name, var_name if __name__ == '__main__': pass
[ [ [ 2305, 2309 ], [ 19821, 19825 ] ], [ [ 2318, 2323 ], [ 9674, 9679 ], [ 9696, 9701 ], [ 9932, 9937 ], [ 10076, 10081 ], [ 22271, 22276 ], [ 22403, 22408 ] ], [ [ 2331, 2345 ], [ 2401, 2403 ], [ 9734, 9736 ], [ 9900, 9902 ], [ 10044, 10046 ], [ 10228, 10230 ], [ 10266, 10268 ] ], [ [ 2353, 2377 ], [ 20031, 20032 ], [ 20338, 20339 ], [ 21199, 21200 ] ], [ [ 2386, 2400 ], [ 7783, 7797 ] ] ]
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Linear Estimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import layers from tensorflow.contrib.framework.python.ops import variables as contrib_variables from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined from tensorflow.contrib.learn.python.learn.estimators import sdca_optimizer from tensorflow.contrib.learn.python.learn.estimators.base import DeprecatedMixin from tensorflow.python.framework import ops from tensorflow.python.ops import logging_ops from tensorflow.python.platform import tf_logging as logging # TODO(b/29580537): Replace with @changing decorator. def _changing(feature_columns): if feature_columns is not None: return logging.warn( "Change warning: `feature_columns` will be required after 2016-08-01.\n" "Instructions for updating:\n" "Pass `tf.contrib.learn.infer_real_valued_columns_from_input(x)` or" " `tf.contrib.learn.infer_real_valued_columns_from_input_fn(input_fn)`" " as `feature_columns`, where `x` or `input_fn` is your argument to" " `fit`, `evaluate`, or `predict`.") class LinearClassifier(dnn_linear_combined.DNNLinearCombinedClassifier): """Linear classifier model. Train a linear model to classify instances into one of multiple possible classes. When number of possible classes is 2, this is binary classification. Example: ```python education = sparse_column_with_hash_bucket(column_name="education", hash_bucket_size=1000) occupation = sparse_column_with_hash_bucket(column_name="occupation", hash_bucket_size=1000) education_x_occupation = crossed_column(columns=[education, occupation], hash_bucket_size=10000) # Estimator using the default optimizer. estimator = LinearClassifier( feature_columns=[occupation, education_x_occupation]) # Or estimator using the FTRL optimizer with regularization. estimator = LinearClassifier( feature_columns=[occupation, education_x_occupation], optimizer=tf.train.FtrlOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) # Or estimator using the SDCAOptimizer. estimator = LinearClassifier( feature_columns=[occupation, education_x_occupation], optimizer=tf.contrib.learn.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=2.0 )) # Input builders def input_fn_train: # returns x, y ... def input_fn_eval: # returns x, y ... estimator.fit(input_fn=input_fn_train) estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) ``` Input of `fit` and `evaluate` should have following features, otherwise there will be a `KeyError`: * if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. * for each `column` in `feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `RealValuedColumn`, a feature with `key=column.name` whose `value` is a `Tensor`. - if `feature_columns` is `None`, then `input` must contains only real valued `Tensor`. """ def __init__(self, feature_columns=None, model_dir=None, n_classes=2, weight_column_name=None, optimizer=None, gradient_clip_norm=None, enable_centered_bias=True, config=None): """Construct a `LinearClassifier` estimator object. Args: feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `FeatureColumn`. model_dir: Directory to save model parameters, graph and etc. n_classes: number of target classes. Default is binary classification. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. optimizer: The optimizer used to train the model. If specified, it should be either an instance of `tf.Optimizer` or the SDCAOptimizer. If `None`, the Ftrl optimizer will be used. gradient_clip_norm: A `float` > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See `tf.clip_by_global_norm` for more details. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. config: `RunConfig` object to configure the runtime settings. Returns: A `LinearClassifier` estimator. """ _changing(feature_columns) super(LinearClassifier, self).__init__( model_dir=model_dir, n_classes=n_classes, weight_column_name=weight_column_name, linear_feature_columns=feature_columns, linear_optimizer=optimizer, gradient_clip_norm=gradient_clip_norm, enable_centered_bias=enable_centered_bias, config=config) self._feature_columns_inferred = False # TODO(b/29580537): Remove feature_columns inference. def _validate_linear_feature_columns(self, features): if self._linear_feature_columns is None: self._linear_feature_columns = layers.infer_real_valued_columns(features) self._feature_columns_inferred = True elif self._feature_columns_inferred: this_dict = {c.name: c for c in self._linear_feature_columns} that_dict = { c.name: c for c in layers.infer_real_valued_columns(features) } if this_dict != that_dict: raise ValueError( "Feature columns, expected %s, got %s.", (this_dict, that_dict)) def _get_train_ops(self, features, targets): """See base class.""" self._validate_linear_feature_columns(features) if not isinstance(self._linear_optimizer, sdca_optimizer.SDCAOptimizer): return super(LinearClassifier, self)._get_train_ops(features, targets) # SDCA currently supports binary classification only. if self._target_column.num_label_columns > 2: raise ValueError( "SDCA does not currently support multi-class classification.") global_step = contrib_variables.get_global_step() assert global_step logits, columns_to_variables, _ = layers.weighted_sum_from_feature_columns( columns_to_tensors=features, feature_columns=self._linear_feature_columns, num_outputs=self._target_column.num_label_columns, weight_collections=[self._linear_weight_collection], scope="linear") with ops.control_dependencies([self._centered_bias()]): loss = self._target_column.loss(logits, targets, features) logging_ops.scalar_summary("loss", loss) train_ops = self._linear_optimizer.get_train_step( self._linear_feature_columns, self._target_column.weight_column_name, "logistic_loss", features, targets, columns_to_variables, global_step) return train_ops, loss def _get_eval_ops(self, features, targets, metrics=None): self._validate_linear_feature_columns(features) return super(LinearClassifier, self)._get_eval_ops( features, targets, metrics) def _get_predict_ops(self, features): """See base class.""" self._validate_linear_feature_columns(features) return super(LinearClassifier, self)._get_predict_ops(features) @property def weights_(self): return self.linear_weights_ @property def bias_(self): return self.linear_bias_ class LinearRegressor(dnn_linear_combined.DNNLinearCombinedRegressor): """Linear regressor model. Train a linear regression model to predict target variable value given observation of feature values. Example: ```python education = sparse_column_with_hash_bucket(column_name="education", hash_bucket_size=1000) occupation = sparse_column_with_hash_bucket(column_name="occupation", hash_bucket_size=1000) education_x_occupation = crossed_column(columns=[education, occupation], hash_bucket_size=10000) estimator = LinearRegressor( feature_columns=[occupation, education_x_occupation]) # Input builders def input_fn_train: # returns x, y ... def input_fn_eval: # returns x, y ... estimator.fit(input_fn=input_fn_train) estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) ``` Input of `fit` and `evaluate` should have following features, otherwise there will be a KeyError: * if `weight_column_name` is not `None`: key=weight_column_name, value=a `Tensor` * for column in `feature_columns`: - if isinstance(column, `SparseColumn`): key=column.name, value=a `SparseTensor` - if isinstance(column, `RealValuedColumn`): key=column.name, value=a `Tensor` - if `feature_columns` is `None`: input must contains only real valued `Tensor`. """ def __init__(self, feature_columns=None, model_dir=None, weight_column_name=None, optimizer=None, gradient_clip_norm=None, enable_centered_bias=True, target_dimension=1, config=None): """Construct a `LinearRegressor` estimator object. Args: feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `FeatureColumn`. model_dir: Directory to save model parameters, graph, etc. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. optimizer: An instance of `tf.Optimizer` used to train the model. If `None`, will use an Ftrl optimizer. gradient_clip_norm: A `float` > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See `tf.clip_by_global_norm` for more details. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. target_dimension: dimension of the target for multilabels. config: `RunConfig` object to configure the runtime settings. Returns: A `LinearRegressor` estimator. """ _changing(feature_columns) super(LinearRegressor, self).__init__( model_dir=model_dir, weight_column_name=weight_column_name, linear_feature_columns=feature_columns, linear_optimizer=optimizer, gradient_clip_norm=gradient_clip_norm, enable_centered_bias=enable_centered_bias, target_dimension=target_dimension, config=config) self._feature_columns_inferred = False # TODO(b/29580537): Remove feature_columns inference. def _validate_linear_feature_columns(self, features): if self._linear_feature_columns is None: self._linear_feature_columns = layers.infer_real_valued_columns(features) self._feature_columns_inferred = True elif self._feature_columns_inferred: this_dict = {c.name: c for c in self._linear_feature_columns} that_dict = { c.name: c for c in layers.infer_real_valued_columns(features) } if this_dict != that_dict: raise ValueError( "Feature columns, expected %s, got %s.", (this_dict, that_dict)) def _get_train_ops(self, features, targets): """See base class.""" if isinstance(self._linear_optimizer, sdca_optimizer.SDCAOptimizer): raise ValueError("SDCAOptimizer does not currently support regression.") self._validate_linear_feature_columns(features) return super(LinearRegressor, self)._get_train_ops(features, targets) def _get_eval_ops(self, features, targets, metrics=None): self._validate_linear_feature_columns(features) return super(LinearRegressor, self)._get_eval_ops( features, targets, metrics) def _get_predict_ops(self, features): """See base class.""" self._validate_linear_feature_columns(features) return super(LinearRegressor, self)._get_predict_ops(features) @property def weights_(self): return self.linear_weights_ @property def bias_(self): return self.linear_bias_ # TensorFlowLinearRegressor and TensorFlowLinearClassifier are deprecated. class TensorFlowLinearRegressor(DeprecatedMixin, LinearRegressor, _sklearn.RegressorMixin): pass class TensorFlowLinearClassifier(DeprecatedMixin, LinearClassifier, _sklearn.ClassifierMixin): pass TensorFlowRegressor = TensorFlowLinearRegressor TensorFlowClassifier = TensorFlowLinearClassifier
[ [ [ 739, 754 ] ], [ [ 778, 786 ] ], [ [ 810, 824 ] ], [ [ 857, 863 ], [ 6389, 6395 ], [ 6634, 6640 ], [ 7423, 7429 ], [ 12281, 12287 ], [ 12526, 12532 ] ], [ [ 916, 946 ], [ 7325, 7342 ] ], [ [ 1008, 1016 ], [ 13758, 13766 ], [ 13894, 13902 ] ], [ [ 1078, 1097 ], [ 1968, 1987 ], [ 8655, 8674 ] ], [ [ 1159, 1173 ], [ 6993, 7007 ], [ 12829, 12843 ] ], [ [ 1240, 1255 ], [ 13692, 13707 ], [ 13826, 13841 ] ], [ [ 1296, 1299 ], [ 7709, 7712 ] ], [ [ 1334, 1345 ], [ 7829, 7840 ] ], [ [ 1385, 1406 ], [ 1542, 1549 ] ], [ [ 1467, 1476 ], [ 5770, 5779 ], [ 11649, 11658 ] ], [ [ 1951, 1967 ], [ 13843, 13859 ], [ 5807, 5823 ], [ 7043, 7059 ], [ 8241, 8257 ], [ 8452, 8468 ] ], [ [ 8639, 8654 ], [ 13709, 13724 ], [ 11686, 11701 ], [ 13008, 13023 ], [ 13195, 13210 ], [ 13405, 13420 ] ], [ [ 13666, 13691 ], [ 13952, 13977 ] ], [ [ 13799, 13825 ], [ 14001, 14027 ] ], [ [ 13930, 13949 ] ], [ [ 13978, 13998 ] ] ]
from typing import List, Dict, Any import torch import trtorch._C from trtorch import _types def _supported_input_size_type(input_size: Any) -> bool: if isinstance(input_size, torch.Size): return True elif isinstance(input_size, tuple): return True elif isinstance(input_size, list): return True else: raise TypeError( "Input sizes for inputs are required to be a List, tuple or torch.Size or a Dict of three sizes (min, opt, max), found type: " + str(type(input_size))) def _parse_input_ranges(input_sizes: List) -> List: if any(not isinstance(i, dict) and not _supported_input_size_type(i) for i in input_sizes): raise KeyError("An input size must either be a static size or a range of three sizes (min, opt, max) as Dict") parsed_input_sizes = [] for i in input_sizes: if isinstance(i, dict): if all(k in i for k in ["min", "opt", "min"]): in_range = trtorch._C.InputRange() in_range.min = i["min"] in_range.opt = i["opt"] in_range.max = i["max"] parsed_input_sizes.append(in_range) elif "opt" in i: in_range = trtorch._C.InputRange() in_range.min = i["opt"] in_range.opt = i["opt"] in_range.max = i["opt"] parsed_input_sizes.append(in_range) else: raise KeyError( "An input size must either be a static size or a range of three sizes (min, opt, max) as Dict") elif isinstance(i, list): in_range = trtorch._C.InputRange() in_range.min = i in_range.opt = i in_range.max = i parsed_input_sizes.append(in_range) elif isinstance(i, tuple): in_range = trtorch._C.InputRange() in_range.min = list(i) in_range.opt = list(i) in_range.max = list(i) parsed_input_sizes.append(in_range) return parsed_input_sizes def _parse_op_precision(precision: Any) -> _types.dtype: if isinstance(precision, torch.dtype): if precision == torch.int8: return _types.dtype.int8 elif precision == torch.half: return _types.dtype.half elif precision == torch.float: return _types.dtype.float else: raise TypeError("Provided an unsupported dtype as operating precision (support: int8, half, float), got: " + str(precision)) elif isinstance(precision, _types.DataTypes): return precision else: raise TypeError("Op precision type needs to be specified with a torch.dtype or a trtorch.dtype, got: " + str(type(precision))) def _parse_device_type(device: Any) -> _types.DeviceType: if isinstance(device, torch.device): if device.type == 'cuda': return _types.DeviceType.gpu else: ValueError("Got a device type other than GPU or DLA (type: " + str(device.type) + ")") elif isinstance(device, _types.DeviceType): return device elif isinstance(device, str): if device == "gpu" or device == "GPU": return _types.DeviceType.gpu elif device == "dla" or device == "DLA": return _types.DeviceType.dla else: ValueError("Got a device type other than GPU or DLA (type: " + str(device) + ")") else: raise TypeError("Device specification must be of type torch.device, string or trtorch.DeviceType, but got: " + str(type(device))) def _parse_compile_spec(compile_spec: Dict[str, Any]) -> trtorch._C.CompileSpec: info = trtorch._C.CompileSpec() if "input_shapes" not in compile_spec: raise KeyError( "Input shapes for inputs are required as a List, provided as either a static sizes or a range of three sizes (min, opt, max) as Dict" ) info.input_ranges = _parse_input_ranges(compile_spec["input_shapes"]) if "op_precision" in compile_spec: info.op_precision = _parse_op_precision(compile_spec["op_precision"]) if "refit" in compile_spec: assert isinstance(compile_spec["refit"], bool) info.refit = compile_spec["refit"] if "debug" in compile_spec: assert isinstance(compile_spec["debug"], bool) info.debug = compile_spec["debug"] if "strict_types" in compile_spec: assert isinstance(compile_spec["strict_types"], bool) info.strict_types = compile_spec["strict_types"] if "allow_gpu_fallback" in compile_spec: assert isinstance(compile_spec["allow_gpu_fallback"], bool) info.allow_gpu_fallback = compile_spec["allow_gpu_fallback"] if "device_type" in compile_spec: info.device = _parse_device_type(compile_spec["device_type"]) if "capability" in compile_spec: assert isinstance(compile_spec["capability"], _types.EngineCapability) info.capability = compile_spec["capability"] if "num_min_timing_iters" in compile_spec: assert type(compile_spec["num_min_timing_iters"]) is int info.num_min_timing_iters = compile_spec["num_min_timing_iters"] if "num_avg_timing_iters" in compile_spec: assert type(compile_spec["num_avg_timing_iters"]) is int info.num_avg_timing_iters = compile_spec["num_avg_timing_iters"] if "workspace_size" in compile_spec: assert type(compile_spec["workspace_size"]) is int info.workspace_size = compile_spec["workspace_size"] if "max_batch_size" in compile_spec: assert type(compile_spec["max_batch_size"]) is int info.max_batch_size = compile_spec["max_batch_size"] return info def TensorRTCompileSpec(compile_spec: Dict[str, Any]): """ Utility to create a formated spec dictionary for using the PyTorch TensorRT backend Args: compile_spec (dict): Compilation settings including operating precision, target device, etc. One key is required which is ``input_shapes``, describing the input sizes or ranges for inputs to the graph. All other keys are optional. Entries for each method to be compiled. .. code-block:: py CompileSpec = { "forward" : trtorch.TensorRTCompileSpec({ "input_shapes": [ (1, 3, 224, 224), # Static input shape for input #1 { "min": (1, 3, 224, 224), "opt": (1, 3, 512, 512), "max": (1, 3, 1024, 1024) } # Dynamic input shape for input #2 ], "op_precision": torch.half, # Operating precision set to FP16 "refit": False, # enable refit "debug": False, # enable debuggable engine "strict_types": False, # kernels should strictly run in operating precision "allow_gpu_fallback": True, # (DLA only) Allow layers unsupported on DLA to run on GPU "device": torch.device("cuda"), # Type of device to run engine on (for DLA use trtorch.DeviceType.DLA) "capability": trtorch.EngineCapability.DEFAULT, # Restrict kernel selection to safe gpu kernels or safe dla kernels "num_min_timing_iters": 2, # Number of minimization timing iterations used to select kernels "num_avg_timing_iters": 1, # Number of averaging timing iterations used to select kernels "workspace_size": 0, # Maximum size of workspace given to TensorRT "max_batch_size": 0, # Maximum batch size (must be >= 1 to be set, 0 means not set) }) } Input Sizes can be specified as torch sizes, tuples or lists. Op precisions can be specified using torch datatypes or trtorch datatypes and you can use either torch devices or the trtorch device type enum to select device type. Returns: torch.classes.tensorrt.CompileSpec: List of methods and formated spec objects to be provided to ``torch._C._jit_to_tensorrt`` """ parsed_spec = _parse_compile_spec(compile_spec) backend_spec = torch.classes.tensorrt.CompileSpec() for i in parsed_spec.input_ranges: ir = torch.classes.tensorrt.InputRange() ir.set_min(i.min) ir.set_opt(i.opt) ir.set_max(i.max) backend_spec.append_input_range(ir) backend_spec.set_op_precision(int(parsed_spec.op_precision)) backend_spec.set_refit(parsed_spec.refit) backend_spec.set_debug(parsed_spec.debug) backend_spec.set_refit(parsed_spec.refit) backend_spec.set_strict_types(parsed_spec.strict_types) backend_spec.set_allow_gpu_fallback(parsed_spec.allow_gpu_fallback) backend_spec.set_device(int(parsed_spec.device)) backend_spec.set_capability(int(parsed_spec.capability)) backend_spec.set_num_min_timing_iters(parsed_spec.num_min_timing_iters) backend_spec.set_num_avg_timing_iters(parsed_spec.num_avg_timing_iters) backend_spec.set_workspace_size(parsed_spec.workspace_size) backend_spec.set_max_batch_size(parsed_spec.max_batch_size) return backend_spec
[ [ [ 19, 23 ], [ 593, 597 ], [ 584, 588 ] ], [ [ 25, 29 ], [ 3731, 3735 ], [ 5862, 5866 ] ], [ [ 31, 34 ], [ 138, 141 ], [ 2125, 2128 ], [ 2873, 2876 ], [ 3741, 3744 ], [ 5872, 5875 ] ], [ [ 42, 47 ], [ 182, 187 ], [ 2176, 2181 ], [ 2214, 2219 ], [ 2289, 2294 ], [ 2364, 2369 ], [ 2926, 2931 ], [ 8483, 8488 ], [ 8573, 8578 ] ], [ [ 55, 65 ], [ 988, 995 ], [ 1241, 1248 ], [ 1662, 1669 ], [ 1880, 1887 ], [ 3750, 3757 ], [ 3785, 3792 ] ], [ [ 86, 92 ], [ 2133, 2139 ], [ 2245, 2251 ], [ 2320, 2326 ], [ 2396, 2402 ], [ 2626, 2632 ], [ 2881, 2887 ], [ 2994, 3000 ], [ 3157, 3163 ], [ 3299, 3305 ], [ 3389, 3395 ], [ 5031, 5037 ] ], [ [ 99, 125 ], [ 643, 669 ] ], [ [ 551, 570 ], [ 4058, 4077 ] ], [ [ 2094, 2113 ], [ 4176, 4195 ] ], [ [ 2846, 2864 ], [ 4891, 4909 ] ], [ [ 3697, 3716 ], [ 8429, 8448 ] ], [ [ 5828, 5847 ] ] ]
from django.conf.urls import patterns, url urlpatterns = patterns('appointments.views', url(r'^appointment/(?P<practice_id>\d+)/$', 'appointment_form', name='appointment_form'), url(r'^appointment/created/(?P<practice_id>\d+)/$', 'appointment_created', name='appointment_created'), )
[ [ [ 29, 37 ], [ 59, 67 ] ], [ [ 39, 42 ], [ 94, 97 ], [ 188, 191 ] ], [ [ 45, 56 ] ] ]
from PIL import Image from PIL import ImageDraw from PIL import ImageFont from rotary_class import RotaryEncoder class Display(): def __init__(self, disp): self.disp = disp self.dimensions = (disp.width, disp.height) self.image = Image.new('1', self.dimensions) self.draw = ImageDraw.Draw(self.image) self.font = ImageFont.truetype("./DejaVuSansMono.ttf", 10) def display_clear(self): self.draw.rectangle((0, 0) + self.dimensions, outline = 0, fill = 0) def init_display(self): self.disp.begin() self.disp.clear() self.disp.display() self.display_clear() self.disp.image(self.image) self.disp.display() def draw_rows(self, rows, inv_col): self.display_clear() for idx, row in enumerate(rows): if inv_col == idx: self.draw.rectangle([(0, 10 * idx), (10 * idx + self.dimensions[0], 1 + 10 * idx + 10)], outline = 0, fill = 255) self.draw.text((1, 10 * idx), row, font = self.font, fill = 0) else: self.draw.rectangle([(0, 10 * idx), (10 * idx + self.dimensions[0], 1 + 10 * idx + 10)], outline = 0, fill = 0) self.draw.text((1, 10 * idx), row, font = self.font, fill = 255) self.disp.image(self.image) self.disp.display() class Menu(): def __init__(self, disp, encoder, items = []): self.items = items self.pointer = 0 self.row = 0 self.last_row = 0 self.last_slice = None self.disp = Display(disp) self.disp.init_display() self.draw() def encoder_ev (direction): if direction == 1: self.prev() elif direction == 2: self.next() elif direction == 3: self.exec_item() self.encoder = RotaryEncoder(encoder["pin1"], encoder["pin2"], encoder["sw"], encoder_ev) def draw(self): tmp_slice = None if self.row == self.last_row: if self.last_row == 0: tmp_slice = self.items[self.pointer:self.pointer + 3] else: tmp_slice = self.items[self.pointer - 2:self.pointer + 1] self.disp.draw_rows(tmp_slice, self.row) self.last_slice = tmp_slice else: self.disp.draw_rows(self.last_slice, self.row) self.last_row = self.row def next(self): if self.pointer + 1 <= len(self.items) - 1: self.pointer += 1 if self.row < 2: self.row += 1 self.draw() def prev(self): if self.pointer - 1 >= 0: self.pointer -= 1 if self.row > 0: self.row -= 1 self.draw() def exec_item(self): print("Item selcted", str(self.pointer))
[ [ [ 16, 21 ], [ 259, 264 ] ], [ [ 38, 47 ], [ 311, 320 ] ], [ [ 64, 73 ], [ 358, 367 ] ], [ [ 99, 112 ], [ 1888, 1901 ] ], [ [ 120, 127 ], [ 1575, 1582 ] ], [ [ 1366, 1370 ] ] ]
from tests.analyzer.utils import UnusedTestCase from unimport.statement import Import, ImportFrom class AsImportTestCase(UnusedTestCase): def test_as_import_all_unused_all_cases(self): self.assertSourceAfterScanningEqualToExpected( """\ from x import y as z import x from t import s as ss from f import a as c, l as k, i as ii from fo import (bar, i, x as z) import le as x """, [ ImportFrom( lineno=1, column=1, name="z", package="x", star=False, suggestions=[], ), Import( lineno=2, column=1, name="x", package="x", ), ImportFrom( lineno=3, column=1, name="ss", package="t", star=False, suggestions=[], ), ImportFrom( lineno=4, column=1, name="c", package="f", star=False, suggestions=[], ), ImportFrom( lineno=4, column=2, name="k", package="f", star=False, suggestions=[], ), ImportFrom( lineno=4, column=3, name="ii", package="f", star=False, suggestions=[], ), ImportFrom( lineno=5, column=1, name="bar", package="fo", star=False, suggestions=[], ), ImportFrom( lineno=5, column=2, name="i", package="fo", star=False, suggestions=[], ), ImportFrom( lineno=5, column=3, name="z", package="fo", star=False, suggestions=[], ), Import( lineno=6, column=1, name="x", package="le", ), ], ) def test_as_import_one_used_in_function_all_cases(self): self.assertSourceAfterScanningEqualToExpected( """\ from x import y as z import x from t import s as ss from f import a as c, l as k, i as ii from fo import (bar, i, x as z) import le as x def x(t=x):pass """, [ ImportFrom( lineno=1, column=1, name="z", package="x", star=False, suggestions=[], ), Import( lineno=2, column=1, name="x", package="x", ), ImportFrom( lineno=3, column=1, name="ss", package="t", star=False, suggestions=[], ), ImportFrom( lineno=4, column=1, name="c", package="f", star=False, suggestions=[], ), ImportFrom( lineno=4, column=2, name="k", package="f", star=False, suggestions=[], ), ImportFrom( lineno=4, column=3, name="ii", package="f", star=False, suggestions=[], ), ImportFrom( lineno=5, column=1, name="bar", package="fo", star=False, suggestions=[], ), ImportFrom( lineno=5, column=2, name="i", package="fo", star=False, suggestions=[], ), ImportFrom( lineno=5, column=3, name="z", package="fo", star=False, suggestions=[], ), ], )
[ [ [ 33, 47 ], [ 123, 137 ] ], [ [ 79, 85 ], [ 757, 763 ], [ 2596, 2602 ], [ 3428, 3434 ] ], [ [ 87, 97 ], [ 519, 529 ], [ 923, 933 ], [ 1162, 1172 ], [ 1400, 1410 ], [ 1638, 1648 ], [ 1877, 1887 ], [ 2118, 2128 ], [ 2357, 2367 ], [ 3190, 3200 ], [ 3594, 3604 ], [ 3833, 3843 ], [ 4071, 4081 ], [ 4309, 4319 ], [ 4548, 4558 ], [ 4789, 4799 ], [ 5028, 5038 ] ], [ [ 106, 122 ] ] ]
import os from .takeout_sqlite3 import SQLite3 import multiprocessing CONTACTS = 'Contacts' + os.sep + 'All Contacts' + os.sep + 'All Contacts.vcf' DRIVE = 'Drive' MY_ACTIVITY_ASSISTANT_PATH = 'My Activity' + os.sep + 'Assistant' + os.sep + 'MyActivity.html' MY_ACTIVITY_GMAIL_PATH = 'My Activity' + os.sep + 'Gmail' + os.sep + 'MyActivity.html' MY_ACTIVITY_GOOGLE_ANALYTICS_PATH = 'My Activity' + os.sep + 'Google Analytics' + os.sep + 'MyActivity.html' MY_ACTIVITY_YOUTUBE_PATH = 'My Activity' + os.sep + 'YouTube' + os.sep + 'MyActivity.html' MY_ACTIVITY_VIDEO_SEARCH_PATH = 'My Activity' + os.sep + 'Video Search' + os.sep + 'MyActivity.html' MY_ACTIVITY_VOICE_AUDIO_PATH = 'My Activity' + os.sep + 'Voice and Audio' + os.sep + 'MyActivity.html' MY_ACTIVITY_MAPS_PATH = 'My Activity' + os.sep + 'Maps' + os.sep + 'MyActivity.html' MY_ACTIVITY_ANDROID_PATH = 'My Activity' + os.sep + 'Android' + os.sep + 'MyActivity.html' MY_ACTIVITY_CHROME_PATH = 'My Activity' + os.sep + 'Chrome' + os.sep + 'MyActivity.html' class Case(object): def __init__(self, input_dir): self.number_of_system_processes = 1 self.number_of_input_processes = 1 self.input_dir_path = input_dir self.set_file_path() def set_file_path(self): if self.input_dir_path[-1] == os.sep: self.input_dir_path = self.input_dir_path[:-1] self.takeout_path = self.input_dir_path + os.sep + 'Takeout' if not os.path.exists(self.takeout_path): return False self.takeout_contacts_path = self.takeout_path + os.sep + CONTACTS self.takeout_drive_path = self.takeout_path + os.sep + DRIVE self.takeout_my_activity_assistant_path = self.takeout_path + os.sep + MY_ACTIVITY_ASSISTANT_PATH self.takeout_my_activity_gmail_path = self.takeout_path + os.sep + MY_ACTIVITY_GMAIL_PATH self.takeout_my_activity_google_analytics_path = self.takeout_path + os.sep + MY_ACTIVITY_GOOGLE_ANALYTICS_PATH self.takeout_my_activity_youtube_path = self.takeout_path + os.sep + MY_ACTIVITY_YOUTUBE_PATH self.takeout_my_activity_video_search_path = self.takeout_path + os.sep + MY_ACTIVITY_VIDEO_SEARCH_PATH self.takeout_my_activity_voice_audio_path = self.takeout_path + os.sep + MY_ACTIVITY_VOICE_AUDIO_PATH self.takeout_my_activity_maps_path = self.takeout_path + os.sep + MY_ACTIVITY_MAPS_PATH self.takeout_my_activity_android_path = self.takeout_path + os.sep + MY_ACTIVITY_ANDROID_PATH self.takeout_my_activity_chrome_path = self.takeout_path + os.sep + MY_ACTIVITY_CHROME_PATH
[ [ [ 7, 9 ], [ 95, 97 ], [ 121, 123 ], [ 211, 213 ], [ 234, 236 ], [ 302, 304 ], [ 321, 323 ], [ 400, 402 ], [ 430, 432 ], [ 500, 502 ], [ 521, 523 ], [ 596, 598 ], [ 622, 624 ], [ 696, 698 ], [ 725, 727 ], [ 792, 794 ], [ 810, 812 ], [ 880, 882 ], [ 901, 903 ], [ 970, 972 ], [ 990, 992 ], [ 1263, 1265 ], [ 1366, 1368 ], [ 1394, 1396 ], [ 1497, 1499 ], [ 1563, 1565 ], [ 1642, 1644 ], [ 1738, 1740 ], [ 1841, 1843 ], [ 1946, 1948 ], [ 2047, 2049 ], [ 2152, 2154 ], [ 2249, 2251 ], [ 2342, 2344 ], [ 2437, 2439 ] ], [ [ 39, 46 ] ], [ [ 54, 69 ] ], [ [ 71, 79 ], [ 1506, 1514 ] ], [ [ 149, 154 ], [ 1572, 1577 ] ], [ [ 166, 192 ], [ 1651, 1677 ] ], [ [ 261, 283 ], [ 1747, 1769 ] ], [ [ 348, 381 ], [ 1850, 1883 ] ], [ [ 457, 481 ], [ 1955, 1979 ] ], [ [ 548, 577 ], [ 2056, 2085 ] ], [ [ 649, 677 ], [ 2161, 2189 ] ], [ [ 752, 773 ], [ 2258, 2279 ] ], [ [ 837, 861 ], [ 2351, 2375 ] ], [ [ 928, 951 ], [ 2446, 2469 ] ], [ [ 1025, 1029 ] ] ]
from __future__ import print_function import os import pickle import time from gym_puyopuyo import register import gym import numpy as np import neat import visualize piece_shape = (3, 2) DRAW_NETS = False NUM_COLORS = 3.0 # 3 colors in the small env mode # TODO: could probably read color number from observation data fn_results = "feedforward-small" def multiplyMatrices(pieces, field, norm = True): pieces = pieces.astype(np.float64) field = field.astype(np.float64) pieces_sum = np.zeros(piece_shape) field_sum = np.zeros(field[0].shape) for i in range(0, len(pieces)): pieces[i] = np.multiply(pieces[i], i + 1) if(norm): pieces[i] /= NUM_COLORS pieces_sum += pieces[i] for i in range(0, len(field)): field[i] = np.multiply(field[i], i + 1) if(norm): field[i] /= NUM_COLORS field_sum += field[i] return pieces_sum, field_sum def run(): with open("results/winner-pickle-"+fn_results, 'rb') as f: c = pickle.load(f) print('loaded genome:') print(c) local_dir = os.path.dirname(__file__) config_path = os.path.join(local_dir, 'config-feedforward-small') config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction, neat.DefaultSpeciesSet, neat.DefaultStagnation, config_path) net = neat.nn.FeedForwardNetwork.create(c, config) register() env = gym.make("PuyoPuyoEndlessSmall-v2") done = False ob = env.reset() count = 0 total_reward = 0 while True: env.render() #input() time.sleep(0.5) pieces_sum, field_sum = multiplyMatrices(ob[0], ob[1]) next_piece = pieces_sum[0] inp_piece = np.ndarray.flatten(next_piece) inp_field = np.ndarray.flatten(field_sum) inputs = np.hstack([inp_piece, inp_field]) nn_output = net.activate(inputs) action = np.argmax(nn_output) #print(nn_output) #nn_output = int(round(nn_output[0] * NUM_ACTIONS)) #print(nn_output) #input() ob, rew, done, info = env.step(action) total_reward += rew count += 1 if done: break print("Game played for ", count, " turns.") print("Total score: ", total_reward) if DRAW_NETS: visualize.draw_net(config, c, view=True, filename="results/winner-"+fn_results+".net") visualize.draw_net(config, c, view=True, filename="results/winner-"+fn_results+"-enabled.net", show_disabled=False) visualize.draw_net(config, c, view=True, filename="results/winner-"+fn_results+"-pruned.net", show_disabled=False, prune_unused=True) if __name__ == '__main__': run()
[ [ [ 23, 37 ] ], [ [ 46, 48 ], [ 1108, 1110 ], [ 1152, 1154 ] ], [ [ 56, 62 ], [ 1026, 1032 ] ], [ [ 70, 74 ], [ 1637, 1641 ] ], [ [ 101, 109 ], [ 1444, 1452 ] ], [ [ 117, 120 ], [ 1465, 1468 ] ], [ [ 128, 139 ], [ 434, 436 ], [ 471, 473 ], [ 500, 502 ], [ 538, 540 ], [ 619, 621 ], [ 789, 791 ], [ 1784, 1786 ], [ 1835, 1837 ], [ 1882, 1884 ], [ 1983, 1985 ] ], [ [ 148, 152 ], [ 1217, 1221 ], [ 1229, 1233 ], [ 1249, 1253 ], [ 1299, 1303 ], [ 1323, 1327 ], [ 1395, 1399 ] ], [ [ 160, 169 ], [ 2406, 2415 ], [ 2535, 2544 ], [ 2717, 2726 ] ], [ [ 171, 182 ], [ 509, 520 ] ], [ [ 192, 201 ], [ 2387, 2396 ] ], [ [ 210, 220 ], [ 692, 702 ], [ 860, 870 ] ], [ [ 323, 333 ], [ 990, 1000 ], [ 2499, 2509 ], [ 2628, 2638 ], [ 2810, 2820 ] ], [ [ 361, 377 ], [ 1685, 1701 ] ], [ [ 944, 947 ], [ 2932, 2935 ] ] ]
import uuid from app import db from app.dao.dao_utils import transactional from app.models import ( BroadcastMessage, BroadcastEvent, BroadcastProvider, BroadcastProviderMessage, BroadcastProviderMessageNumber, BroadcastProviderMessageStatus ) def dao_get_broadcast_message_by_id_and_service_id(broadcast_message_id, service_id): return BroadcastMessage.query.filter( BroadcastMessage.id == broadcast_message_id, BroadcastMessage.service_id == service_id ).one() def dao_get_broadcast_event_by_id(broadcast_event_id): return BroadcastEvent.query.filter(BroadcastEvent.id == broadcast_event_id).one() def dao_get_broadcast_messages_for_service(service_id): return BroadcastMessage.query.filter( BroadcastMessage.service_id == service_id ).order_by(BroadcastMessage.created_at) def get_earlier_events_for_broadcast_event(broadcast_event_id): """ This is used to build up the references list. """ this_event = BroadcastEvent.query.get(broadcast_event_id) return BroadcastEvent.query.filter( BroadcastEvent.broadcast_message_id == this_event.broadcast_message_id, BroadcastEvent.sent_at < this_event.sent_at ).order_by( BroadcastEvent.sent_at.asc() ).all() @transactional def create_broadcast_provider_message(broadcast_event, provider): broadcast_provider_message_id = uuid.uuid4() provider_message = BroadcastProviderMessage( id=broadcast_provider_message_id, broadcast_event=broadcast_event, provider=provider, status=BroadcastProviderMessageStatus.SENDING, ) db.session.add(provider_message) db.session.commit() provider_message_number = None if provider == BroadcastProvider.VODAFONE: provider_message_number = BroadcastProviderMessageNumber( broadcast_provider_message_id=broadcast_provider_message_id) db.session.add(provider_message_number) db.session.commit() return provider_message
[ [ [ 7, 11 ], [ 1402, 1406 ] ], [ [ 29, 31 ], [ 1639, 1641 ], [ 1676, 1678 ], [ 1925, 1927 ], [ 1973, 1975 ] ], [ [ 62, 75 ], [ 1286, 1299 ] ], [ [ 105, 121 ], [ 368, 384 ], [ 407, 423 ], [ 460, 476 ], [ 726, 742 ], [ 765, 781 ], [ 822, 838 ] ], [ [ 127, 141 ], [ 582, 596 ], [ 610, 624 ], [ 1000, 1014 ], [ 1057, 1071 ], [ 1094, 1108 ], [ 1174, 1188 ], [ 1242, 1256 ] ], [ [ 147, 164 ], [ 1750, 1767 ] ], [ [ 170, 194 ], [ 1438, 1462 ] ], [ [ 200, 230 ], [ 1812, 1842 ] ], [ [ 236, 266 ], [ 1589, 1619 ] ], [ [ 275, 321 ] ], [ [ 520, 549 ] ], [ [ 663, 701 ] ], [ [ 857, 895 ] ], [ [ 1304, 1337 ] ] ]
# ---------------------------------------------------------------------------- # - Open3D: www.open3d.org - # ---------------------------------------------------------------------------- # The MIT License (MIT) # # Copyright (c) 2020 www.open3d.org # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # ---------------------------------------------------------------------------- """ 3D ML pipelines for PyTorch. """ import os as _os from open3d import _build_config if _build_config['BUNDLE_OPEN3D_ML']: if 'OPEN3D_ML_ROOT' in _os.environ: from ml3d.torch.pipelines import * else: from open3d._ml3d.torch.pipelines import *
[ [ [ 1480, 1489 ], [ 1589, 1592 ] ], [ [ 1509, 1522 ], [ 1527, 1540 ] ], [ [ 1643, 1644 ] ], [ [ 1704, 1705 ] ] ]
import os def to_bool(value): return ( value is True or (isinstance(value, str) and value.lower() in ['true', 'yes']) or (isinstance(value, (int, float)) and value > 0) ) bind = '0.0.0.0:{}'.format(os.getenv('GUNICORN_PORT', '8000')) max_requests = int(os.getenv('GUNICORN_MAX_REQUESTS', '10000')) max_requests_jitter = int(os.getenv('GUNICORN_MAX_REQUESTS_JITTER', '100')) user = os.getenv('GUNICORN_USER', 'root') keepalive = int(os.getenv('GUNICORN_KEEPALIVE', '70')) reuse_port = to_bool(os.getenv('GUNICORN_REUSE_PORT', True)) accesslog = '-' errorlog = '-' print_config = True workers = int(os.getenv('GUNICORN_WORKERS', '5')) threads = int(os.getenv('GUNICORN_THREADS', '5'))
[ [ [ 7, 9 ], [ 234, 236 ], [ 289, 291 ], [ 360, 362 ], [ 417, 419 ], [ 468, 470 ], [ 529, 531 ], [ 636, 638 ], [ 686, 688 ] ], [ [ 16, 23 ], [ 521, 528 ] ], [ [ 207, 211 ] ], [ [ 270, 282 ] ], [ [ 334, 353 ] ], [ [ 410, 414 ] ], [ [ 452, 461 ] ], [ [ 508, 518 ] ], [ [ 570, 579 ] ], [ [ 586, 594 ] ], [ [ 601, 613 ] ], [ [ 622, 629 ] ], [ [ 672, 679 ] ] ]
import pytest from skidl import * from .setup_teardown import * def test_pin_names_1(): codec = Part("xess.lib", "ak4520a") assert codec["ain"] == codec.n["ain"] assert codec[1:4] == codec.p[1:4] def test_pin_names_2(): codec = Part("xess.lib", "ak4520a") codec[4].name = "A1" codec[8].name = "A2" codec[8].num = "A1" assert codec[4] is codec.n["A1"] assert codec.p[4] is codec.n["A1"] assert codec[4] is codec.p[4] assert codec.p["A1"] is codec.n["A2"] assert codec["A1"] is codec.n["A2"] assert codec["A1"] is codec.p["A1"]
[ [ [ 7, 13 ] ], [ [ 33, 34 ] ], [ [ 64, 65 ], [ 104, 108 ], [ 250, 254 ] ], [ [ 72, 88 ] ], [ [ 218, 234 ] ] ]
from dataclasses import dataclass from dataclasses import field from typing import Any from typing import Callable from typing import Mapping from typing import Optional from typing import Sequence from typing import Type from svarog import forge from svarog import register_forge from svarog.types import Forge JSONMappingValue = Any JSONMapping = Mapping[str, JSONMappingValue] JSONSchema = JSONMapping GLOBAL_NAMESPACE = "/" @dataclass class MessageAck: """The specification of a message acknowledgement""" args: JSONSchema @dataclass class Message: """ https://www.asyncapi.com/docs/specifications/2.0.0#messageObject The above message object is extended as follows: * `x-handler`: Allows the coupling of the message specification to an event handler (which is a python callable). It SHOULD only be used for messages under a `publish` operation. Deserialized to `x_handler`. * `x-ack`: The specification of the acknowledgement packet that the message receiver transmits to the message sender. The acknowledgement args are passed as an input to the callback of the `emit`/`send` function. Deserialized to `x_ack`. The extentions are implemented as per: https://www.asyncapi.com/docs/specifications/2.0.0#specificationExtensions """ name: str payload: Optional[JSONSchema] = None x_handler: Optional[str] = None x_ack: Optional[MessageAck] = None @staticmethod def forge(type_: Type["Message"], data: JSONMapping, forge: Forge) -> "Message": return type_( name=forge(type_.__annotations__["name"], data["name"]), payload=forge(type_.__annotations__["payload"], data.get("payload")), x_handler=forge(type_.__annotations__["x_handler"], data.get("x-handler")), x_ack=forge(type_.__annotations__["x_ack"], data.get("x-ack")), ) register_forge(Message, Message.forge) @dataclass class OneOfMessages: """Using `oneOf` to specify multiple messages per operation""" oneOf: Sequence[Message] @staticmethod def forge( type_: Type["OneOfMessages"], data: JSONMapping, forge: Forge ) -> "OneOfMessages": if "oneOf" in data: return type_( oneOf=forge(type_.__annotations__["oneOf"], data["oneOf"]), ) return type_(oneOf=[forge(Message, data)]) def with_name(self, name: str) -> Optional[Message]: for message in self.oneOf: if message.name == name: return message return None register_forge(OneOfMessages, OneOfMessages.forge) @dataclass class Operation: """https://www.asyncapi.com/docs/specifications/2.0.0#operationObject""" message: OneOfMessages @dataclass class WebSocketsChannelBindings: """ https://github.com/asyncapi/bindings/tree/master/websockets#channel-binding-object """ method: Optional[str] = None query: Optional[JSONSchema] = None headers: Optional[JSONSchema] = None # TODO: Convert header properties to lowercase bindingVersion: str = "latest" @dataclass class ChannelBindings: """https://www.asyncapi.com/docs/specifications/2.0.0#channelBindingsObject""" ws: WebSocketsChannelBindings @dataclass class ChannelHandlers: connect: Optional[str] = None disconnect: Optional[str] = None error: Optional[str] = None @dataclass class Channel: """ https://www.asyncapi.com/docs/specifications/2.0.0#channelItemObject The above channel item object is extended to support default namespace handlers as per: https://www.asyncapi.com/docs/specifications/2.0.0#specificationExtensions The `x_handlers` field is serialized as `x-handlers`. """ subscribe: Optional[Operation] = None publish: Optional[Operation] = None bindings: Optional[ChannelBindings] = None x_handlers: Optional[ChannelHandlers] = None def __post_init__(self): if self.publish is not None: for message in self.publish.message.oneOf: if message.x_handler is None: raise ValueError( f"Message {message.name} is missing the x-handler attribute.\n" "Every message under a publish operation " "should have a handler defined." ) @staticmethod def forge(type_: Type["Channel"], data: JSONMapping, forge: Forge) -> "Channel": return type_( subscribe=forge(type_.__annotations__["subscribe"], data.get("subscribe")), publish=forge(type_.__annotations__["publish"], data.get("publish")), bindings=forge(type_.__annotations__["bindings"], data.get("bindings")), x_handlers=forge( type_.__annotations__["x_handlers"], data.get("x-handlers") ), ) register_forge(Channel, Channel.forge) @dataclass class Server: """https://www.asyncapi.com/docs/specifications/2.0.0#serverObject""" url: str @dataclass class AsyncApiSpec: """https://www.asyncapi.com/docs/specifications/2.0.0#A2SObject""" channels: Mapping[str, Channel] servers: Mapping[str, Server] = field(default_factory=dict) @staticmethod def from_dict(data: JSONMapping) -> "AsyncApiSpec": return forge(AsyncApiSpec, data) ErrorHandler = Callable[[Exception], None]
[ [ [ 24, 33 ], [ 434, 443 ], [ 544, 553 ], [ 1927, 1936 ], [ 2619, 2628 ], [ 2754, 2763 ], [ 3100, 3109 ], [ 3254, 3263 ], [ 3393, 3402 ], [ 4917, 4926 ], [ 5032, 5041 ] ], [ [ 58, 63 ], [ 5206, 5211 ] ], [ [ 83, 86 ], [ 333, 336 ] ], [ [ 106, 114 ], [ 5367, 5375 ] ], [ [ 134, 141 ], [ 351, 358 ], [ 5148, 5155 ], [ 5183, 5190 ] ], [ [ 161, 169 ], [ 1329, 1337 ], [ 1372, 1380 ], [ 1404, 1412 ], [ 2913, 2921 ], [ 2945, 2953 ], [ 2986, 2994 ], [ 3300, 3308 ], [ 3337, 3345 ], [ 3369, 3377 ], [ 3758, 3766 ], [ 3798, 3806 ], [ 3839, 3847 ], [ 3888, 3896 ], [ 2420, 2428 ] ], [ [ 189, 197 ], [ 2037, 2045 ] ], [ [ 217, 221 ], [ 1472, 1476 ], [ 2104, 2108 ], [ 4401, 4405 ] ], [ [ 242, 247 ], [ 5324, 5329 ] ], [ [ 267, 281 ], [ 1885, 1899 ], [ 2565, 2579 ], [ 4875, 4889 ] ], [ [ 307, 312 ], [ 1515, 1520 ], [ 2153, 2158 ], [ 4444, 4449 ] ], [ [ 314, 330 ], [ 364, 380 ] ], [ [ 337, 348 ], [ 395, 406 ], [ 1495, 1506 ], [ 2133, 2144 ], [ 4424, 4435 ], [ 5277, 5288 ] ], [ [ 382, 392 ], [ 530, 540 ], [ 1338, 1348 ], [ 2954, 2964 ], [ 2995, 3005 ] ], [ [ 408, 424 ] ], [ [ 450, 460 ], [ 1413, 1423 ] ], [ [ 560, 567 ], [ 1900, 1907 ], [ 1909, 1916 ], [ 2046, 2053 ], [ 2364, 2371 ], [ 2429, 2436 ] ], [ [ 1943, 1956 ], [ 2580, 2593 ], [ 2595, 2608 ], [ 2737, 2750 ] ], [ [ 2635, 2644 ], [ 3767, 3776 ], [ 3807, 3816 ] ], [ [ 2770, 2795 ], [ 3225, 3250 ] ], [ [ 3116, 3131 ], [ 3848, 3863 ] ], [ [ 3270, 3285 ], [ 3897, 3912 ] ], [ [ 3409, 3416 ], [ 4890, 4897 ], [ 4899, 4906 ], [ 5161, 5168 ] ], [ [ 4933, 4939 ], [ 5196, 5202 ] ], [ [ 5048, 5060 ], [ 5330, 5342 ] ], [ [ 5352, 5364 ] ] ]
# -*- encoding: utf-8 -*- # Module iaframe from numpy import * def iaframe(f, WT=1, HT=1, DT=0, k1=None, k2=None): from ia870 import iaunion, iaintersec,ialimits if k1 is None: k1 = ialimits(f)[1] if k2 is None: k2 = ialimits(f)[0] assert len(f.shape)==2,'Supports 2D only' y = iaintersec(f,k2) y[:,0:WT] = k1 y[:,-WT:] = k1 y[0:HT,:] = k1 y[-HT:,:] = k1 return y
[ [ [ 62, 63 ] ], [ [ 69, 76 ] ] ]
import jwt from contextlib import contextmanager from datetime import datetime, timedelta from sqlalchemy import Column, Integer, String, DateTime, Boolean from sqlalchemy import ForeignKey, func from sqlalchemy.orm import relationship from saraki.auth import _request_ctx_stack, User, Org from saraki.model import BaseModel, Model, database class DummyBaseModel(BaseModel): __tablename__ = "dummy_base_model" id = Column(Integer, primary_key=True) class DummyModel(Model): __tablename__ = "dummy_model" id = Column(Integer, primary_key=True) class Person(Model): __tablename__ = "person" id = Column(Integer, primary_key=True) firstname = Column(String, nullable=False) lastname = Column(String, nullable=False) age = Column(Integer, nullable=False) def export_data(self, include=("id", "firstname"), exclude=()): return super(Person, self).export_data(include, exclude) class Product(BaseModel): __tablename__ = "product" id = Column(Integer, primary_key=True) name = Column(String(120), nullable=False) color = Column(String, default="white") price = Column(Integer, default=0) created_at = Column(DateTime, nullable=False, default=func.now()) updated_at = Column(DateTime, nullable=False, server_default=func.now()) enabled = Column(Boolean, default=False) class Order(BaseModel): __tablename__ = "order" id = Column(Integer, primary_key=True) customer_id = Column(Integer, ForeignKey("person.id"), nullable=False) lines = relationship("OrderLine") customer = relationship("Person", uselist=False) class OrderLine(Model): __tablename__ = "order_line" order_id = Column(Integer, ForeignKey("order.id"), nullable=False, primary_key=True) product_id = Column( Integer, ForeignKey("product.id"), nullable=False, primary_key=True ) unit_price = Column(Integer, nullable=False) quantity = Column(Integer, default=1, nullable=False) product = relationship("Product", uselist=False) def export_data(self, include=(), exclude=()): include = tuple(include) + ("product_id", "unit_price", "quantity") return super(OrderLine, self).export_data(include, exclude) class Cartoon(Model): __tablename__ = "cartoon" id = Column(Integer, primary_key=True) name = Column(String(80), unique=True, nullable=False) nickname = Column(String(80), unique=True) class Todo(Model): __tablename__ = "todo" id = Column(Integer, primary_key=True) org_id = Column(Integer, ForeignKey("org.id"), nullable=False) task = Column(String(200), nullable=False) def login(username, orgname=None, scope=None): iat = datetime.utcnow() exp = iat + timedelta(seconds=6000) payload = {"iss": "acme.local", "sub": username, "iat": iat, "exp": exp} if orgname: payload.update({"aud": orgname, "scp": {"org": ["manage"]}}) if scope: payload.update({"scp": scope}) token = jwt.encode(payload, "secret").decode() return f"JWT {token}" @contextmanager def auth_ctx(username, orgname=None): _request_ctx_stack.top.current_user = User(id=1, username=username) if orgname: _request_ctx_stack.top.current_org = Org(id=1, orgname=orgname) yield def reset_secuence(table, column_name="id", schema_name="public"): table_name = f"{schema_name}.{table.__tablename__}" sql = f"SELECT pg_get_serial_sequence('{table_name}', '{column_name}');" secuence_name = database.engine.execute(sql).fetchone()[0] if secuence_name is not None: sql = f"ALTER SEQUENCE {secuence_name} RESTART WITH 1;" database.engine.execute(sql)
[ [ [ 7, 10 ], [ 3015, 3018 ] ], [ [ 34, 48 ], [ 3084, 3098 ] ], [ [ 70, 78 ], [ 2727, 2735 ] ], [ [ 80, 89 ], [ 2761, 2770 ] ], [ [ 114, 120 ], [ 428, 434 ], [ 533, 539 ], [ 630, 636 ], [ 681, 687 ], [ 728, 734 ], [ 770, 776 ], [ 1005, 1011 ], [ 1051, 1057 ], [ 1100, 1106 ], [ 1145, 1151 ], [ 1190, 1196 ], [ 1261, 1267 ], [ 1336, 1342 ], [ 1432, 1438 ], [ 1485, 1491 ], [ 1711, 1717 ], [ 1803, 1809 ], [ 1911, 1917 ], [ 1959, 1965 ], [ 2317, 2323 ], [ 2363, 2369 ], [ 2427, 2433 ], [ 2518, 2524 ], [ 2566, 2572 ], [ 2632, 2638 ] ], [ [ 122, 129 ], [ 435, 442 ], [ 540, 547 ], [ 637, 644 ], [ 777, 784 ], [ 1012, 1019 ], [ 1152, 1159 ], [ 1439, 1446 ], [ 1492, 1499 ], [ 1718, 1725 ], [ 1819, 1826 ], [ 1918, 1925 ], [ 1966, 1973 ], [ 2324, 2331 ], [ 2525, 2532 ], [ 2573, 2580 ] ], [ [ 131, 137 ], [ 688, 694 ], [ 735, 741 ], [ 1058, 1064 ], [ 1107, 1113 ], [ 2370, 2376 ], [ 2434, 2440 ], [ 2639, 2645 ] ], [ [ 139, 147 ], [ 1197, 1205 ], [ 1268, 1276 ] ], [ [ 149, 156 ], [ 1343, 1350 ] ], [ [ 180, 190 ], [ 1501, 1511 ], [ 1727, 1737 ], [ 1828, 1838 ], [ 2582, 2592 ] ], [ [ 192, 196 ], [ 1231, 1235 ], [ 1309, 1313 ] ], [ [ 224, 236 ], [ 1555, 1567 ], [ 1597, 1609 ], [ 2017, 2029 ] ], [ [ 262, 280 ], [ 3142, 3160 ], [ 3235, 3253 ] ], [ [ 282, 286 ], [ 3180, 3184 ] ], [ [ 288, 291 ], [ 3272, 3275 ] ], [ [ 317, 326 ], [ 367, 376 ], [ 952, 961 ], [ 1381, 1390 ] ], [ [ 328, 333 ], [ 481, 486 ], [ 582, 587 ], [ 1653, 1658 ], [ 2268, 2273 ], [ 2472, 2477 ] ], [ [ 335, 343 ], [ 3534, 3542 ], [ 3684, 3692 ] ], [ [ 352, 366 ] ], [ [ 470, 480 ] ], [ [ 575, 581 ], [ 892, 898 ] ], [ [ 944, 951 ] ], [ [ 1375, 1380 ] ], [ [ 1643, 1652 ], [ 2205, 2214 ] ], [ [ 2260, 2267 ] ], [ [ 2467, 2471 ] ], [ [ 2674, 2679 ] ], [ [ 3103, 3111 ] ], [ [ 3316, 3330 ] ] ]
from multiprocessing import Pool import argparse import glob import os import io import time import logging import gluonnlp as nlp import tokenizer as tokenization parser = argparse.ArgumentParser(description='BERT tokenizer') parser.add_argument('--input_files', type=str, default='wiki_*.doc', help='Input files. Default is "wiki_*.doc"') parser.add_argument('--nworker', type=int, default=8, help='Number of workers for parallel processing.') args = parser.parse_args() args = parser.parse_args() input_files = sorted(glob.glob(os.path.expanduser(args.input_files))) num_files = len(input_files) num_workers = args.nworker logging.basicConfig(level=logging.INFO) logging.info("Number of input files to process = %d"%(num_files)) # TODO(haibin) tokenize with vocab exclude_patterns = [ '< no ##in ##cl ##ude >\n' ] def in_pattern(x): for pattern in exclude_patterns: if len(x) == len(pattern) and x == pattern: return True return False def f(input_file): with io.open(input_file, 'r', encoding="utf-8") as fin: assert input_file.endswith('.tokens'), 'Expects .doc suffix for input files' with io.open(input_file.replace('.tokens', '.tks'), 'w', encoding="utf-8") as fout: new_doc = True with io.open(input_file, 'r', encoding="utf-8") as fin: lines = fin.readlines() for line in lines: if new_doc: new_doc = False elif len(line) == 1 and line[0] == '\n': new_doc = True fout.write(u'\n') elif in_pattern(line): pass else: fout.write(line) if __name__ == '__main__': tic = time.time() p = Pool(num_workers) p.map(f, input_files) toc = time.time() logging.info("Processed %s in %.2f sec"%(args.input_files, toc-tic))
[ [ [ 28, 32 ], [ 1851, 1855 ] ], [ [ 40, 48 ], [ 174, 182 ] ], [ [ 56, 60 ], [ 564, 568 ] ], [ [ 68, 70 ], [ 574, 576 ] ], [ [ 78, 80 ], [ 1042, 1044 ], [ 1191, 1193 ], [ 1314, 1316 ] ], [ [ 88, 92 ], [ 1831, 1835 ], [ 1905, 1909 ] ], [ [ 100, 107 ], [ 669, 676 ], [ 695, 702 ], [ 709, 716 ], [ 1921, 1928 ] ], [ [ 115, 130 ] ], [ [ 138, 163 ] ], [ [ 165, 171 ], [ 228, 234 ], [ 362, 368 ], [ 495, 501 ], [ 522, 528 ] ], [ [ 488, 492 ] ], [ [ 515, 519 ], [ 593, 597 ], [ 656, 660 ], [ 1962, 1966 ] ], [ [ 543, 554 ], [ 629, 640 ], [ 1882, 1893 ] ], [ [ 613, 622 ], [ 763, 772 ] ], [ [ 642, 653 ], [ 1856, 1867 ] ], [ [ 811, 827 ], [ 902, 918 ] ], [ [ 868, 878 ], [ 1679, 1689 ] ], [ [ 1016, 1017 ], [ 1879, 1880 ] ], [ [ 1825, 1828 ], [ 1984, 1987 ] ], [ [ 1847, 1848 ], [ 1873, 1874 ] ], [ [ 1899, 1902 ], [ 1980, 1983 ] ] ]
import sys; from more_itertools import windowed, first_true orig_data = list(map(int, open('d9.txt'))) data = orig_data[:] target = 32321523 for i, e in enumerate(data): if i == 0: continue data[i] = data[i - 1] + data[i] for i in range(len(data)): for j in range(i): if data[i] - data[j] == target: print(j, i, 'inclusive') print(min(orig_data[j:i+1]) + max(orig_data[j:i+1])) sys.exit()
[ [ [ 7, 10 ], [ 435, 438 ] ], [ [ 39, 47 ] ], [ [ 49, 59 ] ], [ [ 60, 69 ], [ 110, 119 ], [ 380, 389 ], [ 404, 413 ] ], [ [ 103, 107 ], [ 163, 167 ], [ 208, 212 ], [ 222, 226 ], [ 198, 202 ], [ 250, 254 ], [ 292, 296 ], [ 302, 306 ] ], [ [ 123, 129 ], [ 313, 319 ] ], [ [ 145, 146 ], [ 177, 178 ], [ 213, 214 ], [ 227, 228 ], [ 203, 204 ] ], [ [ 148, 149 ] ], [ [ 235, 236 ], [ 277, 278 ], [ 297, 298 ], [ 342, 343 ], [ 392, 393 ], [ 416, 417 ] ], [ [ 266, 267 ], [ 307, 308 ], [ 339, 340 ], [ 390, 391 ], [ 414, 415 ] ] ]
"""Xiaomi aqara single key switch device.""" import logging from zigpy.profiles import zha from zigpy.zcl.clusters.general import ( AnalogInput, Basic, Groups, Identify, MultistateInput, OnOff, Ota, Scenes, ) from .. import ( LUMI, XIAOMI_NODE_DESC, BasicCluster, XiaomiPowerConfiguration, XiaomiQuickInitDevice, ) from ... import CustomCluster from ...const import ( ATTR_ID, COMMAND, DEVICE_TYPE, DOUBLE_PRESS, ENDPOINTS, INPUT_CLUSTERS, LONG_PRESS, MODELS_INFO, NODE_DESCRIPTOR, OUTPUT_CLUSTERS, PRESS_TYPE, PROFILE_ID, SHORT_PRESS, SKIP_CONFIGURATION, VALUE, ZHA_SEND_EVENT, ) DOUBLE = "double" HOLD = "long press" PRESS_TYPES = {0: "long press", 1: "single", 2: "double"} SINGLE = "single" STATUS_TYPE_ATTR = 0x0055 # decimal = 85 XIAOMI_CLUSTER_ID = 0xFFFF XIAOMI_DEVICE_TYPE = 0x5F01 XIAOMI_DEVICE_TYPE2 = 0x5F02 XIAOMI_DEVICE_TYPE3 = 0x5F03 _LOGGER = logging.getLogger(__name__) class RemoteB186ACN01(XiaomiQuickInitDevice): """Aqara single key switch device.""" class MultistateInputCluster(CustomCluster, MultistateInput): """Multistate input cluster.""" cluster_id = MultistateInput.cluster_id def __init__(self, *args, **kwargs): """Init.""" self._current_state = None super().__init__(*args, **kwargs) def _update_attribute(self, attrid, value): super()._update_attribute(attrid, value) if attrid == STATUS_TYPE_ATTR: self._current_state = PRESS_TYPES.get(value) event_args = { PRESS_TYPE: self._current_state, ATTR_ID: attrid, VALUE: value, } self.listener_event(ZHA_SEND_EVENT, self._current_state, event_args) # show something in the sensor in HA super()._update_attribute(0, self._current_state) signature = { # <SimpleDescriptor endpoint=1 profile=260 device_type=24321 # device_version=1 # input_clusters=[0, 3, 25, 65535, 18] # output_clusters=[0, 4, 3, 5, 25, 65535, 18]> MODELS_INFO: [ (LUMI, "lumi.remote.b186acn01"), (LUMI, "lumi.remote.b186acn02"), (LUMI, "lumi.sensor_86sw1"), ], NODE_DESCRIPTOR: XIAOMI_NODE_DESC, ENDPOINTS: { 1: { PROFILE_ID: zha.PROFILE_ID, DEVICE_TYPE: XIAOMI_DEVICE_TYPE, INPUT_CLUSTERS: [ Basic.cluster_id, Identify.cluster_id, Ota.cluster_id, XIAOMI_CLUSTER_ID, MultistateInputCluster.cluster_id, ], OUTPUT_CLUSTERS: [ Basic.cluster_id, Identify.cluster_id, Groups.cluster_id, Scenes.cluster_id, Ota.cluster_id, XIAOMI_CLUSTER_ID, MultistateInputCluster.cluster_id, ], }, # <SimpleDescriptor endpoint=2 profile=260 device_type=24322 # device_version=1 # input_clusters=[3, 18] # output_clusters=[4, 3, 5, 18]> 2: { PROFILE_ID: zha.PROFILE_ID, DEVICE_TYPE: XIAOMI_DEVICE_TYPE2, INPUT_CLUSTERS: [ Identify.cluster_id, MultistateInputCluster.cluster_id, ], OUTPUT_CLUSTERS: [ Identify.cluster_id, Groups.cluster_id, Scenes.cluster_id, MultistateInputCluster.cluster_id, ], }, # <SimpleDescriptor endpoint=3 profile=260 device_type=24323 # device_version=1 # input_clusters=[3, 12] # output_clusters=[4, 3, 5, 12]> 3: { PROFILE_ID: zha.PROFILE_ID, DEVICE_TYPE: XIAOMI_DEVICE_TYPE3, INPUT_CLUSTERS: [Identify.cluster_id, AnalogInput.cluster_id], OUTPUT_CLUSTERS: [ Identify.cluster_id, Groups.cluster_id, Scenes.cluster_id, AnalogInput.cluster_id, ], }, }, } replacement = { SKIP_CONFIGURATION: True, ENDPOINTS: { 1: { DEVICE_TYPE: zha.DeviceType.REMOTE_CONTROL, INPUT_CLUSTERS: [ BasicCluster, XiaomiPowerConfiguration, Identify.cluster_id, Ota.cluster_id, XIAOMI_CLUSTER_ID, MultistateInputCluster, ], OUTPUT_CLUSTERS: [ Basic.cluster_id, Identify.cluster_id, Groups.cluster_id, Scenes.cluster_id, Ota.cluster_id, XIAOMI_CLUSTER_ID, MultistateInputCluster, OnOff.cluster_id, ], }, 2: { DEVICE_TYPE: zha.DeviceType.REMOTE_CONTROL, INPUT_CLUSTERS: [Identify.cluster_id, MultistateInputCluster], OUTPUT_CLUSTERS: [ Identify.cluster_id, Groups.cluster_id, Scenes.cluster_id, MultistateInputCluster, ], }, 3: { DEVICE_TYPE: zha.DeviceType.REMOTE_CONTROL, INPUT_CLUSTERS: [Identify.cluster_id, MultistateInputCluster], OUTPUT_CLUSTERS: [ Identify.cluster_id, Groups.cluster_id, Scenes.cluster_id, AnalogInput.cluster_id, MultistateInputCluster, ], }, }, } device_automation_triggers = { (DOUBLE_PRESS, DOUBLE_PRESS): {COMMAND: DOUBLE}, (SHORT_PRESS, SHORT_PRESS): {COMMAND: SINGLE}, (LONG_PRESS, LONG_PRESS): {COMMAND: HOLD}, }
[ [ [ 52, 59 ], [ 980, 987 ] ], [ [ 88, 91 ], [ 2487, 2490 ], [ 3401, 3404 ], [ 4090, 4093 ], [ 4606, 4609 ], [ 5359, 5362 ], [ 5747, 5750 ] ], [ [ 137, 148 ], [ 4210, 4221 ], [ 4409, 4420 ], [ 6031, 6042 ] ], [ [ 154, 159 ], [ 2606, 2611 ], [ 2869, 2874 ], [ 4985, 4990 ] ], [ [ 165, 171 ], [ 2948, 2954 ], [ 3712, 3718 ], [ 4331, 4337 ], [ 5064, 5070 ], [ 5565, 5571 ], [ 5953, 5959 ] ], [ [ 177, 185 ], [ 2644, 2652 ], [ 2907, 2915 ], [ 3521, 3529 ], [ 3671, 3679 ], [ 4189, 4197 ], [ 4290, 4298 ], [ 4771, 4779 ], [ 5023, 5031 ], [ 5423, 5431 ], [ 5524, 5532 ], [ 5811, 5819 ], [ 5912, 5920 ] ], [ [ 191, 206 ], [ 1147, 1162 ], [ 1227, 1242 ] ], [ [ 212, 217 ], [ 5261, 5266 ] ], [ [ 223, 226 ], [ 2685, 2688 ], [ 3026, 3029 ], [ 4812, 4815 ], [ 5142, 5145 ] ], [ [ 232, 238 ], [ 2987, 2993 ], [ 3751, 3757 ], [ 4370, 4376 ], [ 5103, 5109 ], [ 5604, 5610 ], [ 5992, 5998 ] ], [ [ 264, 268 ], [ 2249, 2253 ], [ 2294, 2298 ], [ 2339, 2343 ] ], [ [ 274, 290 ], [ 2403, 2419 ] ], [ [ 296, 308 ], [ 4691, 4703 ] ], [ [ 314, 338 ], [ 4725, 4749 ] ], [ [ 344, 365 ], [ 1032, 1053 ] ], [ [ 385, 398 ], [ 1132, 1145 ] ], [ [ 426, 433 ], [ 1723, 1730 ] ], [ [ 439, 446 ], [ 6225, 6232 ], [ 6280, 6287 ], [ 6333, 6340 ] ], [ [ 452, 463 ], [ 2519, 2530 ], [ 3433, 3444 ], [ 4122, 4133 ], [ 4593, 4604 ], [ 5346, 5357 ], [ 5734, 5745 ] ], [ [ 469, 481 ], [ 6195, 6207 ], [ 6209, 6221 ] ], [ [ 487, 496 ], [ 2429, 2438 ], [ 4547, 4556 ] ], [ [ 502, 516 ], [ 2568, 2582 ], [ 3483, 3497 ], [ 4172, 4186 ], [ 4653, 4667 ], [ 5406, 5420 ], [ 5794, 5808 ] ], [ [ 522, 532 ], [ 6307, 6317 ], [ 6319, 6329 ] ], [ [ 538, 549 ], [ 2221, 2232 ] ], [ [ 555, 570 ], [ 2386, 2401 ] ], [ [ 576, 591 ], [ 2830, 2845 ], [ 3632, 3647 ], [ 4251, 4266 ], [ 4946, 4961 ], [ 5485, 5500 ], [ 5873, 5888 ] ], [ [ 597, 607 ], [ 1670, 1680 ] ], [ [ 613, 623 ], [ 2475, 2485 ], [ 3389, 3399 ], [ 4078, 4088 ] ], [ [ 629, 640 ], [ 6252, 6263 ], [ 6265, 6276 ] ], [ [ 646, 664 ], [ 4513, 4531 ] ], [ [ 670, 675 ], [ 1760, 1765 ] ], [ [ 681, 695 ], [ 1828, 1842 ] ], [ [ 700, 706 ], [ 6234, 6240 ] ], [ [ 718, 722 ], [ 6342, 6346 ] ], [ [ 738, 749 ], [ 1596, 1607 ] ], [ [ 796, 802 ], [ 6289, 6295 ] ], [ [ 814, 830 ], [ 1540, 1556 ] ], [ [ 856, 873 ], [ 2721, 2738 ], [ 3062, 3079 ], [ 4848, 4865 ], [ 5178, 5195 ] ], [ [ 883, 901 ], [ 2532, 2550 ] ], [ [ 911, 930 ], [ 3446, 3465 ] ], [ [ 940, 959 ], [ 4135, 4154 ] ], [ [ 970, 977 ] ], [ [ 1016, 1031 ] ] ]
""" Problem: The function 'doubler' takes a word as input. It should create and print a string, where each character in the string is doubled, for example: "test" -> "tteesstt" Tests: >>> doubler("test") tteesstt >>> doubler("original") oorriiggiinnaall >>> doubler("hihihi") hhiihhiihhii """ import doctest def run_tests(): doctest.testmod(verbose=True) def doubler(word): print(''.join([char + char for char in word])) if __name__ == "__main__": run_tests()
[ [ [ 337, 344 ], [ 366, 373 ] ], [ [ 349, 358 ], [ 499, 508 ] ], [ [ 401, 408 ] ] ]
import binascii import sys import Adafruit_PN532 as PN532 # Setup how the PN532 is connected to the Raspbery Pi/BeagleBone Black. # It is recommended to use a software SPI connection with 4 digital GPIO pins. # Configuration for a Raspberry Pi: CS = 8 #pn532_nss----->rpi_ce0:8 MOSI = 9 #pn532_mosi---->rpi__miso:9 MISO = 10 #pn532_miso---->rpi__mosi:10 SCLK = 11 #pn532_sck----->rpi_sclk:11 # Configuration for a BeagleBone Black: # CS = 'P8_7' # MOSI = 'P8_8' # MISO = 'P8_9' # SCLK = 'P8_10' # Create an instance of the PN532 class. pn532 = PN532.PN532(cs=CS, sclk=SCLK, mosi=MOSI, miso=MISO) # Call begin to initialize communication with the PN532. Must be done before # any other calls to the PN532! pn532.begin() # Get the firmware version from the chip and print(it out.) ic, ver, rev, support = pn532.get_firmware_version() print('Found PN532 with firmware version: {0}.{1}'.format(ver, rev)) # Configure PN532 to communicate with MiFare cards. pn532.SAM_configuration() # Main loop to detect cards and read a block. while True: print('等待读卡中,请将卡靠近pn532读取设备...') # Check if a card is available to read. uid = pn532.read_passive_target() # Try again if no card is available. if uid is None: continue uid=format(binascii.hexlify(uid)) print("UID:",uid)
[ [ [ 8, 16 ], [ 1277, 1285 ] ], [ [ 24, 27 ] ], [ [ 36, 59 ], [ 561, 566 ] ], [ [ 250, 252 ], [ 576, 578 ] ], [ [ 287, 291 ], [ 596, 600 ] ], [ [ 326, 330 ], [ 607, 611 ] ], [ [ 366, 370 ], [ 585, 589 ] ], [ [ 553, 558 ], [ 724, 729 ], [ 823, 828 ], [ 974, 979 ], [ 1151, 1156 ] ], [ [ 799, 801 ] ], [ [ 803, 806 ], [ 910, 913 ] ], [ [ 808, 811 ], [ 915, 918 ] ], [ [ 813, 820 ] ], [ [ 1145, 1148 ], [ 1232, 1235 ], [ 1294, 1297 ] ], [ [ 1266, 1269 ], [ 1317, 1320 ] ] ]
from macaque import cli def test_cli_template(): assert cli.cli() is None
[ [ [ 20, 23 ], [ 61, 64 ] ], [ [ 29, 46 ] ] ]
# Antes de mais nada install o flask = pip install flask from flask import Flask app = Flask(__name__) @app.route('/') def homepage(): return 'Essa é minha HomePage' @app.route('/contatos') def contatos(): return 'Essa são os meus contatos' app.run()
[ [ [ 75, 80 ], [ 88, 93 ] ], [ [ 82, 85 ], [ 106, 109 ], [ 174, 177 ], [ 253, 256 ] ], [ [ 125, 133 ] ], [ [ 201, 209 ] ] ]
from itertools import zip_longest DAY = 'day' HOUR = 'hour' NAME = 'name' class Formatter: def __init__(self, indent=5 * ' '): self.indent = indent def append(self, text, tag=None): raise NotImplementedError('Must override append() in derived class') def println(self, *args): sep = None for a in args: if sep: self.append(sep) else: sep = ' ' if isinstance(a, str): self.append(a) else: self.append(*a) self.append('\n') def show(self, previous, day, hour, name, text): if day: if previous: self.println() self.println((day, DAY)) if name: if not day: self.println() self.println((hour, HOUR), (name, NAME)) self.show_multiline(None, text) else: self.show_multiline(hour, text) def show_multiline(self, hour, text): hh = [(hour, HOUR)] if hour else [] for h, line in zip_longest(hh, text.split('\n'), fillvalue=self.indent): self.println(h, line)
[ [ [ 22, 33 ], [ 1091, 1102 ] ], [ [ 35, 38 ], [ 748, 751 ] ], [ [ 47, 51 ], [ 858, 862 ], [ 1045, 1049 ] ], [ [ 61, 65 ], [ 872, 876 ] ], [ [ 83, 92 ] ] ]
__all__ = [ "prototype", ] import sys from inspect import ( signature, ) from typing import ( TypeVar, Callable, ) from .exceptions import ( PrototypeError, ) if sys.version_info >= (3, 10): from typing import ParamSpec else: from typing_extensions import ParamSpec # pragma: no cover Parameters = ParamSpec("Parameters") ReturnType = TypeVar("ReturnType") # noinspection PyTypeHints def prototype( proto: Callable[Parameters, ReturnType], /, *, runtime: bool = True, ) -> Callable[Parameters, ReturnType]: """ Prototype decorator acts like a type protection shield that validates the parameters specification and return type annotation of the function against given prototype. If `runtime` parameter is set to True, decorator performs prototype validation during runtime using the :class:`Signature` class from :module:`inspect` module by comparing function and prototype signatures against each other. :param proto: prototype function :param runtime: when set to True, performs prototype validation during runtime :raises PrototypeError: When function has incompatible signature for given prototype. Exception is raised only when `runtime` argument is set to True. """ # noinspection PyTypeHints def decorator(func: Callable[Parameters, ReturnType], /) -> Callable[Parameters, ReturnType]: if runtime is True: func_signature = signature(func) proto_signature = signature(proto) if func_signature.parameters != proto_signature.parameters: raise PrototypeError(func, func_signature, proto, proto_signature) if func_signature.return_annotation != proto_signature.return_annotation: raise PrototypeError(func, func_signature, proto, proto_signature) return func return decorator
[ [ [ 0, 7 ] ], [ [ 39, 42 ], [ 187, 190 ] ], [ [ 70, 79 ], [ 1478, 1487 ], [ 1524, 1533 ] ], [ [ 109, 116 ], [ 370, 377 ] ], [ [ 122, 130 ], [ 526, 534 ], [ 447, 455 ], [ 1387, 1395 ], [ 1347, 1355 ] ], [ [ 165, 179 ], [ 1636, 1650 ], [ 1806, 1820 ] ], [ [ 239, 248 ], [ 333, 342 ] ], [ [ 289, 298 ], [ 333, 342 ] ], [ [ 320, 330 ], [ 535, 545 ], [ 456, 466 ], [ 1396, 1406 ], [ 1356, 1366 ] ], [ [ 357, 367 ], [ 547, 557 ], [ 468, 478 ], [ 1408, 1418 ], [ 1368, 1378 ] ], [ [ 425, 434 ] ] ]
import PIL.Image from io import BytesIO from IPython.display import clear_output, Image, display import numpy as np def showarray(a, fmt='jpeg'): a = np.uint8(np.clip(a, 0, 255)) f = BytesIO() PIL.Image.fromarray(a).save(f, fmt) display(Image(data=f.getvalue())) def showtensor(a): mean = np.array([0.485, 0.456, 0.406]).reshape([1, 1, 3]) std = np.array([0.229, 0.224, 0.225]).reshape([1, 1, 3]) inp = a[0, :, :, :] inp = inp.transpose(1, 2, 0) inp = std * inp + mean inp *= 255 showarray(inp) clear_output(wait=True)
[ [ [ 7, 16 ], [ 207, 210 ] ], [ [ 32, 39 ], [ 193, 200 ] ], [ [ 68, 80 ], [ 547, 559 ] ], [ [ 82, 87 ], [ 255, 260 ] ], [ [ 89, 96 ], [ 247, 254 ] ], [ [ 104, 115 ], [ 156, 158 ], [ 165, 167 ], [ 313, 315 ], [ 374, 376 ] ], [ [ 122, 131 ], [ 528, 537 ] ], [ [ 287, 297 ] ] ]
import mimetypes from pathlib import Path from appdirs import user_config_dir from tqdm import tqdm NAME = "novelsave" AUTHOR = "Mensch272" # base project directory BASE_DIR = Path(__file__).resolve().parent.parent STATIC_DIR = BASE_DIR / "novelsave/resources" # operating system specific configuration file # config directory is used to place logs, config, cache CONFIG_DIR = Path(user_config_dir(NAME, AUTHOR)) CONFIG_FILE = CONFIG_DIR / "config.json" DATA_DIR = CONFIG_DIR / "data" DATABASE_FILE = (CONFIG_DIR / "data.sqlite").resolve() DATABASE_URL = "sqlite:///" + str(DATABASE_FILE) # default novel directory, where packaged files such # as epub and pdf are stored. NOVEL_DIR = Path.home() / "novels" # the following map defines how files are stored # by further subdivision into sub-folders DIVISION_RULES = { k: v.split("/", maxsplit=1)[0] for k, v in mimetypes.types_map.items() } def console_formatter(record): if record["level"].name == "INFO": return "{message}\n" else: return "<level>{level}: {message}</level>\n" LOGGER_CONFIG = { "handlers": [ { "sink": lambda msg: tqdm.write(msg, end=""), "format": console_formatter, "level": "INFO", "colorize": True, "backtrace": False, "diagnose": False, }, { "sink": CONFIG_DIR / "logs" / "{time}.log", "level": "TRACE", "retention": "2 days", "compression": "zip", "encoding": "utf-8", }, ], } TQDM_CONFIG = {"ncols": 80, "bar_format": "{percentage:3.0f}% |{bar}{r_bar}"} config = { "name": NAME, "author": AUTHOR, "base_dir": BASE_DIR, "static": { "dir": STATIC_DIR, }, "config": { "dir": CONFIG_DIR, "file": CONFIG_FILE, }, "data": { "dir": DATA_DIR, "division_rules": DIVISION_RULES, }, "novel": { "dir": NOVEL_DIR, }, "infrastructure": { "database": { "url": DATABASE_URL, } }, }
[ [ [ 7, 16 ], [ 873, 882 ] ], [ [ 37, 41 ], [ 179, 183 ], [ 382, 386 ], [ 692, 696 ] ], [ [ 63, 78 ], [ 387, 402 ] ], [ [ 96, 100 ], [ 1147, 1151 ] ], [ [ 102, 106 ], [ 403, 407 ], [ 1667, 1671 ] ], [ [ 121, 127 ], [ 409, 415 ], [ 1687, 1693 ] ], [ [ 168, 176 ], [ 232, 240 ], [ 1711, 1719 ] ], [ [ 219, 229 ], [ 1752, 1762 ] ], [ [ 369, 379 ], [ 432, 442 ], [ 471, 481 ], [ 509, 519 ], [ 1376, 1386 ], [ 1802, 1812 ] ], [ [ 418, 429 ], [ 1830, 1841 ] ], [ [ 460, 468 ], [ 1879, 1887 ] ], [ [ 492, 505 ], [ 581, 594 ] ], [ [ 547, 559 ], [ 2051, 2063 ] ], [ [ 680, 689 ], [ 1968, 1977 ] ], [ [ 807, 821 ], [ 1915, 1929 ] ], [ [ 909, 926 ], [ 1194, 1211 ] ], [ [ 1069, 1082 ] ], [ [ 1565, 1576 ] ], [ [ 1644, 1650 ] ] ]
#!/usr/bin/env python # -*- coding: utf-8 -*- import logging import os import sys import click from newschimp import renderer, sender from newschimp.social import fb, gg, lanyrd from newschimp.cli import cli_group from newschimp.utils import ComplexCLI, load_settings LOGGER = logging.getLogger(__name__) def create_newsletter(settings): """Newsletter creation based on config and env variables""" context = {} try: fb_posts = fb.get_posts(settings, os.environ['FACEBOOK_TOKEN'], None) except KeyError: LOGGER.error('Facebook Token not defined') sys.exit() click.echo('[1/4] Getting Facebook Group posts') context['fb'] = fb.curate(fb_posts) ggroup_posts = gg.get_posts(settings, None) click.echo('[2/4] Getting Google Group posts') context['gg'] = gg.curate(ggroup_posts) click.echo('[3/4] Getting upcoming Lanyrd meetups') context['meetups'] = lanyrd.meetup_loop(settings) click.echo('[4/4] Rendering mail') renderer.render_files(settings, None, context) click.confirm( 'Content is rendered, would you like to send it now?', abort=True) click.echo('Creating MailChimp campaign') sender.new_campaign(settings, os.environ.get('MAILCHIMP_KEY')) cli_group.add_command(fb.cli) cli_group.add_command(gg.cli) cli_group.add_command(lanyrd.cli) @cli_group.command(cls=ComplexCLI, invoke_without_command=True) @click.option('--config', help='Custom config file', type=click.Path( exists=True, file_okay=True, resolve_path=True), default='config.yaml') @click.pass_context def main(ctx, config): ctx.obj['SETTINGS'] = load_settings(config) if ctx.invoked_subcommand is None: create_newsletter(ctx.obj['SETTINGS']) if __name__ == '__main__': main(obj={})
[ [ [ 53, 60 ], [ 280, 287 ] ], [ [ 68, 70 ], [ 475, 477 ], [ 1212, 1214 ] ], [ [ 78, 81 ], [ 591, 594 ] ], [ [ 90, 95 ], [ 1407, 1412 ], [ 1464, 1469 ], [ 1553, 1558 ], [ 606, 611 ], [ 747, 752 ], [ 842, 847 ], [ 952, 957 ], [ 1042, 1047 ], [ 1136, 1141 ] ], [ [ 119, 127 ], [ 991, 999 ] ], [ [ 129, 135 ], [ 1182, 1188 ] ], [ [ 165, 167 ], [ 1269, 1271 ], [ 452, 454 ], [ 675, 677 ] ], [ [ 169, 171 ], [ 1299, 1301 ], [ 714, 716 ], [ 814, 816 ] ], [ [ 173, 179 ], [ 1329, 1335 ], [ 919, 925 ] ], [ [ 206, 215 ], [ 1247, 1256 ], [ 1277, 1286 ], [ 1307, 1316 ], [ 1343, 1352 ] ], [ [ 244, 254 ], [ 1365, 1375 ] ], [ [ 256, 269 ], [ 1621, 1634 ] ], [ [ 271, 277 ], [ 540, 546 ] ], [ [ 314, 331 ], [ 1690, 1707 ] ], [ [ 1576, 1580 ], [ 1762, 1766 ] ] ]
try: from setuptools import setup except ImportError: from distutils.core import setup PACKAGE = "flightaware" NAME = "flightaware" DESCRIPTION = "A python REST interface for flightaware data" AUTHOR = "Fred Palmer" AUTHOR_EMAIL = "fred.palmer@gmail.com" URL = "https://github.com/fredpalmer/flightaware" config = { "description": DESCRIPTION, "author": AUTHOR, "url": URL, "author_email": AUTHOR_EMAIL, "version": "0.1", "install_requires": [ "requests>=2.0.0", "pytz" ], "keywords": "travel flightaware airline flight flight-tracking flight-data", "classifiers": [ "Development Status :: 3 - Alpha", "Environment :: Web Environment", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Topic :: Internet :: WWW/HTTP", ], "packages": [PACKAGE, ], "scripts": [], "name": NAME, "license": "MIT", } setup(**config)
[ [ [ 32, 37 ], [ 1028, 1033 ] ], [ [ 89, 94 ], [ 1028, 1033 ] ], [ [ 96, 103 ], [ 954, 961 ] ], [ [ 120, 124 ], [ 997, 1001 ] ], [ [ 141, 152 ], [ 345, 356 ] ], [ [ 202, 208 ], [ 372, 378 ] ], [ [ 225, 237 ], [ 416, 428 ] ], [ [ 264, 267 ], [ 391, 394 ] ], [ [ 315, 321 ], [ 1036, 1042 ] ] ]
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 32 , FREQ = 'D', seed = 0, trendtype = "Lag1Trend", cycle_length = 30, transform = "Quantization", sigma = 0.0, exog_count = 20, ar_order = 12);
[ [ [ 7, 37 ] ], [ [ 45, 95 ], [ 100, 103 ] ] ]
# # (C) Copyright IBM Corp. 2020 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import json import shutil import logging import requests from lithops.storage.utils import StorageNoSuchKeyError from lithops.utils import sizeof_fmt from lithops.constants import STORAGE_CLI_MSG logger = logging.getLogger(__name__) class StorageBackend: """ A wrap-up around OpenStack Swift APIs. """ def __init__(self, swift_config): logger.debug("Creating OpenStack Swift client") self.auth_url = swift_config['swift_auth_url'] self.user_id = swift_config['swift_user_id'] self.project_id = swift_config['swift_project_id'] self.password = swift_config['swift_password'] self.region = swift_config['swift_region'] self.endpoint = None if 'token' in swift_config: self.token = swift_config['token'] self.endpoint = swift_config['endpoint'] else: self.token = self.generate_swift_token() swift_config['token'] = self.token swift_config['endpoint'] = self.endpoint self.session = requests.session() self.session.headers.update({'X-Auth-Token': self.token}) adapter = requests.adapters.HTTPAdapter(pool_maxsize=64, max_retries=3) self.session.mount('http://', adapter) self.session.mount('https://', adapter) msg = STORAGE_CLI_MSG.format('OpenStack Swift') logger.info("{} - Region: {}".format(msg, self.region)) def generate_swift_token(self): """ Generates new token for accessing to Swift. :return: token """ url = self.auth_url+"/v3/auth/tokens" headers = {'Content-Type': 'application/json'} data = {"auth": {"identity": {"methods": ["password"], "password": {"user": {"id": self.user_id, "password": self.password}}}, "scope": {"project": {"id": self.project_id}}}} json_data = json.dumps(data) r = requests.post(url, data=json_data, headers=headers) if r.status_code == 201: backend_info = json.loads(r.text) for service in backend_info['token']['catalog']: if service['name'] == 'swift': for endpoint in service['endpoints']: if endpoint['region'] == self.region: if endpoint['interface'] == 'public': self.endpoint = endpoint['url'].replace('https:', 'http:') if not self.endpoint: raise Exception('Invalid region name') return r.headers['X-Subject-Token'] else: message = json.loads(r.text)['error']['message'] raise Exception("{} - {} - {}".format(r.status_code, r.reason, message)) def put_object(self, container_name, key, data): """ Put an object in Swift. Override the object if the key already exists. :param key: key of the object. :param data: data of the object :type data: str/bytes :return: None """ url = '/'.join([self.endpoint, container_name, key]) try: res = self.session.put(url, data=data) status = 'OK' if res.status_code == 201 else 'Error' try: logger.debug('PUT Object {} - Size: {} - {}'.format(key, sizeof_fmt(len(data)), status)) except Exception: logger.debug('PUT Object {} - {}'.format(key, status)) except Exception as e: print(e) def get_object(self, container_name, key, stream=False, extra_get_args={}): """ Get object from Swift with a key. Throws StorageNoSuchKeyError if the given key does not exist. :param key: key of the object :return: Data of the object :rtype: str/bytes """ if not container_name: container_name = self.storage_container url = '/'.join([self.endpoint, container_name, key]) headers = {'X-Auth-Token': self.token} headers.update(extra_get_args) try: res = self.session.get(url, headers=headers, stream=stream) if res.status_code == 200 or res.status_code == 206: if stream: data = res.raw else: data = res.content return data elif res.status_code == 404: raise StorageNoSuchKeyError(container_name, key) else: raise Exception('{} - {}'.format(res.status_code, key)) except StorageNoSuchKeyError: raise StorageNoSuchKeyError(container_name, key) except Exception as e: print(e) raise StorageNoSuchKeyError(container_name, key) def upload_file(self, file_name, bucket, key=None, extra_args={}): """Upload a file :param file_name: File to upload :param bucket: Bucket to upload to :param key: S3 object name. If not specified then file_name is used :return: True if file was uploaded, else False """ # If S3 key was not specified, use file_name if key is None: key = os.path.basename(file_name) # Upload the file try: with open(file_name, 'rb') as in_file: self.put_object(bucket, key, in_file) except Exception as e: logging.error(e) return False return True def download_file(self, bucket, key, file_name=None, extra_args={}): """Download a file :param bucket: Bucket to download from :param key: S3 object name. If not specified then file_name is used :param file_name: File to upload :return: True if file was downloaded, else False """ # If file_name was not specified, use S3 key if file_name is None: file_name = key # Download the file try: dirname = os.path.dirname(file_name) if dirname and not os.path.exists(dirname): os.makedirs(dirname) with open(file_name, 'wb') as out: data_stream = self.get_object(bucket, key, stream=True) shutil.copyfileobj(data_stream, out) except Exception as e: logging.error(e) return False return True def head_object(self, container_name, key): """ Head object from Swift with a key. Throws StorageNoSuchKeyError if the given key does not exist. :param key: key of the object :return: Data of the object :rtype: str/bytes """ url = '/'.join([self.endpoint, container_name, key]) try: res = self.session.head(url) if res.status_code == 200: return res.headers elif res.status_code == 404: raise StorageNoSuchKeyError(container_name, key) else: raise Exception('{} - {}'.format(res.status_code, key)) except Exception as e: raise StorageNoSuchKeyError(container_name, key) def delete_object(self, container_name, key): """ Delete an object from Swift. :param bucket: bucket name :param key: data key """ url = '/'.join([self.endpoint, container_name, key]) return self.session.delete(url) def delete_objects(self, container_name, key_list): """ Delete a list of objects from Swift. :param bucket: bucket name :param key: data key """ headers={'X-Auth-Token': self.token, 'X-Bulk-Delete': 'True'} keys_to_delete = [] for key in key_list: keys_to_delete.append('/{}/{}'.format(container_name, key)) keys_to_delete = '\n'.join(keys_to_delete) url = '/'.join([self.endpoint, '?bulk-delete']) return self.session.delete(url, data=keys_to_delete, headers=headers) def list_objects(self, container_name, prefix=''): """ Lists the objects in a bucket. Throws StorageNoSuchKeyError if the given bucket does not exist. :param key: key of the object :return: Data of the object :rtype: str/bytes """ if prefix: url = '/'.join([self.endpoint, container_name, '?format=json&prefix='+prefix]) else: url = '/'.join([self.endpoint, container_name, '?format=json']) try: res = self.session.get(url) objects = res.json() # TODO: Adapt to Key and Size return objects except Exception as e: raise e def list_keys(self, container_name, prefix): """ Return a list of keys for the given prefix. :param prefix: Prefix to filter object names. :return: List of keys in bucket that match the given prefix. :rtype: list of str """ try: objects = self.list_objects(container_name, prefix) object_keys = [r['name'] for r in objects] return object_keys except Exception as e: raise(e)
[ [ [ 589, 591 ], [ 5786, 5788 ], [ 6574, 6576 ], [ 6632, 6634 ], [ 6673, 6675 ] ], [ [ 599, 603 ], [ 2518, 2522 ], [ 2661, 2665 ], [ 3241, 3245 ] ], [ [ 611, 617 ], [ 6829, 6835 ] ], [ [ 625, 632 ], [ 798, 805 ], [ 6002, 6009 ], [ 6909, 6916 ] ], [ [ 640, 648 ], [ 1634, 1642 ], [ 1737, 1745 ], [ 2548, 2556 ] ], [ [ 683, 704 ], [ 5021, 5042 ], [ 5169, 5190 ], [ 5210, 5231 ], [ 5323, 5344 ], [ 7501, 7522 ], [ 7683, 7704 ] ], [ [ 731, 741 ], [ 3933, 3943 ] ], [ [ 772, 787 ], [ 1909, 1924 ] ], [ [ 789, 795 ], [ 956, 962 ], [ 1959, 1965 ], [ 3876, 3882 ], [ 4011, 4017 ] ], [ [ 834, 848 ] ] ]
""" RenderPipeline Copyright (c) 2014-2016 tobspr <tobias.springer1@gmail.com> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from rpcore.render_target import RenderTarget from rpcore.loader import RPLoader class RenderStage(): """ This class is the abstract class for all stages used in the pipeline. It represents a part of the pipeline render process. Each stage specifies which pipes it uses and which pipes it produces. A pipe can be seen as a texture, which gets modified. E.g. the gbuffer pass produces the gbuffer pipe, the ambient occlusion pass produces the occlusion pipe and so on. The lighting pass can then specify which pipes it needs and compute the image. Using a pipe system ensures that new techniques can be inserted easily, without the other techniques even being aware of them """ required_inputs = [] required_pipes = [] produced_inputs = {} produced_pipes = {} produced_defines = {} disabled = False def __init__(self, pipeline): """ Creates a new render stage """ self.stage_id = self.__class__.__name__ self._pipeline = pipeline self._active = True self._targets = {} def create(self): """ This method should setup the stage and create the pipes """ raise NotImplementedError() def reload_shaders(self): """ This method should set all required shaders, there should be no shaders set in the create method, because the shader auto config is not generated there """ pass def set_shader_input(self, *args): """ This method sets a shader input on all stages, which is mainly used by the stage manager """ for target in self._targets.values(): target.set_shader_input(*args) def set_shader_inputs(self, **kwargs): """ This method sets shader inputs on all stages, which is mainly used by the stage manager """ for target in self._targets.values(): target.set_shader_inputs(**kwargs) def update(self): """ This method gets called every frame, and can be overridden by render stages to perform custom updates """ pass @property def active(self): """ Returns whether *all* targets of the stage are active """ return self._active @active.setter def active(self, state): """ Enables or disables this stage. In case the stage is disabled, it will not get updated anymore, and all stages are distabled """ if self._active != state: self._active = state for target in self._targets.values(): target.active = self._active def create_target(self, name): """ Creates a new render target and binds it to this stage """ # Format the name like Plugin:Stage:Name, so it can be easily # found in pstats below the plugin cagetory name = self._get_plugin_id() + ":" + self.stage_id + ":" + name if name in self._targets: return self.error("Overriding existing target: " + name) self._targets[name] = RenderTarget(name) return self._targets[name] def remove_target(self, target): """ Removes a previously registered target. This unregisters the target, as well as removing it from the list of assigned targets. """ target.remove() target_key = None for key, value_target in self._targets.items(): if target == value_target: target_key = key break del self._targets[target_key] def _get_shader_handle(self, path, *args): """ Returns a handle to a Shader object, containing all sources passed as arguments. The path argument will be used to locate shaders if no absolute path is given. This is the internal method used in load_shader and load_plugin_shader. """ assert len(args) > 0 and len(args) <= 3 path_args = [] for source in args: for prefix in ("/$$rpconfig", "/$$rp/shader", "/$$rptemp"): if prefix in source: path_args.append(source) break else: path_args.append(path.format(source)) # If only one shader is specified, assume its a postprocess fragment shader, # and use the default vertex shader if len(args) == 1: path_args = ["/$$rp/shader/default_post_process.vert.glsl"] + path_args return RPLoader.load_shader(*path_args) def _get_plugin_id(self): """ Returns the id of the plugin which created this stage. This is done by extracting the name of the plugin from the module name """ if "rpcore.stages" in self.__class__.__module__: return "render_pipeline_internal" return str(self.__class__.__module__).split(".")[-2] def load_shader(self, *args): """ Loads a shader from the given args. If only one argument is passed, the default template for the stage is loaded. If two arguments are passed, the first argument should be the vertex shader and the second argument should be the fragment shader. If three arguments are passed, the order should be vertex, fragment, geometry """ return self._get_shader_handle("/$$rp/shader/{0}", *args) def load_plugin_shader(self, *args): """ Loads a shader from the plugin directory. This method is useful for RenderStages created by plugins. For a description of the arguments, see the load_shader function. """ shader_path = "rpplugins/" + self._get_plugin_id() + "/shader/{0}" return self._get_shader_handle(shader_path, *args) def handle_window_resize(self): """ This method gets called when the window gets resized. By default, this just resizes all render targets. """ self.set_dimensions() for target in self._targets.values(): target.consider_resize() def set_dimensions(self): """ This method should set the dimensions on all targets which don't have a relative constraint, and also the size of all images. This is called after initialization, and when the window resized. """ pass
[ [ [ 1144, 1156 ], [ 4127, 4139 ] ], [ [ 1183, 1191 ], [ 5536, 5544 ] ], [ [ 1200, 1211 ] ] ]
"""Base class for inventory interactive/stdout tests. """ import difflib import json import os import pytest from ....defaults import FIXTURES_DIR from ..._common import fixture_path_from_request from ..._common import update_fixtures from ..._interactions import SearchFor from ..._interactions import Step from ..._tmux_session import TmuxSession TEST_FIXTURE_DIR = os.path.join(FIXTURES_DIR, "integration", "actions", "inventory") ANSIBLE_INVENTORY_FIXTURE_DIR = os.path.join(TEST_FIXTURE_DIR, "ansible_inventory", "inventory.yml") TEST_CONFIG_FILE = os.path.join(TEST_FIXTURE_DIR, "ansible-navigator.yml") base_steps = ( Step(user_input=":0", comment="Browse hosts/ungrouped window"), Step(user_input=":0", comment="Group list window"), Step(user_input=":0", comment="group01 hosts detail window"), Step(user_input=":0", comment="host0101 detail window"), Step(user_input=":back", comment="Previous window (group01 hosts detail window)"), Step(user_input=":back", comment="Previous window (Group list window)"), Step(user_input=":1", comment="group02 hosts detail window"), Step(user_input=":0", comment="host0201 detail window"), Step(user_input=":back", comment="Previous window (group02 hosts detail window)"), Step(user_input=":back", comment="Previous window (Group list window)"), Step(user_input=":2", comment="group03 hosts detail window"), Step(user_input=":0", comment="host0301 detail window"), Step(user_input=":back", comment="Previous window (group03 hosts detail window)"), Step(user_input=":back", comment="Previous window (Group list window)"), Step(user_input=":back", comment="Previous window (Browse hosts/ungrouped window)"), Step(user_input=":back", comment="Previous window (top window)"), Step(user_input=":1", comment="Inventory hostname window"), Step(user_input=":0", comment="host0101 detail window"), Step(user_input=":back", comment="Previous window after host0101 (Inventory hostname window)"), Step(user_input=":1", comment="host0201 detail window"), Step(user_input=":back", comment="Previous window after host0201 (Inventory hostname window)"), Step(user_input=":2", comment="host0301 detail window"), ) class BaseClass: """base class for inventory interactive/stdout tests""" UPDATE_FIXTURES = False @staticmethod @pytest.fixture(scope="module", name="tmux_session") def fixture_tmux_session(request): """tmux fixture for this module""" params = { "setup_commands": [ "export ANSIBLE_DEVEL_WARNING=False", "export ANSIBLE_DEPRECATION_WARNINGS=False", ], "pane_height": "2000", "pane_width": "500", "config_path": TEST_CONFIG_FILE, "unique_test_id": request.node.nodeid, } with TmuxSession(**params) as tmux_session: yield tmux_session def test(self, request, tmux_session, step): """Run the tests for inventory, mode and ``ee`` set in child class.""" assert os.path.exists(ANSIBLE_INVENTORY_FIXTURE_DIR) assert os.path.exists(TEST_CONFIG_FILE) if step.search_within_response is SearchFor.HELP: search_within_response = ":help help" elif step.search_within_response is SearchFor.PROMPT: search_within_response = tmux_session.cli_prompt else: raise ValueError("test mode not set") received_output = tmux_session.interaction( value=step.user_input, search_within_response=search_within_response, ) if step.mask: # mask out some configuration that is subject to change each run mask = "X" * 50 for idx, line in enumerate(received_output): if tmux_session.cli_prompt in line: received_output[idx] = mask fixtures_update_requested = ( self.UPDATE_FIXTURES or os.environ.get("ANSIBLE_NAVIGATOR_UPDATE_TEST_FIXTURES") == "true" and not any((step.look_fors, step.look_nots)) ) if fixtures_update_requested: update_fixtures( request, step.step_index, received_output, step.comment, additional_information={ "look_fors": step.look_fors, "look_nots": step.look_nots, "compared_fixture": not any((step.look_fors, step.look_nots)), }, ) page = " ".join(received_output) if step.look_fors: assert all(look_for in page for look_for in step.look_fors) if step.look_nots: assert not any(look_not in page for look_not in step.look_nots) if not any((step.look_fors, step.look_nots)): dir_path, file_name = fixture_path_from_request(request, step.step_index) with open(file=os.path.join(dir_path, file_name), encoding="utf-8") as infile: expected_output = json.load(infile)["output"] assert expected_output == received_output, "\n" + "\n".join( difflib.unified_diff(expected_output, received_output, "expected", "received"), )
[ [ [ 65, 72 ], [ 5210, 5217 ] ], [ [ 80, 84 ], [ 5092, 5096 ] ], [ [ 92, 94 ], [ 372, 374 ], [ 470, 472 ], [ 558, 560 ], [ 3085, 3087 ], [ 3146, 3148 ], [ 4003, 4005 ], [ 4994, 4996 ] ], [ [ 103, 109 ], [ 2368, 2374 ] ], [ [ 136, 148 ], [ 385, 397 ] ], [ [ 172, 197 ], [ 4915, 4940 ] ], [ [ 221, 236 ], [ 4188, 4203 ] ], [ [ 266, 275 ], [ 3222, 3231 ], [ 3332, 3341 ] ], [ [ 305, 309 ], [ 635, 639 ], [ 703, 707 ], [ 759, 763 ], [ 825, 829 ], [ 886, 890 ], [ 973, 977 ], [ 1050, 1054 ], [ 1116, 1120 ], [ 1177, 1181 ], [ 1264, 1268 ], [ 1341, 1345 ], [ 1407, 1411 ], [ 1468, 1472 ], [ 1555, 1559 ], [ 1632, 1636 ], [ 1721, 1725 ], [ 1791, 1795 ], [ 1855, 1859 ], [ 1916, 1920 ], [ 2016, 2020 ], [ 2077, 2081 ], [ 2177, 2181 ] ], [ [ 339, 350 ], [ 2871, 2882 ] ], [ [ 353, 369 ], [ 483, 499 ], [ 571, 587 ] ], [ [ 438, 467 ], [ 3100, 3129 ] ], [ [ 539, 555 ], [ 2778, 2794 ], [ 3161, 3177 ] ], [ [ 616, 626 ] ], [ [ 2244, 2253 ] ] ]
# -*- coding: utf-8 -*- ''' Apache Libcloud Load Balancer State =================================== Manage load balancers using libcloud :codeauthor: ``Anthony Shaw <anthonyshaw@apache.org>`` Apache Libcloud load balancer management for a full list of supported clouds, see http://libcloud.readthedocs.io/en/latest/loadbalancer/supported_providers.html Clouds include Amazon ELB, ALB, Google, Aliyun, CloudStack, Softlayer .. versionadded:: 2018.3.0 :configuration: This module uses a configuration profile for one or multiple Cloud providers .. code-block:: yaml libcloud_loadbalancer: profile_test1: driver: gce key: GOOG0123456789ABCXYZ secret: mysecret profile_test2: driver: alb key: 12345 secret: mysecret Example: Using States to deploy a load balancer with extended arguments to specify region .. code-block:: yaml lb_test: libcloud_loadbalancer.balancer_present: - name: example - port: 80 - protocol: http - profile: google - ex_region: us-east1 :depends: apache-libcloud ''' # Import Python Libs from __future__ import absolute_import, unicode_literals, print_function import logging # Import salt libs import salt.utils.compat log = logging.getLogger(__name__) def __virtual__(): return True def __init__(opts): salt.utils.compat.pack_dunder(__name__) def state_result(result, message, name, changes=None): if changes is None: changes = {} return {'result': result, 'comment': message, 'name': name, 'changes': changes} def balancer_present(name, port, protocol, profile, algorithm=None, members=None, **libcloud_kwargs): ''' Ensures a load balancer is present. :param name: Load Balancer name :type name: ``str`` :param port: Port the load balancer should listen on, defaults to 80 :type port: ``str`` :param protocol: Loadbalancer protocol, defaults to http. :type protocol: ``str`` :param profile: The profile key :type profile: ``str`` :param algorithm: Load balancing algorithm, defaults to ROUND_ROBIN. See Algorithm type in Libcloud documentation for a full listing. :type algorithm: ``str`` :param members: An optional list of members to create on deployment :type members: ``list`` of ``dict`` (ip, port) ''' balancers = __salt__['libcloud_loadbalancer.list_balancers'](profile) match = [z for z in balancers if z['name'] == name] if len(match) > 0: return state_result(True, "Balancer already exists", name) else: starting_members = None if members is not None: starting_members = [] for m in members: starting_members.append({'ip': m['ip'], 'port': m['port']}) balancer = __salt__['libcloud_loadbalancer.create_balancer']( name, port, protocol, profile, algorithm=algorithm, members=starting_members, **libcloud_kwargs) return state_result(True, "Created new load balancer", name, balancer) def balancer_absent(name, profile, **libcloud_kwargs): ''' Ensures a load balancer is absent. :param name: Load Balancer name :type name: ``str`` :param profile: The profile key :type profile: ``str`` ''' balancers = __salt__['libcloud_loadbalancer.list_balancers'](profile) match = [z for z in balancers if z['name'] == name] if len(match) == 0: return state_result(True, "Balancer already absent", name) else: result = __salt__['libcloud_loadbalancer.destroy_balancer'](match[0]['id'], profile, **libcloud_kwargs) return state_result(result, "Deleted load balancer", name) def member_present(ip, port, balancer_id, profile, **libcloud_kwargs): ''' Ensure a load balancer member is present :param ip: IP address for the new member :type ip: ``str`` :param port: Port for the new member :type port: ``int`` :param balancer_id: id of a load balancer you want to attach the member to :type balancer_id: ``str`` :param profile: The profile key :type profile: ``str`` ''' existing_members = __salt__['libcloud_loadbalancer.list_balancer_members'](balancer_id, profile) for member in existing_members: if member['ip'] == ip and member['port'] == port: return state_result(True, "Member already present", balancer_id) member = __salt__['libcloud_loadbalancer.balancer_attach_member'](balancer_id, ip, port, profile, **libcloud_kwargs) return state_result(True, "Member added to balancer, id: {0}".format(member['id']), balancer_id, member) def member_absent(ip, port, balancer_id, profile, **libcloud_kwargs): ''' Ensure a load balancer member is absent, based on IP and Port :param ip: IP address for the member :type ip: ``str`` :param port: Port for the member :type port: ``int`` :param balancer_id: id of a load balancer you want to detach the member from :type balancer_id: ``str`` :param profile: The profile key :type profile: ``str`` ''' existing_members = __salt__['libcloud_loadbalancer.list_balancer_members'](balancer_id, profile) for member in existing_members: if member['ip'] == ip and member['port'] == port: result = __salt__['libcloud_loadbalancer.balancer_detach_member'](balancer_id, member['id'], profile, **libcloud_kwargs) return state_result(result, "Member removed", balancer_id) return state_result(True, "Member already absent", balancer_id)
[ [ [ 1244, 1259 ] ], [ [ 1261, 1277 ] ], [ [ 1279, 1293 ] ], [ [ 1301, 1308 ], [ 1361, 1368 ] ], [ [ 1336, 1353 ], [ 1452, 1456 ] ], [ [ 1355, 1358 ] ], [ [ 1395, 1406 ] ], [ [ 1432, 1440 ] ], [ [ 1498, 1510 ], [ 2661, 2673 ], [ 3157, 3169 ], [ 3629, 3641 ], [ 3818, 3830 ], [ 4531, 4543 ], [ 4721, 4733 ], [ 5627, 5639 ], [ 5690, 5702 ] ], [ [ 1720, 1736 ] ], [ [ 3227, 3242 ] ], [ [ 3876, 3890 ] ], [ [ 4825, 4838 ] ] ]
import pathlib from silex_client.utils.log import logger class AnyParameter(object): def __new__(cls, value): return value class CommandParameterMeta(type): def __new__(cls, name: str, bases: tuple, dct: dict): def serialize(): return { "name": "parameter", } attributes = { "serialize": serialize, } attributes.update(dct) return super().__new__(cls, name, bases, attributes) def get_default(self): return None def serialize(self): return None class TaskParameterMeta(CommandParameterMeta): def __init__(self): pass def __new__(cls): def serialize(): return { "name": "task", } def get_default(): return "" attributes = { "serialize": serialize, "get_default": get_default, } return super().__new__(cls, "TaskParameter", (str,), attributes) class IntArrayParameterMeta(CommandParameterMeta): def __init__(self, size: int): pass def __new__(cls, size: int): def __init__(self, value): if not isinstance(value, list): value = [value] for index, item in enumerate(value): value[index] = int(item) self.extend(value) def serialize(): return { "name": "int_array", "size": size, } def get_default(): return [0 for i in range(size)] attributes = { "__init__": __init__, "serialize": serialize, "get_default": get_default, } return super().__new__(cls, "IntArrayParameter", (list,), attributes) class RangeParameterMeta(CommandParameterMeta): def __init__(self, start: int, end: int, increment: int = 1): pass def __new__(cls, start: int, end: int, increment: int = 1): def serialize(): return { "name": "range", "start": start, "end": end, "increment": increment, } def get_default(): return start attributes = { "serialize": serialize, "get_default": get_default, } return super().__new__(cls, "RangeParameter", (int,), attributes) class SelectParameterMeta(CommandParameterMeta): def __init__(self, *list_options, **options): pass def __new__(cls, *list_options, **options): for unnamed_option in list_options: options[unnamed_option] = unnamed_option def serialize(): return {"name": "select", "options": options} def get_default(): return list(options.values())[0] if options else None attributes = { "serialize": serialize, "get_default": get_default, } return super().__new__(cls, "SelectParameter", (str,), attributes) class RadioSelectParameterMeta(CommandParameterMeta): def __init__(self, *list_options, **options): pass def __new__(cls, *list_options, **options): for unnamed_option in list_options: options[unnamed_option] = unnamed_option def serialize(): return {"name": "radio_select", "options": options} def get_default(): return list(options.values())[0] if options else None attributes = { "serialize": serialize, "get_default": get_default, } return super().__new__(cls, "RadioSelectParameter", (str,), attributes) class MultipleSelectParameterMeta(CommandParameterMeta): def __init__(self, *list_options, **options): pass def __new__(cls, *list_options, **options): for unnamed_option in list_options: options[unnamed_option] = unnamed_option def serialize(): return {"name": "multiple_select", "options": options} def get_default(): return [list(options.values())[0]] if options else None attributes = { "serialize": serialize, "get_default": get_default, } return super().__new__(cls, "SelectParameter", (list,), attributes) # TODO: Replace this parameter with ListParameterMeta class ListParameter(list): def __init__(self, value): logger.warning( "Deprecation warning: The parameter type ListParameter is deprecated in favor if ListParameterMeta()" ) data = value if not isinstance(value, list): data = [value] self.extend(data) class PathParameterMeta(CommandParameterMeta): def __init__(self, extensions=None, multiple=False): pass def __new__(cls, extensions=None, multiple=False): if extensions is None: extensions = ["*"] def __init_list__(self, value): if not isinstance(value, list): value = [value] for index, item in enumerate(value): value[index] = pathlib.Path(item) self.extend(value) def serialize(): return { "name": "Path", "extensions": extensions, "multiple": multiple, } def get_default(): return None attributes = { "serialize": serialize, "get_default": get_default, } if multiple: attributes["__init__"] = __init_list__ return super().__new__(cls, "PathParameter", (list,), attributes) return super().__new__( cls, "PathParameter", (type(pathlib.Path()),), attributes ) class ListParameterMeta(CommandParameterMeta): def __init__(self, parameter_type): pass def __new__(cls, parameter_type): def __init__(self, value): if not isinstance(value, list): value = [value] for index, item in enumerate(value): value[index] = parameter_type(item) self.extend(value) def serialize(): item_type = None if isinstance(parameter_type, CommandParameterMeta): return parameter_type.serialize() elif isinstance(parameter_type, type): item_type = {"name": parameter_type.__name__} return {"name": "list", "itemtype": item_type} def get_default(): return [] attributes = { "__init__": __init__, "serialize": serialize, "get_default": get_default, } return super().__new__(cls, "ListParameter", (list,), attributes) class TextParameterMeta(CommandParameterMeta): def __init__(self, color=None): pass def __new__(cls, color=None): def serialize(): return {"name": "text", "color": color} def get_default(): return "" attributes = { "serialize": serialize, "get_default": get_default, } return super().__new__(cls, "ListParameter", (str,), attributes)
[ [ [ 7, 14 ], [ 5761, 5768 ], [ 5151, 5158 ] ], [ [ 51, 57 ], [ 4461, 4467 ] ], [ [ 66, 78 ] ], [ [ 146, 166 ], [ 611, 631 ], [ 1049, 1069 ], [ 1837, 1857 ], [ 2462, 2482 ], [ 3090, 3110 ], [ 3732, 3752 ], [ 4742, 4762 ], [ 5827, 5847 ], [ 6827, 6847 ], [ 6285, 6305 ] ], [ [ 593, 610 ] ], [ [ 1027, 1048 ] ], [ [ 1818, 1836 ] ], [ [ 2442, 2461 ] ], [ [ 3065, 3089 ] ], [ [ 3704, 3731 ] ], [ [ 4401, 4414 ] ], [ [ 4724, 4741 ] ], [ [ 5809, 5826 ] ], [ [ 6809, 6826 ] ] ]
N = input() L = len(N) K = int(input()) dp = [[[0] * 2 for _ in range(K + 1)] for _ in range(L + 1)] dp[0][0][1] = 1 for i, x in zip(range(L), map(int, N)): for k in range(K): dp[i+1][k][0] += dp[i][k][0] # d == 0 if x == 0: dp[i+1][k][1] += dp[i][k][1] elif x > 0: dp[i+1][k][0] += dp[i][k][1] # d != 0 for d in range(1, 10): dp[i+1][k+1][0] += dp[i][k][0] if d == x: dp[i+1][k+1][1] += dp[i][k][1] elif d < x: dp[i+1][k+1][0] += dp[i][k][1] dp[i+1][K][0] += dp[i][K][0] # k == K and d == 0 if x == 0: dp[i+1][K][1] += dp[i][K][1] elif x > 0: dp[i+1][K][0] += dp[i][K][1] print(sum(dp[-1][K]))
[ [ [ 0, 1 ], [ 20, 21 ], [ 152, 153 ] ], [ [ 12, 13 ], [ 93, 94 ], [ 139, 140 ] ], [ [ 23, 24 ], [ 70, 71 ], [ 176, 177 ], [ 607, 608 ], [ 592, 593 ], [ 680, 681 ], [ 665, 666 ], [ 733, 734 ], [ 718, 719 ], [ 756, 757 ] ], [ [ 40, 42 ], [ 101, 103 ], [ 205, 207 ], [ 188, 190 ], [ 275, 277 ], [ 258, 260 ], [ 336, 338 ], [ 319, 321 ], [ 427, 429 ], [ 408, 410 ], [ 497, 499 ], [ 478, 480 ], [ 568, 570 ], [ 549, 551 ], [ 601, 603 ], [ 584, 586 ], [ 674, 676 ], [ 657, 659 ], [ 727, 729 ], [ 710, 712 ], [ 749, 751 ] ], [ [ 121, 122 ], [ 208, 209 ], [ 191, 192 ], [ 278, 279 ], [ 261, 262 ], [ 339, 340 ], [ 322, 323 ], [ 430, 431 ], [ 411, 412 ], [ 500, 501 ], [ 481, 482 ], [ 571, 572 ], [ 552, 553 ], [ 604, 605 ], [ 587, 588 ], [ 677, 678 ], [ 660, 661 ], [ 730, 731 ], [ 713, 714 ] ], [ [ 124, 125 ], [ 238, 239 ], [ 300, 301 ], [ 459, 460 ], [ 530, 531 ], [ 641, 642 ], [ 695, 696 ] ], [ [ 165, 166 ], [ 211, 212 ], [ 196, 197 ], [ 281, 282 ], [ 266, 267 ], [ 342, 343 ], [ 327, 328 ], [ 433, 434 ], [ 416, 417 ], [ 503, 504 ], [ 486, 487 ], [ 574, 575 ], [ 557, 558 ] ], [ [ 377, 378 ], [ 454, 455 ], [ 526, 527 ] ] ]
config = { "username": 'slask', "icon": ":poop:", }
[ [ [ 0, 6 ] ] ]
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved """ COCO dataset which returns image_id for evaluation. Mostly copy-paste from https://github.com/ashkamath/mdetr/blob/main/datasets/gqa.py """ import json from pathlib import Path import torch import torchvision from transformers import RobertaTokenizerFast from .coco import ConvertCocoPolysToMask, ModulatedDetection, make_coco_transforms class VQAv2Detection(ModulatedDetection): pass class VQAv2QuestionAnswering(torchvision.datasets.CocoDetection): def __init__(self, img_folder, ann_file, transforms, return_masks, return_tokens, tokenizer, ann_folder): super(VQAv2QuestionAnswering, self).__init__(img_folder, ann_file) self._transforms = transforms self.prepare = ConvertCocoPolysToMask(return_masks, return_tokens, tokenizer=tokenizer) with open(ann_folder / "vqa2_answer2id.json", "r") as f: self.answer2id = json.load(f) with open(ann_folder / "vqa2_answer2id_by_type.json", "r") as f: self.answer2id_by_type = json.load(f) self.type2id = {"yes/no": 0, "number": 1, "other": 2} def __getitem__(self, idx): img, target = super(VQAv2QuestionAnswering, self).__getitem__(idx) image_id = self.ids[idx] coco_img = self.coco.loadImgs(image_id)[0] caption = coco_img["caption"] dataset_name = coco_img["dataset_name"] questionId = coco_img["questionId"] target = {"image_id": image_id, "annotations": target, "caption": caption} img, target = self.prepare(img, target) if self._transforms is not None: img, target = self._transforms(img, target) target["dataset_name"] = dataset_name target["questionId"] = questionId if coco_img["answer"] not in self.answer2id: answer = "unknown" else: answer = coco_img["answer"] target["answer"] = torch.as_tensor(self.answer2id[answer], dtype=torch.long) target["answer_type"] = torch.as_tensor(self.type2id[coco_img["answer_type"]], dtype=torch.long) # util.misc.collate_fn requires to put 'answer' before every type of answer in target if coco_img["answer"] not in self.answer2id_by_type["yes/no"]: answer = "unknown" else: answer = coco_img["answer"] target["answer_yes/no"] = torch.as_tensor( self.answer2id_by_type["yes/no"][answer] if coco_img["answer_type"] == "yes/no" else -100, dtype=torch.long, ) if coco_img["answer"] not in self.answer2id_by_type["number"]: answer = "unknown" else: answer = coco_img["answer"] target["answer_number"] = torch.as_tensor( self.answer2id_by_type["number"][answer] if coco_img["answer_type"] == "number" else -100, dtype=torch.long, ) if coco_img["answer"] not in self.answer2id_by_type["other"]: answer = "unknown" else: answer = coco_img["answer"] target["answer_other"] = torch.as_tensor( self.answer2id_by_type["other"][answer] if coco_img["answer_type"] == "other" else -100, dtype=torch.long, ) return img, target def build(image_set, args): # TODO: img or all? img_dir = Path(args.coco_img_path) assert img_dir.exists(), f"provided COCO img path {img_dir} does not exist" tokenizer = RobertaTokenizerFast.from_pretrained(args.text_encoder_type) if args.do_qa: # Для vqa2 это не нужно: # assert args.vqa2_split_type is not None if image_set == "train": datasets = [] for imset in ["train", "minival"]: ann_file = Path(args.vqa2_ann_path) / f"finetune_vqa2_{imset}.json" datasets.append( VQAv2QuestionAnswering( img_dir / "train2014" if imset == "train" else img_dir / "val2014", ann_file, transforms=make_coco_transforms(image_set, cautious=True), return_masks=args.masks, return_tokens=True, tokenizer=tokenizer, ann_folder=Path(args.vqa2_ann_path), ) ) return torch.utils.data.ConcatDataset(datasets) elif image_set == "val": # TODO: правильный ли ann_file? ann_file = Path(args.vqa2_ann_path) / f"finetune_vqa2_minival.json" return VQAv2QuestionAnswering( img_dir / "val2014", ann_file, transforms=make_coco_transforms(image_set, cautious=True), return_masks=args.masks, return_tokens=True, tokenizer=tokenizer, ann_folder=Path(args.vqa2_ann_path), ) elif image_set in ["test", "testdev", "trainval"]: ann_file = Path(args.vqa2_ann_path) / f"finetune_vqa2_{image_set}.json" return VQAv2QuestionAnswering( img_dir / "test2015", ann_file, transforms=make_coco_transforms("val", cautious=True), return_masks=args.masks, return_tokens=True, tokenizer=tokenizer, ann_folder=Path(args.vqa2_ann_path), ) else: assert False, f"Unknown image set {image_set}"
[ [ [ 262, 266 ], [ 987, 991 ], [ 1110, 1114 ] ], [ [ 287, 291 ], [ 3392, 3396 ], [ 3812, 3816 ], [ 4329, 4333 ], [ 4556, 4560 ], [ 4936, 4940 ], [ 5058, 5062 ], [ 5439, 5443 ] ], [ [ 300, 305 ], [ 1990, 1995 ], [ 2036, 2041 ], [ 2080, 2085 ], [ 2141, 2146 ], [ 2438, 2443 ], [ 2576, 2581 ], [ 2789, 2794 ], [ 2927, 2932 ], [ 3138, 3143 ], [ 3274, 3279 ], [ 4415, 4420 ] ], [ [ 313, 324 ], [ 537, 548 ] ], [ [ 350, 370 ], [ 3514, 3534 ] ], [ [ 390, 412 ], [ 820, 842 ] ], [ [ 414, 432 ], [ 477, 495 ] ], [ [ 434, 454 ], [ 4108, 4128 ], [ 4747, 4767 ], [ 5254, 5274 ] ], [ [ 462, 476 ] ], [ [ 514, 536 ], [ 698, 720 ], [ 1246, 1268 ], [ 3923, 3945 ], [ 4633, 4655 ], [ 5139, 5161 ] ], [ [ 3330, 3335 ] ] ]
from assertpy import assert_that from httmock import HTTMock from sahyun_bot.commands.admin import Index, Rank from sahyun_bot.users_settings import UserRank from tests.mock_customsforge import customsforge def test_require_admin(commander, hook): for command in ['!lock', '!index', '!rank']: with commander.executest(hook, command, 'goodlikebot'): hook.assert_silent_failure() def test_lock_unlock(commander, hook): with commander.executest(hook, '!lock'): hook.assert_success('Bot is now in ADMIN only mode') # even basic commands are unauthorized with commander.executest(hook, '!time', 'goodlikebot'): hook.assert_silent_failure() with commander.executest(hook, '!lock'): hook.assert_success('Bot no longer in ADMIN only mode') # functionality restored with commander.executest(hook, '!time', 'goodlikebot'): hook.assert_success() def test_index(tl, hook): with HTTMock(customsforge), Index(tl=tl).executest(hook): hook.assert_success('CDLCs indexed') tl.set_use_elastic(False) with HTTMock(customsforge), Index(tl=tl).executest(hook): hook.assert_failure('CDLCs could not be indexed') def test_rank(users, hook): with Rank(us=users).executest(hook, args=''): hook.assert_failure('Try !rank RANK NICK') with Rank(us=users).executest(hook, args='just_rank'): hook.assert_failure('Try !rank RANK NICK') with Rank(us=users).executest(hook, args='BAD_RANK goodlikebot'): hook.assert_failure('BAD_RANK is not a valid rank') with Rank(us=users).executest(hook, args='BAN goodlikebot'), users._manual('goodlikebot'): hook.assert_success('goodlikebot is now BAN') assert_that(users.rank('goodlikebot')).is_equal_to(UserRank.BAN) users.set_use_elastic(False) with Rank(us=users).executest(hook, args='ADMIN goodlikebot'): hook.assert_failure('Rank could not be set') def test_rank_shorthand(commander, hook): with commander.executest(hook, '!ban goodlikebot'), commander._users._manual('goodlikebot'): hook.assert_success('goodlikebot is now BAN') assert_that(commander._users.rank('goodlikebot')).is_equal_to(UserRank.BAN)
[ [ [ 21, 32 ], [ 1741, 1752 ], [ 2164, 2175 ] ], [ [ 53, 60 ], [ 960, 967 ], [ 1099, 1106 ] ], [ [ 100, 105 ], [ 983, 988 ], [ 1122, 1127 ] ], [ [ 107, 111 ], [ 1249, 1253 ], [ 1351, 1355 ], [ 1462, 1466 ], [ 1593, 1597 ], [ 1850, 1854 ] ], [ [ 150, 158 ], [ 1792, 1800 ], [ 2226, 2234 ] ], [ [ 195, 207 ], [ 968, 980 ], [ 1107, 1119 ] ], [ [ 214, 232 ] ], [ [ 411, 427 ] ], [ [ 929, 939 ] ], [ [ 1216, 1225 ] ], [ [ 1967, 1986 ] ] ]
import os import base64 from simpleutil.utils import digestutils from goperation.filemanager import LocalFile from goperation.manager.rpc.agent.application.taskflow.middleware import EntityMiddleware from goperation.manager.rpc.agent.application.taskflow.database import Database from goperation.manager.rpc.agent.application.taskflow.application import AppUpgradeFile from goperation.manager.rpc.agent.application.taskflow.application import AppLocalBackupFile from gogamechen3.api import gfile class GogameMiddle(EntityMiddleware): def __init__(self, entity, endpoint, objtype): super(GogameMiddle, self).__init__(entity, endpoint) self.objtype = objtype self.databases = {} self.waiter = None class GogameDatabase(Database): def __init__(self, **kwargs): super(GogameDatabase, self).__init__(**kwargs) self.database_id = kwargs.get('database_id') self.source = kwargs.get('source') self.rosource = kwargs.get('rosource') self.subtype = kwargs.get('subtype') self.ro_user = kwargs.get('ro_user') self.ro_passwd = kwargs.get('ro_passwd') class GogameAppFile(AppUpgradeFile): def __init__(self, source, objtype, revertable=False, rollback=False, stream=None): super(GogameAppFile, self).__init__(source, revertable, rollback) self.objtype = objtype self.stream = stream def post_check(self): gfile.check(self.objtype, self.file) def clean(self): if self.stream: os.remove(self.file) def prepare(self, middleware=None, timeout=None): if self.stream: if len(self.stream) > 5000: raise ValueError("Strem over size") file_path = os.path.join('/tmp', '%s.zip' % self.source) data = base64.b64decode(self.stream) if digestutils.strmd5(data) != self.source: raise ValueError('Md5 not match') with open(file_path, 'wb') as f: data = base64.b64decode(self.stream) f.write(data) self.localfile = LocalFile(file_path, self.source, len(data)) else: self.localfile = middleware.filemanager.get(self.source, download=True, timeout=timeout) try: self.post_check() except Exception: localfile = self.localfile self.localfile = None if self.stream: os.remove(localfile.path) else: middleware.filemanager.delete(self.source) raise class GogameAppBackupFile(AppLocalBackupFile): def __init__(self, destination, objtype): super(GogameAppBackupFile, self).__init__(destination, exclude=gfile.CompressConfAndLogExcluder(), topdir=False, native=True) self.objtype = objtype def post_check(self): gfile.check(self.objtype, self.file)
[ [ [ 7, 9 ], [ 1552, 1554 ], [ 1768, 1770 ], [ 2471, 2473 ] ], [ [ 17, 23 ], [ 1832, 1838 ], [ 2036, 2042 ] ], [ [ 54, 65 ], [ 1877, 1888 ] ], [ [ 102, 111 ], [ 2125, 2134 ] ], [ [ 185, 201 ], [ 520, 536 ] ], [ [ 273, 281 ], [ 761, 769 ] ], [ [ 356, 370 ], [ 1165, 1179 ] ], [ [ 445, 463 ], [ 2620, 2638 ] ], [ [ 493, 498 ], [ 1457, 1462 ], [ 2809, 2814 ], [ 3038, 3043 ] ], [ [ 507, 519 ], [ 605, 617 ] ], [ [ 746, 760 ], [ 820, 834 ] ], [ [ 1151, 1164 ], [ 1302, 1315 ] ], [ [ 2600, 2619 ], [ 2702, 2721 ] ] ]
#!/usr/bin/env python3 # XML API, for dealing with XML strings # -*- coding: utf-8 -*- __all__ = ['parseargs', 'collect'] '<users>\n\t<user>\n\t\t<id>1</id>\n\t\t<name>Fred</name>\n\t\t<salary>500000</salary>\n\t</user>\n\t<user>\n\t\t<id>1</id>\n\t\t<name>ScienceCat</name>\n\t\t<salary>500000</salary>\n\t</user>\n\t<user>\n\t\t<id>1</id>\n\t\t<name>Bob</name>\n\t\t<salary>500000</salary>\n\t</user>\n</users>' xmlex = '<users>\n<user>\n<id>1</id>\n<name>Fred</name>\n<salary>500000</salary>\n</user>\n<user>\n<id>1</id>\n<name>ScienceCat</name>\n<salary>500000</salary>\n</user>\n<user>\n<id>1</id>\n<name>Bob</name>\n<salary>500000</salary>\n</user>\n</users>' argex = 'cats="True and Sand" true=\'Cats two\' sand="graval"' ##import re ##import xml.etree.cElementTree as xml def parseargs(string:str): """Split a given string into individual arguments, seperated into key:arg for <key>=(' or ")<arg>(same char as start)""" arg = {} # ([%-%w]+)=([\"'])(.-)%2 # '([\w]+)=([\"\'])(.*)' # '([-\w]+)=([\"\']*)' ## pattern = re.compile('([\w]+)=([\"\'])(.*)') ## print(pattern) ## for match in re.findall(pattern, string): ## print(match) parts = string.split(' ') bkey = '' buffer = '' end = '"' for part in parts: if '=' in part: key, vp = part.split('=') if vp[0] in ('"', "'"): end = vp[0] if vp.endswith(end): arg[key] = vp[1:-1] else: bkey = key buffer += vp elif part.endswith(end): buffer += ' '+part arg[bkey] = buffer[1:-1] bkey, buffer = '', '' else: buffer += ' '+part return arg def collect(string:str): stack = [] top = [] stack.append(top) i, j = 0, 0 class elementTag: def __init__(self, label, xargs, empty=0): self.label = label self.xargs = xargs self.empty = empty while True: ni h c lable xarg emtpy if not ni: break text = string[i:ni-1] if not text.find('^ '): top.append(text) if empty == '/':# empty element tag top.append(elementTag(label, parseargs(xarg), 1)) elif c == '': # start tag top = [elementTag(label, parseargs(xarg))] stack.append(top) else: toclose = stack if len(stack) < 1: error(f'Nothing to close with {label}.') elif toclose.label == label: pass
[ [ [ 88, 95 ] ], [ [ 416, 421 ] ], [ [ 668, 673 ] ], [ [ 788, 797 ], [ 2303, 2312 ], [ 2395, 2404 ] ], [ [ 1749, 1756 ] ] ]
import json import logging from sqlalchemy import Column, Integer, String, Float, DateTime, Boolean, func from iotfunctions import bif from ai.functions import SimpleAnomaly from iotfunctions.metadata import EntityType from iotfunctions.db import Database from iotfunctions.enginelog import EngineLogging from custom import settings EngineLogging.configure_console_logging(logging.DEBUG) ''' # Replace with a credentials dictionary or provide a credentials # Explore > Usage > Watson IOT Platform Analytics > Copy to clipboard # Past contents in a json file. ''' #with open('credentials_Monitor-Demo.json', encoding='utf-8') as F: #with open('credentials.json', encoding='utf-8') as F: with open('credentials_dev2.json', encoding='utf-8') as F: credentials = json.loads(F.read()) ''' Developing Test Pipelines ------------------------- When creating a set of functions you can test how they these functions will work together by creating a test pipeline. ''' ''' Create a database object to access Watson IOT Platform Analytics DB. ''' db = Database(credentials = credentials) db_schema = None # set if you are not using the default ''' To do anything with IoT Platform Analytics, you will need one or more entity type. You can create entity types through the IoT Platform or using the python API as shown below. The database schema is only needed if you are not using the default schema. You can also rename the timestamp. ''' entity_name = 'Turbines' # dash100462 Used in dev2 db_schema = 'dash100462' # db_schema = None # replace if you are not using the default schema db.drop_table(entity_name, schema = db_schema) entity = EntityType(entity_name,db, Column('TURBINE_ID',String(50)), Column('TEMPERATURE',Float()), Column('PRESSURE',Float()), Column('VOLUME', Float()), SimpleAnomaly(request='GET', url='internal_test', output_item = 'http_preload_done'), bif.PythonExpression(expression='df["TEMPERATURE"]*df["PRESSURE"]', output_name = 'VOLUME'), **{ '_timestamp' : 'evt_timestamp', '_db_schema' : db_schema }) ''' When creating an EntityType object you will need to specify the name of the entity, the database object that will contain entity data After creating an EntityType you will need to register it so that it visible in the UI. To also register the functions and constants associated with the entity type, specify 'publish_kpis' = True. ''' entity.register(raise_error=False) db.register_functions([SimpleAnomaly]) ''' To test the execution of kpi calculations defined for the entity type locally use 'test_local_pipeline'. A local test will not update the server job log or write kpi data to the AS data lake. Instead kpi data is written to the local filesystem in csv form. ''' entity.exec_local_pipeline() ''' view entity data ''' df = db.read_table(table_name=entity_name, schema=db_schema) print(df.head())
[ [ [ 7, 11 ], [ 765, 769 ] ], [ [ 19, 26 ], [ 374, 381 ] ], [ [ 50, 56 ], [ 1690, 1696 ], [ 1743, 1749 ], [ 1794, 1800 ], [ 1842, 1848 ] ], [ [ 58, 65 ] ], [ [ 67, 73 ], [ 1710, 1716 ] ], [ [ 75, 80 ], [ 1764, 1769 ], [ 1812, 1817 ], [ 1859, 1864 ] ], [ [ 82, 90 ] ], [ [ 92, 99 ] ], [ [ 101, 105 ] ], [ [ 131, 134 ], [ 2067, 2070 ] ], [ [ 160, 173 ], [ 1889, 1902 ], [ 2748, 2761 ] ], [ [ 208, 218 ], [ 1643, 1653 ] ], [ [ 247, 255 ], [ 1050, 1058 ] ], [ [ 291, 304 ], [ 334, 347 ] ], [ [ 324, 332 ] ], [ [ 744, 745 ], [ 776, 777 ] ], [ [ 751, 762 ], [ 1073, 1084 ] ], [ [ 1045, 1047 ], [ 1586, 1588 ], [ 1666, 1668 ], [ 2725, 2727 ], [ 3092, 3094 ] ], [ [ 1086, 1095 ] ], [ [ 1439, 1450 ], [ 1600, 1611 ], [ 1654, 1665 ], [ 3117, 3128 ] ], [ [ 1491, 1500 ], [ 1622, 1631 ], [ 2316, 2325 ], [ 3137, 3146 ] ], [ [ 1634, 1640 ], [ 2690, 2696 ], [ 3031, 3037 ] ], [ [ 3087, 3089 ], [ 3154, 3156 ] ] ]
# -*- coding: utf-8 -*- """Amavis factories.""" from __future__ import unicode_literals import datetime import time import factory from . import models from .utils import smart_bytes SPAM_BODY = """X-Envelope-To: <{rcpt}> X-Envelope-To-Blocked: <{rcpt}> X-Quarantine-ID: <nq6ekd4wtXZg> X-Spam-Flag: YES X-Spam-Score: 1000.985 X-Spam-Level: **************************************************************** X-Spam-Status: Yes, score=1000.985 tag=2 tag2=6.31 kill=6.31 tests=[ALL_TRUSTED=-1, GTUBE=1000, PYZOR_CHECK=1.985] autolearn=no autolearn_force=no Received: from demo.modoboa.org ([127.0.0.1]) by localhost (demo.modoboa.org [127.0.0.1]) (amavisd-new, port 10024) with ESMTP id nq6ekd4wtXZg for <user@demo.local>; Thu, 9 Nov 2017 15:59:52 +0100 (CET) Received: from demo.modoboa.org (localhost [127.0.0.1]) by demo.modoboa.org (Postfix) with ESMTP for <user@demo.local>; Thu, 9 Nov 2017 15:59:52 +0100 (CET) Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: base64 Subject: Sample message From: {sender} To: {rcpt} Message-ID: <151023959268.5550.5713670714483771838@demo.modoboa.org> Date: Thu, 09 Nov 2017 15:59:52 +0100 This is the GTUBE, the Generic Test for Unsolicited Bulk Email If your spam filter supports it, the GTUBE provides a test by which you can verify that the filter is installed correctly and is detecting incoming spam. You can send yourself a test mail containing the following string of characters (in upper case and with no white spaces and line breaks): XJS*C4JDBQADN1.NSBN3*2IDNEN*GTUBE-STANDARD-ANTI-UBE-TEST-EMAIL*C.34X You should send this test mail from an account outside of your network. """ VIRUS_BODY = """Subject: Virus Test Message (EICAR) MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="huq684BweRXVnRxX" Content-Disposition: inline Date: Sun, 06 Nov 2011 10:08:18 -0800 --huq684BweRXVnRxX Content-Type: text/plain; charset=us-ascii Content-Disposition: inline This is a virus test message. It contains an attached file 'eicar.com', which contains the EICAR virus <http://eicar.org/86-0-Intended-use.html> test pattern. --huq684BweRXVnRxX Content-Type: application/x-msdos-program Content-Disposition: attachment; filename="eicar.com" Content-Transfer-Encoding: quoted-printable X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*=0A --huq684BweRXVnRxX-- """ class MaddrFactory(factory.django.DjangoModelFactory): """Factory for Maddr.""" class Meta: model = models.Maddr django_get_or_create = ("email", ) id = factory.Sequence(lambda n: n) # NOQA:A003 email = factory.Sequence(lambda n: "user_{}@domain.test".format(n)) domain = "test.domain" class MsgsFactory(factory.django.DjangoModelFactory): """Factory for Mailaddr.""" class Meta: model = models.Msgs mail_id = factory.Sequence(lambda n: "mailid{}".format(n)) secret_id = factory.Sequence(lambda n: smart_bytes("id{}".format(n))) sid = factory.SubFactory(MaddrFactory) client_addr = "127.0.0.1" originating = "Y" dsn_sent = "N" subject = factory.Sequence(lambda n: "Test message {}".format(n)) time_num = factory.LazyAttribute(lambda o: int(time.time())) time_iso = factory.LazyAttribute( lambda o: datetime.datetime.fromtimestamp(o.time_num).isoformat()) size = 100 class MsgrcptFactory(factory.django.DjangoModelFactory): """Factory for Msgrcpt.""" class Meta: model = models.Msgrcpt rseqnum = 1 is_local = "Y" bl = "N" wl = "N" mail = factory.SubFactory(MsgsFactory) rid = factory.SubFactory(MaddrFactory) class QuarantineFactory(factory.django.DjangoModelFactory): """Factory for Quarantine.""" class Meta: model = models.Quarantine chunk_ind = 1 mail = factory.SubFactory(MsgsFactory) def create_quarantined_msg(rcpt, sender, rs, body, **kwargs): """Create a quarantined msg.""" msgrcpt = MsgrcptFactory( rs=rs, rid__email=rcpt, rid__domain="com.test", # FIXME mail__sid__email=smart_bytes(sender), mail__sid__domain="", # FIXME **kwargs ) QuarantineFactory( mail=msgrcpt.mail, mail_text=smart_bytes(SPAM_BODY.format(rcpt=rcpt, sender=sender)) ) return msgrcpt def create_spam(rcpt, sender="spam@evil.corp", rs=" "): """Create a spam.""" body = SPAM_BODY.format(rcpt=rcpt, sender=sender) body += "fóó bár" return create_quarantined_msg( rcpt, sender, rs, body, bspam_level=999.0, content="S") def create_virus(rcpt, sender="virus@evil.corp", rs=" "): """Create a virus.""" return create_quarantined_msg(rcpt, sender, rs, VIRUS_BODY, content="V")
[ [ [ 73, 89 ] ], [ [ 98, 106 ], [ 3354, 3362 ] ], [ [ 114, 118 ], [ 3284, 3288 ] ], [ [ 127, 134 ], [ 2472, 2479 ], [ 2636, 2643 ], [ 2691, 2698 ], [ 2798, 2805 ], [ 2926, 2933 ], [ 2991, 2998 ], [ 3059, 3066 ], [ 3177, 3184 ], [ 3248, 3255 ], [ 3313, 3320 ], [ 3449, 3456 ], [ 3637, 3644 ], [ 3679, 3686 ], [ 3738, 3745 ], [ 3889, 3896 ] ], [ [ 150, 156 ], [ 2570, 2576 ], [ 2899, 2905 ], [ 3549, 3555 ], [ 3841, 3847 ] ], [ [ 176, 187 ], [ 3018, 3029 ], [ 4157, 4168 ], [ 4308, 4319 ] ], [ [ 189, 198 ], [ 4320, 4329 ], [ 4483, 4492 ] ], [ [ 1744, 1754 ], [ 4785, 4795 ] ], [ [ 2459, 2471 ], [ 3078, 3090 ], [ 3698, 3710 ] ], [ [ 2786, 2797 ], [ 3656, 3667 ], [ 3908, 3919 ] ], [ [ 3434, 3448 ], [ 4035, 4049 ] ], [ [ 3720, 3737 ], [ 4244, 4261 ] ], [ [ 3927, 3949 ], [ 4559, 4581 ], [ 4744, 4766 ] ], [ [ 4395, 4406 ] ], [ [ 4653, 4665 ] ] ]
#!/usr/bin/env python from __future__ import print_function, division import os, sys import matplotlib.pyplot as plt import numpy as np import argparse from astropy import log from os import path from glob import glob from subprocess import check_call import shutil from astropy.table import Table from astropy.io import fits from nicer.values import * from nicer.plotutils import plot_light_curve def runcmd(cmd): # CMD should be a list of strings since it is not processed by a shell log.info('CMD: '+" ".join(cmd)) os.system(" ".join(cmd)) ## Some ftools calls don't work properly with check_call...not sure why! ## so I am using os.system instead of check_call #check_call(cmd,env=os.environ) ################################################ # Checking the presence of HEASOFT try: check_call('nicerversion',env=os.environ) except: print("You need to initialize FTOOLS/HEASOFT first (e.g., type 'heainit')!", file=sys.stderr) exit() ################################################ # Checking the presence of gti header and columns in data/ gticolumns = path.join(datadir,'gti_columns.txt') gtiheader = path.join(datadir,'gti_header.txt') if not os.path.isfile(gtiheader) or not os.path.isfile(gticolumns): log.error('The files gti_header.txt or gti_columns.txt are missing. Check the {} directory'.format(os.path.abspath(datadir))) exit() desc = """ Create a simple GTI file from a pair of NICER METs. This is handy as an input file to niextract-events timefile=xxx.gti """ parser = argparse.ArgumentParser(description = desc) parser.add_argument("startmet", help="Starting MET for GTI", type=float) parser.add_argument("stopmet", help="Ending MET for GTI", type=float) parser.add_argument("--gtiname", help="Name of output GTI FITS file (default gti.fits)", default="gti.fits") args = parser.parse_args() ################################################ ## STEP 5 - dumping the TSTART and TEND into text file import tempfile fp = tempfile.NamedTemporaryFile() fp.write('{0} {1}\n'.format(args.startmet,args.stopmet)) fp.flush() ################################################ ## STEP 6 - Making the GTI file from the text file log.info("Making the GTI file gti.fits from the GTI data textfile") cmd = ['ftcreate', '{}'.format(gticolumns), fp.name, args.gtiname, 'headfile={}'.format(gtiheader), 'extname="GTI"', 'clobber=yes'] runcmd(cmd) fp.close()
[ [ [ 45, 59 ] ], [ [ 61, 69 ] ], [ [ 77, 79 ], [ 847, 849 ], [ 1191, 1193 ], [ 1224, 1226 ], [ 1356, 1358 ], [ 532, 534 ] ], [ [ 81, 84 ], [ 953, 956 ] ], [ [ 92, 116 ] ], [ [ 124, 135 ] ], [ [ 143, 151 ], [ 1540, 1548 ] ], [ [ 172, 175 ], [ 1256, 1259 ], [ 2190, 2193 ], [ 496, 499 ] ], [ [ 191, 195 ], [ 1098, 1102 ], [ 1147, 1151 ] ], [ [ 213, 217 ] ], [ [ 241, 251 ], [ 817, 827 ] ], [ [ 259, 265 ] ], [ [ 292, 297 ] ], [ [ 321, 325 ] ], [ [ 352, 353 ], [ 1108, 1115 ], [ 1157, 1164 ], [ 1372, 1379 ] ], [ [ 382, 398 ] ], [ [ 404, 410 ], [ 2390, 2396 ] ], [ [ 1085, 1095 ], [ 1239, 1249 ], [ 2289, 2299 ] ], [ [ 1135, 1144 ], [ 1206, 1215 ], [ 2346, 2355 ] ], [ [ 1396, 1400 ], [ 1578, 1582 ] ], [ [ 1531, 1537 ], [ 1584, 1590 ], [ 1657, 1663 ], [ 1727, 1733 ], [ 1844, 1850 ] ], [ [ 1837, 1841 ], [ 2048, 2052 ], [ 2062, 2066 ], [ 2311, 2315 ] ], [ [ 1976, 1984 ], [ 1990, 1998 ] ], [ [ 1985, 1987 ], [ 2020, 2022 ], [ 2077, 2079 ], [ 2302, 2304 ], [ 2403, 2405 ] ], [ [ 2258, 2261 ], [ 2397, 2400 ] ] ]
import os from datetime import datetime from flask import Flask, render_template, flash, safe_join, send_file from flask_user import login_required, current_user from werkzeug.utils import secure_filename from pygate_grpc.client import PowerGateClient from deplatformr.models.filecoin_models import Ffs, Files, Logs from deplatformr import app, db @app.route('/filecoin-files') @login_required def filecoin_files(): files = Files.query.filter_by(user_id=current_user.id).all() return render_template("filecoin/filecoin-files.html", files=files, breadcrumb="Filecoin / Files") @app.route("/filecoin-download/<cid>", methods=["GET"]) @login_required def filecoin_download(cid): """ Retrieve a file from Filecoin via IPFS using Powergate and offer the user the option to save it to their machine. """ # Retrieve File and FFS info using the CID file = Files.query.filter_by(CID=cid, user_id=current_user.id).first() ffs = Ffs.query.get(file.ffs_id) try: # Retrieve data from Filecoin powergate = PowerGateClient(app.config["POWERGATE_ADDRESS"]) data_ = powergate.ffs.get(file.CID, ffs.token) # Save the downloaded data as a file # Use the user data directory configured for the app user_data = app.config["USER_DATA_DIR"] if not os.path.exists(user_data): os.makedirs(user_data) print(user_data) # Create a subdirectory per username. Usernames are unique. user_dir = os.path.join( user_data, str(current_user.id) + "-" + current_user.username) if not os.path.exists(user_dir): os.makedirs(user_dir) print(user_dir) # Create a Filecoin downloads subdirectory. filecoin_dir = os.path.join(user_dir, "filecoin/downloads") if not os.path.exists(filecoin_dir): os.makedirs(filecoin_dir) print(filecoin_dir) with open(os.path.join(filecoin_dir, file.file_name), "wb") as out_file: # Iterate over the data byte chunks and save them to an output file for data in data_: out_file.write(data) # Create path to download file safe_path = safe_join("../" + filecoin_dir, file.file_name) print(safe_path) # Offer the file for download to local machine return send_file(safe_path, as_attachment=True) # TODO: CLEAR CACHED FILES IN DOWNLOAD DIRECTORY except Exception as e: # Output error message if download from Filecoin fails flash("failed to download '{}' from Filecoin. {}".format( file.file_name, e), "alert-danger") # Update log table with error event = Logs( timestamp=datetime.now().replace(microsecond=0), event="Download ERROR: " + file.file_name + " CID: " + file.CID + " " + str(e), user_id=current_user.id, ) db.session.add(event) db.session.commit() files = Files.query.filter_by(user_id=current_user.id).all() return render_template("filecoin/filecoin-files.html", files=files, breadcrumb="Filecoin / Files") @ app.route('/filecoin-wallets') @ login_required def filecoin_wallets(): """ Retrieve all wallets from all FFSes and save them in a list for presentation on the UI template """ powergate = PowerGateClient(app.config["POWERGATE_ADDRESS"]) try: ffs = Ffs.query.filter_by(user_id=current_user.id).one() except: flash("No wallets created yet.", "alert-danger") return render_template("filecoin/filecoin-wallets.html", wallets=None, breadcrumb="Filecoin / Wallets") wallets = [] addresses = powergate.ffs.addrs_list(ffs.token) for address in addresses.addrs: balance = powergate.wallet.balance(address.addr) wallets.append( { "ffs": ffs.ffs_id, "name": address.name, "address": address.addr, "type": address.type, "balance": str(balance.balance), } ) return render_template("filecoin/filecoin-wallets.html", wallets=wallets, breadcrumb="Filecoin / Wallets")
[ [ [ 7, 9 ], [ 1330, 1332 ], [ 1369, 1371 ], [ 1505, 1507 ], [ 1609, 1611 ], [ 1647, 1649 ], [ 1768, 1770 ], [ 1828, 1830 ], [ 1870, 1872 ], [ 1942, 1944 ] ], [ [ 31, 39 ], [ 2744, 2752 ] ], [ [ 58, 63 ] ], [ [ 65, 80 ], [ 496, 511 ], [ 3118, 3133 ], [ 3631, 3646 ], [ 4168, 4183 ] ], [ [ 82, 87 ], [ 2555, 2560 ], [ 3567, 3572 ] ], [ [ 89, 98 ], [ 2213, 2222 ] ], [ [ 100, 109 ], [ 2357, 2366 ] ], [ [ 133, 147 ], [ 381, 395 ], [ 647, 661 ], [ 3247, 3261 ] ], [ [ 149, 161 ], [ 461, 473 ], [ 926, 938 ], [ 1546, 1558 ], [ 1571, 1583 ], [ 2955, 2967 ], [ 3083, 3095 ], [ 3524, 3536 ] ], [ [ 189, 204 ] ], [ [ 236, 251 ], [ 1056, 1071 ], [ 3423, 3438 ] ], [ [ 299, 302 ], [ 961, 964 ], [ 3496, 3499 ] ], [ [ 304, 309 ], [ 431, 436 ], [ 887, 892 ], [ 3053, 3058 ] ], [ [ 311, 315 ], [ 2716, 2720 ] ], [ [ 340, 343 ], [ 351, 354 ], [ 591, 594 ], [ 3214, 3217 ], [ 1072, 1075 ], [ 1287, 1290 ], [ 3439, 3442 ] ], [ [ 345, 347 ], [ 2990, 2992 ], [ 3020, 3022 ] ], [ [ 400, 414 ] ], [ [ 666, 683 ] ], [ [ 3266, 3282 ] ] ]
from setuptools import find_packages, setup with open("README.md", "r") as fh: long_description = fh.read() setup( name='msnexport', version='0.1', license="MIT", classifiers=["Programming Language :: Python :: 3.7"], author='Charles Marceau', author_email='charlesmarceau3@gmail.com', description='Export your old xml MSN history to pdf.', long_description=long_description, long_description_content_type="text/markdown", url='https://github.com/charles-marceau/msnexport', packages=find_packages(), include_package_data=True, install_requires=[ 'beautifulsoup4', 'click', 'lxml', 'reportlab' ], entry_points=''' [console_scripts] msnexport=msnexport.cli:export ''' )
[ [ [ 23, 36 ], [ 534, 547 ] ], [ [ 38, 43 ], [ 114, 119 ] ], [ [ 76, 78 ], [ 103, 105 ] ], [ [ 84, 100 ], [ 396, 412 ] ] ]
from mythic_payloadtype_container.MythicCommandBase import * import json from mythic_payloadtype_container.MythicRPC import * import base64 class InjectArguments(TaskArguments): def __init__(self, command_line): super().__init__(command_line) self.args = { "template": CommandParameter(name="Payload Template", type=ParameterType.Payload, supported_agents=["apollo"], supported_agent_build_parameters={"apollo": {"output_type": "Shellcode"}}), "pid": CommandParameter(name="PID", type=ParameterType.Number), } errorMsg = "Missing required parameter: {}" async def parse_arguments(self): if (self.command_line[0] != "{"): raise Exception("Inject requires JSON parameters and not raw command line.") self.load_args_from_json_string(self.command_line) class InjectCommand(CommandBase): cmd = "inject" needs_admin = False help_cmd = "inject (modal popup)" description = "Inject agent shellcode into a remote process." version = 2 is_exit = False is_file_browse = False is_process_list = False is_download_file = False is_upload_file = False is_remove_file = False script_only = True author = "@djhohnstein" argument_class = InjectArguments attackmapping = ["T1055"] async def shinject_completed(self, task: MythicTask, subtask: dict = None, subtask_group_name: str = None) -> MythicTask: task.status = MythicStatus.Completed return task async def create_tasking(self, task: MythicTask) -> MythicTask: temp = await MythicRPC().execute("get_payload", payload_uuid=task.args.get_arg("template")) gen_resp = await MythicRPC().execute("create_payload_from_uuid", task_id=task.id, payload_uuid=task.args.get_arg('template'), new_description="{}'s injection into PID {}".format(task.operator, str(task.args.get_arg("pid")))) if gen_resp.status == MythicStatus.Success: # we know a payload is building, now we want it while True: resp = await MythicRPC().execute("get_payload", payload_uuid=gen_resp.response["uuid"], get_contents=True) if resp.status == MythicStatus.Success: if resp.response["build_phase"] == 'success': b64contents = resp.response["contents"] pe = base64.b64decode(b64contents) if len(pe) > 1 and pe[:2] == b"\x4d\x5a": raise Exception("Inject requires a payload of Raw output, but got an executable.") # it's done, so we can register a file for it task.display_params = "payload '{}' into PID {}".format(temp.response["tag"], task.args.get_arg("pid")) response = await MythicRPC().execute("create_subtask", parent_task_id=task.id, command="shinject", params_dict={"PID": task.args.get_arg("pid"), "Shellcode File ID": resp.response["file"]["agent_file_id"]}, subtask_callback_function="shinject_completed") task.status = MythicStatus.Processed break elif resp.response["build_phase"] == 'error': raise Exception("Failed to build new payload: " + resp.response["error_message"]) else: await asyncio.sleep(1) else: raise Exception("Failed to build payload from template {}".format(task.args.get_arg("template"))) return task async def process_response(self, response: AgentResponse): pass
[ [ [ 59, 60 ] ], [ [ 68, 72 ] ], [ [ 124, 125 ], [ 163, 176 ], [ 863, 874 ], [ 303, 319 ], [ 350, 363 ], [ 497, 513 ], [ 531, 544 ], [ 1432, 1442 ], [ 1363, 1373 ], [ 1466, 1478 ], [ 1566, 1576 ], [ 1551, 1561 ], [ 1599, 1608 ], [ 1744, 1753 ], [ 2117, 2129 ], [ 2252, 2261 ], [ 2479, 2491 ], [ 3106, 3115 ], [ 3464, 3476 ], [ 3745, 3752 ], [ 3954, 3967 ] ], [ [ 133, 139 ], [ 2660, 2666 ] ], [ [ 147, 162 ], [ 1270, 1285 ] ], [ [ 849, 862 ] ] ]
import numpy as np from .base import Price class GBM(Price): """Brownian motion.""" def __init__(self, T=1., sigma1=0.02, sigma2=0.01, s1=1., s2=1., drift1=0., drift2=0., n=100): self.sigma1 = sigma1 self.sigma2 = sigma2 self.drift1 = drift1 self.drift2 = drift2 self.n = n self.s1 = s1 self.s2 = s2 self.T = T def generate(self): dt1 = self.sigma1 ** 2 * self.T / self.n dt2 = self.sigma2 ** 2 * self.T / self.n bm1 = np.r_[[0.], np.sqrt(dt1) * np.random.randn(self.n - 1).cumsum()] bm2 = np.r_[[0.], np.sqrt(dt2) * np.random.randn(self.n - 1).cumsum()] path = np.c_[np.linspace(0, self.T, self.n), bm1, bm2] path[:, 1] = np.exp((self.drift1 - self.sigma1 ** 2 / 2.) * path[:, 0] + self.sigma1 * path[:, 1]) path[:, 2] = np.exp((self.drift2 - self.sigma2 ** 2 / 2.) * path[:, 0] + self.sigma2 * path[:, 2]) path[:, 1] *= self.s1 path[:, 2] *= self.s2 return path
[ [ [ 7, 18 ], [ 540, 542 ], [ 552, 554 ], [ 567, 569 ], [ 619, 621 ], [ 631, 633 ], [ 646, 648 ], [ 700, 702 ], [ 706, 708 ], [ 769, 771 ], [ 876, 878 ] ], [ [ 37, 42 ], [ 54, 59 ] ], [ [ 50, 53 ] ] ]
import json import os, errno import sys import time import shutil import subprocess from subprocess import Popen, PIPE EXECUTABLE = 'hcbr_learning' BUILD_FOLDER = '../build' DATA_FOLDER = '../data' KFOLD_SCRIPT = 'kfold_validation.py' ACCURACY_ROW = 4 #METAOPTIMIZATION = '../tuning/hyperopt_wrapper.py' #METAOPTIMIZATION_TIMEOUT = 60 METAOPTIMIZATION = '../script/genetic_algorithm.py' def convert_paramILS_to_HCBR_params(paramILS): convert_map = { 'e': 'eta', 'd': 'delta', 'g': 'gamma', 'i': 'online', 'p': 'learning_phases', 'z': 'heuristic' } def if_exists(k, v): if k in convert_map: return convert_map[k], v else: return None, None params = {} for k, v in paramILS.iteritems(): key, val = if_exists(k, v) if key is not None: params[key] = val return params def read_outcomes(path): cases = [] headers = [] with open(path, 'rb') as csvfile: reader = csvfile.readlines() n = len(reader[0].split()) for i, row in enumerate(reader): cases.append(int(row)) return cases def main(): executable_path = os.path.join(BUILD_FOLDER, EXECUTABLE) k = int(sys.argv[1]) l = float(sys.argv[2]) instance_name = sys.argv[3] seed = None if len(sys.argv) > 4: seed = sys.argv[4] only_analysis = False if len(sys.argv) > 5: only_analysis = True if sys.argv[5] == 'True' else False if len(sys.argv) > 6: nested_CV = True if sys.argv[6] == 'True' else False suffix = "" if len(sys.argv) > 7: suffix = "_" + sys.argv[7] path = instance_name file_name = path.split('/')[-1].split('.')[0] base_name = file_name.split('.')[0] # Check build, executable and paths base_output_path = "{}{}".format(instance_name, suffix) if not only_analysis: try: shutil.rmtree(base_output_path) except: pass try: os.makedirs(base_output_path) except OSError as e: if e.errno != errno.EEXIST: raise # Create the casebase print('# Create casebase and outcome files...') process_script = os.path.join(DATA_FOLDER, "process_{}.py".format(instance_name)) data_location = os.path.join(DATA_FOLDER, "{}.txt".format(instance_name)) cmd = "python {} {}".format(process_script, data_location) rc = subprocess.call(cmd, shell=True) print('CMD: {}'.format(cmd)) print('RC: {}'.format(rc)) if rc: exit(1) path_casebase = os.path.join("{}_casebase.txt".format(instance_name)) path_outcomes = os.path.join("{}_outcomes.txt".format(instance_name)) try: outcomes = read_outcomes(path_outcomes) except Exception as e: print(e) exit(1) n = len(outcomes) # Create the k-folds print('# Create k-folds files for validation...') fold_creation_output = os.path.join(base_output_path, 'kfold_creation.log') cmd_fold_validation = "python {} {} {} {} {} {} > {}".format( KFOLD_SCRIPT, k, path_casebase, path_outcomes, os.path.join(base_output_path, "input_data"), seed if seed is not None else "", fold_creation_output ) print('CMD: {}'.format(cmd_fold_validation)) rc = subprocess.call(cmd_fold_validation, shell=True) print('RC: {}'.format(rc)) if rc: exit(1) # Read configuration print('# Read configuration for this instance...') examples = int(round(n * l)) parameters_path = os.path.join(DATA_FOLDER, "parameters", "{}.params.json".format(instance_name)) default_params = { # TODO } parameters = None try: with open(parameters_path) as json_data: parameters = json.load(json_data) except Exception as e: print('[ERROR] Could not retrieve parameters. Use default parameters.') print(e) if parameters is None: parameters = default_params else: for key, v in default_params.iteritems(): if key not in parameters: print('# - Add {}={} as parameter because value not found'.format(key, v)) parameters[key] = v print('# Configuration: {}'.format(parameters)) # Start validation runs print('# Start validation runs...') average_accuracy = 0 for i in range(0, k): print('\n#########################') print('# - Run {}'.format(i)) print('#########################') run_nb = 'run_{}'.format(i) fold_casebase = os.path.join("../experiments", base_output_path, "input_data", "{}_casebase.fold_{}.txt".format(instance_name, i)) fold_outcomes = os.path.join("../experiments", base_output_path, "input_data", "{}_outcomes.fold_{}.txt".format(instance_name, i)) fold_output_path = os.path.join("../experiments", base_output_path, run_nb) parameters_path = os.path.join(DATA_FOLDER, "parameters", "{}.params.json".format(instance_name)) default_params = { # TODO } parameters = None try: with open(parameters_path) as json_data: parameters = json.load(json_data) except Exception as e: print('[ERROR] Could not retrieve parameters. Use default parameters.') print(e) parameters["input"]["casebase"] = fold_casebase parameters["input"]["outcomes"] = fold_outcomes parameters["parameters"]["limit"] = examples parameters["parameters"]["run_id"] = i if not only_analysis: try: shutil.rmtree(fold_output_path) except: pass try: os.makedirs(fold_output_path) except OSError as e: if e.errno != errno.EEXIST: print('[ERROR] Could not create output path for {}'.format(run_nb)) continue if(nested_CV): print('# Start Meta-optimization for Model Selection') print('# Preliminary run') fold_param_file = os.path.join(fold_output_path, 'params_{}.init.json'.format(run_nb)) with open(fold_param_file, 'w') as f: f.write(json.dumps(parameters, indent=4)) print('# Initial configuration: {}'.format(parameters)) cmd = "{} --params {} > {} 2> {}".format(executable_path, fold_param_file, os.path.join(fold_output_path, 'output_{}.init.txt'.format(run_nb)), os.path.join(fold_output_path, 'log_{}.init.txt'.format(run_nb)) ) ''' cmd = "{} -c {} -o {} -l {} -s -p {} -e {} -d {} -g {} {} {} -b {} > {} 2> {}".format( executable_path, fold_casebase, fold_outcomes, examples, parameters['learning_phases'], parameters['eta'], parameters['delta'], parameters['gamma'], '-i' if int(parameters['online']) == 1 else "", '-z' if int(parameters['heuristic']) == 1 else "", i, os.path.join(fold_output_path, 'output_{}.txt'.format(run_nb)), os.path.join(fold_output_path, 'log_{}.txt'.format(run_nb)) ) ''' print('# CMD: {}'.format(cmd)) rc = subprocess.call(cmd, shell=True) p = Popen(['tail', '-n', '1', os.path.join(fold_output_path, 'output_{}.init.txt'.format(run_nb))], stdin=PIPE, stdout=PIPE, stderr=PIPE) output, err = p.communicate() prun_accuracy = float(output.split()[ACCURACY_ROW]) print('# Preliminary run accuracy: {}'.format(prun_accuracy)) cmd = "python {} \ --weights ../experiments/W.txt \ --mu0 ../experiments/Mu_0_post_training.txt \ --mu1 ../experiments/Mu_1_post_training.txt \ --outcomes {}".format(METAOPTIMIZATION, fold_outcomes) print('# CMD: {}'.format(cmd)) p = Popen(cmd.split(), stdin=PIPE, stdout=PIPE, stderr=PIPE) output, err = p.communicate() parameters_path = os.path.join(DATA_FOLDER, "parameters", "{}.optimized.params.json".format(instance_name)) parameters = json.load(open(parameters_path)) parameters["deserialization"]["mu0_file"] = "../experiments/Mu_0_optimized.txt" parameters["deserialization"]["mu1_file"] = "../experiments/Mu_1_optimized.txt" parameters["input"]["casebase"] = fold_casebase parameters["input"]["outcomes"] = fold_outcomes parameters["parameters"]["limit"] = examples parameters["parameters"]["run_id"] = i fold_param_file = os.path.join(fold_output_path, 'params_{}.json'.format(run_nb)) with open(fold_param_file, 'w') as f: f.write(json.dumps(parameters, indent=4)) print('# Final configuration: {}'.format(parameters)) cmd = "{} --params {} > {} 2> {}".format(executable_path, fold_param_file, os.path.join(fold_output_path, 'output_{}.txt'.format(run_nb)), os.path.join(fold_output_path, 'log_{}.txt'.format(run_nb)) ) print('# CMD: {}'.format(cmd)) rc = subprocess.call(cmd, shell=True) try: shutil.move("training.run_{}.log.csv".format(i), os.path.join(base_output_path, "run_{}".format(i), "training.run_{}.log.csv".format(i))) shutil.move("prediction.run_{}.log.csv".format(i), os.path.join(base_output_path, "run_{}".format(i), "prediction.run_{}.log.csv".format(i))) shutil.move("overlap.run_{}.log.csv".format(i), os.path.join(base_output_path, "run_{}".format(i), "overlap.run_{}.log.csv".format(i))) shutil.move("strength.run_{}.log.csv".format(i), os.path.join(base_output_path, "run_{}".format(i), "strength.run_{}.log.csv".format(i))) except Exception as e: pass p = Popen(['tail', '-n', '1', os.path.join(fold_output_path, 'output_{}.txt'.format(run_nb))], stdin=PIPE, stdout=PIPE, stderr=PIPE) output, err = p.communicate() run_accuracy = float(output.split()[ACCURACY_ROW]) average_accuracy += run_accuracy print("# Accuracy: {}".format(run_accuracy)) print('# Analyze the results...') try: # Confusion matrix cmd_confusion_matrix = "python ../utils/confusion_matrix.py {}".format(os.path.join(fold_output_path, 'output_{}.txt'.format(run_nb))) cmd_cm_gp = "gnuplot {}".format('output_{}_confusion_matrix.gp'.format(run_nb)) rc = subprocess.call(cmd_confusion_matrix, shell=True) rc = subprocess.call(cmd_cm_gp, shell=True) shutil.move('output_{}_confusion_matrix.gp'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_confusion_matrix.gp'.format(run_nb))) shutil.move('output_{}_confusion_matrix.txt'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_confusion_matrix.txt'.format(run_nb))) shutil.move('output_{}_confusion_matrix_0.png'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_confusion_matrix_0.png'.format(run_nb))) shutil.move('output_{}_confusion_matrix_1.png'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_confusion_matrix_1.png'.format(run_nb))) shutil.move('output_{}_confusion_matrix_2.png'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_confusion_matrix_2.png'.format(run_nb))) shutil.move('output_{}_confusion_matrix_0.svg'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_confusion_matrix_0.svg'.format(run_nb))) shutil.move('output_{}_confusion_matrix_1.svg'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_confusion_matrix_1.svg'.format(run_nb))) shutil.move('output_{}_confusion_matrix_2.svg'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_confusion_matrix_2.svg'.format(run_nb))) # Prediction analysis cmd_prediction_analysis ="python ../utils/prediction_analysis.py {path} ".format( path=os.path.join(fold_output_path, 'output_{}.txt'.format(run_nb)) ) cmd_pa_gp = "gnuplot {}".format('output_{}_diff_pred.gp'.format(run_nb)) rc = subprocess.call(cmd_prediction_analysis, shell=True) rc = subprocess.call(cmd_pa_gp, shell=True) shutil.move('output_{}_diff_bad_pred.txt'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_diff_bad_pred.txt'.format(run_nb))) shutil.move('output_{}_diff_negative_bad_pred.txt'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_diff_negative_bad_pred.txt'.format(run_nb))) shutil.move('output_{}_diff_negative_pred.txt'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_diff_negative_pred.txt'.format(run_nb))) shutil.move('output_{}_diff_positive_bad_pred.txt'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_diff_positive_bad_pred.txt'.format(run_nb))) shutil.move('output_{}_diff_pred.txt'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_diff_pred.txt'.format(run_nb))) shutil.move('output_{}_positive_diff_pred.txt'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_positive_diff_pred.txt'.format(run_nb))) shutil.move('output_{}_diff_pred.gp'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_diff_pred.gp'.format(run_nb))) shutil.move('output_{}_diff_pred_0.png'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_diff_pred_0.png'.format(run_nb))) shutil.move('output_{}_diff_pred_1.png'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_diff_pred_0.png'.format(run_nb))) shutil.move('output_{}_diff_pred_0.svg'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_diff_pred_0.svg'.format(run_nb))) shutil.move('output_{}_diff_pred_1.svg'.format(run_nb), os.path.join(base_output_path, "run_{}".format(i), 'output_{}_diff_pred_0.svg'.format(run_nb))) # ROC cmd_roc ="python ../utils/roc.py {path} ".format( path=os.path.join(fold_output_path, 'output_{}.txt'.format(run_nb)) ) print('CMD: {}'.format(cmd_roc)) rc = subprocess.call(cmd_roc, shell=True) shutil.move('roc.png', os.path.join(base_output_path, "run_{}".format(i), 'roc.png')) # Time cmd_time ="python ../utils/time_analysis.py {path} ".format( path=os.path.join(os.path.join(fold_output_path, 'output_{}.txt'.format(run_nb))) ) cmd_time_gp = "gnuplot {}".format(os.path.join(base_output_path, "run_{}".format(i), 'output_{}_time.gp'.format(run_nb)).format(run_nb)) #rc = subprocess.call(cmd_time, shell=True) #rc = subprocess.call(cmd_time_gp, shell=True) except Exception as e: print(e) print('# Analyze all runs...') try: cmd_analyze_runs ="python ../utils/analyze_runs.py {path} {instance} {k} {instance} 'table:{instance}' '{caption}'".format( instance=instance_name, path="hcbr.global.log.csv" if not only_analysis else os.path.join(base_output_path, "hcbr.global.log.csv"), k=k, caption="Confusion matrix and performances indicators for the \\texttt{" + instance_name +"} dataset." ) rc = subprocess.call(cmd_analyze_runs, shell=True) print('CMD: {}'.format(cmd_analyze_runs)) cmd_confusion_matrix = "python ../utils/confusion_matrix.py {}".format(os.path.join(base_output_path, 'output.average.txt')) cmd_cm_gp = "gnuplot {}".format('output_confusion_matrix.gp') rc = subprocess.call(cmd_confusion_matrix, shell=True) rc = subprocess.call(cmd_cm_gp, shell=True) shutil.move('output_confusion_matrix.gp', os.path.join(base_output_path, 'output_confusion_matrix.gp')) shutil.move('output_confusion_matrix.txt', os.path.join(base_output_path, 'output_confusion_matrix.txt')) shutil.move('output_confusion_matrix_0.png', os.path.join(base_output_path, 'output_confusion_matrix_0.png')) shutil.move('output_confusion_matrix_1.png', os.path.join(base_output_path, 'output_confusion_matrix_1.png')) shutil.move('output_confusion_matrix_2.png', os.path.join(base_output_path, 'output_confusion_matrix_2.png')) shutil.move('output_confusion_matrix_0.svg', os.path.join(base_output_path, 'output_confusion_matrix_0.svg')) shutil.move('output_confusion_matrix_1.svg', os.path.join(base_output_path, 'output_confusion_matrix_1.svg')) shutil.move('output_confusion_matrix_2.svg', os.path.join(base_output_path, 'output_confusion_matrix_2.svg')) # Prediction analysis cmd_prediction_analysis ="python ../utils/prediction_analysis.py {path} ".format( path=os.path.join(base_output_path, 'output.average.txt') ) cmd_pa_gp = "gnuplot {}".format('output.average_diff_pred.gp') rc = subprocess.call(cmd_prediction_analysis, shell=True) rc = subprocess.call(cmd_pa_gp, shell=True) shutil.move('output.average_diff_bad_pred.txt', os.path.join(base_output_path, 'output.average_diff_bad_pred.txt')) shutil.move('output.average_diff_negative_bad_pred.txt', os.path.join(base_output_path, 'output.average_diff_negative_bad_pred.txt')) shutil.move('output.average_diff_negative_pred.txt', os.path.join(base_output_path, 'output.average_diff_negative_pred.txt')) shutil.move('output.average_diff_positive_bad_pred.txt', os.path.join(base_output_path, 'output.average_diff_positive_bad_pred.txt')) shutil.move('output.average_diff_pred.txt', os.path.join(base_output_path, 'output.average_diff_pred.txt')) shutil.move('output.average_positive_diff_pred.txt', os.path.join(base_output_path, 'output.average_positive_diff_pred.txt')) shutil.move('output.average_diff_pred.gp', os.path.join(base_output_path, 'output.average_diff_pred.gp')) shutil.move('output.average_diff_pred_0.png', os.path.join(base_output_path, 'output.average_diff_pred_0.png')) shutil.move('output.average_diff_pred_1.png', os.path.join(base_output_path, 'output.average_diff_pred_1.png')) shutil.move('output.average_diff_pred_0.svg', os.path.join(base_output_path, 'output.average_diff_pred_0.svg')) shutil.move('output.average_diff_pred_1.svg', os.path.join(base_output_path, 'output.average_diff_pred_1.svg')) # ROC cmd_roc ="python ../utils/roc.py {path} ".format( path=os.path.join(base_output_path, 'output.average.txt') ) print('CMD: {}'.format(cmd_roc)) rc = subprocess.call(cmd_roc, shell=True) shutil.move('roc.png', os.path.join(base_output_path, 'roc.png')) # Time cmd_time ="python ../utils/time_analysis.py {path} {column}".format( path=os.path.join(base_output_path, 'output.average.txt'), column=10 ) cmd_time_gp = "gnuplot {}".format(os.path.join(base_output_path, 'output.average_time.gp')) rc = subprocess.call(cmd_time, shell=True) rc = subprocess.call(cmd_time_gp, shell=True) cmd_time ="python ../utils/time_analysis.py {path} {column}".format( path=os.path.join(base_output_path, 'overlap.average.log.csv'), column=3 ) cmd_time_gp = "gnuplot {}".format(os.path.join(base_output_path, 'overlap.average.log_time.gp')) rc = subprocess.call(cmd_time, shell=True) rc = subprocess.call(cmd_time_gp, shell=True) cmd_time ="python ../utils/time_analysis.py {path} {column}".format( path=os.path.join(base_output_path, 'strength.average.log.csv'), column=5 ) cmd_time_gp = "gnuplot {}".format(os.path.join(base_output_path, 'strength.average.log_time.gp')) rc = subprocess.call(cmd_time, shell=True) rc = subprocess.call(cmd_time_gp, shell=True) cmd_time ="python ../utils/time_analysis.py {path} {column}".format( path=os.path.join(base_output_path, 'training.average.log.csv'), column=1 ) cmd_time_gp = "gnuplot {}".format(os.path.join(base_output_path, 'training.average.log_time.gp')) #rc = subprocess.call(cmd_time, shell=True) #rc = subprocess.call(cmd_time_gp, shell=True) except Exception as e: print(e) if not only_analysis: print('# Copy the results...') shutil.move("hcbr.global.log.csv", os.path.join(base_output_path, "hcbr.global.log.csv")) shutil.move("{}_casebase.txt".format(instance_name), os.path.join(base_output_path, "{}_casebase.txt".format(instance_name))) shutil.move("{}_outcomes.txt".format(instance_name), os.path.join(base_output_path, "{}_outcomes.txt".format(instance_name))) msg = "{} {} {}\n".format(instance_name, seed, average_accuracy / float(k)) sys.stderr.write(msg) print(msg) if __name__ == '__main__': main()
[ [ [ 7, 11 ], [ 4054, 4058 ], [ 5531, 5535 ], [ 6622, 6626 ], [ 8971, 8975 ], [ 9597, 9601 ] ], [ [ 19, 21 ], [ 1206, 1208 ], [ 2043, 2045 ], [ 2277, 2279 ], [ 2366, 2368 ], [ 2668, 2670 ], [ 2746, 2748 ], [ 3083, 3085 ], [ 3313, 3315 ], [ 3789, 3791 ], [ 4900, 4902 ], [ 5040, 5042 ], [ 5182, 5184 ], [ 5266, 5268 ], [ 6071, 6073 ], [ 6470, 6472 ], [ 6867, 6869 ], [ 6960, 6962 ], [ 8052, 8054 ], [ 8852, 8854 ], [ 9458, 9460 ], [ 9826, 9828 ], [ 9910, 9912 ], [ 10170, 10172 ], [ 10326, 10328 ], [ 10481, 10483 ], [ 10634, 10636 ], [ 10821, 10823 ], [ 11303, 11305 ], [ 11667, 11669 ], [ 11840, 11842 ], [ 12016, 12018 ], [ 12194, 12196 ], [ 12372, 12374 ], [ 12550, 12552 ], [ 12728, 12730 ], [ 12906, 12908 ], [ 13171, 13173 ], [ 13542, 13544 ], [ 13719, 13721 ], [ 13901, 13903 ], [ 14083, 14085 ], [ 14256, 14258 ], [ 14425, 14427 ], [ 14593, 14595 ], [ 14767, 14769 ], [ 14931, 14933 ], [ 15095, 15097 ], [ 15259, 15261 ], [ 15470, 15472 ], [ 15681, 15683 ], [ 15870, 15872 ], [ 15883, 15885 ], [ 16007, 16009 ], [ 16556, 16558 ], [ 16944, 16946 ], [ 17246, 17248 ], [ 17359, 17361 ], [ 17475, 17477 ], [ 17593, 17595 ], [ 17711, 17713 ], [ 17829, 17831 ], [ 17947, 17949 ], [ 18065, 18067 ], [ 18268, 18270 ], [ 18585, 18587 ], [ 18718, 18720 ], [ 18856, 18858 ], [ 18994, 18996 ], [ 19124, 19126 ], [ 19249, 19251 ], [ 19373, 19375 ], [ 19503, 19505 ], [ 19623, 19625 ], [ 19743, 19745 ], [ 19863, 19865 ], [ 20031, 20033 ], [ 20216, 20218 ], [ 20381, 20383 ], [ 20509, 20511 ], [ 20767, 20769 ], [ 20899, 20901 ], [ 21162, 21164 ], [ 21295, 21297 ], [ 21559, 21561 ], [ 21692, 21694 ], [ 22017, 22019 ], [ 22133, 22135 ], [ 22267, 22269 ] ], [ [ 23, 28 ], [ 2128, 2133 ], [ 6164, 6169 ] ], [ [ 36, 39 ], [ 1258, 1261 ], [ 1285, 1288 ], [ 1318, 1321 ], [ 1357, 1360 ], [ 1387, 1390 ], [ 1436, 1439 ], [ 1483, 1486 ], [ 1527, 1530 ], [ 1570, 1573 ], [ 1630, 1633 ], [ 1668, 1671 ], [ 22433, 22436 ] ], [ [ 47, 51 ] ], [ [ 59, 65 ], [ 1953, 1959 ], [ 5965, 5971 ], [ 10121, 10127 ], [ 10275, 10281 ], [ 10433, 10439 ], [ 10585, 10591 ], [ 11607, 11613 ], [ 11779, 11785 ], [ 11953, 11959 ], [ 12131, 12137 ], [ 12309, 12315 ], [ 12487, 12493 ], [ 12665, 12671 ], [ 12843, 12849 ], [ 13484, 13490 ], [ 13652, 13658 ], [ 13838, 13844 ], [ 14016, 14022 ], [ 14202, 14208 ], [ 14362, 14368 ], [ 14540, 14546 ], [ 14711, 14717 ], [ 14875, 14881 ], [ 15039, 15045 ], [ 15203, 15209 ], [ 15658, 15664 ], [ 17204, 17210 ], [ 17316, 17322 ], [ 17430, 17436 ], [ 17548, 17554 ], [ 17666, 17672 ], [ 17784, 17790 ], [ 17902, 17908 ], [ 18020, 18026 ], [ 18537, 18543 ], [ 18661, 18667 ], [ 18803, 18809 ], [ 18937, 18943 ], [ 19080, 19086 ], [ 19196, 19202 ], [ 19330, 19336 ], [ 19457, 19463 ], [ 19577, 19583 ], [ 19697, 19703 ], [ 19817, 19823 ], [ 20193, 20199 ], [ 21982, 21988 ], [ 22080, 22086 ], [ 22214, 22220 ] ], [ [ 73, 83 ], [ 2504, 2514 ], [ 3518, 3528 ], [ 7973, 7983 ], [ 10055, 10065 ], [ 11476, 11486 ], [ 11543, 11553 ], [ 13350, 13360 ], [ 13420, 13430 ], [ 15609, 15619 ], [ 16768, 16778 ], [ 17081, 17091 ], [ 17144, 17154 ], [ 18415, 18425 ], [ 18481, 18491 ], [ 20148, 20158 ], [ 20580, 20590 ], [ 20631, 20641 ], [ 20975, 20985 ], [ 21026, 21036 ], [ 21372, 21382 ], [ 21423, 21433 ] ], [ [ 107, 112 ], [ 8026, 8031 ], [ 8714, 8719 ], [ 10795, 10800 ] ], [ [ 114, 118 ], [ 8128, 8132 ], [ 8141, 8145 ], [ 8154, 8158 ], [ 8739, 8743 ], [ 8752, 8756 ], [ 8765, 8769 ], [ 10892, 10896 ], [ 10905, 10909 ], [ 10918, 10922 ] ], [ [ 120, 130 ], [ 1233, 1243 ] ], [ [ 149, 161 ], [ 1219, 1231 ] ], [ [ 175, 186 ], [ 2290, 2301 ], [ 2379, 2390 ], [ 3802, 3813 ], [ 5279, 5290 ], [ 8865, 8876 ] ], [ [ 199, 211 ], [ 3218, 3230 ] ], [ [ 236, 248 ], [ 8259, 8271 ], [ 11014, 11026 ] ], [ [ 338, 354 ], [ 8614, 8630 ] ], [ [ 395, 426 ] ], [ [ 915, 928 ], [ 2836, 2849 ] ], [ [ 1176, 1180 ], [ 22513, 22517 ] ] ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: DIYer22@github @mail: ylxx@live.com Created on Thu Jan 16 18:17:20 2020 """ from boxx import * from boxx import deg2rad, np, pi import bpy import random def set_cam_pose(cam_radius=1, cam_deg=45, cam_x_deg=None, cam=None): cam_rad = deg2rad(cam_deg) if cam_x_deg is None: cam_x_deg = random.uniform(0, 360) cam_x_rad = deg2rad(cam_x_deg) z = cam_radius * np.sin(cam_rad) xy = (cam_radius ** 2 - z ** 2) ** 0.5 x = xy * np.cos(cam_x_rad) y = xy * np.sin(cam_x_rad) cam = cam or bpy.data.objects["Camera"] cam.location = x, y, z cam.rotation_euler = pi / 2 - cam_rad, 0.1, pi / 2 + cam_x_rad cam.scale = (0.1,) * 3 return cam def set_cam_intrinsic(cam, intrinsic_K, hw=None): """ K = [[f_x, 0, c_x], [0, f_y, c_y], [0, 0, 1]] Refrence: https://www.rojtberg.net/1601/from-blender-to-opencv-camera-and-back/ """ if hw is None: scene = bpy.context.scene hw = scene.render.resolution_y, scene.render.resolution_x near = lambda x, y=0, eps=1e-5: abs(x - y) < eps assert near(intrinsic_K[0][1], 0) assert near(intrinsic_K[1][0], 0) h, w = hw f_x = intrinsic_K[0][0] f_y = intrinsic_K[1][1] c_x = intrinsic_K[0][2] c_y = intrinsic_K[1][2] cam = cam.data cam.shift_x = -(c_x / w - 0.5) cam.shift_y = (c_y - 0.5 * h) / w cam.lens = f_x / w * cam.sensor_width pixel_aspect = f_y / f_x scene.render.pixel_aspect_x = 1.0 scene.render.pixel_aspect_y = pixel_aspect def remove_useless_data(): """ remove all data and release RAM """ for block in bpy.data.meshes: if block.users == 0: bpy.data.meshes.remove(block) for block in bpy.data.materials: if block.users == 0: bpy.data.materials.remove(block) for block in bpy.data.textures: if block.users == 0: bpy.data.textures.remove(block) for block in bpy.data.images: if block.users == 0: bpy.data.images.remove(block) def clear_all(): [ bpy.data.objects.remove(obj) for obj in bpy.data.objects if obj.type in ("MESH", "LIGHT", "CURVE") ] remove_useless_data() def set_shading_mode(mode="SOLID", screens=[]): """ Performs an action analogous to clicking on the display/shade button of the 3D view. Mode is one of "RENDERED", "MATERIAL", "SOLID", "WIREFRAME". The change is applied to the given collection of bpy.data.screens. If none is given, the function is applied to bpy.context.screen (the active screen) only. E.g. set all screens to rendered mode: set_shading_mode("RENDERED", bpy.data.screens) """ screens = screens if screens else [bpy.context.screen] for s in screens: for spc in s.areas: if spc.type == "VIEW_3D": spc.spaces[0].shading.type = mode break # we expect at most 1 VIEW_3D space def add_stage(size=2, transparency=False): """ add PASSIVE rigidbody cube for physic stage or depth background Parameters ---------- size : float, optional size of stage. The default is 2. transparency : bool, optional transparency for rgb but set limit for depth. The default is False. """ import bpycv bpy.ops.mesh.primitive_cube_add(size=size, location=(0, 0, -size / 2)) stage = bpy.context.active_object stage.name = "stage" with bpycv.activate_obj(stage): bpy.ops.rigidbody.object_add() stage.rigid_body.type = "PASSIVE" if transparency: stage.rigid_body.use_margin = True stage.rigid_body.collision_margin = 0.04 stage.location.z -= stage.rigid_body.collision_margin material = bpy.data.materials.new("transparency_stage_bpycv") material.use_nodes = True material.node_tree.nodes.clear() with bpycv.activate_node_tree(material.node_tree): bpycv.Node("ShaderNodeOutputMaterial").Surface = bpycv.Node( "ShaderNodeBsdfPrincipled", Alpha=0 ).BSDF stage.data.materials.append(material) return stage if __name__ == "__main__": pass
[ [ [ 154, 155 ] ], [ [ 173, 180 ], [ 301, 308 ], [ 403, 410 ] ], [ [ 182, 184 ], [ 443, 445 ], [ 515, 517 ], [ 546, 548 ] ], [ [ 186, 188 ], [ 660, 662 ], [ 683, 685 ] ], [ [ 197, 200 ], [ 581, 584 ], [ 996, 999 ], [ 1684, 1687 ], [ 1742, 1745 ], [ 1790, 1793 ], [ 1851, 1854 ], [ 1902, 1905 ], [ 1962, 1965 ], [ 2012, 2015 ], [ 2070, 2073 ], [ 2181, 2184 ], [ 2133, 2136 ], [ 2800, 2803 ], [ 3378, 3381 ], [ 3461, 3464 ], [ 3556, 3559 ], [ 3844, 3847 ] ], [ [ 208, 214 ], [ 364, 370 ] ], [ [ 221, 233 ] ], [ [ 750, 767 ] ], [ [ 1592, 1611 ], [ 2258, 2277 ] ], [ [ 2106, 2115 ] ], [ [ 2286, 2302 ] ], [ [ 3023, 3032 ] ] ]
# # # Copyright (C) University of Melbourne 2013 # # # #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: # #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. # # """Module subclassing TxMultiGeneratorBase that provides an implementation for multi-site generators. """ from tools import mureilexception, mureilbuilder import copy import numpy from generator import txmultigeneratorbase import logging logger = logging.getLogger(__name__) class TxMultiGeneratorMultiSite(txmultigeneratorbase.TxMultiGeneratorBase): """Module subclassing TxMultiGeneratorBase that provides an implementation of state_handle and related handling functions for multi-site generators. The 'capacity' term in state_handle is implemented as a dict with one item per site. Each site item is a list of tuples containing (site_index,build_period,decommissioning_period), describing the set of installed capacity. """ def __init__(self): """Initialise as for the base class, and also initialise the params_to_site map. """ txmultigeneratorbase.TxMultiGeneratorBase.__init__(self) # params_to_site maps the index in the params list to the site indices. self.params_to_site = [] def get_config_spec(self): """Return a list of tuples of format (name, conversion function, default), e.g. ('capex', float, 2.0). Put None if no conversion required, or if no default value, e.g. ('name', None, None) Configuration: time_period_yrs: float - the length of the time period in years time_scale_up_mult: float - the value to multiply non-discounted items, such as carbon emissions, by to account for a shorter dataset than the calculation period length. variable_cost_mult: as for time_scale_up_mult, but may include a factor for cost discounting. size: float, optional - relates param to new capacity carbon_price_m: float - carbon price in $M/tonne startup_data_name: string, optional - the name of the data array that contains data on startup capacities. startup_data_string: string, optional - a python format data array suitable for input into set_startup_state, all on a single line. params_to_site_data_name: string, optional - the name of the data array that contains a list of how the input params list maps to site indices. params_to_site_data_string: list of integers, optional - the site indices, listed separated by spaces, defining the site index corresponding to each optimisation param, in order. vom: float, default 0 - variable operating and maintenance cost, in $/MWh, same for all sites capital_cost: float, default 0 - cost in $M per MW for new capacity. install_cost: float, default 0 - cost in $M per site, when site has an installation from this generator for the first time. decommissioning_cost: float, optional (default 0) - cost in $M per MW for decommissioning. lifetime_yrs: float, default 20 - the time in years that new capacity lasts """ return txmultigeneratorbase.TxMultiGeneratorBase.get_config_spec(self) + [ ('variable_cost_mult', float, 1.0), ('time_scale_up_mult', float, 1.0), ('carbon_price_m', float, 0.0), ('startup_data_name', None, ''), ('startup_data_string', mureilbuilder.python_eval, 'None'), ('params_to_site_data_name', None, ''), ('params_to_site_data_string', mureilbuilder.make_int_list, ''), ('decommissioning_cost', float, 0), ('vom', float, 0), ('capital_cost', float, 0), ('install_cost', float, 0), ('time_period_yrs', float, None), ('lifetime_yrs', float, 20), ('size', float, 1.0), ('start_min_param', int, 1e20), ('start_max_param', int, 1e20), ('timestep_hrs', float, None) ] def complete_configuration_pre_expand(self): """Complete the configuration prior to expanding the period configs. This implementation checks that the lifetime_yrs is a multiple of time_period_yrs, and sets the startup state and params_to_site from the configuration strings. """ time_period_yrs = self.config['time_period_yrs'] lifetime_yrs = self.config['lifetime_yrs'] error = None if isinstance(lifetime_yrs, dict): for value in lifetime_yrs.itervalues(): div = value / time_period_yrs if not (float(int(div)) == div): error = value else: div = lifetime_yrs / time_period_yrs if not (float(int(div)) == div): error = lifetime_yrs if error is not None: msg = ('In section ' + self.config['section'] + ', lifetime_yrs = ' + str(error) + ' which is required to be a multiple of time_period_yrs of ' + str(time_period_yrs)) raise mureilexception.ConfigException(msg, {}) # Set the startup state and the params to site from the configuration strings. if self.config['startup_data_string'] is not None: self.set_startup_state(self.config['startup_data_string']) if len(self.config['params_to_site_data_string']) > 0: self.params_to_site = self.config['params_to_site_data_string'] def get_data_types(self): """Return a list of keys for each type of data required, for example ts_wind, ts_demand. Outputs: data_type: list of strings - each a key name describing the data required for this generator. """ data_types = [] if len(self.config['startup_data_name']) > 0: data_types.append(self.config['startup_data_name']) if len(self.config['params_to_site_data_name']) > 0: data_types.append(self.config['params_to_site_data_name']) return data_types def set_data(self, data): """Set the data dict with the data series required for the generator. This implementation looks for the data types: self.config['startup_data_name']: Interpets this into the startup state, using the set_startup_state function. self.config['params_to_site_data_name']: Sets self.params_to_site to this. Inputs: data: dict - with keys matching those requested by get_data_types. """ startup_data_name = self.config['startup_data_name'] if (len(startup_data_name) > 0) and (startup_data_name in data): self.set_startup_state(data[startup_data_name]) params_to_site_name = self.config['params_to_site_data_name'] if (len(params_to_site_name) > 0) and (params_to_site_name in data): self.params_to_site = data[params_to_site_name] def set_startup_state(self, startup_data): """Set the startup state from the data provided. Sets self.startup_state from this. Inputs: startup_data: An array of generators * 4: [[site_index, capacity, build_date, decommissioning_period], ...] """ # Check if the startup data is empty. If so, just return. if len(startup_data) == 0: return # Find out which build periods are covered. startup_data = numpy.array(startup_data) if not (len(startup_data.shape) == 2): raise mureilexception.ConfigException('startup data array for module ' + self.config['section'] + ' is not rectangular.', {}) if not (startup_data.shape[1] == 4): raise mureilexception.ConfigException('startup data array for module ' + self.config['section'] + ' shape ' + str(startup_data.shape) + ' but (n, 4) is required.', {}) self.extra_periods = map(int, (list(set(startup_data[:,2].tolist() + self.extra_periods)))) self.extra_periods.sort() # And insert each existing generator into the starting state. cap_list = self.startup_state['capacity'] hist_list = self.startup_state['history'] for i in range(startup_data.shape[0]): site_index = int(startup_data[i, 0]) new_cap = startup_data[i, 1] period = int(startup_data[i, 2]) decomm_date = int(startup_data[i, 3]) new_entry = (new_cap, period, decomm_date) if decomm_date < self.run_periods[0]: logger.warning('Model in section ' + self.config['section'] + ' adds startup capacity decommissioned at end of ' + decomm_date + ' but the first run period is ' + self.run_periods[0] + ' so it has been removed from the startup state.') if site_index not in hist_list: hist_list[site_index] = [] hist_list[site_index].append(new_entry) else: new_entry = (new_cap, period, decomm_date) if site_index not in cap_list: cap_list[site_index] = [] cap_list[site_index].append(new_entry) def get_param_count(self): """Return the number of parameters that this generator, as configured, requires to be optimised, per time period. Outputs: param_count: non-negative integer - the number of parameters required per time period. """ return len(self.params_to_site) def get_param_starts(self): """Return two nested lists - one for min, one max, for starting values for the params. Must be either [[]] or [len(run_periods),param_count]. Outputs: min_start_list: list of param integers, or [[]] max_start_list: list of param integers, or [[]] """ param_count = self.get_param_count() period_count = len(self.run_periods) if param_count > 0: if (self.config['start_min_param'] == 1e20): start_mins = [[]] else: start_mins = (numpy.ones((period_count, param_count)) * self.config['start_min_param']).tolist() if (self.config['start_max_param'] == 1e20): start_maxs = [[]] else: start_maxs = (numpy.ones((period_count, param_count)) * self.config['start_max_param']).tolist() else: start_mins = [[]] start_maxs = [[]] return start_mins, start_maxs def update_state_new_period_list(self, state_handle, period, new_capacity): """Implements update_state_new_period_list as defined in txmultigeneratorbase, for the state_handle format for this multi-site implementation. """ state_handle['curr_period'] = period cap_list = state_handle['capacity'] for site_index, new_cap, decomm_date in new_capacity: site_index = int(site_index) new_entry = (new_cap, period, int(decomm_date)) if site_index not in cap_list: cap_list[site_index] = [] cap_list[site_index].append(new_entry) return None def update_state_new_period_params(self, state_handle, period, new_params): """Implements update_state_new_period_params as defined in txmultigeneratorbase, for the state_handle format for this multi-site implementation. Filters any negative new_params values to 0. """ state_handle['curr_period'] = period curr_conf = self.period_configs[period] decomm_date = int(curr_conf['lifetime_yrs'] - curr_conf['time_period_yrs'] + period) cap_list = state_handle['capacity'] new_cap = numpy.array(new_params).clip(0) * curr_conf['size'] for i in (numpy.nonzero(new_cap)[0]): site_index = self.params_to_site[i] new_entry = (new_cap[i], period, decomm_date) if site_index not in cap_list: cap_list[site_index] = [] cap_list[site_index].append(new_entry) return None def calculate_update_decommission(self, state_handle): """Implements update_decommission as defined in txmultigeneratorbase, for the state_handle format for this multi-site implementation. """ period = state_handle['curr_period'] cap_list = state_handle['capacity'] hist_list = state_handle['history'] total_cost = 0.0 sites = [] cost = [] decommissioned = [] fully_decommissioned = [] decomm_cost = self.period_configs[period]['decommissioning_cost'] for site, site_caps in cap_list.iteritems(): decomm = [tup for tup in site_caps if (tup[2] == period)] if len(decomm) > 0: sites.append(site) decom_cap = sum([tup[0] for tup in decomm]) decommissioned.append(decom_cap) this_cost = decom_cap * decomm_cost cost.append(this_cost) total_cost += this_cost # add the decommissioned capacity to the 'history' list if not site in hist_list: hist_list[site] = [] hist_list[site] += decomm # and rebuild the list of what's left # note that the expression in here is the complement of that to compute # decomm above. new_list = [tup for tup in site_caps if not (tup[2] == period)] # if all capacity is gone from this site if len(new_list) == 0: fully_decommissioned.append(site) else: cap_list[site] = new_list for site in fully_decommissioned: del cap_list[site] return total_cost, zip(sites, decommissioned, cost) def calculate_new_capacity_cost(self, state_handle): """Implements calculate_new_capacity_cost as defined in TxMultiGeneratorBase, for the state_handle format for this multi-site implementation. Calculates the cost as a simple multiple of the new capacity size. """ period = state_handle['curr_period'] cap_list = state_handle['capacity'] hist_list = state_handle['history'] total_cost = 0.0 sites = [] cost = [] new_capacity = [] for site, value in cap_list.iteritems(): try: hist = hist_list[site] except KeyError: hist = [] this_cost, new_cap = self.calculate_capital_cost_site( (value, hist), period, site) if new_cap > 0: sites.append(site) new_capacity.append(new_cap) cost.append(this_cost) total_cost += this_cost return total_cost, zip(sites, new_capacity, cost) def calculate_capital_cost_site(self, site_data, period, site): """"Calculate the incremental capital cost incurred in this period by the new capacity, for this site. This is a useful function for generators to override to implement cost functions that depend on the existing installed capacity. This function charges a per-MW cost plus an install figure if all the current capacity is new, and the site has not been used before for this type of generator. Inputs: site_data: a pair of lists - (current_capacity, history), each a list of tuples of (capacity, build, decom) from the state_handle. period: the current period, an integer site: the site index Outputs: cost: the cost in $M of this new capacity new_capacity: the total new capacity installed at this site """ new_cap_list = [tup[0] for tup in site_data[0] if (tup[1] == period)] new_cap = sum(new_cap_list) capacity_cost = self.period_configs[period]['capital_cost'] this_cost = new_cap * capacity_cost install_cost = self.period_configs[period]['install_cost'] if install_cost > 0: # check if all the current capacity is new if len(new_cap_list) == len(site_data[0]): # and check if the site has been used before, ever if len(site_data[1]) == 0: # the site is new, so charge the 'install' as well this_cost += install_cost return this_cost, new_cap def get_capacity(self, state_handle): """Implement the get_capacity function as defined in TxMultiGeneratorBase, for this multi-site implementation. """ index_list = self.get_site_indices(state_handle) cap_list = state_handle['capacity'] capacity = [] for site in index_list: capacity.append(sum([tup[0] for tup in cap_list[site]])) return capacity def get_site_indices(self, state_handle): """Implement the get_site_indices function as defined in TxMultiGeneratorBase, for this multi-site implementation. """ site_indices = state_handle['capacity'].keys() site_indices.sort() return site_indices def calculate_time_period_simple(self, state_handle, period, new_params, supply_request, full_results=False): """Implement calculate_time_period_simple as defined in TxMultiGeneratorBase for the multi-site generator model. """ curr_config = self.period_configs[period] # Update the state and get the calculations for each site self.update_state_new_period_params(state_handle, period, new_params) site_indices = self.get_site_indices(state_handle) capital_cost, new_capacity = self.calculate_new_capacity_cost(state_handle) supply_list, variable_cost_list, carbon_emissions_list, other_list = ( self.calculate_outputs_and_costs(state_handle, supply_request)) if full_results: capacity = self.get_capacity(state_handle) # Compute the total supply supply = numpy.sum(supply_list, axis=0) # Compute the total variable costs, including carbon cost, for the timeseries, scaled up cost = ((numpy.sum(variable_cost_list, axis=0) + (numpy.sum(carbon_emissions_list, axis=0) * curr_config['carbon_price_m'])) * ( curr_config['variable_cost_mult'])) # Do the decommissioning decomm_cost, decommissioned = self.calculate_update_decommission(state_handle) # Add the capital and decommissioning costs cost += decomm_cost cost += capital_cost if not full_results: return site_indices, cost, supply if full_results: results = {} results['site_indices'] = site_indices results['cost'] = cost results['aggregate_supply'] = supply results['capacity'] = capacity results['decommissioned'] = decommissioned results['new_capacity'] = new_capacity results['supply'] = supply_list results['variable_cost_period'] = variable_cost_list * curr_config['variable_cost_mult'] results['carbon_emissions_period'] = (carbon_emissions_list * curr_config['time_scale_up_mult']) results['total_supply_period'] = (curr_config['time_scale_up_mult'] * numpy.sum(supply) * curr_config['timestep_hrs']) results['other'] = other_list results['desc_string'] = self.get_simple_desc_string(results, state_handle) return site_indices, cost, supply, results def calculate_time_period_full(self, state_handle, period, new_params, supply_request, max_supply=[], price=[], make_string=False, do_decommissioning=True): """Implement calculate_time_period_full as defined in TxMultiGeneratorBase for the multi-site generator model. """ results = {} self.update_state_new_period_params(state_handle, period, new_params) results['site_indices'] = self.get_site_indices(state_handle) results['capacity'] = self.get_capacity(state_handle) dummy, results['new_capacity'] = self.calculate_new_capacity_cost(state_handle) results['supply'], results['variable_cost_ts'], results['carbon_emissions_ts'], results['other'] = ( self.calculate_outputs_and_costs(state_handle, supply_request, max_supply, price)) if do_decommissioning: dummy, results['decommissioned'] = ( self.calculate_update_decommissioning(state_handle)) else: results['decommissioned'] = [] if make_string: results['desc_string'] = self.get_full_desc_string(results, state_handle) return results def recalculate_time_period_full(self, state_handle, results, supply_request, max_supply=[], price=[], make_string=False): """Implement recalculate_time_period_full as defined in TxMultiGeneratorBase for the multi-site generator model. """ results['supply'], results['variable_cost_ts'], results['carbon_emissions_ts'], results['other'] = ( self.calculate_outputs_and_costs(state_handle, supply_request, max_supply, price)) if make_string: results['desc_string'] = self.get_full_desc_string(results, state_handle) return results else: return results def calculate_costs_from_schedule_and_finalise(self, state_handle, schedule, make_string=False): """Calculate the costs, given the schedule from the dispatcher. Finalise the decommissioning for that period. This assumes that update_state_new_period_params has been called previously, and the offer quantities have been determined for the active sites. Inputs: state_handle: as for calculate_time_period_full in txmultigeneratorbase.py schedule: a set of timeseries for each active site, as previously listed in the call to get_offers_* Outputs: as for calculate_time_period_full in txmultigeneratorbase.py """ results = {} site_indices = self.get_site_indices(state_handle) results['site_indices'] = site_indices results['capacity'] = self.get_capacity(state_handle) results['new_capacity_total_cost'], results['new_capacity'] = self.calculate_new_capacity_cost(state_handle) results['supply'] = schedule results['variable_cost_ts'], results['carbon_emissions_ts'], results['other'] = ( self.calculate_variable_costs(state_handle, site_indices, schedule)) results['decomm_total_cost'], results['decommissioned'] = ( self.calculate_update_decommission(state_handle)) if make_string: results['desc_string'] = self.get_full_desc_string(results, state_handle) return results
[ [ [ 1256, 1271 ], [ 6423, 6438 ], [ 9145, 9160 ], [ 9365, 9380 ] ], [ [ 1273, 1286 ], [ 4673, 4686 ], [ 4806, 4819 ] ], [ [ 1295, 1299 ] ], [ [ 1308, 1313 ], [ 9052, 9057 ], [ 11959, 11964 ], [ 12188, 12193 ], [ 13740, 13745 ], [ 13813, 13818 ], [ 20633, 20638 ], [ 20790, 20795 ], [ 20845, 20850 ], [ 22008, 22013 ] ], [ [ 1337, 1357 ], [ 1449, 1469 ], [ 2061, 2081 ], [ 4379, 4399 ] ], [ [ 1368, 1375 ], [ 1386, 1393 ] ], [ [ 1377, 1383 ], [ 10254, 10260 ] ], [ [ 1423, 1448 ] ] ]
import pandas as pd from .entity import CatalogEntity from .repository.dataset_repo import get_dataset_repo from .repository.variable_repo import get_variable_repo from .repository.constants import VARIABLE_FILTER from .summary import variable_describe, head, tail, counts, quantiles, top_values, histogram _DESCRIPTION_LENGTH_LIMIT = 50 class Variable(CatalogEntity): """This class represents a :py:class:`Variable <cartoframes.data.observatory.Variable>` of datasets in the :py:class:`Catalog <cartoframes.data.observatory.Catalog>`. Variables contain column names, description, data type, aggregation method, and some other metadata that is useful to understand the underlying data inside a :obj:`Dataset` Examples: List the variables of a :py:class:`Dataset <cartoframes.data.observatory.Dataset>` in combination with nested filters (categories, countries, etc.) >>> dataset = Dataset.get('mbi_retail_turn_705247a') >>> dataset.variables [<Variable.get('RT_CI_95050c10')> #'Retail Turnover: index (country eq.100)', ...] """ _entity_repo = get_variable_repo() @property def datasets(self): """Get the list of datasets related to this variable. Returns: :py:class:`CatalogList <cartoframes.data.observatory.entity.CatalogList>` List of Dataset instances. Raises: CatalogError: if there's a problem when connecting to the catalog or no datasets are found. """ return get_dataset_repo().get_all({VARIABLE_FILTER: self.id}) @property def name(self): """Name of this variable.""" return self.data['name'] @property def description(self): """Description of this variable.""" return self.data['description'] @property def column_name(self): """Column name of the actual table related to the variable in the :obj:`Dataset`.""" return self.data['column_name'] @property def db_type(self): """Type in the database. Returns: str Examples: INTEGER, STRING, FLOAT, GEOGRAPHY, JSON, BOOL, etc. """ return self.data['db_type'] @property def dataset(self): """ID of the :obj:`Dataset` to which this variable belongs.""" return self.data['dataset_id'] @property def agg_method(self): """Text representing a description of the aggregation method used to compute the values in this `Variable`""" return self.data['agg_method'] @property def variable_group(self): """If any, ID of the variable group to which this variable belongs.""" return self.data['variable_group_id'] @property def summary(self): """JSON object with extra metadata that summarizes different properties of this variable.""" return self.data['summary_json'] @property def project_name(self): project, _, _, _ = self.id.split('.') return project @property def schema_name(self): _, schema, _, _ = self.id.split('.') return schema @property def dataset_name(self): _, _, dataset, _ = self.id.split('.') return dataset def describe(self, autoformat=True): """Shows a summary of the actual stats of the variable (column) of the dataset. Some of the stats provided per variable are: avg, max, min, sum, range, stdev, q1, q3, median and interquartile_range Args: autoformat (boolean): set automatic format for values. Default is True. Example: .. code:: # avg average value # max max value # min min value # sum sum of all values # range # stdev standard deviation # q1 first quantile # q3 third quantile # median median value # interquartile_range """ FLOAT_FORMAT = 'display.float_format' if autoformat: pd.set_option(FLOAT_FORMAT, lambda x: '%.3f' % x) data = self.data['summary_json'] return variable_describe(data) def head(self): """Returns a sample of the 10 first values of the variable data. For the cases of datasets with a content fewer than 10 rows (i.e. zip codes of small countries), this method won't return anything """ data = self.data['summary_json'] return head(self.__class__, data) def tail(self): """Returns a sample of the 10 last values of the variable data. For the cases of datasets with a content fewer than 10 rows (i.e. zip codes of small countries), this method won't return anything """ data = self.data['summary_json'] return tail(self.__class__, data) def counts(self): """Returns a summary of different counts over the actual variable values. Example: .. code:: # all total number of values # null total number of null values # zero number of zero-valued entries # extreme number of values 3stdev outside the interquartile range # distinct number of distinct (unique) entries # outliers number of outliers (outside 1.5stdev the interquartile range # zero_percent percent of values that are zero # distinct_percent percent of values that are distinct """ data = self.data['summary_json'] return counts(data) def quantiles(self): """Returns the quantiles of the variable data.""" data = self.data['summary_json'] return quantiles(data) def top_values(self): """Returns information about the top values of the variable data.""" data = self.data['summary_json'] return top_values(data) def histogram(self): """Plots an histogram with the variable data.""" data = self.data['summary_json'] return histogram(data) def __repr__(self): descr = self.description if descr and len(descr) > _DESCRIPTION_LENGTH_LIMIT: descr = descr[0:_DESCRIPTION_LENGTH_LIMIT] + '...' return "<{classname}.get('{entity_id}')> #'{descr}'" \ .format(classname=self.__class__.__name__, entity_id=self._get_print_id(), descr=descr)
[ [ [ 7, 19 ], [ 4241, 4243 ] ], [ [ 41, 54 ], [ 358, 371 ] ], [ [ 92, 108 ], [ 1522, 1538 ] ], [ [ 147, 164 ], [ 1121, 1138 ] ], [ [ 199, 214 ], [ 1550, 1565 ] ], [ [ 236, 253 ], [ 4348, 4365 ] ], [ [ 255, 259 ], [ 4683, 4687 ] ], [ [ 261, 265 ], [ 5020, 5024 ] ], [ [ 267, 273 ], [ 5853, 5859 ] ], [ [ 275, 284 ], [ 6006, 6015 ] ], [ [ 286, 296 ], [ 6182, 6192 ] ], [ [ 298, 307 ], [ 6338, 6347 ] ], [ [ 310, 335 ], [ 6447, 6472 ], [ 6502, 6527 ] ], [ [ 349, 357 ] ] ]
from libcrypto import hamming_distance from libcrypto import split_blocks from libcrypto import xor from libcrypto import freq_score from base64 import b64decode from operator import itemgetter def main(): file64 = "" for line in open("../assets/inputS1C6.txt","r"): file64 += line.rstrip() file = bytearray(b64decode(file64)) distances = [] for keysize in range(2,40): dist = 0 sample_size = 10 for ctr in range(0, sample_size): b1 = bytearray(file[(keysize*ctr):(keysize*(ctr+1))]) b2 = bytearray(file[(keysize*(ctr+1)):(keysize*(ctr+2))]) dist += hamming_distance(b1, b2) / float(keysize) dist /= sample_size distances.append([keysize, dist]) distances = sorted(distances,key=itemgetter(1))[:1] print("Possible Solutions...\n") for key in distances: passphrase = "" key = key[0] blocks = split_blocks(key,file) transposed_blocks = [] for idx in range(0,key): tblock = bytearray() for block in blocks: try: tblock.append(block[idx]) except IndexError: pass transposed_blocks.append(tblock) for block in transposed_blocks: bytekeys = [] for i in range(1,int("ff",16)): xor_bytes = xor(bytearray(bytes({i})),block) try: xor_string = xor_bytes.decode("ascii") bytekeys.append([i,xor_string,freq_score(xor_string)]) except UnicodeDecodeError: next bytekeys.sort(key=lambda x: x[2], reverse=True) bkey = bytekeys[:1][0] passphrase += chr(bkey[0]) print("Key:{0}\n".format(passphrase)) print(xor(bytearray(passphrase.encode()),bytearray(file)).decode()) if __name__ == "__main__": main()
[ [ [ 22, 38 ], [ 645, 661 ] ], [ [ 61, 73 ], [ 941, 953 ] ], [ [ 96, 99 ], [ 1407, 1410 ], [ 1861, 1864 ] ], [ [ 122, 132 ], [ 1571, 1581 ] ], [ [ 153, 162 ], [ 333, 342 ] ], [ [ 184, 194 ], [ 795, 805 ] ], [ [ 201, 205 ], [ 1955, 1959 ] ] ]
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Routine for decoding the CIFAR-10 binary file format.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf # Process images of this size. Note that this differs from the original CIFAR # image size of 32 x 32. If one alters this number, then the entire model # architecture will change and any model would need to be retrained. IMAGE_SIZE = 24 # Global constants describing the CIFAR-10 data set. NUM_CLASSES = 10 NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000 NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000 def read_cifar10(filename_queue): """Reads and parses examples from CIFAR10 data files. Recommendation: if you want N-way read parallelism, call this function N times. This will give you N independent Readers reading different files & positions within those files, which will give better mixing of examples. Args: filename_queue: A queue of strings with the filenames to read from. Returns: An object representing a single example, with the following fields: height: number of rows in the result (32) width: number of columns in the result (32) depth: number of color channels in the result (3) key: a scalar string Tensor describing the filename & record number for this example. label: an int32 Tensor with the label in the range 0..9. uint8image: a [height, width, depth] uint8 Tensor with the image data """ class CIFAR10Record(object): pass result = CIFAR10Record() # Dimensions of the images in the CIFAR-10 dataset. # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the # input format. label_bytes = 1 # 2 for CIFAR-100 result.height = 32 result.width = 32 result.depth = 3 image_bytes = result.height * result.width * result.depth # Every record consists of a label followed by the image, with a # fixed number of bytes for each. record_bytes = label_bytes + image_bytes # Read a record, getting filenames from the filename_queue. No # header or footer in the CIFAR-10 format, so we leave header_bytes # and footer_bytes at their default of 0. reader = tf.FixedLengthRecordReader(record_bytes=record_bytes) result.key, value = reader.read(filename_queue) # Convert from a string to a vector of uint8 that is record_bytes long. record_bytes = tf.decode_raw(value, tf.uint8) # The first bytes represent the label, which we convert from uint8->int32. result.label = tf.cast( tf.strided_slice(record_bytes, [0], [label_bytes], [1]), tf.int32) # The remaining bytes after the label represent the image, which we reshape # from [depth * height * width] to [depth, height, width]. depth_major = tf.reshape( tf.strided_slice(record_bytes, [label_bytes], [label_bytes + image_bytes], [1]), [result.depth, result.height, result.width]) # Convert from [depth, height, width] to [height, width, depth]. result.uint8image = tf.transpose(depth_major, [1, 2, 0]) return result def _generate_image_and_label_batch(image, label, min_queue_examples, batch_size, shuffle): """Construct a queued batch of images and labels. Args: image: 3-D Tensor of [height, width, 3] of type.float32. label: 1-D Tensor of type.int32 min_queue_examples: int32, minimum number of samples to retain in the queue that provides of batches of examples. batch_size: Number of images per batch. shuffle: boolean indicating whether to use a shuffling queue. Returns: images: Images. 4D tensor of [batch_size, height, width, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ # Create a queue that shuffles the examples, and then # read 'batch_size' images + labels from the example queue. num_preprocess_threads = 16 if shuffle: images, label_batch = tf.train.shuffle_batch( [image, label], batch_size=batch_size, num_threads=num_preprocess_threads, capacity=min_queue_examples + 3 * batch_size, min_after_dequeue=min_queue_examples) else: images, label_batch = tf.train.batch( [image, label], batch_size=batch_size, num_threads=num_preprocess_threads, capacity=min_queue_examples + 3 * batch_size) # Display the training images in the visualizer. tf.summary.image('images', images) return images, tf.reshape(label_batch, [batch_size]) def distorted_inputs(data_dir, batch_size): """Construct distorted input for CIFAR training using the Reader ops. Args: data_dir: Path to the CIFAR-10 data directory. batch_size: Number of images per batch. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i) for i in xrange(1, 6)] for f in filenames: if not tf.gfile.Exists(f): raise ValueError('Failed to find file: ' + f) # Create a queue that produces the filenames to read. filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue. read_input = read_cifar10(filename_queue) reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE width = IMAGE_SIZE # Image processing for training the network. Note the many random # distortions applied to the image. # Randomly crop a [height, width] section of the image. distorted_image = tf.random_crop(reshaped_image, [height, width, 3]) # Randomly flip the image horizontally. distorted_image = tf.image.random_flip_left_right(distorted_image) # Because these operations are not commutative, consider randomizing # the order their operation. distorted_image = tf.image.random_brightness(distorted_image, max_delta=63) distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8) # Subtract off the mean and divide by the variance of the pixels. float_image = tf.image.per_image_standardization(distorted_image) # Set the shapes of tensors. float_image.set_shape([height, width, 3]) read_input.label.set_shape([1]) # Ensure that the random shuffling has good mixing properties. min_fraction_of_examples_in_queue = 0.4 min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * min_fraction_of_examples_in_queue) print ('Filling queue with %d CIFAR images before starting to train. ' 'This will take a few minutes.' % min_queue_examples) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch(float_image, read_input.label, min_queue_examples, batch_size, shuffle=True) def inputs(eval_data, data_dir, batch_size): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. data_dir: Path to the CIFAR-10 data directory. batch_size: Number of images per batch. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ if not eval_data: filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i) for i in xrange(1, 6)] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN else: filenames = [os.path.join(data_dir, 'test_batch.bin')] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL for f in filenames: if not tf.gfile.Exists(f): raise ValueError('Failed to find file: ' + f) # Create a queue that produces the filenames to read. filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue. read_input = read_cifar10(filename_queue) reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE width = IMAGE_SIZE # Image processing for evaluation. # Crop the central [height, width] of the image. resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image, width, height) # Subtract off the mean and divide by the variance of the pixels. float_image = tf.image.per_image_standardization(resized_image) # Ensure that the random shuffling has good mixing properties. min_fraction_of_examples_in_queue = 0.4 min_queue_examples = int(num_examples_per_epoch * min_fraction_of_examples_in_queue) # Generate a batch of images and labels by building up a queue of examples. if eval_data: read_input.label.set_shape((1,)) return _generate_image_and_label_batch(float_image, read_input.label, min_queue_examples, batch_size, shuffle=False)
[ [ [ 774, 789 ] ], [ [ 813, 821 ] ], [ [ 845, 859 ] ], [ [ 868, 870 ], [ 5633, 5635 ], [ 8224, 8226 ], [ 8399, 8401 ] ], [ [ 894, 900 ], [ 5705, 5711 ], [ 8298, 8304 ] ], [ [ 945, 961 ], [ 2950, 2952 ], [ 3146, 3148 ], [ 3167, 3169 ], [ 3272, 3274 ], [ 3287, 3289 ], [ 3344, 3346 ], [ 3510, 3512 ], [ 3528, 3530 ], [ 3772, 3774 ], [ 4676, 4678 ], [ 4933, 4935 ], [ 5156, 5158 ], [ 5209, 5211 ], [ 5752, 5754 ], [ 5900, 5902 ], [ 6058, 6060 ], [ 6089, 6091 ], [ 6331, 6333 ], [ 6445, 6447 ], [ 6617, 6619 ], [ 6742, 6744 ], [ 6936, 6938 ], [ 8536, 8538 ], [ 8684, 8686 ], [ 8842, 8844 ], [ 8873, 8875 ], [ 9036, 9038 ], [ 9248, 9250 ] ], [ [ 1184, 1194 ], [ 6113, 6123 ], [ 6134, 6144 ], [ 8897, 8907 ], [ 8918, 8928 ] ], [ [ 1254, 1265 ] ], [ [ 1271, 1303 ], [ 7233, 7265 ], [ 8341, 8373 ] ], [ [ 1312, 1343 ], [ 8470, 8501 ] ], [ [ 1358, 1370 ], [ 6010, 6022 ], [ 8794, 8806 ] ], [ [ 3832, 3863 ], [ 7554, 7585 ], [ 9661, 9692 ] ], [ [ 5253, 5269 ] ], [ [ 7751, 7757 ] ] ]
# A simple CLI runner for slurm that can be used when running Galaxy from a # non-submit host and using a Slurm cluster. from logging import getLogger try: from galaxy.model import Job job_states = Job.states except ImportError: # Not in Galaxy, map Galaxy job states to Pulsar ones. from pulsar.util import enum job_states = enum(RUNNING='running', OK='complete', QUEUED='queued', ERROR="failed") from ..job import BaseJobExec log = getLogger(__name__) argmap = { 'memory': '-M', # There is code in job_script_kwargs relying on this name's setting 'cores': '-n', 'queue': '-q', 'working_dir': '-cwd', 'project': '-P' } class LSF(BaseJobExec): def __init__(self, **params): self.params = {} for k, v in params.items(): self.params[k] = v def job_script_kwargs(self, ofile, efile, job_name): scriptargs = {'-o': ofile, '-e': efile, '-J': job_name} # Map arguments using argmap. for k, v in self.params.items(): if k == 'plugin': continue try: if k == 'memory': # Memory requires both -m and -R rusage[mem=v] request scriptargs['-R'] = "\"rusage[mem=%s]\"" % v if not k.startswith('-'): k = argmap[k] scriptargs[k] = v except Exception: log.warning('Unrecognized long argument passed to LSF CLI plugin: %s' % k) # Generated template. template_scriptargs = '' for k, v in scriptargs.items(): template_scriptargs += '#BSUB %s %s\n' % (k, v) return dict(headers=template_scriptargs) def submit(self, script_file): # bsub returns Job <9147983> is submitted to default queue <research-rh7>. # This should be really handled outside with something like # parse_external. Currently CLI runner expect this to just send it in the last position # of the string. return "bsub <%s | awk '{ print $2}' | sed 's/[<>]//g'" % script_file def delete(self, job_id): return 'bkill %s' % job_id def get_status(self, job_ids=None): return "bjobs -a -o \"id stat\" -noheader" # check this def get_single_status(self, job_id): return "bjobs -o stat -noheader " + job_id def parse_status(self, status, job_ids): # Get status for each job, skipping header. rval = {} for line in status.splitlines(): job_id, state = line.split() if job_id in job_ids: # map job states to Galaxy job states. rval[job_id] = self._get_job_state(state) return rval def parse_single_status(self, status, job_id): if not status: # Job not found in LSF, most probably finished and forgotten. # lsf outputs: Job <num> is not found -- but that is on the stderr # Note: a very old failed job job will not be shown here either, # which would be badly handled here. So this only works well when Galaxy # is constantly monitoring the jobs. The logic here is that DONE jobs get forgotten # faster than failed jobs. log.warning("Job id '%s' not found LSF status check" % job_id) return job_states.OK return self._get_job_state(status) def get_failure_reason(self, job_id): return "bjobs -l " + job_id def parse_failure_reason(self, reason, job_id): # LSF will produce the following in the job output file: # TERM_MEMLIMIT: job killed after reaching LSF memory usage limit. # Exited with exit code 143. for line in reason.splitlines(): if "TERM_MEMLIMIT" in line: from galaxy.jobs import JobState return JobState.runner_states.MEMORY_LIMIT_REACHED return None def _get_job_state(self, state): # based on: # https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.3/lsf_admin/job_state_lsf.html # https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.2/lsf_command_ref/bjobs.1.html try: return { 'EXIT': job_states.ERROR, 'RUN': job_states.RUNNING, 'PEND': job_states.QUEUED, 'DONE': job_states.OK, 'PSUSP': job_states.ERROR, 'USUSP': job_states.ERROR, 'SSUSP': job_states.ERROR, 'UNKWN': job_states.ERROR, 'WAIT': job_states.QUEUED, 'ZOMBI': job_states.ERROR }.get(state) except KeyError: raise KeyError("Failed to map LSF status code [%s] to job state." % state) __all__ = ('LSF',)
[ [ [ 141, 150 ], [ 456, 465 ] ], [ [ 186, 189 ], [ 207, 210 ] ], [ [ 194, 204 ], [ 3387, 3397 ], [ 4284, 4294 ], [ 4325, 4335 ], [ 4369, 4379 ], [ 4412, 4422 ], [ 4452, 4462 ], [ 4495, 4505 ], [ 4538, 4548 ], [ 4581, 4591 ], [ 4623, 4633 ], [ 4667, 4677 ] ], [ [ 325, 329 ], [ 347, 351 ] ], [ [ 334, 344 ], [ 3387, 3397 ], [ 4284, 4294 ], [ 4325, 4335 ], [ 4369, 4379 ], [ 4412, 4422 ], [ 4452, 4462 ], [ 4495, 4505 ], [ 4538, 4548 ], [ 4581, 4591 ], [ 4623, 4633 ], [ 4667, 4677 ] ], [ [ 437, 448 ], [ 676, 687 ] ], [ [ 450, 453 ], [ 1464, 1467 ], [ 3305, 3308 ] ], [ [ 477, 483 ], [ 1374, 1380 ] ], [ [ 672, 675 ] ], [ [ 4823, 4830 ] ] ]
"""DenseNet models for Keras. # Reference paper - [Densely Connected Convolutional Networks] (https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award) # Reference implementation - [Torch DenseNets] (https://github.com/liuzhuang13/DenseNet/blob/master/models/densenet.lua) - [TensorNets] (https://github.com/taehoonlee/tensornets/blob/master/tensornets/densenets.py) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from keras import backend as K from keras.layers import Input, Add, Dense, Activation, Flatten, Convolution2D, MaxPooling2D, ZeroPadding2D, \ AveragePooling2D, TimeDistributed, BatchNormalization, Dropout from keras import layers from keras_frcnn.RoiPoolingConv import RoiPoolingConv """ couple of functions for frcnn.. """ def get_weight_path(): return os.path.join("pretrain", 'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5') def get_img_output_length(width, height): def get_output_length(input_length): # zero_pad input_length += 6 # apply 4 strided convolutions filter_sizes = [7, 3, 1, 1] stride = 2 for filter_size in filter_sizes: input_length = (input_length - filter_size + stride) // stride return input_length return get_output_length(width), get_output_length(height) BASE_WEIGTHS_PATH = ( 'https://github.com/keras-team/keras-applications/' 'releases/download/densenet/') DENSENET121_WEIGHT_PATH = ( BASE_WEIGTHS_PATH + 'densenet121_weights_tf_dim_ordering_tf_kernels.h5') DENSENET121_WEIGHT_PATH_NO_TOP = ( BASE_WEIGTHS_PATH + 'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5') DENSENET169_WEIGHT_PATH = ( BASE_WEIGTHS_PATH + 'densenet169_weights_tf_dim_ordering_tf_kernels.h5') DENSENET169_WEIGHT_PATH_NO_TOP = ( BASE_WEIGTHS_PATH + 'densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5') DENSENET201_WEIGHT_PATH = ( BASE_WEIGTHS_PATH + 'densenet201_weights_tf_dim_ordering_tf_kernels.h5') DENSENET201_WEIGHT_PATH_NO_TOP = ( BASE_WEIGTHS_PATH + 'densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5') def dense_block(x, blocks, name): """A dense block. # Arguments x: input tensor. blocks: integer, the number of building blocks. name: string, block label. # Returns output tensor for the block. """ for i in range(blocks): x = conv_block(x, 32, name=name + '_block' + str(i + 1)) return x def transition_block(x, reduction, name): """A transition block. # Arguments x: input tensor. reduction: float, compression rate at transition layers. name: string, block label. # Returns output tensor for the block. """ bn_axis = 3 if K.image_data_format() == 'channels_last' else 1 x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_bn')(x) x = layers.Activation('relu', name=name + '_relu')(x) x = layers.Conv2D(int(K.int_shape(x)[bn_axis] * reduction), 1, use_bias=False, name=name + '_conv')(x) x = layers.AveragePooling2D(2, strides=2, name=name + '_pool', padding='same')(x) return x def conv_block(x, growth_rate, name): """A building block for a dense block. # Arguments x: input tensor. growth_rate: float, growth rate at dense layers. name: string, block label. # Returns Output tensor for the block. """ bn_axis = 3 if K.image_data_format() == 'channels_last' else 1 x1 = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_0_bn')(x) x1 = layers.Activation('relu', name=name + '_0_relu')(x1) x1 = layers.Conv2D(4 * growth_rate, 1, use_bias=False, name=name + '_1_conv')(x1) x1 = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_1_bn')(x1) x1 = layers.Activation('relu', name=name + '_1_relu')(x1) x1 = layers.Conv2D(growth_rate, 3, padding='same', use_bias=False, name=name + '_2_conv')(x1) x = layers.Concatenate(axis=bn_axis, name=name + '_concat')([x, x1]) return x def nn_base(input_tensor=None, blocks=[6, 12, 24, 16], include_top=False, weights='imagenet', input_shape=None, pooling=None, classes=1000, **kwargs): """Instantiates the DenseNet architecture. Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. # Arguments blocks: numbers of building blocks for the four dense layers. include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `'channels_last'` data format) or `(3, 224, 224)` (with `'channels_first'` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. pooling: optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape. """ if not (weights in {'imagenet', None} or os.path.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as `"imagenet"` with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape if K.image_dim_ordering() == 'th': input_shape = (3, None, None) else: input_shape = (None, None, 3) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor if K.image_dim_ordering() == 'tf': bn_axis = 3 else: bn_axis = 1 x = ZeroPadding2D((3, 3))(img_input) x = layers.Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x) x = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name='conv1/bn')(x) x = layers.Activation('relu', name='conv1/relu')(x) # x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)))(x) x = layers.MaxPooling2D(3, strides=2, name='pool1')(x) x = dense_block(x, blocks[0], name='conv2') x = transition_block(x, 0.5, name='pool2') x = dense_block(x, blocks[1], name='conv3') x = transition_block(x, 0.5, name='pool3') x = dense_block(x, blocks[2], name='conv4') # here, the output size is similar to resnet50. stop here. # x = transition_block(x, 0.5, name='pool4') # x = dense_block(x, blocks[3], name='conv5') x = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name='bn')(x) x = layers.Activation('relu', name='relu')(x) return x def rpn(base_layers,num_anchors): x = Convolution2D(512, (3, 3), padding='same', activation='relu', kernel_initializer='normal', name='rpn_conv1')(base_layers) x_class = Convolution2D(num_anchors, (1, 1), padding="same", activation='sigmoid', kernel_initializer='uniform', name='rpn_out_class')(x) x_regr = Convolution2D(num_anchors * 4, (1, 1), activation='linear', kernel_initializer='zero', name='rpn_out_regress')(x) return [x_class, x_regr, base_layers] def classifier(base_layers, input_rois, num_rois, nb_classes = 21, trainable=False): # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround if K.backend() == 'tensorflow': pooling_regions = 14 input_shape = (num_rois,14,14,1024) # densenet output channels are 1024.. elif K.backend() == 'theano': pooling_regions = 7 input_shape = (num_rois,4096,7,7) # from vgg version.. out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois]) out_roi_pool = TimeDistributed(AveragePooling2D((7, 7)), name='avg_pool')(out_roi_pool) out = TimeDistributed(Flatten(name='flatten'))(out_roi_pool) out = TimeDistributed(Dense(4096, activation='relu', name='fc1'))(out) out = TimeDistributed(Dropout(0.5))(out) out = TimeDistributed(Dense(4096, activation='relu', name='fc2'))(out) out = TimeDistributed(Dropout(0.5))(out) out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out) # note: no regression target for bg class out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out) return [out_class, out_regr]
[ [ [ 415, 430 ] ], [ [ 455, 463 ] ], [ [ 488, 502 ] ], [ [ 513, 515 ], [ 890, 892 ], [ 6998, 7000 ] ], [ [ 535, 547 ], [ 2917, 2918 ], [ 3175, 3176 ], [ 3709, 3710 ], [ 7558, 7559 ], [ 7784, 7785 ], [ 7951, 7952 ], [ 9702, 9703 ], [ 9854, 9855 ] ], [ [ 574, 579 ], [ 7732, 7737 ], [ 7842, 7847 ] ], [ [ 581, 584 ] ], [ [ 586, 591 ], [ 10260, 10265 ], [ 10382, 10387 ], [ 10512, 10517 ], [ 10706, 10711 ] ], [ [ 593, 603 ] ], [ [ 605, 612 ], [ 10194, 10201 ] ], [ [ 614, 627 ], [ 9057, 9070 ], [ 9196, 9209 ], [ 9338, 9351 ] ], [ [ 629, 641 ] ], [ [ 643, 656 ], [ 8047, 8060 ] ], [ [ 665, 681 ], [ 10110, 10126 ] ], [ [ 683, 698 ], [ 10094, 10109 ], [ 10178, 10193 ], [ 10244, 10259 ], [ 10320, 10335 ], [ 10366, 10381 ], [ 10442, 10457 ], [ 10496, 10511 ], [ 10690, 10705 ] ], [ [ 700, 718 ] ], [ [ 720, 727 ], [ 10336, 10343 ], [ 10458, 10465 ] ], [ [ 747, 753 ], [ 2974, 2980 ], [ 3098, 3104 ], [ 3157, 3163 ], [ 3311, 3317 ], [ 3767, 3773 ], [ 3931, 3937 ], [ 3994, 4000 ], [ 4129, 4135 ], [ 4258, 4264 ], [ 4321, 4327 ], [ 4491, 4497 ], [ 8089, 8095 ], [ 8168, 8174 ], [ 8265, 8271 ], [ 8382, 8388 ], [ 8856, 8862 ], [ 8947, 8953 ] ], [ [ 794, 808 ], [ 9999, 10013 ] ], [ [ 859, 874 ] ], [ [ 981, 1002 ] ], [ [ 1420, 1437 ], [ 1569, 1586 ], [ 1688, 1705 ], [ 1806, 1823 ], [ 1925, 1942 ], [ 2043, 2060 ], [ 2162, 2179 ] ], [ [ 1536, 1559 ] ], [ [ 1648, 1678 ] ], [ [ 1773, 1796 ] ], [ [ 1885, 1915 ] ], [ [ 2010, 2033 ] ], [ [ 2122, 2152 ] ], [ [ 2255, 2266 ], [ 8444, 8455 ], [ 8541, 8552 ], [ 8638, 8649 ] ], [ [ 2624, 2640 ], [ 8493, 8509 ], [ 8590, 8606 ] ], [ [ 3412, 3422 ], [ 2548, 2558 ] ], [ [ 4577, 4584 ] ], [ [ 9016, 9019 ] ], [ [ 9504, 9514 ] ] ]
''' Система линейных уравнений - 2 ''' a = float(input()) b = float(input()) c = float(input()) d = float(input()) e = float(input()) f = float(input()) if a == 0 and b == 0 and c == 0 and d == 0 and e == 0 and f == 0: print(5) elif a * d == b * c and a * f != c * e: print(0) elif a == 0 and b == 0 and e != 0: print(0) elif c == 0 and d == 0 and f != 0: print(0) elif a == 0 and c == 0 and b * f != d * e: print(0) elif b == 0 and d == 0 and a * f != c * e: print(0) elif a * d == b * c and a * f == c * e: if b == 0 and d == 0: if a != 0 and c != 0: print(3, e / a) elif a == 0: if e == 0: print(3, f / c) elif c == 0: if f == 0: print(3, e / a) elif a == 0 and c == 0: if b != 0: print(4, e / b) elif d != 0: print(4, f / d) elif b != 0: print(1, -a / b, e / b) elif d != 0: print(1, -c / d, f / d) else: x = (e * d - b * f) / (a * d - b * c) y = (a * f - e * c) / (a * d - b * c) print(2, x, y)
[ [ [ 39, 40 ], [ 156, 157 ], [ 237, 238 ], [ 256, 257 ], [ 290, 291 ], [ 386, 387 ], [ 464, 465 ], [ 498, 499 ], [ 517, 518 ], [ 570, 571 ], [ 614, 615 ], [ 630, 631 ], [ 766, 767 ], [ 778, 779 ], [ 928, 929 ], [ 1024, 1025 ], [ 1048, 1049 ], [ 1066, 1067 ] ], [ [ 58, 59 ], [ 167, 168 ], [ 246, 247 ], [ 301, 302 ], [ 408, 409 ], [ 442, 443 ], [ 507, 508 ], [ 540, 541 ], [ 808, 809 ], [ 841, 842 ], [ 902, 903 ], [ 932, 933 ], [ 939, 940 ], [ 1014, 1015 ], [ 1032, 1033 ], [ 1074, 1075 ] ], [ [ 77, 78 ], [ 178, 179 ], [ 250, 251 ], [ 265, 266 ], [ 338, 339 ], [ 397, 398 ], [ 473, 474 ], [ 511, 512 ], [ 526, 527 ], [ 581, 582 ], [ 690, 691 ], [ 706, 707 ], [ 789, 790 ], [ 977, 978 ], [ 1036, 1037 ], [ 1060, 1061 ], [ 1078, 1079 ] ], [ [ 96, 97 ], [ 189, 190 ], [ 241, 242 ], [ 349, 350 ], [ 417, 418 ], [ 453, 454 ], [ 502, 503 ], [ 551, 552 ], [ 857, 858 ], [ 890, 891 ], [ 951, 952 ], [ 981, 982 ], [ 988, 989 ], [ 1010, 1011 ], [ 1028, 1029 ], [ 1070, 1071 ] ], [ [ 115, 116 ], [ 200, 201 ], [ 269, 270 ], [ 312, 313 ], [ 421, 422 ], [ 477, 478 ], [ 530, 531 ], [ 610, 611 ], [ 653, 654 ], [ 762, 763 ], [ 837, 838 ], [ 935, 936 ], [ 1006, 1007 ], [ 1056, 1057 ] ], [ [ 134, 135 ], [ 211, 212 ], [ 260, 261 ], [ 360, 361 ], [ 412, 413 ], [ 468, 469 ], [ 521, 522 ], [ 686, 687 ], [ 729, 730 ], [ 886, 887 ], [ 984, 985 ], [ 1018, 1019 ], [ 1052, 1053 ] ], [ [ 1001, 1002 ], [ 1094, 1095 ] ], [ [ 1043, 1044 ], [ 1097, 1098 ] ] ]
# -*- coding: utf-8 -*- """ Author ------ Bo Zhang Email ----- bozhang@nao.cas.cn Created on ---------- - Fri Jul 3 13:13:06 2015 read_spectrum Modifications ------------- - Fri Nov 20 10:16:59 2015 reformatting code - Sun Feb 28 14:39:16 2016 migrated to bopy.spec.lamost - Fri Jul 15 16:08:00 2016 migrate read_spectrum to read_spectrum.py Aims ---- - generate LAMOST spectra file name/path """ # from __future__ import print_function import os import numpy as np # from astropy.io import fits # from astropy.table import Table, Column def lamost_filepath(planid, mjd, spid, fiberid, dirpath="", extname=".fits"): """ generate file path of a LAMOST spectrum Parameters ---------- planid: string planid mjd: 5-digit integer mjd (use lmjd rather than mjd for DR3 and after!) spid: 2-digit integer spid, the number of the spectrogragh fiberid: 3-digit integer fiberid dirpath: string the root directory for storing spectra. Returns -------- filepath: string the path of root dir of directory (prefix). if un-specified, return file name. """ # pre-processing: strip if np.isscalar(planid): planid = planid.strip() else: planid = [_.strip() for _ in planid] if dirpath == "" or dirpath is None: # return file name if np.isscalar(mjd): # if only input one item return "spec-%05d-%s_sp%02d-%03d%s" \ % (mjd, planid, spid, fiberid, extname) else: # if input a list of items return np.array(["spec-%05d-%s_sp%02d-%03d%s" % (mjd[i], planid[i], spid[i], fiberid[i], extname) for i in range(len(mjd))]) else: # return file path if not dirpath[-1] == os.path.sep: dirpath += os.path.sep if np.isscalar(mjd): # if only input one item return "%s%s%sspec-%05d-%s_sp%02d-%03d%s" \ % (dirpath, planid, os.path.sep, mjd, planid, spid, fiberid, extname) else: # if input a list of items return np.array(["%s%s%sspec-%05d-%s_sp%02d-%03d%s" % (dirpath, planid[i], os.path.sep, mjd[i], planid[i], spid[i], fiberid[i], extname) for i in range(len(mjd))]) def _test_lamost_filepath(): """test function **lamost_filepath** """ print(lamost_filepath("GAC_061N46_V3", 55939, 7, 78)) print(lamost_filepath("GAC_061N46_V3", 55939, 7, 78, "/")) print(lamost_filepath("GAC_061N46_V3", 55939, 7, 78, "/pool")) print(lamost_filepath("GAC_061N46_V3", 55939, 7, 78, "/pool/")) def sdss_filepath(plate, mjd, fiberid, dirpath="", extname=".fits"): """ generate file path of a LAMOST spectrum Parameters ---------- plate: string plate mjd: 5-digit integer mjd (use lmjd rather than mjd for DR3 and after!) fiberid: 4-digit integer fiberid dirpath: string the root directory for storing spectra. extname: string in case that users want to synthesize other data format Returns -------- filepath: string the path of root dir of directory (prefix). if un-specified, return file name. """ if dirpath == "" or dirpath is None: # return file name if np.isscalar(mjd): # if only input one item return "spec-%04d-%05d-%04d%s" % (plate, mjd, fiberid, extname) else: # if input a list of items return np.array(["spec-%04d-%05d-%04d%s" % (plate[i], mjd[i], fiberid[i], extname) for i in range(len(mjd))]) else: # return file path if not dirpath[-1] == os.path.sep: dirpath += os.path.sep if np.isscalar(mjd): # if only input one item return "%s%04d%sspec-%04d-%05d-%04d%s" \ % (dirpath, plate, os.path.sep, plate, mjd, fiberid, extname) else: # if input a list of items return np.array(["%s%04d%sspec-%04d-%05d-%04d%s" % (dirpath, plate[i], os.path.sep, plate[i], mjd[i], fiberid[i], extname) for i in range(len(mjd))]) def _test_sdss_filepath(): print(sdss_filepath(2238, 52059, 1, "/")) if __name__ == "__main__": print("") print("@Cham: start to test the module ...") print("") print("@Cham: testing ""lamost_filepath"" ...") _test_lamost_filepath() _test_sdss_filepath() print("@Cham: OK")
[ [ [ 465, 467 ], [ 1877, 1879 ], [ 1913, 1915 ], [ 2087, 2089 ], [ 2328, 2330 ], [ 3940, 3942 ], [ 3976, 3978 ], [ 4146, 4148 ], [ 4376, 4378 ] ], [ [ 475, 486 ], [ 1210, 1212 ], [ 1398, 1400 ], [ 1634, 1636 ], [ 1937, 1939 ], [ 2231, 2233 ], [ 3509, 3511 ], [ 3712, 3714 ], [ 4000, 4002 ], [ 4283, 4285 ] ], [ [ 565, 580 ], [ 2566, 2581 ], [ 2624, 2639 ], [ 2687, 2702 ], [ 2754, 2769 ] ], [ [ 2482, 2503 ], [ 4751, 4772 ] ], [ [ 2818, 2831 ], [ 4553, 4566 ] ], [ [ 4520, 4539 ], [ 4779, 4798 ] ] ]
class BaseDownsizing: def __init__(self, raw_file_f, raw_file_r=None): self.raw_file_f = raw_file_f self.raw_file_f = raw_file_f self._downsized_f = None if raw_file_r: self.raw_file_r = raw_file_r self.raw_file_r = raw_file_r self._downsized_r = None def downsize_single(self): """Overridden in child classes to perform specified downsizing of fragment reads""" return self.raw_file_f def downsize_pair_uncompressed(self): """Overridden in child classes to perform specified downsizing of paired-ends reads""" return self.raw_file_f, self.raw_file_r def downsize_pair_gzip(self): """Overridden in child classes to perform specified downsizing of gzip compressed paired-ends reads""" return self.raw_file_f, self.raw_file_r @property def downsized_pair_uncompressed(self): if getattr(self, "._downsized_f", None) is None: self._downsized_f, self_downsized_r = self.downsize_pair() self.raw_file_f = self._downsized_f self.raw_file_r = self._downsized_r return self._downsized_f, self._downsized_r @property def downsized_pair_gzip(self): if getattr(self, "._downsized_f", None) is None: self._downsized_f, self_downsized_r = self.downsize_pair() self.raw_file_f = self._downsized_f self.raw_file_r = self._downsized_r return self._downsized_f, self._downsized_r @property def downsized_single(self): if getattr(self, "._downsized_f", None) is None: self._downsized_f = self.downsize_single() self.raw_file_f = self._downsized_f return self._downsized_f
[ [ [ 6, 20 ] ] ]
from collections import OrderedDict from django.conf import settings from django.db.models import Count, F from django.http import HttpResponseForbidden, HttpResponse from django.shortcuts import get_object_or_404 from drf_yasg import openapi from drf_yasg.openapi import Parameter from drf_yasg.utils import swagger_auto_schema from rest_framework.decorators import action from rest_framework.mixins import ListModelMixin from rest_framework.response import Response from rest_framework.viewsets import GenericViewSet, ViewSet from circuits.models import Circuit from dcim import filters from dcim.models import ( Cable, ConsolePort, ConsolePortTemplate, ConsoleServerPort, ConsoleServerPortTemplate, Device, DeviceBay, DeviceBayTemplate, DeviceRole, DeviceType, FrontPort, FrontPortTemplate, Interface, InterfaceTemplate, Manufacturer, InventoryItem, Platform, PowerFeed, PowerOutlet, PowerOutletTemplate, PowerPanel, PowerPort, PowerPortTemplate, Rack, RackGroup, RackReservation, RackRole, RearPort, RearPortTemplate, Region, Site, VirtualChassis, ) from extras.api.serializers import RenderedGraphSerializer from extras.api.views import CustomFieldModelViewSet from extras.models import Graph from ipam.models import Prefix, VLAN from utilities.api import ( get_serializer_for_model, IsAuthenticatedOrLoginNotRequired, ModelViewSet, ServiceUnavailable, ) from utilities.utils import get_subquery from virtualization.models import VirtualMachine from . import serializers from .exceptions import MissingFilterException # Mixins class CableTraceMixin(object): @action(detail=True, url_path='trace') def trace(self, request, pk): """ Trace a complete cable path and return each segment as a three-tuple of (termination, cable, termination). """ obj = get_object_or_404(self.queryset.model, pk=pk) # Initialize the path array path = [] for near_end, cable, far_end in obj.trace()[0]: # Serialize each object serializer_a = get_serializer_for_model(near_end, prefix='Nested') x = serializer_a(near_end, context={'request': request}).data if cable is not None: y = serializers.TracedCableSerializer(cable, context={'request': request}).data else: y = None if far_end is not None: serializer_b = get_serializer_for_model(far_end, prefix='Nested') z = serializer_b(far_end, context={'request': request}).data else: z = None path.append((x, y, z)) return Response(path) # # Regions # class RegionViewSet(ModelViewSet): queryset = Region.objects.annotate( site_count=Count('sites') ) serializer_class = serializers.RegionSerializer filterset_class = filters.RegionFilterSet # # Sites # class SiteViewSet(CustomFieldModelViewSet): queryset = Site.objects.prefetch_related( 'region', 'tenant', 'tags' ).annotate( device_count=get_subquery(Device, 'site'), rack_count=get_subquery(Rack, 'site'), prefix_count=get_subquery(Prefix, 'site'), vlan_count=get_subquery(VLAN, 'site'), circuit_count=get_subquery(Circuit, 'terminations__site'), virtualmachine_count=get_subquery(VirtualMachine, 'cluster__site'), ) serializer_class = serializers.SiteSerializer filterset_class = filters.SiteFilterSet @action(detail=True) def graphs(self, request, pk): """ A convenience method for rendering graphs for a particular site. """ site = get_object_or_404(Site, pk=pk) queryset = Graph.objects.filter(type__model='site') serializer = RenderedGraphSerializer(queryset, many=True, context={'graphed_object': site}) return Response(serializer.data) # # Rack groups # class RackGroupViewSet(ModelViewSet): queryset = RackGroup.objects.prefetch_related('site').annotate( rack_count=Count('racks') ) serializer_class = serializers.RackGroupSerializer filterset_class = filters.RackGroupFilterSet # # Rack roles # class RackRoleViewSet(ModelViewSet): queryset = RackRole.objects.annotate( rack_count=Count('racks') ) serializer_class = serializers.RackRoleSerializer filterset_class = filters.RackRoleFilterSet # # Racks # class RackViewSet(CustomFieldModelViewSet): queryset = Rack.objects.prefetch_related( 'site', 'group__site', 'role', 'tenant', 'tags' ).annotate( device_count=get_subquery(Device, 'rack'), powerfeed_count=get_subquery(PowerFeed, 'rack') ) serializer_class = serializers.RackSerializer filterset_class = filters.RackFilterSet @swagger_auto_schema( responses={200: serializers.RackUnitSerializer(many=True)}, query_serializer=serializers.RackElevationDetailFilterSerializer ) @action(detail=True) def elevation(self, request, pk=None): """ Rack elevation representing the list of rack units. Also supports rendering the elevation as an SVG. """ rack = get_object_or_404(Rack, pk=pk) serializer = serializers.RackElevationDetailFilterSerializer(data=request.GET) if not serializer.is_valid(): return Response(serializer.errors, 400) data = serializer.validated_data if data['render'] == 'svg': # Render and return the elevation as an SVG drawing with the correct content type drawing = rack.get_elevation_svg( face=data['face'], unit_width=data['unit_width'], unit_height=data['unit_height'], legend_width=data['legend_width'], include_images=data['include_images'], base_url=request.build_absolute_uri('/') ) return HttpResponse(drawing.tostring(), content_type='image/svg+xml') else: # Return a JSON representation of the rack units in the elevation elevation = rack.get_rack_units( face=data['face'], exclude=data['exclude'], expand_devices=data['expand_devices'] ) # Enable filtering rack units by ID q = data['q'] if q: elevation = [u for u in elevation if q in str(u['id']) or q in str(u['name'])] page = self.paginate_queryset(elevation) if page is not None: rack_units = serializers.RackUnitSerializer(page, many=True, context={'request': request}) return self.get_paginated_response(rack_units.data) # # Rack reservations # class RackReservationViewSet(ModelViewSet): queryset = RackReservation.objects.prefetch_related('rack', 'user', 'tenant') serializer_class = serializers.RackReservationSerializer filterset_class = filters.RackReservationFilterSet # Assign user from request def perform_create(self, serializer): serializer.save(user=self.request.user) # # Manufacturers # class ManufacturerViewSet(ModelViewSet): queryset = Manufacturer.objects.annotate( devicetype_count=get_subquery(DeviceType, 'manufacturer'), inventoryitem_count=get_subquery(InventoryItem, 'manufacturer'), platform_count=get_subquery(Platform, 'manufacturer') ) serializer_class = serializers.ManufacturerSerializer filterset_class = filters.ManufacturerFilterSet # # Device types # class DeviceTypeViewSet(CustomFieldModelViewSet): queryset = DeviceType.objects.prefetch_related('manufacturer').prefetch_related('tags').annotate( device_count=Count('instances') ) serializer_class = serializers.DeviceTypeSerializer filterset_class = filters.DeviceTypeFilterSet # # Device type components # class ConsolePortTemplateViewSet(ModelViewSet): queryset = ConsolePortTemplate.objects.prefetch_related('device_type__manufacturer') serializer_class = serializers.ConsolePortTemplateSerializer filterset_class = filters.ConsolePortTemplateFilterSet class ConsoleServerPortTemplateViewSet(ModelViewSet): queryset = ConsoleServerPortTemplate.objects.prefetch_related('device_type__manufacturer') serializer_class = serializers.ConsoleServerPortTemplateSerializer filterset_class = filters.ConsoleServerPortTemplateFilterSet class PowerPortTemplateViewSet(ModelViewSet): queryset = PowerPortTemplate.objects.prefetch_related('device_type__manufacturer') serializer_class = serializers.PowerPortTemplateSerializer filterset_class = filters.PowerPortTemplateFilterSet class PowerOutletTemplateViewSet(ModelViewSet): queryset = PowerOutletTemplate.objects.prefetch_related('device_type__manufacturer') serializer_class = serializers.PowerOutletTemplateSerializer filterset_class = filters.PowerOutletTemplateFilterSet class InterfaceTemplateViewSet(ModelViewSet): queryset = InterfaceTemplate.objects.prefetch_related('device_type__manufacturer') serializer_class = serializers.InterfaceTemplateSerializer filterset_class = filters.InterfaceTemplateFilterSet class FrontPortTemplateViewSet(ModelViewSet): queryset = FrontPortTemplate.objects.prefetch_related('device_type__manufacturer') serializer_class = serializers.FrontPortTemplateSerializer filterset_class = filters.FrontPortTemplateFilterSet class RearPortTemplateViewSet(ModelViewSet): queryset = RearPortTemplate.objects.prefetch_related('device_type__manufacturer') serializer_class = serializers.RearPortTemplateSerializer filterset_class = filters.RearPortTemplateFilterSet class DeviceBayTemplateViewSet(ModelViewSet): queryset = DeviceBayTemplate.objects.prefetch_related('device_type__manufacturer') serializer_class = serializers.DeviceBayTemplateSerializer filterset_class = filters.DeviceBayTemplateFilterSet # # Device roles # class DeviceRoleViewSet(ModelViewSet): queryset = DeviceRole.objects.annotate( device_count=get_subquery(Device, 'device_role'), virtualmachine_count=get_subquery(VirtualMachine, 'role') ) serializer_class = serializers.DeviceRoleSerializer filterset_class = filters.DeviceRoleFilterSet # # Platforms # class PlatformViewSet(ModelViewSet): queryset = Platform.objects.annotate( device_count=get_subquery(Device, 'platform'), virtualmachine_count=get_subquery(VirtualMachine, 'platform') ) serializer_class = serializers.PlatformSerializer filterset_class = filters.PlatformFilterSet # # Devices # class DeviceViewSet(CustomFieldModelViewSet): queryset = Device.objects.prefetch_related( 'device_type__manufacturer', 'device_role', 'tenant', 'platform', 'site', 'rack', 'parent_bay', 'virtual_chassis__master', 'primary_ip4__nat_outside', 'primary_ip6__nat_outside', 'tags', ) filterset_class = filters.DeviceFilterSet def get_serializer_class(self): """ Select the specific serializer based on the request context. If the `brief` query param equates to True, return the NestedDeviceSerializer If the `exclude` query param includes `config_context` as a value, return the DeviceSerializer Else, return the DeviceWithConfigContextSerializer """ request = self.get_serializer_context()['request'] if request.query_params.get('brief', False): return serializers.NestedDeviceSerializer elif 'config_context' in request.query_params.get('exclude', []): return serializers.DeviceSerializer return serializers.DeviceWithConfigContextSerializer @action(detail=True) def graphs(self, request, pk): """ A convenience method for rendering graphs for a particular Device. """ device = get_object_or_404(Device, pk=pk) queryset = Graph.objects.filter(type__model='device') serializer = RenderedGraphSerializer(queryset, many=True, context={'graphed_object': device}) return Response(serializer.data) @swagger_auto_schema( manual_parameters=[ Parameter( name='method', in_='query', required=True, type=openapi.TYPE_STRING ) ], responses={'200': serializers.DeviceNAPALMSerializer} ) @action(detail=True, url_path='napalm') def napalm(self, request, pk): """ Execute a NAPALM method on a Device """ device = get_object_or_404(Device, pk=pk) if not device.primary_ip: raise ServiceUnavailable("This device does not have a primary IP address configured.") if device.platform is None: raise ServiceUnavailable("No platform is configured for this device.") if not device.platform.napalm_driver: raise ServiceUnavailable("No NAPALM driver is configured for this device's platform ().".format( device.platform )) # Check that NAPALM is installed try: import napalm from napalm.base.exceptions import ModuleImportError except ImportError: raise ServiceUnavailable("NAPALM is not installed. Please see the documentation for instructions.") # Validate the configured driver try: driver = napalm.get_network_driver(device.platform.napalm_driver) except ModuleImportError: raise ServiceUnavailable("NAPALM driver for platform {} not found: {}.".format( device.platform, device.platform.napalm_driver )) # Verify user permission if not request.user.has_perm('dcim.napalm_read'): return HttpResponseForbidden() # Connect to the device napalm_methods = request.GET.getlist('method') response = OrderedDict([(m, None) for m in napalm_methods]) ip_address = str(device.primary_ip.address.ip) username = settings.NAPALM_USERNAME password = settings.NAPALM_PASSWORD optional_args = settings.NAPALM_ARGS.copy() if device.platform.napalm_args is not None: optional_args.update(device.platform.napalm_args) # Update NAPALM parameters according to the request headers for header in request.headers: if header[:9].lower() != 'x-napalm-': continue key = header[9:] if key.lower() == 'username': username = request.headers[header] elif key.lower() == 'password': password = request.headers[header] elif key: optional_args[key.lower()] = request.headers[header] d = driver( hostname=ip_address, username=username, password=password, timeout=settings.NAPALM_TIMEOUT, optional_args=optional_args ) try: d.open() except Exception as e: raise ServiceUnavailable("Error connecting to the device at {}: {}".format(ip_address, e)) # Validate and execute each specified NAPALM method for method in napalm_methods: if not hasattr(driver, method): response[method] = {'error': 'Unknown NAPALM method'} continue if not method.startswith('get_'): response[method] = {'error': 'Only get_* NAPALM methods are supported'} continue try: response[method] = getattr(d, method)() except NotImplementedError: response[method] = {'error': 'Method {} not implemented for NAPALM driver {}'.format(method, driver)} except Exception as e: response[method] = {'error': 'Method {} failed: {}'.format(method, e)} d.close() return Response(response) # # Device components # class ConsolePortViewSet(CableTraceMixin, ModelViewSet): queryset = ConsolePort.objects.prefetch_related('device', 'connected_endpoint__device', 'cable', 'tags') serializer_class = serializers.ConsolePortSerializer filterset_class = filters.ConsolePortFilterSet class ConsoleServerPortViewSet(CableTraceMixin, ModelViewSet): queryset = ConsoleServerPort.objects.prefetch_related('device', 'connected_endpoint__device', 'cable', 'tags') serializer_class = serializers.ConsoleServerPortSerializer filterset_class = filters.ConsoleServerPortFilterSet class PowerPortViewSet(CableTraceMixin, ModelViewSet): queryset = PowerPort.objects.prefetch_related( 'device', '_connected_poweroutlet__device', '_connected_powerfeed', 'cable', 'tags' ) serializer_class = serializers.PowerPortSerializer filterset_class = filters.PowerPortFilterSet class PowerOutletViewSet(CableTraceMixin, ModelViewSet): queryset = PowerOutlet.objects.prefetch_related('device', 'connected_endpoint__device', 'cable', 'tags') serializer_class = serializers.PowerOutletSerializer filterset_class = filters.PowerOutletFilterSet class InterfaceViewSet(CableTraceMixin, ModelViewSet): queryset = Interface.objects.prefetch_related( 'device', '_connected_interface', '_connected_circuittermination', 'cable', 'ip_addresses', 'tags' ).filter( device__isnull=False ) serializer_class = serializers.InterfaceSerializer filterset_class = filters.InterfaceFilterSet @action(detail=True) def graphs(self, request, pk): """ A convenience method for rendering graphs for a particular interface. """ interface = get_object_or_404(Interface, pk=pk) queryset = Graph.objects.filter(type__model='interface') serializer = RenderedGraphSerializer(queryset, many=True, context={'graphed_object': interface}) return Response(serializer.data) class FrontPortViewSet(CableTraceMixin, ModelViewSet): queryset = FrontPort.objects.prefetch_related('device__device_type__manufacturer', 'rear_port', 'cable', 'tags') serializer_class = serializers.FrontPortSerializer filterset_class = filters.FrontPortFilterSet class RearPortViewSet(CableTraceMixin, ModelViewSet): queryset = RearPort.objects.prefetch_related('device__device_type__manufacturer', 'cable', 'tags') serializer_class = serializers.RearPortSerializer filterset_class = filters.RearPortFilterSet class DeviceBayViewSet(ModelViewSet): queryset = DeviceBay.objects.prefetch_related('installed_device').prefetch_related('tags') serializer_class = serializers.DeviceBaySerializer filterset_class = filters.DeviceBayFilterSet class InventoryItemViewSet(ModelViewSet): queryset = InventoryItem.objects.prefetch_related('device', 'manufacturer').prefetch_related('tags') serializer_class = serializers.InventoryItemSerializer filterset_class = filters.InventoryItemFilterSet # # Connections # class ConsoleConnectionViewSet(ListModelMixin, GenericViewSet): queryset = ConsolePort.objects.prefetch_related( 'device', 'connected_endpoint__device' ).filter( connected_endpoint__isnull=False ) serializer_class = serializers.ConsolePortSerializer filterset_class = filters.ConsoleConnectionFilterSet class PowerConnectionViewSet(ListModelMixin, GenericViewSet): queryset = PowerPort.objects.prefetch_related( 'device', 'connected_endpoint__device' ).filter( _connected_poweroutlet__isnull=False ) serializer_class = serializers.PowerPortSerializer filterset_class = filters.PowerConnectionFilterSet class InterfaceConnectionViewSet(ListModelMixin, GenericViewSet): queryset = Interface.objects.prefetch_related( 'device', '_connected_interface__device' ).filter( # Avoid duplicate connections by only selecting the lower PK in a connected pair _connected_interface__isnull=False, pk__lt=F('_connected_interface') ) serializer_class = serializers.InterfaceConnectionSerializer filterset_class = filters.InterfaceConnectionFilterSet # # Cables # class CableViewSet(ModelViewSet): queryset = Cable.objects.prefetch_related( 'termination_a', 'termination_b' ) serializer_class = serializers.CableSerializer filterset_class = filters.CableFilterSet # # Virtual chassis # class VirtualChassisViewSet(ModelViewSet): queryset = VirtualChassis.objects.prefetch_related('tags').annotate( member_count=Count('members') ) serializer_class = serializers.VirtualChassisSerializer filterset_class = filters.VirtualChassisFilterSet # # Power panels # class PowerPanelViewSet(ModelViewSet): queryset = PowerPanel.objects.prefetch_related( 'site', 'rack_group' ).annotate( powerfeed_count=Count('powerfeeds') ) serializer_class = serializers.PowerPanelSerializer filterset_class = filters.PowerPanelFilterSet # # Power feeds # class PowerFeedViewSet(CustomFieldModelViewSet): queryset = PowerFeed.objects.prefetch_related('power_panel', 'rack', 'tags') serializer_class = serializers.PowerFeedSerializer filterset_class = filters.PowerFeedFilterSet # # Miscellaneous # class ConnectedDeviceViewSet(ViewSet): """ This endpoint allows a user to determine what device (if any) is connected to a given peer device and peer interface. This is useful in a situation where a device boots with no configuration, but can detect its neighbors via a protocol such as LLDP. Two query parameters must be included in the request: * `peer_device`: The name of the peer device * `peer_interface`: The name of the peer interface """ permission_classes = [IsAuthenticatedOrLoginNotRequired] _device_param = Parameter( name='peer_device', in_='query', description='The name of the peer device', required=True, type=openapi.TYPE_STRING ) _interface_param = Parameter( name='peer_interface', in_='query', description='The name of the peer interface', required=True, type=openapi.TYPE_STRING ) def get_view_name(self): return "Connected Device Locator" @swagger_auto_schema( manual_parameters=[_device_param, _interface_param], responses={'200': serializers.DeviceSerializer} ) def list(self, request): peer_device_name = request.query_params.get(self._device_param.name) peer_interface_name = request.query_params.get(self._interface_param.name) if not peer_device_name or not peer_interface_name: raise MissingFilterException(detail='Request must include "peer_device" and "peer_interface" filters.') # Determine local interface from peer interface's connection peer_interface = get_object_or_404(Interface, device__name=peer_device_name, name=peer_interface_name) local_interface = peer_interface._connected_interface if local_interface is None: return Response() return Response(serializers.DeviceSerializer(local_interface.device, context={'request': request}).data)
[ [ [ 24, 35 ], [ 13978, 13989 ] ], [ [ 61, 69 ], [ 14101, 14109 ], [ 14145, 14153 ], [ 14194, 14202 ], [ 14964, 14972 ] ], [ [ 99, 104 ], [ 2760, 2765 ], [ 4025, 4030 ], [ 4268, 4273 ], [ 7727, 7732 ], [ 20619, 20624 ], [ 20938, 20943 ] ], [ [ 106, 107 ], [ 20061, 20062 ] ], [ [ 132, 153 ], [ 13847, 13868 ] ], [ [ 155, 167 ], [ 5918, 5930 ] ], [ [ 197, 214 ], [ 1823, 1840 ], [ 3647, 3664 ], [ 5165, 5182 ], [ 11920, 11937 ], [ 12626, 12643 ], [ 17748, 17765 ], [ 22964, 22981 ] ], [ [ 236, 243 ], [ 12349, 12356 ], [ 22052, 22059 ], [ 22254, 22261 ] ], [ [ 273, 282 ], [ 12226, 12235 ], [ 21905, 21914 ], [ 22101, 22110 ] ], [ [ 310, 329 ], [ 4781, 4800 ], [ 12165, 12184 ], [ 22358, 22377 ] ], [ [ 368, 374 ], [ 1598, 1604 ], [ 3480, 3486 ], [ 4954, 4960 ], [ 11749, 11755 ], [ 12467, 12473 ], [ 17571, 17577 ] ], [ [ 409, 423 ], [ 19086, 19100 ], [ 19425, 19439 ], [ 19766, 19780 ] ], [ [ 460, 468 ], [ 2634, 2642 ], [ 3853, 3861 ], [ 5340, 5348 ], [ 12133, 12141 ], [ 15991, 15999 ], [ 17969, 17977 ], [ 23168, 23176 ], [ 23195, 23203 ] ], [ [ 505, 519 ], [ 19102, 19116 ], [ 19441, 19455 ], [ 19782, 19796 ] ], [ [ 521, 528 ], [ 21377, 21384 ] ], [ [ 558, 565 ], [ 3266, 3273 ] ], [ [ 583, 590 ], [ 2855, 2862 ], [ 3452, 3459 ], [ 4123, 4130 ], [ 4365, 4372 ], [ 4753, 4760 ], [ 6949, 6956 ], [ 7502, 7509 ], [ 7830, 7837 ], [ 8114, 8121 ], [ 8395, 8402 ], [ 8658, 8665 ], [ 8919, 8926 ], [ 9176, 9183 ], [ 9431, 9438 ], [ 9683, 9690 ], [ 9937, 9944 ], [ 10285, 10292 ], [ 10618, 10625 ], [ 10986, 10993 ], [ 16282, 16289 ], [ 16576, 16583 ], [ 16894, 16901 ], [ 17168, 17175 ], [ 17538, 17545 ], [ 18246, 18253 ], [ 18508, 18515 ], [ 18746, 18753 ], [ 19003, 19010 ], [ 19359, 19366 ], [ 19698, 19705 ], [ 20180, 20187 ], [ 20434, 20441 ], [ 20724, 20731 ], [ 21042, 21049 ], [ 21298, 21305 ] ], [ [ 621, 626 ], [ 20282, 20287 ] ], [ [ 628, 639 ], [ 16109, 16120 ], [ 19134, 19145 ] ], [ [ 641, 660 ], [ 7953, 7972 ] ], [ [ 662, 679 ], [ 16391, 16408 ] ], [ [ 681, 706 ], [ 8222, 8247 ] ], [ [ 708, 714 ], [ 3069, 3075 ], [ 4602, 4608 ], [ 10111, 10117 ], [ 10445, 10451 ], [ 10722, 10728 ], [ 11938, 11944 ], [ 12644, 12650 ] ], [ [ 716, 725 ], [ 18589, 18598 ] ], [ [ 731, 748 ], [ 9780, 9797 ] ], [ [ 750, 760 ], [ 10048, 10058 ] ], [ [ 762, 772 ], [ 7252, 7262 ], [ 7619, 7629 ] ], [ [ 774, 783 ], [ 18067, 18076 ] ], [ [ 785, 802 ], [ 9274, 9291 ] ], [ [ 804, 813 ], [ 17269, 17278 ], [ 19814, 19823 ], [ 17766, 17775 ], [ 22982, 22991 ] ], [ [ 815, 832 ], [ 9019, 9036 ] ], [ [ 838, 850 ], [ 7183, 7195 ] ], [ [ 852, 865 ], [ 7322, 7335 ], [ 18832, 18845 ] ], [ [ 867, 875 ], [ 7390, 7398 ], [ 10384, 10392 ] ], [ [ 877, 886 ], [ 4656, 4665 ], [ 21155, 21164 ] ], [ [ 888, 899 ], [ 16995, 17006 ] ], [ [ 901, 920 ], [ 8758, 8777 ] ], [ [ 922, 932 ], [ 20832, 20842 ] ], [ [ 934, 943 ], [ 16683, 16692 ], [ 19473, 19482 ] ], [ [ 949, 966 ], [ 8501, 8518 ] ], [ [ 968, 972 ], [ 3118, 3122 ], [ 4465, 4469 ], [ 5183, 5187 ] ], [ [ 974, 983 ], [ 3953, 3962 ] ], [ [ 985, 1000 ], [ 6799, 6814 ] ], [ [ 1002, 1010 ], [ 4222, 4230 ] ], [ [ 1012, 1020 ], [ 18344, 18352 ] ], [ [ 1022, 1038 ], [ 9528, 9544 ] ], [ [ 1040, 1046 ], [ 2716, 2722 ] ], [ [ 1048, 1052 ], [ 2953, 2957 ], [ 3665, 3669 ] ], [ [ 1058, 1072 ], [ 20540, 20554 ] ], [ [ 1111, 1134 ], [ 3759, 3782 ], [ 12036, 12059 ], [ 17870, 17893 ] ], [ [ 1164, 1187 ], [ 2912, 2935 ], [ 4424, 4447 ], [ 7578, 7601 ], [ 10681, 10704 ], [ 21114, 21137 ] ], [ [ 1214, 1219 ], [ 3697, 3702 ], [ 11972, 11977 ], [ 17803, 17808 ] ], [ [ 1244, 1250 ], [ 3167, 3173 ] ], [ [ 1252, 1256 ], [ 3216, 3220 ] ], [ [ 1289, 1313 ], [ 2045, 2069 ], [ 2411, 2435 ] ], [ [ 1315, 1348 ], [ 21850, 21883 ] ], [ [ 1350, 1362 ], [ 2686, 2698 ], [ 3923, 3935 ], [ 4192, 4204 ], [ 6769, 6781 ], [ 7153, 7165 ], [ 7923, 7935 ], [ 8192, 8204 ], [ 8471, 8483 ], [ 8728, 8740 ], [ 8989, 9001 ], [ 9244, 9256 ], [ 9498, 9510 ], [ 9750, 9762 ], [ 10018, 10030 ], [ 10354, 10366 ], [ 16079, 16091 ], [ 16361, 16373 ], [ 16653, 16665 ], [ 16965, 16977 ], [ 17239, 17251 ], [ 18037, 18049 ], [ 18314, 18326 ], [ 18559, 18571 ], [ 18802, 18814 ], [ 20252, 20264 ], [ 20510, 20522 ], [ 20802, 20814 ] ], [ [ 1364, 1382 ], [ 12711, 12729 ], [ 12846, 12864 ], [ 12975, 12993 ], [ 13305, 13323 ], [ 13584, 13602 ], [ 15122, 15140 ] ], [ [ 1414, 1426 ], [ 3056, 3068 ], [ 3105, 3117 ], [ 3154, 3166 ], [ 3203, 3215 ], [ 3253, 3265 ], [ 3327, 3339 ], [ 4589, 4601 ], [ 4643, 4655 ], [ 7239, 7251 ], [ 7309, 7321 ], [ 7377, 7389 ], [ 10098, 10110 ], [ 10164, 10176 ], [ 10432, 10444 ], [ 10495, 10507 ] ], [ [ 1461, 1475 ], [ 3340, 3354 ], [ 10177, 10191 ], [ 10508, 10522 ] ], [ [ 1490, 1501 ], [ 2804, 2815 ], [ 3403, 3414 ], [ 4069, 4080 ], [ 4312, 4323 ], [ 4704, 4715 ], [ 4826, 4837 ], [ 4895, 4906 ], [ 6889, 6900 ], [ 7445, 7456 ], [ 7775, 7786 ], [ 8050, 8061 ], [ 8325, 8336 ], [ 8596, 8607 ], [ 8855, 8866 ], [ 9114, 9125 ], [ 9369, 9380 ], [ 9622, 9633 ], [ 9875, 9886 ], [ 10230, 10241 ], [ 10565, 10576 ], [ 12420, 12431 ], [ 16226, 16237 ], [ 16514, 16525 ], [ 16840, 16851 ], [ 17112, 17123 ], [ 17484, 17495 ], [ 18192, 18203 ], [ 18455, 18466 ], [ 18692, 18703 ], [ 18945, 18956 ], [ 19303, 19314 ], [ 19644, 19655 ], [ 20116, 20127 ], [ 20384, 20395 ], [ 20665, 20676 ], [ 20987, 20998 ], [ 21244, 21255 ], [ 22466, 22477 ], [ 2225, 2236 ], [ 5217, 5228 ], [ 6567, 6578 ], [ 11523, 11534 ], [ 11652, 11663 ], [ 11697, 11708 ], [ 23204, 23215 ] ], [ [ 1526, 1548 ], [ 22771, 22793 ] ], [ [ 1567, 1582 ], [ 16062, 16077 ], [ 16344, 16359 ], [ 16636, 16651 ], [ 16948, 16963 ], [ 17222, 17237 ], [ 18020, 18035 ], [ 18297, 18312 ] ], [ [ 2672, 2685 ] ], [ [ 2900, 2911 ] ], [ [ 3906, 3922 ] ], [ [ 4176, 4191 ] ], [ [ 4412, 4423 ] ], [ [ 6746, 6768 ] ], [ [ 7133, 7152 ] ], [ [ 7560, 7577 ] ], [ [ 7896, 7922 ] ], [ [ 8159, 8191 ] ], [ [ 8446, 8470 ] ], [ [ 8701, 8727 ] ], [ [ 8964, 8988 ] ], [ [ 9219, 9243 ] ], [ [ 9474, 9497 ] ], [ [ 9725, 9749 ] ], [ [ 10000, 10017 ] ], [ [ 10338, 10353 ] ], [ [ 10667, 10680 ] ], [ [ 16043, 16061 ] ], [ [ 16319, 16343 ] ], [ [ 16619, 16635 ] ], [ [ 16929, 16947 ] ], [ [ 17205, 17221 ] ], [ [ 18003, 18019 ] ], [ [ 18281, 18296 ] ], [ [ 18542, 18558 ] ], [ [ 18781, 18801 ] ], [ [ 19061, 19085 ] ], [ [ 19402, 19424 ] ], [ [ 19739, 19765 ] ], [ [ 20239, 20251 ] ], [ [ 20488, 20509 ] ], [ [ 20784, 20801 ] ], [ [ 21097, 21113 ] ], [ [ 21354, 21376 ] ] ]
# --------------------------------------------------------------------- # Angtel.Topaz.get_interface_status # --------------------------------------------------------------------- # Copyright (C) 2007-2019 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # Python modules import re # NOC modules from noc.core.script.base import BaseScript from noc.sa.interfaces.igetinterfacestatus import IGetInterfaceStatus class Script(BaseScript): name = "Angtel.Topaz.get_interface_status" interface = IGetInterfaceStatus cache = True rx_port = re.compile( r"^(?P<port>(?:Fa|Gi|Te|Po)\S+)\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+" r"(?P<oper_status>Up|Down|Not Present)", re.MULTILINE | re.IGNORECASE, ) def execute_cli(self, interface=None): r = [] v = self.cli("show interfaces status", cached=True) for match in self.rx_port.finditer(v): if (interface is not None) and (interface == match.group("port")): return [ {"interface": match.group("port"), "status": match.group("oper_status") == "Up"} ] r += [{"interface": match.group("port"), "status": match.group("oper_status") == "Up"}] return r
[ [ [ 345, 347 ], [ 620, 622 ], [ 763, 765 ], [ 778, 780 ] ], [ [ 396, 406 ], [ 492, 502 ] ], [ [ 457, 476 ], [ 568, 587 ] ], [ [ 485, 491 ] ] ]
# -*- coding: utf-8 -*- """ pygments.lexers.diff ~~~~~~~~~~~~~~~~~~~~ Lexers for diff/patch formats. :copyright: Copyright 2006-2017 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ import re from pygments.lexer import RegexLexer, include, bygroups from pygments.token import Text, Comment, Operator, Keyword, Name, Generic, \ Literal __all__ = ['DiffLexer', 'DarcsPatchLexer', 'WDiffLexer'] class DiffLexer(RegexLexer): """ Lexer for unified or context-style diffs or patches. """ name = 'Diff' aliases = ['diff', 'udiff'] filenames = ['*.diff', '*.patch'] mimetypes = ['text/x-diff', 'text/x-patch'] tokens = { 'root': [ (r' .*\n', Text), (r'\+.*\n', Generic.Inserted), (r'-.*\n', Generic.Deleted), (r'!.*\n', Generic.Strong), (r'@.*\n', Generic.Subheading), (r'([Ii]ndex|diff).*\n', Generic.Heading), (r'=.*\n', Generic.Heading), (r'.*\n', Text), ] } def analyse_text(text): if text[:7] == 'Index: ': return True if text[:5] == 'diff ': return True if text[:4] == '--- ': return 0.9 class DarcsPatchLexer(RegexLexer): """ DarcsPatchLexer is a lexer for the various versions of the darcs patch format. Examples of this format are derived by commands such as ``darcs annotate --patch`` and ``darcs send``. .. versionadded:: 0.10 """ name = 'Darcs Patch' aliases = ['dpatch'] filenames = ['*.dpatch', '*.darcspatch'] DPATCH_KEYWORDS = ('hunk', 'addfile', 'adddir', 'rmfile', 'rmdir', 'move', 'replace') tokens = { 'root': [ (r'<', Operator), (r'>', Operator), (r'\{', Operator), (r'\}', Operator), (r'(\[)((?:TAG )?)(.*)(\n)(.*)(\*\*)(\d+)(\s?)(\])', bygroups(Operator, Keyword, Name, Text, Name, Operator, Literal.Date, Text, Operator)), (r'(\[)((?:TAG )?)(.*)(\n)(.*)(\*\*)(\d+)(\s?)', bygroups(Operator, Keyword, Name, Text, Name, Operator, Literal.Date, Text), 'comment'), (r'New patches:', Generic.Heading), (r'Context:', Generic.Heading), (r'Patch bundle hash:', Generic.Heading), (r'(\s*)(%s)(.*\n)' % '|'.join(DPATCH_KEYWORDS), bygroups(Text, Keyword, Text)), (r'\+', Generic.Inserted, "insert"), (r'-', Generic.Deleted, "delete"), (r'.*\n', Text), ], 'comment': [ (r'[^\]].*\n', Comment), (r'\]', Operator, "#pop"), ], 'specialText': [ # darcs add [_CODE_] special operators for clarity (r'\n', Text, "#pop"), # line-based (r'\[_[^_]*_]', Operator), ], 'insert': [ include('specialText'), (r'\[', Generic.Inserted), (r'[^\n\[]+', Generic.Inserted), ], 'delete': [ include('specialText'), (r'\[', Generic.Deleted), (r'[^\n\[]+', Generic.Deleted), ], } class WDiffLexer(RegexLexer): """ A `wdiff <https://www.gnu.org/software/wdiff/>`_ lexer. Note that: * only to normal output (without option like -l). * if target files of wdiff contain "[-", "-]", "{+", "+}", especially they are unbalanced, this lexer will get confusing. .. versionadded:: 2.2 """ name = 'WDiff' aliases = ['wdiff'] filenames = ['*.wdiff'] mimetypes = [] flags = re.MULTILINE | re.DOTALL # We can only assume "[-" after "[-" before "-]" is `nested`, # for instance wdiff to wdiff outputs. We have no way to # distinct these marker is of wdiff output from original text. ins_op = r"\{\+" ins_cl = r"\+\}" del_op = r"\[\-" del_cl = r"\-\]" normal = r'[^{}[\]+-]+' # for performance tokens = { 'root': [ (ins_op, Generic.Inserted, 'inserted'), (del_op, Generic.Deleted, 'deleted'), (normal, Text), (r'.', Text), ], 'inserted': [ (ins_op, Generic.Inserted, '#push'), (del_op, Generic.Inserted, '#push'), (del_cl, Generic.Inserted, '#pop'), (ins_cl, Generic.Inserted, '#pop'), (normal, Generic.Inserted), (r'.', Generic.Inserted), ], 'deleted': [ (del_op, Generic.Deleted, '#push'), (ins_op, Generic.Deleted, '#push'), (ins_cl, Generic.Deleted, '#pop'), (del_cl, Generic.Deleted, '#pop'), (normal, Generic.Deleted), (r'.', Generic.Deleted), ], }
[ [ [ 242, 244 ], [ 3710, 3712 ], [ 3725, 3727 ] ], [ [ 273, 283 ], [ 469, 479 ], [ 1286, 1296 ], [ 3287, 3297 ] ], [ [ 285, 292 ], [ 2994, 3001 ], [ 3145, 3152 ] ], [ [ 294, 302 ], [ 1982, 1990 ], [ 2166, 2174 ], [ 2500, 2508 ] ], [ [ 330, 334 ], [ 749, 753 ], [ 1042, 1046 ], [ 2016, 2020 ], [ 2074, 2078 ], [ 2200, 2204 ], [ 2258, 2262 ], [ 2509, 2513 ], [ 2524, 2528 ], [ 2650, 2654 ], [ 2883, 2887 ], [ 4218, 4222 ], [ 4244, 4248 ] ], [ [ 336, 343 ], [ 2716, 2723 ] ], [ [ 345, 353 ], [ 1801, 1809 ], [ 1831, 1839 ], [ 1862, 1870 ], [ 1893, 1901 ], [ 1991, 1999 ], [ 2028, 2036 ], [ 2080, 2088 ], [ 2175, 2183 ], [ 2212, 2220 ], [ 2746, 2754 ], [ 2940, 2948 ] ], [ [ 355, 362 ], [ 2001, 2008 ], [ 2185, 2192 ], [ 2515, 2522 ] ], [ [ 364, 368 ], [ 2010, 2014 ], [ 2022, 2026 ], [ 2194, 2198 ], [ 2206, 2210 ] ], [ [ 370, 377 ], [ 780, 787 ], [ 822, 829 ], [ 863, 870 ], [ 903, 910 ], [ 961, 968 ], [ 1002, 1009 ], [ 2307, 2314 ], [ 2351, 2358 ], [ 2405, 2412 ], [ 2552, 2559 ], [ 2600, 2607 ], [ 3038, 3045 ], [ 3083, 3090 ], [ 3189, 3196 ], [ 3233, 3240 ], [ 4116, 4123 ], [ 4168, 4175 ], [ 4305, 4312 ], [ 4354, 4361 ], [ 4403, 4410 ], [ 4452, 4459 ], [ 4500, 4507 ], [ 4538, 4545 ], [ 4610, 4617 ], [ 4658, 4665 ], [ 4706, 4713 ], [ 4754, 4761 ], [ 4801, 4808 ], [ 4838, 4845 ] ], [ [ 385, 392 ], [ 2060, 2067 ], [ 2244, 2251 ] ], [ [ 394, 401 ] ], [ [ 459, 468 ] ], [ [ 1270, 1285 ] ], [ [ 3276, 3286 ] ] ]
from disco import Disco class Config: def __init__(self): self._numero_discos = int(input("\nInforme a quantidade de discos: ")) def adiciona_discos(self, torre_inicial): discos = self.add_disco() for ix in range(self._numero_discos): torre_inicial.empilha(discos[ix]) def add_disco(self): discos = [] arquivo = open('disco.txt', 'r') for linha in arquivo: discos.append(Disco(int(linha))) return discos def numero_discos(self): return self._numero_discos def status_torres(self, torres): print('\nNumero de discos: ' + str(self._numero_discos)) for torre in torres: torre.to_string()
[ [ [ 18, 23 ], [ 460, 465 ] ], [ [ 31, 37 ] ] ]
import os import platform import socket import copy import json import numpy as np from datetime import datetime import time from .metadata import acdd import flopy # globals FILLVALUE = -99999.9 ITMUNI = { 0: "undefined", 1: "seconds", 2: "minutes", 3: "hours", 4: "days", 5: "years", } PRECISION_STRS = ["f4", "f8", "i4"] STANDARD_VARS = ["longitude", "latitude", "layer", "elevation", "time"] path = os.path.split(__file__)[0] with open(path + "/longnames.json") as f: NC_LONG_NAMES = json.load(f) class Logger(object): """ Basic class for logging events during the linear analysis calculations if filename is passed, then an file handle is opened Parameters ---------- filename : bool or string if string, it is the log file to write. If a bool, then log is written to the screen. echo (bool): a flag to force screen output Attributes ---------- items : dict tracks when something is started. If a log entry is not in items, then it is treated as a new entry with the string being the key and the datetime as the value. If a log entry is in items, then the end time and delta time are written and the item is popped from the keys """ def __init__(self, filename, echo=False): self.items = {} self.echo = bool(echo) if filename == True: self.echo = True self.filename = None elif filename: self.f = open(filename, "w", 0) # unbuffered self.t = datetime.now() self.log("opening " + str(filename) + " for logging") else: self.filename = None def log(self, phrase): """ log something that happened Parameters ---------- phrase : str the thing that happened """ pass t = datetime.now() if phrase in self.items.keys(): s = ( str(t) + " finished: " + str(phrase) + ", took: " + str(t - self.items[phrase]) + "\n" ) if self.echo: print(s,) if self.filename: self.f.write(s) self.items.pop(phrase) else: s = str(t) + " starting: " + str(phrase) + "\n" if self.echo: print(s,) if self.filename: self.f.write(s) self.items[phrase] = copy.deepcopy(t) def warn(self, message): """ Write a warning to the log file Parameters ---------- message : str the warning text """ s = str(datetime.now()) + " WARNING: " + message + "\n" if self.echo: print(s,) if self.filename: self.f.write(s) return class NetCdf(object): """ Support for writing a netCDF4 compliant file from a flopy model Parameters ---------- output_filename : str Name of the .nc file to write model : flopy model instance time_values : the entries for the time dimension if not None, the constructor will initialize the file. If None, the perlen array of ModflowDis will be used z_positive : str ('up' or 'down') Positive direction of vertical coordinates written to NetCDF file. (default 'down') verbose : if True, stdout is verbose. If str, then a log file is written to the verbose file forgive : what to do if a duplicate variable name is being created. If True, then the newly requested var is skipped. If False, then an exception is raised. **kwargs : keyword arguments modelgrid : flopy.discretization.Grid instance user supplied model grid which will be used in lieu of the model object modelgrid for netcdf production Notes ----- This class relies heavily on the grid and modeltime objects, including these attributes: lenuni, itmuni, start_datetime, and proj4. Make sure these attributes have meaningful values. """ def __init__( self, output_filename, model, time_values=None, z_positive="up", verbose=None, prj=None, logger=None, forgive=False, **kwargs ): assert output_filename.lower().endswith(".nc") if verbose is None: verbose = model.verbose if logger is not None: self.logger = logger else: self.logger = Logger(verbose) self.var_attr_dict = {} self.log = self.logger.log if os.path.exists(output_filename): self.logger.warn("removing existing nc file: " + output_filename) os.remove(output_filename) self.output_filename = output_filename self.forgive = bool(forgive) self.model = model self.model_grid = model.modelgrid if "modelgrid" in kwargs: self.model_grid = kwargs.pop("modelgrid") self.model_time = model.modeltime if prj is not None: self.model_grid.proj4 = prj if self.model_grid.grid_type == "structured": self.dimension_names = ("layer", "y", "x") STANDARD_VARS.extend(["delc", "delr"]) # elif self.model_grid.grid_type == 'vertex': # self.dimension_names = ('layer', 'ncpl') else: raise Exception( "Grid type {} not supported.".format(self.model_grid.grid_type) ) self.shape = self.model_grid.shape try: import dateutil.parser except: print( "python-dateutil is not installed\n" + "try pip install python-dateutil" ) return self.start_datetime = self._dt_str( dateutil.parser.parse(self.model_time.start_datetime) ) self.logger.warn("start datetime:{0}".format(str(self.start_datetime))) proj4_str = self.model_grid.proj4 if proj4_str is None: proj4_str = "epsg:4326" self.log( "Warning: model has no coordinate reference system specified. " "Using default proj4 string: {}".format(proj4_str) ) self.proj4_str = proj4_str self.grid_units = self.model_grid.units self.z_positive = z_positive if self.grid_units is None: self.grid_units = "undefined" assert self.grid_units in ["feet", "meters", "undefined"], ( "unsupported length units: " + self.grid_units ) self.time_units = self.model_time.time_units # this gives us confidence that every NetCdf instance # has the same attributes self.log("initializing attributes") self._initialize_attributes() self.log("initializing attributes") self.time_values_arg = time_values self.log("initializing file") self.initialize_file(time_values=self.time_values_arg) self.log("initializing file") def __add__(self, other): new_net = NetCdf.zeros_like(self) if np.isscalar(other) or isinstance(other, np.ndarray): for vname in self.var_attr_dict.keys(): new_net.nc.variables[vname][:] = ( self.nc.variables[vname][:] + other ) elif isinstance(other, NetCdf): for vname in self.var_attr_dict.keys(): new_net.nc.variables[vname][:] = ( self.nc.variables[vname][:] + other.nc.variables[vname][:] ) else: raise Exception( "NetCdf.__add__(): unrecognized other:{0}".format( str(type(other)) ) ) return new_net def __sub__(self, other): new_net = NetCdf.zeros_like(self) if np.isscalar(other) or isinstance(other, np.ndarray): for vname in self.var_attr_dict.keys(): new_net.nc.variables[vname][:] = ( self.nc.variables[vname][:] - other ) elif isinstance(other, NetCdf): for vname in self.var_attr_dict.keys(): new_net.nc.variables[vname][:] = ( self.nc.variables[vname][:] - other.nc.variables[vname][:] ) else: raise Exception( "NetCdf.__sub__(): unrecognized other:{0}".format( str(type(other)) ) ) return new_net def __mul__(self, other): new_net = NetCdf.zeros_like(self) if np.isscalar(other) or isinstance(other, np.ndarray): for vname in self.var_attr_dict.keys(): new_net.nc.variables[vname][:] = ( self.nc.variables[vname][:] * other ) elif isinstance(other, NetCdf): for vname in self.var_attr_dict.keys(): new_net.nc.variables[vname][:] = ( self.nc.variables[vname][:] * other.nc.variables[vname][:] ) else: raise Exception( "NetCdf.__mul__(): unrecognized other:{0}".format( str(type(other)) ) ) return new_net def __div__(self, other): return self.__truediv__(other) def __truediv__(self, other): new_net = NetCdf.zeros_like(self) with np.errstate(invalid="ignore"): if np.isscalar(other) or isinstance(other, np.ndarray): for vname in self.var_attr_dict.keys(): new_net.nc.variables[vname][:] = ( self.nc.variables[vname][:] / other ) elif isinstance(other, NetCdf): for vname in self.var_attr_dict.keys(): new_net.nc.variables[vname][:] = ( self.nc.variables[vname][:] / other.nc.variables[vname][:] ) else: raise Exception( "NetCdf.__sub__(): unrecognized other:{0}".format( str(type(other)) ) ) return new_net def append(self, other, suffix="_1"): assert isinstance(other, NetCdf) or isinstance(other, dict) if isinstance(other, NetCdf): for vname in other.var_attr_dict.keys(): attrs = other.var_attr_dict[vname].copy() var = other.nc.variables[vname] new_vname = vname if vname in self.nc.variables.keys(): if vname not in STANDARD_VARS: new_vname = vname + suffix if "long_name" in attrs: attrs["long_name"] += " " + suffix else: continue assert ( new_vname not in self.nc.variables.keys() ), "var already exists:{0} in {1}".format( new_vname, ",".join(self.nc.variables.keys()) ) attrs["max"] = var[:].max() attrs["min"] = var[:].min() new_var = self.create_variable( new_vname, attrs, var.dtype, dimensions=var.dimensions ) new_var[:] = var[:] else: for vname, array in other.items(): vname_norm = self.normalize_name(vname) assert ( vname_norm in self.nc.variables.keys() ), "dict var not in " "self.vars:{0}-->".format( vname ) + ",".join( self.nc.variables.keys() ) new_vname = vname_norm + suffix assert new_vname not in self.nc.variables.keys() attrs = self.var_attr_dict[vname_norm].copy() attrs["max"] = np.nanmax(array) attrs["min"] = np.nanmin(array) attrs["name"] = new_vname attrs["long_name"] = attrs["long_name"] + " " + suffix var = self.nc.variables[vname_norm] # assert var.shape == array.shape,\ # "{0} shape ({1}) doesn't make array shape ({2})".\ # format(new_vname,str(var.shape),str(array.shape)) new_var = self.create_variable( new_vname, attrs, var.dtype, dimensions=var.dimensions ) try: new_var[:] = array except: new_var[:, 0] = array return def copy(self, output_filename): new_net = NetCdf.zeros_like(self, output_filename=output_filename) for vname in self.var_attr_dict.keys(): new_net.nc.variables[vname][:] = self.nc.variables[vname][:] return new_net @classmethod def zeros_like( cls, other, output_filename=None, verbose=None, logger=None ): new_net = NetCdf.empty_like( other, output_filename=output_filename, verbose=verbose, logger=logger, ) # add the vars to the instance for vname in other.var_attr_dict.keys(): if new_net.nc.variables.get(vname) is not None: new_net.logger.warn( "variable {0} already defined, skipping".format(vname) ) continue new_net.log("adding variable {0}".format(vname)) var = other.nc.variables[vname] data = var[:] try: mask = data.mask data = np.array(data) except: mask = None new_data = np.zeros_like(data) new_data[mask] = FILLVALUE new_var = new_net.create_variable( vname, other.var_attr_dict[vname], var.dtype, dimensions=var.dimensions, ) new_var[:] = new_data new_net.log("adding variable {0}".format(vname)) global_attrs = {} for attr in other.nc.ncattrs(): if attr not in new_net.nc.ncattrs(): global_attrs[attr] = other.nc[attr] new_net.add_global_attributes(global_attrs) return new_net @classmethod def empty_like( cls, other, output_filename=None, verbose=None, logger=None ): if output_filename is None: output_filename = ( str(time.mktime(datetime.now().timetuple())) + ".nc" ) while os.path.exists(output_filename): print("{}...already exists".format(output_filename)) output_filename = ( str(time.mktime(datetime.now().timetuple())) + ".nc" ) print( "creating temporary netcdf file..." + "{}".format(output_filename) ) new_net = cls( output_filename, other.model, time_values=other.time_values_arg, verbose=verbose, logger=logger, ) return new_net def difference( self, other, minuend="self", mask_zero_diff=True, onlydiff=True ): """ make a new NetCDF instance that is the difference with another netcdf file Parameters ---------- other : either an str filename of a netcdf file or a netCDF4 instance minuend : (optional) the order of the difference operation. Default is self (e.g. self - other). Can be "self" or "other" mask_zero_diff : bool flag to mask differences that are zero. If True, positions in the difference array that are zero will be set to self.fillvalue only_diff : bool flag to only add non-zero diffs to output file Returns ------- net NetCDF instance Notes ----- assumes the current NetCDF instance has been populated. The variable names and dimensions between the two files must match exactly. The name of the new .nc file is <self.output_filename>.diff.nc. The masks from both self and other are carried through to the new instance """ assert self.nc is not None, ( "can't call difference() if nc " + "hasn't been populated" ) try: import netCDF4 except Exception as e: mess = "error import netCDF4: {0}".format(str(e)) self.logger.warn(mess) raise Exception(mess) if isinstance(other, str): assert os.path.exists( other ), "filename 'other' not found:" + "{0}".format(other) other = netCDF4.Dataset(other, "r") assert isinstance(other, netCDF4.Dataset) # check for similar variables self_vars = set(self.nc.variables.keys()) other_vars = set(other.variables) diff = self_vars.symmetric_difference(other_vars) if len(diff) > 0: self.logger.warn( "variables are not the same between the two " + "nc files: " + ",".join(diff) ) return # check for similar dimensions self_dimens = self.nc.dimensions other_dimens = other.dimensions for d in self_dimens.keys(): if d not in other_dimens: self.logger.warn("missing dimension in other:{0}".format(d)) return if len(self_dimens[d]) != len(other_dimens[d]): self.logger.warn( "dimension not consistent: " + "{0}:{1}".format(self_dimens[d], other_dimens[d]) ) return # should be good to go time_values = self.nc.variables.get("time")[:] new_net = NetCdf( self.output_filename.replace(".nc", ".diff.nc"), self.model, time_values=time_values, ) # add the vars to the instance for vname in self_vars: if ( vname not in self.var_attr_dict or new_net.nc.variables.get(vname) is not None ): self.logger.warn("skipping variable: {0}".format(vname)) continue self.log("processing variable {0}".format(vname)) s_var = self.nc.variables[vname] o_var = other.variables[vname] s_data = s_var[:] o_data = o_var[:] o_mask, s_mask = None, None # keep the masks to apply later if isinstance(s_data, np.ma.MaskedArray): self.logger.warn("masked array for {0}".format(vname)) s_mask = s_data.mask s_data = np.array(s_data) s_data[s_mask] = 0.0 else: np.nan_to_num(s_data) if isinstance(o_data, np.ma.MaskedArray): o_mask = o_data.mask o_data = np.array(o_data) o_data[o_mask] = 0.0 else: np.nan_to_num(o_data) # difference with self if minuend.lower() == "self": d_data = s_data - o_data elif minuend.lower() == "other": d_data = o_data - s_data else: mess = "unrecognized minuend {0}".format(minuend) self.logger.warn(mess) raise Exception(mess) # check for non-zero diffs if onlydiff and d_data.sum() == 0.0: self.logger.warn( "var {0} has zero differences, skipping...".format(vname) ) continue self.logger.warn( "resetting diff attrs max,min:{0},{1}".format( d_data.min(), d_data.max() ) ) attrs = self.var_attr_dict[vname].copy() attrs["max"] = np.nanmax(d_data) attrs["min"] = np.nanmin(d_data) # reapply masks if s_mask is not None: self.log("applying self mask") s_mask[d_data != 0.0] = False d_data[s_mask] = FILLVALUE self.log("applying self mask") if o_mask is not None: self.log("applying other mask") o_mask[d_data != 0.0] = False d_data[o_mask] = FILLVALUE self.log("applying other mask") d_data[np.isnan(d_data)] = FILLVALUE if mask_zero_diff: d_data[np.where(d_data == 0.0)] = FILLVALUE var = new_net.create_variable( vname, attrs, s_var.dtype, dimensions=s_var.dimensions ) var[:] = d_data self.log("processing variable {0}".format(vname)) def _dt_str(self, dt): """ for datetime to string for year < 1900 """ dt_str = "{0:04d}-{1:02d}-{2:02d}T{3:02d}:{4:02d}:{5:02}Z".format( dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second ) return dt_str def write(self): """write the nc object to disk""" self.log("writing nc file") assert ( self.nc is not None ), "netcdf.write() error: nc file not initialized" # write any new attributes that have been set since # initializing the file for k, v in self.global_attributes.items(): try: if self.nc.attributes.get(k) is not None: self.nc.setncattr(k, v) except Exception: self.logger.warn( "error setting global attribute {0}".format(k) ) self.nc.sync() self.nc.close() self.log("writing nc file") def _initialize_attributes(self): """private method to initial the attributes of the NetCdf instance """ assert ( "nc" not in self.__dict__.keys() ), "NetCdf._initialize_attributes() error: nc attribute already set" self.nc_epsg_str = "epsg:4326" self.nc_crs_longname = "http://www.opengis.net/def/crs/EPSG/0/4326" self.nc_semi_major = float(6378137.0) self.nc_inverse_flat = float(298.257223563) self.global_attributes = {} self.global_attributes["namefile"] = self.model.namefile self.global_attributes["model_ws"] = self.model.model_ws self.global_attributes["exe_name"] = self.model.exe_name self.global_attributes["modflow_version"] = self.model.version self.global_attributes["create_hostname"] = socket.gethostname() self.global_attributes["create_platform"] = platform.system() self.global_attributes["create_directory"] = os.getcwd() htol, rtol = -999, -999 try: htol, rtol = self.model.solver_tols() except Exception as e: self.logger.warn( "unable to get solver tolerances:" + "{0}".format(str(e)) ) self.global_attributes["solver_head_tolerance"] = htol self.global_attributes["solver_flux_tolerance"] = rtol spatial_attribs = { "xll": self.model_grid.xoffset, "yll": self.model_grid.yoffset, "rotation": self.model_grid.angrot, "proj4_str": self.model_grid.proj4, } for n, v in spatial_attribs.items(): self.global_attributes["flopy_sr_" + n] = v self.global_attributes[ "start_datetime" ] = self.model_time.start_datetime self.fillvalue = FILLVALUE # initialize attributes self.grid_crs = None self.zs = None self.ys = None self.xs = None self.nc = None def initialize_geometry(self): """ initialize the geometric information needed for the netcdf file """ try: import pyproj except ImportError as e: raise ImportError( "NetCdf error importing pyproj module:\n" + str(e) ) from distutils.version import LooseVersion # Check if using newer pyproj version conventions pyproj220 = LooseVersion(pyproj.__version__) >= LooseVersion("2.2.0") proj4_str = self.proj4_str print("initialize_geometry::proj4_str = {}".format(proj4_str)) self.log("building grid crs using proj4 string: {}".format(proj4_str)) if pyproj220: self.grid_crs = pyproj.CRS(proj4_str) else: self.grid_crs = pyproj.Proj(proj4_str, preserve_units=True) print("initialize_geometry::self.grid_crs = {}".format(self.grid_crs)) vmin, vmax = self.model_grid.botm.min(), self.model_grid.top.max() if self.z_positive == "down": vmin, vmax = vmax, vmin else: self.zs = self.model_grid.xyzcellcenters[2].copy() ys = self.model_grid.xyzcellcenters[1].copy() xs = self.model_grid.xyzcellcenters[0].copy() # Transform to a known CRS if pyproj220: nc_crs = pyproj.CRS(self.nc_epsg_str) self.transformer = pyproj.Transformer.from_crs( self.grid_crs, nc_crs, always_xy=True ) else: nc_crs = pyproj.Proj(self.nc_epsg_str) self.transformer = None print("initialize_geometry::nc_crs = {}".format(nc_crs)) if pyproj220: print( "transforming coordinates using = {}".format(self.transformer) ) self.log("projecting grid cell center arrays") if pyproj220: self.xs, self.ys = self.transformer.transform(xs, ys) else: self.xs, self.ys = pyproj.transform(self.grid_crs, nc_crs, xs, ys) # get transformed bounds and record to check against ScienceBase later xmin, xmax, ymin, ymax = self.model_grid.extent bbox = np.array( [[xmin, ymin], [xmin, ymax], [xmax, ymax], [xmax, ymin]] ) if pyproj220: x, y = self.transformer.transform(*bbox.transpose()) else: x, y = pyproj.transform(self.grid_crs, nc_crs, *bbox.transpose()) self.bounds = x.min(), y.min(), x.max(), y.max() self.vbounds = vmin, vmax def initialize_file(self, time_values=None): """ initialize the netcdf instance, including global attributes, dimensions, and grid information Parameters ---------- time_values : list of times to use as time dimension entries. If none, then use the times in self.model.dis.perlen and self.start_datetime """ if self.nc is not None: raise Exception("nc file already initialized") if self.grid_crs is None: self.log("initializing geometry") self.initialize_geometry() self.log("initializing geometry") try: import netCDF4 except Exception as e: self.logger.warn("error importing netCDF module") msg = "NetCdf error importing netCDF4 module:\n" + str(e) raise Exception(msg) # open the file for writing try: self.nc = netCDF4.Dataset(self.output_filename, "w") except Exception as e: msg = "error creating netcdf dataset:\n{}".format(str(e)) raise Exception(msg) # write some attributes self.log("setting standard attributes") self.nc.setncattr( "Conventions", "CF-1.6, ACDD-1.3, flopy {}".format(flopy.__version__), ) self.nc.setncattr( "date_created", datetime.utcnow().strftime("%Y-%m-%dT%H:%M:00Z") ) self.nc.setncattr( "geospatial_vertical_positive", "{}".format(self.z_positive) ) min_vertical = np.min(self.zs) max_vertical = np.max(self.zs) self.nc.setncattr("geospatial_vertical_min", min_vertical) self.nc.setncattr("geospatial_vertical_max", max_vertical) self.nc.setncattr("geospatial_vertical_resolution", "variable") self.nc.setncattr("featureType", "Grid") for k, v in self.global_attributes.items(): try: self.nc.setncattr(k, v) except: self.logger.warn( "error setting global attribute {0}".format(k) ) self.global_attributes = {} self.log("setting standard attributes") # spatial dimensions self.log("creating dimensions") # time if time_values is None: time_values = np.cumsum(self.model_time.perlen) self.nc.createDimension("time", len(time_values)) for name, length in zip(self.dimension_names, self.shape): self.nc.createDimension(name, length) self.log("creating dimensions") self.log("setting CRS info") # Metadata variables crs = self.nc.createVariable("crs", "i4") crs.long_name = self.nc_crs_longname crs.epsg_code = self.nc_epsg_str crs.semi_major_axis = self.nc_semi_major crs.inverse_flattening = self.nc_inverse_flat self.log("setting CRS info") attribs = { "units": "{} since {}".format( self.time_units, self.start_datetime ), "standard_name": "time", "long_name": NC_LONG_NAMES.get("time", "time"), "calendar": "gregorian", "_CoordinateAxisType": "Time", } time = self.create_variable( "time", attribs, precision_str="f8", dimensions=("time",) ) self.logger.warn("time_values:{0}".format(str(time_values))) time[:] = np.asarray(time_values) # Elevation attribs = { "units": self.model_grid.units, "standard_name": "elevation", "long_name": NC_LONG_NAMES.get("elevation", "elevation"), "axis": "Z", "valid_min": min_vertical, "valid_max": max_vertical, "positive": self.z_positive, } elev = self.create_variable( "elevation", attribs, precision_str="f8", dimensions=self.dimension_names, ) elev[:] = self.zs # Longitude attribs = { "units": "degrees_east", "standard_name": "longitude", "long_name": NC_LONG_NAMES.get("longitude", "longitude"), "axis": "X", "_CoordinateAxisType": "Lon", } lon = self.create_variable( "longitude", attribs, precision_str="f8", dimensions=self.dimension_names[1:], ) lon[:] = self.xs self.log("creating longitude var") # Latitude self.log("creating latitude var") attribs = { "units": "degrees_north", "standard_name": "latitude", "long_name": NC_LONG_NAMES.get("latitude", "latitude"), "axis": "Y", "_CoordinateAxisType": "Lat", } lat = self.create_variable( "latitude", attribs, precision_str="f8", dimensions=self.dimension_names[1:], ) lat[:] = self.ys # x self.log("creating x var") attribs = { "units": self.model_grid.units, "standard_name": "projection_x_coordinate", "long_name": NC_LONG_NAMES.get("x", "x coordinate of projection"), "axis": "X", } x = self.create_variable( "x_proj", attribs, precision_str="f8", dimensions=self.dimension_names[1:], ) x[:] = self.model_grid.xyzcellcenters[0] # y self.log("creating y var") attribs = { "units": self.model_grid.units, "standard_name": "projection_y_coordinate", "long_name": NC_LONG_NAMES.get("y", "y coordinate of projection"), "axis": "Y", } y = self.create_variable( "y_proj", attribs, precision_str="f8", dimensions=self.dimension_names[1:], ) y[:] = self.model_grid.xyzcellcenters[1] # grid mapping variable crs = flopy.utils.reference.crs( prj=self.model_grid.prj, epsg=self.model_grid.epsg ) attribs = crs.grid_mapping_attribs if attribs is not None: self.log("creating grid mapping variable") self.create_variable( attribs["grid_mapping_name"], attribs, precision_str="f8" ) # layer self.log("creating layer var") attribs = { "units": "", "standard_name": "layer", "long_name": NC_LONG_NAMES.get("layer", "layer"), "positive": "down", "axis": "Z", } lay = self.create_variable("layer", attribs, dimensions=("layer",)) lay[:] = np.arange(0, self.shape[0]) self.log("creating layer var") if self.model_grid.grid_type == "structured": # delc attribs = { "units": self.model_grid.units.strip("s"), "long_name": NC_LONG_NAMES.get( "delc", "Model grid cell spacing along a column" ), } delc = self.create_variable("delc", attribs, dimensions=("y",)) delc[:] = self.model_grid.delc[::-1] if self.model_grid.angrot != 0: delc.comments = ( "This is the row spacing that applied to the UNROTATED grid. " + "This grid HAS been rotated before being saved to NetCDF. " + "To compute the unrotated grid, use the origin point and this array." ) # delr attribs = { "units": self.model_grid.units.strip("s"), "long_name": NC_LONG_NAMES.get( "delr", "Model grid cell spacing along a row" ), } delr = self.create_variable("delr", attribs, dimensions=("x",)) delr[:] = self.model_grid.delr[::-1] if self.model_grid.angrot != 0: delr.comments = ( "This is the col spacing that applied to the UNROTATED grid. " + "This grid HAS been rotated before being saved to NetCDF. " + "To compute the unrotated grid, use the origin point and this array." ) # else: # vertices # attribs = {"units": self.model_grid.lenuni.strip('s'), # "long_name": NC_LONG_NAMES.get("vertices", # "List of vertices used in the model by cell"), # } # vertices = self.create_variable('vertices', attribs, dimensions=('ncpl',)) # vertices[:] = self.model_grid.vertices # Workaround for CF/CDM. # http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/ # reference/StandardCoordinateTransforms.html # "explicit_field" exp = self.nc.createVariable("VerticalTransform", "S1") exp.transform_name = "explicit_field" exp.existingDataField = "elevation" exp._CoordinateTransformType = "vertical" exp._CoordinateAxes = "layer" return def initialize_group( self, group="timeseries", dimensions=("time",), attributes=None, dimension_data=None, ): """ Method to initialize a new group within a netcdf file. This group can have independent dimensions from the global dimensions Parameters: ---------- name : str name of the netcdf group dimensions : tuple data dimension names for group dimension_shape : tuple tuple of data dimension lengths attributes : dict nested dictionary of {dimension : {attributes}} for each netcdf group dimension dimension_data : dict dictionary of {dimension : [data]} for each netcdf group dimension """ if attributes is None: attributes = {} if dimension_data is None: dimension_data = {} if self.nc is None: self.initialize_file() if group in self.nc.groups: raise AttributeError("{} group already initialized".format(group)) self.log("creating netcdf group {}".format(group)) self.nc.createGroup(group) self.log("{} group created".format(group)) self.log("creating {} group dimensions".format(group)) for dim in dimensions: if dim == "time": if "time" not in dimension_data: time_values = np.cumsum(self.model_time.perlen) else: time_values = dimension_data["time"] self.nc.groups[group].createDimension(dim, len(time_values)) else: if dim not in dimension_data: raise AssertionError( "{} information must be supplied " "to dimension data".format(dim) ) else: self.nc.groups[group].createDimension( dim, len(dimension_data[dim]) ) self.log("created {} group dimensions".format(group)) dim_names = tuple([i for i in dimensions if i != "time"]) for dim in dimensions: if dim.lower() == "time": if "time" not in attributes: unit_value = "{} since {}".format( self.time_units, self.start_datetime ) attribs = { "units": unit_value, "standard_name": "time", "long_name": NC_LONG_NAMES.get("time", "time"), "calendar": "gregorian", "Axis": "Y", "_CoordinateAxisType": "Time", } else: attribs = attributes["time"] time = self.create_group_variable( group, "time", attribs, precision_str="f8", dimensions=("time",), ) time[:] = np.asarray(time_values) elif dim.lower() == "zone": if "zone" not in attributes: attribs = { "units": "N/A", "standard_name": "zone", "long_name": "zonebudget zone", "Axis": "X", "_CoordinateAxisType": "Zone", } else: attribs = attributes["zone"] zone = self.create_group_variable( group, "zone", attribs, precision_str="i4", dimensions=("zone",), ) zone[:] = np.asarray(dimension_data["zone"]) else: attribs = attributes[dim] var = self.create_group_variable( group, dim, attribs, precision_str="f8", dimensions=dim_names, ) var[:] = np.asarray(dimension_data[dim]) @staticmethod def normalize_name(name): return name.replace(".", "_").replace(" ", "_").replace("-", "_") def create_group_variable( self, group, name, attributes, precision_str, dimensions=("time",) ): """ Create a new group variable in the netcdf object Parameters ---------- name : str the name of the variable attributes : dict attributes to add to the new variable precision_str : str netcdf-compliant string. e.g. f4 dimensions : tuple which dimensions the variable applies to default : ("time","layer","x","y") group : str which netcdf group the variable goes in default : None which creates the variable in root Returns ------- nc variable Raises ------ AssertionError if precision_str not right AssertionError if variable name already in netcdf object AssertionError if one of more dimensions do not exist """ name = self.normalize_name(name) if ( name in STANDARD_VARS and name in self.nc.groups[group].variables.keys() ): return if name in self.nc.groups[group].variables.keys(): if self.forgive: self.logger.warn( "skipping duplicate {} group variable: {}".format( group, name ) ) return else: raise Exception( "duplicate {} group variable name: {}".format(group, name) ) self.log("creating group {} variable: {}".format(group, name)) if precision_str not in PRECISION_STRS: raise AssertionError( "netcdf.create_variable() error: precision " "string {} not in {}".format(precision_str, PRECISION_STRS) ) if group not in self.nc.groups: raise AssertionError( "netcdf group `{}` must be created before " "variables can be added to it".format(group) ) self.var_attr_dict["{}/{}".format(group, name)] = attributes var = self.nc.groups[group].createVariable( name, precision_str, dimensions, fill_value=self.fillvalue, zlib=True, ) for k, v in attributes.items(): try: var.setncattr(k, v) except: self.logger.warn( "error setting attribute" + "{} for group {} variable {}".format(k, group, name) ) self.log("creating group {} variable: {}".format(group, name)) return var def create_variable( self, name, attributes, precision_str="f4", dimensions=("time", "layer"), group=None, ): """ Create a new variable in the netcdf object Parameters ---------- name : str the name of the variable attributes : dict attributes to add to the new variable precision_str : str netcdf-compliant string. e.g. f4 dimensions : tuple which dimensions the variable applies to default : ("time","layer","x","y") group : str which netcdf group the variable goes in default : None which creates the variable in root Returns ------- nc variable Raises ------ AssertionError if precision_str not right AssertionError if variable name already in netcdf object AssertionError if one of more dimensions do not exist """ # Normalize variable name name = self.normalize_name(name) # if this is a core var like a dimension... # long_name = attributes.pop("long_name",name) if name in STANDARD_VARS and name in self.nc.variables.keys(): return if ( name not in self.var_attr_dict.keys() and name in self.nc.variables.keys() ): if self.forgive: self.logger.warn( "skipping duplicate variable: {0}".format(name) ) return else: raise Exception("duplicate variable name: {0}".format(name)) if name in self.nc.variables.keys(): raise Exception("duplicate variable name: {0}".format(name)) self.log("creating variable: " + str(name)) assert ( precision_str in PRECISION_STRS ), "netcdf.create_variable() error: precision string {0} not in {1}".format( precision_str, PRECISION_STRS ) if self.nc is None: self.initialize_file() # check that the requested dimension exists and # build up the chuck sizes # chunks = [] # for dimension in dimensions: # assert self.nc.dimensions.get(dimension) is not None, \ # "netcdf.create_variable() dimension not found:" + dimension # chunk = self.chunks[dimension] # assert chunk is not None, \ # "netcdf.create_variable() chunk size of {0} is None in self.chunks". \ # format(dimension) # chunks.append(chunk) self.var_attr_dict[name] = attributes var = self.nc.createVariable( name, precision_str, dimensions, fill_value=self.fillvalue, zlib=True, ) # , # chunksizes=tuple(chunks)) for k, v in attributes.items(): try: var.setncattr(k, v) except: self.logger.warn( "error setting attribute" + "{0} for variable {1}".format(k, name) ) self.log("creating variable: " + str(name)) return var def add_global_attributes(self, attr_dict): """ add global attribute to an initialized file Parameters ---------- attr_dict : dict(attribute name, attribute value) Returns ------- None Raises ------ Exception of self.nc is None (initialize_file() has not been called) """ if self.nc is None: # self.initialize_file() mess = ( "NetCDF.add_global_attributes() should only " + "be called after the file has been initialized" ) self.logger.warn(mess) raise Exception(mess) self.log("setting global attributes") self.nc.setncatts(attr_dict) self.log("setting global attributes") def add_sciencebase_metadata(self, id, check=True): """Add metadata from ScienceBase using the flopy.export.metadata.acdd class. Returns ------- metadata : flopy.export.metadata.acdd object """ md = acdd(id, model=self.model) if md.sb is not None: if check: self._check_vs_sciencebase(md) # get set of public attributes attr = {n for n in dir(md) if "_" not in n[0]} # skip some convenience attributes skip = { "bounds", "creator", "sb", "xmlroot", "time_coverage", "get_sciencebase_xml_metadata", "get_sciencebase_metadata", } towrite = sorted(list(attr.difference(skip))) for k in towrite: v = md.__getattribute__(k) if v is not None: # convert everything to strings if not isinstance(v, str): if isinstance(v, list): v = ",".join(v) else: v = str(v) self.global_attributes[k] = v self.nc.setncattr(k, v) self.write() return md def _check_vs_sciencebase(self, md): """Check that model bounds read from flopy are consistent with those in ScienceBase.""" xmin, ymin, xmax, ymax = self.bounds tol = 1e-5 assert md.geospatial_lon_min - xmin < tol assert md.geospatial_lon_max - xmax < tol assert md.geospatial_lat_min - ymin < tol assert md.geospatial_lat_max - ymax < tol assert md.geospatial_vertical_min - self.vbounds[0] < tol assert md.geospatial_vertical_max - self.vbounds[1] < tol def get_longnames_from_docstrings(self, outfile="longnames.json"): """ This is experimental. Scrape Flopy module docstrings and return docstrings for parameters included in the list of variables added to NetCdf object. Create a dictionary of longnames keyed by the NetCdf variable names; make each longname from the first sentence of the docstring for that parameter. One major limitation is that variables from mflists often aren't described in the docstrings. """ def startstop(ds): """Get just the Parameters section of the docstring.""" start, stop = 0, -1 for i, l in enumerate(ds): if "Parameters" in l and "----" in ds[i + 1]: start = i + 2 if l.strip() in ["Attributes", "Methods", "Returns", "Notes"]: stop = i - 1 break if i >= start and "----" in l: stop = i - 2 break return start, stop def get_entries(ds): """Parse docstring entries into dictionary.""" stuff = {} k = None for line in ds: if ( len(line) >= 5 and line[:4] == " " * 4 and line[4] != " " and ":" in line ): k = line.split(":")[0].strip() stuff[k] = "" # lines with parameter descriptions elif k is not None and len(line) > 10: # avoid orphans stuff[k] += line.strip() + " " return stuff # get a list of the flopy classes # packages = inspect.getmembers(flopy.modflow, inspect.isclass) packages = [(pp.name[0], pp) for pp in self.model.packagelist] # get a list of the NetCDF variables attr = [v.split("_")[-1] for v in self.nc.variables] # parse docstrings to get long names longnames = {} for pkg in packages: # parse the docstring obj = pkg[-1] ds = obj.__doc__.split("\n") start, stop = startstop(ds) txt = ds[start:stop] if stop - start > 0: params = get_entries(txt) for k, v in params.items(): if k in attr: longnames[k] = v.split(". ")[0] # add in any variables that weren't found for var in attr: if var not in longnames.keys(): longnames[var] = "" with open(outfile, "w") as output: json.dump(longnames, output, sort_keys=True, indent=2) return longnames
[ [ [ 7, 9 ], [ 430, 432 ], [ 4753, 4755 ], [ 4876, 4878 ], [ 14922, 14924 ], [ 17006, 17008 ], [ 23256, 23258 ] ], [ [ 17, 25 ], [ 23185, 23193 ] ], [ [ 33, 39 ], [ 23112, 23118 ] ], [ [ 47, 51 ], [ 2546, 2550 ] ], [ [ 59, 63 ], [ 519, 523 ], [ 51899, 51903 ] ], [ [ 71, 82 ], [ 7300, 7302 ], [ 7340, 7342 ], [ 8056, 8058 ], [ 8096, 8098 ], [ 8812, 8814 ], [ 8852, 8854 ], [ 9644, 9646 ], [ 9690, 9692 ], [ 9730, 9732 ], [ 12207, 12209 ], [ 12255, 12257 ], [ 13963, 13965 ], [ 14049, 14051 ], [ 19051, 19053 ], [ 19204, 19206 ], [ 19292, 19294 ], [ 19349, 19351 ], [ 19431, 19433 ], [ 19519, 19521 ], [ 20404, 20406 ], [ 20449, 20451 ], [ 20953, 20955 ], [ 21037, 21039 ], [ 26451, 26453 ], [ 28422, 28424 ], [ 28461, 28463 ], [ 29207, 29209 ], [ 30322, 30324 ], [ 33662, 33664 ], [ 37575, 37577 ], [ 39245, 39247 ], [ 39980, 39982 ], [ 40332, 40334 ] ], [ [ 104, 112 ], [ 1568, 1576 ], [ 1906, 1914 ], [ 2764, 2772 ], [ 14856, 14864 ], [ 15084, 15092 ], [ 28230, 28238 ] ], [ [ 120, 124 ], [ 14844, 14848 ], [ 15072, 15076 ] ], [ [ 147, 151 ], [ 47555, 47559 ] ], [ [ 159, 164 ], [ 28145, 28150 ], [ 32949, 32954 ] ], [ [ 176, 185 ], [ 14098, 14107 ], [ 20656, 20665 ], [ 20875, 20884 ], [ 20973, 20982 ], [ 21064, 21073 ], [ 24092, 24101 ] ], [ [ 197, 203 ] ], [ [ 313, 327 ], [ 42177, 42191 ], [ 42348, 42362 ], [ 45118, 45132 ], [ 45245, 45259 ] ], [ [ 350, 363 ], [ 5377, 5390 ], [ 10883, 10896 ], [ 41524, 41537 ], [ 44440, 44453 ] ], [ [ 423, 427 ], [ 467, 471 ] ], [ [ 496, 497 ], [ 529, 530 ] ], [ [ 503, 516 ], [ 29993, 30006 ], [ 30498, 30511 ], [ 31038, 31051 ], [ 31587, 31600 ], [ 32097, 32110 ], [ 32596, 32609 ], [ 33465, 33478 ], [ 33915, 33928 ], [ 34646, 34659 ], [ 38713, 38726 ] ], [ [ 540, 546 ], [ 4659, 4665 ] ], [ [ 2933, 2939 ], [ 7265, 7271 ], [ 7561, 7567 ], [ 8021, 8027 ], [ 8317, 8323 ], [ 8777, 8783 ], [ 9073, 9079 ], [ 9607, 9613 ], [ 9971, 9977 ], [ 10526, 10532 ], [ 10590, 10596 ], [ 12975, 12981 ], [ 13307, 13313 ], [ 18270, 18276 ] ] ]
# -*- coding: utf-8 -*- from .Enviopack import Enviopack from .Auth.Auth import Auth from .Quote.Quote import Quote from .Pickings.Pickings import Pickings from .Orders.Orders import Orders __version__ = "0.4.6" __author__ = "Federico Gobea"
[ [ [ 47, 56 ] ], [ [ 80, 84 ] ], [ [ 110, 115 ] ], [ [ 147, 155 ] ], [ [ 183, 189 ] ], [ [ 191, 202 ] ], [ [ 213, 223 ] ] ]
""" WSGI config for billsengine_31836 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'billsengine_31836.settings') application = get_wsgi_application()
[ [ [ 240, 242 ], [ 295, 297 ] ], [ [ 273, 293 ], [ 388, 408 ] ], [ [ 374, 385 ] ] ]
import requests import threading import random import json usernames = json.loads(open("usernames.json", "r").read()) password = '%4B%65%6E%79%6F%6E%35%25' # A hex encoded password siteurl = '192.168.122.61' def run(): username = random.choice(usernames) token = requests.get('http://' + siteurl + '/login/token.php?username=' + username + '&password=' + password + '&service=moodle_mobile_app').json()["token"] print(f'{token}') while True: #run() #""" numthreads = 200 threads = [] for i in range(numthreads): t = threading.Thread(target = run) t.daemon = True threads.append(t) for i in range(numthreads): threads[i].start() for i in range(numthreads): threads[i].join() #"""
[ [ [ 7, 15 ], [ 273, 281 ] ], [ [ 23, 32 ], [ 559, 568 ] ], [ [ 40, 46 ], [ 236, 242 ] ], [ [ 54, 58 ], [ 72, 76 ] ], [ [ 60, 69 ], [ 250, 259 ] ], [ [ 119, 127 ], [ 365, 373 ] ], [ [ 182, 189 ], [ 298, 305 ] ], [ [ 214, 217 ], [ 585, 588 ] ], [ [ 481, 491 ], [ 534, 544 ], [ 659, 669 ], [ 718, 728 ] ], [ [ 502, 509 ], [ 622, 629 ], [ 680, 687 ], [ 739, 746 ] ], [ [ 523, 524 ] ], [ [ 555, 556 ], [ 598, 599 ], [ 637, 638 ] ], [ [ 648, 649 ], [ 688, 689 ] ], [ [ 707, 708 ], [ 747, 748 ] ] ]
import pytest from autogluon.core.space import Categorical from autogluon.vision._gluoncv import ObjectDetection def get_dataset(path): return ObjectDetection.Dataset.from_voc(path) @pytest.mark.skip(reason="ObjectDetector is not stable to test, and fails due to transient errors occasionally.") def test_object_detection_estimator(): dataset = get_dataset('https://autogluon.s3.amazonaws.com/datasets/tiny_motorbike.zip') train_data, val_data, test_data = dataset.random_split(val_size=0.3, test_size=0.2, random_state=0) task = ObjectDetection({'num_trials': 1, 'epochs': 1, 'batch_size': 4}) detector = task.fit(train_data) assert task.fit_summary().get('valid_map', 0) > 0 test_result = detector.predict(test_data) @pytest.mark.skip(reason="ObjectDetector is not stable to test, and fails due to transient errors occasionally.") def test_object_detection_estimator_transfer(): dataset = get_dataset('https://autogluon.s3.amazonaws.com/datasets/tiny_motorbike.zip') train_data, val_data, test_data = dataset.random_split(val_size=0.3, test_size=0.2, random_state=0) task = ObjectDetection({'num_trials': 1, 'epochs': 1, 'transfer': Categorical('yolo3_darknet53_coco', 'ssd_512_resnet50_v1_voc'), 'estimator': 'ssd', 'batch_size': 4}) detector = task.fit(train_data) assert task.fit_summary().get('valid_map', 0) > 0 test_result = detector.predict(test_data)
[ [ [ 7, 13 ], [ 192, 198 ], [ 755, 761 ] ], [ [ 48, 59 ], [ 1182, 1193 ] ], [ [ 98, 113 ], [ 150, 165 ], [ 551, 566 ], [ 1123, 1138 ] ], [ [ 120, 131 ], [ 358, 369 ], [ 930, 941 ] ], [ [ 309, 340 ] ], [ [ 872, 912 ] ] ]
#!/usr/bin/python # -*- coding: UTF-8 -*- import asyncio import pyppeteer import time import os import random from exe_js import js1, js3, js4, js5 # http://www.mamicode.com/info-detail-2302923.html # https://segmentfault.com/a/1190000011627343 """ { proxy: "127.0.0.1:1234", proxy-auth: "userx:passx", proxy-type: "meh" } """ def input_time_random(): return random.randint(300, 500) async def main(): print("in main ") print(os.environ.get('PYPPETEER_CHROMIUM_REVISION')) browser = await pyppeteer.launch( executablePath=r"D:\A\Desktop\项目+更新\node_project\chrome-win\chrome-win\chrome.exe", headless=False, args=[ '--proxy-server=118.24.156.214:8118' ], timeout=30000) page = await browser.newPage() await page.setViewport({"width": 1000, "height": 780}) await page.setUserAgent("Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36") await page.goto('http://httpbin.net/ip') # await page.waitForNavigation({'waitUntil': 'load'}) # 有时候不需要 content = await page.content() cookies = await page.cookies() await page.screenshot({'path': 'example.png'}) dimensions = await page.evaluate('''() => { return { width: document.documentElement.clientWidth, height: document.documentElement.clientHeight, deviceScaleFactor: window.devicePixelRatio, } }''') print(dimensions) await browser.close() return {'content': content, 'cookies': cookies} asyncio.get_event_loop().run_until_complete(main())
[ [ [ 49, 56 ], [ 1593, 1600 ] ], [ [ 64, 73 ], [ 520, 529 ] ], [ [ 81, 85 ] ], [ [ 93, 95 ], [ 453, 455 ] ], [ [ 103, 109 ], [ 376, 382 ] ], [ [ 129, 132 ] ], [ [ 134, 137 ] ], [ [ 139, 142 ] ], [ [ 144, 147 ] ], [ [ 344, 361 ] ], [ [ 403, 1590 ], [ 1637, 1641 ] ] ]
import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'api_yamdb.settings') application = get_wsgi_application()
[ [ [ 7, 9 ], [ 62, 64 ] ], [ [ 40, 60 ], [ 147, 167 ] ], [ [ 133, 144 ] ] ]
""" Django settings for bingo project. Generated by 'django-admin startproject' using Django 3.0.5. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) TEMPLATE_DIR = os.path.join(BASE_DIR,'templates') STATIC_DIR=os.path.join(BASE_DIR,'static') MEDIA_ROOT=os.path.join(BASE_DIR,'static') # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '@k0#p3kidu)yaaa3u1hplxz)f@^6xiy384*(+n@@s5x#1bx@m5' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'quiz', 'teacher', 'student', 'widget_tweaks', 'channels', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', #'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] CSRF_COOKIE_SECURE=False ROOT_URLCONF = 'bingo.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATE_DIR,], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'bingo.wsgi.application' ASGI_APPLICATION = 'bingo.asgi.application' CHANNEL_LAYERS = { "default": { "BACKEND": "channels_redis.core.RedisChannelLayer", "CONFIG": { "hosts": [("localhost", 6379)], }, }, } # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS=[ STATIC_DIR, ] LOGIN_REDIRECT_URL='/afterlogin' #for contact us give your gmail id and password EMAIL_BACKEND ='django.core.mail.backends.smtp.EmailBackend' EMAIL_HOST = 'xyz.gmail.com' EMAIL_USE_TLS = True EMAIL_PORT = 587 EMAIL_HOST_USER = 'from@gmail.com' # this email will be used to send emails EMAIL_HOST_PASSWORD = 'xyz' # host email password required # now sign in with your host gmail account in your browser # open following link and turn it ON # https://myaccount.google.com/lesssecureapps # otherwise you will get SMTPAuthenticationError at /contactus # this process is required because google blocks apps authentication by default EMAIL_RECEIVING_USER = ['to@gmail.com'] # email on which you will receive messages sent from website
[ [ [ 313, 315 ], [ 400, 402 ], [ 416, 418 ], [ 432, 434 ], [ 475, 477 ], [ 521, 523 ], [ 564, 566 ], [ 2690, 2692 ] ], [ [ 389, 397 ], [ 488, 496 ], [ 534, 542 ], [ 577, 585 ], [ 2703, 2711 ] ], [ [ 460, 472 ], [ 1856, 1868 ] ], [ [ 510, 520 ], [ 3583, 3593 ] ], [ [ 553, 563 ] ], [ [ 800, 810 ] ], [ [ 933, 938 ] ], [ [ 947, 960 ] ], [ [ 994, 1008 ] ], [ [ 1281, 1291 ] ], [ [ 1695, 1713 ] ], [ [ 1720, 1732 ] ], [ [ 1749, 1758 ] ], [ [ 2247, 2263 ] ], [ [ 2291, 2307 ] ], [ [ 2336, 2350 ] ], [ [ 2595, 2604 ] ], [ [ 2840, 2864 ] ], [ [ 3343, 3356 ] ], [ [ 3368, 3377 ] ], [ [ 3387, 3395 ] ], [ [ 3404, 3412 ] ], [ [ 3421, 3427 ] ], [ [ 3539, 3549 ] ], [ [ 3564, 3580 ] ], [ [ 3599, 3617 ] ], [ [ 3681, 3694 ] ], [ [ 3742, 3752 ] ], [ [ 3771, 3784 ] ], [ [ 3792, 3802 ] ], [ [ 3809, 3824 ] ], [ [ 3885, 3904 ] ], [ [ 4229, 4249 ] ] ]
from zenml.steps import BaseStepConfig class PreTrainingConfigs(BaseStepConfig): # The configuration for the pre-training of the agent ENV_NAME: str = "BreakoutDeterministic-v4" WRITE_TENSORBOARD: bool = True TENSORBOARD_DIR: str = "tensorboard/" LEARNING_RATE: float = 0.00001 INPUT_SHAPE: tuple = (84, 84) BATCH_SIZE: int = 32 SAVE_PATH = "breakout-saves" USE_PER: bool = False MEM_SIZE: int = 100 LOAD_FROM: str = None LOAD_REPLAY_BUFFER: bool = True MAX_NOOP_STEPS: int = 2000 TOTAL_FRAMES: int = 3000 FRAMES_BETWEEN_EVAL: int = 100000 MAX_EPISODE_LENGTH: int = 18000 EVAL_LENGTH: int = 10000 UPDATE_FREQ: int = 10000 PRIORITY_SCALE: float = 0.7 # How much the replay buffer should sample based on priorities. 0 = complete random samples, 1 = completely aligned with priorities CLIP_REWARD: bool = True # Any positive reward is +1, and negative reward is -1, 0 is unchanged UPDATE_FREQ: int = 4 # Number of actions between gradient descent steps DISCOUNT_FACTOR: float = 0.99 # Gamma, how much to discount future rewards BATCH_SIZE: int = 32 # Batch size for training MIN_REPLAY_BUFFER_SIZE = 50000 # The minimum size the replay buffer must be before we start to update the agent WRITE_TENSORBOARD: bool = True EVAL_LENGTH: int = 10000 # Number of frames to evaluate for
[ [ [ 24, 38 ], [ 69, 83 ] ], [ [ 50, 68 ] ] ]
import educative.course1.stacks_queues.stack as s input_data = [23, 60, 12, 42, 4, 97, 2] expected_output_data = [2, 4, 12, 23, 42, 60, 97] # This solution uses a second stack # 1. until input stack is not empty, we pop the top value and compare it # with the top value of the second stack # 2. if value > top of stack 2, we insert the popped value in stack 2 # 3. else while popped value < top of stack 2, we keep pushing top of stack 2 to stack 1 # 4. finally when stack 2 is empty we push the popped value and start over again # 5. The output will be a sorted stack # --------------------------------------------- # NOTE - This can also be done by recursion --- # --------------------------------------------- def sort_stack_1(stack): result = s.Stack(stack.capacity, True) # suppress_printing = True while not stack.is_empty(): value = stack.pop() if not result.is_empty() and value >= int(result.peek()): result.push(value) else: while not result.is_empty() and value < int(result.peek()): stack.push(result.pop()) result.push(value) return result.prettify() def main(): input_stack = s.Stack(len(input_data), True) # suppress_printing = True [input_stack.push(x) for x in input_data] expected_output_stack = s.Stack(len(expected_output_data), True) # suppress_printing = True [expected_output_stack.push(x) for x in expected_output_data] print("Input: \n" + str(input_stack.prettify())) print("Expected: \n" + str(expected_output_stack.prettify())) print("Output: \n" + str(sort_stack_1(input_stack))) if __name__ == '__main__': main()
[ [ [ 7, 49 ], [ 757, 758 ], [ 1193, 1194 ], [ 1326, 1327 ] ], [ [ 51, 61 ], [ 1205, 1215 ], [ 1285, 1295 ] ], [ [ 91, 111 ], [ 1338, 1358 ], [ 1438, 1458 ] ], [ [ 723, 735 ], [ 1609, 1621 ] ], [ [ 1167, 1171 ], [ 1670, 1674 ] ] ]
from __future__ import print_function from __future__ import division
[ [ [ 23, 37 ] ], [ [ 62, 70 ] ] ]
# Author: Denys Makogon # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from glanceclient.v2 import client as glanceclient from keystoneauth1 import loading from keystoneauth1 import session from keystoneclient import client as keystoneclient from novaclient import client as novaclient from neutronclient.v2_0 import client as neutronclient class OpenStackClients(object): __keystone = None __nova = None __neutron = None __glance = None def __password_session_setup(self, node): creds = node.runtime_properties['auth_properties'] if 'region_name' in creds: del creds['region_name'] loader = loading.get_plugin_loader('password') auth = loader.load_from_options(**creds) sess = session.Session(auth=auth) return sess def keystone(self, node): if self.__keystone is None: self.__keystone = keystoneclient.Client(**node.properties) self.__keystone.authenticate() return self.__keystone def nova(self, node): if self.__nova is None: version = node.properties['compute_api_version'] use_connection_pool = node.properties['use_connection_pool'] self.__nova = novaclient.Client( version, session=self.__password_session_setup(node), connection_pool=use_connection_pool) return self.__nova def neutron(self, node): if self.__neutron is None: self.__neutron = neutronclient.Client( session=self.__password_session_setup(node)) return self.__neutron def glance(self, node): if self.__glance is None: self.__glance = glanceclient.Client( session=self.__password_session_setup(node)) return self.__glance openstack = OpenStackClients()
[ [ [ 630, 652 ], [ 2231, 2243 ] ], [ [ 680, 687 ], [ 1184, 1191 ] ], [ [ 714, 721 ], [ 1286, 1293 ] ], [ [ 749, 773 ], [ 1430, 1444 ] ], [ [ 798, 818 ], [ 1764, 1774 ] ], [ [ 850, 873 ], [ 2027, 2040 ] ], [ [ 882, 898 ], [ 2356, 2372 ] ], [ [ 2344, 2353 ] ] ]
from abc import abstractmethod from .apr_fetcher import APRFetcher from typing import Dict, List, Union, Any from .dapp_apr_fetcher import DappAPRFetcher from .utils.utils import ( calculate_lp_token_price, get_block_average_time, get_token_price_from_dexs, open_contract, usdt_address, platform_name_mapping, decimals_mapping, symbol_mapping ) class MasterchefAPRFetcher(DappAPRFetcher): """ Interface for data-fetching based APR fetcher """ @abstractmethod def masterchef_address(self): raise NotImplementedError() @abstractmethod def dapp_token_address_field(self): raise NotImplementedError() @abstractmethod def dapp_token_per_block_or_per_second_field(self, per_block: bool) -> str: raise NotImplementedError() @abstractmethod def _total_staked(self, pool_info): raise NotImplementedError() @abstractmethod def _pool_address(self, pool_info): raise NotImplementedError() @abstractmethod def _alloc_point(self, pool_info): raise NotImplementedError() def dapp_token_address(self, web3) -> str: masterchef_contract = open_contract(self._web3, self._blockchain, self.masterchef_address()) return getattr(masterchef_contract.functions, self.dapp_token_address_field())().call() def dapp_pools_infos(self, web3) -> List[Dict[str, Union[str, float]]]: masterchef_contract = open_contract(self._web3, self._blockchain, self.masterchef_address()) d = [] for i in range(masterchef_contract.functions.poolLength().call()): pool_info = masterchef_contract.functions.poolInfo(i).call() d.append({ "total_staked": self._total_staked(i, pool_info), "pool_address": self._pool_address(i, pool_info), "alloc_point": self._alloc_point(i, pool_info), }) return d def dapp_token_per_year(self, web3) -> float: field_per_second = self.dapp_token_per_block_or_per_second_field(per_block=False) masterchef_contract = open_contract(self._web3, self._blockchain, self.masterchef_address()) token_contract = open_contract(web3, self._blockchain, self.dapp_token_address(web3)) decimals = token_contract.functions.decimals().call() if field_per_second is None or field_per_second == "": average_time_per_block_seconds = get_block_average_time(web3, span=100) block_per_seconds = 1.0 / average_time_per_block_seconds block_per_year = block_per_seconds * 3600 * 24 * 365 token_per_block = getattr(masterchef_contract.functions, self.dapp_token_per_block_field(per_block=True))().call() annual_token_emission = block_per_year * (token_per_block/(10**decimals)) else: annual_token_emission = getattr(masterchef_contract.functions, field_per_second)().call() * 10**(-decimals) * 3600 * 24 * 365 return annual_token_emission def dapp_token_total_alloc(self, web3) -> int: total_alloc = sum([p["alloc_point"] for p in self.dapp_pools_infos(web3)]) return total_alloc def dapp_token_price(self, web3) -> float: return get_token_price_from_dexs(web3, self._blockchain, self.dapp_token_address(web3))
[ [ [ 16, 30 ], [ 499, 513 ], [ 590, 604 ], [ 687, 701 ], [ 824, 838 ], [ 921, 935 ], [ 1018, 1032 ] ], [ [ 56, 66 ] ], [ [ 86, 90 ], [ 1399, 1403 ] ], [ [ 92, 96 ], [ 1394, 1398 ] ], [ [ 98, 103 ], [ 1409, 1414 ] ], [ [ 105, 108 ] ], [ [ 139, 153 ], [ 406, 420 ] ], [ [ 185, 209 ] ], [ [ 215, 237 ], [ 2451, 2473 ] ], [ [ 243, 268 ], [ 3251, 3276 ] ], [ [ 274, 287 ], [ 1186, 1199 ], [ 1460, 1473 ], [ 2116, 2129 ], [ 2212, 2225 ] ], [ [ 293, 305 ] ], [ [ 311, 332 ] ], [ [ 338, 354 ] ], [ [ 360, 374 ] ], [ [ 385, 405 ] ] ]
from django.test import TestCase from django.urls import reverse from rest_framework import status from rest_framework.test import APIClient QUIZZES_URL = reverse('questionary:quiz-list') class PublicQuizzesApiTests(TestCase): """Test the publicly available tags API""" def setUp(self): self.client = APIClient() def test_login_required(self): """Test that login required for retrieving quizzes""" res = self.client.get(QUIZZES_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED)
[ [ [ 24, 32 ], [ 220, 228 ] ], [ [ 57, 64 ], [ 157, 164 ] ], [ [ 93, 99 ], [ 518, 524 ] ], [ [ 132, 141 ], [ 322, 331 ] ], [ [ 143, 154 ], [ 462, 473 ] ], [ [ 198, 219 ] ] ]
############################################################################### # Author: CallMeCCLemon # Date: 2019 # Copyright: 2019 Thomas Littlejohn (@CallMeCCLemon) - Modified BSD License ############################################################################### from enum import Enum from PythonApp.pillar.MessageClient import MessageClient from PythonApp.pillar.PillarMessageTransformer import PillarMessageTransformer from PythonApp.qc_serial.SerialDao import SerialDao from PythonApp.qc_serial.SerialUtil import SerialUtil from PythonApp.qc_serial.model.HeaderMessage import HeaderMessage from PythonApp.qc_serial.model.OpCode import OpCode from PythonApp.qc_serial.model.PayloadMessage import PayloadMessage from PythonApp.util.Config import Config class States(Enum): DISCONNECTED = 0 CONNECTED = 1 class SerialStateMachine: def __init__(self, serial_dao: SerialDao): self.active_state = States.DISCONNECTED self.config = Config() self.states = { States.DISCONNECTED: self.disconnected, States.CONNECTED: self.connected, } self.serial_dao = serial_dao self.message_client = MessageClient() self.header_message_length = 11 self.done = False def run(self): while not self.done: self.states[self.active_state]() def disconnected(self): # Send HELO Messages waiting for an ACK.You hello_message = HeaderMessage( OpCode.HELO, 0, int(self.config.get_master_config_value("PillarID")), 0) self.serial_dao.write(hello_message.to_serial_payload()) message = self.serial_dao.read(self.header_message_length) try: SerialUtil.validate_message_header(message) except TimeoutError as ex: return except ValueError as ex: print(ex) return header_message = HeaderMessage.build_header_object(message[1:]) if header_message.opcode == OpCode.ACK: print("Received ACK! Now connected to badge {}!".format(header_message.from_id)) self.active_state = States.CONNECTED else: print("Received unknown message! Skipping..") def connected(self): # Send DUMPQ messages waiting for a DUMPA. dump_q_message = HeaderMessage( OpCode.DUMPQ, 1, int(self.config.get_master_config_value("PillarID")), 0) dump_q_payload = PayloadMessage(int(self.config.get_master_config_value("PillarType"))) print("Sending dump Q message!") print("Dump Q Header: {}".format(dump_q_message.to_serial_payload(dump_q_payload))) self.serial_dao.write(dump_q_message.to_serial_payload(dump_q_payload)) print("Dump q payload: {}".format(dump_q_payload.to_serial_payload())) self.serial_dao.write_no_sync(dump_q_payload.to_serial_payload()) message = self.serial_dao.read(self.header_message_length) try: SerialUtil.validate_message_header(message) header_message = HeaderMessage.build_header_object(message[1:]) if header_message.opcode == OpCode.DUMPA: print("Received DUMPA! Sending update to cloud!") message = self.serial_dao.read(header_message.payload_len) payload_message = PayloadMessage.build_payload_object(message) pillar_message = PillarMessageTransformer\ .transform_serial_message_to_pillar_message(header_message, payload_message) self.message_client.send_message_to_queue(pillar_message) self.done = True else: print("Unexpected message type!") except TimeoutError as ex: print(ex) except ValueError as ex: print(ex) self.active_state = States.DISCONNECTED
[ [ [ 305, 309 ], [ 807, 811 ] ], [ [ 356, 369 ], [ 1220, 1233 ] ], [ [ 425, 449 ], [ 3582, 3606 ] ], [ [ 493, 502 ], [ 922, 931 ] ], [ [ 547, 557 ], [ 1818, 1828 ], [ 3149, 3159 ] ], [ [ 611, 624 ], [ 1513, 1526 ], [ 2023, 2036 ], [ 2443, 2456 ], [ 3223, 3236 ] ], [ [ 671, 677 ], [ 1541, 1547 ], [ 2107, 2113 ], [ 2471, 2477 ], [ 3311, 3317 ] ], [ [ 732, 746 ], [ 2610, 2624 ], [ 3503, 3517 ] ], [ [ 782, 788 ], [ 1006, 1012 ] ], [ [ 800, 806 ], [ 963, 969 ], [ 1053, 1059 ], [ 1106, 1112 ], [ 2246, 2252 ], [ 4032, 4038 ] ], [ [ 866, 884 ] ] ]