code
stringlengths
10
805k
def_use_chains
sequencelengths
0
667
if __name__ == '__main__': n = int(input().strip()) if n % 2 != 0: print("Weird") elif 2 <= n <= 5: print("Not Weird") elif 6 <= n <= 20: print("Weird") else: print("Not Weird")
[ [ [ 31, 32 ], [ 63, 64 ], [ 112, 113 ], [ 161, 162 ] ] ]
import hashlib import json import sys from logbook import Logger, StreamHandler from pycoin.coins.bitcoin.networks import BitcoinMainnet import pycoin.ui.key_from_text import pycoin.key import socket script_for_address = BitcoinMainnet.ui.script_for_address log = Logger(__name__) class Connection: def __init__(self, addr): self.s = socket.create_connection(addr) self.f = self.s.makefile('r') self.id = 0 def call(self, method, *args): req = { 'id': self.id, 'method': method, 'params': list(args), } msg = json.dumps(req) + '\n' self.s.sendall(msg.encode('ascii')) return json.loads(self.f.readline()) def main(): conn = Connection(('localhost', 50001)) xpub, = sys.argv[1:] total = 0 k = pycoin.ui.key_from_text.key_from_text(xpub) for change in (0, 1): empty = 0 for n in range(100): address = k.subkey(change).subkey(n).address() script = script_for_address(address) script_hash = hashlib.sha256(script).digest() log.debug('{}', conn.call('blockchain.scripthash.get_history', script_hash[::-1].hex())) reply = conn.call('blockchain.scripthash.get_balance', script_hash[::-1].hex()) result = reply['result'] confirmed = result['confirmed'] / 1e8 total += confirmed if confirmed: log.info('{}/{} => {} has {:11.8f} BTC', change, n, address, confirmed) empty = 0 else: empty += 1 if empty >= 10: break log.info('total balance: {} BTC', total) if __name__ == '__main__': with StreamHandler(sys.stderr, level='INFO').applicationbound(): main()
[ [ [ 7, 14 ], [ 1076, 1083 ] ], [ [ 22, 26 ], [ 608, 612 ], [ 690, 694 ] ], [ [ 34, 37 ], [ 1852, 1855 ], [ 790, 793 ] ], [ [ 59, 65 ], [ 269, 275 ] ], [ [ 67, 80 ], [ 1838, 1851 ] ], [ [ 124, 138 ], [ 225, 239 ] ], [ [ 146, 169 ] ], [ [ 177, 187 ], [ 825, 831 ] ], [ [ 196, 202 ], [ 352, 358 ] ], [ [ 204, 222 ], [ 1022, 1040 ] ], [ [ 263, 266 ], [ 1120, 1123 ], [ 1529, 1532 ], [ 1759, 1762 ] ], [ [ 293, 303 ], [ 745, 755 ] ], [ [ 726, 730 ], [ 1906, 1910 ] ] ]
from django.urls import path from .views import MyObtainTokenPairView, RegisterView from rest_framework_simplejwt.views import TokenRefreshView urlpatterns = [ path('login/', MyObtainTokenPairView.as_view(), name='token_obtain_pair'), path('login/refresh/', TokenRefreshView.as_view(), name='token_refresh'), path('register/', RegisterView.as_view(), name='auth_register'), ]
[ [ [ 24, 28 ], [ 172, 176 ], [ 252, 256 ], [ 331, 335 ] ], [ [ 49, 70 ], [ 187, 208 ] ], [ [ 72, 84 ], [ 349, 361 ] ], [ [ 129, 145 ], [ 275, 291 ] ], [ [ 151, 162 ] ] ]
# Copyright 2020 Microsoft Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Requires Python 2.7+ """Package Filter""" from core.src.bootstrap.Constants import Constants import fnmatch class PackageFilter(object): """implements the Package filtering logic""" def __init__(self, execution_config, composite_logger): self.execution_config = execution_config self.composite_logger = composite_logger # Exclusions - note: version based exclusion is not supported self.global_excluded_packages = self.sanitize_str_to_list(self.execution_config.global_exclusion_list) self.installation_excluded_package_masks = self.execution_config.excluded_package_name_mask_list self.installation_excluded_packages, self.installation_excluded_package_versions = self.get_packages_and_versions_from_masks(self.installation_excluded_package_masks) # Inclusions - note: version based inclusion is optionally supported self.installation_included_package_masks = self.execution_config.included_package_name_mask_list self.installation_included_packages, self.installation_included_package_versions = self.get_packages_and_versions_from_masks(self.installation_included_package_masks) self.installation_included_classifications = [] if self.execution_config.included_classifications_list is None else self.execution_config.included_classifications_list # Neutralize global excluded packages, if customer explicitly includes the package packages_to_clear_from_global = [] for package in self.global_excluded_packages: if self.check_for_explicit_inclusion(package): self.composite_logger.log_debug('Removing package from global exclusion list: ' + package) packages_to_clear_from_global.append(package) self.global_excluded_packages = [x for x in self.global_excluded_packages if x not in packages_to_clear_from_global] # Logging self.composite_logger.log("\nAzure globally-excluded packages: " + str(self.global_excluded_packages)) self.composite_logger.log("Included package classifications: " + ', '.join(self.installation_included_classifications)) self.composite_logger.log("Included packages: " + str(self.installation_included_package_masks)) self.composite_logger.log("Excluded packages: " + str(self.installation_excluded_packages)) if '=' in str(self.installation_excluded_package_masks): self.composite_logger.log_error("\n /!\\ Package exclusions do not support version matching in the filter today. " "Due to this, more packages than expected may be excluded from this update deployment.") # region Inclusion / exclusion presence checks def is_exclusion_list_present(self): """Return true if either Global or patch installation specific exclusion list present""" return bool(self.global_excluded_packages) or bool(self.installation_excluded_packages) def is_inclusion_list_present(self): """Return true if patch installation Inclusion is present""" return bool(self.installation_included_packages) # endregion # region Package exclusion checks def check_for_exclusion(self, one_or_more_packages): """Return true if package need to be excluded""" return self.check_for_match(one_or_more_packages, self.installation_excluded_packages) or \ self.check_for_match(one_or_more_packages, self.global_excluded_packages) # endregion # region Package inclusion checks def check_for_inclusion(self, package, package_version=Constants.DEFAULT_UNSPECIFIED_VALUE): """Return true if package should be included (either because no inclusion list is specified, or because of explicit match)""" return not self.is_inclusion_list_present() or self.check_for_explicit_inclusion(package, package_version) def check_for_explicit_inclusion(self, package, package_version=Constants.DEFAULT_UNSPECIFIED_VALUE): """Return true if package should be included due to an explicit match to the inclusion list """ return self.check_for_match(package, self.installation_included_packages, package_version, self.installation_included_package_versions) # endregion # region Inclusion / exclusion common match checker def check_for_match(self, one_or_more_packages, matching_list, linked_package_versions=Constants.DEFAULT_UNSPECIFIED_VALUE, version_matching_list=Constants.DEFAULT_UNSPECIFIED_VALUE): # type: (str, object, str, object) -> bool # type hinting to remove a warning """Return true if package(s) (with, optionally, linked version(s)) matches the filter list""" if matching_list: if type(one_or_more_packages) is str: return self.single_package_check_for_match(one_or_more_packages, matching_list, linked_package_versions, version_matching_list) else: for index, each_package in enumerate(one_or_more_packages): if type(linked_package_versions) is str: if self.single_package_check_for_match(each_package, matching_list, linked_package_versions, version_matching_list): return True else: if self.single_package_check_for_match(each_package, matching_list, linked_package_versions[index], version_matching_list): return True return False def single_package_check_for_match(self, package, matching_list, package_version, version_matching_list): """Returns true if a single package (optionally, version) matches the filter list""" for index, matching_package in enumerate(matching_list): if fnmatch.fnmatch(package, matching_package) or fnmatch.fnmatch(self.get_product_name_without_arch(package), matching_package): self.composite_logger.log_debug(' - [Package] {0} matches expression {1}'.format(package, matching_package)) if package_version == Constants.DEFAULT_UNSPECIFIED_VALUE or not version_matching_list or version_matching_list[index] == Constants.DEFAULT_UNSPECIFIED_VALUE: self.composite_logger.log_debug(' - [Version] Check skipped as not specified.') return True elif len(version_matching_list) > index and fnmatch.fnmatch(package_version, version_matching_list[index]): self.composite_logger.log_debug(' - [Version] {0} matches expression {1}'.format(package, version_matching_list[index])) return True elif len(version_matching_list) <= index: # This should never happen - something has gone horribly wrong self.composite_logger.log_error(' - [Version] Index error - ({0} of {1})'.format(index + 1, len(version_matching_list))) else: self.composite_logger.log_debug(' - Package {0} (version={1}) was found, but it did not match filter specified for version ({2})'.format(package, package_version, version_matching_list[index])) return False @staticmethod def get_product_name_without_arch(package_name): """Splits out product name without architecture - if this is changed, review YumPackageManager""" architectures = ['.x86_64', '.noarch', '.i686'] for arch in architectures: if package_name.endswith(arch): return package_name.replace(arch, '') return package_name # endregion # region Get included / excluded package masks def get_packages_and_versions_from_masks(self, package_masks): """Return package names and versions""" packages = [] package_versions = [] if package_masks is not None: for index, package_mask in enumerate(package_masks): package_mask_split = str(package_mask).split('=') if len(package_mask_split) == 1: # no version specified packages.append(package_mask_split[0].strip()) package_versions.append(Constants.DEFAULT_UNSPECIFIED_VALUE) elif len(package_mask_split) == 2: # version also specified packages.append(package_mask_split[0].strip()) package_versions.append(package_mask_split[1].strip()) else: # invalid format self.composite_logger.log_warning("Invalid package format: " + str(package_mask) + " [Ignored]") return packages, package_versions @staticmethod def sanitize_str_to_list(string_input): """Strips excess white-space and converts a comma-separated string to a list""" return [] if (string_input is None) else string_input.strip().split(",") # endregion # region Get installation classifications from execution configuration def is_msft_critsec_classification_only(self): return ('Critical' in self.installation_included_classifications or 'Security' in self.installation_included_classifications) and 'Other' not in self.installation_included_classifications def is_msft_other_classification_only(self): return 'Other' in self.installation_included_classifications and not ('Critical' in self.installation_included_classifications or 'Security' in self.installation_included_classifications) def is_msft_all_classification_included(self): """Returns true if all classifications were individually selected *OR* (nothing was selected AND no inclusion list is present) -- business logic""" all_classifications = [key for key in Constants.PackageClassification.__dict__.keys() if not key.startswith('__')] all_classifications_explicitly_selected = bool(len(self.installation_included_classifications) == (len(all_classifications) - 1)) no_classifications_selected = bool(len(self.installation_included_classifications) == 0) only_unclassified_selected = bool('Unclassified' in self.installation_included_classifications and len(self.installation_included_classifications) == 1) return all_classifications_explicitly_selected or ((no_classifications_selected or only_unclassified_selected) and not self.is_inclusion_list_present()) def is_invalid_classification_combination(self): return ('Other' in self.installation_included_classifications and 'Critical' in self.installation_included_classifications and 'Security' not in self.installation_included_classifications) or \ ('Other' in self.installation_included_classifications and 'Security' in self.installation_included_classifications and 'Critical' not in self.installation_included_classifications) # endregion
[ [ [ 674, 683 ], [ 4190, 4199 ], [ 4546, 4555 ], [ 4996, 5005 ], [ 5055, 5064 ], [ 6649, 6658 ], [ 6749, 6758 ], [ 8738, 8747 ], [ 10302, 10311 ] ], [ [ 691, 698 ], [ 6357, 6364 ], [ 6403, 6410 ], [ 6981, 6988 ] ], [ [ 707, 720 ] ] ]
#!/usr/bin/python3 import sys from signal import pause import RPi.GPIO as GPIO # script to activate and deactivate an amplifier, power led, etc. using a GPIO # pin on power up / down # see for an example implementation with a PAM8403 digital amplifier # (PAM pin 12 connected to GPIO 26) # https://github.com/MiczFlor/RPi-Jukebox-RFID/wiki/Hardware-Hack-PAM8403-Poweroff # change this value based on which GPIO port the amplifier or other devices are connected to # Flexible Pinout AMP_GPIO = 26 # Classic Pinout # AMP_GPIO = 23 # setup RPi lib to control output pin # we do not cleanup the GPIO because we want the pin low = off after program exit # the resulting warning can be ignored GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) GPIO.setup(AMP_GPIO, GPIO.OUT) def set_amplifier(status): if status: print("Setting amplifier: ON") GPIO.output(AMP_GPIO, GPIO.HIGH) else: print("Setting amplifier: OFF") GPIO.output(AMP_GPIO, GPIO.LOW) if __name__ == "__main__": try: set_amplifier(True) pause() except KeyboardInterrupt: # turn the relay off set_amplifier(False) print("\nExiting amplifier control\n") # exit the application sys.exit(0)
[ [ [ 27, 30 ], [ 1241, 1244 ] ], [ [ 50, 55 ], [ 1059, 1064 ] ], [ [ 63, 79 ], [ 693, 697 ], [ 717, 721 ], [ 730, 734 ], [ 740, 744 ], [ 761, 765 ], [ 862, 866 ], [ 884, 888 ], [ 953, 957 ], [ 975, 979 ] ], [ [ 486, 494 ], [ 751, 759 ], [ 874, 882 ], [ 965, 973 ] ], [ [ 777, 790 ], [ 1031, 1044 ], [ 1134, 1147 ] ] ]
import os import time from click.testing import CliRunner from bin.throne import cli as throne runner = CliRunner() shodan_key = os.getenv('SHODAN_KEY') throne_user = os.getenv('THRONE_USER') throne_pass = os.getenv('THRONE_PASS') def test_throne_setapi(): print("Testing: throne api setapi") response = runner.invoke(throne, ["api", "setapi", "-u", f"{throne_user}", "-p", f"{throne_pass}"]) assert response.exit_code == 0 assert "Successfully set throne API key." in response.output def test_shodan_setapi(): print("Testing: throne shodan setapi") response = runner.invoke(throne, ["shodan", "setapi"], input=f"{shodan_key}") assert response.exit_code == 0 assert "Successfully set Shodan API key." in response.output
[ [ [ 7, 9 ], [ 131, 133 ], [ 169, 171 ], [ 208, 210 ] ], [ [ 17, 21 ] ], [ [ 48, 57 ], [ 105, 114 ] ], [ [ 81, 94 ], [ 329, 335 ], [ 603, 609 ] ], [ [ 96, 102 ], [ 315, 321 ], [ 589, 595 ] ], [ [ 118, 128 ], [ 642, 652 ] ], [ [ 155, 166 ], [ 364, 375 ] ], [ [ 194, 205 ], [ 388, 399 ] ], [ [ 238, 256 ] ], [ [ 509, 527 ] ] ]
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from oslo_serialization import jsonutils from oslo_utils import strutils from oslo_utils import uuidutils from oslo_versionedobjects import fields import re import six from senlin.common import consts from senlin.common.i18n import _ CONF = cfg.CONF # Field alias for code readability # BooleanField = fields.BooleanField FlexibleBooleanField = fields.FlexibleBooleanField StringField = fields.StringField IntegerField = fields.IntegerField FloatField = fields.FloatField UUIDField = fields.UUIDField DateTimeField = fields.DateTimeField DictOfStringsField = fields.DictOfStringsField ListOfStringsField = fields.ListOfStringsField ListOfEnumField = fields.ListOfEnumField class Boolean(fields.FieldType): # NOTE: The following definition is much more stricter than the oslo # version. Also note that the treatment of default values here: # we are using the user specified default value when invoking # the 'bool_from_string' until function. def __init__(self, default=False): super(Boolean, self).__init__() self._default = default def coerce(self, obj, attr, value): return strutils.bool_from_string(value, strict=True, default=self._default) def get_schema(self): return {'type': ['boolean']} class NonNegativeInteger(fields.FieldType): # NOTE: This definition is kept because we want the error message from # 'int' conversion to be user friendly. @staticmethod def coerce(obj, attr, value): try: v = int(value) except (TypeError, ValueError): raise ValueError(_("The value for %(attr)s must be an integer: " "'%(value)s'.") % {'attr': attr, 'value': value}) if v < 0: err = _("Value must be >= 0 for field '%s'.") % attr raise ValueError(err) return v def get_schema(self): return { 'type': ['integer', 'string'], 'minimum': 0 } # Senlin has a stricter field checking for object fields. class Object(fields.Object): def get_schema(self): schema = super(Object, self).get_schema() # we are not checking whether self._obj_name is registered, an # exception will be raised anyway if it is not registered. data_key = 'senlin_object.data' schema['properties'][data_key]['additionalProperties'] = False return schema class UUID(fields.FieldType): _PATTERN = (r'^[a-fA-F0-9]{8}-?[a-fA-F0-9]{4}-?[a-fA-F0-9]{4}-?[a-fA-F0-9]' r'{4}-?[a-fA-F0-9]{12}$') @staticmethod def coerce(obj, attr, value): if not uuidutils.is_uuid_like(value): msg = _("The value for %(attr)s is not a valid UUID: '%(value)s'." ) % {'attr': attr, 'value': value} raise ValueError(msg) return str(value) def get_schema(self): return {'type': ['string'], 'pattern': self._PATTERN} class Json(fields.FieldType): def coerce(self, obj, attr, value): if isinstance(value, six.string_types): try: return jsonutils.loads(value) except ValueError: msg = _("The value (%s) is not a valid JSON.") % value raise ValueError(msg) return value def from_primitive(self, obj, attr, value): return self.coerce(obj, attr, value) def to_primitive(self, obj, attr, value): return jsonutils.dumps(value) def stringify(self, value): if isinstance(value, six.string_types): try: return jsonutils.loads(value) except ValueError: raise return str(value) def get_schema(self): return {'type': ['object']} class NotificationPriority(fields.Enum): # The priorities here are derived from oslo_messaging.notify.notifier ALL = consts.NOTIFICATION_PRIORITIES def __init__(self): super(NotificationPriority, self).__init__(self.ALL) class NotificationPhase(fields.Enum): ALL = consts.NOTIFICATION_PHASES def __init__(self): super(NotificationPhase, self).__init__(self.ALL) class Name(fields.String): def __init__(self, min_len=1, max_len=255): super(Name, self).__init__() self.min_len = min_len self.max_len = max_len def coerce(self, obj, attr, value): err = None if len(value) < self.min_len: err = _("The value for the %(attr)s field must be at least " "%(count)d characters long." ) % {'attr': attr, 'count': self.min_len} elif len(value) > self.max_len: err = _("The value for the %(attr)s field must be less than " "%(count)d characters long." ) % {'attr': attr, 'count': self.max_len} else: # NOTE: This is pretty restrictive. We can relax it later when # there are requests to do so regex = re.compile(u'^[a-zA-Z\u4e00-\u9fa5\d\.\_\~-]*$', re.IGNORECASE) if not regex.search(value): err = _("The value for the '%(attr)s' (%(value)s) contains " "illegal characters. It must contain only " "alphanumeric or \"_-.~\" characters and must start " "with letter." ) % {'attr': attr, 'value': value} if err: raise ValueError(err) return super(Name, self).coerce(obj, attr, value) def get_schema(self): return { 'type': ['string'], 'minLength': self.min_len, 'maxLength': self.max_len } class Capacity(fields.Integer): def __init__(self, minimum=0, maximum=None): super(Capacity, self).__init__() CONF.import_opt("max_nodes_per_cluster", "senlin.common.config") if minimum > CONF.max_nodes_per_cluster: err = _("The value of 'minimum' cannot be greater than the global " "constraint (%(m)d).") % {'m': CONF.max_nodes_per_cluster} raise ValueError(err) self.minimum = minimum if maximum is not None: if maximum < minimum: err = _("The value of 'maximum' must be greater than or equal " "to that of the 'minimum' specified.") raise ValueError(err) if maximum > CONF.max_nodes_per_cluster: err = _("The value of 'maximum' cannot be greater than the " "global constraint (%(m)d)." ) % {'m': CONF.max_nodes_per_cluster} raise ValueError(err) self.maximum = maximum else: self.maximum = CONF.max_nodes_per_cluster def coerce(self, obj, attr, value): try: v = int(value) except Exception: raise ValueError(_("The value for %(attr)s must be an integer: " "'%(value)s'.") % {'attr': attr, 'value': value}) if v < self.minimum: raise ValueError(_("The value for the %(a)s field must be greater " "than or equal to %(n)d.") % {'a': attr, 'n': self.minimum}) elif v > self.maximum: raise ValueError(_("The value for the %(a)s field must be less " "than or equal to %(n)d.") % {'a': attr, 'n': self.maximum}) return super(Capacity, self).coerce(obj, attr, v) def get_schema(self): return { 'type': ['integer', 'string'], 'minimum': self.minimum, 'maximum': self.maximum, 'pattern': '^[0-9]*$', } class Sort(fields.String): def __init__(self, valid_keys): super(Sort, self).__init__() self.valid_keys = valid_keys def coerce(self, obj, attr, value): for s in value.split(','): s_key, _sep, s_dir = s.partition(':') err = None if not s_key: err = _("Missing sort key for '%s'.") % attr raise ValueError(err) if s_key not in self.valid_keys: err = _("Unsupported sort key '%(value)s' for '%(attr)s'." ) % {'attr': attr, 'value': s_key} if s_dir and s_dir not in ('asc', 'desc'): err = _("Unsupported sort dir '%(value)s' for '%(attr)s'." ) % {'attr': attr, 'value': s_dir} if err: raise ValueError(err) return super(Sort, self).coerce(obj, attr, value) def get_schema(self): return { 'type': ['string'], } class IdentityList(fields.List): def __init__(self, element_type, min_items=0, unique=True, nullable=False, **kwargs): super(IdentityList, self).__init__(element_type, **kwargs) self.min_items = min_items self.unique_items = unique self.nullable = nullable def coerce(self, obj, attr, value): res = super(IdentityList, self).coerce(obj, attr, value) if len(res) < self.min_items: raise ValueError(_("Value for '%(attr)s' must have at least " "%(num)s item(s).") % {'attr': attr, 'num': self.min_items}) if len(set(res)) != len(res) and self.unique_items: raise ValueError(_("Items for '%(attr)s' must be unique") % {'attr': attr}) return res def get_schema(self): schema = super(IdentityList, self).get_schema() if self.nullable: schema['type'].append('null') schema['minItems'] = self.min_items schema['uniqueItems'] = self.unique_items return schema class BaseEnum(fields.FieldType): # NOTE: We are not basing Enum on String because String is not working # correctly when handling None value. def __init__(self, nullable=False): valid_values = list(self.__class__.ALL) if not valid_values: raise ValueError(_("No list of valid values provided for enum.")) for value in valid_values: if not isinstance(value, six.string_types): raise ValueError(_("Enum field only support string values.")) self._valid_values = list(valid_values) self._nullable = nullable super(BaseEnum, self).__init__() def coerce(self, obj, attr, value): value = six.text_type(value) if value not in self._valid_values: raise ValueError(_("Value '%(value)s' is not acceptable for " "field '%(attr)s'.") % {'value': value, 'attr': attr}) return value def stringify(self, value): if value is None: return None return '\'%s\'' % value class AdjustmentType(BaseEnum): ALL = consts.ADJUSTMENT_TYPES def get_schema(self): return {'type': ['string'], 'enum': self._valid_values} class ClusterActionName(BaseEnum): ALL = consts.CLUSTER_ACTION_NAMES def get_schema(self): return {'type': ['string'], 'enum': self._valid_values} class ClusterStatus(BaseEnum): ALL = consts.CLUSTER_STATUSES class NodeStatus(BaseEnum): ALL = consts.NODE_STATUSES class ActionStatus(BaseEnum): ALL = consts.ACTION_STATUSES class ReceiverType(BaseEnum): ALL = consts.RECEIVER_TYPES def get_schema(self): return {'type': ['string'], 'enum': self._valid_values} class UniqueDict(fields.Dict): def coerce(self, obj, attr, value): res = super(UniqueDict, self).coerce(obj, attr, value) new_nodes = res.values() if len(new_nodes) != len(set(new_nodes)): raise ValueError(_("Map contains duplicated values")) return res # TODO(Qiming): remove this when oslo patch is released # https://review.openstack.org/#/c/360095 class NonNegativeIntegerField(fields.AutoTypedField): AUTO_TYPE = NonNegativeInteger() class BooleanField(fields.AutoTypedField): AUTO_TYPE = Boolean() # An override to the oslo.versionedobjects version so that we are using # our own Object definition. class ObjectField(fields.AutoTypedField): def __init__(self, objtype, subclasses=False, **kwargs): self.AUTO_TYPE = Object(objtype, subclasses) self.objname = objtype super(ObjectField, self).__init__(**kwargs) class JsonField(fields.AutoTypedField): AUTO_TYPE = Json() class ListField(fields.AutoTypedField): AUTO_TYPE = fields.List(fields.FieldType()) class NotificationPriorityField(fields.BaseEnumField): AUTO_TYPE = NotificationPriority() class NotificationPhaseField(fields.BaseEnumField): AUTO_TYPE = NotificationPhase() class NameField(fields.AutoTypedField): AUTO_TYPE = Name() class UUIDField(fields.AutoTypedField): AUTO_TYPE = UUID() class CapacityField(fields.AutoTypedField): AUTO_TYPE = None def __init__(self, nullable=False, default=None, minimum=0, maximum=None): self.AUTO_TYPE = Capacity(minimum=minimum, maximum=maximum) super(CapacityField, self).__init__(nullable=nullable, default=default) class SortField(fields.AutoTypedField): AUTO_TYPE = None def __init__(self, valid_keys, nullable=False, default=None): self.AUTO_TYPE = Sort(valid_keys) super(SortField, self).__init__(nullable=nullable, default=default) class IdentityListField(fields.AutoTypedField): AUTO_TYPE = None def __init__(self, min_items=0, unique=True, nullable=False, default=None): if default is None: default = [] self.AUTO_TYPE = IdentityList(fields.String(), min_items=min_items, unique=unique) super(IdentityListField, self).__init__(nullable=nullable, default=default) class AdjustmentTypeField(fields.AutoTypedField): AUTO_TYPE = None def __init__(self, **kwargs): nullable = kwargs.get('nullable', False) self.AUTO_TYPE = AdjustmentType(nullable=nullable) super(AdjustmentTypeField, self).__init__(**kwargs) class ClusterActionNameField(fields.AutoTypedField): AUTO_TYPE = None def __init__(self, **kwargs): nullable = kwargs.get('nullable', False) self.AUTO_TYPE = ClusterActionName(nullable=nullable) super(ClusterActionNameField, self).__init__(**kwargs) class ClusterStatusField(fields.AutoTypedField): AUTO_TYPE = ClusterStatus class NodeStatusField(fields.AutoTypedField): AUTO_TYPE = NodeStatus class ActionStatusField(fields.AutoTypedField): AUTO_TYPE = ActionStatus class ReceiverTypeField(fields.AutoTypedField): AUTO_TYPE = None def __init__(self, **kwargs): nullable = kwargs.get('nullable', False) self.AUTO_TYPE = ReceiverType(nullable=nullable) super(ReceiverTypeField, self).__init__(**kwargs) class NodeReplaceMapField(fields.AutoTypedField): AUTO_TYPE = UniqueDict(fields.String()) class CustomListField(ListField): def __init__(self, attr_name, **kwargs): self.attr_name = attr_name super(CustomListField, self).__init__(**kwargs) def coerce(self, obj, attr, value): objs = super(CustomListField, self).coerce(obj, attr, value) custom_list = [] for i in objs: custom_list.append(getattr(i, self.attr_name)) return custom_list
[ [ [ 573, 576 ], [ 820, 823 ] ], [ [ 608, 617 ], [ 3781, 3790 ], [ 4121, 4130 ], [ 4265, 4274 ] ], [ [ 641, 649 ], [ 1726, 1734 ] ], [ [ 673, 682 ], [ 3306, 3315 ] ], [ [ 717, 723 ], [ 925, 931 ], [ 967, 973 ], [ 1001, 1007 ], [ 1034, 1040 ], [ 1064, 1070 ], [ 1097, 1103 ], [ 1139, 1145 ], [ 1186, 1192 ], [ 1230, 1236 ], [ 1269, 1275 ], [ 1927, 1933 ], [ 2719, 2725 ], [ 3096, 3102 ], [ 3634, 3640 ], [ 4459, 4465 ], [ 4701, 4707 ], [ 4849, 4855 ], [ 6417, 6423 ], [ 8538, 8544 ], [ 9534, 9540 ], [ 10645, 10651 ], [ 12463, 12469 ], [ 12879, 12885 ], [ 12962, 12968 ], [ 13134, 13140 ], [ 13374, 13380 ], [ 13439, 13445 ], [ 13479, 13485 ], [ 13491, 13497 ], [ 13545, 13551 ], [ 13638, 13644 ], [ 13715, 13721 ], [ 13781, 13787 ], [ 13851, 13857 ], [ 14143, 14149 ], [ 14400, 14406 ], [ 14869, 14875 ], [ 15149, 15155 ], [ 15431, 15437 ], [ 15510, 15516 ], [ 15588, 15594 ], [ 15668, 15674 ], [ 15941, 15947 ], [ 15993, 15999 ], [ 14618, 14624 ] ], [ [ 731, 733 ], [ 5671, 5673 ], [ 5751, 5753 ] ], [ [ 741, 744 ], [ 3722, 3725 ], [ 4206, 4209 ], [ 11049, 11052 ], [ 11327, 11330 ] ], [ [ 772, 778 ], [ 4558, 4564 ], [ 4726, 4732 ], [ 11762, 11768 ], [ 11941, 11947 ], [ 12120, 12126 ], [ 12185, 12191 ], [ 12249, 12255 ], [ 12315, 12321 ] ], [ [ 810, 811 ], [ 2232, 2233 ], [ 2426, 2427 ], [ 3355, 3356 ], [ 3857, 3858 ], [ 5129, 5130 ], [ 5353, 5354 ], [ 5828, 5829 ], [ 6666, 6667 ], [ 6961, 6962 ], [ 7196, 7197 ], [ 7644, 7645 ], [ 7860, 7861 ], [ 8092, 8093 ], [ 8862, 8863 ], [ 9007, 9008 ], [ 9197, 9198 ], [ 9999, 10000 ], [ 10254, 10255 ], [ 10927, 10928 ], [ 11101, 11102 ], [ 11421, 11422 ], [ 12693, 12694 ] ], [ [ 813, 817 ], [ 6533, 6537 ], [ 6620, 6624 ], [ 6779, 6783 ], [ 7146, 7150 ], [ 7338, 7342 ], [ 7481, 7485 ] ], [ [ 902, 922 ] ], [ [ 953, 964 ] ], [ [ 986, 998 ] ], [ [ 1021, 1031 ] ], [ [ 1052, 1061 ] ], [ [ 1081, 1094 ] ], [ [ 1118, 1136 ] ], [ [ 1165, 1183 ] ], [ [ 1212, 1227 ] ], [ [ 1261, 1268 ], [ 13003, 13010 ], [ 1612, 1619 ] ], [ [ 1908, 1926 ], [ 12920, 12938 ] ], [ [ 2712, 2718 ], [ 2785, 2791 ], [ 13245, 13251 ] ], [ [ 3091, 3095 ], [ 13822, 13826 ] ], [ [ 3629, 3633 ], [ 13414, 13418 ] ], [ [ 4438, 4458 ], [ 13584, 13604 ], [ 4628, 4648 ] ], [ [ 4683, 4700 ], [ 13677, 13694 ], [ 4792, 4809 ] ], [ [ 4844, 4848 ], [ 13756, 13760 ], [ 4928, 4932 ], [ 6200, 6204 ] ], [ [ 6408, 6416 ], [ 6498, 6506 ], [ 8282, 8290 ], [ 14002, 14010 ] ], [ [ 8533, 8537 ], [ 8605, 8609 ], [ 9390, 9394 ], [ 14281, 14285 ] ], [ [ 9521, 9533 ], [ 9670, 9682 ], [ 9887, 9899 ], [ 10411, 10423 ], [ 14605, 14617 ] ], [ [ 10636, 10644 ], [ 11740, 11748 ], [ 11919, 11927 ], [ 12098, 12106 ], [ 12163, 12171 ], [ 12227, 12235 ], [ 12293, 12301 ], [ 11243, 11251 ] ], [ [ 11725, 11739 ], [ 15024, 15038 ] ], [ [ 11901, 11918 ], [ 15304, 15321 ] ], [ [ 12084, 12097 ], [ 15472, 15485 ] ], [ [ 12152, 12162 ], [ 15551, 15561 ] ], [ [ 12214, 12226 ], [ 15629, 15641 ] ], [ [ 12280, 12292 ], [ 15823, 15835 ] ], [ [ 12452, 12462 ], [ 15982, 15992 ], [ 12538, 12548 ] ], [ [ 12855, 12878 ] ], [ [ 12949, 12961 ] ], [ [ 13122, 13133 ], [ 13318, 13329 ] ], [ [ 13364, 13373 ] ], [ [ 13429, 13438 ], [ 16034, 16043 ] ], [ [ 13519, 13544 ] ], [ [ 13615, 13637 ] ], [ [ 13705, 13714 ] ], [ [ 13771, 13780 ] ], [ [ 13837, 13850 ], [ 14059, 14072 ] ], [ [ 14133, 14142 ], [ 14312, 14321 ] ], [ [ 14382, 14399 ], [ 14723, 14740 ] ], [ [ 14849, 14868 ], [ 15072, 15091 ] ], [ [ 15126, 15148 ], [ 15355, 15377 ] ], [ [ 15412, 15430 ] ], [ [ 15494, 15509 ] ], [ [ 15570, 15587 ] ], [ [ 15650, 15667 ], [ 15869, 15886 ] ], [ [ 15921, 15940 ] ], [ [ 16018, 16033 ], [ 16141, 16156 ], [ 16245, 16260 ] ] ]
# coding:utf-8 import json import random import string import tornado.web import config from lib.jsdict import JsDict from model.user import User # route class Route(object): urls = [] def __call__(self, url, name=None): def _(cls): self.urls.append(tornado.web.URLSpec(url, cls, name=name)) return cls return _ route = Route() # 模板 def get_lookup_mako(): import mako.lookup _lookup = mako.lookup.TemplateLookup( directories=['./templates'], module_directory='/tmp/mako' + ''.join(random.sample(string.ascii_letters + string.digits, 8)), input_encoding='utf-8', ) return _lookup def get_lookup_jinja2(_globals={}, extensions=[]): from jinja2 import Environment, FileSystemLoader _lookup = Environment( loader=FileSystemLoader(['./templates'], encoding='utf-8'), extensions=extensions ) # mako 没有全局变量特性,这里为了一致性 jinjia 向 mako 妥协 #_lookup.globals['url_for'] = url_for _lookup.globals['config'] = config _lookup.globals.update(_globals) return _lookup if config.TEMPLATE == 'mako': lookup = get_lookup_mako() elif config.TEMPLATE == 'jinja2': lookup = get_lookup_jinja2() else: lookup = None # Session class SimpleSession(object): def __init__(self, request): self._request = request self._data = self.load() def __delitem__(self, key): del self._data[key] def __getitem__(self, key): return self._data.get(key) def __setitem__(self, key, value): self._data[key] = value def load(self): _s = self._request.get_secure_cookie('session') or '{}' try: _s = _s.decode('utf-8') # fix:py2 except: pass return json.loads(_s) def flush(self): self._request.set_secure_cookie('session', json.dumps(self._data)) # 消息闪现支持 class Messages(object): MESSAGE_LEVEL = JsDict( DEBUG=10, INFO=20, SUCCESS=25, WARNING=30, ERROR=40, ) DEFAULT_TAGS = { MESSAGE_LEVEL.DEBUG: 'debug', MESSAGE_LEVEL.INFO: 'info', MESSAGE_LEVEL.SUCCESS: 'success', MESSAGE_LEVEL.WARNING: 'warning', MESSAGE_LEVEL.ERROR: 'error', } def __init__(self): self.messages = [] def _add_message(self, level, message): self.messages.append([level, message]) def debug(self, message): self._add_message(self.MESSAGE_LEVEL.DEBUG, message) def info(self, message): self._add_message(self.MESSAGE_LEVEL.INFO, message) def success(self, message): self._add_message(self.MESSAGE_LEVEL.SUCCESS, message) def warning(self, message): self._add_message(self.MESSAGE_LEVEL.WARNING, message) def error(self, message): self._add_message(self.MESSAGE_LEVEL.ERROR, message) class View(tornado.web.RequestHandler): def render(self, fn=None, **kwargs): if not fn: fn = ('/%s/%s.html' % ( '/'.join(self.__module__.split('.')[1:-1]), self.__class__.__name__.lower() )).replace(r'//', r'/') kwargs.update({ 'req': self, 'config': config, 'static': self.static_url, 'url_for': self.reverse_url, 'get_messages': self.get_messages, 'xsrf_token': self.xsrf_form_html(), 'csrf_token': self.xsrf_form_html(), }) if lookup: tmpl = lookup.get_template(fn) self.finish(tmpl.render(**kwargs)) else: if fn.startswith('/'): fn = '.' + fn super(View, self).render(fn, config=config, **kwargs) def get_messages(self): msg_lst = self.messages.messages + (self.session['_messages'] or []) _messages = [] for i in msg_lst: tag, txt = i try: txt = txt.decode('utf-8') # 为py2做个转换 except: pass _messages.append(JsDict(tag=Messages.DEFAULT_TAGS[tag], txt=txt)) self.messages.messages = [] return _messages def initialize(self): self.messages = Messages() self.session = SimpleSession(self) super(View, self).initialize() def flush(self, include_footers=False, callback=None): self.session['_messages'] = self.messages.messages self.session.flush() super(View, self).flush(include_footers, callback) def current_user(self): key = self.get_secure_cookie('u') return User.get_by_key(key) def is_admin(self): user = self.current_user() if user and user.is_admin(): return user class LoginView(View): def prepare(self): if not self.current_user(): self.redirect(url_for('signin')) class NoLoginView(View): def prepare(self): if self.current_user(): self.messages.error("您已登陆,请先退出") self.redirect(url_for('index')) class AjaxView(View): def check_xsrf_cookie(self): # useless for json request pass def prepare(self): self.set_header('Content-Type', 'application/json') super(AjaxView, self).prepare() class AjaxLoginView(LoginView): def check_xsrf_cookie(self): # useless for json request pass def prepare(self): self.set_header('Content-Type', 'application/json') super(AjaxLoginView, self).prepare() # sugar def url_for(name, *args): return config.app.reverse_url(name, *args) def page_title(*args): no_blank = lambda x: x is not None and x != '' return ' » '.join(list(filter(no_blank, args)) + [config.TITLE])
[ [ [ 23, 27 ], [ 1769, 1773 ], [ 1857, 1861 ] ], [ [ 35, 41 ], [ 570, 576 ] ], [ [ 49, 55 ], [ 584, 590 ], [ 607, 613 ] ], [ [ 63, 74 ], [ 2891, 2898 ], [ 282, 289 ] ], [ [ 82, 88 ], [ 1112, 1118 ], [ 1175, 1181 ], [ 1045, 1051 ], [ 3233, 3239 ], [ 3714, 3720 ], [ 5531, 5537 ], [ 5698, 5704 ] ], [ [ 112, 118 ], [ 1937, 1943 ], [ 4021, 4027 ] ], [ [ 142, 146 ], [ 4569, 4573 ] ], [ [ 163, 168 ], [ 374, 379 ] ], [ [ 366, 371 ] ], [ [ 393, 408 ], [ 1152, 1167 ] ], [ [ 694, 711 ], [ 1217, 1234 ] ], [ [ 1143, 1149 ], [ 3489, 3495 ], [ 3516, 3522 ] ], [ [ 1208, 1214 ], [ 3489, 3495 ], [ 3516, 3522 ] ], [ [ 1247, 1253 ], [ 3489, 3495 ], [ 3516, 3522 ] ], [ [ 1279, 1292 ], [ 4217, 4230 ] ], [ [ 1898, 1906 ], [ 4032, 4040 ], [ 4183, 4191 ] ], [ [ 2886, 2890 ], [ 4729, 4733 ], [ 4860, 4864 ], [ 5028, 5032 ], [ 3684, 3688 ], [ 4251, 4255 ], [ 4438, 4442 ] ], [ [ 4719, 4728 ], [ 5262, 5271 ] ], [ [ 4848, 4859 ] ], [ [ 5019, 5027 ], [ 5214, 5222 ] ], [ [ 5248, 5261 ], [ 5453, 5466 ] ], [ [ 5498, 5505 ], [ 4821, 4828 ], [ 4993, 5000 ] ], [ [ 5573, 5583 ] ] ]
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Unit tests for coders that must be consistent across all Beam SDKs. """ from __future__ import absolute_import from __future__ import print_function import json import logging import os.path import sys import unittest from builtins import map import yaml from apache_beam.coders import coder_impl from apache_beam.coders import coders from apache_beam.transforms import window from apache_beam.transforms.window import IntervalWindow from apache_beam.utils import windowed_value from apache_beam.utils.timestamp import Timestamp STANDARD_CODERS_YAML = os.path.join( os.path.dirname(__file__), '..', 'testing', 'data', 'standard_coders.yaml') def _load_test_cases(test_yaml): """Load test data from yaml file and return an iterable of test cases. See ``standard_coders.yaml`` for more details. """ if not os.path.exists(test_yaml): raise ValueError('Could not find the test spec: %s' % test_yaml) for ix, spec in enumerate(yaml.load_all(open(test_yaml))): spec['index'] = ix name = spec.get('name', spec['coder']['urn'].split(':')[-2]) yield [name, spec] class StandardCodersTest(unittest.TestCase): _urn_to_coder_class = { 'beam:coder:bytes:v1': coders.BytesCoder, 'beam:coder:varint:v1': coders.VarIntCoder, 'beam:coder:kv:v1': lambda k, v: coders.TupleCoder((k, v)), 'beam:coder:interval_window:v1': coders.IntervalWindowCoder, 'beam:coder:iterable:v1': lambda t: coders.IterableCoder(t), 'beam:coder:global_window:v1': coders.GlobalWindowCoder, 'beam:coder:windowed_value:v1': lambda v, w: coders.WindowedValueCoder(v, w) } _urn_to_json_value_parser = { 'beam:coder:bytes:v1': lambda x: x, 'beam:coder:varint:v1': lambda x: x, 'beam:coder:kv:v1': lambda x, key_parser, value_parser: (key_parser(x['key']), value_parser(x['value'])), 'beam:coder:interval_window:v1': lambda x: IntervalWindow( start=Timestamp(micros=(x['end'] - x['span']) * 1000), end=Timestamp(micros=x['end'] * 1000)), 'beam:coder:iterable:v1': lambda x, parser: list(map(parser, x)), 'beam:coder:global_window:v1': lambda x: window.GlobalWindow(), 'beam:coder:windowed_value:v1': lambda x, value_parser, window_parser: windowed_value.create( value_parser(x['value']), x['timestamp'] * 1000, tuple([window_parser(w) for w in x['windows']])) } def test_standard_coders(self): for name, spec in _load_test_cases(STANDARD_CODERS_YAML): logging.info('Executing %s test.', name) self._run_standard_coder(name, spec) def _run_standard_coder(self, name, spec): coder = self.parse_coder(spec['coder']) parse_value = self.json_value_parser(spec['coder']) nested_list = [spec['nested']] if 'nested' in spec else [True, False] for nested in nested_list: for expected_encoded, json_value in spec['examples'].items(): value = parse_value(json_value) expected_encoded = expected_encoded.encode('latin1') if not spec['coder'].get('non_deterministic', False): actual_encoded = encode_nested(coder, value, nested) if self.fix and actual_encoded != expected_encoded: self.to_fix[spec['index'], expected_encoded] = actual_encoded else: self.assertEqual(expected_encoded, actual_encoded) self.assertEqual(decode_nested(coder, expected_encoded, nested), value) else: # Only verify decoding for a non-deterministic coder self.assertEqual(decode_nested(coder, expected_encoded, nested), value) def parse_coder(self, spec): return self._urn_to_coder_class[spec['urn']]( *[self.parse_coder(c) for c in spec.get('components', ())]) def json_value_parser(self, coder_spec): component_parsers = [ self.json_value_parser(c) for c in coder_spec.get('components', ())] return lambda x: self._urn_to_json_value_parser[coder_spec['urn']]( x, *component_parsers) # Used when --fix is passed. fix = False to_fix = {} @classmethod def tearDownClass(cls): if cls.fix and cls.to_fix: print("FIXING", len(cls.to_fix), "TESTS") doc_sep = '\n---\n' docs = open(STANDARD_CODERS_YAML).read().split(doc_sep) def quote(s): return json.dumps(s.decode('latin1')).replace(r'\u0000', r'\0') for (doc_ix, expected_encoded), actual_encoded in cls.to_fix.items(): print(quote(expected_encoded), "->", quote(actual_encoded)) docs[doc_ix] = docs[doc_ix].replace( quote(expected_encoded) + ':', quote(actual_encoded) + ':') open(STANDARD_CODERS_YAML, 'w').write(doc_sep.join(docs)) def encode_nested(coder, value, nested=True): out = coder_impl.create_OutputStream() coder.get_impl().encode_to_stream(value, out, nested) return out.get() def decode_nested(coder, encoded, nested=True): return coder.get_impl().decode_from_stream( coder_impl.create_InputStream(encoded), nested) if __name__ == '__main__': if '--fix' in sys.argv: StandardCodersTest.fix = True sys.argv.remove('--fix') unittest.main()
[ [ [ 883, 898 ] ], [ [ 922, 936 ] ], [ [ 945, 949 ], [ 5230, 5234 ] ], [ [ 957, 964 ], [ 3381, 3388 ] ], [ [ 972, 979 ], [ 1344, 1346 ], [ 1362, 1364 ], [ 1611, 1613 ] ], [ [ 987, 990 ], [ 5971, 5974 ], [ 6019, 6022 ] ], [ [ 998, 1006 ], [ 1906, 1914 ], [ 6046, 6054 ] ], [ [ 1028, 1031 ], [ 2951, 2954 ] ], [ [ 1040, 1044 ], [ 1735, 1739 ] ], [ [ 1077, 1087 ], [ 5668, 5678 ], [ 5878, 5888 ] ], [ [ 1119, 1125 ], [ 1982, 1988 ], [ 2031, 2037 ], [ 2156, 2162 ], [ 2288, 2294 ], [ 2090, 2096 ], [ 2226, 2232 ], [ 2375, 2381 ] ], [ [ 1161, 1167 ], [ 3015, 3021 ] ], [ [ 1210, 1224 ], [ 2757, 2771 ] ], [ [ 1255, 1269 ], [ 3125, 3139 ] ], [ [ 1310, 1319 ], [ 2793, 2802 ], [ 2860, 2869 ] ], [ [ 1321, 1341 ], [ 3352, 3372 ], [ 5150, 5170 ], [ 5559, 5579 ] ], [ [ 1444, 1460 ], [ 3335, 3351 ] ], [ [ 1887, 1905 ], [ 5985, 6003 ] ], [ [ 5618, 5631 ], [ 3974, 3987 ] ], [ [ 5782, 5795 ], [ 4254, 4267 ], [ 4442, 4455 ] ] ]
# Under MIT License, see LICENSE.txt class Field(): def __init__(self, ball): self.ball = ball def move_ball(self, position, delta): self.ball.set_position(position, delta)
[ [ [ 45, 50 ] ] ]
#!/usr/bin/env python # setup # Setup script for installing nomen ########################################################################## ## Imports ########################################################################## import os import re import codecs from setuptools import setup from setuptools import find_packages ########################################################################## ## Package Information ########################################################################## ## Basic information NAME = "nomen" DESCRIPTION = "YAML configuration tree with command line flags." AUTHOR = "Jaan Altosaar" EMAIL = "j@jaan.io" LICENSE = "MIT" REPOSITORY = "https://github.com/altosaar/nomen" PACKAGE = "nomen" ## Define the keywords KEYWORDS = ( 'nomen', 'python', 'option', 'tree', 'nested', 'dict', 'parameter', 'flags' ) ## Define the classifiers ## See https://pypi.python.org/pypi?%3Aaction=list_classifiers CLASSIFIERS = ( 'Development Status :: 4 - Beta', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', ) ## Important Paths PROJECT = os.path.abspath(os.path.dirname(__file__)) VERSION_PATH = os.path.join(PACKAGE, "version.py") ## Directories to ignore in find_packages EXCLUDES = ( "tests", "bin", "docs", "fixtures", "register", "notebooks", ) ## Requirements REQUIREMENTS = ["pyyaml", "addict"] ########################################################################## ## Helper Functions ########################################################################## def read(*parts): """ Assume UTF-8 encoding and return the contents of the file located at the absolute path from the REPOSITORY joined with *parts. """ with codecs.open(os.path.join(PROJECT, *parts), 'rb', 'utf-8') as f: return f.read() def get_version(path=VERSION_PATH): """ Reads the version.py defined in the VERSION_PATH to find the get_version function, and executes it to ensure that it is loaded correctly. """ namespace = {} exec(read(path), namespace) return namespace['get_version']() ########################################################################## ## Define the configuration ########################################################################## config = { "name": NAME, "version": get_version(), "description": DESCRIPTION, "long_description": DESCRIPTION, "license": LICENSE, "author": AUTHOR, "author_email": EMAIL, "maintainer": AUTHOR, "maintainer_email": EMAIL, "url": REPOSITORY, "download_url": "{}/tarball/v{}".format(REPOSITORY, get_version()), "packages": find_packages(where=PROJECT, exclude=EXCLUDES), "classifiers": CLASSIFIERS, "keywords": KEYWORDS, "zip_safe": False, "install_requires": REQUIREMENTS, } ########################################################################## ## Run setup script ########################################################################## if __name__ == '__main__': setup(**config)
[ [ [ 236, 238 ], [ 1277, 1279 ], [ 1293, 1295 ], [ 1335, 1337 ], [ 1910, 1912 ] ], [ [ 246, 248 ] ], [ [ 256, 262 ], [ 1898, 1904 ] ], [ [ 287, 292 ], [ 3197, 3202 ] ], [ [ 316, 329 ], [ 2825, 2838 ] ], [ [ 526, 530 ], [ 2479, 2483 ] ], [ [ 541, 552 ], [ 2534, 2545 ], [ 2571, 2582 ] ], [ [ 606, 612 ], [ 2622, 2628 ], [ 2675, 2681 ] ], [ [ 631, 636 ], [ 2650, 2655 ], [ 2707, 2712 ] ], [ [ 651, 658 ], [ 2599, 2606 ] ], [ [ 667, 677 ], [ 2725, 2735 ], [ 2781, 2791 ] ], [ [ 716, 723 ], [ 1348, 1355 ] ], [ [ 758, 766 ], [ 2921, 2929 ] ], [ [ 943, 954 ], [ 2892, 2903 ] ], [ [ 1267, 1274 ], [ 2845, 2852 ], [ 1923, 1930 ] ], [ [ 1320, 1332 ], [ 2009, 2021 ] ], [ [ 1414, 1422 ], [ 2862, 2870 ] ], [ [ 1511, 1523 ], [ 2978, 2990 ] ], [ [ 1724, 1728 ], [ 2214, 2218 ] ], [ [ 1992, 2003 ], [ 2500, 2511 ], [ 2793, 2804 ] ], [ [ 2456, 2462 ], [ 3205, 3211 ] ] ]
from confd_gnmi_adapter import GnmiServerAdapter class GnmiNetconfServerAdapter(GnmiServerAdapter): @classmethod def get_adapter(cls): pass def set(self, prefix, path, val): pass def get_subscription_handler(self, subscription_list): pass def capabilities(self): return [] def get(self, prefix, paths, data_type, use_models): return []
[ [ [ 31, 48 ], [ 82, 99 ] ], [ [ 57, 81 ] ] ]
# Copyright 2021 The LightSeq Team # Copyright Facebook Fairseq # We use layers from Facebook Fairseq as our baseline import math import uuid from typing import Dict, Optional, Tuple, List import torch import torch.nn.functional as F from torch import Tensor, nn from torch.nn import Parameter, LayerNorm, Dropout, Linear from lightseq.training.ops.pytorch import util from lightseq.training.ops.pytorch.layer_base import ( TransformerEmbeddingLayerBase, TransformerEncoderLayerBase, TransformerDecoderLayerBase, ) from .quantization import ( QuantLinear, TensorQuantizer, act_quant_config, weight_quant_config, ) class MultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, is_decoder=False, ): super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout_module = Dropout(dropout) self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention self.is_decoder = is_decoder assert ( not self.self_attention or self.qkv_same_dim ), "Self-attention requires query, key and value to be of the same size" self.attention_quant = None if self.self_attention: # self.qkv_proj = Linear(embed_dim, 3*embed_dim, bias=bias) self.qkv_proj = QuantLinear(embed_dim, 3 * embed_dim, bias=bias) self.attention_quant = ( TensorQuantizer(act_quant_config) if self.is_decoder else None ) elif self.encoder_decoder_attention and self.is_decoder: self.k_proj = QuantLinear( self.kdim, embed_dim, pre_activation="encoder_out", bias=bias ) self.v_proj = QuantLinear( self.vdim, embed_dim, pre_activation="encoder_out", bias=bias ) self.q_proj = QuantLinear(embed_dim, embed_dim, bias=bias) self.out_proj = QuantLinear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() self.onnx_trace = False self.tpu = False self.init_incremental_state() def prepare_for_onnx_export_(self): self.onnx_trace = True def prepare_for_tpu_(self, **kwargs): self.tpu = True def reset_parameters(self): if self.qkv_same_dim: # Empirically observed the convergence to be much better with # the scaled initialization if self.self_attention: nn.init.xavier_uniform_(self.qkv_proj.weight, gain=1 / math.sqrt(2)) else: nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) else: nn.init.xavier_uniform_(self.k_proj.weight) nn.init.xavier_uniform_(self.v_proj.weight) nn.init.xavier_uniform_(self.q_proj.weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.out_proj.bias is not None: nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def forward( self, query, key: Optional[Tensor], value: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, need_weights: bool = True, static_kv: bool = False, attn_mask: Optional[Tensor] = None, before_softmax: bool = False, need_head_weights: bool = False, ): """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if saved_state is not None and "prev_key" in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: qkv = self.qkv_proj(query) if self.attention_quant is not None: qkv = self.attention_quant(qkv) q, k, v = qkv.split(self.embed_dim, dim=-1) # q = self.q_proj(query) # k = self.k_proj(query) # v = self.v_proj(query) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.q_proj(query) if key is None: assert value is None k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: assert key is not None and value is not None q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q = q * self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1), ], dim=1, ) q = ( q.contiguous() .view(tgt_len, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if k is not None: k = ( k.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: k = prev_key else: assert k is not None k = torch.cat([prev_key, k], dim=1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: assert v is not None v = torch.cat([prev_value, v], dim=1) prev_key_padding_mask: Optional[Tensor] = None if "prev_key_padding_mask" in saved_state: prev_key_padding_mask = saved_state["prev_key_padding_mask"] assert k is not None and v is not None key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( key_padding_mask=key_padding_mask, prev_key_padding_mask=prev_key_padding_mask, batch_size=bsz, src_len=k.size(1), static_kv=static_kv, ) saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_key_padding_mask"] = key_padding_mask # In this branch incremental_state is never None assert incremental_state is not None incremental_state = self._set_input_buffer(incremental_state, saved_state) assert k is not None src_len = k.size(1) # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: assert v is not None src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as( key_padding_mask ), ], dim=1, ) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) if self.onnx_trace: attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) if not self.tpu: attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) else: attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if before_softmax: return attn_weights, v attn_weights_float = util.softmax( attn_weights, dim=-1, onnx_trace=self.onnx_trace ) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = self.dropout_module(attn_weights) assert v is not None attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] if self.onnx_trace and attn.size(1) == 1: # when ONNX tracing a single decoder step (sequence length == 1) # the transpose is a no-op copy before view, thus unnecessary attn = attn.contiguous().view(tgt_len, bsz, embed_dim) else: attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) attn_weights: Optional[Tensor] = None if need_weights: attn_weights = attn_weights_float.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) return attn, attn_weights @staticmethod def _append_prev_key_padding_mask( key_padding_mask: Optional[Tensor], prev_key_padding_mask: Optional[Tensor], batch_size: int, src_len: int, static_kv: bool, ) -> Optional[Tensor]: # saved key padding masks have shape (bsz, seq_len) if prev_key_padding_mask is not None and static_kv: new_key_padding_mask = prev_key_padding_mask elif prev_key_padding_mask is not None and key_padding_mask is not None: new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 ) # During incremental decoding, as the padding token enters and # leaves the frame, there will be a time when prev or current # is None elif prev_key_padding_mask is not None: filler = torch.zeros( (batch_size, src_len - prev_key_padding_mask.size(1)), device=prev_key_padding_mask.device, ) new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), filler.float()], dim=1 ) elif key_padding_mask is not None: filler = torch.zeros( (batch_size, src_len - key_padding_mask.size(1)), device=key_padding_mask.device, ) new_key_padding_mask = torch.cat( [filler.float(), key_padding_mask.float()], dim=1 ) else: new_key_padding_mask = prev_key_padding_mask return new_key_padding_mask @torch.jit.export def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor, ): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer_k = input_buffer[k] if input_buffer_k is not None: if self.encoder_decoder_attention and input_buffer_k.size( 0 ) == new_order.size(0): break input_buffer[k] = input_buffer_k.index_select(0, new_order) incremental_state = self._set_input_buffer(incremental_state, input_buffer) return incremental_state def _get_input_buffer( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] ) -> Dict[str, Optional[Tensor]]: result = self.get_incremental_state(incremental_state, "attn_state") if result is not None: return result else: empty_result: Dict[str, Optional[Tensor]] = {} return empty_result def _set_input_buffer( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], buffer: Dict[str, Optional[Tensor]], ): return self.set_incremental_state(incremental_state, "attn_state", buffer) def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int): return attn_weights def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" items_to_add = {} keys_to_remove = [] for k in state_dict.keys(): if k.endswith(prefix + "in_proj_weight"): # in_proj_weight used to be q + k + v with same dimensions dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim] items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim] items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :] keys_to_remove.append(k) k_bias = prefix + "in_proj_bias" if k_bias in state_dict.keys(): dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim] items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][ dim : 2 * dim ] items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :] keys_to_remove.append(prefix + "in_proj_bias") for k in keys_to_remove: del state_dict[k] for key, value in items_to_add.items(): state_dict[key] = value def init_incremental_state(self): self._incremental_state_id = str(uuid.uuid4()) def _get_full_incremental_state_key(self, key: str) -> str: return "{}.{}".format(self._incremental_state_id, key) def get_incremental_state( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, ) -> Optional[Dict[str, Optional[Tensor]]]: """Helper for getting incremental state for an nn.Module.""" full_key = self._get_full_incremental_state_key(key) if incremental_state is None or full_key not in incremental_state: return None return incremental_state[full_key] def set_incremental_state( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, value: Dict[str, Optional[Tensor]], ) -> Optional[Dict[str, Dict[str, Optional[Tensor]]]]: """Helper for setting incremental state for an nn.Module.""" if incremental_state is not None: full_key = self._get_full_incremental_state_key(key) incremental_state[full_key] = value return incremental_state class TransformerEncoderLayer(TransformerEncoderLayerBase): """Encoder layer implemented by fairseq. This version only removes the "args" parameter, no other changes In the original paper each operation (multi-head attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting normalize_before to True. """ def __init__(self, config, initial_weights=None, initial_biases=None): super().__init__() self.embed_dim = config.hidden_size self.self_attn = self.build_self_attention( self.embed_dim, config.nhead, config.attn_prob_dropout_ratio ) self.self_attn_layer_norm = LayerNorm(self.embed_dim) self.dropout_module = Dropout(config.hidden_dropout_ratio) self.activation_fn = util.get_activation_fn(activation=config.activation_fn) self.activation_dropout_module = Dropout(float(config.activation_dropout_ratio)) self.normalize_before = config.pre_layer_norm self.fc1 = QuantLinear( self.embed_dim, config.intermediate_size, ) self.fc2 = QuantLinear( config.intermediate_size, self.embed_dim, pre_activation="relu" ) self.final_layer_norm = LayerNorm(self.embed_dim) def build_self_attention(self, embed_dim, nhead, attn_dropout): return MultiheadAttention( embed_dim, nhead, dropout=attn_dropout, self_attention=True, ) def residual_connection(self, x, residual): return residual + x def upgrade_state_dict_named(self, state_dict, name): """ Rename layer norm states from `...layer_norms.0.weight` to `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to `...final_layer_norm.weight` """ layer_norm_map = {"0": "self_attn_layer_norm", "1": "final_layer_norm"} for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layer_norms.{}.{}".format(name, old, m) if k in state_dict: state_dict["{}.{}.{}".format(name, new, m)] = state_dict[k] del state_dict[k] def forward(self, x, encoder_padding_mask): """ Args: x (Tensor): input to the layer of shape `(batch, seq_len, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, seq_len)` where padding elements are indicated by ``1``. Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ # anything in original attn_mask = 1, becomes -1e8 # anything in original attn_mask = 0, becomes 0 # Note that we cannot use -inf here, because at some edge cases, # the attention weight (before softmax) for some padded element in query # will become -inf, which results in NaN in model parameters x = x.transpose(0, 1) residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) x, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=encoder_padding_mask, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) x = x.transpose(0, 1) return x class TransformerDecoderLayer(TransformerDecoderLayerBase): """Decoder layer implemented by fairseq. This version only removes the "args" parameter, no other changes """ def __init__(self, config, initial_weights=None, initial_biases=None): super().__init__() self.embed_dim = config.hidden_size self.dropout_module = Dropout(config.hidden_dropout_ratio) self.cross_self_attention = False self.self_attn = self.build_self_attention( self.embed_dim, config.nhead, config.attn_prob_dropout_ratio, ) self.activation_fn = util.get_activation_fn(activation=config.activation_fn) self.activation_dropout_module = Dropout(float(config.activation_dropout_ratio)) self.normalize_before = config.pre_layer_norm self.self_attn_layer_norm = LayerNorm(self.embed_dim) self.encoder_attn = self.build_encoder_attention( self.embed_dim, config.hidden_size, config.attn_prob_dropout_ratio, config.nhead, ) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim) self.fc1 = QuantLinear( self.embed_dim, config.intermediate_size, ) self.fc2 = QuantLinear( config.intermediate_size, self.embed_dim, pre_activation="relu", ) self.final_layer_norm = LayerNorm(self.embed_dim) self.need_attn = True self.onnx_trace = False def build_self_attention( self, embed_dim, nhead, attn_dropout, add_bias_kv=False, add_zero_attn=False ): return MultiheadAttention( embed_dim, nhead, dropout=attn_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=not self.cross_self_attention, is_decoder=True, ) def build_encoder_attention( self, embed_dim, encoder_embed_dim, attn_dropout, nhead ): return MultiheadAttention( embed_dim, nhead, kdim=encoder_embed_dim, vdim=encoder_embed_dim, dropout=attn_dropout, encoder_decoder_attention=True, is_decoder=True, ) def prepare_for_onnx_export_(self): self.onnx_trace = True def residual_connection(self, x, residual): return residual + x def forward( self, x, encoder_out: Optional[torch.Tensor] = None, encoder_padding_mask: Optional[torch.Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, prev_self_attn_state: Optional[List[torch.Tensor]] = None, prev_attn_state: Optional[List[torch.Tensor]] = None, self_attn_mask: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[torch.Tensor] = None, need_attn: bool = False, need_head_weights: bool = False, ): """ Args: x (Tensor): input to the layer of shape `(batch, seq_len, embed_dim)` encoder_padding_mask (ByteTensor, optional): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. need_attn (bool, optional): return attention weights need_head_weights (bool, optional): return attention weights for each head (default: return average over heads). Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ if need_head_weights: need_attn = True x = x.transpose(0, 1) residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) if prev_self_attn_state is not None: prev_key, prev_value = prev_self_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_self_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_self_attn_state[2] assert incremental_state is not None self.self_attn._set_input_buffer(incremental_state, saved_state) _self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state) if self.cross_self_attention and not ( incremental_state is not None and _self_attn_input_buffer is not None and "prev_key" in _self_attn_input_buffer ): if self_attn_mask is not None: assert encoder_out is not None self_attn_mask = torch.cat( (x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1 ) if self_attn_padding_mask is not None: if encoder_padding_mask is None: assert encoder_out is not None encoder_padding_mask = self_attn_padding_mask.new_zeros( encoder_out.size(1), encoder_out.size(0) ) self_attn_padding_mask = torch.cat( (encoder_padding_mask, self_attn_padding_mask), dim=1 ) assert encoder_out is not None y = torch.cat((encoder_out, x), dim=0) else: y = x x, attn = self.self_attn( query=x, key=y, value=y, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) if self.encoder_attn is not None and encoder_out is not None: if ( encoder_out.shape[1] != x.shape[1] and x.shape[1] % encoder_out.shape[1] == 0 ): beam_size = int(x.shape[1] / encoder_out.shape[1]) encoder_out = encoder_out.repeat_interleave(beam_size, 1) encoder_padding_mask = encoder_padding_mask.repeat_interleave( beam_size, 0 ) residual = x if self.normalize_before: x = self.encoder_attn_layer_norm(x) if prev_attn_state is not None: prev_key, prev_value = prev_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_attn_state[2] assert incremental_state is not None self.encoder_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=need_attn or (not self.training and self.need_attn), need_head_weights=need_head_weights, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.encoder_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) if self.onnx_trace and incremental_state is not None: saved_state = self.self_attn._get_input_buffer(incremental_state) assert saved_state is not None if self_attn_padding_mask is not None: self_attn_state = [ saved_state["prev_key"], saved_state["prev_value"], saved_state["prev_key_padding_mask"], ] else: self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]] return x, attn, self_attn_state x = x.transpose(0, 1) return x, attn, None def make_generation_fast_(self, need_attn: bool = False, **kwargs): self.need_attn = need_attn class TransformerEmbeddingLayer(TransformerEmbeddingLayerBase): def __init__(self, config): super().__init__() self.emb_lookup = nn.Embedding( config.vocab_size, config.embedding_dim, padding_idx=config.padding_idx ) self.emb_lookup.to(dtype=(torch.half if config.fp16 else torch.float)) self.embeddings = self.emb_lookup.weight nn.init.normal_(self.embeddings, mean=0, std=config.embedding_dim ** -0.5) nn.init.constant_(self.embeddings[config.padding_idx], 0) self.embed_positions = SinusoidalPositionalEmbedding( config.embedding_dim, config.padding_idx, config.max_seq_len, config.fp16 ) self.embedding_dim = config.embedding_dim self.dropout = Dropout(config.dropout) self.emb_quant = TensorQuantizer(weight_quant_config) self.config = config def forward(self, input, step=0): x = self.emb_lookup(input) x = self.emb_quant(x) x = math.sqrt(self.embedding_dim) * x x += self.embed_positions(input, step) x = self.dropout(x) return x class SinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length. Padding symbols are ignored. """ def __init__(self, embedding_dim, padding_idx, init_size=1024, fp16=False): super().__init__() self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.weights = SinusoidalPositionalEmbedding.get_embedding( init_size, embedding_dim, padding_idx ) if fp16: self.weights = self.weights.to(torch.half) @staticmethod def get_embedding( num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None ): """Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze( 1 ) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view( num_embeddings, -1 ) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) return emb def make_positions(self, tensor, padding_idx, step): mask = tensor.ne(padding_idx).int() return ((torch.cumsum(mask, dim=1).type_as(mask) - 1 + step) * mask).long() def forward( self, input, step=0, incremental_state=None, timestep=None, positions=None, ): """Input is expected to be of size [bsz x seqlen].""" bsz, seq_len = input.size(0), input.size(1) positions = self.make_positions(input, self.padding_idx, step) mask = ( torch.ne(input, self.padding_idx) .unsqueeze(2) .expand(bsz, seq_len, self.embedding_dim) ) return ( self.weights.to(input.device) .index_select(0, positions.view(-1)) .view(bsz, seq_len, -1) * mask ).detach()
[ [ [ 127, 131 ], [ 3589, 3593 ], [ 3690, 3694 ], [ 3773, 3777 ], [ 3856, 3860 ], [ 33728, 33732 ], [ 34805, 34809 ] ], [ [ 139, 143 ], [ 18738, 18742 ] ], [ [ 164, 168 ], [ 4571, 4575 ], [ 4581, 4585 ], [ 15789, 15793 ], [ 15799, 15803 ], [ 16678, 16682 ], [ 16629, 16633 ], [ 16639, 16643 ], [ 16881, 16885 ], [ 17015, 17019 ], [ 17025, 17029 ], [ 17071, 17075 ], [ 19039, 19043 ], [ 18962, 18966 ], [ 18972, 18976 ], [ 19544, 19548 ], [ 19554, 19558 ], [ 19423, 19427 ], [ 19433, 19437 ], [ 19497, 19501 ], [ 26626, 26630 ], [ 26636, 26640 ], [ 27914, 27918 ], [ 30588, 30592 ] ], [ [ 170, 178 ], [ 4433, 4441 ], [ 4466, 4474 ], [ 4510, 4518 ], [ 4562, 4570 ], [ 4591, 4599 ], [ 4706, 4714 ], [ 9513, 9521 ], [ 13724, 13732 ], [ 14325, 14333 ], [ 14177, 14185 ], [ 14226, 14234 ], [ 15809, 15817 ], [ 16688, 16696 ], [ 16620, 16628 ], [ 16649, 16657 ], [ 16891, 16899 ], [ 17035, 17043 ], [ 17081, 17089 ], [ 19030, 19038 ], [ 19049, 19057 ], [ 18953, 18961 ], [ 18982, 18990 ], [ 19535, 19543 ], [ 19564, 19572 ], [ 19414, 19422 ], [ 19443, 19451 ], [ 19507, 19515 ], [ 26498, 26506 ], [ 26559, 26567 ], [ 26617, 26625 ], [ 26646, 26654 ], [ 26704, 26712 ], [ 26766, 26774 ], [ 26827, 26835 ], [ 26890, 26898 ], [ 27924, 27932 ], [ 30598, 30606 ], [ 34517, 34525 ] ], [ [ 180, 185 ] ], [ [ 187, 191 ], [ 26713, 26717 ], [ 26775, 26779 ] ], [ [ 200, 205 ], [ 15696, 15701 ], [ 2836, 2841 ], [ 2903, 2908 ], [ 7428, 7433 ], [ 7490, 7495 ], [ 7602, 7607 ], [ 7793, 7798 ], [ 9026, 9031 ], [ 9444, 9449 ], [ 11006, 11011 ], [ 11088, 11093 ], [ 11220, 11225 ], [ 11411, 11416 ], [ 11510, 11515 ], [ 11724, 11729 ], [ 12474, 12479 ], [ 13194, 13199 ], [ 14636, 14641 ], [ 14970, 14975 ], [ 15156, 15161 ], [ 15316, 15321 ], [ 15492, 15497 ], [ 26507, 26512 ], [ 26568, 26573 ], [ 26718, 26723 ], [ 26780, 26785 ], [ 26836, 26841 ], [ 26899, 26904 ], [ 28707, 28712 ], [ 29181, 29186 ], [ 29343, 29348 ], [ 33022, 33027 ], [ 33053, 33058 ], [ 34401, 34406 ], [ 34852, 34857 ], [ 34862, 34867 ], [ 34891, 34896 ], [ 34926, 34931 ], [ 34961, 34966 ], [ 35042, 35047 ], [ 35053, 35058 ], [ 35069, 35074 ], [ 35216, 35221 ], [ 35232, 35237 ], [ 35410, 35415 ], [ 35840, 35845 ] ], [ [ 213, 237 ] ], [ [ 256, 262 ], [ 4442, 4448 ], [ 4475, 4481 ], [ 4519, 4525 ], [ 4600, 4606 ], [ 4715, 4721 ], [ 9522, 9528 ], [ 13733, 13739 ], [ 14334, 14340 ], [ 14186, 14192 ], [ 14235, 14241 ], [ 15818, 15824 ], [ 15848, 15854 ], [ 16697, 16703 ], [ 16658, 16664 ], [ 16900, 16906 ], [ 17044, 17050 ], [ 17090, 17096 ], [ 19058, 19064 ], [ 18991, 18997 ], [ 19573, 19579 ], [ 19452, 19458 ], [ 19516, 19522 ], [ 26655, 26661 ], [ 27933, 27939 ], [ 30607, 30613 ] ], [ [ 264, 266 ], [ 674, 676 ], [ 33893, 33895 ], [ 3534, 3536 ], [ 3637, 3639 ], [ 3720, 3722 ], [ 3803, 3805 ], [ 3896, 3898 ], [ 3952, 3954 ], [ 4008, 4010 ], [ 4061, 4063 ], [ 4162, 4164 ], [ 4253, 4255 ], [ 4337, 4339 ], [ 32880, 32882 ], [ 33125, 33127 ], [ 33208, 33210 ] ], [ [ 288, 297 ], [ 2826, 2835 ], [ 2893, 2902 ] ], [ [ 299, 308 ], [ 20793, 20802 ], [ 21373, 21382 ], [ 24841, 24850 ], [ 25105, 25114 ], [ 25416, 25425 ] ], [ [ 310, 317 ], [ 1415, 1422 ], [ 20849, 20856 ], [ 21012, 21019 ], [ 24335, 24342 ], [ 24702, 24709 ], [ 33497, 33504 ] ], [ [ 319, 325 ] ], [ [ 369, 373 ], [ 12945, 12949 ], [ 20915, 20919 ], [ 24605, 24609 ] ], [ [ 433, 462 ], [ 32762, 32791 ] ], [ [ 468, 495 ], [ 19874, 19901 ] ], [ [ 501, 528 ], [ 24006, 24033 ] ], [ [ 564, 575 ], [ 2127, 2138 ], [ 2398, 2409 ], [ 2529, 2540 ], [ 2660, 2671 ], [ 2730, 2741 ], [ 21133, 21144 ], [ 21241, 21252 ], [ 25151, 25162 ], [ 25259, 25270 ] ], [ [ 581, 596 ], [ 2230, 2245 ], [ 33546, 33561 ] ], [ [ 602, 618 ], [ 2246, 2262 ] ], [ [ 624, 643 ], [ 33562, 33581 ] ], [ [ 655, 673 ], [ 9751, 9769 ], [ 21483, 21501 ], [ 25643, 25661 ], [ 26034, 26052 ] ], [ [ 19850, 19873 ] ], [ [ 23982, 24005 ] ], [ [ 32736, 32761 ] ], [ [ 33863, 33892 ], [ 33297, 33326 ], [ 34236, 34265 ] ] ]
# Copyright 2021 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from swagger_server.models.base_model_ import Model from swagger_server import util class ApiGenerateCodeResponse(Model): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, script: str=None): # noqa: E501 """ApiGenerateCodeResponse - a model defined in Swagger :param script: The script of this ApiGenerateCodeResponse. # noqa: E501 :type script: str """ self.swagger_types = { 'script': str } self.attribute_map = { 'script': 'script' } self._script = script @classmethod def from_dict(cls, dikt) -> 'ApiGenerateCodeResponse': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The apiGenerateCodeResponse of this ApiGenerateCodeResponse. # noqa: E501 :rtype: ApiGenerateCodeResponse """ return util.deserialize_model(dikt, cls) @property def script(self) -> str: """Gets the script of this ApiGenerateCodeResponse. The script source code to run the component in a pipeline # noqa: E501 :return: The script of this ApiGenerateCodeResponse. :rtype: str """ return self._script @script.setter def script(self, script: str): """Sets the script of this ApiGenerateCodeResponse. The script source code to run the component in a pipeline # noqa: E501 :param script: The script of this ApiGenerateCodeResponse. :type script: str """ self._script = script
[ [ [ 619, 634 ] ], [ [ 656, 660 ] ], [ [ 662, 670 ] ], [ [ 705, 709 ] ], [ [ 711, 715 ] ], [ [ 777, 782 ], [ 847, 852 ] ], [ [ 810, 814 ], [ 1718, 1722 ] ], [ [ 823, 846 ] ] ]
#!/usr/bin/env python3 import sys from bisect import bisect, bisect_left, bisect_right, insort, insort_left, insort_right # type: ignore from collections import Counter, defaultdict, deque # type: ignore from fractions import gcd # type: ignore from heapq import heapify, heappop, heappush, heappushpop, heapreplace, merge # type: ignore from itertools import accumulate, combinations, permutations, product # type: ignore N, Q = map(int, input().split()) A = list(map(int, input().split())) x = [] for i in range(Q): x.append(int(input())) A.sort(reverse=True) left = 0 right = N - 1 num = 0 for j in range(Q): while right - left > 0: print("left", left, "right", right) mid = int((left + right) / 2) if A[mid] < x[j]: right = mid + 1 elif A[mid] > x[j]: left = mid - 1 else: break num = mid print("mid", num)
[ [ [ 30, 33 ] ], [ [ 53, 59 ] ], [ [ 61, 72 ] ], [ [ 74, 86 ] ], [ [ 88, 94 ] ], [ [ 96, 107 ] ], [ [ 109, 121 ] ], [ [ 162, 169 ] ], [ [ 171, 182 ] ], [ [ 184, 189 ] ], [ [ 228, 231 ] ], [ [ 266, 273 ] ], [ [ 275, 282 ] ], [ [ 284, 292 ] ], [ [ 294, 305 ] ], [ [ 307, 318 ] ], [ [ 320, 325 ] ], [ [ 364, 374 ] ], [ [ 376, 388 ] ], [ [ 390, 402 ] ], [ [ 404, 411 ] ], [ [ 430, 431 ], [ 593, 594 ] ], [ [ 433, 434 ], [ 524, 525 ], [ 622, 623 ] ], [ [ 464, 465 ], [ 555, 556 ], [ 747, 748 ], [ 803, 804 ] ], [ [ 502, 503 ], [ 532, 533 ], [ 756, 757 ], [ 812, 813 ] ], [ [ 513, 514 ] ], [ [ 576, 580 ], [ 644, 648 ], [ 676, 680 ], [ 717, 721 ] ], [ [ 585, 590 ], [ 636, 641 ], [ 691, 696 ], [ 724, 729 ] ], [ [ 599, 602 ], [ 912, 915 ] ], [ [ 611, 612 ], [ 758, 759 ], [ 814, 815 ] ], [ [ 706, 709 ], [ 749, 752 ], [ 782, 785 ], [ 805, 808 ], [ 837, 840 ], [ 891, 894 ] ], [ [ 774, 779 ], [ 636, 641 ], [ 691, 696 ], [ 724, 729 ] ], [ [ 830, 834 ], [ 644, 648 ], [ 676, 680 ], [ 717, 721 ] ], [ [ 885, 888 ], [ 912, 915 ] ] ]
"""Unit test for KNX time objects.""" import unittest from xknx.dpt import DPTTime, DPTWeekday from xknx.exceptions import ConversionError class TestDPTTime(unittest.TestCase): """Test class for KNX time objects.""" # # TEST NORMAL TIME # def test_from_knx(self): """Test parsing of DPTTime object from binary values. Example 1.""" self.assertEqual(DPTTime().from_knx((0x4D, 0x17, 0x2A)), {'weekday': DPTWeekday.TUESDAY, 'hours': 13, 'minutes': 23, 'seconds': 42}) def test_to_knx(self): """Testing KNX/Byte representation of DPTTime object.""" raw = DPTTime().to_knx( {'weekday': DPTWeekday.TUESDAY, 'hours': 13, 'minutes': 23, 'seconds': 42}) self.assertEqual(raw, (0x4D, 0x17, 0x2A)) # # TEST MAXIMUM TIME # def test_to_knx_max(self): """Testing KNX/Byte representation of DPTTime object. Maximum values.""" raw = DPTTime().to_knx( {'weekday': DPTWeekday.SUNDAY, 'hours': 23, 'minutes': 59, 'seconds': 59}) self.assertEqual(raw, (0xF7, 0x3b, 0x3b)) def test_from_knx_max(self): """Test parsing of DPTTime object from binary values. Example 2.""" self.assertEqual(DPTTime().from_knx((0xF7, 0x3b, 0x3b)), {'weekday': DPTWeekday.SUNDAY, 'hours': 23, 'minutes': 59, 'seconds': 59}) # # TEST MINIMUM TIME # def test_to_knx_min(self): """Testing KNX/Byte representation of DPTTime object. Minimum values.""" raw = DPTTime().to_knx( {'weekday': DPTWeekday.NONE, 'hours': 0, 'minutes': 0, 'seconds': 0}) self.assertEqual(raw, (0x0, 0x0, 0x0)) def test_from_knx_min(self): """Test parsing of DPTTime object from binary values. Example 3.""" self.assertEqual(DPTTime().from_knx((0x0, 0x0, 0x0)), {'weekday': DPTWeekday.NONE, 'hours': 0, 'minutes': 0, 'seconds': 0}) # # TEST INITIALIZATION # def test_to_knx_default(self): """Testing default initialization of DPTTime object.""" self.assertEqual(DPTTime().to_knx({}), (0x0, 0x0, 0x0)) def test_from_knx_wrong_size(self): """Test parsing from DPTTime object from wrong binary values (wrong size).""" with self.assertRaises(ConversionError): DPTTime().from_knx((0xF8, 0x23)) def test_from_knx_wrong_bytes(self): """Test parsing from DPTTime object from wrong binary values (wrong bytes).""" with self.assertRaises(ConversionError): # thirs parameter exceeds limit DPTTime().from_knx((0xF7, 0x3b, 0x3c)) def test_from_knx_wrong_type(self): """Test parsing from DPTTime object from wrong binary values (wrong type).""" with self.assertRaises(ConversionError): DPTTime().from_knx((0xF8, "0x23")) def test_to_knx_wrong_parameter(self): """Test parsing from DPTTime object from wrong string value.""" with self.assertRaises(ConversionError): DPTTime().to_knx("fnord") def test_to_knx_wrong_seconds(self): """Test parsing from DPTTime object from wrong seconds value.""" with self.assertRaises(ConversionError): DPTTime().to_knx({ 'hours': 12, 'minutes': 42, 'seconds': 61 }) def test_to_knx_wrong_minutes(self): """Test parsing from DPTTime object from wrong minutes value.""" with self.assertRaises(ConversionError): DPTTime().to_knx({ 'hours': 12, 'minutes': 61, 'seconds': 53 }) def test_to_knx_wrong_hours(self): """Test parsing from DPTTime object from wrong hours value.""" with self.assertRaises(ConversionError): DPTTime().to_knx({ 'hours': 24, 'minutes': 42, 'seconds': 53 }) def test_test_range_wrong_weekday(self): """Test range testing with wrong weekday (Cant be tested with normal from_/to_knx).""" # pylint: disable=protected-access self.assertFalse(DPTTime._test_range(8, 0, 0, 0))
[ [ [ 45, 53 ], [ 160, 168 ] ], [ [ 76, 83 ], [ 389, 396 ], [ 715, 722 ], [ 1073, 1080 ], [ 1402, 1409 ], [ 1783, 1790 ], [ 2104, 2111 ], [ 2477, 2484 ], [ 2704, 2711 ], [ 2971, 2978 ], [ 3198, 3205 ], [ 3410, 3417 ], [ 3612, 3619 ], [ 3912, 3919 ], [ 4208, 4215 ], [ 4541, 4548 ] ], [ [ 85, 95 ], [ 466, 476 ], [ 757, 767 ], [ 1115, 1125 ], [ 1479, 1489 ], [ 1825, 1835 ], [ 2178, 2188 ] ], [ [ 124, 139 ], [ 2674, 2689 ], [ 2897, 2912 ], [ 3168, 3183 ], [ 3380, 3395 ], [ 3582, 3597 ], [ 3882, 3897 ], [ 4178, 4193 ] ], [ [ 148, 159 ] ] ]
# Copyright (c) 2019-present, The Johann Authors. All Rights Reserved. # Use of this source code is governed by a BSD-3-clause license that can # be found in the LICENSE file. See the AUTHORS file for names of contributors. """Johann, lightweight and flexible scenario orchestration""" __version__ = "0.3.0-alpha"
[ [ [ 288, 299 ] ] ]
from o3seespy.base_model import OpenSeesObject class LayerBase(OpenSeesObject): op_base_type = "layer" class Straight(LayerBase): """ The Straight Layer Class The layer command is used to generate a number of fibers along a line or a circular arc. """ op_type = 'straight' def __init__(self, osi, mat, num_fiber, area_fiber, start, end): """ Initial method for Straight Parameters ---------- mat: obj Material tag associated with this fiber (uniaxialmaterial tag for a fibersection and ndmaterial tag for use in an ndfibersection). num_fiber: int Number of fibers along line area_fiber: float Area of each fiber start: list Y & z-coordinates of first fiber in line (local coordinate system) end: list Y & z-coordinates of last fiber in line (local coordinate system) """ self.mat = mat self.num_fiber = int(num_fiber) self.area_fiber = float(area_fiber) self.start = start self.end = end self._parameters = [self.op_type, self.mat.tag, self.num_fiber, self.area_fiber, *self.start, *self.end] self.to_process(osi) class Circ(LayerBase): """ The Circ Layer Class This command is used to construct a line of fibers along a circular arc """ op_type = 'circ' def __init__(self, osi, mat, num_fiber, area_fiber, center, radius, ang=None): """ Initial method for Circ Parameters ---------- mat: obj Material tag associated with this fiber (uniaxialmaterial tag for a fibersection and ndmaterial tag for use in an ndfibersection). num_fiber: int Number of fibers along line area_fiber: float Area of each fiber center: listf Y & z-coordinates of center of circular arc radius: float Radius of circlular arc ang: listf Starting and ending angle (optional) [0.0, 360.0-360/num_fibres] """ self.mat = mat self.num_fiber = int(num_fiber) self.area_fiber = float(area_fiber) self.center = center self.radius = float(radius) self.ang = ang self._parameters = [self.op_type, self.mat.tag, self.num_fiber, self.area_fiber, *self.center, self.radius] if self.ang is not None: self._parameters += self.ang self.to_process(osi)
[ [ [ 32, 46 ], [ 65, 79 ] ], [ [ 55, 64 ], [ 126, 135 ], [ 1273, 1282 ] ], [ [ 117, 125 ] ], [ [ 1268, 1272 ] ] ]
import json import os os.environ["system_file"] = "./tests/testing_data/system.yaml" from typing import Dict, Text, Any, List import pytest import responses from mongoengine import connect, disconnect from rasa_sdk import Tracker from rasa_sdk.executor import CollectingDispatcher from kairon.action_server.data_objects import HttpActionRequestBody, HttpActionConfig, HttpActionLog from kairon.action_server.actions import ActionUtility, HttpAction from kairon.action_server.exception import HttpActionFailure from kairon.utils import Utility def pytest_configure(): return { 'db_url': None, } class TestActions: @pytest.fixture(autouse=True) def setup(self): os.environ["system_file"] = "./tests/testing_data/system.yaml" Utility.load_evironment() db_url = Utility.environment['database']["url"] pytest.db_url = db_url connect(host=db_url) @pytest.fixture def mock_get_http_action_exception(self, monkeypatch): def _raise_excep(*arge, **kwargs): raise HttpActionFailure("No HTTP action found for bot and action") monkeypatch.setattr(ActionUtility, "get_http_action_config", _raise_excep) @responses.activate def test_execute_http_request_getWith_auth_token(self): http_url = 'http://localhost:8080/mock' # file deepcode ignore HardcodedNonCryptoSecret: Random string for testing auth_token = "bearer jkhfhkujsfsfslfhjsfhkjsfhskhfksj" responses.add( method=responses.GET, url=http_url, json={'data': 'test_data', 'test_class': [{'key': 'value'}, {'key2': 'value2'}]}, status=200 ) response = ActionUtility.execute_http_request(auth_token=auth_token, http_url=http_url, request_method=responses.GET) assert response assert response['data'] == 'test_data' assert len(response['test_class']) == 2 assert response['test_class'][1]['key2'] == 'value2' assert responses.calls[0].request.headers['Authorization'] == auth_token @responses.activate def test_execute_http_request_get_no_auth_token(self): http_url = 'http://localhost:8080/mock' responses.add( method=responses.GET, url=http_url, json={'data': 'test_data', 'test_class': [{'key': 'value'}, {'key2': 'value2'}]}, status=200 ) response = ActionUtility.execute_http_request(auth_token=None, http_url=http_url, request_method=responses.GET) assert response assert response['data'] == 'test_data' assert len(response['test_class']) == 2 assert response['test_class'][1]['key2'] == 'value2' assert 'Authorization' not in responses.calls[0].request.headers @responses.activate def test_execute_http_request_post_with_auth_token(self): http_url = 'http://localhost:8080/mock' auth_token = "bearer jkhfhkujsfsfslfhjsfhkjsfhskhfksj" resp_msg = "Data added successfully" request_params = {'data': 'test_data', 'test_class': [{'key': 'value'}, {'key2': 'value2'}]} responses.add( method=responses.POST, url=http_url, body=resp_msg, status=200, match=[responses.json_params_matcher(request_params)] ) response = ActionUtility.execute_http_request(auth_token=auth_token, http_url=http_url, request_method=responses.POST, request_body=request_params) assert response assert response == resp_msg assert responses.calls[0].request.headers['Authorization'] == auth_token @responses.activate def test_execute_http_request_post_no_auth_token(self): http_url = 'http://localhost:8080/mock' resp_msg = "Data added successfully" request_params = {'data': 'test_data', 'test_class': [{'key': 'value'}, {'key2': 'value2'}]} responses.add( method=responses.POST, url=http_url, body=resp_msg, status=200, match=[responses.json_params_matcher(request_params)] ) response = ActionUtility.execute_http_request(auth_token=None, http_url=http_url, request_method=responses.POST, request_body=request_params) assert response assert response == resp_msg assert 'Authorization' not in responses.calls[0].request.headers @responses.activate def test_execute_http_request_put_with_auth_token(self): http_url = 'http://localhost:8080/mock' auth_token = "bearer jkhfhkujsfsfslfhjsfhkjsfhskhfksj" resp_msg = "Data updated successfully" request_params = {'data': 'test_data', 'test_class': [{'key': 'value'}, {'key2': 'value2'}]} responses.add( method=responses.PUT, url=http_url, body=resp_msg, status=200, match=[responses.json_params_matcher(request_params)] ) response = ActionUtility.execute_http_request(auth_token=auth_token, http_url=http_url, request_method=responses.PUT, request_body=request_params) assert response assert response == resp_msg assert responses.calls[0].request.headers['Authorization'] == auth_token @responses.activate def test_execute_http_request_put_no_auth_token(self): http_url = 'http://localhost:8080/mock' resp_msg = "Data updated successfully" request_params = {'data': 'test_data', 'test_class': [{'key': 'value'}, {'key2': 'value2'}]} responses.add( method=responses.PUT, url=http_url, body=resp_msg, status=200, match=[responses.json_params_matcher(request_params)] ) response = ActionUtility.execute_http_request(auth_token=None, http_url=http_url, request_method=responses.PUT, request_body=request_params) assert response assert response == resp_msg assert 'Authorization' not in responses.calls[0].request.headers @responses.activate def test_execute_http_request_delete_with_request_body_auth_token(self): http_url = 'http://localhost:8080/mock' auth_token = "bearer jkhfhkujsfsfslfhjsfhkjsfhskhfksj" resp_msg = "Data deleted successfully" request_params = {'data': 'test_data', 'test_class': [{'key': 'value'}, {'key2': 'value2'}]} responses.add( method=responses.DELETE, url=http_url, body=resp_msg, status=200, match=[responses.json_params_matcher(request_params)] ) response = ActionUtility.execute_http_request(auth_token=auth_token, http_url=http_url, request_method=responses.DELETE, request_body=request_params) assert response assert response == resp_msg assert responses.calls[0].request.headers['Authorization'] == auth_token @responses.activate def test_execute_http_request_delete_with_auth_token_no_request_body(self): http_url = 'http://localhost:8080/mock' auth_token = "bearer jkhfhkujsfsfslfhjsfhkjsfhskhfksj" resp_msg = "Data deleted successfully" responses.add( method=responses.DELETE, url=http_url, body=resp_msg, status=200, ) response = ActionUtility.execute_http_request(auth_token=auth_token, http_url=http_url, request_method=responses.DELETE, request_body=None) assert response assert response == resp_msg assert responses.calls[0].request.headers['Authorization'] == auth_token @responses.activate def test_execute_http_request_delete_no_auth_token(self): http_url = 'http://localhost:8080/mock' resp_msg = "Data updated successfully" request_params = {'data': 'test_data', 'test_class': [{'key': 'value'}, {'key2': 'value2'}]} responses.add( method=responses.DELETE, url=http_url, body=resp_msg, status=200, match=[ responses.json_params_matcher(request_params) ] ) response = ActionUtility.execute_http_request(auth_token=None, http_url=http_url, request_method=responses.DELETE, request_body=request_params) assert response assert response == resp_msg assert 'Authorization' not in responses.calls[0].request.headers def test_get_http_action_config(self): http_params = [HttpActionRequestBody(key="key1", value="value1", parameter_type="slot"), HttpActionRequestBody(key="key2", value="value2")] expected = HttpActionConfig( auth_token="bearer kjflksjflksajfljsdflinlsufisnflisjbjsdalibvs", action_name="http_action", response="json", http_url="http://test.com", request_method="GET", params_list=http_params, bot="bot", user="user" ).save().to_mongo().to_dict() actual = ActionUtility.get_http_action_config("bot", "http_action") assert actual is not None assert expected['auth_token'] == actual['auth_token'] assert expected['action_name'] == actual['action_name'] assert expected['response'] == actual['response'] assert expected['http_url'] == actual['http_url'] assert expected['request_method'] == actual['request_method'] assert expected['params_list'] is not None assert expected['params_list'][0]['key'] == actual['params_list'][0]['key'] assert expected['params_list'][0]['value'] == actual['params_list'][0]['value'] assert expected['params_list'][0]['parameter_type'] == actual['params_list'][0]['parameter_type'] assert expected['params_list'][1]['key'] == actual['params_list'][1]['key'] assert expected['params_list'][1]['value'] == actual['params_list'][1]['value'] assert expected['params_list'][1]['parameter_type'] == actual['params_list'][1]['parameter_type'] assert actual['status'] def test_get_http_action_config_deleted_action(self): http_params = [HttpActionRequestBody(key="key1", value="value1", parameter_type="slot"), HttpActionRequestBody(key="key2", value="value2")] HttpActionConfig( auth_token="", action_name="test_get_http_action_config_deleted_action", response="${RESPONSE}", http_url="http://www.digite.com", request_method="POST", params_list=http_params, bot="bot", user="user", status=False ).save().to_mongo().to_dict() expected = HttpActionConfig( auth_token="bearer kjflksjflksajfljsdflinlsufisnflisjbjsdalibvs", action_name="test_get_http_action_config_deleted_action", response="json", http_url="http://test.com", request_method="GET", params_list=http_params, bot="bot", user="user" ).save().to_mongo().to_dict() actual = ActionUtility.get_http_action_config("bot", "test_get_http_action_config_deleted_action") assert actual is not None assert expected['auth_token'] == actual['auth_token'] assert expected['action_name'] == actual['action_name'] assert expected['response'] == actual['response'] assert expected['http_url'] == actual['http_url'] assert expected['request_method'] == actual['request_method'] assert expected['params_list'] is not None assert expected['params_list'][0]['key'] == actual['params_list'][0]['key'] assert expected['params_list'][0]['value'] == actual['params_list'][0]['value'] assert expected['params_list'][0]['parameter_type'] == actual['params_list'][0]['parameter_type'] assert expected['params_list'][1]['key'] == actual['params_list'][1]['key'] assert expected['params_list'][1]['value'] == actual['params_list'][1]['value'] assert expected['params_list'][1]['parameter_type'] == actual['params_list'][1]['parameter_type'] assert actual['status'] def test_get_http_action_no_bot(self): try: ActionUtility.get_http_action_config(bot=None, action_name="http_action") assert False except HttpActionFailure as ex: assert str(ex) == "Bot name and action name are required" def test_get_http_action_no_http_action(self): try: ActionUtility.get_http_action_config(bot="bot", action_name=None) assert False except HttpActionFailure as ex: assert str(ex) == "Bot name and action name are required" def test_get_http_action_invalid_bot(self): http_params = [HttpActionRequestBody(key="key1", value="value1", parameter_type="slot"), HttpActionRequestBody(key="key2", value="value2")] HttpActionConfig( auth_token="bearer kjflksjflksajfljsdflinlsufisnflisjbjsdalibvs", action_name="http_action", response="json", http_url="http://test.com", request_method="GET", params_list=http_params, bot="bot", user="user" ).save().to_mongo().to_dict() try: ActionUtility.get_http_action_config("bot1", "http_action") assert False except HttpActionFailure as ex: assert str(ex).__contains__("No HTTP action found for bot") def test_get_http_action_invalid_http_action(self): http_params = [HttpActionRequestBody(key="key1", value="value1", parameter_type="slot"), HttpActionRequestBody(key="key2", value="value2")] HttpActionConfig( auth_token="bearer kjflksjflksajfljsdflinlsufisnflisjbjsdalibvs", action_name="http_action", response="json", http_url="http://test.com", request_method="GET", params_list=http_params, bot="bot", user="user" ).save().to_mongo().to_dict() try: ActionUtility.get_http_action_config("bot", "http_action1") assert False except HttpActionFailure as ex: assert str(ex).__contains__("No HTTP action found for bot") def test_get_http_action_no_request_body(self): http_params = [] HttpActionConfig( auth_token="bearer kjflksjflksajfljsdflinlsufisnflisjbjsdalibvs", action_name="http_action", response="json", http_url="http://test.com", request_method="GET", params_list=http_params, bot="bot", user="user" ).save().to_mongo().to_dict() try: ActionUtility.get_http_action_config("bot", "http_action1") assert False except HttpActionFailure as ex: assert str(ex).__contains__("No HTTP action found for bot") def test_prepare_request(self): slots = {"bot": "demo_bot", "http_action_config": "http_action_name", "slot_name": "param2value"} events = [{"event1": "hello"}, {"event2": "how are you"}] http_action_config_params = [HttpActionRequestBody(key="param1", value="value1"), HttpActionRequestBody(key="param2", value="slot_name", parameter_type="slot")] tracker = Tracker(sender_id="sender1", slots=slots, events=events, paused=False, latest_message=None, followup_action=None, active_loop=None, latest_action_name=None) actual_request_body = ActionUtility.prepare_request(tracker=tracker, http_action_config_params=http_action_config_params) assert actual_request_body assert actual_request_body['param1'] == 'value1' assert actual_request_body['param2'] == 'param2value' def test_prepare_request_empty_slot(self): slots = {"bot": "demo_bot", "http_action_config": "http_action_name", "param2": "param2value"} events = [{"event1": "hello"}, {"event2": "how are you"}] http_action_config_params = [HttpActionRequestBody(key="param1", value="value1"), HttpActionRequestBody(key="param3", value="", parameter_type="slot")] tracker = Tracker(sender_id="sender1", slots=slots, events=events, paused=False, latest_message=None, followup_action=None, active_loop=None, latest_action_name=None) request_params = ActionUtility.prepare_request(tracker=tracker, http_action_config_params=http_action_config_params) assert request_params['param1'] == "value1" assert not request_params['param3'] def test_prepare_request_sender_id(self): slots = {"bot": "demo_bot", "http_action_config": "http_action_name", "param2": "param2value"} events = [{"event1": "hello"}, {"event2": "how are you"}] http_action_config_params = [HttpActionRequestBody(key="param1", value="value1"), HttpActionRequestBody(key="user_id", value="", parameter_type="sender_id")] tracker = Tracker(sender_id="kairon_user@digite.com", slots=slots, events=events, paused=False, latest_message=None, followup_action=None, active_loop=None, latest_action_name=None) request_params = ActionUtility.prepare_request(tracker=tracker, http_action_config_params=http_action_config_params) assert request_params['param1'] == "value1" assert request_params['user_id'] == "kairon_user@digite.com" def test_prepare_request_no_request_params(self): slots = {"bot": "demo_bot", "http_action_config": "http_action_name", "param2": "param2value"} events: List[Dict] = None http_action_config_params: List[HttpActionRequestBody] = None tracker = Tracker(sender_id="sender1", slots=slots, events=events, paused=False, latest_message=None, followup_action=None, active_loop=None, latest_action_name=None) actual_request_body = ActionUtility.prepare_request(tracker=tracker, http_action_config_params=http_action_config_params) # deepcode ignore C1801: empty request body for http request with no request body params assert len(actual_request_body) == 0 @pytest.mark.asyncio async def test_name(self): assert await HttpAction().name() == "kairon_http_action" def test_is_empty(self): assert ActionUtility.is_empty("") assert ActionUtility.is_empty(" ") assert ActionUtility.is_empty(None) assert not ActionUtility.is_empty("None") def test_prepare_response(self): json1 = json.dumps({ "a": { "b": { "3": 2, "43": 30, "c": [], "d": ['red', 'buggy', 'bumpers'], } } }) response = ActionUtility.prepare_response("The value of ${a.b.3} in ${a.b.d.0} is ${a.b.c}", json1) assert response == 'The value of 2 in red is []' json2 = json.dumps({ "data": [ {"a": { "b": { "43": 30, "c": [], "d": ['red', 'buggy', 'bumpers'], }}}, {"a": { "b": { "43": 5, "c": [1, 2], "d": ['buggy', 'bumpers'], }}} ] }) response = ActionUtility.prepare_response("The value of ${data.0.a} in ${data.0.a.b} is ${data.0.a.b.d}", json2) assert response == 'The value of {"b": {"43": 30, "c": [], "d": ["red", "buggy", "bumpers"]}} in {"43": 30, "c": [], "d": ["red", "buggy", "bumpers"]} is [\'red\', \'buggy\', \'bumpers\']' def test_prepare_response_key_not_present(self): json1 = json.dumps({ "a": { "b": { "3": 2, "43": 30, "c": [], "d": ['red', 'buggy', 'bumpers'], } } }) try: ActionUtility.prepare_response("The value of ${a.b.3} in ${a.b.d.0} is ${a.b.e}", json1) assert False except HttpActionFailure: assert True def test_prepare_response_string_response(self): json1 = json.dumps({ "a": { "b": { "3": 2, "43": 30, "c": [], "d": ['red', 'buggy', 'bumpers'], } } }) response = ActionUtility.prepare_response("The value of red is 0", json1) assert response == "The value of red is 0" def test_prepare_response_string_empty_response_string(self): json1 = json.dumps({ "a": { "b": { "3": 2, "43": 30, "c": [], "d": ['red', 'buggy', 'bumpers'], } } }) response = ActionUtility.prepare_response("", json1) assert response == '{"a": {"b": {"3": 2, "43": 30, "c": [], "d": ["red", "buggy", "bumpers"]}}}' def test_prepare_response_string_empty_request_output(self): json1 = json.dumps("{}") try: ActionUtility.prepare_response("The value of ${a.b.3} in ${a.b.d.0} is ${a.b.e}", json1) assert False except HttpActionFailure: assert True def test_prepare_response_invalid_response_json(self): json_as_string = "Not a json string" try: ActionUtility.prepare_response("The value of ${a.b.3} in ${a.b.d.0} is ${a.b.c}", json_as_string) assert False except HttpActionFailure as e: assert str(e) == 'Could not find value for keys in response' def test_prepare_response_as_json_and_expected_as_plain_string(self): json_as_string = "Not a json string" response = ActionUtility.prepare_response("The value of 2 in red is []", json_as_string) assert response == 'The value of 2 in red is []' def test_prepare_response_as_string_and_expected_as_none(self): response = ActionUtility.prepare_response("The value of 2 in red is []", None) assert response == 'The value of 2 in red is []' @pytest.mark.asyncio async def test_run_invalid_http_action(self, mock_get_http_action_exception): slots = {"bot": "5f50fd0a56b698ca10d35d2e", "http_action_config_http_action": "test_run_invalid_http_action", "param2": "param2value"} events = [{"event1": "hello"}, {"event2": "how are you"}] latest_message = {'text': 'get intents', 'intent_ranking': [{'name': 'http_action'}]} HttpActionConfig( auth_token="bearer kjflksjflksajfljsdflinlsufisnflisjbjsdalibvs", action_name="test_run_invalid_http_action1", response="json", http_url="http://www.google.com", request_method="GET", params_list=None, bot="5f50fd0a56b698ca10d35d2e", user="user" ).save() dispatcher: CollectingDispatcher = CollectingDispatcher() tracker = Tracker(sender_id="sender1", slots=slots, events=events, paused=False, latest_message=latest_message, followup_action=None, active_loop=None, latest_action_name=None) domain: Dict[Text, Any] = None await HttpAction().run(dispatcher, tracker, domain) str(dispatcher.messages[0]['text']).__contains__( "I have failed to process your request: No HTTP action found for bot") log = HttpActionLog.objects(sender="sender1", bot="5f50fd0a56b698ca10d35d2e", status="FAILURE").get() assert log['exception'].__contains__('No HTTP action found for bot') @pytest.mark.asyncio async def test_run_no_bot(self): slots = {"bot": None, "http_action_config_http_action": "new_http_action", "param2": "param2value"} events = [{"event1": "hello"}, {"event2": "how are you"}] dispatcher: CollectingDispatcher = CollectingDispatcher() latest_message = {'text': 'get intents', 'intent_ranking': [{'name': 'http_action'}]} tracker = Tracker(sender_id="sender2", slots=slots, events=events, paused=False, latest_message=latest_message, followup_action=None, active_loop=None, latest_action_name=None) domain: Dict[Text, Any] = None actual: List[Dict[Text, Any]] = await HttpAction().run(dispatcher, tracker, domain) assert actual is not None assert str(actual[0]['name']) == 'KAIRON_ACTION_RESPONSE' assert str(actual[0]['value']) == 'I have failed to process your request' log = HttpActionLog.objects(sender="sender2", status="FAILURE").get() assert log['exception'] == 'Bot id and HTTP action configuration name not found in slot' @pytest.mark.asyncio async def test_run_no_http_action(self): slots = {"bot": "jhgfsjgfausyfgus", "http_action_config_http_action": None, "param2": "param2value"} events = [{"event1": "hello"}, {"event2": "how are you"}] dispatcher: CollectingDispatcher = CollectingDispatcher() latest_message = {'text': 'get intents', 'intent_ranking': [{'name': 'http_action'}]} tracker = Tracker(sender_id="sender1", slots=slots, events=events, paused=False, latest_message=latest_message, followup_action=None, active_loop=None, latest_action_name=None) domain: Dict[Text, Any] = None actual: List[Dict[Text, Any]] = await HttpAction().run(dispatcher, tracker, domain) assert actual is not None assert str(actual[0]['name']) == 'KAIRON_ACTION_RESPONSE' assert str(actual[0]['value']) == 'I have failed to process your request' @pytest.mark.asyncio async def test_run(self, monkeypatch): action = HttpActionConfig( auth_token="bearer kjflksjflksajfljsdflinlsufisnflisjbjsdalibvs", action_name="http_action", response="This should be response", http_url="http://www.google.com", request_method="GET", params_list=None, bot="5f50fd0a56b698ca10d35d2e", user="user" ) def _get_action(*arge, **kwargs): return action.to_mongo().to_dict() monkeypatch.setattr(ActionUtility, "get_http_action_config", _get_action) slots = {"bot": "5f50fd0a56b698ca10d35d2e", "http_action_config_test_run": "http_action", "param2": "param2value"} events = [{"event1": "hello"}, {"event2": "how are you"}] dispatcher: CollectingDispatcher = CollectingDispatcher() latest_message = {'text': 'get intents', 'intent_ranking': [{'name': 'test_run'}]} tracker = Tracker(sender_id="sender_test_run", slots=slots, events=events, paused=False, latest_message=latest_message, followup_action=None, active_loop=None, latest_action_name=None) domain: Dict[Text, Any] = None action.save().to_mongo().to_dict() actual: List[Dict[Text, Any]] = await HttpAction().run(dispatcher, tracker, domain) assert actual is not None assert str(actual[0]['name']) == 'KAIRON_ACTION_RESPONSE' assert str(actual[0]['value']) == 'This should be response' log = HttpActionLog.objects(sender="sender_test_run", status="SUCCESS").get() assert not log['exception'] assert log['timestamp'] assert log['intent'] assert log['action'] assert log['bot_response'] assert log['api_response'] @pytest.mark.asyncio async def test_run_with_post(self, monkeypatch): action = HttpActionConfig( auth_token="", action_name="test_run_with_post", response="Data added successfully, id:${RESPONSE}", http_url="http://localhost:8080/mock", request_method="POST", params_list=None, bot="5f50fd0a56b698ca10d35d2e", user="user" ) def _get_action(*arge, **kwargs): return action.to_mongo().to_dict() monkeypatch.setattr(ActionUtility, "get_http_action_config", _get_action) http_url = 'http://localhost:8080/mock' resp_msg = "5000" responses.start() responses.add( method=responses.POST, url=http_url, body=resp_msg, status=200, ) slots = {"bot": "5f50fd0a56b698ca10d35d2e", "http_action_config_test_run": "test_run_with_post"} events = [{"event1": "hello"}, {"event2": "how are you"}] dispatcher: CollectingDispatcher = CollectingDispatcher() latest_message = {'text': 'get intents', 'intent_ranking': [{'name': 'test_run'}]} tracker = Tracker(sender_id="sender1", slots=slots, events=events, paused=False, latest_message=latest_message, followup_action=None, active_loop=None, latest_action_name=None) domain: Dict[Text, Any] = None action.save().to_mongo().to_dict() actual: List[Dict[Text, Any]] = await HttpAction().run(dispatcher, tracker, domain) assert actual is not None assert actual[0]['name'] == 'KAIRON_ACTION_RESPONSE' assert actual[0]['value'] == 'Data added successfully, id:5000' @pytest.mark.asyncio async def test_run_with_post_and_parameters(self, monkeypatch): request_params = [HttpActionRequestBody(key='key1', value="value1"), HttpActionRequestBody(key='key2', value="value2")] action = HttpActionConfig( auth_token="", action_name="test_run_with_post", response="Data added successfully, id:${RESPONSE}", http_url="http://localhost:8080/mock", request_method="POST", params_list=request_params, bot="5f50fd0a56b698ca10d35d2e", user="user" ) def _get_action(*arge, **kwargs): return action.to_mongo().to_dict() monkeypatch.setattr(ActionUtility, "get_http_action_config", _get_action) http_url = 'http://localhost:8080/mock' resp_msg = "5000" responses.start() responses.add( method=responses.POST, url=http_url, body=resp_msg, status=200, ) slots = {"bot": "5f50fd0a56b698ca10d35d2e", "http_action_config_test_run": "test_run_with_post"} events = [{"event1": "hello"}, {"event2": "how are you"}] dispatcher: CollectingDispatcher = CollectingDispatcher() latest_message = {'text': 'get intents', 'intent_ranking': [{'name': 'test_run'}]} tracker = Tracker(sender_id="sender_test_run_with_post", slots=slots, events=events, paused=False, latest_message=latest_message, followup_action=None, active_loop=None, latest_action_name=None) domain: Dict[Text, Any] = None action.save().to_mongo().to_dict() actual: List[Dict[Text, Any]] = await HttpAction().run(dispatcher, tracker, domain) responses.stop() assert actual is not None assert str(actual[0]['name']) == 'KAIRON_ACTION_RESPONSE' assert str(actual[0]['value']) == 'Data added successfully, id:5000' log = HttpActionLog.objects(sender="sender_test_run_with_post", action="test_run_with_post", status="SUCCESS").get() assert not log['exception'] assert log['timestamp'] assert log['intent'] == "test_run" assert log['action'] == "test_run_with_post" assert log['request_params'] == {"key1": "value1", "key2": "value2"} assert log['api_response'] == '5000' assert log['bot_response'] == 'Data added successfully, id:5000' @pytest.mark.asyncio async def test_run_with_get(self, monkeypatch): action = HttpActionConfig( auth_token="", action_name="test_run_with_get", response="The value of ${a.b.3} in ${a.b.d.0} is ${a.b.d}", http_url="http://localhost:8081/mock", request_method="GET", params_list=None, bot="5f50fd0a56b698ca10d35d2e", user="user" ) def _get_action(*arge, **kwargs): return action.to_mongo().to_dict() monkeypatch.setattr(ActionUtility, "get_http_action_config", _get_action) http_url = 'http://localhost:8081/mock' resp_msg = json.dumps({ "a": { "b": { "3": 2, "43": 30, "c": [], "d": ['red', 'buggy', 'bumpers'], } } }) responses.start() responses.add( method=responses.GET, url=http_url, body=resp_msg, status=200, ) slots = {"bot": "5f50fd0a56b698ca10d35d2e", "http_action_config_test_run": "test_run_with_post"} events = [{"event1": "hello"}, {"event2": "how are you"}] dispatcher: CollectingDispatcher = CollectingDispatcher() latest_message = {'text': 'get intents', 'intent_ranking': [{'name': 'test_run'}]} tracker = Tracker(sender_id="sender1", slots=slots, events=events, paused=False, latest_message=latest_message, followup_action=None, active_loop=None, latest_action_name=None) domain: Dict[Text, Any] = None action.save().to_mongo().to_dict() actual: List[Dict[Text, Any]] = await HttpAction().run(dispatcher, tracker, domain) responses.stop() assert actual is not None assert str(actual[0]['name']) == 'KAIRON_ACTION_RESPONSE' assert str(actual[0]['value']) == 'The value of 2 in red is [\'red\', \'buggy\', \'bumpers\']' @pytest.mark.asyncio async def test_run_no_connection(self, monkeypatch): action = HttpActionConfig( auth_token="", action_name="test_run_with_post", response="This should be response", http_url="http://localhost:8085/mock", request_method="GET", params_list=None, bot="5f50fd0a56b698ca10d35d2e", user="user" ) def _get_action(*arge, **kwargs): return action.to_mongo().to_dict() monkeypatch.setattr(ActionUtility, "get_http_action_config", _get_action) slots = {"bot": "5f50fd0a56b698ca10d35d2e", "http_action_config_test_run": "test_run_with_post"} events = [{"event1": "hello"}, {"event2": "how are you"}] dispatcher: CollectingDispatcher = CollectingDispatcher() latest_message = {'text': 'get intents', 'intent_ranking': [{'name': 'test_run'}]} tracker = Tracker(sender_id="sender1", slots=slots, events=events, paused=False, latest_message=latest_message, followup_action=None, active_loop=None, latest_action_name=None) domain: Dict[Text, Any] = None action.save() actual: List[Dict[Text, Any]] = await HttpAction().run(dispatcher, tracker, domain) assert actual is not None assert str(actual[0]['name']) == 'KAIRON_ACTION_RESPONSE' assert str(actual[0]['value']).__contains__('I have failed to process your request') @pytest.mark.asyncio async def test_run_with_get_placeholder_vs_string_response(self, monkeypatch): action = HttpActionConfig( auth_token="", action_name="test_run_with_get_string_http_response_placeholder_required", response="The value of ${a.b.3} in ${a.b.d.0} is ${a.b.d}", http_url="http://localhost:8080/mock", request_method="GET", params_list=None, bot="5f50fd0a56b698ca10d35d2e", user="user" ) def _get_action(*arge, **kwargs): return action.to_mongo().to_dict() monkeypatch.setattr(ActionUtility, "get_http_action_config", _get_action) http_url = 'http://localhost:8082/mock' resp_msg = "This is string http response" responses.start() responses.add( method=responses.GET, url=http_url, body=resp_msg, status=200, ) slots = {"bot": "5f50fd0a56b698ca10d35d2e", "http_action_config_test_run": "test_run_with_get_string_http_response_placeholder_required"} events = [{"event1": "hello"}, {"event2": "how are you"}] dispatcher: CollectingDispatcher = CollectingDispatcher() latest_message = {'text': 'get intents', 'intent_ranking': [{'name': 'test_run'}]} tracker = Tracker(sender_id="sender1", slots=slots, events=events, paused=False, latest_message=latest_message, followup_action=None, active_loop=None, latest_action_name=None) domain: Dict[Text, Any] = None action.save().to_mongo().to_dict() actual: List[Dict[Text, Any]] = await HttpAction().run(dispatcher, tracker, domain) responses.stop() assert actual is not None assert str(actual[0]['name']) == 'KAIRON_ACTION_RESPONSE' assert str( actual[0]['value']) == 'I have failed to process your request' def test_attach_response_no_placeholder(self): output = ActionUtility.attach_response("This has no placeholder", {"a": "b"}) assert output == "This has no placeholder" def test_attach_response(self): output = ActionUtility.attach_response("I want $${RESPONSE}", {"dollars": "51"}) assert output == 'I want ${\'dollars\': \'51\'}' def test_attach_response_int(self): output = ActionUtility.attach_response("I want $${RESPONSE}", 51) assert output == 'I want $51' def test_retrieve_value_from_response(self): keys = ["a.b.3", 'a.b'] resp_msg = { "a": { "b": { "3": 2, "43": 30, "c": [], "d": ['red', 'buggy', 'bumpers'], } } } key_values = ActionUtility.retrieve_value_from_response(keys, resp_msg) assert key_values is not None assert key_values['${a.b.3}'] == 2 assert key_values['${a.b}'] is not None assert key_values['${a.b}']['3'] == 2 assert key_values['${a.b}']['d'][0] == 'red' def test_retrieve_value_from_response_invalid_key(self): keys = ["d.e.f", 'g.h'] resp_msg = { "a": { "b": { "3": 2, "43": 30, "c": [], "d": ['red', 'buggy', 'bumpers'], } } } try: ActionUtility.retrieve_value_from_response(keys, resp_msg) assert False except HttpActionFailure as e: assert str(e) == 'Unable to retrieve value for key from HTTP response: \'d\''
[ [ [ 7, 11 ], [ 19415, 19419 ], [ 19836, 19840 ], [ 20681, 20685 ], [ 21187, 21191 ], [ 21642, 21646 ], [ 22129, 22133 ], [ 33736, 33740 ] ], [ [ 19, 21 ], [ 22, 24 ], [ 699, 701 ] ], [ [ 104, 108 ], [ 18412, 18416 ], [ 24301, 24305 ], [ 25408, 25412 ], [ 25452, 25456 ], [ 26549, 26553 ], [ 26593, 26597 ], [ 28100, 28104 ], [ 28187, 28191 ], [ 30163, 30167 ], [ 30250, 30254 ], [ 32130, 32134 ], [ 32217, 32221 ], [ 34701, 34705 ], [ 34788, 34792 ], [ 36247, 36251 ], [ 36313, 36317 ], [ 38156, 38160 ], [ 38243, 38247 ] ], [ [ 110, 114 ], [ 24306, 24310 ], [ 25413, 25417 ], [ 25457, 25461 ], [ 26554, 26558 ], [ 26598, 26602 ], [ 28105, 28109 ], [ 28192, 28196 ], [ 30168, 30172 ], [ 30255, 30259 ], [ 32135, 32139 ], [ 32222, 32226 ], [ 34706, 34710 ], [ 34793, 34797 ], [ 36252, 36256 ], [ 36318, 36322 ], [ 38161, 38165 ], [ 38248, 38252 ] ], [ [ 116, 119 ], [ 24312, 24315 ], [ 25419, 25422 ], [ 25463, 25466 ], [ 26560, 26563 ], [ 26604, 26607 ], [ 28111, 28114 ], [ 28198, 28201 ], [ 30174, 30177 ], [ 30261, 30264 ], [ 32141, 32144 ], [ 32228, 32231 ], [ 34712, 34715 ], [ 34799, 34802 ], [ 36258, 36261 ], [ 36324, 36327 ], [ 38167, 38170 ], [ 38254, 38257 ] ], [ [ 121, 125 ], [ 18407, 18411 ], [ 18460, 18464 ], [ 25447, 25451 ], [ 26588, 26592 ], [ 28182, 28186 ], [ 30245, 30249 ], [ 32212, 32216 ], [ 34783, 34787 ], [ 36308, 36312 ], [ 38238, 38242 ] ], [ [ 134, 140 ], [ 641, 647 ], [ 919, 925 ], [ 19035, 19041 ], [ 23201, 23207 ], [ 24790, 24796 ], [ 25922, 25928 ], [ 26852, 26858 ], [ 28750, 28756 ], [ 30494, 30500 ], [ 33052, 33058 ], [ 35093, 35099 ], [ 36583, 36589 ], [ 860, 866 ] ], [ [ 148, 157 ], [ 1205, 1214 ], [ 2137, 2146 ], [ 2907, 2916 ], [ 3815, 3824 ], [ 4644, 4653 ], [ 5551, 5560 ], [ 6379, 6388 ], [ 7308, 7317 ], [ 8063, 8072 ], [ 1487, 1496 ], [ 1521, 1530 ], [ 1855, 1864 ], [ 2065, 2074 ], [ 2271, 2280 ], [ 2305, 2314 ], [ 2633, 2642 ], [ 2866, 2875 ], [ 3254, 3263 ], [ 3288, 3297 ], [ 3400, 3409 ], [ 3623, 3632 ], [ 3743, 3752 ], [ 4097, 4106 ], [ 4131, 4140 ], [ 4243, 4252 ], [ 4460, 4469 ], [ 4603, 4612 ], [ 4992, 5001 ], [ 5026, 5035 ], [ 5137, 5146 ], [ 5360, 5369 ], [ 5479, 5488 ], [ 5834, 5843 ], [ 5868, 5877 ], [ 5979, 5988 ], [ 6196, 6205 ], [ 6338, 6347 ], [ 6743, 6752 ], [ 6777, 6786 ], [ 6891, 6900 ], [ 7114, 7123 ], [ 7236, 7245 ], [ 7574, 7583 ], [ 7608, 7617 ], [ 7879, 7888 ], [ 7991, 8000 ], [ 8349, 8358 ], [ 8383, 8392 ], [ 8514, 8523 ], [ 8744, 8753 ], [ 8889, 8898 ], [ 29444, 29453 ], [ 29470, 29479 ], [ 29504, 29513 ], [ 31367, 31376 ], [ 31393, 31402 ], [ 31427, 31436 ], [ 32296, 32305 ], [ 33983, 33992 ], [ 34009, 34018 ], [ 34043, 34052 ], [ 34867, 34876 ], [ 37380, 37389 ], [ 37406, 37415 ], [ 37440, 37449 ], [ 38322, 38331 ] ], [ [ 182, 189 ], [ 892, 899 ] ], [ [ 191, 201 ] ], [ [ 223, 230 ], [ 15989, 15996 ], [ 16948, 16955 ], [ 17789, 17796 ], [ 18513, 18520 ], [ 24092, 24099 ], [ 25199, 25206 ], [ 26340, 26347 ], [ 27857, 27864 ], [ 29954, 29961 ], [ 31877, 31884 ], [ 34492, 34499 ], [ 36038, 36045 ], [ 37947, 37954 ] ], [ [ 261, 281 ], [ 24051, 24071 ], [ 24028, 24048 ], [ 25064, 25084 ], [ 25041, 25061 ], [ 26205, 26225 ], [ 26182, 26202 ], [ 27725, 27745 ], [ 27702, 27722 ], [ 29822, 29842 ], [ 29799, 29819 ], [ 31745, 31765 ], [ 31722, 31742 ], [ 34360, 34380 ], [ 34337, 34357 ], [ 35906, 35926 ], [ 35883, 35903 ], [ 37815, 37835 ], [ 37792, 37812 ] ], [ [ 329, 350 ], [ 8991, 9012 ], [ 9088, 9109 ], [ 10662, 10683 ], [ 10759, 10780 ], [ 13329, 13350 ], [ 13426, 13447 ], [ 14148, 14169 ], [ 14245, 14266 ], [ 15802, 15823 ], [ 15892, 15913 ], [ 16770, 16791 ], [ 16860, 16881 ], [ 17605, 17626 ], [ 17695, 17716 ], [ 18465, 18486 ], [ 30608, 30629 ], [ 30685, 30706 ] ], [ [ 352, 368 ], [ 9158, 9174 ], [ 10818, 10834 ], [ 11217, 11233 ], [ 13485, 13501 ], [ 14304, 14320 ], [ 14973, 14989 ], [ 23631, 23647 ], [ 26932, 26948 ], [ 28840, 28856 ], [ 30753, 30769 ], [ 33141, 33157 ], [ 35187, 35203 ], [ 36703, 36719 ] ], [ [ 370, 383 ], [ 24539, 24552 ], [ 25719, 25732 ], [ 28440, 28453 ], [ 32504, 32517 ] ], [ [ 425, 438 ], [ 1144, 1157 ], [ 1709, 1722 ], [ 2493, 2506 ], [ 3477, 3490 ], [ 4320, 4333 ], [ 5214, 5227 ], [ 6056, 6069 ], [ 6968, 6981 ], [ 7733, 7746 ], [ 8604, 8617 ], [ 9536, 9549 ], [ 11626, 11639 ], [ 12770, 12783 ], [ 13056, 13069 ], [ 13871, 13884 ], [ 14690, 14703 ], [ 15359, 15372 ], [ 16202, 16215 ], [ 17156, 17169 ], [ 18012, 18025 ], [ 18726, 18739 ], [ 19196, 19209 ], [ 19238, 19251 ], [ 19282, 19295 ], [ 19330, 19343 ], [ 19673, 19686 ], [ 20312, 20325 ], [ 20945, 20958 ], [ 21445, 21458 ], [ 21900, 21913 ], [ 22171, 22184 ], [ 22473, 22486 ], [ 22847, 22860 ], [ 23070, 23083 ], [ 27422, 27435 ], [ 29308, 29321 ], [ 31231, 31244 ], [ 33615, 33628 ], [ 35638, 35651 ], [ 37219, 37232 ], [ 38603, 38616 ], [ 38777, 38790 ], [ 38964, 38977 ], [ 39408, 39421 ], [ 40060, 40073 ] ], [ [ 440, 450 ], [ 19107, 19117 ], [ 24338, 24348 ], [ 25477, 25487 ], [ 26618, 26628 ], [ 28212, 28222 ], [ 30275, 30285 ], [ 32242, 32252 ], [ 34813, 34823 ], [ 36338, 36348 ], [ 38268, 38278 ] ], [ [ 494, 511 ], [ 12884, 12901 ], [ 13162, 13179 ], [ 13971, 13988 ], [ 14790, 14807 ], [ 15459, 15476 ], [ 21074, 21091 ], [ 22300, 22317 ], [ 22611, 22628 ], [ 40159, 40176 ], [ 1054, 1071 ] ], [ [ 537, 544 ], [ 770, 777 ], [ 813, 820 ] ], [ [ 551, 567 ] ], [ [ 622, 633 ] ] ]
from datetime import date ano = int(input('ANO de nascimento : ')) ano_hoje = date.today().year cont = ano_hoje - ano if cont > 20 : print(' Quem nasceu em {} tem {} anos em {} . '.format(ano, cont, ano_hoje)) print(' Sua classificação é MASTER. ') elif cont == 20 : print(' Quem nasceu em {} tem {} anos em {} . '.format(ano, cont, ano_hoje)) print(' Sua classificação é SENIOR. ') elif cont >= 19 : print(' Quem nasceu em {} tem {} anos em {} . '.format(ano, cont, ano_hoje)) print(' Sua classificação é JUNIOR. ') elif cont >=10 : print(' Quem nasceu em {} tem {} anos em {} . '.format(ano, cont, ano_hoje)) print(' Sua classificação é INFANTIL. ') elif cont <= 9 : print(' Quem nasceu em {} tem {} anos em {} . '.format(ano, cont, ano_hoje)) print(' Sua classificação é MIRIM. ')
[ [ [ 21, 25 ], [ 81, 85 ] ], [ [ 27, 30 ], [ 118, 121 ], [ 199, 202 ], [ 346, 349 ], [ 492, 495 ], [ 637, 640 ], [ 784, 787 ] ], [ [ 70, 78 ], [ 107, 115 ], [ 210, 218 ], [ 357, 365 ], [ 503, 511 ], [ 648, 656 ], [ 795, 803 ] ], [ [ 100, 104 ], [ 126, 130 ], [ 204, 208 ], [ 271, 275 ], [ 351, 355 ], [ 418, 422 ], [ 497, 501 ], [ 564, 568 ], [ 642, 646 ], [ 711, 715 ], [ 789, 793 ] ] ]
from distutils.core import setup setup( name='upprint', packages=['upprint'], version='0.1', description='Modified version of pprint with better Unicode output', author='Michiel Sikma', author_email='michiel@sikma.org', url='https://github.com/msikma/upprint', download_url='https://github.com/msikma/upprint/tarball/0.1', keywords=['pprint', 'debugging', 'print'], classifiers=[], license='MIT' )
[ [ [ 27, 32 ], [ 34, 39 ] ] ]
from pathlib import Path from copy import deepcopy import pytest from gretel_synthetics.config import BaseConfig import gretel_synthetics.tokenizers as tok class SimpleConfig(BaseConfig): """Used for simple tokenization tests """ def get_generator_class(self): return None def get_training_callable(self): return None @pytest.fixture(scope="module") def input_data_path(): return str( (Path(__file__).parent / "data" / "smol.txt").resolve() ) L1 = "Once upon a midnight dreary, while I pondered, weak and weary,\n" def test_single_char(input_data_path, tmpdir): # NOTE: Here the line delim should not matter for this char tokenizer config = SimpleConfig(input_data_path=input_data_path, checkpoint_dir=tmpdir, field_delimiter=",") trainer = tok.CharTokenizerTrainer(config=config) # We need this for batch mode, so verify it can be copied deepcopy(trainer) line_iter = trainer.annotate_data() # Assert that we didn't do any annotation line_one = next(line_iter) assert line_one == L1 # Let's train the tokenizer, and now reload it back in trainer.train() tokenizer = tok.CharTokenizer.load(tmpdir) assert tokenizer.total_vocab_size == 32 # NOTE: this is because we default to using this token as a delim # in the main config, but this tokenizer doesn't do anything with it anyway assert tokenizer.field_delimiter == "," assert tokenizer.field_delimiter_token == "<d>" l1_ids = [6, 21, 11, 13, 1, 28, 23, 22, 21, 1, 9, 1, 20, 17, 12, 21, 17, 15, 16, 27, 1, 12, 25, 13, 9, 25, 31, 2, 1, 30, 16, 17, 19, 13, 1, 5, 1, 23, 22, 21, 12, 13, 25, 13, 12, 2, 1, 30, 13, 9, 18, 1, 9, 21, 12, 1, 30, 13, 9, 25, 31, 2, 0] assert tokenizer.encode_to_ids(L1) == l1_ids assert tokenizer.decode_from_ids(l1_ids) == L1 # Check the factory assert isinstance( tok.tokenizer_from_model_dir(tmpdir), tok.CharTokenizer ) def test_single_char_small_vocab(input_data_path, tmpdir): config = SimpleConfig(input_data_path=input_data_path, checkpoint_dir=tmpdir) trainer = tok.CharTokenizerTrainer(config=config, vocab_size=10) trainer.annotate_data() trainer.train() tokenizer = tok.CharTokenizer.load(tmpdir) assert tokenizer.total_vocab_size == 10 # Too small of a vocab... with pytest.raises(tok.TokenizerError): tokenizer.encode_to_ids("Once upon") with pytest.raises(tok.TokenizerError): tokenizer.decode_from_ids([11]) def test_sp(input_data_path, tmpdir): config = SimpleConfig(input_data_path=input_data_path, checkpoint_dir=tmpdir) trainer = tok.SentencePieceTokenizerTrainer(config=config) deepcopy(trainer) line_iter = trainer.annotate_data() line_one = next(line_iter) assert line_one == "Once upon a midnight dreary, while I pondered, weak and weary,<n>\n" trainer.train() tokenizer = tok.SentencePieceTokenizer.load(tmpdir) ids = [41, 54, 8, 5, 11, 36, 10, 14, 16, 13, 17, 16, 22, 20, 15, 5, 13, 25, 32, 7, 6, 51, 42, 9, 8, 5, 23, 5, 36, 13, 48, 13, 6, 49, 62, 10, 28, 49, 25, 7, 6, 3] assert tokenizer.encode_to_ids("Once upon a midnight dreary, while I pondered, weak and weary,<n>\n") == ids assert tokenizer.decode_from_ids(ids) == "Once upon a midnight dreary, while I pondered, weak and weary,<n>" def test_sp_field_delim(input_data_path, tmpdir): config = SimpleConfig(input_data_path=input_data_path, checkpoint_dir=tmpdir, field_delimiter=",") trainer = tok.SentencePieceTokenizerTrainer(config=config) line_iter = trainer.annotate_data() line_one = next(line_iter) assert line_one == "Once upon a midnight dreary<d> while I pondered<d> weak and weary<d><n>\n" trainer.train() tokenizer = tok.SentencePieceTokenizer.load(tmpdir) ids = [40, 53, 7, 5, 10, 35, 9, 13, 15, 12, 16, 15, 21, 19, 14, 5, 12, 24, 30, 6, 4, 51, 41, 8, 7, 5, 23, 5, 35, 12, 47, 12, 4, 48, 61, 9, 27, 48, 24, 6, 4, 3] assert tokenizer.encode_to_ids("Once upon a midnight dreary<d> while I pondered<d> weak and weary<d><n>\n") == ids assert tokenizer.decode_from_ids(ids) == "Once upon a midnight dreary, while I pondered, weak and weary,<n>" # Check the factory assert isinstance( tok.tokenizer_from_model_dir(tmpdir), tok.SentencePieceTokenizer )
[ [ [ 20, 24 ], [ 439, 443 ] ], [ [ 42, 50 ], [ 920, 928 ], [ 2724, 2732 ] ], [ [ 59, 65 ], [ 360, 366 ], [ 2370, 2376 ], [ 2460, 2466 ] ], [ [ 105, 115 ], [ 180, 190 ] ], [ [ 123, 158 ], [ 813, 816 ], [ 1179, 1182 ], [ 1903, 1906 ], [ 1949, 1952 ], [ 2130, 2133 ], [ 2254, 2257 ], [ 2384, 2387 ], [ 2474, 2477 ], [ 2671, 2674 ], [ 2944, 2947 ], [ 3546, 3549 ], [ 3803, 3806 ], [ 4296, 4299 ], [ 4342, 4345 ] ], [ [ 167, 179 ], [ 709, 721 ], [ 2047, 2059 ], [ 2588, 2600 ], [ 3442, 3454 ] ], [ [ 395, 410 ] ], [ [ 501, 503 ], [ 1080, 1082 ], [ 1782, 1784 ], [ 1844, 1846 ] ], [ [ 579, 595 ] ], [ [ 1979, 2007 ] ], [ [ 2541, 2548 ] ], [ [ 3383, 3402 ] ] ]
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida_core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """ Tests for the export and import routines. """ from __future__ import division from __future__ import print_function from __future__ import absolute_import import io import six from six.moves import range, zip from aiida.backends.testbase import AiidaTestCase from aiida.orm.importexport import import_data from aiida import orm class TestSpecificImport(AiidaTestCase): def setUp(self): super(TestSpecificImport, self).setUp() self.clean_db() self.insert_data() def test_simple_import(self): """ This is a very simple test which checks that an export file with nodes that are not associated to a computer is imported correctly. In Django when such nodes are exported, there is an empty set for computers in the export file. In SQLA there is such a set only when a computer is associated with the exported nodes. When an empty computer set is found at the export file (when imported to an SQLA profile), the SQLA import code used to crash. This test demonstrates this problem. """ import tempfile from aiida.orm.data.parameter import ParameterData from aiida.orm.importexport import export, import_data from aiida.orm.node import Node from aiida.orm.querybuilder import QueryBuilder parameters = ParameterData(dict={ 'Pr': { 'cutoff': 50.0, 'pseudo_type': 'Wentzcovitch', 'dual': 8, 'cutoff_units': 'Ry' }, 'Ru': { 'cutoff': 40.0, 'pseudo_type': 'SG15', 'dual': 4, 'cutoff_units': 'Ry' }, }).store() with tempfile.NamedTemporaryFile() as handle: nodes = [parameters] export(nodes, outfile=handle.name, overwrite=True, silent=True) # Check that we have the expected number of nodes in the database self.assertEquals(QueryBuilder().append(Node).count(), len(nodes)) # Clean the database and verify there are no nodes left self.clean_db() self.assertEquals(QueryBuilder().append(Node).count(), 0) # After importing we should have the original number of nodes again import_data(handle.name, silent=True) self.assertEquals(QueryBuilder().append(Node).count(), len(nodes)) def test_cycle_structure_data(self): """ Create an export with some Calculation and Data nodes and import it after having cleaned the database. Verify that the nodes and their attributes are restored properly after importing the created export archive """ import tempfile from aiida.common.links import LinkType from aiida.orm.calculation import Calculation from aiida.orm.data.structure import StructureData from aiida.orm.data.remote import RemoteData from aiida.orm.importexport import export, import_data from aiida.orm.node import Node from aiida.orm.querybuilder import QueryBuilder test_label = 'Test structure' test_cell = [ [8.34, 0.0, 0.0], [0.298041701839357, 8.53479766274308, 0.0], [0.842650688117053, 0.47118495164127, 10.6965192730702] ] test_kinds = [ { 'symbols': [u'Fe'], 'weights': [1.0], 'mass': 55.845, 'name': u'Fe' }, { 'symbols': [u'S'], 'weights': [1.0], 'mass': 32.065, 'name': u'S' } ] structure = StructureData(cell=test_cell) structure.append_atom(symbols=['Fe'], position=[0, 0, 0]) structure.append_atom(symbols=['S'], position=[2, 2, 2]) structure.label = test_label structure.store() parent_calculation = Calculation() parent_calculation._set_attr('key', 'value') parent_calculation.store() child_calculation = Calculation() child_calculation._set_attr('key', 'value') child_calculation.store() remote_folder = RemoteData(computer=self.computer, remote_path='/').store() remote_folder.add_link_from(parent_calculation, link_type=LinkType.CREATE) child_calculation.add_link_from(remote_folder, link_type=LinkType.INPUT) structure.add_link_from(child_calculation, link_type=LinkType.CREATE) with tempfile.NamedTemporaryFile() as handle: nodes = [structure, child_calculation, parent_calculation, remote_folder] export(nodes, outfile=handle.name, overwrite=True, silent=True) # Check that we have the expected number of nodes in the database self.assertEquals(QueryBuilder().append(Node).count(), len(nodes)) # Clean the database and verify there are no nodes left self.clean_db() self.assertEquals(QueryBuilder().append(Node).count(), 0) # After importing we should have the original number of nodes again import_data(handle.name, silent=True) self.assertEquals(QueryBuilder().append(Node).count(), len(nodes)) # Verify that Calculations have non-empty attribute dictionaries qb = QueryBuilder().append(Calculation) for [calculation] in qb.iterall(): self.assertIsInstance(calculation.get_attrs(), dict) self.assertNotEquals(len(calculation.get_attrs()), 0) # Verify that the structure data maintained its label, cell and kinds qb = QueryBuilder().append(StructureData) for [structure] in qb.iterall(): self.assertEquals(structure.label, test_label) self.assertEquals(structure.cell, test_cell) qb = QueryBuilder().append(StructureData, project=['attributes.kinds']) for [kinds] in qb.iterall(): self.assertEqual(len(kinds), 2) for kind in kinds: self.assertIn(kind, test_kinds) # Check that there is a StructureData that is an output of a Calculation qb = QueryBuilder() qb.append(Calculation, project=['uuid'], tag='calculation') qb.append(StructureData, output_of='calculation') self.assertGreater(len(qb.all()), 0) # Check that there is a RemoteData that is a child and parent of a Calculation qb = QueryBuilder() qb.append(Calculation, tag='parent') qb.append(RemoteData, project=['uuid'], output_of='parent', tag='remote') qb.append(Calculation, output_of='remote') self.assertGreater(len(qb.all()), 0) class TestSimple(AiidaTestCase): def setUp(self): self.clean_db() self.insert_data() def tearDown(self): pass def test_0(self): import os import shutil import tempfile from aiida.orm import load_node from aiida.orm.data.base import Str, Int, Float, Bool from aiida.orm.importexport import export # Creating a folder for the import/export files temp_folder = tempfile.mkdtemp() try: # producing values for each base type values = ("Hello", 6, -1.2399834e12, False) # , ["Bla", 1, 1e-10]) filename = os.path.join(temp_folder, "export.tar.gz") # producing nodes: nodes = [cls(val).store() for val, cls in zip(values, (Str, Int, Float, Bool))] # my uuid - list to reload the node: uuids = [n.uuid for n in nodes] # exporting the nodes: export(nodes, outfile=filename, silent=True) # cleaning: self.clean_db() # Importing back the data: import_data(filename, silent=True) # Checking whether values are preserved: for uuid, refval in zip(uuids, values): self.assertEquals(load_node(uuid).value, refval) finally: # Deleting the created temporary folder shutil.rmtree(temp_folder, ignore_errors=True) def test_1(self): import os import shutil import tempfile from aiida.orm import DataFactory from aiida.orm import load_node from aiida.orm.calculation.job import JobCalculation from aiida.orm.importexport import export # Creating a folder for the import/export files temp_folder = tempfile.mkdtemp() try: StructureData = DataFactory('structure') sd = StructureData() sd.store() calc = JobCalculation() calc.set_computer(self.computer) calc.set_option('resources', {"num_machines": 1, "num_mpiprocs_per_machine": 1}) calc.store() calc.add_link_from(sd) pks = [sd.pk, calc.pk] attrs = {} for pk in pks: node = load_node(pk) attrs[node.uuid] = dict() for k in node.attrs(): attrs[node.uuid][k] = node.get_attr(k) filename = os.path.join(temp_folder, "export.tar.gz") export([calc], outfile=filename, silent=True) self.clean_db() # NOTE: it is better to load new nodes by uuid, rather than assuming # that they will have the first 3 pks. In fact, a recommended policy in # databases is that pk always increment, even if you've deleted elements import_data(filename, silent=True) for uuid in attrs.keys(): node = load_node(uuid) # for k in node.attrs(): for k in attrs[uuid].keys(): self.assertEquals(attrs[uuid][k], node.get_attr(k)) finally: # Deleting the created temporary folder shutil.rmtree(temp_folder, ignore_errors=True) # print temp_folder def test_2(self): """ Test the check for the export format version. """ import tarfile import os import shutil import tempfile from aiida.common import exceptions from aiida.orm import DataFactory from aiida.orm.importexport import export import aiida.utils.json as json # Creating a folder for the import/export files export_file_tmp_folder = tempfile.mkdtemp() unpack_tmp_folder = tempfile.mkdtemp() try: StructureData = DataFactory('structure') sd = StructureData() sd.store() filename = os.path.join(export_file_tmp_folder, "export.tar.gz") export([sd], outfile=filename, silent=True) with tarfile.open(filename, "r:gz", format=tarfile.PAX_FORMAT) as tar: tar.extractall(unpack_tmp_folder) with io.open(os.path.join(unpack_tmp_folder, 'metadata.json'), 'r', encoding='utf8') as fhandle: metadata = json.load(fhandle) metadata['export_version'] = 0.0 with io.open(os.path.join(unpack_tmp_folder, 'metadata.json'), 'wb') as fhandle: json.dump(metadata, fhandle) with tarfile.open(filename, "w:gz", format=tarfile.PAX_FORMAT) as tar: tar.add(unpack_tmp_folder, arcname="") self.tearDownClass() self.setUpClass() with self.assertRaises(exceptions.IncompatibleArchiveVersionError): import_data(filename, silent=True) finally: # Deleting the created temporary folders shutil.rmtree(export_file_tmp_folder, ignore_errors=True) shutil.rmtree(unpack_tmp_folder, ignore_errors=True) def test_3(self): """ Test importing of nodes, that have links to unknown nodes. """ import tarfile import os import shutil import tempfile from aiida.orm.importexport import export from aiida.common.folders import SandboxFolder from aiida.orm.data.structure import StructureData from aiida.orm import load_node import aiida.utils.json as json # Creating a folder for the import/export files temp_folder = tempfile.mkdtemp() try: node_label = "Test structure data" sd = StructureData() sd.label = str(node_label) sd.store() filename = os.path.join(temp_folder, "export.tar.gz") export([sd], outfile=filename, silent=True) unpack = SandboxFolder() with tarfile.open( filename, "r:gz", format=tarfile.PAX_FORMAT) as tar: tar.extractall(unpack.abspath) with io.open(unpack.get_abs_path('data.json'), 'r', encoding='utf8') as fhandle: metadata = json.load(fhandle) metadata['links_uuid'].append({ 'output': sd.uuid, 'input': 'non-existing-uuid', 'label': 'parent' }) with io.open(unpack.get_abs_path('data.json'), 'wb') as fhandle: json.dump(metadata, fhandle) with tarfile.open( filename, "w:gz", format=tarfile.PAX_FORMAT) as tar: tar.add(unpack.abspath, arcname="") self.clean_db() with self.assertRaises(ValueError): import_data(filename, silent=True) import_data(filename, ignore_unknown_nodes=True, silent=True) self.assertEquals(load_node(sd.uuid).label, node_label) finally: # Deleting the created temporary folder shutil.rmtree(temp_folder, ignore_errors=True) def test_4(self): """ Test control of licenses. """ from aiida.common.exceptions import LicensingException from aiida.common.folders import SandboxFolder from aiida.orm.importexport import export_tree from aiida.orm import DataFactory StructureData = DataFactory('structure') sd = StructureData() sd.source = {'license': 'GPL'} sd.store() folder = SandboxFolder() export_tree([sd], folder=folder, silent=True, allowed_licenses=['GPL']) # Folder should contain two files of metadata + nodes/ self.assertEquals(len(folder.get_content_list()), 3) folder = SandboxFolder() export_tree([sd], folder=folder, silent=True, forbidden_licenses=['Academic']) # Folder should contain two files of metadata + nodes/ self.assertEquals(len(folder.get_content_list()), 3) folder = SandboxFolder() with self.assertRaises(LicensingException): export_tree([sd], folder=folder, silent=True, allowed_licenses=['CC0']) folder = SandboxFolder() with self.assertRaises(LicensingException): export_tree([sd], folder=folder, silent=True, forbidden_licenses=['GPL']) def cc_filter(license): return license.startswith('CC') def gpl_filter(license): return license == 'GPL' def crashing_filter(license): raise NotImplementedError("not implemented yet") folder = SandboxFolder() with self.assertRaises(LicensingException): export_tree([sd], folder=folder, silent=True, allowed_licenses=cc_filter) folder = SandboxFolder() with self.assertRaises(LicensingException): export_tree([sd], folder=folder, silent=True, forbidden_licenses=gpl_filter) folder = SandboxFolder() with self.assertRaises(LicensingException): export_tree([sd], folder=folder, silent=True, allowed_licenses=crashing_filter) folder = SandboxFolder() with self.assertRaises(LicensingException): export_tree([sd], folder=folder, silent=True, forbidden_licenses=crashing_filter) def test_5(self): """ This test checks that nodes belonging to different users are correctly exported & imported. """ import os import shutil import tempfile from aiida.orm import load_node from aiida.orm.calculation.job import JobCalculation from aiida.orm.data.structure import StructureData from aiida.orm.importexport import export from aiida.common.datastructures import calc_states from aiida.common.links import LinkType from aiida.common.utils import get_configured_user_email # Creating a folder for the import/export files temp_folder = tempfile.mkdtemp() try: # Create another user new_email = "newuser@new.n" user = orm.User(email=new_email, backend=self.backend).store() # Create a structure data node that has a calculation as output sd1 = StructureData() sd1.set_user(user) sd1.label = 'sd1' sd1.store() jc1 = JobCalculation() jc1.set_computer(self.computer) jc1.set_option('resources', {"num_machines": 1, "num_mpiprocs_per_machine": 1}) jc1.set_user(user) jc1.label = 'jc1' jc1.store() jc1.add_link_from(sd1) jc1._set_state(calc_states.PARSING) # Create some nodes from a different user sd2 = StructureData() sd2.set_user(user) sd2.label = 'sd2' sd2.store() sd2.add_link_from(jc1, label='l1', link_type=LinkType.CREATE) # I assume jc1 CREATED sd2 jc2 = JobCalculation() jc2.set_computer(self.computer) jc2.set_option('resources', {"num_machines": 1, "num_mpiprocs_per_machine": 1}) jc2.label = 'jc2' jc2.store() jc2.add_link_from(sd2, label='l2') jc2._set_state(calc_states.PARSING) sd3 = StructureData() sd3.label = 'sd3' sd3.store() sd3.add_link_from(jc2, label='l3', link_type=LinkType.CREATE) uuids_u1 = [sd1.uuid, jc1.uuid, sd2.uuid] uuids_u2 = [jc2.uuid, sd3.uuid] filename = os.path.join(temp_folder, "export.tar.gz") export([sd3], outfile=filename, silent=True) self.clean_db() import_data(filename, silent=True) # Check that the imported nodes are correctly imported and that # the user assigned to the nodes is the right one for uuid in uuids_u1: node = load_node(uuid=uuid) self.assertEquals(node.get_user().email, new_email) for uuid in uuids_u2: self.assertEquals(load_node(uuid).get_user().email, get_configured_user_email()) finally: # Deleting the created temporary folder shutil.rmtree(temp_folder, ignore_errors=True) def test_6(self): """ This test checks that nodes belonging to user A (which is not the default user) can be correctly exported, imported, enriched with nodes from the default user, re-exported & re-imported and that in the end all the nodes that have been finally imported belonging to the right users. """ import os import shutil import tempfile from aiida.orm import load_node from aiida.orm.calculation.job import JobCalculation from aiida.orm.data.structure import StructureData from aiida.orm.importexport import export from aiida.common.datastructures import calc_states from aiida.common.links import LinkType from aiida.common.utils import get_configured_user_email # Creating a folder for the import/export files temp_folder = tempfile.mkdtemp() try: # Create another user new_email = "newuser@new.n" user = orm.User(email=new_email, backend=self.backend).store() # Create a structure data node that has a calculation as output sd1 = StructureData() sd1.set_user(user) sd1.label = 'sd1' sd1.store() jc1 = JobCalculation() jc1.set_computer(self.computer) jc1.set_option('resources', {"num_machines": 1, "num_mpiprocs_per_machine": 1}) jc1.set_user(user) jc1.label = 'jc1' jc1.store() jc1.add_link_from(sd1) jc1._set_state(calc_states.PARSING) # Create some nodes from a different user sd2 = StructureData() sd2.set_user(user) sd2.label = 'sd2' sd2.store() sd2.add_link_from(jc1, label='l1', link_type=LinkType.CREATE) # Set the jc1 to FINISHED jc1._set_state(calc_states.FINISHED) # At this point we export the generated data filename1 = os.path.join(temp_folder, "export1.tar.gz") export([sd2], outfile=filename1, silent=True) uuids1 = [sd1.uuid, jc1.uuid, sd2.uuid] self.clean_db() self.insert_data() import_data(filename1, silent=True) # Check that the imported nodes are correctly imported and that # the user assigned to the nodes is the right one for uuid in uuids1: self.assertEquals(load_node(uuid).get_user().email, new_email) # Now we continue to generate more data based on the imported # data sd2_imp = load_node(sd2.uuid) jc2 = JobCalculation() jc2.set_computer(self.computer) jc2.set_option('resources', {"num_machines": 1, "num_mpiprocs_per_machine": 1}) jc2.label = 'jc2' jc2.store() jc2.add_link_from(sd2_imp, label='l2') jc2._set_state(calc_states.PARSING) sd3 = StructureData() sd3.label = 'sd3' sd3.store() sd3.add_link_from(jc2, label='l3', link_type=LinkType.CREATE) # Set the jc2 to FINISHED jc2._set_state(calc_states.FINISHED) # Store the UUIDs of the nodes that should be checked # if they can be imported correctly. uuids2 = [jc2.uuid, sd3.uuid] filename2 = os.path.join(temp_folder, "export2.tar.gz") export([sd3], outfile=filename2, silent=True) self.clean_db() self.insert_data() import_data(filename2, silent=True) # Check that the imported nodes are correctly imported and that # the user assigned to the nodes is the right one for uuid in uuids1: self.assertEquals(load_node(uuid).get_user().email, new_email) for uuid in uuids2: self.assertEquals(load_node(uuid).get_user().email, get_configured_user_email()) finally: # Deleting the created temporary folder shutil.rmtree(temp_folder, ignore_errors=True) def test_7(self): """ This test checks that nodes that belong to a specific group are correctly imported and exported. """ import os import shutil import tempfile from aiida.orm import load_node from aiida.orm.calculation.job import JobCalculation from aiida.orm.data.structure import StructureData from aiida.orm.importexport import export from aiida.common.datastructures import calc_states from aiida.orm.querybuilder import QueryBuilder # Creating a folder for the import/export files temp_folder = tempfile.mkdtemp() try: # Create another user new_email = "newuser@new.n" user = orm.User(email=new_email, backend=self.backend) user.store() # Create a structure data node that has a calculation as output sd1 = StructureData() sd1.set_user(user) sd1.label = 'sd1' sd1.store() jc1 = JobCalculation() jc1.set_computer(self.computer) jc1.set_option('resources', {"num_machines": 1, "num_mpiprocs_per_machine": 1}) jc1.set_user(user) jc1.label = 'jc1' jc1.store() jc1.add_link_from(sd1) jc1._set_state(calc_states.PARSING) # Create a group and add the data inside from aiida.orm.group import Group g1 = Group(name="node_group") g1.store() g1.add_nodes([sd1, jc1]) g1_uuid = g1.uuid # At this point we export the generated data filename1 = os.path.join(temp_folder, "export1.tar.gz") export([sd1, jc1, g1], outfile=filename1, silent=True) n_uuids = [sd1.uuid, jc1.uuid] self.clean_db() self.insert_data() import_data(filename1, silent=True) # Check that the imported nodes are correctly imported and that # the user assigned to the nodes is the right one for uuid in n_uuids: self.assertEquals(load_node(uuid).get_user().email, new_email) # Check that the exported group is imported correctly qb = QueryBuilder() qb.append(Group, filters={'uuid': {'==': g1_uuid}}) self.assertEquals(qb.count(), 1, "The group was not found.") finally: # Deleting the created temporary folder shutil.rmtree(temp_folder, ignore_errors=True) def test_group_export(self): """ Test that when exporting just a group, its nodes are also exported """ import os import shutil import tempfile from aiida.orm import load_node from aiida.orm.data.structure import StructureData from aiida.orm.importexport import export from aiida.orm.querybuilder import QueryBuilder # Creating a folder for the import/export files temp_folder = tempfile.mkdtemp() try: # Create another user new_email = "newuser@new.n" user = orm.User(email=new_email, backend=self.backend) user.store() # Create a structure data node sd1 = StructureData() sd1.set_user(user) sd1.label = 'sd1' sd1.store() # Create a group and add the data inside from aiida.orm.group import Group g1 = Group(name="node_group") g1.store() g1.add_nodes([sd1]) g1_uuid = g1.uuid # At this point we export the generated data filename1 = os.path.join(temp_folder, "export1.tar.gz") export([g1], outfile=filename1, silent=True) n_uuids = [sd1.uuid] self.clean_db() self.insert_data() import_data(filename1, silent=True) # Check that the imported nodes are correctly imported and that # the user assigned to the nodes is the right one for uuid in n_uuids: self.assertEquals(load_node(uuid).get_user().email, new_email) # Check that the exported group is imported correctly qb = QueryBuilder() qb.append(Group, filters={'uuid': {'==': g1_uuid}}) self.assertEquals(qb.count(), 1, "The group was not found.") finally: # Deleting the created temporary folder shutil.rmtree(temp_folder, ignore_errors=True) def test_workfunction_1(self): import shutil, os, tempfile from aiida.work.workfunctions import workfunction from aiida.orm.data.float import Float from aiida.orm import load_node from aiida.orm.importexport import export from aiida.common.exceptions import NotExistent # Creating a folder for the import/export files temp_folder = tempfile.mkdtemp() @workfunction def add(a, b): """Add 2 numbers""" return {'res': Float(a + b)} def max_(**kwargs): """select the max value""" max_val = max([(v.value, v) for v in kwargs.values()]) return {'res': max_val[1]} try: # I'm creating a bunch of nuimbers a, b, c, d, e = (Float(i) for i in range(5)) # this adds the maximum number between bcde to a. res = add(a=a, b=max_(b=b, c=c, d=d, e=e)['res'])['res'] # These are the uuids that would be exported as well (as parents) if I wanted the final result uuids_values = [(a.uuid, a.value), (e.uuid, e.value), (res.uuid, res.value)] # These are the uuids that shouldn't be exported since it's a selection. not_wanted_uuids = [v.uuid for v in (b, c, d)] # At this point we export the generated data filename1 = os.path.join(temp_folder, "export1.tar.gz") export([res], outfile=filename1, silent=True) self.clean_db() self.insert_data() import_data(filename1, silent=True) # Check that the imported nodes are correctly imported and that the value is preserved for uuid, value in uuids_values: self.assertEquals(load_node(uuid).value, value) for uuid in not_wanted_uuids: with self.assertRaises(NotExistent): load_node(uuid) finally: # Deleting the created temporary folder shutil.rmtree(temp_folder, ignore_errors=True) def test_workcalculation_2(self): import shutil, os, tempfile from aiida.orm.calculation.work import WorkCalculation from aiida.orm.data.float import Float from aiida.orm.data.int import Int from aiida.orm import load_node from aiida.common.links import LinkType from aiida.orm.importexport import export from aiida.common.exceptions import NotExistent # Creating a folder for the import/export files temp_folder = tempfile.mkdtemp() try: master = WorkCalculation().store() slave = WorkCalculation().store() input_1 = Int(3).store() input_2 = Int(5).store() output_1 = Int(2).store() master.add_link_from(input_1, 'input_1', link_type=LinkType.INPUT) slave.add_link_from(master, 'CALL', link_type=LinkType.CALL) slave.add_link_from(input_2, 'input_2', link_type=LinkType.INPUT) output_1.add_link_from(master, 'CREATE', link_type=LinkType.CREATE) uuids_values = [(v.uuid, v.value) for v in (output_1,)] filename1 = os.path.join(temp_folder, "export1.tar.gz") export([output_1], outfile=filename1, silent=True) self.clean_db() self.insert_data() import_data(filename1, silent=True) for uuid, value in uuids_values: self.assertEquals(load_node(uuid).value, value) finally: # Deleting the created temporary folder shutil.rmtree(temp_folder, ignore_errors=True) def test_reexport(self): """ Export something, import and reexport and check if everything is valid. The export is rather easy:: ___ ___ ___ | | INP | | CREATE | | | p | --> | c | -----> | a | |___| |___| |___| """ import os, shutil, tempfile, numpy as np, string, random from datetime import datetime from aiida.orm import Calculation, load_node, Group from aiida.orm.data.array import ArrayData from aiida.orm.data.parameter import ParameterData from aiida.orm.querybuilder import QueryBuilder from aiida.orm.importexport import export from aiida.common.hashing import make_hash from aiida.common.links import LinkType def get_hash_from_db_content(groupname): qb = QueryBuilder() qb.append(ParameterData, tag='p', project='*') qb.append(Calculation, tag='c', project='*', edge_tag='p2c', edge_project=('label', 'type')) qb.append(ArrayData, tag='a', project='*', edge_tag='c2a', edge_project=('label', 'type')) qb.append(Group, filters={'name': groupname}, project='*', tag='g', group_of='a') # I want the query to contain something! self.assertTrue(qb.count() > 0) # The hash is given from the preservable entries in an export-import cycle, # uuids, attributes, labels, descriptions, arrays, link-labels, link-types: hash_ = make_hash([( item['p']['*'].get_attrs(), item['p']['*'].uuid, item['p']['*'].label, item['p']['*'].description, item['c']['*'].uuid, item['c']['*'].get_attrs(), item['a']['*'].get_attrs(), [item['a']['*'].get_array(name) for name in item['a']['*'].get_arraynames()], item['a']['*'].uuid, item['g']['*'].uuid, item['g']['*'].name, item['p2c']['label'], item['p2c']['type'], item['c2a']['label'], item['c2a']['type'], item['g']['*'].name, ) for item in qb.dict()]) return hash_ # Creating a folder for the import/export files temp_folder = tempfile.mkdtemp() chars = string.ascii_uppercase + string.digits size = 10 groupname = 'test-group' try: nparr = np.random.random((4, 3, 2)) trial_dict = {} # give some integers: trial_dict.update({str(k): np.random.randint(100) for k in range(10)}) # give some floats: trial_dict.update({str(k): np.random.random() for k in range(10, 20)}) # give some booleans: trial_dict.update({str(k): bool(np.random.randint(1)) for k in range(20, 30)}) # give some datetime: trial_dict.update({str(k): datetime( year=2017, month=np.random.randint(1, 12), day=np.random.randint(1, 28)) for k in range(30, 40)}) # give some text: trial_dict.update({str(k): ''.join(random.choice(chars) for _ in range(size)) for k in range(20, 30)}) p = ParameterData(dict=trial_dict) p.label = str(datetime.now()) p.description = 'd_' + str(datetime.now()) p.store() c = Calculation() # setting also trial dict as attributes, but randomizing the keys) (c._set_attr(str(int(k) + np.random.randint(10)), v) for k, v in trial_dict.items()) c.store() a = ArrayData() a.set_array('array', nparr) a.store() # LINKS # the calculation has input the parameters-instance c.add_link_from(p, label='input_parameters', link_type=LinkType.INPUT) # I want the array to be an output of the calculation a.add_link_from(c, label='output_array', link_type=LinkType.CREATE) g = Group(name='test-group') g.store() g.add_nodes(a) hash_from_dbcontent = get_hash_from_db_content(groupname) # I export and reimport 3 times in a row: for i in range(3): # Always new filename: filename = os.path.join(temp_folder, "export-{}.zip".format(i)) # Loading the group from the string g = Group.get_from_string(groupname) # exporting based on all members of the group # this also checks if group memberships are preserved! export([g] + [n for n in g.nodes], outfile=filename, silent=True) # cleaning the DB! self.clean_db() # reimporting the data from the file import_data(filename, silent=True, ignore_unknown_nodes=True) # creating the hash from db content new_hash = get_hash_from_db_content(groupname) # I check for equality against the first hash created, which implies that hashes # are equal in all iterations of this process self.assertEqual(hash_from_dbcontent, new_hash) finally: # Deleting the created temporary folder shutil.rmtree(temp_folder, ignore_errors=True) class TestComplex(AiidaTestCase): def test_complex_graph_import_export(self): """ This test checks that a small and bit complex graph can be correctly exported and imported. It will create the graph, store it to the database, export it to a file and import it. In the end it will check if the initial nodes are present at the imported graph. """ import tempfile import shutil import os from aiida.orm.calculation.job import JobCalculation from aiida.orm.data.folder import FolderData from aiida.orm.data.parameter import ParameterData from aiida.orm.data.remote import RemoteData from aiida.common.links import LinkType from aiida.orm.importexport import export, import_data from aiida.orm.utils import load_node from aiida.common.exceptions import NotExistent temp_folder = tempfile.mkdtemp() try: calc1 = JobCalculation() calc1.set_computer(self.computer) calc1.set_option('resources', {"num_machines": 1, "num_mpiprocs_per_machine": 1}) calc1.label = "calc1" calc1.store() calc1._set_state(u'RETRIEVING') pd1 = ParameterData() pd1.label = "pd1" pd1.store() pd2 = ParameterData() pd2.label = "pd2" pd2.store() rd1 = RemoteData() rd1.label = "rd1" rd1.set_remote_path("/x/y.py") rd1.set_computer(self.computer) rd1.store() rd1.add_link_from(calc1, link_type=LinkType.CREATE) calc2 = JobCalculation() calc2.set_computer(self.computer) calc2.set_option('resources', {"num_machines": 1, "num_mpiprocs_per_machine": 1}) calc2.label = "calc2" calc2.store() calc2.add_link_from(pd1, link_type=LinkType.INPUT) calc2.add_link_from(pd2, link_type=LinkType.INPUT) calc2.add_link_from(rd1, link_type=LinkType.INPUT) calc2._set_state(u'SUBMITTING') fd1 = FolderData() fd1.label = "fd1" fd1.store() fd1.add_link_from(calc2, link_type=LinkType.CREATE) node_uuids_labels = {calc1.uuid: calc1.label, pd1.uuid: pd1.label, pd2.uuid: pd2.label, rd1.uuid: rd1.label, calc2.uuid: calc2.label, fd1.uuid: fd1.label} filename = os.path.join(temp_folder, "export.tar.gz") export([fd1], outfile=filename, silent=True) self.clean_db() import_data(filename, silent=True, ignore_unknown_nodes=True) for uuid, label in node_uuids_labels.items(): try: load_node(uuid) except NotExistent: self.fail("Node with UUID {} and label {} was not " "found.".format(uuid, label)) finally: # Deleting the created temporary folder shutil.rmtree(temp_folder, ignore_errors=True) class TestComputer(AiidaTestCase): def setUp(self): self.clean_db() self.insert_data() def tearDown(self): pass def test_same_computer_import(self): """ Test that you can import nodes in steps without any problems. In this test we will import a first calculation and then a second one. The import should work as expected and have in the end two job calculations. Each calculation is related to the same computer. In the end we should have only one computer """ import os import shutil import tempfile from aiida.orm.importexport import export from aiida.orm.querybuilder import QueryBuilder from aiida.orm.computers import Computer from aiida.orm.calculation.job import JobCalculation # Creating a folder for the import/export files export_file_tmp_folder = tempfile.mkdtemp() unpack_tmp_folder = tempfile.mkdtemp() try: # Store two job calculation related to the same computer calc1_label = "calc1" calc1 = JobCalculation() calc1.set_computer(self.computer) calc1.set_option('resources', {"num_machines": 1, "num_mpiprocs_per_machine": 1}) calc1.label = calc1_label calc1.store() calc1._set_state(u'RETRIEVING') calc2_label = "calc2" calc2 = JobCalculation() calc2.set_computer(self.computer) calc2.set_option('resources', {"num_machines": 2, "num_mpiprocs_per_machine": 2}) calc2.label = calc2_label calc2.store() calc2._set_state(u'RETRIEVING') # Store locally the computer name comp_name = six.text_type(self.computer.name) comp_uuid = six.text_type(self.computer.uuid) # Export the first job calculation filename1 = os.path.join(export_file_tmp_folder, "export1.tar.gz") export([calc1], outfile=filename1, silent=True) # Export the second job calculation filename2 = os.path.join(export_file_tmp_folder, "export2.tar.gz") export([calc2], outfile=filename2, silent=True) # Clean the local database self.clean_db() # Check that there are no computers qb = QueryBuilder() qb.append(Computer, project=['*']) self.assertEqual(qb.count(), 0, "There should not be any computers" "in the database at this point.") # Check that there are no calculations qb = QueryBuilder() qb.append(JobCalculation, project=['*']) self.assertEqual(qb.count(), 0, "There should not be any " "calculations in the database at " "this point.") # Import the first calculation import_data(filename1, silent=True) # Check that the calculation computer is imported correctly. qb = QueryBuilder() qb.append(JobCalculation, project=['label']) self.assertEqual(qb.count(), 1, "Only one calculation should be " "found.") self.assertEqual(six.text_type(qb.first()[0]), calc1_label, "The calculation label is not correct.") # Check that the referenced computer is imported correctly. qb = QueryBuilder() qb.append(Computer, project=['name', 'uuid', 'id']) self.assertEqual(qb.count(), 1, "Only one computer should be " "found.") self.assertEqual(six.text_type(qb.first()[0]), comp_name, "The computer name is not correct.") self.assertEqual(six.text_type(qb.first()[1]), comp_uuid, "The computer uuid is not correct.") # Store the id of the computer comp_id = qb.first()[2] # Import the second calculation import_data(filename2, silent=True) # Check that the number of computers remains the same and its data # did not change. qb = QueryBuilder() qb.append(Computer, project=['name', 'uuid', 'id']) self.assertEqual(qb.count(), 1, "Only one computer should be " "found.") self.assertEqual(six.text_type(qb.first()[0]), comp_name, "The computer name is not correct.") self.assertEqual(six.text_type(qb.first()[1]), comp_uuid, "The computer uuid is not correct.") self.assertEqual(qb.first()[2], comp_id, "The computer id is not correct.") # Check that now you have two calculations attached to the same # computer. qb = QueryBuilder() qb.append(Computer, tag='comp') qb.append(JobCalculation, has_computer='comp', project=['label']) self.assertEqual(qb.count(), 2, "Two calculations should be " "found.") ret_labels = set(_ for [_] in qb.all()) self.assertEqual(ret_labels, set([calc1_label, calc2_label]), "The labels of the calculations are not correct.") finally: # Deleting the created temporary folders shutil.rmtree(export_file_tmp_folder, ignore_errors=True) shutil.rmtree(unpack_tmp_folder, ignore_errors=True) def test_same_computer_different_name_import(self): """ This test checks that if the computer is re-imported with a different name to the same database, then the original computer will not be renamed. It also checks that the names were correctly imported (without any change since there is no computer name collision) """ import os import shutil import tempfile from aiida.orm.importexport import export from aiida.orm.querybuilder import QueryBuilder from aiida.orm.computers import Computer from aiida.orm.calculation.job import JobCalculation # Creating a folder for the import/export files export_file_tmp_folder = tempfile.mkdtemp() unpack_tmp_folder = tempfile.mkdtemp() try: # Store a calculation calc1_label = "calc1" calc1 = JobCalculation() calc1.set_computer(self.computer) calc1.set_option('resources', {"num_machines": 1, "num_mpiprocs_per_machine": 1}) calc1.label = calc1_label calc1.store() calc1._set_state(u'RETRIEVING') # Store locally the computer name comp1_name = six.text_type(self.computer.name) # Export the first job calculation filename1 = os.path.join(export_file_tmp_folder, "export1.tar.gz") export([calc1], outfile=filename1, silent=True) # Rename the computer self.computer.set_name(comp1_name + "_updated") # Store a second calculation calc2_label = "calc2" calc2 = JobCalculation() calc2.set_computer(self.computer) calc2.set_option('resources', {"num_machines": 2, "num_mpiprocs_per_machine": 2}) calc2.label = calc2_label calc2.store() calc2._set_state(u'RETRIEVING') # Export the second job calculation filename2 = os.path.join(export_file_tmp_folder, "export2.tar.gz") export([calc2], outfile=filename2, silent=True) # Clean the local database self.clean_db() # Check that there are no computers qb = QueryBuilder() qb.append(Computer, project=['*']) self.assertEqual(qb.count(), 0, "There should not be any computers" "in the database at this point.") # Check that there are no calculations qb = QueryBuilder() qb.append(JobCalculation, project=['*']) self.assertEqual(qb.count(), 0, "There should not be any " "calculations in the database at " "this point.") # Import the first calculation import_data(filename1, silent=True) # Check that the calculation computer is imported correctly. qb = QueryBuilder() qb.append(JobCalculation, project=['label']) self.assertEqual(qb.count(), 1, "Only one calculation should be " "found.") self.assertEqual(six.text_type(qb.first()[0]), calc1_label, "The calculation label is not correct.") # Check that the referenced computer is imported correctly. qb = QueryBuilder() qb.append(Computer, project=['name', 'uuid', 'id']) self.assertEqual(qb.count(), 1, "Only one computer should be " "found.") self.assertEqual(six.text_type(qb.first()[0]), comp1_name, "The computer name is not correct.") # Import the second calculation import_data(filename2, silent=True) # Check that the number of computers remains the same and its data # did not change. qb = QueryBuilder() qb.append(Computer, project=['name']) self.assertEqual(qb.count(), 1, "Only one computer should be " "found.") self.assertEqual(six.text_type(qb.first()[0]), comp1_name, "The computer name is not correct.") finally: # Deleting the created temporary folders shutil.rmtree(export_file_tmp_folder, ignore_errors=True) shutil.rmtree(unpack_tmp_folder, ignore_errors=True) def test_different_computer_same_name_import(self): """ This test checks that if there is a name collision, the imported computers are renamed accordingly. """ import os import shutil import tempfile from aiida.orm.importexport import export from aiida.orm.querybuilder import QueryBuilder from aiida.orm.computers import Computer from aiida.orm.calculation.job import JobCalculation from aiida.orm.importexport import COMP_DUPL_SUFFIX # Creating a folder for the import/export files export_file_tmp_folder = tempfile.mkdtemp() unpack_tmp_folder = tempfile.mkdtemp() try: # Set the computer name comp1_name = "localhost_1" self.computer.set_name(comp1_name) # Store a calculation calc1_label = "calc1" calc1 = JobCalculation() calc1.set_computer(self.computer) calc1.set_option('resources', {"num_machines": 1, "num_mpiprocs_per_machine": 1}) calc1.label = calc1_label calc1.store() calc1._set_state(u'RETRIEVING') # Export the first job calculation filename1 = os.path.join(export_file_tmp_folder, "export1.tar.gz") export([calc1], outfile=filename1, silent=True) # Reset the database self.clean_db() self.insert_data() # Set the computer name to the same name as before self.computer.set_name(comp1_name) # Store a second calculation calc2_label = "calc2" calc2 = JobCalculation() calc2.set_computer(self.computer) calc2.set_option('resources', {"num_machines": 2, "num_mpiprocs_per_machine": 2}) calc2.label = calc2_label calc2.store() calc2._set_state(u'RETRIEVING') # Export the second job calculation filename2 = os.path.join(export_file_tmp_folder, "export2.tar.gz") export([calc2], outfile=filename2, silent=True) # Reset the database self.clean_db() self.insert_data() # Set the computer name to the same name as before self.computer.set_name(comp1_name) # Store a third calculation calc3_label = "calc3" calc3 = JobCalculation() calc3.set_computer(self.computer) calc3.set_option('resources', {"num_machines": 2, "num_mpiprocs_per_machine": 2}) calc3.label = calc3_label calc3.store() calc3._set_state(u'RETRIEVING') # Export the third job calculation filename3 = os.path.join(export_file_tmp_folder, "export3.tar.gz") export([calc3], outfile=filename3, silent=True) # Clean the local database self.clean_db() # Check that there are no computers qb = QueryBuilder() qb.append(Computer, project=['*']) self.assertEqual(qb.count(), 0, "There should not be any computers" "in the database at this point.") # Check that there are no calculations qb = QueryBuilder() qb.append(JobCalculation, project=['*']) self.assertEqual(qb.count(), 0, "There should not be any " "calculations in the database at " "this point.") # Import all the calculations import_data(filename1, silent=True) import_data(filename2, silent=True) import_data(filename3, silent=True) # Retrieve the calculation-computer pairs qb = QueryBuilder() qb.append(JobCalculation, project=['label'], tag='jcalc') qb.append(Computer, project=['name'], computer_of='jcalc') self.assertEqual(qb.count(), 3, "Three combinations expected.") res = qb.all() self.assertIn([calc1_label, comp1_name], res, "Calc-Computer combination not found.") self.assertIn([calc2_label, comp1_name + COMP_DUPL_SUFFIX.format(0)], res, "Calc-Computer combination not found.") self.assertIn([calc3_label, comp1_name + COMP_DUPL_SUFFIX.format(1)], res, "Calc-Computer combination not found.") finally: # Deleting the created temporary folders shutil.rmtree(export_file_tmp_folder, ignore_errors=True) shutil.rmtree(unpack_tmp_folder, ignore_errors=True) def test_correct_import_of_computer_json_params(self): """ This test checks that the metadata and transport params are exported and imported correctly in both backends. """ import os import shutil import tempfile from aiida.orm.importexport import export from aiida.orm.querybuilder import QueryBuilder from aiida.orm.computers import Computer from aiida.orm.calculation.job import JobCalculation # Creating a folder for the import/export files export_file_tmp_folder = tempfile.mkdtemp() unpack_tmp_folder = tempfile.mkdtemp() try: # Set the computer name comp1_name = "localhost_1" comp1_metadata = { u'workdir': u'/tmp/aiida' } comp1_transport_params = { u'key1': u'value1', u'key2': 2 } self.computer.set_name(comp1_name) self.computer._set_metadata(comp1_metadata) self.computer.set_transport_params(comp1_transport_params) # Store a calculation calc1_label = "calc1" calc1 = JobCalculation() calc1.set_computer(self.computer) calc1.set_option('resources', {"num_machines": 1, "num_mpiprocs_per_machine": 1}) calc1.label = calc1_label calc1.store() calc1._set_state(u'RETRIEVING') # Export the first job calculation filename1 = os.path.join(export_file_tmp_folder, "export1.tar.gz") export([calc1], outfile=filename1, silent=True) # Clean the local database self.clean_db() # Import the data import_data(filename1, silent=True) qb = QueryBuilder() qb.append(Computer, project=['transport_params', '_metadata'], tag="comp") self.assertEqual(qb.count(), 1, "Expected only one computer") res = qb.dict()[0] self.assertEqual(res['comp']['transport_params'], comp1_transport_params, "Not the expected transport parameters " "were found") self.assertEqual(res['comp']['_metadata'], comp1_metadata, "Not the expected metadata were found") finally: # Deleting the created temporary folders shutil.rmtree(export_file_tmp_folder, ignore_errors=True) shutil.rmtree(unpack_tmp_folder, ignore_errors=True) def test_import_of_django_sqla_export_file(self): """ Check why sqla import manages to import the django export file correctly """ from aiida.backends.tests.utils.fixtures import import_archive_fixture from aiida.orm.querybuilder import QueryBuilder from aiida.orm.computers import Computer for archive in ['export/compare/django.aiida', 'export/compare/sqlalchemy.aiida']: # Clean the database self.clean_db() # Import the needed data import_archive_fixture(archive) # The expected metadata & transport parameters comp1_metadata = { u'workdir': u'/tmp/aiida' } comp1_transport_params = { u'key1': u'value1', u'key2': 2 } # Check that we got the correct metadata & transport parameters qb = QueryBuilder() qb.append(Computer, project=['transport_params', '_metadata'], tag="comp") self.assertEqual(qb.count(), 1, "Expected only one computer") res = qb.dict()[0] self.assertEqual(res['comp']['transport_params'], comp1_transport_params) self.assertEqual(res['comp']['_metadata'], comp1_metadata) class TestLinks(AiidaTestCase): def setUp(self): self.clean_db() self.insert_data() def tearDown(self): pass def get_all_node_links(self): """ """ from aiida.orm import load_node, Node from aiida.orm.querybuilder import QueryBuilder qb = QueryBuilder() qb.append(Node, project='uuid', tag='input') qb.append(Node, project='uuid', tag='output', edge_project=['label', 'type'], output_of='input') return qb.all() def test_input_and_create_links(self): """ Simple test that will verify that INPUT and CREATE links are properly exported and correctly recreated upon import. """ import os, shutil, tempfile from aiida.orm.data.int import Int from aiida.orm.importexport import export from aiida.orm.calculation.work import WorkCalculation from aiida.common.links import LinkType tmp_folder = tempfile.mkdtemp() try: node_work = WorkCalculation().store() node_input = Int(1).store() node_output = Int(2).store() node_work.add_link_from(node_input, 'input', link_type=LinkType.INPUT) node_output.add_link_from(node_work, 'output', link_type=LinkType.CREATE) export_links = self.get_all_node_links() export_file = os.path.join(tmp_folder, 'export.tar.gz') export([node_output], outfile=export_file, silent=True) self.clean_db() self.insert_data() import_data(export_file, silent=True) import_links = self.get_all_node_links() export_set = [tuple(_) for _ in export_links] import_set = [tuple(_) for _ in import_links] self.assertEquals(set(export_set), set(import_set)) finally: shutil.rmtree(tmp_folder, ignore_errors=True) def construct_complex_graph(self, export_combination=0): """ This method creates a "complex" graph with all available link types (INPUT, CREATE, RETURN and CALL) and returns the nodes of the graph. It also returns various combinations of nodes that need to be extracted but also the final expected set of nodes (after adding the expected predecessors, desuccessors). """ from aiida.orm.data.base import Int from aiida.orm.calculation.job import JobCalculation from aiida.orm.calculation.work import WorkCalculation from aiida.common.datastructures import calc_states from aiida.common.links import LinkType if export_combination < 0 or export_combination > 8: return None # Node creation d1 = Int(1).store() d2 = Int(1).store() wc1 = WorkCalculation().store() wc2 = WorkCalculation().store() pw1 = JobCalculation() pw1.set_computer(self.computer) pw1.set_option('resources', {"num_machines": 1, "num_mpiprocs_per_machine": 1}) pw1.store() d3 = Int(1).store() d4 = Int(1).store() pw2 = JobCalculation() pw2.set_computer(self.computer) pw2.set_option('resources', {"num_machines": 1, "num_mpiprocs_per_machine": 1}) pw2.store() d5 = Int(1).store() d6 = Int(1).store() # Link creation wc1.add_link_from(d1, 'input1', link_type=LinkType.INPUT) wc1.add_link_from(d2, 'input2', link_type=LinkType.INPUT) wc2.add_link_from(d1, 'input', link_type=LinkType.INPUT) wc2.add_link_from(wc1, 'call', link_type=LinkType.CALL) pw1.add_link_from(d1, 'input', link_type=LinkType.INPUT) pw1.add_link_from(wc2, 'call', link_type=LinkType.CALL) pw1._set_state(calc_states.PARSING) d3.add_link_from(pw1, 'create', link_type=LinkType.CREATE) d3.add_link_from(wc2, 'return', link_type=LinkType.RETURN) d4.add_link_from(pw1, 'create', link_type=LinkType.CREATE) d4.add_link_from(wc2, 'return', link_type=LinkType.RETURN) pw2.add_link_from(d4, 'input', link_type=LinkType.INPUT) pw2._set_state(calc_states.PARSING) d5.add_link_from(pw2, 'create', link_type=LinkType.CREATE) d6.add_link_from(pw2, 'create', link_type=LinkType.CREATE) # Return the generated nodes graph_nodes = [d1, d2, d3, d4, d5, d6, pw1, pw2, wc1, wc2] # Create various combinations of nodes that should be exported # and the final set of nodes that are exported in each case, following # predecessor/successor links. export_list = [ (wc1, [d1, d2, d3, d4, pw1, wc1, wc2]), (wc2, [d1, d3, d4, pw1, wc2]), (d3, [d1, d3, d4, pw1]), (d4, [d1, d3, d4, pw1]), (d5, [d1, d3, d4, d5, d6, pw1, pw2]), (d6, [d1, d3, d4, d5, d6, pw1, pw2]), (pw2, [d1, d3, d4, d5, d6, pw1, pw2]), (d1, [d1]), (d2, [d2]) ] return graph_nodes, export_list[export_combination] def test_data_create_reversed_false(self): """Verify that create_reversed = False is respected when only exporting Data nodes.""" import os import shutil import tempfile from aiida.common.datastructures import calc_states from aiida.orm import Data, Group from aiida.orm.data.base import Int from aiida.orm.calculation.job import JobCalculation from aiida.orm.importexport import export from aiida.common.links import LinkType from aiida.orm.querybuilder import QueryBuilder tmp_folder = tempfile.mkdtemp() try: data_input = Int(1).store() data_output = Int(2).store() calc = JobCalculation() calc.set_computer(self.computer) calc.set_option('resources', {"num_machines": 1, "num_mpiprocs_per_machine": 1}) calc.store() calc.add_link_from(data_input, 'input', link_type=LinkType.INPUT) calc._set_state(calc_states.PARSING) data_output.add_link_from(calc, 'create', link_type=LinkType.CREATE) group = Group.create(name='test_group') group.add_nodes(data_output) export_file = os.path.join(tmp_folder, 'export.tar.gz') export([group], outfile=export_file, silent=True, create_reversed=False) self.clean_db() self.insert_data() import_data(export_file, silent=True) builder = QueryBuilder() builder.append(Data) self.assertEqual(builder.count(), 1, 'Expected a single Data node but got {}'.format(builder.count())) self.assertEqual(builder.all()[0][0].uuid, data_output.uuid) builder = QueryBuilder() builder.append(JobCalculation) self.assertEqual(builder.count(), 0, 'Expected no Calculation nodes') finally: shutil.rmtree(tmp_folder, ignore_errors=True) def test_complex_workflow_graph_links(self): """ This test checks that all the needed links are correctly exported and imported. More precisely, it checks that INPUT, CREATE, RETURN and CALL links connecting Data nodes, JobCalculations and WorkCalculations are exported and imported correctly. """ import os, shutil, tempfile from aiida.orm import Node from aiida.orm.importexport import export from aiida.common.links import LinkType from aiida.orm.querybuilder import QueryBuilder tmp_folder = tempfile.mkdtemp() try: graph_nodes, _ = self.construct_complex_graph() # Getting the input, create, return and call links qb = QueryBuilder() qb.append(Node, project='uuid') qb.append(Node, project='uuid', edge_project=['label', 'type'], edge_filters={'type': {'in': (LinkType.INPUT.value, LinkType.CREATE.value, LinkType.RETURN.value, LinkType.CALL.value)}}) export_links = qb.all() export_file = os.path.join(tmp_folder, 'export.tar.gz') export(graph_nodes, outfile=export_file, silent=True) self.clean_db() self.insert_data() import_data(export_file, silent=True) import_links = self.get_all_node_links() export_set = [tuple(_) for _ in export_links] import_set = [tuple(_) for _ in import_links] self.assertEquals(set(export_set), set(import_set)) finally: shutil.rmtree(tmp_folder, ignore_errors=True) def test_complex_workflow_graph_export_set_expansion(self): import os, shutil, tempfile from aiida.orm.importexport import export from aiida.orm.querybuilder import QueryBuilder from aiida.orm import Node for export_conf in range(0, 8): graph_nodes, (export_node, export_target) = ( self.construct_complex_graph(export_conf)) tmp_folder = tempfile.mkdtemp() try: export_file = os.path.join(tmp_folder, 'export.tar.gz') export([export_node], outfile=export_file, silent=True) export_node_str = str(export_node) self.clean_db() self.insert_data() import_data(export_file, silent=True) # Get all the nodes of the database qb = QueryBuilder() qb.append(Node, project='uuid') imported_node_uuids = set(str(_[0]) for _ in qb.all()) export_target_uuids = set(str(_.uuid) for _ in export_target) from aiida.orm.utils import load_node self.assertEquals( export_target_uuids, imported_node_uuids, "Problem in comparison of export node: " + str(export_node_str) + "\n" + "Expected set: " + str(export_target_uuids) + "\n" + "Imported set: " + str(imported_node_uuids) + "\n" + "Difference: " + str([load_node(_) for _ in export_target_uuids.symmetric_difference( imported_node_uuids)]) ) finally: shutil.rmtree(tmp_folder, ignore_errors=True) def test_recursive_export_input_and_create_links_proper(self): """ Check that CALL, INPUT, RETURN and CREATE links are followed recursively. """ import os, shutil, tempfile from aiida.orm import Node from aiida.orm.data.base import Int from aiida.orm.importexport import export from aiida.orm.calculation.inline import InlineCalculation from aiida.orm.calculation.work import WorkCalculation from aiida.common.links import LinkType from aiida.orm.querybuilder import QueryBuilder tmp_folder = tempfile.mkdtemp() try: wc2 = WorkCalculation().store() wc1 = WorkCalculation().store() c1 = InlineCalculation().store() ni1 = Int(1).store() ni2 = Int(2).store() no1 = Int(1).store() no2 = Int(2).store() # Create the connections between workcalculations and calculations wc1.add_link_from(wc2, 'call', link_type=LinkType.CALL) c1.add_link_from(wc1, 'call', link_type=LinkType.CALL) # Connect the first data node to wc1 & c1 wc1.add_link_from(ni1, 'ni1-to-wc1', link_type=LinkType.INPUT) c1.add_link_from(ni1, 'ni1-to-c1', link_type=LinkType.INPUT) # Connect the second data node to wc1 & c1 wc1.add_link_from(ni2, 'ni2-to-wc1', link_type=LinkType.INPUT) c1.add_link_from(ni2, 'ni2-to-c1', link_type=LinkType.INPUT) # Connecting the first output node to wc1 & c1 no1.add_link_from(wc1, 'output', link_type=LinkType.RETURN) no1.add_link_from(c1, 'output', link_type=LinkType.CREATE) # Connecting the second output node to wc1 & c1 no2.add_link_from(wc1, 'output', link_type=LinkType.RETURN) no2.add_link_from(c1, 'output', link_type=LinkType.CREATE) # Getting the input, create, return and call links qb = QueryBuilder() qb.append(Node, project='uuid') qb.append(Node, project='uuid', edge_project=['label', 'type'], edge_filters={'type': {'in': (LinkType.INPUT.value, LinkType.CREATE.value, LinkType.RETURN.value, LinkType.CALL.value)}}) export_links = qb.all() export_file = os.path.join(tmp_folder, 'export.tar.gz') export([wc2], outfile=export_file, silent=True) self.clean_db() self.insert_data() import_data(export_file, silent=True) import_links = self.get_all_node_links() export_set = [tuple(_) for _ in export_links] import_set = [tuple(_) for _ in import_links] self.assertEquals(set(export_set), set(import_set)) finally: shutil.rmtree(tmp_folder, ignore_errors=True) def test_links_for_workflows(self): """ Check that CALL links are not followed in the export procedure, and the only creation is followed for data:: ____ ____ ____ | | INP | | CALL | | | i1 | --> | w1 | <--- | w2 | |____| |____| |____| | | CREATE v v RETURN ____ | | | o1 | |____| """ import os, shutil, tempfile from aiida.orm.data.base import Int from aiida.orm.importexport import export from aiida.orm.calculation.work import WorkCalculation from aiida.common.links import LinkType tmp_folder = tempfile.mkdtemp() try: w1 = WorkCalculation().store() w2 = WorkCalculation().store() i1 = Int(1).store() o1 = Int(2).store() w1.add_link_from(i1, 'input-i1', link_type=LinkType.INPUT) w1.add_link_from(w2, 'call', link_type=LinkType.CALL) o1.add_link_from(w1, 'output', link_type=LinkType.CREATE) o1.add_link_from(w1, 'return', link_type=LinkType.RETURN) links_wanted = [l for l in self.get_all_node_links() if l[3] in (LinkType.CREATE.value, LinkType.INPUT.value, LinkType.RETURN.value)] export_file_1 = os.path.join(tmp_folder, 'export-1.tar.gz') export_file_2 = os.path.join(tmp_folder, 'export-2.tar.gz') export([o1], outfile=export_file_1, silent=True) export([w1], outfile=export_file_2, silent=True) self.clean_db() self.insert_data() import_data(export_file_1, silent=True) links_in_db = self.get_all_node_links() self.assertEquals(sorted(links_wanted), sorted(links_in_db)) self.clean_db() self.insert_data() import_data(export_file_2, silent=True) links_in_db = self.get_all_node_links() self.assertEquals(sorted(links_wanted), sorted(links_in_db)) finally: shutil.rmtree(tmp_folder, ignore_errors=True) def test_double_return_links_for_workflows(self): """ This test checks that double return links to a node can be exported and imported without problems, """ import os, shutil, tempfile from aiida.orm.data.base import Int from aiida.orm.importexport import export from aiida.orm.calculation.work import WorkCalculation from aiida.common.links import LinkType from aiida.orm.querybuilder import QueryBuilder from aiida.orm.node import Node tmp_folder = tempfile.mkdtemp() try: w1 = WorkCalculation().store() w2 = WorkCalculation().store() i1 = Int(1).store() o1 = Int(2).store() w1.add_link_from(i1, 'input-i1', link_type=LinkType.INPUT) w1.add_link_from(w2, 'call', link_type=LinkType.CALL) o1.add_link_from(w1, 'output', link_type=LinkType.CREATE) o1.add_link_from(w1, 'return', link_type=LinkType.RETURN) o1.add_link_from(w2, 'return', link_type=LinkType.RETURN) uuids_wanted = set(_.uuid for _ in (w1, o1, i1, w2)) links_wanted = [l for l in self.get_all_node_links() if l[3] in ( 'createlink', 'inputlink', 'returnlink', 'calllink')] export_file = os.path.join(tmp_folder, 'export.tar.gz') export([o1, w1, w2, i1], outfile=export_file, silent=True) self.clean_db() self.insert_data() import_data(export_file, silent=True) uuids_in_db = [str(uuid) for [uuid] in QueryBuilder().append(Node, project='uuid').all()] self.assertEquals(sorted(uuids_wanted), sorted(uuids_in_db)) links_in_db = self.get_all_node_links() self.assertEquals(sorted(links_wanted), sorted(links_in_db)) finally: shutil.rmtree(tmp_folder, ignore_errors=True) def test_that_solo_code_is_exported_correctly(self): """ This test checks that when a calculation is exported then the corresponding code is also exported. """ import os, shutil, tempfile from aiida.orm.utils import load_node from aiida.orm.importexport import export from aiida.orm.code import Code tmp_folder = tempfile.mkdtemp() try: code_label = 'test_code1' code = Code() code.set_remote_computer_exec((self.computer, '/bin/true')) code.label = code_label code.store() code_uuid = code.uuid export_file = os.path.join(tmp_folder, 'export.tar.gz') export([code], outfile=export_file, silent=True) self.clean_db() self.insert_data() import_data(export_file, silent=True) self.assertEquals(load_node(code_uuid).label, code_label) finally: shutil.rmtree(tmp_folder, ignore_errors=True) def test_that_input_code_is_exported_correctly(self): """ This test checks that when a calculation is exported then the corresponding code is also exported. It also checks that the links are also in place after the import. """ import os, shutil, tempfile from aiida.orm.utils import load_node from aiida.orm.importexport import export from aiida.common.links import LinkType from aiida.orm.calculation.job import JobCalculation from aiida.orm.code import Code from aiida.orm.querybuilder import QueryBuilder tmp_folder = tempfile.mkdtemp() try: code_label = 'test_code1' code = Code() code.set_remote_computer_exec((self.computer, '/bin/true')) code.label = code_label code.store() code_uuid = code.uuid jc = JobCalculation() jc.set_computer(self.computer) jc.set_option('resources', {"num_machines": 1, "num_mpiprocs_per_machine": 1}) jc.store() jc.add_link_from(code, 'code', link_type=LinkType.INPUT) export_file = os.path.join(tmp_folder, 'export.tar.gz') export([jc], outfile=export_file, silent=True) self.clean_db() self.insert_data() import_data(export_file, silent=True) # Check that the node is there self.assertEquals(load_node(code_uuid).label, code_label) # Check that the link is in place qb = QueryBuilder() qb.append(Code, project='uuid') qb.append(JobCalculation, project='uuid', edge_project=['label', 'type'], edge_filters={'type': {'==': LinkType.INPUT.value}}) self.assertEquals(qb.count(), 1, "Expected to find one and only one link from " "code to the calculation node. {} found." .format(qb.count())) finally: shutil.rmtree(tmp_folder, ignore_errors=True)
[ [ [ 706, 714 ] ], [ [ 738, 752 ] ], [ [ 776, 791 ] ], [ [ 799, 801 ], [ 11701, 11703 ], [ 11937, 11939 ], [ 13652, 13654 ], [ 13966, 13968 ] ], [ [ 809, 812 ], [ 43005, 43008 ], [ 43063, 43066 ], [ 44588, 44591 ], [ 45028, 45031 ], [ 45164, 45167 ], [ 45808, 45811 ], [ 45944, 45947 ], [ 48257, 48260 ], [ 50281, 50284 ], [ 50721, 50724 ], [ 51272, 51275 ] ], [ [ 835, 840 ], [ 29651, 29656 ], [ 35186, 35191 ], [ 35297, 35302 ], [ 35422, 35427 ], [ 35651, 35656 ], [ 35796, 35801 ], [ 35774, 35779 ], [ 36847, 36852 ], [ 69679, 69684 ] ], [ [ 842, 845 ], [ 8263, 8266 ], [ 8709, 8712 ] ], [ [ 883, 896 ], [ 994, 1007 ], [ 7503, 7516 ], [ 37981, 37994 ], [ 41143, 41156 ], [ 60532, 60545 ] ], [ [ 932, 943 ], [ 8589, 8600 ], [ 10341, 10352 ], [ 12383, 12394 ], [ 14322, 14333 ], [ 14370, 14381 ], [ 19447, 19458 ], [ 22316, 22327 ], [ 23670, 23681 ], [ 26170, 26181 ], [ 28178, 28189 ], [ 30386, 30397 ], [ 32212, 32223 ], [ 37432, 37443 ], [ 44228, 44239 ], [ 45408, 45419 ], [ 49921, 49932 ], [ 50886, 50897 ], [ 55345, 55356 ], [ 55393, 55404 ], [ 55441, 55452 ], [ 58326, 58337 ], [ 62108, 62119 ], [ 67053, 67064 ], [ 69061, 69072 ], [ 70152, 70163 ], [ 74170, 74181 ], [ 76346, 76357 ], [ 76584, 76595 ], [ 78356, 78367 ], [ 79660, 79671 ], [ 81231, 81242 ] ], [ [ 962, 965 ], [ 17831, 17834 ], [ 21081, 21084 ], [ 25003, 25006 ], [ 27428, 27431 ] ], [ [ 975, 993 ], [ 1046, 1064 ] ], [ [ 7492, 7502 ] ], [ [ 37969, 37980 ] ], [ [ 41130, 41142 ] ], [ [ 60522, 60531 ] ] ]
import asyncio import base64 import threading import cv2 import numpy as np from flask_socketio import SocketIO, emit from flask import Flask, render_template import multiprocessing class Streamer(): def __init__(self) -> None: """Constructor """ @staticmethod async def stream_socket( url_server: str, app: 'Flask' = None, socket_options: 'dict' = None, socket_msg: 'str' = "mvfy_visual_img", )-> 'function': app = Flask(__name__) if app is None else app socketio = SocketIO(app, **socket_options) threading.Thread(target=lambda: socketio.run(url_server)).run() async def wraper_function(img, extension: str = ".jpg", size: tuple = (1920, 1080)): if size is not None: frame = cv2.resize(img, size) _, buffer = cv2.imencode(extension, frame, [cv2.IMWRITE_JPEG_QUALITY, 80]) data = base64.b64encode(buffer) socketio.emit(socket_msg, { "data": data }) return wraper_function @staticmethod async def stream_local( img: np.array, size: tuple = (1920, 1080), title: str = "title" ) -> None: if size is not None: img = cv2.resize(img, size) cv2.imshow(title, img)
[ [ [ 7, 14 ] ], [ [ 22, 28 ], [ 969, 975 ] ], [ [ 36, 45 ], [ 603, 612 ] ], [ [ 53, 56 ], [ 1316, 1319 ], [ 1350, 1353 ], [ 827, 830 ], [ 874, 877 ], [ 906, 909 ] ], [ [ 65, 76 ], [ 1171, 1173 ] ], [ [ 104, 112 ], [ 562, 570 ] ], [ [ 114, 118 ] ], [ [ 137, 142 ], [ 503, 508 ] ], [ [ 144, 159 ] ], [ [ 167, 182 ] ], [ [ 191, 199 ] ] ]
# coding=utf-8 """ @author: magician @date: 2018/9/14 """ import datetime from flask_sqlalchemy import SQLAlchemy from flask import Flask, jsonify, request from sqlalchemy.exc import IntegrityError from marshmallow import Schema, fields, ValidationError, pre_load app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite://' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True db = SQLAlchemy(app) # MODELS class Author(db.Model): id = db.Column(db.Integer, primary_key=True) first = db.Column(db.String(80)) last = db.Column(db.String(80)) class Quote(db.Model): id = db.Column(db.Integer, primary_key=True) content = db.Column(db.String, nullable=False) author_id = db.Column(db.Integer, db.ForeignKey('author.id')) author = db.relationship( 'Author', backref=db.backref('quotes', lazy='dynamic'), ) posted_at = db.Column(db.DateTime) # SCHEMAS class AuthorSchema(Schema): id = fields.Int(dump_only=True) first = fields.Str() last = fields.Str() formatted_name = fields.Method('format_name', dump_only=True) def format_name(self, author): return '{}, {}'.format(author.last, author.first) # Custom validator def must_not_be_blank(data): if not data: raise ValidationError('Data not provided.') class QuoteSchema(Schema): id = fields.Int(dump_only=True) author = fields.Nested(AuthorSchema, validate=must_not_be_blank) content = fields.Str(required=True, validate=must_not_be_blank) posted_at = fields.DateTime(dump_only=True) # Allow client to pass author's full name in request body # e.g. {"author': 'Tim Peters"} rather than {"first": "Tim", "last": "Peters"} @pre_load def process_author(self, data): author_name = data.get('author') if author_name: first, last = author_name.split(' ') author_dict = dict(first=first, last=last) else: author_dict = {} data['author'] = author_dict return data author_schema = AuthorSchema() authors_schema = AuthorSchema(many=True) quote_schema = QuoteSchema() quotes_schema = QuoteSchema(many=True, only=('id', 'content')) # API @app.route('/authors') def get_authors(): authors = Author.query.all() # Serialize the queryset result = authors_schema.dump(authors) return jsonify({'authors': result}) @app.route('/authors/<int:pk>') def get_author(pk): try: author = Author.query.get(pk) except IntegrityError: return jsonify({'message': 'Author could not be found.'}), 400 author_result = author_schema.dump(author) quotes_result = quotes_schema.dump(author.quotes.all()) return jsonify({'author': author_result, 'quotes': quotes_result}) @app.route('/quotes/', methods=['GET']) def get_quotes(): quotes = Quote.query.all() result = quotes_schema.dump(quotes, many=True) return jsonify({'quotes': result}) @app.route('/quotes/<int:pk>') def get_quote(pk): try: quote = Quote.query.get(pk) except IntegrityError: return jsonify({'message': 'Quote could not be found.'}), 400 result = quote_schema.dump(quote) return jsonify({'quote': result}) @app.route('/quotes/', methods=['POST']) def new_quote(): json_data = request.get_json() if not json_data: return jsonify({'message': 'No input data provided'}), 400 # Validate and deserialize input try: data = quote_schema.load(json_data) except ValidationError as err: return jsonify(err.messages), 422 first, last = data['author']['first'], data['author']['last'] author = Author.query.filter_by(first=first, last=last).first() if author is None: # Create a new author author = Author(first=first, last=last) db.session.add(author) # Create new quote quote = Quote( content=data['content'], author=author, posted_at=datetime.datetime.utcnow(), ) db.session.add(quote) db.session.commit() result = quote_schema.dump(Quote.query.get(quote.id)) return jsonify({ 'message': 'Created new quote.', 'quote': result, }) if __name__ == '__main__': db.create_all() app.run(debug=True, port=5000)
[ [ [ 65, 73 ], [ 3951, 3959 ] ], [ [ 104, 114 ], [ 397, 407 ] ], [ [ 133, 138 ], [ 272, 277 ] ], [ [ 140, 147 ], [ 2361, 2368 ], [ 2533, 2540 ], [ 2707, 2714 ], [ 2920, 2927 ], [ 3087, 3094 ], [ 3191, 3198 ], [ 3350, 3357 ], [ 3542, 3549 ], [ 4104, 4111 ] ], [ [ 149, 156 ], [ 3294, 3301 ] ], [ [ 184, 198 ], [ 2502, 2516 ], [ 3056, 3070 ] ], [ [ 223, 229 ], [ 941, 947 ], [ 1334, 1340 ] ], [ [ 231, 237 ], [ 959, 965 ], [ 998, 1004 ], [ 1022, 1028 ], [ 1056, 1062 ], [ 1352, 1358 ], [ 1392, 1398 ], [ 1462, 1468 ], [ 1532, 1538 ] ], [ [ 239, 254 ], [ 1276, 1291 ], [ 3503, 3518 ] ], [ [ 256, 264 ], [ 1715, 1723 ] ], [ [ 266, 269 ], [ 288, 291 ], [ 340, 343 ], [ 408, 411 ], [ 2205, 2208 ], [ 2393, 2396 ], [ 2770, 2773 ], [ 2951, 2954 ], [ 3221, 3224 ], [ 4240, 4243 ] ], [ [ 392, 394 ], [ 438, 440 ], [ 458, 460 ], [ 468, 470 ], [ 510, 512 ], [ 520, 522 ], [ 546, 548 ], [ 556, 558 ], [ 585, 587 ], [ 605, 607 ], [ 615, 617 ], [ 659, 661 ], [ 669, 671 ], [ 712, 714 ], [ 722, 724 ], [ 734, 736 ], [ 775, 777 ], [ 826, 828 ], [ 886, 888 ], [ 896, 898 ], [ 4220, 4222 ], [ 3812, 3814 ], [ 3989, 3991 ], [ 4015, 4017 ] ], [ [ 431, 437 ], [ 2260, 2266 ], [ 2470, 2476 ], [ 3648, 3654 ], [ 3773, 3779 ] ], [ [ 579, 584 ], [ 2840, 2845 ], [ 3025, 3030 ], [ 3870, 3875 ], [ 4066, 4071 ] ], [ [ 928, 940 ], [ 1406, 1418 ], [ 2047, 2059 ], [ 2079, 2091 ] ], [ [ 1220, 1237 ], [ 1429, 1446 ], [ 1497, 1514 ] ], [ [ 1322, 1333 ], [ 2118, 2129 ], [ 2148, 2159 ] ], [ [ 2031, 2044 ], [ 2609, 2622 ] ], [ [ 2062, 2076 ], [ 2321, 2335 ] ], [ [ 2103, 2115 ], [ 3155, 3167 ], [ 3463, 3475 ], [ 4048, 4060 ] ], [ [ 2132, 2145 ], [ 2656, 2669 ], [ 2871, 2884 ] ], [ [ 2231, 2242 ] ], [ [ 2428, 2438 ] ], [ [ 2813, 2823 ] ], [ [ 2985, 2994 ] ], [ [ 3265, 3274 ] ] ]
# Copyright (c) 2017, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import unittest, frappe, pyotp from werkzeug.wrappers import Request from werkzeug.test import EnvironBuilder from frappe.auth import HTTPRequest from frappe.utils import cint from frappe.twofactor import (should_run_2fa, authenticate_for_2factor, get_cached_user_pass, two_factor_is_enabled_for_, confirm_otp_token, get_otpsecret_for_, get_verification_obj, render_string_template, two_factor_is_enabled) import time class TestTwoFactor(unittest.TestCase): def setUp(self): self.http_requests = create_http_request() self.login_manager = frappe.local.login_manager self.user = self.login_manager.user def tearDown(self): frappe.local.response['verification'] = None frappe.local.response['tmp_id'] = None disable_2fa() frappe.clear_cache(user=self.user) def test_should_run_2fa(self): '''Should return true if enabled.''' toggle_2fa_all_role(state=True) self.assertTrue(should_run_2fa(self.user)) toggle_2fa_all_role(state=False) self.assertFalse(should_run_2fa(self.user)) def test_get_cached_user_pass(self): '''Cached data should not contain user and pass before 2fa.''' user,pwd = get_cached_user_pass() self.assertTrue(all([not user, not pwd])) def test_authenticate_for_2factor(self): '''Verification obj and tmp_id should be set in frappe.local.''' authenticate_for_2factor(self.user) verification_obj = frappe.local.response['verification'] tmp_id = frappe.local.response['tmp_id'] self.assertTrue(verification_obj) self.assertTrue(tmp_id) for k in ['_usr','_pwd','_otp_secret']: self.assertTrue(frappe.cache().get('{0}{1}'.format(tmp_id,k)), '{} not available'.format(k)) def test_two_factor_is_enabled(self): ''' 1. Should return true, if enabled and not bypass_2fa_for_retricted_ip_users 2. Should return false, if not enabled 3. Should return true, if enabled and bypass_2fa_for_retricted_ip_users and not user.restricted_ip 4. Should return false, if enabled and bypass_2fa_for_retricted_ip_users and user.restricted_ip ''' #Scenario 1 disable_2fa() self.assertFalse(two_factor_is_enabled(self.user)) #Scenario 2 enable_2fa() self.assertTrue(two_factor_is_enabled(self.user)) #Scenario 3 enable_2fa() user = frappe.get_doc('User', self.user) user.restrict_ip = frappe.local.request_ip user.save() self.assertTrue(two_factor_is_enabled(self.user)) #Scenario 4 user = frappe.get_doc('User', self.user) user.restrict_ip = "" user.save() enable_2fa(1) self.assertTrue(two_factor_is_enabled(self.user)) #Scenario 5 user = frappe.get_doc('User', self.user) user.restrict_ip = frappe.local.request_ip user.save() enable_2fa(1) self.assertFalse(two_factor_is_enabled(self.user)) def test_two_factor_is_enabled_for_user(self): '''Should return true if enabled for user.''' toggle_2fa_all_role(state=True) self.assertTrue(two_factor_is_enabled_for_(self.user)) self.assertFalse(two_factor_is_enabled_for_("Administrator")) toggle_2fa_all_role(state=False) self.assertFalse(two_factor_is_enabled_for_(self.user)) def test_get_otpsecret_for_user(self): '''OTP secret should be set for user.''' self.assertTrue(get_otpsecret_for_(self.user)) self.assertTrue(frappe.db.get_default(self.user + '_otpsecret')) def test_confirm_otp_token(self): '''Ensure otp is confirmed''' authenticate_for_2factor(self.user) tmp_id = frappe.local.response['tmp_id'] otp = 'wrongotp' with self.assertRaises(frappe.AuthenticationError): confirm_otp_token(self.login_manager,otp=otp,tmp_id=tmp_id) otp = get_otp(self.user) self.assertTrue(confirm_otp_token(self.login_manager,otp=otp,tmp_id=tmp_id)) if frappe.flags.tests_verbose: print('Sleeping for 30secs to confirm token expires..') time.sleep(30) with self.assertRaises(frappe.AuthenticationError): confirm_otp_token(self.login_manager,otp=otp,tmp_id=tmp_id) def test_get_verification_obj(self): '''Confirm verification object is returned.''' otp_secret = get_otpsecret_for_(self.user) token = int(pyotp.TOTP(otp_secret).now()) self.assertTrue(get_verification_obj(self.user,token,otp_secret)) def test_render_string_template(self): '''String template renders as expected with variables.''' args = {'issuer_name':'Frappe Technologies'} _str = 'Verification Code from {{issuer_name}}' _str = render_string_template(_str,args) self.assertEqual(_str,'Verification Code from Frappe Technologies') def set_request(**kwargs): builder = EnvironBuilder(**kwargs) frappe.local.request = Request(builder.get_environ()) def create_http_request(): '''Get http request object.''' set_request(method='POST', path='login') enable_2fa() frappe.form_dict['usr'] = 'test@erpnext.com' frappe.form_dict['pwd'] = 'test' frappe.local.form_dict['cmd'] = 'login' http_requests = HTTPRequest() return http_requests def enable_2fa(bypass_two_factor_auth=0): '''Enable Two factor in system settings.''' system_settings = frappe.get_doc('System Settings') system_settings.enable_two_factor_auth = 1 system_settings.bypass_2fa_for_retricted_ip_users = cint(bypass_two_factor_auth) system_settings.two_factor_method = 'OTP App' system_settings.save(ignore_permissions=True) frappe.db.commit() def disable_2fa(): system_settings = frappe.get_doc('System Settings') system_settings.enable_two_factor_auth = 0 system_settings.bypass_2fa_for_retricted_ip_users = 0 system_settings.save(ignore_permissions=True) frappe.db.commit() def toggle_2fa_all_role(state=None): '''Enable or disable 2fa for 'all' role on the system.''' all_role = frappe.get_doc('Role','All') if state == None: state = False if all_role.two_factor_auth == True else False if state not in [True,False]:return all_role.two_factor_auth = state all_role.save(ignore_permissions=True) frappe.db.commit() def get_otp(user): otp_secret = get_otpsecret_for_(user) otp = pyotp.TOTP(otp_secret) return otp.now()
[ [ [ 123, 139 ] ], [ [ 148, 156 ], [ 583, 591 ] ], [ [ 158, 164 ], [ 689, 695 ], [ 778, 784 ], [ 825, 831 ], [ 882, 888 ], [ 1502, 1508 ], [ 1551, 1557 ], [ 1706, 1712 ], [ 2365, 2371 ], [ 2420, 2426 ], [ 2534, 2540 ], [ 2698, 2704 ], [ 2753, 2759 ], [ 3356, 3362 ], [ 3522, 3528 ], [ 3598, 3604 ], [ 3801, 3807 ], [ 3930, 3936 ], [ 4643, 4649 ], [ 4814, 4820 ], [ 4860, 4866 ], [ 4894, 4900 ], [ 5094, 5100 ], [ 5349, 5355 ], [ 5407, 5413 ], [ 5588, 5594 ], [ 5716, 5722 ], [ 5939, 5945 ] ], [ [ 166, 171 ], [ 4169, 4174 ], [ 6024, 6029 ] ], [ [ 202, 209 ], [ 4666, 4673 ] ], [ [ 236, 250 ], [ 4617, 4631 ] ], [ [ 275, 286 ], [ 4951, 4962 ] ], [ [ 312, 316 ], [ 5225, 5229 ] ], [ [ 347, 361 ], [ 1041, 1055 ], [ 1122, 1136 ] ], [ [ 363, 387 ], [ 1445, 1469 ], [ 3475, 3499 ] ], [ [ 389, 409 ], [ 1266, 1286 ] ], [ [ 412, 438 ], [ 3009, 3035 ], [ 3067, 3093 ], [ 3166, 3192 ] ], [ [ 440, 457 ], [ 3630, 3647 ], [ 3735, 3752 ], [ 3962, 3979 ] ], [ [ 459, 477 ], [ 3307, 3325 ], [ 4125, 4143 ], [ 5992, 6010 ] ], [ [ 479, 499 ], [ 4217, 4237 ] ], [ [ 502, 524 ], [ 4474, 4496 ] ], [ [ 526, 547 ], [ 2210, 2231 ], [ 2292, 2313 ], [ 2476, 2497 ], [ 2640, 2661 ], [ 2826, 2847 ] ], [ [ 557, 561 ], [ 3890, 3894 ] ], [ [ 569, 582 ] ], [ [ 4583, 4594 ], [ 4758, 4769 ] ], [ [ 4702, 4721 ], [ 644, 663 ] ], [ [ 4992, 5002 ], [ 2261, 2271 ], [ 2343, 2353 ], [ 2608, 2618 ], [ 2793, 2803 ], [ 4800, 4810 ] ], [ [ 5373, 5384 ], [ 866, 877 ], [ 2177, 2188 ] ], [ [ 5612, 5631 ], [ 991, 1010 ], [ 1070, 1089 ], [ 2959, 2978 ], [ 3114, 3133 ] ], [ [ 5963, 5970 ], [ 3698, 3705 ] ] ]
from conans import ConanFile, tools, AutoToolsBuildEnvironment from conans.errors import ConanInvalidConfiguration from contextlib import contextmanager import os import shutil class SwigConan(ConanFile): name = "swig_installer" version = "4.0.1" description = "SWIG is a software development tool that connects programs written in C and C++ with a variety of high-level programming languages." topics = ("conan", "swig", "python", "java", "wrapper") url = "https://github.com/bincrafters/conan-swig_installer" homepage = "http://www.swig.org" author = "Bincrafters <bincrafters@gmail.com>" license = "GPL-3.0-or-later" exports = ["LICENSE.md"] settings = "os_build", "arch_build", "compiler", "os", "arch" _source_subfolder = "source_subfolder" def configure(self): # Verify build configuration if str(self.settings.os_build) != str(self.settings.os): raise ConanInvalidConfiguration("settings.os_build must be equal to settings.os") if str(self.settings.arch_build) != str(self.settings.arch_build): raise ConanInvalidConfiguration("settings.arch_build must be equal to settings.arch_build") def package_id(self): del self.info.settings.compiler del self.info.settings.os del self.info.settings.arch self.info.include_build_settings() def build_requirements(self): if tools.os_info.is_windows: self.build_requires("msys2/20161025") if self.settings.os_build == "Windows": self.build_requires("winflexbison/2.5.18@bincrafters/stable") else: self.build_requires("bison_installer/3.3.2@bincrafters/stable") self.build_requires("pcre/8.41") if self.settings.compiler == "Visual Studio": self.build_requires("cccl_installer/1.0@bincrafters/stable") def system_requirements(self): if self.develop: if tools.os_info.with_yum: installer = tools.SystemPackageTool() packages = [ "autoconf", "automake", ] for package in packages: installer.install(package) def source(self): url = "https://github.com/swig/swig/archive/rel-{}.tar.gz".format(self.version) sha256 = "2eaf6fb89d071d1be280bf995c63360b3729860c0da64948123b5d7e4cfb6cb7" foldername = "swig-rel-{}".format(self.version) tools.get(url, sha256=sha256) os.rename(foldername, self._source_subfolder) @contextmanager def _build_environment(self): if self.settings.compiler == "Visual Studio": with tools.vcvars(self.settings): yield else: yield def _patch_sources(self): tools.replace_in_file(os.path.join(self._source_subfolder, "configure.ac"), "AC_DEFINE_UNQUOTED(SWIG_LIB_WIN_UNIX", "SWIG_LIB_WIN_UNIX=""\nAC_DEFINE_UNQUOTED(SWIG_LIB_WIN_UNIX") def build(self): self._patch_sources() with tools.chdir(os.path.join(self.build_folder, self._source_subfolder)): self.run('./autogen.sh', win_bash=tools.os_info.is_windows) env_build = AutoToolsBuildEnvironment(self, win_bash=tools.os_info.is_windows) deps_libpaths = env_build.library_paths deps_libs = env_build.libs deps_defines = env_build.defines if self.settings.os_build == "Windows" and self.settings.compiler != "Visual Studio": env_build.link_flags.append("-static") libargs = list("-L\"{}\"".format(p) for p in deps_libpaths) + list("-l\"{}\"".format(l) for l in deps_libs) args = [ "PCRE_LIBS={}".format(" ".join(libargs)), "PCRE_CPPFLAGS={}".format(" ".join("-D{}".format(define) for define in deps_defines)), "--host={}".format(tools.detected_architecture()), ] if self.settings.compiler == "Visual Studio": self.output.warn("Visual Studio compiler cannot create ccache-swig. Disabling ccache-swig.") args.append("--disable-ccache") with self._build_environment(): env_build.configure(configure_dir=os.path.join(self.build_folder, self._source_subfolder), args=args) with tools.environment_append({"CONAN_CPU_COUNT": "1" if self.settings.compiler == "Visual Studio" else str(tools.cpu_count())}): env_build.make() def package(self): self.copy(pattern="LICENSE*", dst="licenses", src=self._source_subfolder) self.copy(pattern="COPYRIGHT", dst="licenses", src=self._source_subfolder) with tools.chdir(self.build_folder): env_build = AutoToolsBuildEnvironment(self, win_bash=tools.os_info.is_windows) env_build.install() if self.settings.os == "Windows": shutil.move(os.path.join(self.package_folder, "share", "swig", self.version), os.path.join(self.package_folder, "bin", "Lib")) shutil.rmtree(os.path.join(self.package_folder, "share")) if self.settings.compiler != "Visual Studio": with tools.chdir(os.path.join(self.package_folder, "bin")): ext = ".exe" if tools.os_info.is_windows else "" self.run("strip swig{}".format(ext), win_bash=tools.os_info.is_windows) self.run("strip ccache-swig{}".format(ext), win_bash=tools.os_info.is_windows) def package_info(self): bindir = os.path.join(self.package_folder, "bin") self.output.info('Appending PATH environment variable: {}'.format(bindir)) self.env_info.PATH.append(bindir) if self.settings.os == "Windows": swig_lib_path = os.path.join(self.package_folder, "bin", "Lib") else: swig_lib_path = os.path.join(self.package_folder, "share", "swig", self.version) self.output.info('Setting SWIG_LIB environment variable: {}'.format(swig_lib_path)) self.env_info.SWIG_LIB = swig_lib_path self.output.info('Setting SWIG_INSTALLER_ROOT to {}'.format(self.package_folder)) self.env_info.SWIG_INSTALLER_ROOT = self.package_folder
[ [ [ 19, 28 ], [ 195, 204 ] ], [ [ 30, 35 ], [ 1420, 1425 ], [ 1952, 1957 ], [ 2004, 2009 ], [ 2489, 2494 ], [ 2699, 2704 ], [ 2821, 2826 ], [ 3124, 3129 ], [ 3240, 3245 ], [ 3327, 3332 ], [ 3941, 3946 ], [ 4357, 4362 ], [ 4460, 4465 ], [ 4717, 4722 ], [ 4814, 4819 ], [ 5243, 5248 ], [ 5334, 5339 ], [ 5433, 5438 ], [ 5532, 5537 ] ], [ [ 37, 62 ], [ 3286, 3311 ], [ 4773, 4798 ] ], [ [ 89, 114 ], [ 939, 964 ], [ 1108, 1133 ] ], [ [ 138, 152 ], [ 2579, 2593 ] ], [ [ 160, 162 ], [ 2527, 2529 ], [ 2843, 2845 ], [ 3136, 3138 ], [ 4272, 4274 ], [ 4946, 4948 ], [ 5040, 5042 ], [ 5119, 5121 ], [ 5255, 5257 ], [ 5604, 5606 ], [ 5841, 5843 ], [ 5931, 5933 ] ], [ [ 170, 176 ], [ 4934, 4940 ], [ 5105, 5111 ] ], [ [ 185, 194 ] ] ]
""" WSGI config for pv project. This module contains the WSGI application used by Django's development server and any production WSGI deployments. It should expose a module-level variable named ``application``. Django's ``runserver`` and ``runfcgi`` commands discover this application via the ``WSGI_APPLICATION`` setting. Usually you will have the standard Django WSGI application here, but it also might make sense to replace the whole Django WSGI application with a custom one that later delegates to the Django one. For example, you could introduce WSGI middleware here, or combine a Django application with an application of another framework. """ import os import sys sys.path.append('/srv/pv/pv') os.environ.setdefault("DJANGO_SETTINGS_MODULE", "pv.settings") # This application object is used by any WSGI server configured to use this # file. This includes Django's development server, if the WSGI_APPLICATION # setting points here. from django.core.wsgi import get_wsgi_application application = get_wsgi_application() # Apply WSGI middleware here. # from helloworld.wsgi import HelloWorldApplication # application = HelloWorldApplication(application)
[ [ [ 663, 665 ], [ 709, 711 ] ], [ [ 673, 676 ], [ 678, 681 ] ], [ [ 976, 996 ], [ 1011, 1031 ] ], [ [ 997, 1008 ] ] ]
"""This example demonstrates the usage of ZOOptSearch. It also checks that it is usable with a separate scheduler. """ import time from ray import tune from ray.tune.suggest.zoopt import ZOOptSearch from ray.tune.schedulers import AsyncHyperBandScheduler from zoopt import ValueType # noqa: F401 def evaluation_fn(step, width, height): time.sleep(0.1) return (0.1 + width * step / 100)**(-1) + height * 0.1 def easy_objective(config): # Hyperparameters width, height = config["width"], config["height"] for step in range(config["steps"]): # Iterative training function - can be any arbitrary training procedure intermediate_score = evaluation_fn(step, width, height) # Feed the score back back to Tune. tune.report(iterations=step, mean_loss=intermediate_score) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument( "--smoke-test", action="store_true", help="Finish quickly for testing") args, _ = parser.parse_known_args() num_samples = 10 if args.smoke_test else 1000 # Optional: Pass the parameter space yourself # space = { # # for continuous dimensions: (continuous, search_range, precision) # "height": (ValueType.CONTINUOUS, [-10, 10], 1e-2), # # for discrete dimensions: (discrete, search_range, has_order) # "width": (ValueType.DISCRETE, [0, 10], True) # # for grid dimensions: (grid, grid_list) # "layers": (ValueType.GRID, [4, 8, 16]) # } zoopt_search_config = { "parallel_num": 8, } zoopt_search = ZOOptSearch( algo="Asracos", # only support ASRacos currently budget=num_samples, # dim_dict=space, # If you want to set the space yourself **zoopt_search_config) scheduler = AsyncHyperBandScheduler() analysis = tune.run( easy_objective, metric="mean_loss", mode="min", search_alg=zoopt_search, name="zoopt_search", scheduler=scheduler, num_samples=num_samples, config={ "steps": 10, "height": tune.quniform(-10, 10, 1e-2), "width": tune.randint(0, 10) }) print("Best config found: ", analysis.best_config)
[ [ [ 127, 131 ], [ 345, 349 ] ], [ [ 149, 153 ], [ 1886, 1890 ], [ 2156, 2160 ], [ 2207, 2211 ], [ 763, 767 ] ], [ [ 189, 200 ], [ 1630, 1641 ] ], [ [ 233, 256 ], [ 1844, 1867 ] ], [ [ 275, 284 ] ], [ [ 305, 318 ], [ 676, 689 ] ], [ [ 426, 440 ], [ 1904, 1918 ] ], [ [ 862, 870 ], [ 885, 893 ] ], [ [ 876, 882 ], [ 915, 921 ], [ 1030, 1036 ] ], [ [ 1020, 1024 ], [ 1081, 1085 ] ], [ [ 1026, 1027 ] ], [ [ 1061, 1072 ], [ 1716, 1727 ], [ 2079, 2090 ] ], [ [ 1553, 1572 ], [ 1806, 1825 ] ], [ [ 1615, 1627 ], [ 1987, 1999 ] ], [ [ 1832, 1841 ], [ 2048, 2057 ] ], [ [ 1875, 1883 ], [ 2271, 2279 ] ] ]
import urllib import jose.jwt import time import random import sys import requests from flask import Flask, request, redirect, make_response, jsonify import subprocess # seconds until the token expires TOKEN_EXPIRES = 2 # A mocked out oauth server, which serves all the endpoints needed by the oauth type. class MockOauthApp: def __init__(self, port): self.port = port # mock flask app self.app = Flask("mock_oauth_app") self.app.add_url_rule("/authorize", view_func=self.api_authorize) self.app.add_url_rule("/oauth/token", view_func=self.api_oauth_token, methods=["POST"]) self.app.add_url_rule("/v2/logout", view_func=self.api_logout) self.app.add_url_rule("/.well-known/openid-configuration", view_func=self.api_openid_configuration) self.app.add_url_rule("/.well-known/jwks.json", view_func=self.api_jwks) def api_authorize(self): callback = request.args.get("redirect_uri") state = request.args.get("state") return redirect(callback + f"?code=fakecode&state={state}") def api_oauth_token(self): expires_at = time.time() headers = dict(alg="RS256", kid="fake_kid") payload = dict( name="Fake User", sub="test_user_id", email="fake_user@email.com", email_verified=True, exp=expires_at ) jwt = jose.jwt.encode(claims=payload, key="mysecret", algorithm="HS256", headers=headers) r = { "access_token": f"access-{time.time()}", "id_token": jwt, "refresh_token": f"random-{time.time()}", "scope": "openid profile email offline", "expires_in": TOKEN_EXPIRES, "token_type": "Bearer", "expires_at": expires_at, } return make_response(jsonify(r)) def api_logout(self): return_to = request.args.get("returnTo") return redirect(return_to) def api_openid_configuration(self): data = dict(jwks_uri=f"http://localhost:{self.port}/.well-known/jwks.json") return make_response(jsonify(data)) def api_jwks(self): data = dict( alg="RS256", kty="RSA", use="sig", kid="fake_kid", ) return make_response(jsonify(dict(keys=[data]))) class MockOauthServer: def __init__(self): self.process = None self.port = None self.server_okay = False def start(self): self.port = random.randint(10000, 20000) self.process = subprocess.Popen([sys.executable, __file__, str(self.port)]) # Verify that the mock oauth server is ready (accepting requests) before starting the tests. self.server_okay = False for _ in range(5): try: response = requests.get(f"http://localhost:{self.port}/.well-known/jwks.json") if response.status_code == 200: self.server_okay = True break except Exception: pass # wait one second and try again time.sleep(1) def terminate(self): self.process.terminate() def get_auth_token(app): """ Generated an auth token for testing. :param app: a chalice app. :return: """ headers = dict(host="localhost") response = app.get("/dp/v1/login", headers=headers) location = response.headers["Location"] split = urllib.parse.urlsplit(location) args = dict(urllib.parse.parse_qsl(split.query)) # follow redirect url = f"/dp/v1/oauth2/callback?code=fakecode&state={args['state']}" response = app.get(url, headers=dict(host="localhost", Cookie=response.headers["Set-Cookie"])) return response.headers["Set-Cookie"] if __name__ == "__main__": port = int(sys.argv[1]) mock_app = MockOauthApp(port) mock_app.app.run(port=port, debug=True)
[ [ [ 7, 13 ], [ 3441, 3447 ], [ 3489, 3495 ] ], [ [ 21, 29 ], [ 1357, 1361 ] ], [ [ 37, 41 ], [ 1129, 1133 ], [ 1493, 1497 ], [ 1576, 1580 ], [ 3091, 3095 ] ], [ [ 49, 55 ], [ 2479, 2485 ] ], [ [ 63, 66 ], [ 3806, 3809 ], [ 2549, 2552 ] ], [ [ 74, 82 ], [ 2797, 2805 ] ], [ [ 101, 106 ], [ 429, 434 ] ], [ [ 108, 115 ], [ 933, 940 ], [ 982, 989 ], [ 1857, 1864 ] ], [ [ 117, 125 ], [ 1023, 1031 ], [ 1901, 1909 ] ], [ [ 127, 140 ], [ 1784, 1797 ], [ 2061, 2074 ], [ 2260, 2273 ] ], [ [ 142, 149 ], [ 1798, 1805 ], [ 2075, 2082 ], [ 2274, 2281 ] ], [ [ 157, 167 ], [ 2531, 2541 ] ], [ [ 203, 216 ], [ 1670, 1683 ] ], [ [ 315, 327 ], [ 3834, 3846 ] ], [ [ 2310, 2325 ] ], [ [ 3170, 3184 ] ], [ [ 3795, 3799 ], [ 3847, 3851 ], [ 3879, 3883 ] ], [ [ 3823, 3831 ], [ 3857, 3865 ] ] ]
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """x86 declaration and schedules.""" from __future__ import absolute_import as _abs import tvm from .. import tag from .. import generic from ..util import get_const_tuple def _schedule_reduce(sch, op, is_idx_reduce=False): if is_idx_reduce: real_out = op.output(0) fused = sch[real_out].fuse(*sch[real_out].op.axis) out = op.input_tensors[0] else: out = op.output(0) const_shape = True out_shape = get_const_tuple(out.shape) for d in out_shape: if not isinstance(d, int): const_shape = False break if const_shape: naxes = len(sch[out].op.axis) parallelism = 1 fuse_axes = [] # We choose a heuristic number 128 to limit the maximum parallelism while len(fuse_axes) < naxes and parallelism < 128: ivar = sch[out].op.axis[len(fuse_axes)] parallelism *= int(ivar.dom.extent) fuse_axes.append(ivar) fused = sch[out].fuse(*fuse_axes) sch[out].parallel(fused) else: if len(sch[out].op.axis) >= 5: # avoid too many parallelism fused = sch[out].fuse(sch[out].op.axis[0], sch[out].op.axis[1], sch[out].op.axis[2]) sch[out].parallel(fused) else: fused = sch[out].fuse(*sch[out].op.axis) sch[out].parallel(fused) @generic.schedule_reduce.register(["cpu"]) def schedule_reduce(outs): """X86 schedule for reduction op. Parameters ---------- outs: Array of Tensor The computation graph description of injective in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ outs = [outs] if isinstance(outs, tvm.tensor.Tensor) else outs sch = tvm.create_schedule([x.op for x in outs]) scheduled_ops = [] def traverse_before_reduce(operator): """Internal traverse function""" if isinstance(operator, tvm.tensor.PlaceholderOp): return if tag.is_injective(operator.tag): sch[operator].compute_inline() for tensor in operator.input_tensors: if tensor.op not in scheduled_ops: traverse_before_reduce(tensor.op) else: raise RuntimeError("Unsupported operator: %s" % operator.tag) scheduled_ops.append(operator) def traverse_after_reduce(operator): """Internal traverse function""" if tag.is_broadcast(operator.tag): if operator not in scheduled_ops: generic.schedule_injective_from_existing(sch, operator) for tensor in operator.input_tensors: traverse_after_reduce(tensor.op) elif operator.tag == 'comm_reduce': _schedule_reduce(sch, operator, is_idx_reduce=False) for tensor in operator.input_tensors: if tensor.op not in scheduled_ops: traverse_before_reduce(tensor.op) elif operator.tag == 'comm_reduce_idx': _schedule_reduce(sch, operator, is_idx_reduce=True) input_tensors = operator.input_tensors[0].op.input_tensors for tensor in input_tensors: if tensor.op not in scheduled_ops: traverse_before_reduce(tensor.op) elif isinstance(operator, tvm.tensor.PlaceholderOp): pass else: raise RuntimeError("Unsupported operator: %s (tag: %s)" % (operator, operator.tag)) scheduled_ops.append(operator) traverse_after_reduce(outs[0].op) return sch
[ [ [ 876, 899 ] ], [ [ 907, 910 ], [ 2587, 2590 ], [ 2626, 2629 ], [ 2807, 2810 ], [ 4192, 4195 ] ], [ [ 926, 929 ], [ 2864, 2867 ], [ 3316, 3319 ] ], [ [ 945, 952 ], [ 2184, 2191 ], [ 3410, 3417 ] ], [ [ 972, 987 ], [ 1265, 1280 ] ], [ [ 993, 1009 ], [ 3621, 3637 ], [ 3889, 3905 ] ], [ [ 2230, 2245 ] ] ]
# boot.py -- runs on boot-up import pyb pyb.LED(3).on() # indicate we are waiting for switch press pyb.delay(2000) # wait for user to maybe press the switch switch_value = pyb.Switch()() # sample the switch at end of delay pyb.LED(3).off() # indicate that we finished waiting for the switch pyb.LED(4).on() # indicate that we are selecting the mode if switch_value: # button pressed, mount SD card as usb storage pyb.usb_mode('CDC+MSC') pyb.main('debug.py') else: # no button pressed, SD card can be used by script pyb.usb_mode('CDC+HID') pyb.main('displaytemp.py') pyb.LED(4).off() # indicate that we finished selecting the mode
[ [ [ 37, 40 ], [ 42, 45 ], [ 117, 120 ], [ 206, 209 ], [ 259, 262 ], [ 343, 346 ], [ 490, 493 ], [ 518, 521 ], [ 604, 607 ], [ 632, 635 ], [ 660, 663 ] ], [ [ 191, 203 ], [ 421, 433 ] ] ]
from Cimpl import * image = load_image(choose_file()) def flip_vertical(image: image) -> Image: vertical_image = copy(image) for x in range(get_width(image)): for y in range(get_height(image)): flipped_color = get_color(image, -x, y) set_color(vertical_image, x, y, flipped_color) show(vertical_image) return vertical_image def test_flip_vertical(image: Image) -> Image: """ Writen by Abdelrahman Alatoom (101147742). Function tests that all values of the x axis of the inputted image (into the flip_vertical function) are assigned to to their negative counterparts""" vertical_image = flip_vertical(image) for x in range(get_width(image)): for y in range(get_height(image)): original_colour = get_color(image, x, y) for x in range(get_width(vertical_image)): for y in range(get_height(vertical_image)): vertical_colour = get_color(vertical_image, -x, y) if original_colour == vertical_colour: print('Test Passed') else: print('Test Failed')
[ [ [ 18, 19 ], [ 28, 38 ], [ 39, 50 ], [ 92, 97 ], [ 134, 138 ], [ 166, 175 ], [ 208, 218 ], [ 256, 265 ], [ 292, 301 ], [ 344, 348 ], [ 433, 438 ], [ 423, 428 ], [ 703, 712 ], [ 754, 764 ], [ 804, 813 ], [ 864, 873 ], [ 924, 934 ], [ 983, 992 ] ], [ [ 20, 25 ] ], [ [ 61, 74 ], [ 663, 676 ] ], [ [ 397, 415 ] ] ]
# -*-coding:Utf-8 -* # Copyright (c) 2010-2017 LE GOFF Vincent # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Package contenant l'éditeur 'bugedit'. Si des redéfinitions de contexte-éditeur standard doivent être faites, elles seront placées dans ce package Note importante : ce package contient la définition d'un éditeur, mais celui-ci peut très bien être étendu par d'autres modules. Au quel cas, les extensions n'apparaîtront pas ici. """ from primaires.interpreteur.editeur.presentation import Presentation from primaires.interpreteur.editeur.description import Description from primaires.interpreteur.editeur.uniligne import Uniligne from primaires.interpreteur.editeur.entier import Entier from primaires.interpreteur.editeur.choix import Choix from primaires.interpreteur.editeur.flag import Flag from .edt_assigne import EdtAssigne from .supprimer import NSupprimer from secondaires.rapport.constantes import * class EdtBugeditP(Presentation): """Classe définissant l'éditeur de rapport 'bugedit'. """ nom = "bugedit+" def __init__(self, personnage, rapport): """Constructeur de l'éditeur""" if personnage: instance_connexion = personnage.instance_connexion else: instance_connexion = None Presentation.__init__(self, instance_connexion, rapport) if personnage and rapport: self.construire(rapport) def __getnewargs__(self): return (None, None) def construire(self, rapport): """Construction de l'éditeur""" # Titre titre = self.ajouter_choix("titre", "t", Uniligne, rapport, "titre") titre.parent = self titre.prompt = "Titre du rapport : " titre.apercu = "{objet.titre}" titre.aide_courte = \ "Entrez le |ent|titre|ff| du rapport ou |cmd|/|ff| pour revenir " \ "à la fenêtre parente.\n\nTitre actuel : |bc|{objet.titre}|ff|" # Type types = sorted(TYPES) type = self.ajouter_choix("type", "y", Choix, rapport, "type", types) type.parent = self type.prompt = "Type de rapport : " type.apercu = "{objet.type}" type.aide_courte = \ "Entrez le |ent|type|ff| de rapport ou |cmd|/|ff| pour " \ "revenir à la fenêtre parente.\n\Types disponibles : " \ "{}.\n\Type actuel : |bc|{{objet.type}}|ff|".format( ", ".join(types)) # Catégorie categories = sorted(CATEGORIES) categorie = self.ajouter_choix("catégorie", "c", Choix, rapport, "categorie", categories) categorie.parent = self categorie.prompt = "Catégorie du rapport : " categorie.apercu = "{objet.categorie}" categorie.aide_courte = \ "Entrez la |ent|catégorie|ff| du rapport ou |cmd|/|ff| pour " \ "revenir à la fenêtre parente.\n\nCatégories disponibles : " \ "{}.\n\nCatégorie actuelle : |bc|{{objet.categorie}}|ff|".format( ", ".join(categories)) # Priorité priorites = sorted(PRIORITES) priorite = self.ajouter_choix("priorité", "p", Choix, rapport, "priorite", priorites) priorite.parent = self priorite.prompt = "Priorité du rapport : " priorite.apercu = "{objet.priorite}" priorite.aide_courte = \ "Entrez la |ent|priorité|ff| du rapport ou |cmd|/|ff| pour " \ "revenir à la fenêtre parente.\n\nPriorités disponibles : " \ "{}.\n\nPriorité actuelle : |bc|{{objet.priorite}}|ff|".format( ", ".join(priorites)) # Description description = self.ajouter_choix("description", "d", Description, \ rapport) description.parent = self description.apercu = "{objet.description.paragraphes_indentes}" description.aide_courte = \ "| |tit|" + "Description du rapport #{}".format( rapport.id).ljust(74) + \ "|ff||\n" + self.opts.separateur # Public public = self.ajouter_choix("public", "b", Flag, rapport, "public") public.parent = self # Statut statut = self.ajouter_choix("statut", "s", Choix, rapport, "statut", STATUTS) statut.parent = self statut.prompt = "Statut du rapport : " statut.apercu = "{objet.statut}" statut.aide_courte = \ "Entrez le |ent|statut|ff| du rapport ou |cmd|/|ff| pour " \ "revenir à la fenêtre parente.\n\nStatuts disponibles : " \ "{}.\n\nStatut actuel : |bc|{{objet.statut}}|ff|".format( ", ".join(STATUTS)) # Avancement avancement = self.ajouter_choix("avancement", "a", Entier, rapport, "avancement", 0, 100, "%") avancement.parent = self avancement.prompt = "Avancement de la tâche : " avancement.apercu = "{objet.avancement}" avancement.aide_courte = \ "Entrez l'|ent|avancement|ff| en pourcent de la tâche ou " \ "|cmd|/|ff| pour revenir à la\nfenêtre parente.\n\n" \ "Avancement actuel : |bc|{valeur}|ff|" # Assigné à assigne_a = self.ajouter_choix("assigné à", "i", EdtAssigne, rapport) assigne_a.parent = self assigne_a.prompt = "Entrez un nom de joueur : " assigne_a.apercu = "{objet.aff_assigne_a}" assigne_a.aide_courte = \ "Entrez un |ent|Immortel|ff| à qui assigner ce rapport, ou " \ "|cmd|/|ff| pour revenir à la\nfenêtre parente.\n\n" \ "Actuellement assigné à : {objet.aff_assigne_a}" # Supprimer sup = self.ajouter_choix("supprimer", "sup", NSupprimer, rapport) sup.parent = self sup.aide_courte = "Souhaitez-vous réellement supprimer " \ "le rapport #{} ?".format(rapport.id)
[ [ [ 1962, 1974 ], [ 2402, 2414 ], [ 2740, 2752 ] ], [ [ 2030, 2041 ], [ 5182, 5193 ] ], [ [ 2094, 2102 ], [ 3069, 3077 ] ], [ [ 2153, 2159 ], [ 6227, 6233 ] ], [ [ 2209, 2214 ], [ 3488, 3493 ], [ 4025, 4030 ], [ 4625, 4630 ], [ 5700, 5705 ] ], [ [ 2263, 2267 ], [ 5577, 5581 ] ], [ [ 2293, 2303 ], [ 6731, 6741 ] ], [ [ 2327, 2337 ], [ 7200, 7210 ] ], [ [ 2381, 2382 ], [ 3434, 3439 ], [ 3955, 3965 ], [ 4558, 4567 ], [ 5742, 5749 ], [ 6136, 6143 ] ], [ [ 2390, 2401 ] ] ]
# coding=utf-8 import os import sys from dateutil import parser from datetime import datetime from pytz import timezone import re import datetime import dateutil.parser from datetime import timedelta def modify_test_data(initial_data): # set user name # initial_data['procuringEntity']['name'] = u'Товариство З Обмеженою Відповідальністю \'Мак Медіа Прінт\'' initial_data['procuringEntity']['name'] = u'ТОВ \"СФ \"РУБІЖНЕ\"' if 'contactPoint' in initial_data['procuringEntity']: initial_data['procuringEntity']['contactPoint']['telephone'] = u'+380670444580' initial_data['procuringEntity']['contactPoint']['url'] = u'https://dadadad.com' initial_data['procuringEntity']['identifier']['legalName'] = u'ТОВАРИСТВО З ОБМЕЖЕНОЮ ВІДПОВІДАЛЬНІСТЮ \"СІЛЬСЬКОГОСПОДАРСЬКА ФІРМА \"РУБІЖНЕ\"' initial_data['procuringEntity']['identifier']['id'] = u'38580144' # # initial_data['buyers'][0]['identifier']['id'] = u'38580144' initial_data['buyers'][0]['identifier']['legalName'] = u'ТОВАРИСТВО З ОБМЕЖЕНОЮ ВІДПОВІДАЛЬНІСТЮ \"СІЛЬСЬКОГОСПОДАРСЬКА ФІРМА \"РУБІЖНЕ\"' initial_data['buyers'][0]['name'] = u'ТОВ \"СФ \"РУБІЖНЕ\"' initial_data['tender']['tenderPeriod']['startDate'] = add_day_to_date(initial_data['tender']['tenderPeriod']['startDate']) # initial_data['procuringEntity']['name'] = u'Макстрой Діск, Товариство З Обмеженою Відповідальністю' # initial_data['procuringEntity']['name'] = u'ФОП ОГАНІН ОЛЕКСАНДР ПЕТРОВИЧ' return initial_data def add_day_to_date(date): dat = parser.parse(date) new_date = (dat + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S%z') new = parser.parse(new_date).isoformat() return new def get_currency_type(currency): if isinstance(currency, str): currency = currency.decode("utf-8") currency_dictionary = { u'грн': 'UAH' } currency_type = currency_dictionary.get(currency) if currency_type: return currency_type else: return currency def get_month_number(month_name): monthes = [u"января", u"февраля", u"марта", u"апреля", u"мая", u"июня", u"июля", u"августа", u"сентября", u"октября", u"ноября", u"декабря", u"янв.", u"февр.", u"мар.", u"апр.", u"мая.", u"июн.", u"июл.", u"авг.", u"сент.", u"окт.", u"нояб.", u"дек.", u"січ.", u"лют.", u"бер.", u"квіт.", u"трав.", u"черв.", u"лип.", u"серп.", u"вер.", u"жовт.", u"лист.", u"груд.", u"січня", u"лютого", u"березня", u"квітня", u"травня", u"червня", u"липня", u"серпня", u"вересня", u"жовтня", u"листопада", u"грудня"] return monthes.index(month_name) % 12 + 1 def get_time_with_offset(date): date_obj = datetime.datetime.strptime(date, "%Y-%m-%d %H:%M") time_zone = timezone('Europe/Kiev') localized_date = time_zone.localize(date_obj) return localized_date.strftime('%Y-%m-%d %H:%M:%S.%f%z') # def get_time_with_offset_formatted(date, input_format_date, output_format): # date_obj = datetime.datetime.strptime(date, input_format_date) # time_zone = timezone('Europe/Kiev') # localized_date = time_zone.localize(date_obj) # return localized_date.strftime(output_format) def get_time_with_offset_formatted(date, input_format_date): tz = timezone('Europe/Kiev') date_obj = datetime.datetime.strptime(date, input_format_date) res = tz.localize(date_obj) result = res.isoformat() return result def get_current_date(): now = datetime.now() return now.strftime('%d-%m-%Y') def get_unit_code(name): dictionary = { u'кілограми': u'KGM', u'пара': u'PR', u'літр': u'LTR', u'набір': u'SET', u'пачок': u'NMP', u'метри': u'MTR', u'лот': u'LO', u'послуга': u'E48', u'метри кубічні': u'MTQ', u'ящик': u'BX', u'рейс': u'E54', u'тони': u'TNE', u'метри квадратні': u'MTK', u'кілометри': u'KMT', u'штуки': u'H87', u'місяць': u'MON', u'пачка': u'RM', u'упаковка': u'PK', u'гектар': u'HAR', u'блок': u'D64', u'Флакон': u'VI' } expected_name = dictionary.get(name) if expected_name: return expected_name else: return name def get_unit_name(current_name): if isinstance(current_name, str): current_name = current_name.decode("utf-8") dictionary = { u'кілограми': {u'килограмм', u'килограмма', u'килограммов'}, u'пара': {u'пара', u'пары', u'пар'}, u'літр': {u'литр', u'литра', u'литров'}, u'набір': {u'набор', u'набора', u'наборов'}, u'пачок': {u'пачка', u'пачек', u'пачки'}, u'метри': {u'метр', u'метра', u'метров'}, u'лот': {u'лот', u'лоты', u'лотов'}, u'послуга': {u'услуга', u'услуг', u'услуги'}, u'метри кубічні': {u'метр кубический', u'метра кубического', u'метров кубических'}, u'ящик': {u'ящик', u'ящика', u'ящиков'}, u'рейс': {u'рейс', u'рейса', u'рейсов'}, u'тони': {u'тонна', u'тонны', u'тонн'}, u'метри квадратні': {u'метр квадратный', u'метра квадратного', u'метров квадратных'}, u'кілометри': {u'километр', u'километров', u'километра'}, u'штуки': {u'штука', u'штуки', u'штук', u'Штуки'}, u'місяць': {u'месяц', u'месяца', u'месяцев'}, u'пачка': {u'пачка', u'пачек', u'пачкики'}, u'упаковка': {u'упаковка', u'упаковок', u'упаковки'}, u'гектар': {u'гектар', u'гектара', u'гектаров'}, u'блок': {u'блок', u'блока', u'блоков'} } expected_name = None dictionary.get(current_name) for name, variants in dictionary.iteritems(): if current_name in variants: expected_name = name if expected_name: return expected_name else: return current_name def get_unit_name_ru(current_name): if isinstance(current_name, str): current_name = current_name.decode("utf-8") dictionary = { u'килограмм': {u'килограмм', u'килограмма', u'килограммов', u'кілограми'}, u'пара': {u'пара', u'пары', u'пар'}, u'литр': {u'литр', u'литра', u'литров'}, u'набора': {u'набір', u'набора', u'наборов'}, u'пачек': {u'пачка', u'пачек', u'пачки'}, u'метр': {u'метр', u'метра', u'метров'}, u'лот': {u'лот', u'лоты', u'лотов'}, u'услуга': {u'услуга', u'услуг', u'услуги'}, u'метр .куб.': {u'метр кубический', u'метра кубического', u'метров кубических'}, u'ящик': {u'ящик', u'ящика', u'ящиков'}, u'рейс': {u'рейс', u'рейса', u'рейсов'}, u'тонны': {u'тонна', u'тонны', u'тонн'}, u'метр квадратный': {u'метр квадратный', u'метра квадратного', u'метров квадратных'}, u'километры': {u'километр', u'километров', u'километра'}, u'штуки': {u'штука', u'штуки', u'штук'}, u'месяц': {u'месяц', u'месяца', u'месяцев'}, u'пачка': {u'пачка', u'пачек', u'пачкики'}, u'упаковка': {u'упаковка', u'упаковок', u'упаковки'}, u'гектар': {u'гектар', u'гектара', u'гектаров'}, u'блок': {u'блок', u'блока', u'блоков'} } expected_name = None dictionary.get(current_name) for name, variants in dictionary.iteritems(): if current_name in variants: expected_name = name if expected_name: return expected_name else: return current_name def get_classification_type(classifications): classifications_dictionary = { u'ДК 016:2010': u'ДКПП', u'ДК 021:2015': u'CPV', u'ДК 18-2000': u'ДК018', u'ДК003: 2010': u'ДК003', u'ДК003:2010': u'ДК003', u'ДК 015-97': u'ДК015', u'ДК021': u'CPV' } classifications_type = classifications_dictionary.get(classifications) if classifications_type: return classifications_type else: return classifications def get_status_type(status_name): status_name = status_name.strip() type_dictionary = { u'Период уточнений': 'active.enquiries', u'Період уточнень': 'active.enquiries', u'Период уточнений завершен': 'active.enquiries.ended', u'Період уточнень завершено': 'active.enquiries.ended', u'Подача предложений': 'active.tendering', u'Подача пропозицій': 'active.tendering', u'Торги': 'active.auction', u'Квалификация победителя': 'active.qualification', u'Квалификація переможця': 'active.qualification', u'Предложения рассмотрены': 'active.awarded', u'Пропозиції розглянуті': 'active.awarded', u'Закупка не состоялась': 'unsuccessful', u'Закупівля не відбулась': 'unsuccessful', u'Завершено': 'complete', u'Отменено': 'cancelled', u'Відмінено': 'cancelled', u'Розглядається': 'pending', u'Кваліфікація учасника': 'active.pre-qualification', u'Пауза перед аукціоном': 'active.pre-qualification.stand-still', u'Прекваліфікація': 'active.pre-qualification', u'Преквалификация': 'active.pre-qualification' } type_name = type_dictionary.get(status_name) return type_name def convert_float_to_string(number): result = number if type(number) is float: return format(number, '.2f') else: return result def get_claim_status (status): type_dictionary = { u'Вiдправлено': 'claim', u'Отримано вiдповiдь': 'answered', u'Задоволено': 'resolved', u'Скасована': 'cancelled', u'Не вирiшена, обробляється': 'pending', u'Залишена без відповіді': 'ignored', u'Не задоволено': 'declined', u'Вимога відхилена': 'invalid', u'Запит для пiдтверждения скасування': 'stopping' } type_name = type_dictionary.get(status) return type_name def get_procurementMethod_Type (type): type_dictionary = { u'Конкурентний діалог з публікацією англійською мовою 1-ий етап': 'competitiveDialogueEU', u'Конкурентний діалог 1-ий етап': 'competitiveDialogueUA', u'Переговорна процедура для потреб оборони': 'aboveThresholdUA.defense', u'Укладання рамкової угоди': 'closeFrameworkAgreementUA', u'Допорогові закупівлі': 'belowThreshold', u'Переговорна процедура': 'negotiation', u'Звіт про укладений договір': 'reporting', u'Відкриті торги': 'aboveThresholdUA', u'Відкриті торги з публікацією англійською мовою': 'aboveThresholdEU', u'Відкриті торги для закупівлі енергосервісу': 'esco' } type_name = type_dictionary.get(type) return type_name def sum_of_numbers(number, value): number = int(number) + int(value) return number def abs_number(number): return abs(int(number)) def get_abs_item_index(lot_index, item_index, items_count): abs_index = ((int(lot_index)-1) * int(items_count)) + int(item_index) return abs_index def get_match_from_string(string, pattern, group): result = 'null'; p = re.compile(pattern) m = p.search(string) if p.search(string): return m.group(int(group)) return result def get_percent(value): value = value * 100 return format(value, '.0f') def get_conversion_to_int(value): return int(float(value)) def get_cause(cause_text): cause_dictionary = { u'Закупівля творів мистецтва або закупівля, пов’язана із захистом прав інтелектуальної власності, або укладення договору про закупівлю з переможцем архітектурного чи мистецького конкурсу': u'artContestIP', u'Відсутність конкуренції (у тому числі з технічних причин) на відповідному ринку, внаслідок чого договір про закупівлю може бути укладено лише з одним постачальником, завідсутності при цьому альтернативи': u'noCompetition', u'Нагальна потреба у здійсненні закупівлі у зв’язку з виникненням особливих економічних чи соціальних обставин, яка унеможливлює дотримання замовниками строків для проведення тендеру, а саме пов’язаних з негайною ліквідацією наслідків надзвичайних ситуацій, а також наданням у встановленому порядку Україною гуманітарної допомоги іншим державам. Застосування переговорної процедури закупівлі в таких випадках здійснюється за рішенням замовника щодо кожної процедури': u'quick', u'Якщо замовником було двічі відмінено тендер через відсутність достатньої кількостіучасників,прицьому предмет закупівлі, його технічні та якісніхарактеристики, атакож вимогидо учасника не повинні відрізнятисявід вимог, що були визначені замовникому тедерній документації': u'twiceUnsuccessful', u'Потреба здійснити додаткову закупівлю в того самого постачальника з метою уніфікації, стандартизації або забезпечення сумісності з наявними товарами, технологіями, роботами чи послугами, якщо заміна попереднього постачальника (виконавця робіт, надавача послуг) може призвести до несумісності або виникнення проблем технічного характеру,пов’язаних з експлуатацією та обслуговуванням': u'additionalPurchase', u'Необхідність проведення додаткових будівельних робіт, не зазначених у початковому проекті, але які стали через непередбачувані обставини необхідними для виконання проекту за сукупності таких умов: договір буде укладено з попереднім виконавцем цих робіт, такі роботи технічно чи економічно пов’язані з головним (первинним) договором; загальна вартість додаткових робіт не перевищує 50 відсотків вартості головного (первинного) договору': u'additionalConstruction', u'Закупівля юридичних послуг, пов’язаних із захистом прав та інтересів України, у тому числі з метою захисту національної безпеки і оборони, під час врегулювання спорів, розгляду в закордонних юрисдикційних органах справ за участю іноземного суб’єкта та України, на підставі рішення Кабінету Міністрів України або введених в дію відповідно до закону рішень Ради національної безпеки і оборони України': u'stateLegalServices' } cause_type = cause_dictionary.get(cause_text) if cause_type: return cause_type else: return cause_text def get_items_from_lot(items, lot_id): lot_items = [] for item in items: if item['relatedLot'] == lot_id: lot_items.append(item) return lot_items def get_ECP_key(path): return os.path.join(os.getcwd(), path) def get_date_formatting(date, format_day): return dateutil.parser.parse(date).date().strftime(format_day) def get_scenarios_name(): name = '' for param in sys.argv: if 'txt' in param: name = param return name def is_click_button(item_index, items_count, lot_index): status = 'false' if int(item_index) < int(items_count) and lot_index > 1: return 'true' return status def get_milestones_title(title): titles = { u'підписання договору': 'signingTheContract', u'поставка товару': 'deliveryOfGoods', u'дата подання заявки': 'submissionDateOfApplications', u'дата закінчення звітного періоду': 'endDateOfTheReportingPeriod', u'дата виставлення рахунку': 'dateOfInvoicing', u'виконання робіт': 'executionOfWorks', u'надання послуг': 'submittingServices', u'інша подія': 'anotherEvent' } title_name = titles.get(title) return title_name def get_milestones_code(code): codes = { u'Аванс': 'prepayment', u'Пiсляоплата': 'postpayment' } code_name = codes.get(code) return code_name def get_milestones_duration_type(type): types = { u'робочих': 'working', u'банківськіх': 'banking', u'календарних': 'calendar' } type_name = types.get(type) return type_name def get_rationaleType (type): type_dictionary = { u'Зменшення обсягів закупівлі': 'volumeCuts', u'Зміна сторонніх показників (курсу, тарифів...)': 'thirdParty', u'Зміна ціни у зв’язку із зміною ставок податків і зборів': 'taxRate', u'Покращення якості предмета закупівлі': 'qualityImprovement', u'Узгоджене зменшення ціни': 'priceReduction', u'Зміна ціни за одиницю товару': 'itemPriceVariation', u'Продовження строку дії договору на наступний рік': 'fiscalYearExtension', u'Продовження строку дії договору (черездокументально підтверджені об’єктивні обставини)': 'durationExtension', } type_name = type_dictionary.get(type) return type_name def change_fake_date(): return (datetime.datetime.now(timezone('Europe/Kiev')) + timedelta(days=3)).strftime('%Y-%m-%dT%H:%M:%S.%f%z')
[ [ [ 23, 25 ], [ 14262, 14264 ], [ 14275, 14277 ] ], [ [ 33, 36 ], [ 14465, 14468 ] ], [ [ 58, 64 ], [ 1549, 1555 ], [ 1651, 1657 ] ], [ [ 86, 94 ] ], [ [ 112, 120 ], [ 2817, 2825 ], [ 3318, 3326 ], [ 16446, 16454 ] ], [ [ 128, 130 ], [ 11023, 11025 ] ], [ [ 138, 146 ], [ 2750, 2758 ], [ 3357, 3365 ], [ 3524, 3532 ], [ 16424, 16432 ] ], [ [ 154, 169 ], [ 14350, 14358 ] ], [ [ 191, 200 ], [ 1590, 1599 ], [ 16473, 16482 ] ], [ [ 207, 223 ] ], [ [ 1516, 1531 ], [ 1230, 1245 ] ], [ [ 1706, 1723 ] ], [ [ 2014, 2030 ] ], [ [ 2707, 2727 ] ], [ [ 3252, 3282 ] ], [ [ 3494, 3510 ] ], [ [ 3581, 3594 ] ], [ [ 4320, 4333 ] ], [ [ 5884, 5900 ] ], [ [ 7451, 7474 ] ], [ [ 7944, 7959 ] ], [ [ 9193, 9216 ] ], [ [ 9351, 9367 ] ], [ [ 9856, 9882 ] ], [ [ 10643, 10657 ] ], [ [ 10736, 10746 ] ], [ [ 10790, 10808 ] ], [ [ 10947, 10968 ] ], [ [ 11153, 11164 ] ], [ [ 11235, 11256 ] ], [ [ 11300, 11309 ] ], [ [ 14052, 14070 ] ], [ [ 14232, 14243 ] ], [ [ 14300, 14319 ] ], [ [ 14412, 14430 ] ], [ [ 14549, 14564 ] ], [ [ 14730, 14750 ] ], [ [ 15275, 15294 ] ], [ [ 15451, 15479 ] ], [ [ 15667, 15684 ] ], [ [ 16392, 16408 ] ] ]
#!/usr/bin/env python3 # SPDX-License-Identifier: Apache-2.0 ## # Copyright (C) 2021 Jihoon Lee <jhoon.it.lee@samsung.com> # # @file genModelsRecurrent_v2.py # @date 19 October 2021 # @brief Generate recurrent model tcs # @author Jihoon lee <jhoon.it.lee@samsung.com> from recorder_v2 import record_v2, inspect_file from zoneout import Zoneout import torch class FCUnroll(torch.nn.Module): def __init__(self, unroll_for=1, num_fc=1): super().__init__() self.fcs = torch.nn.ModuleList([torch.nn.Linear(1, 1) for i in range(num_fc)]) self.unroll_for = unroll_for # self.loss = torch.nn.MSELoss() self.loss = torch.nn.Identity() def forward(self, inputs, labels): output = inputs[0] for i in range(self.unroll_for): for fc in self.fcs: output = fc(output) loss = self.loss(output) # loss = self.loss(output, labels[0]) return output, loss class RNNCellStacked(torch.nn.Module): def __init__(self, unroll_for=1, num_rnn=1, input_size=1, hidden_size=1): super().__init__() self.rnns = torch.nn.ModuleList( [ torch.nn.RNNCell(input_size, hidden_size) for _ in range(num_rnn) ] ) self.unroll_for = unroll_for self.loss = torch.nn.MSELoss() def forward(self, inputs, labels): hs = [torch.zeros_like(inputs[0]) for _ in self.rnns] out = inputs[0] ret = [] for _ in range(self.unroll_for): for i, rnn in enumerate(self.rnns): hs[i] = rnn(out, hs[i]) out = hs[i] ret.append(out) ret = torch.stack(ret, dim=1) loss = self.loss(ret, labels[0]) return ret, loss class LSTMStacked(torch.nn.Module): def __init__(self, num_lstm=1, bidirectional=False): super().__init__() self.input_size = self.hidden_size = 2 self.num_lstm = num_lstm self.bidirectional=bidirectional self.lstms = torch.nn.ModuleList( [ torch.nn.LSTM(self.input_size if self.bidirectional == False or i == 0 else 2 * self.input_size, self.hidden_size, batch_first=True, bidirectional=bidirectional) # Intended comment # torch.nn.LSTM(self.input_size if self.bidirectional == False or i == 0 else 2 * self.input_size, self.hidden_size, num_layers=num_lstm, batch_first=True, bidirectional=bidirectional) for i in range(num_lstm) ] ) self.loss = torch.nn.MSELoss() def forward(self, inputs, labels): out = inputs[0] states = inputs[1:] # hs = [states[2 * i] for i in range(self.num_lstm)] hs = [torch.zeros((2, 3, 2)) if self.bidirectional else torch.zeros((1, 3, 2)) for _ in range(self.num_lstm)] # cs = [states[2 * i + 1] for i in range(self.num_lstm)] cs = [torch.zeros((2, 3, 2)) if self.bidirectional else torch.zeros((1, 3, 2)) for _ in range(self.num_lstm)] for i, (lstm, h, c) in enumerate(zip(self.lstms, hs, cs)): out, (hs[i], cs[i]) = lstm(out, (h, c)) loss = self.loss(out, labels[0]) return out, loss class LSTMCellStacked(torch.nn.Module): def __init__(self, unroll_for=2, num_lstmcell=1): super().__init__() self.input_size = self.hidden_size = 2 self.lstmcells = torch.nn.ModuleList( [ torch.nn.LSTMCell(self.input_size, self.hidden_size) for _ in range(num_lstmcell) ] ) self.unroll_for = unroll_for self.num_lstmcell = num_lstmcell self.loss = torch.nn.MSELoss() def forward(self, inputs, labels): out = inputs[0] states = inputs[1:] hs = [states[2 * i] for i in range(self.num_lstmcell)] cs = [states[2 * i + 1] for i in range(self.num_lstmcell)] ret = [] for _ in range(self.unroll_for): for i, (lstm, h, c) in enumerate(zip(self.lstmcells, hs, cs)): hs[i], cs[i] = lstm(out, (h, c)) out = hs[i] ret.append(out) ret = torch.stack(ret, dim=1) loss = self.loss(ret, labels[0]) return ret, loss class ZoneoutLSTMStacked(torch.nn.Module): def __init__(self, batch_size=3, unroll_for=2, num_lstm=1, hidden_state_zoneout_rate=1, cell_state_zoneout_rate=1): super().__init__() self.input_size = self.hidden_size = 2 self.cell_state_zoneout_rate = cell_state_zoneout_rate self.zoneout_lstms = torch.nn.ModuleList( [ Zoneout(batch_size, self.input_size, self.hidden_size, unroll_for, hidden_state_zoneout_rate, cell_state_zoneout_rate) for _ in range(num_lstm) ] ) self.unroll_for = unroll_for self.num_lstm = num_lstm self.loss = torch.nn.MSELoss() def forward(self, inputs, labels): out = inputs[0] states = inputs[1:] hs = [states[2 * i] for i in range(self.num_lstm)] cs = [states[2 * i + 1] for i in range(self.num_lstm)] ret = [] for num_unroll in range(self.unroll_for): for i, (zoneout_lstm, h, c) in enumerate(zip(self.zoneout_lstms, hs, cs)): hs[i], cs[i] = zoneout_lstm(out, (h, c, num_unroll)) out = hs[i] ret.append(out) ret = torch.stack(ret, dim=1) loss = self.loss(ret, labels[0]) return ret, loss class GRUCellStacked(torch.nn.Module): def __init__(self, unroll_for=2, num_grucell=1): super().__init__() self.input_size = self.hidden_size = 2 self.grus = torch.nn.ModuleList( [ torch.nn.GRUCell(self.input_size, self.hidden_size, bias=True) for _ in range(num_grucell) ] ) self.unroll_for = unroll_for self.loss = torch.nn.MSELoss() def forward(self, inputs, labels): out = inputs[0] hs = inputs[1:] ret = [] for _ in range(self.unroll_for): for i, (gru, h) in enumerate(zip(self.grus, hs)): hs[i] = gru(out, h) out = hs[i] ret.append(out) ret = torch.stack(ret, dim=1) loss = self.loss(ret, labels[0]) return ret, loss if __name__ == "__main__": record_v2( FCUnroll(unroll_for=5), iteration=2, input_dims=[(1,)], label_dims=[(1,)], name="fc_unroll_single", ) record_v2( FCUnroll(unroll_for=2, num_fc=2), iteration=2, input_dims=[(1,)], label_dims=[(1,)], name="fc_unroll_stacked", ) record_v2( FCUnroll(unroll_for=2, num_fc=2), iteration=2, input_dims=[(1,)], label_dims=[(1,)], name="fc_unroll_stacked_clipped", clip=True ) record_v2( RNNCellStacked(unroll_for=2, num_rnn=1, input_size=2, hidden_size=2), iteration=2, input_dims=[(3, 2)], label_dims=[(3, 2, 2)], name="rnncell_single", ) record_v2( RNNCellStacked(unroll_for=2, num_rnn=2, input_size=2, hidden_size=2), iteration=2, input_dims=[(3, 2)], label_dims=[(3, 2, 2)], name="rnncell_stacked", ) unroll_for, num_lstm, batch_size, unit, feature_size, iteration, bidirectional = [2, 1, 3, 2, 2, 2, False] record_v2( LSTMStacked(num_lstm=num_lstm, bidirectional=bidirectional), iteration=iteration, input_dims=[(batch_size, unroll_for, feature_size)], # input_dims=[(batch_size, unroll_for, feature_size)] + [(1, batch_size, unit) for _ in range(2 * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="lstm_single", ) unroll_for, num_lstm, batch_size, unit, feature_size, iteration, bidirectional = [2, 2, 3, 2, 2, 2, False] record_v2( LSTMStacked(num_lstm=num_lstm, bidirectional=bidirectional), iteration=iteration, input_dims=[(batch_size, unroll_for, feature_size)], # input_dims=[(batch_size, unroll_for, feature_size)] + [(1, batch_size, unit) for _ in range(2 * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="lstm_stacked", ) unroll_for, num_lstm, batch_size, unit, feature_size, iteration, bidirectional = [2, 1, 3, 2, 2, 2, True] record_v2( LSTMStacked(num_lstm=num_lstm, bidirectional=bidirectional), iteration=iteration, input_dims=[(batch_size, unroll_for, feature_size)], # input_dims=[(batch_size, unroll_for, feature_size)] + [(2, batch_size, unit) for _ in range(2 * num_lstm)], label_dims=[(batch_size, unroll_for, 2 * unit)], name="bidirectional_lstm_single", ) unroll_for, num_lstm, batch_size, unit, feature_size, iteration, bidirectional = [2, 2, 3, 2, 2, 2, True] record_v2( LSTMStacked(num_lstm=num_lstm, bidirectional=bidirectional), iteration=iteration, input_dims=[(batch_size, unroll_for, feature_size)], # input_dims=[(batch_size, unroll_for, feature_size)] + [(2, batch_size, unit) for _ in range(2 * num_lstm)], label_dims=[(batch_size, unroll_for, 2 * unit)], name="bidirectional_lstm_stacked", ) unroll_for, num_lstmcell, state_num, batch_size, unit, feature_size, iteration = [2, 1, 2, 3, 2, 2, 2] record_v2( LSTMCellStacked(unroll_for=unroll_for, num_lstmcell=num_lstmcell), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstmcell)], label_dims=[(batch_size, unroll_for, unit)], name="lstmcell_single", ) unroll_for, num_lstmcell, state_num, batch_size, unit, feature_size, iteration = [2, 2, 2, 3, 2, 2, 2] record_v2( LSTMCellStacked(unroll_for=unroll_for, num_lstmcell=num_lstmcell), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstmcell)], label_dims=[(batch_size, unroll_for, unit)], name="lstmcell_stacked", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 1, 2, 1, 2, 2, 2, 0.0, 0.0] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_single_000_000", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 2, 2, 1, 2, 2, 2, 0.0, 0.0] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_stacked_000_000", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 1, 2, 1, 2, 2, 2, 0.5, 0.0] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_single_050_000", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 2, 2, 1, 2, 2, 2, 0.5, 0.0] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_stacked_050_000", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 1, 2, 1, 2, 2, 2, 1.0, 0.0] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_single_100_000", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 2, 2, 1, 2, 2, 2, 1.0, 0.0] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_stacked_100_000", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 1, 2, 1, 2, 2, 2, 0.0, 0.5] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_single_000_050", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 2, 2, 1, 2, 2, 2, 0.0, 0.5] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_stacked_000_050", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 1, 2, 1, 2, 2, 2, 0.5, 0.5] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_single_050_050", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 2, 2, 1, 2, 2, 2, 0.5, 0.5] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_stacked_050_050", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 1, 2, 1, 2, 2, 2, 1.0, 0.5] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_single_100_050", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 2, 2, 1, 2, 2, 2, 1.0, 0.5] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_stacked_100_050", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 1, 2, 1, 2, 2, 2, 0.0, 1.0] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_single_000_100", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 2, 2, 1, 2, 2, 2, 0.0, 1.0] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_stacked_000_100", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 1, 2, 1, 2, 2, 2, 0.5, 1.0] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_single_050_100", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 2, 2, 1, 2, 2, 2, 0.5, 1.0] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_stacked_050_100", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 1, 2, 1, 2, 2, 2, 1.0, 1.0] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_single_100_100", ) unroll_for, num_lstm, state_num, batch_size, unit, feature_size, iteration, hidden_state_zoneout_rate, cell_state_zoneout_rate = [2, 2, 2, 1, 2, 2, 2, 1.0, 1.0] record_v2( ZoneoutLSTMStacked(batch_size=batch_size, unroll_for=unroll_for, num_lstm=num_lstm, hidden_state_zoneout_rate=hidden_state_zoneout_rate, cell_state_zoneout_rate=cell_state_zoneout_rate), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(state_num * num_lstm)], label_dims=[(batch_size, unroll_for, unit)], name="zoneout_lstm_stacked_100_100", ) unroll_for, num_grucell, batch_size, unit, feature_size, iteration, = [2, 1, 3, 2, 2, 2] record_v2( GRUCellStacked(unroll_for=unroll_for, num_grucell=num_grucell), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(num_grucell)], label_dims=[(batch_size, unroll_for, unit)], name="grucell_single", ) unroll_for, num_grucell, batch_size, unit, feature_size, iteration, = [2, 2, 3, 2, 2, 2] record_v2( GRUCellStacked(unroll_for=unroll_for, num_grucell=num_grucell), iteration=iteration, input_dims=[(batch_size, feature_size)] + [(batch_size, unit) for _ in range(num_grucell)], label_dims=[(batch_size, unroll_for, unit)], name="grucell_stacked", ) # inspect_file("lstm_single.nnmodelgolden")
[ [ [ 293, 302 ], [ 6453, 6462 ], [ 6615, 6624 ], [ 6788, 6797 ], [ 6987, 6996 ], [ 7200, 7209 ], [ 7525, 7534 ], [ 8016, 8025 ], [ 8507, 8516 ], [ 9015, 9024 ], [ 9521, 9530 ], [ 9952, 9961 ], [ 10442, 10451 ], [ 11059, 11068 ], [ 11677, 11686 ], [ 12294, 12303 ], [ 12912, 12921 ], [ 13529, 13538 ], [ 14147, 14156 ], [ 14764, 14773 ], [ 15382, 15391 ], [ 15999, 16008 ], [ 16617, 16626 ], [ 17234, 17243 ], [ 17852, 17861 ], [ 18469, 18478 ], [ 19087, 19096 ], [ 19704, 19713 ], [ 20322, 20331 ], [ 20939, 20948 ], [ 21485, 21494 ], [ 21885, 21894 ] ], [ [ 304, 316 ] ], [ [ 337, 344 ], [ 4680, 4687 ] ], [ [ 352, 357 ], [ 374, 379 ], [ 977, 982 ], [ 1805, 1810 ], [ 3273, 3278 ], [ 4325, 4330 ], [ 5593, 5598 ], [ 486, 491 ], [ 507, 512 ], [ 652, 657 ], [ 1120, 1125 ], [ 1171, 1176 ], [ 1334, 1339 ], [ 1407, 1412 ], [ 1696, 1701 ], [ 2049, 2054 ], [ 2100, 2105 ], [ 2583, 2588 ], [ 2769, 2774 ], [ 2819, 2824 ], [ 2952, 2957 ], [ 3002, 3007 ], [ 3444, 3449 ], [ 3495, 3500 ], [ 3715, 3720 ], [ 4209, 4214 ], [ 4629, 4634 ], [ 4954, 4959 ], [ 5481, 5486 ], [ 5758, 5763 ], [ 5809, 5814 ], [ 5997, 6002 ], [ 6331, 6336 ] ], [ [ 365, 373 ], [ 6472, 6480 ], [ 6634, 6642 ], [ 6807, 6815 ] ], [ [ 962, 976 ], [ 7006, 7020 ], [ 7219, 7233 ] ], [ [ 1793, 1804 ], [ 7544, 7555 ], [ 8035, 8046 ], [ 8526, 8537 ], [ 9034, 9045 ] ], [ [ 3257, 3272 ], [ 9540, 9555 ], [ 9971, 9986 ] ], [ [ 4306, 4324 ], [ 10461, 10479 ], [ 11078, 11096 ], [ 11696, 11714 ], [ 12313, 12331 ], [ 12931, 12949 ], [ 13548, 13566 ], [ 14166, 14184 ], [ 14783, 14801 ], [ 15401, 15419 ], [ 16018, 16036 ], [ 16636, 16654 ], [ 17253, 17271 ], [ 17871, 17889 ], [ 18488, 18506 ], [ 19106, 19124 ], [ 19723, 19741 ], [ 20341, 20359 ], [ 20958, 20976 ] ], [ [ 5578, 5592 ], [ 21504, 21518 ], [ 21904, 21918 ] ], [ [ 7414, 7424 ], [ 7667, 7677 ], [ 7846, 7856 ] ], [ [ 7426, 7434 ], [ 7565, 7573 ] ], [ [ 7436, 7446 ], [ 7655, 7665 ], [ 7834, 7844 ] ], [ [ 7448, 7452 ], [ 7858, 7862 ] ], [ [ 7454, 7466 ], [ 7679, 7691 ] ], [ [ 7468, 7477 ], [ 7623, 7632 ] ], [ [ 7479, 7492 ], [ 7589, 7602 ] ], [ [ 7905, 7915 ], [ 8158, 8168 ], [ 8337, 8347 ] ], [ [ 7917, 7925 ], [ 8056, 8064 ] ], [ [ 7927, 7937 ], [ 8146, 8156 ], [ 8325, 8335 ] ], [ [ 7939, 7943 ], [ 8349, 8353 ] ], [ [ 7945, 7957 ], [ 8170, 8182 ] ], [ [ 7959, 7968 ], [ 8114, 8123 ] ], [ [ 7970, 7983 ], [ 8080, 8093 ] ], [ [ 8397, 8407 ], [ 8649, 8659 ], [ 8828, 8838 ] ], [ [ 8409, 8417 ], [ 8547, 8555 ] ], [ [ 8419, 8429 ], [ 8637, 8647 ], [ 8816, 8826 ] ], [ [ 8431, 8435 ], [ 8844, 8848 ] ], [ [ 8437, 8449 ], [ 8661, 8673 ] ], [ [ 8451, 8460 ], [ 8605, 8614 ] ], [ [ 8462, 8475 ], [ 8571, 8584 ] ], [ [ 8905, 8915 ], [ 9157, 9167 ], [ 9336, 9346 ] ], [ [ 8917, 8925 ], [ 9055, 9063 ] ], [ [ 8927, 8937 ], [ 9145, 9155 ], [ 9324, 9334 ] ], [ [ 8939, 8943 ], [ 9352, 9356 ] ], [ [ 8945, 8957 ], [ 9169, 9181 ] ], [ [ 8959, 8968 ], [ 9113, 9122 ] ], [ [ 8970, 8983 ], [ 9079, 9092 ] ], [ [ 9414, 9424 ], [ 9567, 9577 ], [ 9782, 9792 ] ], [ [ 9426, 9438 ], [ 9592, 9604 ], [ 9733, 9745 ] ], [ [ 9440, 9449 ], [ 9721, 9730 ] ], [ [ 9451, 9461 ], [ 9657, 9667 ], [ 9688, 9698 ], [ 9770, 9780 ] ], [ [ 9463, 9467 ], [ 9700, 9704 ], [ 9794, 9798 ] ], [ [ 9469, 9481 ], [ 9669, 9681 ] ], [ [ 9483, 9492 ], [ 9625, 9634 ] ], [ [ 9845, 9855 ], [ 9998, 10008 ], [ 10213, 10223 ] ], [ [ 9857, 9869 ], [ 10023, 10035 ], [ 10164, 10176 ] ], [ [ 9871, 9880 ], [ 10152, 10161 ] ], [ [ 9882, 9892 ], [ 10088, 10098 ], [ 10119, 10129 ], [ 10201, 10211 ] ], [ [ 9894, 9898 ], [ 10131, 10135 ], [ 10225, 10229 ] ], [ [ 9900, 9912 ], [ 10100, 10112 ] ], [ [ 9914, 9923 ], [ 10056, 10065 ] ], [ [ 10277, 10287 ], [ 10514, 10524 ], [ 10819, 10829 ] ], [ [ 10289, 10297 ], [ 10535, 10543 ], [ 10774, 10782 ] ], [ [ 10299, 10308 ], [ 10762, 10771 ] ], [ [ 10310, 10320 ], [ 10491, 10501 ], [ 10698, 10708 ], [ 10729, 10739 ], [ 10807, 10817 ] ], [ [ 10322, 10326 ], [ 10741, 10745 ], [ 10831, 10835 ] ], [ [ 10328, 10340 ], [ 10710, 10722 ] ], [ [ 10342, 10351 ], [ 10666, 10675 ] ], [ [ 10353, 10378 ], [ 10571, 10596 ] ], [ [ 10380, 10403 ], [ 10622, 10645 ] ], [ [ 10894, 10904 ], [ 11131, 11141 ], [ 11436, 11446 ] ], [ [ 10906, 10914 ], [ 11152, 11160 ], [ 11391, 11399 ] ], [ [ 10916, 10925 ], [ 11379, 11388 ] ], [ [ 10927, 10937 ], [ 11108, 11118 ], [ 11315, 11325 ], [ 11346, 11356 ], [ 11424, 11434 ] ], [ [ 10939, 10943 ], [ 11358, 11362 ], [ 11448, 11452 ] ], [ [ 10945, 10957 ], [ 11327, 11339 ] ], [ [ 10959, 10968 ], [ 11283, 11292 ] ], [ [ 10970, 10995 ], [ 11188, 11213 ] ], [ [ 10997, 11020 ], [ 11239, 11262 ] ], [ [ 11512, 11522 ], [ 11749, 11759 ], [ 12054, 12064 ] ], [ [ 11524, 11532 ], [ 11770, 11778 ], [ 12009, 12017 ] ], [ [ 11534, 11543 ], [ 11997, 12006 ] ], [ [ 11545, 11555 ], [ 11726, 11736 ], [ 11933, 11943 ], [ 11964, 11974 ], [ 12042, 12052 ] ], [ [ 11557, 11561 ], [ 11976, 11980 ], [ 12066, 12070 ] ], [ [ 11563, 11575 ], [ 11945, 11957 ] ], [ [ 11577, 11586 ], [ 11901, 11910 ] ], [ [ 11588, 11613 ], [ 11806, 11831 ] ], [ [ 11615, 11638 ], [ 11857, 11880 ] ], [ [ 12129, 12139 ], [ 12366, 12376 ], [ 12671, 12681 ] ], [ [ 12141, 12149 ], [ 12387, 12395 ], [ 12626, 12634 ] ], [ [ 12151, 12160 ], [ 12614, 12623 ] ], [ [ 12162, 12172 ], [ 12343, 12353 ], [ 12550, 12560 ], [ 12581, 12591 ], [ 12659, 12669 ] ], [ [ 12174, 12178 ], [ 12593, 12597 ], [ 12683, 12687 ] ], [ [ 12180, 12192 ], [ 12562, 12574 ] ], [ [ 12194, 12203 ], [ 12518, 12527 ] ], [ [ 12205, 12230 ], [ 12423, 12448 ] ], [ [ 12232, 12255 ], [ 12474, 12497 ] ], [ [ 12747, 12757 ], [ 12984, 12994 ], [ 13289, 13299 ] ], [ [ 12759, 12767 ], [ 13005, 13013 ], [ 13244, 13252 ] ], [ [ 12769, 12778 ], [ 13232, 13241 ] ], [ [ 12780, 12790 ], [ 12961, 12971 ], [ 13168, 13178 ], [ 13199, 13209 ], [ 13277, 13287 ] ], [ [ 12792, 12796 ], [ 13211, 13215 ], [ 13301, 13305 ] ], [ [ 12798, 12810 ], [ 13180, 13192 ] ], [ [ 12812, 12821 ], [ 13136, 13145 ] ], [ [ 12823, 12848 ], [ 13041, 13066 ] ], [ [ 12850, 12873 ], [ 13092, 13115 ] ], [ [ 13364, 13374 ], [ 13601, 13611 ], [ 13906, 13916 ] ], [ [ 13376, 13384 ], [ 13622, 13630 ], [ 13861, 13869 ] ], [ [ 13386, 13395 ], [ 13849, 13858 ] ], [ [ 13397, 13407 ], [ 13578, 13588 ], [ 13785, 13795 ], [ 13816, 13826 ], [ 13894, 13904 ] ], [ [ 13409, 13413 ], [ 13828, 13832 ], [ 13918, 13922 ] ], [ [ 13415, 13427 ], [ 13797, 13809 ] ], [ [ 13429, 13438 ], [ 13753, 13762 ] ], [ [ 13440, 13465 ], [ 13658, 13683 ] ], [ [ 13467, 13490 ], [ 13709, 13732 ] ], [ [ 13982, 13992 ], [ 14219, 14229 ], [ 14524, 14534 ] ], [ [ 13994, 14002 ], [ 14240, 14248 ], [ 14479, 14487 ] ], [ [ 14004, 14013 ], [ 14467, 14476 ] ], [ [ 14015, 14025 ], [ 14196, 14206 ], [ 14403, 14413 ], [ 14434, 14444 ], [ 14512, 14522 ] ], [ [ 14027, 14031 ], [ 14446, 14450 ], [ 14536, 14540 ] ], [ [ 14033, 14045 ], [ 14415, 14427 ] ], [ [ 14047, 14056 ], [ 14371, 14380 ] ], [ [ 14058, 14083 ], [ 14276, 14301 ] ], [ [ 14085, 14108 ], [ 14327, 14350 ] ], [ [ 14599, 14609 ], [ 14836, 14846 ], [ 15141, 15151 ] ], [ [ 14611, 14619 ], [ 14857, 14865 ], [ 15096, 15104 ] ], [ [ 14621, 14630 ], [ 15084, 15093 ] ], [ [ 14632, 14642 ], [ 14813, 14823 ], [ 15020, 15030 ], [ 15051, 15061 ], [ 15129, 15139 ] ], [ [ 14644, 14648 ], [ 15063, 15067 ], [ 15153, 15157 ] ], [ [ 14650, 14662 ], [ 15032, 15044 ] ], [ [ 14664, 14673 ], [ 14988, 14997 ] ], [ [ 14675, 14700 ], [ 14893, 14918 ] ], [ [ 14702, 14725 ], [ 14944, 14967 ] ], [ [ 15217, 15227 ], [ 15454, 15464 ], [ 15759, 15769 ] ], [ [ 15229, 15237 ], [ 15475, 15483 ], [ 15714, 15722 ] ], [ [ 15239, 15248 ], [ 15702, 15711 ] ], [ [ 15250, 15260 ], [ 15431, 15441 ], [ 15638, 15648 ], [ 15669, 15679 ], [ 15747, 15757 ] ], [ [ 15262, 15266 ], [ 15681, 15685 ], [ 15771, 15775 ] ], [ [ 15268, 15280 ], [ 15650, 15662 ] ], [ [ 15282, 15291 ], [ 15606, 15615 ] ], [ [ 15293, 15318 ], [ 15511, 15536 ] ], [ [ 15320, 15343 ], [ 15562, 15585 ] ], [ [ 15834, 15844 ], [ 16071, 16081 ], [ 16376, 16386 ] ], [ [ 15846, 15854 ], [ 16092, 16100 ], [ 16331, 16339 ] ], [ [ 15856, 15865 ], [ 16319, 16328 ] ], [ [ 15867, 15877 ], [ 16048, 16058 ], [ 16255, 16265 ], [ 16286, 16296 ], [ 16364, 16374 ] ], [ [ 15879, 15883 ], [ 16298, 16302 ], [ 16388, 16392 ] ], [ [ 15885, 15897 ], [ 16267, 16279 ] ], [ [ 15899, 15908 ], [ 16223, 16232 ] ], [ [ 15910, 15935 ], [ 16128, 16153 ] ], [ [ 15937, 15960 ], [ 16179, 16202 ] ], [ [ 16452, 16462 ], [ 16689, 16699 ], [ 16994, 17004 ] ], [ [ 16464, 16472 ], [ 16710, 16718 ], [ 16949, 16957 ] ], [ [ 16474, 16483 ], [ 16937, 16946 ] ], [ [ 16485, 16495 ], [ 16666, 16676 ], [ 16873, 16883 ], [ 16904, 16914 ], [ 16982, 16992 ] ], [ [ 16497, 16501 ], [ 16916, 16920 ], [ 17006, 17010 ] ], [ [ 16503, 16515 ], [ 16885, 16897 ] ], [ [ 16517, 16526 ], [ 16841, 16850 ] ], [ [ 16528, 16553 ], [ 16746, 16771 ] ], [ [ 16555, 16578 ], [ 16797, 16820 ] ], [ [ 17069, 17079 ], [ 17306, 17316 ], [ 17611, 17621 ] ], [ [ 17081, 17089 ], [ 17327, 17335 ], [ 17566, 17574 ] ], [ [ 17091, 17100 ], [ 17554, 17563 ] ], [ [ 17102, 17112 ], [ 17283, 17293 ], [ 17490, 17500 ], [ 17521, 17531 ], [ 17599, 17609 ] ], [ [ 17114, 17118 ], [ 17533, 17537 ], [ 17623, 17627 ] ], [ [ 17120, 17132 ], [ 17502, 17514 ] ], [ [ 17134, 17143 ], [ 17458, 17467 ] ], [ [ 17145, 17170 ], [ 17363, 17388 ] ], [ [ 17172, 17195 ], [ 17414, 17437 ] ], [ [ 17687, 17697 ], [ 17924, 17934 ], [ 18229, 18239 ] ], [ [ 17699, 17707 ], [ 17945, 17953 ], [ 18184, 18192 ] ], [ [ 17709, 17718 ], [ 18172, 18181 ] ], [ [ 17720, 17730 ], [ 17901, 17911 ], [ 18108, 18118 ], [ 18139, 18149 ], [ 18217, 18227 ] ], [ [ 17732, 17736 ], [ 18151, 18155 ], [ 18241, 18245 ] ], [ [ 17738, 17750 ], [ 18120, 18132 ] ], [ [ 17752, 17761 ], [ 18076, 18085 ] ], [ [ 17763, 17788 ], [ 17981, 18006 ] ], [ [ 17790, 17813 ], [ 18032, 18055 ] ], [ [ 18304, 18314 ], [ 18541, 18551 ], [ 18846, 18856 ] ], [ [ 18316, 18324 ], [ 18562, 18570 ], [ 18801, 18809 ] ], [ [ 18326, 18335 ], [ 18789, 18798 ] ], [ [ 18337, 18347 ], [ 18518, 18528 ], [ 18725, 18735 ], [ 18756, 18766 ], [ 18834, 18844 ] ], [ [ 18349, 18353 ], [ 18768, 18772 ], [ 18858, 18862 ] ], [ [ 18355, 18367 ], [ 18737, 18749 ] ], [ [ 18369, 18378 ], [ 18693, 18702 ] ], [ [ 18380, 18405 ], [ 18598, 18623 ] ], [ [ 18407, 18430 ], [ 18649, 18672 ] ], [ [ 18922, 18932 ], [ 19159, 19169 ], [ 19464, 19474 ] ], [ [ 18934, 18942 ], [ 19180, 19188 ], [ 19419, 19427 ] ], [ [ 18944, 18953 ], [ 19407, 19416 ] ], [ [ 18955, 18965 ], [ 19136, 19146 ], [ 19343, 19353 ], [ 19374, 19384 ], [ 19452, 19462 ] ], [ [ 18967, 18971 ], [ 19386, 19390 ], [ 19476, 19480 ] ], [ [ 18973, 18985 ], [ 19355, 19367 ] ], [ [ 18987, 18996 ], [ 19311, 19320 ] ], [ [ 18998, 19023 ], [ 19216, 19241 ] ], [ [ 19025, 19048 ], [ 19267, 19290 ] ], [ [ 19539, 19549 ], [ 19776, 19786 ], [ 20081, 20091 ] ], [ [ 19551, 19559 ], [ 19797, 19805 ], [ 20036, 20044 ] ], [ [ 19561, 19570 ], [ 20024, 20033 ] ], [ [ 19572, 19582 ], [ 19753, 19763 ], [ 19960, 19970 ], [ 19991, 20001 ], [ 20069, 20079 ] ], [ [ 19584, 19588 ], [ 20003, 20007 ], [ 20093, 20097 ] ], [ [ 19590, 19602 ], [ 19972, 19984 ] ], [ [ 19604, 19613 ], [ 19928, 19937 ] ], [ [ 19615, 19640 ], [ 19833, 19858 ] ], [ [ 19642, 19665 ], [ 19884, 19907 ] ], [ [ 20157, 20167 ], [ 20394, 20404 ], [ 20699, 20709 ] ], [ [ 20169, 20177 ], [ 20415, 20423 ], [ 20654, 20662 ] ], [ [ 20179, 20188 ], [ 20642, 20651 ] ], [ [ 20190, 20200 ], [ 20371, 20381 ], [ 20578, 20588 ], [ 20609, 20619 ], [ 20687, 20697 ] ], [ [ 20202, 20206 ], [ 20621, 20625 ], [ 20711, 20715 ] ], [ [ 20208, 20220 ], [ 20590, 20602 ] ], [ [ 20222, 20231 ], [ 20546, 20555 ] ], [ [ 20233, 20258 ], [ 20451, 20476 ] ], [ [ 20260, 20283 ], [ 20502, 20525 ] ], [ [ 20774, 20784 ], [ 21011, 21021 ], [ 21316, 21326 ] ], [ [ 20786, 20794 ], [ 21032, 21040 ], [ 21271, 21279 ] ], [ [ 20796, 20805 ], [ 21259, 21268 ] ], [ [ 20807, 20817 ], [ 20988, 20998 ], [ 21195, 21205 ], [ 21226, 21236 ], [ 21304, 21314 ] ], [ [ 20819, 20823 ], [ 21238, 21242 ], [ 21328, 21332 ] ], [ [ 20825, 20837 ], [ 21207, 21219 ] ], [ [ 20839, 20848 ], [ 21163, 21172 ] ], [ [ 20850, 20875 ], [ 21068, 21093 ] ], [ [ 20877, 20900 ], [ 21119, 21142 ] ], [ [ 21392, 21402 ], [ 21530, 21540 ], [ 21730, 21740 ] ], [ [ 21404, 21415 ], [ 21554, 21565 ], [ 21682, 21693 ] ], [ [ 21417, 21427 ], [ 21618, 21628 ], [ 21649, 21659 ], [ 21718, 21728 ] ], [ [ 21429, 21433 ], [ 21661, 21665 ], [ 21742, 21746 ] ], [ [ 21435, 21447 ], [ 21630, 21642 ] ], [ [ 21449, 21458 ], [ 21586, 21595 ] ], [ [ 21792, 21802 ], [ 21930, 21940 ], [ 22130, 22140 ] ], [ [ 21804, 21815 ], [ 21954, 21965 ], [ 22082, 22093 ] ], [ [ 21817, 21827 ], [ 22018, 22028 ], [ 22049, 22059 ], [ 22118, 22128 ] ], [ [ 21829, 21833 ], [ 22061, 22065 ], [ 22142, 22146 ] ], [ [ 21835, 21847 ], [ 22030, 22042 ] ], [ [ 21849, 21858 ], [ 21986, 21995 ] ] ]
import json import pathlib import urllib.request def main(): # https://gist.github.com/kawanet/a880c83f06d6baf742e45ac9ac52af96 url = 'https://gist.githubusercontent.com/kawanet/a880c83f06d6baf742e45ac9ac52af96/raw' \ '/b4fbc9a730394eb977277e73cc37b60955463f21/material-colors.json' json_file_name = 'material-colors.json' urllib.request.urlretrieve(url, json_file_name) with open(json_file_name, 'r') as json_file: colors = json.load(json_file) out_dir_name = 'material_ui_colors' pathlib.Path(out_dir_name).mkdir(exist_ok=True) for color in colors: with open(out_dir_name + '/_' + color + '.scss', 'w') as out_file: shades = colors[color] out = ['$material_ui_' + color + '_' + shade + ': ' + value + ';\n' for shade, value in shades.items()] out.append('$material_ui_' + color + ': $material_ui_' + color + '_500;') out_file.writelines(out) with open(out_dir_name + '/_main.scss', 'w') as out_main_file: out = ['@import "' + color + '";\n' for color in colors] out_main_file.writelines(out) if __name__ == '__main__': main()
[ [ [ 7, 11 ], [ 477, 481 ] ], [ [ 20, 27 ], [ 546, 553 ] ], [ [ 36, 50 ], [ 361, 367 ] ], [ [ 60, 64 ], [ 1188, 1192 ] ] ]
# %% Import packages from eeyore.samplers import HMC from bnn_mcmc_examples.examples.mlp.pima.setting1.dataloaders import training_dataloader from bnn_mcmc_examples.examples.mlp.pima.setting1.model import model # %% Setup HMC sampler sampler = HMC(model, theta0=model.prior.sample(), dataloader=training_dataloader, step=0.125, num_steps=6)
[ [ [ 50, 53 ], [ 248, 251 ] ], [ [ 124, 143 ], [ 299, 318 ] ], [ [ 207, 212 ], [ 252, 257 ], [ 266, 271 ] ], [ [ 238, 245 ] ] ]
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-08-04 05:09 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('tournament', '0048_auto_20160803_0311'), ] operations = [ migrations.AddField( model_name='alternate', name='season_player', field=models.OneToOneField(null=True, on_delete=django.db.models.deletion.CASCADE, to='tournament.SeasonPlayer'), ), migrations.AlterUniqueTogether( name='alternate', unique_together=set([]), ), migrations.RunSQL(''' UPDATE tournament_alternate alt SET season_player_id = (SELECT id FROM tournament_seasonplayer sp WHERE sp.season_id = alt.season_id AND sp.player_id = alt.player_id) ''') ]
[ [ [ 96, 106 ], [ 166, 176 ], [ 296, 306 ], [ 532, 542 ], [ 650, 660 ] ], [ [ 108, 114 ], [ 405, 411 ] ], [ [ 122, 147 ], [ 447, 453 ] ], [ [ 156, 165 ] ] ]
############################################## # # # Ferdinand 0.40, Ian Thompson, LLNL # # # # gnd,endf,fresco,azure,hyrma # # # ############################################## import os import math from write_fresco import write_fresco import fudge.sums as sumsModule import fudge.styles as stylesModule import fudge.reactionData.crossSection as crossSectionModule import fudge.productData.distributions as distributionsModule ############################################## write_fresco def reconstructPointwise(gnd,base,verbose,debug,egrid,angles,thin,reconstyle): projectile = gnd.PoPs[gnd.projectile] target = gnd.PoPs[gnd.target] if hasattr(projectile, 'nucleus'): projectile = projectile.nucleus if hasattr(target, 'nucleus'): target = target.nucleus pZ = projectile.charge[0].value; tZ = target.charge[0].value charged = pZ*tZ != 0 identicalParticles = gnd.projectile == gnd.target rStyle = reconstyle.label if debug: print("Charged-particle elastic:",charged,", identical:",identicalParticles,' rStyle:',rStyle) if charged and angles is not None: from fudge.reactionData.doubleDifferentialCrossSection.chargedParticleElastic import CoulombPlusNuclearElastic as CoulombPlusNuclearElasticModule from fudge.reactionData.doubleDifferentialCrossSection.chargedParticleElastic import nuclearPlusInterference as nuclearPlusInterferenceModule # from fudge.reactionData.doubleDifferentialCrossSection.chargedParticleElastic import RutherfordScattering as RutherfordScatteringModule from fudge.productData.distributions import reference as referenceModule thmin = angles[0] pi = 3.1415826536 muCutoff = math.cos(thmin*pi/180.) fresco_base = base + '.fresco_recon' channels = write_fresco(gnd,fresco_base,verbose,debug,True,None,None,False,egrid,angles) name_frin = fresco_base + '.frin' # must be same as in write_fresco name_frout= fresco_base + '.frout' accuracy = None cmd = "frescox < "+name_frin+" > "+name_frout print(cmd) os.system(cmd) # Run FRESCO f239 = open('fort.239','r') egrid = [] totalxs = []; elasticxs = []; fissionxs = []; absorbtionxs = [] chanxs =[]; # lastzero = [ 0 for i in range(len(channels))] for rreac in gnd.resonances.resolved.evaluated.resonanceReactions: if not rreac.eliminated: chanxs.append([]) if len(channels) != len(chanxs): print("Only getting",channels," data channels, not",len(chanxs)) exit() if debug: print("Fresco channel order:",channels) mb = 1e-3 for line in f239: if 'NaN' not in line: data = line.split() try: elab,absorbtion,reaction,total,elastic = [float(d) for d in data[:5]] sigr = [float(d) for d in data[5:]] #print elab,absorbtion,reaction,total,elastic,sigr egrid.append(elab) totalxs.append(total*mb) elasticxs.append(elastic*mb) fissionxs.append(0.0) absorbtionxs.append(absorbtion*mb) for c in range(len(channels)): chanxs[c].append(sigr[c]*mb) # if sigr[c]== 0.: lastzero[c] = elab except: pass crossSectionAxes = crossSectionModule.defaultAxes( 'MeV' ) total = crossSectionModule.XYs1d( axes = crossSectionAxes, data=(egrid, totalxs), dataForm="XsAndYs" ) elastic = crossSectionModule.XYs1d( axes = crossSectionAxes, data=(egrid, elasticxs), dataForm="XsAndYs" ) fission = crossSectionModule.XYs1d( axes = crossSectionAxes, data=(egrid, fissionxs), dataForm="XsAndYs" ) absorbtion = crossSectionModule.XYs1d( axes = crossSectionAxes, data=(egrid, absorbtionxs), dataForm="XsAndYs" ) if not isinstance( reconstyle, stylesModule.crossSectionReconstructed ): raise TypeError("style must be an instance of crossSectionReconstructed, not %s" % type(reconstyle)) haveEliminated = False for rreac in gnd.resonances.resolved.evaluated.resonanceReactions: reaction = rreac.reactionLink.link haveEliminated = haveEliminated or rreac.eliminated # elastic or capture if reaction == gnd.getReaction('capture'): rreac.tag = 'capture' elif reaction == gnd.getReaction('elastic'): rreac.tag = 'elastic' elif 'fission' in rreac.label: rreac.tag = rreac.label else: rreac.tag = 'competitive' xsecs = {'total':total, 'elastic':elastic, 'fission':fission, 'nonelastic':absorbtion} for c in range(1,len(channels)): # skip c=1 elastic !! FIXME #print channels[c],':',len(egrid),len(chanxs[c]) xsecs[channels[c]] = crossSectionModule.XYs1d( axes = crossSectionAxes, data=(egrid, chanxs[c]), dataForm="XsAndYs" ) # print 'xsecs[channels[c]]',xsecs[channels[c]].toString() if haveEliminated: eliminatedReaction = [rr for rr in gnd.resonances.resolved.evaluated.resonanceReactions if rr.eliminated] if len(eliminatedReaction) != 1: raise TypeError("Only 1 reaction can be eliminated in Reich-Moore approximation!") xsecs[eliminatedReaction[0].tag] = absorbtion - fission epsilon = 1e-8 # for joining multiple regions together # for each reaction, add tabulated pointwise data (ENDF MF=3) to reconstructed resonances: possibleChannels = { 'elastic' : True, 'capture' : True, 'fission' : True, 'total' : False, 'nonelastic' : False } elasticChannel = gnd.getReaction('elastic') derivedFromLabel = '' for reaction in gnd : if isinstance( reaction, sumsModule.multiplicitySum ): continue iselastic = reaction is elasticChannel evaluatedCrossSection = reaction.crossSection.evaluated if not isinstance( evaluatedCrossSection, crossSectionModule.resonancesWithBackground ): continue # which reconstructed cross section corresponds to this reaction? if( derivedFromLabel == '' ) : derivedFromLabel = evaluatedCrossSection.label if( derivedFromLabel != evaluatedCrossSection.label ) : print(('WARNING derivedFromLabel = "%s" != "%s"' % (derivedFromLabel, evaluatedCrossSection.label))) RRxsec = None if str( reaction ) in xsecs: RRxsec = xsecs[ str( reaction ) ] # print 'Assign to ',str(reaction),'\n',RRxsec.toString() else : for possibleChannel in possibleChannels : if( possibleChannels[possibleChannel] ) : if( possibleChannel in str( reaction ) ) : RRxsec = xsecs[possibleChannel] # print 'Assign to ',str(reaction),'\n',RRxsec.toString() if( RRxsec is None ) : if( reaction is gnd.getReaction( possibleChannel ) ) : RRxsec = xsecs[possibleChannel] # print 'Assign to ',str(reaction),'\n',RRxsec.toString() if( RRxsec is not None ) : break if( RRxsec is None ) : if verbose: print(( "Warning: couldn't find appropriate reconstructed cross section to add to reaction %s" % reaction )) continue background = evaluatedCrossSection.background background = background.toPointwise_withLinearXYs( accuracy = 1e-3, lowerEps = epsilon, upperEps = epsilon ) RRxsec = RRxsec.toPointwise_withLinearXYs( accuracy = 1e-3, lowerEps = epsilon, upperEps = epsilon ) RRxsec.convertUnits( {RRxsec.domainUnit: background.domainUnit, RRxsec.rangeUnit: background.rangeUnit } ) background, RRxsec = background.mutualify(0,0,0, RRxsec, -epsilon,epsilon,True) RRxsec = background + RRxsec # result is a crossSection.XYs1d instance if thin: RRx = RRxsec.thin( accuracy or .001 ) else: RRx = RRxsec RRx.label = rStyle reaction.crossSection.add( RRx ) # print "Channels ",reaction.label,iselastic,":\n",RRxsec.toString(),"\n&\n",RRx.toString() if iselastic: effXsc = RRxsec gnd.styles.add( reconstyle ) # print "Last energies of zero cross section:",lastzero if angles is None: return f241 = open('fort.241','r') sigdd = {} for rr in channels: sigdd[rr] = [] for line in f241: if '# Elab =' in line: elab,ich = float(line[9:9+15]),int(line[9+15:9+15+4])-1 # Elab = 1.00000000E-06 1 line1 = line dist = [] elif "&" in line: rr = channels[ich] sigdd[rr].append([elab,dist]) # if elab<1.0001: print '\n',ich,rr,sigdd[rr] elif "NaN" in line: continue else: mu,p = line.split() try: mu,p = float(mu),float(p) dist.insert(0,p) dist.insert(0,mu) except: pass angularAxes = distributionsModule.angular.defaultAxes( 'MeV' ) for rreac in gnd.resonances.resolved.evaluated.resonanceReactions: if not rreac.eliminated: productName = rreac.ejectile residName = rreac.residual elastic = productName == gnd.projectile and residName == gnd.target print("Add angular distribution for",productName," in",rreac.label,"channel (elastic=",elastic,")") reaction = rreac.reactionLink.link firstProduct = reaction.outputChannel.getProductWithName(productName) effDist = distributionsModule.angular.XYs2d( axes = angularAxes ) elab_max = 0.; elab_min = 1e10; nangles=0 ne = 0 for elab,dist in sigdd[rreac.label]: if debug: print('E=',elab,'has',len(dist),' angles') if len(dist) <= 3: print(' E=',elab,'has',len(dist),' angles') continue angdist = distributionsModule.angular.XYs1d( data = dist, outerDomainValue = elab, axes = angularAxes, dataForm = 'list' ) if thin: angdist = angdist.thin( accuracy or .001 ) norm = angdist.integrate() if norm != 0.0: if debug: print(rreac.label,elab,norm) effDist.append( angdist ) elab_max = max(elab,elab_max); elab_min = min(elab,elab_min); nangles = max(len(dist),nangles) ne += 1 print(" Angles reconstructed at %i energies from %s to %s MeV with up to %i angles at each energy" % (ne,elab_min,elab_max,nangles)) newForm = distributionsModule.angular.twoBodyForm( label = reconstyle.label, productFrame = firstProduct.distribution.evaluated.productFrame, angularSubform = effDist ) firstProduct.distribution.add( newForm ) if elastic and charged: # dCrossSection_dOmega for charged-particle elastics: NCPI = nuclearPlusInterferenceModule.nuclearPlusInterference( muCutoff=muCutoff, crossSection=nuclearPlusInterferenceModule.crossSection( effXsc), distribution=nuclearPlusInterferenceModule.distribution( effDist) ) # Rutherford = RutherfordScatteringModule.RutherfordScattering() CoulombElastic = CoulombPlusNuclearElasticModule.form( gnd.projectile, rStyle, nuclearPlusInterference = NCPI, identicalParticles=identicalParticles ) reaction.doubleDifferentialCrossSection.add( CoulombElastic ) reaction.crossSection.remove( rStyle ) reaction.crossSection.add( crossSectionModule.CoulombPlusNuclearElastic( link = reaction.doubleDifferentialCrossSection[rStyle], label = rStyle, relative = True ) ) firstProduct.distribution.remove( rStyle ) firstProduct.distribution.add( referenceModule.CoulombPlusNuclearElastic( link = reaction.doubleDifferentialCrossSection[rStyle], label = rStyle, relative = True ) ) secondProduct = reaction.outputChannel[1] # secondProduct.distribution[rStyle].angularSubform.link = firstProduct.distribution[rStyle] ## Fails # give 'recoil' distribution! return
[ [ [ 338, 340 ], [ 2242, 2244 ] ], [ [ 349, 353 ], [ 1869, 1873 ] ], [ [ 379, 391 ], [ 1950, 1962 ] ], [ [ 399, 423 ], [ 5882, 5892 ] ], [ [ 431, 459 ], [ 4044, 4056 ] ], [ [ 467, 520 ], [ 3522, 3540 ], [ 3574, 3592 ], [ 3683, 3701 ], [ 3794, 3812 ], [ 3908, 3926 ], [ 4955, 4973 ], [ 6083, 6101 ], [ 11989, 12007 ] ], [ [ 528, 582 ], [ 9251, 9270 ], [ 9836, 9855 ], [ 10241, 10260 ], [ 10929, 10948 ] ], [ [ 650, 670 ] ] ]
""" Generic script for monitoring counts from a counter """ import numpy as np import time import pyqtgraph as pg from pylabnet.gui.pyqt.external_gui import Window from pylabnet.utils.logging.logger import LogClient from pylabnet.scripts.pause_script import PauseService from pylabnet.network.core.generic_server import GenericServer from pylabnet.network.client_server import si_tt from pylabnet.utils.helper_methods import load_script_config, get_ip, unpack_launcher, load_config, get_gui_widgets, get_legend_from_graphics_view, find_client, load_script_config # Static methods # def generate_widgets(): # """Static method to return systematically named gui widgets for 4ch wavemeter monitor""" # graphs, legends, numbers = [], [], [] # for i in range(2): # graphs.append('graph_widget_' + str(i + 1)) # legends.append('legend_widget_' + str(i + 1)) # numbers.append('number_label_' + str(i + 1)) # for i in range(2, 8): # numbers.append('number_label_' + str(i + 1)) # return graphs, legends, numbers class CountMonitor: # Generate all widget instances for the .ui to use # _plot_widgets, _legend_widgets, _number_widgets = generate_widgets() def __init__(self, ctr_client: si_tt.Client, ui='count_monitor', logger_client=None, server_port=None, combined_channel=False, config=None): """ Constructor for CountMonitor script :param ctr_client: instance of hardware client for counter :param gui_client: (optional) instance of client of desired output GUI :param logger_client: (obj) instance of logger client. :param server_port: (int) port number of script server :combined_channel: (bool) If true, show additional trace with summed counts. """ self._ctr = ctr_client self.log = logger_client self.combined_channel = combined_channel self._bin_width = None self._n_bins = None self._ch_list = None self._plot_list = None # List of channels to assign to each plot (e.g. [[1,2], [3,4]]) self._plots_assigned = [] # List of plots on the GUI that have been assigned if self.combined_channel: ui = 'count_monitor_combined' else: ui = 'count_monitor' # Instantiate GUI window self.gui = Window( gui_template=ui, host=get_ip(), port=server_port, log=self.log ) # Setup stylesheet. self.gui.apply_stylesheet() if self.combined_channel: num_plots = 3 else: num_plots = 2 # Get all GUI widgets self.widgets = get_gui_widgets( self.gui, graph_widget=num_plots, number_label=8, event_button=num_plots, legend_widget=num_plots ) # Load config self.config = {} if config is not None: self.config = load_script_config( script='monitor_counts', config=config, logger=self.logger_client ) if not 'name' in self.config: self.config.update({'name': f'monitor{np.random.randint(1000)}'}) def set_hardware(self, ctr): """ Sets hardware client for this script :param ctr: instance of count monitor hardware client """ # Initialize counter instance self._ctr = ctr def set_params(self, bin_width=1e9, n_bins=1e4, ch_list=[1], plot_list=None): """ Sets counter parameters :param bin_width: bin width in ps :param n_bins: number of bins to display on graph :param ch_list: (list) channels to record :param plot_list: list of channels to assign to each plot (e.g. [[1,2], [3,4]]) """ # Save params to internal variables self._bin_width = int(bin_width) self._n_bins = int(n_bins) self._ch_list = ch_list self._plot_list = plot_list def run(self): """ Runs the counter from scratch""" try: # Start the counter with desired parameters self._initialize_display() # Give time to initialize # time.sleep(0.05) self._is_running = True self._ctr.start_trace( name=self.config['name'], ch_list=self._ch_list, bin_width=self._bin_width, n_bins=self._n_bins ) # Continuously update data until paused while self._is_running: self._update_output() self.gui.force_update() except Exception as exc_obj: self._is_running = False raise exc_obj def pause(self): """ Pauses the counter""" self._is_running = False def resume(self): """ Resumes the counter. To be used to resume after the counter has been paused. """ try: self._is_running = True # Clear counter and resume plotting self._ctr.clear_ctr(name=self.config['name']) while self._is_running: self._update_output() except Exception as exc_obj: self._is_running = False raise exc_obj # Technical methods def _initialize_display(self): """ Initializes the display (configures all plots) """ plot_index = 0 for index in range(len(self.widgets['graph_widget'])): # Configure and return legend widgets self.widgets['legend_widget'][index] = get_legend_from_graphics_view( self.widgets['legend_widget'][index] ) for color, channel in enumerate(self._ch_list): # Figure out which plot to assign to if self._plot_list is not None: for index, channel_set in enumerate(self._plot_list): if channel in channel_set: plot_index = index break # If we have not assigned this plot yet, assign it # if plot_index not in self._plots_assigned: # self.gui_handler.assign_plot( # plot_widget=self._plot_widgets[plot_index], # plot_label='Counter Monitor {}'.format(plot_index + 1), # legend_widget=self._legend_widgets[plot_index] # ) # self._plots_assigned.append(plot_index) # Now assign this curve # self.gui_handler.assign_curve( # plot_label='Counter Monitor {}'.format(plot_index + 1), # curve_label='Channel {}'.format(channel), # error=True # ) # Create a curve and store the widget in our dictionary self.widgets[f'curve_{channel}'] = self.widgets['graph_widget'][plot_index].plot( pen=pg.mkPen(color=self.gui.COLOR_LIST[color]) ) self.widgets['legend_widget'][plot_index].addItem( self.widgets[f'curve_{channel}'], ' - ' + f'Channel {channel}' ) # Assign scalar # self.gui_handler.assign_label( # label_widget=self._number_widgets[channel - 1], # label_label='Channel {}'.format(channel) # ) # Handle button pressing from functools import partial for plot_index, clear_button in enumerate(self.widgets['event_button']): clear_button.clicked.connect(partial(lambda plot_index: self._clear_plot(plot_index), plot_index=plot_index)) if self.combined_channel: self.widgets['curve_combo'] = self.widgets['graph_widget'][index + 1].plot( pen=pg.mkPen(color=self.gui.COLOR_LIST[color + 1]) ) self.widgets['legend_widget'][index + 1].addItem( self.widgets['curve_combo'], ' - ' + 'Combined Counts' ) def _clear_plot(self, plot_index): """ Clears the curves on a particular plot :param plot_index: (int) index of plot to clear """ # First, handle case where combined count channel is clears (very ugly). if self.combined_channel and plot_index == len(self._plot_list): channel = 'combo' # Set the curve to constant with last point for all entries self.widgets[f'curve_{channel}'].setData( np.ones(self._n_bins) * self.widgets[f'curve_{channel}'].yData[-1] ) else: # Find all curves in this plot for channel in self._plot_list[plot_index]: # Set the curve to constant with last point for all entries self.widgets[f'curve_{channel}'].setData( np.ones(self._n_bins) * self.widgets[f'curve_{channel}'].yData[-1] ) self._ctr.clear_ctr(name=self.config['name']) def _update_output(self): """ Updates the output to all current values""" # Update all active channels # x_axis = self._ctr.get_x_axis()/1e12 counts = self._ctr.get_counts(name=self.config['name']) counts_per_sec = counts * (1e12 / self._bin_width) # noise = np.sqrt(counts)*(1e12/self._bin_width) # plot_index = 0 summed_counts = np.sum(counts_per_sec, axis=0) for index, count_array in enumerate(counts_per_sec): # Figure out which plot to assign to channel = self._ch_list[index] # if self._plot_list is not None: # for index_plot, channel_set in enumerate(self._plot_list): # if channel in channel_set: # plot_index = index_plot # break # Update GUI data # self.gui_handler.set_curve_data( # data=count_array, # error=noise[index], # plot_label='Counter Monitor {}'.format(plot_index + 1), # curve_label='Channel {}'.format(channel) # ) # self.gui_handler.set_label( # text='{:.4e}'.format(count_array[-1]), # label_label='Channel {}'.format(channel) # ) self.widgets[f'curve_{channel}'].setData(count_array) self.widgets[f'number_label'][channel - 1].setText(str(count_array[-1])) if self.combined_channel: self.widgets['curve_combo'].setData(summed_counts) def launch(**kwargs): """ Launches the count monitor script """ # logger, loghost, logport, clients, guis, params = unpack_launcher(**kwargs) logger = kwargs['logger'] clients = kwargs['clients'] config = load_script_config( 'monitor_counts', kwargs['config'], logger ) if config['combined_channel'] == 'True': combined_channel = True else: combined_channel = False # Instantiate CountMonitor try: monitor = CountMonitor( ctr_client=find_client( clients, config, client_type='si_tt', client_config='standard_ctr', logger=logger ), logger_client=logger, server_port=kwargs['server_port'], combined_channel=combined_channel ) except KeyError: print('Please make sure the module names for required servers and GUIS are correct.') time.sleep(15) raise # except: # config = None # ch_list = [7, 8] # plot_list = [[7], [8]] # Instantiate Pause server # try: # pause_logger = LogClient( # host=loghost, # port=logport, # module_tag='count_monitor_pause_server' # ) # except ConnectionRefusedError: # logger.warn('Could not connect Count Monitor Pause server to logger') # pause_service = PauseService() # pause_service.assign_module(module=monitor) # pause_service.assign_logger(logger=pause_logger) # timeout = 0 # while timeout < 1000: # try: # port = np.random.randint(1, 9999) # pause_server = GenericServer( # host=get_ip(), # port=port, # service=pause_service) # pause_logger.update_data(data=dict(port=port)) # timeout = 9999 # except ConnectionRefusedError: # logger.warn(f'Failed to instantiate Count Monitor Pause server at port {port}') # timeout += 1 # pause_server.start() # Set parameters monitor.set_params(**config['params']) # Run monitor.run()
[ [ [ 68, 79 ], [ 3215, 3217 ], [ 8566, 8568 ], [ 8915, 8917 ], [ 9458, 9460 ] ], [ [ 87, 91 ], [ 11611, 11615 ] ], [ [ 99, 114 ], [ 6992, 6994 ], [ 7855, 7857 ] ], [ [ 158, 164 ], [ 2339, 2345 ] ], [ [ 207, 216 ] ], [ [ 259, 271 ] ], [ [ 321, 334 ] ], [ [ 378, 383 ], [ 1250, 1255 ] ], [ [ 426, 444 ] ], [ [ 446, 452 ], [ 2393, 2399 ] ], [ [ 454, 469 ] ], [ [ 471, 482 ] ], [ [ 484, 499 ], [ 2688, 2703 ] ], [ [ 501, 530 ], [ 5649, 5678 ] ], [ [ 532, 543 ], [ 11161, 11172 ] ], [ [ 545, 563 ], [ 2978, 2996 ], [ 10852, 10870 ] ], [ [ 1069, 1081 ], [ 11124, 11136 ] ], [ [ 10630, 10636 ] ] ]
# Generated by Django 2.1.15 on 2020-02-16 11:10 # flake8: noqa from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0009_alter_user_last_name_max_length'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('email', models.EmailField(max_length=255, unique=True)), ('name', models.CharField(max_length=255)), ('is_active', models.BooleanField(default=True)), ('is_staff', models.BooleanField(default=False)), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'abstract': False, }, ), ]
[ [ [ 86, 96 ], [ 123, 133 ], [ 280, 290 ] ], [ [ 98, 104 ], [ 373, 379 ], [ 494, 500 ], [ 585, 591 ], [ 691, 697 ], [ 881, 887 ], [ 955, 961 ], [ 1020, 1026 ], [ 1085, 1091 ], [ 1149, 1155 ], [ 1426, 1432 ] ], [ [ 113, 122 ] ] ]
## Message passing over a discrete BN ## ## Library created by Pablo Martínez Olmos, University Carlos III Madrid ## ## olmos@tsc.uc3m.es ## ## Last modification 15/11/2016 ## import numpy as np ## Messages are stored in the logaritmic domain ## ## Global constants (to control numerical issues) inf_log=100 #To impose hard constraints (i.e. an observed variable) constant_log=50 #Used to improve stability in the Check Node (CN) operation ## Function definitions def create_var_node(ID,cardinality,neighbor_order,observed_value_index=-1): # Variable Nodes are defined by a dictionary with several fields var_node={} var_node['ID']=ID var_node['node_type']=0 #type 0 refers to variable node, 1o to check nodes. var_node['cardinality']=cardinality #Num. of possible values the RV can take var_node['neighbor_order']=np.array(neighbor_order) #Ordered array of the neighbor's IDs (neighbors are CNs!) var_node['input_msgs']=[] #List to store input messages var_node['observed']=observed_value_index #-1 if the variable is not observed var_node['inner_factor']=np.zeros([cardinality,1]) #Internal vector used to imposed hard messages when variable is observed #If variable is observed, then the inner_factor vector is log[0 0 ... 0 1 0 ...] if(observed_value_index!=-1): var_node['inner_factor']-=inf_log var_node['inner_factor'][observed_value_index]=inf_log #Initialize input msgs by filling with zeros for index,f in enumerate(var_node['neighbor_order']): var_node['input_msgs'].append(0) return var_node def create_message(input_node,output_node,table): #Messages are defined by a dictionary with three keys: input node (sender node), output_node (receiver node), and table of values message={} message['input_node']=input_node message['output_node']=output_node message['table']=table return message def create_factor_node(ID,neighbors,CPD): # Check Nodes are defined by a dictionary with several fields factor_node={} factor_node['ID']=ID factor_node['node_type']=1 factor_node['input_msgs']=[] CPD=np.array(CPD) CPD=CPD.reshape(CPD.shape[0],) #Just to make sure that CPD is a np. array vector of dim. (n,) factor_node['CPD']=np.array(CPD) #CPD table associated to the factor factor_node['CPD_order']=np.zeros([len(neighbors),1]).astype(int) #Ordered array of the neighbor's IDs (neighbors are CNs!) factor_node['cardinalities']=np.zeros([len(neighbors),1]).astype(int) #Cardinalities of the neighbors #Initialize input msgs, CPD_order & cardinalities #Note that creating factor nodes requires variable nodes to be created first, as CN input messages #are initialized already to the inner_factor field of every neighbor variable node for index,node in enumerate(neighbors): card=node['cardinality'] factor_node['input_msgs'].append( create_message(input_node=node,output_node=factor_node,table=node['inner_factor'])) factor_node['cardinalities'][index]=card factor_node['CPD_order'][index]=node['ID'] return factor_node def initialize_variable(var_node,observed_value_index=-1): #After running message passing, variable nodes store the incoming messages for future calculations #If we want to run again message passing in the same graph, we have to re-initialize both #variable nodes and check nodes. var_node['inner_factor']=np.zeros([var_node['cardinality'],1]) var_node['observed']=observed_value_index if(observed_value_index!=-1): var_node['inner_factor']-=inf_log var_node['inner_factor'][observed_value_index]=inf_log def initialize_factor_msgs(factor_node,neighbors): #After running message passing, variable nodes store the incoming messages for future calculations #If we want to run again message passing in the same graph, we have to re-initialize both #variable nodes and check nodes. factor_node['input_msgs']=[] for index,node in enumerate(neighbors): factor_node['input_msgs'].append( create_message(input_node=node,output_node=factor_node,table=node['inner_factor'])) #The next two routines are used to encode and decode positions to store CPD values in a #vector form. We use a tree-encoding determined by the order of variables and their cardinalities #See First Example Message Passing.ipynb for an illustration def CPD_position_to_variable_index(position,v_card,CPD_size): #We use this function to find the encoding for each position of a CPD table #of CPD_size positions, where the cardinalities of the variables (in order) are given in v_card #This function returns the index value of each variable v_card=np.array(v_card) #To make sure we have a np.array var_index=np.zeros([v_card.shape[0],1]).astype(int) remaining=CPD_size for i,card in enumerate(v_card): remaining=remaining//card index_i=position//remaining position=position-index_i*(remaining) var_index[i]=index_i return var_index def variable_index_to_CPD_position(var_index,v_card,CPD_size): #This function returns the encoded CPD position for a given configuration of the variables. #The CPD table is of size CPD_size, the cardinalities of the variables (in order) are given in v_card #and the value indexes (in order) of the variables are given in var_index var_index=np.array(var_index) v_card=np.array(v_card) position=0 offset=CPD_size for i,card in enumerate(v_card): offset=offset//card position+=var_index[i]*offset return position def update_var_to_factor(var_node): #Routine to update the output messages of a variable node (var_node) prod_table=np.zeros([var_node['cardinality'],1]) #We first multiply all the input messages (sums in the log domain) for msg in var_node['input_msgs']: prod_table+=msg['table'] #We also take into account the inner_factor of the variable_node. In #case it is observed, the output messages have to be consistent with the observation prod_table+=var_node['inner_factor'] #For every output message, we have to substract from prod_table the message received #through the corresponding edge for msg in var_node['input_msgs']: if(var_node['observed']==-1): reply_table=prod_table-msg['table'] else: reply_table=np.ones([var_node['cardinality'],1])*(-inf_log) reply_table[var_node['observed']]=inf_log #We limit the absolute value of the messages, to exp(inf_log) reply_table[reply_table>inf_log]=inf_log reply_table[reply_table<-inf_log]=-inf_log #The ouput message is stored in the corresponding neighbor factor_rx=msg['input_node'] reply_msg=create_message(input_node=var_node,output_node=factor_rx,table=reply_table) #Short foor loop to save messages in factor_node in the corresponding order for index,v in enumerate(factor_rx['CPD_order']): if(v==var_node['ID']): factor_rx['input_msgs'][index]=reply_msg break def compute_var_marginal(var_node): #Routine to compute the marginal pmf of a variable node (var_node) #Simply the product of all incoming msgs times the inner_factor marg_table=np.zeros([var_node['cardinality'],1]) for msg in var_node['input_msgs']: marg_table+=msg['table'] marg_table+=var_node['inner_factor'] marg_table=np.exp(marg_table) marg_table/=sum(marg_table) return marg_table def update_factor_to_var(factor_node): #Routine to update the output messages of a check node (var_node) #This is the most complicated in the library, as it involves marginalization #over each argument of the CPD function times the product of incoming messgaes output_tables=[] #Output message tables initialization for card in factor_node['cardinalities']: output_tables.append(np.zeros([card,1])) #With a single loop we go only once through every element of the CPD table #It is multiplied accordingly to input messages and the resulting terms are #added to the corresponding output tables for CPD_entry,CPD_val in enumerate(factor_node['CPD']): values=CPD_position_to_variable_index( position=CPD_entry,v_card=factor_node['cardinalities'],CPD_size=factor_node['CPD'].shape[0]) #The CPD value is multiplied by all incoming input messages but one, #and the result is added to the ouput table #Since we have to marginalize, not all operations can be done in the log domain #To avoid numerical inestabilities when performing the operations, we substract a large exponent (constant log) #which is sum at the very end, when we move back to the log domain for index in range(factor_node['cardinalities'].shape[0]): aux=CPD_val for index2 in range(factor_node['cardinalities'].shape[0]): if(index2!=index): aux*=np.exp(factor_node['input_msgs'][index2]['table'][values[index2]]-constant_log) output_tables[index][values[index]]+=aux #Once the output tables have been computed, we create the output messages and store them in #the corresponding variable nodes for index,msg in enumerate(factor_node['input_msgs']): output=output_tables[index] output=np.log(output)+constant_log output[output>inf_log]=inf_log output[output<-inf_log]=-inf_log var_rx=msg['input_node'] reply_msg=create_message(input_node=factor_node,output_node=var_rx,table=output) #Short foor loop to save messages in factor_node in the corresponding order for index2,f in enumerate(var_rx['neighbor_order']): if(f==factor_node['ID']): var_rx['input_msgs'][index2]=reply_msg break def create_joint_node(ID,node_members,neighbor_order,observed_values_indexes=-1): #Routine to define a joint variable node. This is useful to eliminate cycles in #the factor graph and perform exact inference. #Note a routine to create a joint factor node that uses joint variable nodes #is not provided. The corresponding CPD of such factor nodes has to be computed #first and then create the joint node with the function create_factor_node #We do not consider the case that the joint variable node is partially observed #(e.g. one of the joined variable nodes is observed). We only consider the case #where the joint node is completely observed. #See Second Example Message Passing.ipynb for an example of how to define and #manage joint variable nodes. var_node={} var_node['ID']=ID var_node['node_type']=0 var_node['input_msgs']=[] var_node['observed']=-1 var_node['neighbor_order']=np.array(neighbor_order) card=1 #Cardinality of joint node is the product of cardinalities for member in node_members: card*=member['cardinality'] var_node['cardinality']=card var_node['inner_factor']=np.zeros([card,1]) if(observed_values_indexes!=-1): var_node['observed']=variable_index_to_CPD_position(observed_values_indexes,var_node['values'],card) var_node['inner_factor']-=inf_log var_node['inner_factor'][var_node['observed']]=inf_log #Initialize input msgs for index,f in enumerate(var_node['neighbor_order']): var_node['input_msgs'].append(0) return var_node
[ [ [ 184, 195 ], [ 852, 854 ], [ 1107, 1109 ], [ 2201, 2203 ], [ 2336, 2338 ], [ 2416, 2418 ], [ 2548, 2550 ], [ 3546, 3548 ], [ 4875, 4877 ], [ 4942, 4944 ], [ 5589, 5591 ], [ 5620, 5622 ], [ 5932, 5934 ], [ 6616, 6618 ], [ 7546, 7548 ], [ 7735, 7737 ], [ 8241, 8243 ], [ 9323, 9325 ], [ 9720, 9722 ], [ 11213, 11215 ], [ 11462, 11464 ] ], [ [ 299, 306 ], [ 1364, 1371 ], [ 1427, 1434 ], [ 3699, 3706 ], [ 3762, 3769 ], [ 6655, 6662 ], [ 6710, 6717 ], [ 6831, 6838 ], [ 6822, 6829 ], [ 6882, 6889 ], [ 6872, 6879 ], [ 9779, 9786 ], [ 9770, 9777 ], [ 9820, 9827 ], [ 9810, 9817 ], [ 11666, 11673 ], [ 11729, 11736 ] ], [ [ 368, 380 ], [ 9389, 9401 ], [ 9735, 9747 ] ], [ [ 477, 492 ] ], [ [ 1629, 1643 ], [ 3004, 3018 ], [ 4202, 4216 ], [ 7005, 7019 ], [ 9888, 9902 ] ], [ [ 1964, 1982 ] ], [ [ 3226, 3245 ] ], [ [ 3779, 3801 ] ], [ [ 4561, 4591 ], [ 8561, 8591 ] ], [ [ 5233, 5263 ], [ 11552, 11582 ] ], [ [ 5806, 5826 ] ], [ [ 7354, 7374 ] ], [ [ 7824, 7844 ] ], [ [ 10260, 10277 ] ] ]
from six import text_type from rest_framework import HTTP_HEADER_ENCODING, exceptions from django.core.exceptions import PermissionDenied from django.utils.translation import ugettext_lazy as _ from atlassian_connect_django.models.connect import AtlassianUser from atlassian_connect_django import helpers from .models import SecurityContextToken def get_atlassian_security_context_and_user_from_request(request, raise_exceptions=True): def exception(msg): if not raise_exceptions: return None, None if raise_exceptions == 'rest_framework': raise exceptions.AuthenticationFailed(msg) raise PermissionDenied(msg) auth = request.META.get('HTTP_X_JIRA_SECURITY_CONTEXT', b'') if isinstance(auth, text_type): # Work around django test client oddness auth = auth.encode(HTTP_HEADER_ENCODING) auth = auth.split() if not auth or auth[0].lower() != b'token': return None, None if len(auth) == 1: return exception(_('Invalid x-jira-security-context token header. No credentials provided.')) elif len(auth) > 2: return exception(_('Invalid x-jira-security-context token header. Token string should not contain spaces.')) try: token = auth[1].decode() except UnicodeError: return exception(_('Invalid x-jira-security-context token header. Token string should not contain invalid characters.')) try: token = SecurityContextToken.objects.select_related('security_context').get(key=token) except SecurityContextToken.DoesNotExist: return exception(_('Invalid x-jira-security-context token.')) if not token.security_context.is_plugin_enabled: return exception(_('Security context inactive or deleted.')) site = helpers.get_current_site(request=request) if site and site != token.security_context.site: return exception(_('Invalid x-jira-security-context token header. SecurityContext site "%s" not equals to "%s"' % (token.security_context.site.name, site.name))) atlassian_user = AtlassianUser(accountId=token.atlassian_user_account_id) atlassian_user.set_secutiry_context(security_context=token.security_context) return token.security_context, atlassian_user
[ [ [ 16, 25 ], [ 762, 771 ] ], [ [ 53, 73 ], [ 850, 870 ] ], [ [ 75, 85 ], [ 599, 609 ] ], [ [ 121, 137 ], [ 650, 666 ] ], [ [ 175, 193 ], [ 1019, 1020 ], [ 1145, 1146 ], [ 1329, 1330 ], [ 1609, 1610 ], [ 1732, 1733 ], [ 1908, 1909 ] ], [ [ 247, 260 ], [ 2074, 2087 ] ], [ [ 298, 305 ], [ 1788, 1795 ] ], [ [ 326, 346 ], [ 1459, 1479 ], [ 1549, 1569 ] ], [ [ 359, 411 ] ] ]
#!/usr/bin/env python import uuid from construct import Container class SMAPI_Request(object): ''' Implentation of a ICUV Request ''' def __init__(self, function_name, target_identifier, authenticated_userid=b"", password=b"", additional_parameters=b""): self._function_name = function_name self._function_name_length = len(function_name) self._authenticated_userid = authenticated_userid self._authenticated_userid_length = len(authenticated_userid) self._password = password self._password_length = len(password) self._target_identifier = target_identifier self._target_identifier_length = len(target_identifier) self._additional_parameters = additional_parameters self._additional_parameters_length = len(additional_parameters) self._input_length = (self._function_name_length + 4 + self._authenticated_userid_length + 4 + self._password_length + 4 + self._target_identifier_length + 4 + self._additional_parameters_length) def get_container(self): return Container(input_length = self._input_length, function_name_length = self._function_name_length, function_name = self._function_name, authenticated_userid_length = self._authenticated_userid_length, authenticated_userid = self._authenticated_userid, password_length = self._password_length, password = self._password, target_identifier_length = self._target_identifier_length, target_identifier = self._target_identifier, additional_parameters = self._additional_parameters) def __repr__(self): "<{} (container={})>".format( self.__class__.__name__, self.get_container())
[ [ [ 30, 34 ] ], [ [ 57, 66 ], [ 1221, 1230 ] ], [ [ 75, 88 ] ] ]
# -*- coding: utf-8 -*- # # Copyright (C) 2010-2016 PPMessage. # Guijin Ding, dingguijin@gmail.com # from ppmessage.core.constant import IOS_FAKE_TOKEN from ppmessage.core.constant import CONVERSATION_TYPE from ppmessage.core.constant import MESSAGE_SUBTYPE from ppmessage.core.constant import MESSAGE_STATUS from ppmessage.core.constant import MESSAGE_TYPE from ppmessage.core.constant import TASK_STATUS from ppmessage.core.constant import REDIS_DISPATCHER_NOTIFICATION_KEY from ppmessage.core.constant import REDIS_PUSH_NOTIFICATION_KEY from ppmessage.core.constant import REDIS_MQTTPUSH_KEY from ppmessage.core.constant import REDIS_GCMPUSH_KEY from ppmessage.core.constant import REDIS_IOSPUSH_KEY from ppmessage.core.constant import REDIS_JPUSH_KEY from ppmessage.core.constant import PPCOM_OFFLINE from ppmessage.core.constant import YVOBJECT from ppmessage.core.constant import DIS_SRV from ppmessage.core.constant import OS from ppmessage.db.models import OrgGroup from ppmessage.db.models import DeviceUser from ppmessage.db.models import DeviceInfo from ppmessage.db.models import OrgGroupUserData from ppmessage.db.models import AppUserData from ppmessage.db.models import MessagePush from ppmessage.db.models import MessagePushTask from ppmessage.db.models import PCSocketInfo from ppmessage.db.models import PCSocketDeviceData from ppmessage.db.models import ConversationUserData from ppmessage.core.redis import redis_hash_to_dict from ppmessage.core.utils.datetimestring import datetime_to_timestamp from ppmessage.core.utils.datetimestring import datetime_to_microsecond_timestamp from operator import itemgetter import uuid import time import json import logging class Meta(type): def __init__(cls, name, bases, dict_): type.__init__(cls, name, bases, dict_) return Policy = Meta("Policy", (object,), {}) class AbstractPolicy(Policy): def __init__(self, dis): self._dis = dis self._task = dis._task self._redis = dis.application.redis self._online_users = set() self._offline_users = set() self._devices = set() self._devices_hash = {} self._users_hash = {} self._is_service_user = {} self._conversation_users = set() self._conversation_user_datas_uuid = {} self._conversation_user_datas_hash = {} self._users = set() return @classmethod def conversation_users(cls, _app_uuid, _conversation_uuid, _redis): _key = ConversationUserData.__tablename__ + ".conversation_uuid." + _conversation_uuid _users = _redis.smembers(_key) return list(_users) @classmethod def conversation_datas(cls, _app_uuid, _conversation_uuid, _users, _redis): _pi = _redis.pipeline() _pre = ConversationUserData.__tablename__ + ".app_uuid." + _app_uuid + ".user_uuid." _pos = ".conversation_uuid." + _conversation_uuid for _user_uuid in _users: _key = _pre + _user_uuid + _pos _pi.get(_key) _datas = _pi.execute() return _datas @classmethod def create_conversation_users(cls, _app_uuid, _group_uuid, _redis): return [] @classmethod def app_users(cls, _app_uuid, _is_service_user, _redis): if _app_uuid == None: return [] _key = AppUserData.__tablename__ + \ ".app_uuid." + _app_uuid + \ ".is_service_user." + str(_is_service_user) _users = _redis.smembers(_key) return list(_users) @classmethod def distributor_users(cls, _app_uuid, _redis): # is_service_user == True if _app_uuid == None: return [] _key = AppUserData.__tablename__ + \ ".app_uuid." + _app_uuid + \ ".is_service_user.True" _users = _redis.smembers(_key) return list(_users) @classmethod def group_users(cls, _group_uuid, _redis): _pattern = OrgGroupUserData.__tablename__ + ".group_uuid." + _group_uuid _keys = _redis.smembers(_pattern) return list(_keys) @classmethod def get_service_care_users(cls, _app_uuid, _user_uuid, _redis): return None @classmethod def get_portal_care_users(cls, _app_uuid, _user_uuid, _redis): return None def _android_token(self, _user_uuid, _device_uuid): _token = _user_uuid + "/" + _device_uuid + "/" + self._task["message_type"] + "/" + self._task["uuid"] return _token def _body(self): _message = {} _message["id"] = self._task.get("uuid") _message["fi"] = self._task.get("from_uuid") _message["ti"] = self._task.get("to_uuid") _message["ft"] = self._task.get("from_type") _message["tt"] = self._task.get("to_type") _message["mt"] = self._task.get("message_type") _message["ms"] = self._task.get("message_subtype") _message["ci"] = self._task.get("conversation_uuid") _message["ct"] = self._task.get("conversation_type") _message["tl"] = self._task.get("title") _message["bo"] = self._task.get("body") if _message["ct"] == CONVERSATION_TYPE.S2P: _message["ti"] = self._task["app_uuid"] _message["tt"] = YVOBJECT.AP if isinstance(self._task.get("title"), unicode): _message["tl"] = self._task.get("title").encode("utf-8") if isinstance(self._task.get("body"), unicode): _message["bo"] = self._task.get("body").encode("utf-8") _message["ts"] = datetime_to_microsecond_timestamp(self._task["createtime"]) self._task["message_body"] = _message _message_body = json.dumps(self._task["message_body"]) if isinstance(_message_body, unicode): _message_body = _message_body.encode("utf-8") _values = { "uuid": self._task["uuid"], "task_status": TASK_STATUS.PROCESSED, "message_body": _message_body, } _row = MessagePushTask(**_values) _row.async_update(self._redis) _row.update_redis_keys(self._redis) return def _user_devices(self, _user_uuid): _user = self._users_hash.get(_user_uuid) _is_service_user = self._is_service_user.get(_user_uuid) if _user == None or _is_service_user == None: logging.error("no user or is_service_user in hash: %s" % _user_uuid) return _user["_online_devices"] = {} _device_name = ["mobile_device_uuid", "browser_device_uuid"] if _is_service_user == False: _device_name = ["ppcom_mobile_device_uuid", "ppcom_browser_device_uuid"] for _i in _device_name: _device_uuid = self._users_hash[_user_uuid][_i] if _device_uuid == None or len(_device_uuid) == 0: continue _device = redis_hash_to_dict(self._redis, DeviceInfo, _device_uuid) if _device == None: continue self._devices_hash[_device_uuid] = _device self._devices.add(_device_uuid) if _device.get("device_is_online") == True: _user["_online_devices"][_device_uuid] = _device if len(_user["_online_devices"]) > 0: self._online_users.add(_user_uuid) else: self._offline_users.add(_user_uuid) return def _users_devices(self): for _i in self._users: self._users_hash[_i] = redis_hash_to_dict(self._redis, DeviceUser, _i) for _i in self._users: self._user_devices(_i) logging.info("online : %d, %s" % (len(self._online_users), self._online_users)) logging.info("offline : %d, %s" % (len(self._offline_users), self._offline_users)) return def _pcsocket_data(self, _device_uuid): _redis = self._redis _key = PCSocketDeviceData.__tablename__ + ".device_uuid." + _device_uuid _pc_socket_uuid = _redis.get(_key) if _pc_socket_uuid == None: logging.error("device no pcsocket %s" % _device_uuid) return None _info = redis_hash_to_dict(_redis, PCSocketInfo, _pc_socket_uuid) if _info == None: logging.error("dispatcher cant not find pcsocket %s" % str(_pc_socket_uuid)) return None _d = {"host": _info["host"], "port": _info["port"], "device_uuid": _device_uuid} return _d def _push_to_db(self, _user_uuid, _status=MESSAGE_STATUS.PUSHED): _values = { "uuid": str(uuid.uuid1()), "app_uuid": self._task["app_uuid"], "task_uuid": self._task["uuid"], "user_uuid": _user_uuid, "status": _status } _row = MessagePush(**_values) _row.async_add(self._redis) _row.create_redis_keys(self._redis) return _row.uuid def _push_to_ios(self, _user_uuid, _device_uuid): logging.info("push ios %s:%s" % (_user_uuid, _device_uuid)) _app_uuid = self._task["app_uuid"] _user = self._users_hash.get(_user_uuid) _device = self._devices_hash.get(_device_uuid) _conversation_data = self._conversation_user_datas_hash.get(_user_uuid) if _user == None: logging.error("push ios failed for no user") return if _device == None: logging.error("push ios failed for no device") return _token = _device.get("device_ios_token") if _token == None or len(_token) == 0: logging.error("push ios failed for no ios token") return if _device["device_ios_token"] == IOS_FAKE_TOKEN: logging.error("push ios failed for fake token") return if _conversation_data != None and _conversation_data["user_mute_notification"] == True: # user only do not want recv push for this conversation logging.error("push ios failed for silence required") return _count = 0 if _user.get("user_show_badge") == True: _key = MessagePush.__tablename__ + ".app_uuid." + _app_uuid + ".user_uuid." + _user_uuid _count = self._redis.zcard(_key) _is_dev = bool(_device.get("is_development")) _config = { "is_development": _is_dev, "user_language": _user.get("user_language"), "device_ios_token": _token, "unacked_notification_count": _count, "user_silence_notification": _user.get("user_silence_notification") } _push = { "config": _config, "body": self._task.get("message_body"), "app_uuid": _app_uuid } logging.info("push ios: %s" % str(_push)) self._redis.rpush(REDIS_IOSPUSH_KEY, json.dumps(_push)) return def _push_to_android(self, _user_uuid, _device_uuid): _app_uuid = self._task["app_uuid"] _device = self._devices_hash.get(_device_uuid) _user = self._users_hash.get(_user_uuid) _conversation_data = self._conversation_user_datas_hash.get(_user_uuid) _count = 0 if _user.get("user_show_badge") == True: _key = MessagePush.__tablename__ + ".app_uuid." + _app_uuid + ".user_uuid." + _user_uuid _count = self._redis.zcard(_key) _config = { "user_language": _user.get("user_language"), "unacked_notification_count": _count, "user_silence_notification": _user.get("user_silence_notification") } _push = { "config": _config, "body": self._task.get("message_body"), "app_uuid": _app_uuid } logging.error("try push for android: %s" % str(_push)) if self._task["_app"].get("enable_jpush"): _config["device_android_jpush_registrationid"] = _device.get("device_android_jpush_registrationid") self._redis.rpush(REDIS_JPUSH_KEY, json.dumps(_push)) elif self._task["_app"].get("enable_gcm_push"): _config["device_android_gcmtoken"] = _device.get("device_android_gcmtoken") self._redis.rpush(REDIS_GCMPUSH_KEY, json.dumps(_push)) else: logging.error("no push enable for android: %s" % str(_push)) return def _push_to_socket(self, _user_uuid, _device_uuid): _pcsocket = self._pcsocket_data(_device_uuid) if _pcsocket == None: logging.error("no pcsocket data for: %s" % _device_uuid) return _device = self._devices_hash.get(_device_uuid) # if _device == None: # logging.error("no device hash for: %s" % _device_uuid) # return _from_user = {} _from_type = self._task.get("from_type") _fields = [ "uuid", "user_icon", "user_email", "user_fullname", "updatetime", ] if _from_type == YVOBJECT.DU: for _i in _fields: _from_user[_i] = self._task["_user"].get(_i) _from_user["updatetime"] = datetime_to_timestamp(_from_user["updatetime"]) if _from_type == YVOBJECT.OG: _from_user = self._task["_group"] if _from_type == YVOBJECT.AP: _from_user = self._task["_app"] _body = self._task.get("message_body") _body["pid"] = _device.get("push_uuid") _body["from_user"] = _from_user _push = { "pcsocket": _pcsocket, "body": _body } _key = REDIS_PUSH_NOTIFICATION_KEY + ".host." + _pcsocket["host"] + ".port." + _pcsocket["port"] self._redis.rpush(_key, json.dumps(_push)) return def _push_to_mobile(self, _user_uuid, _device_uuid): _device = self._devices_hash[_device_uuid] if _device["device_ostype"] == OS.IOS: self._push_to_ios(_user_uuid, _device_uuid) return if _device["device_ostype"] == OS.AND: self._push_to_android(_user_uuid, _device_uuid) return return def _push(self): if len(self._online_users) == 0: self.no_online_user() return for _user_uuid in self._online_users: _user = self._users_hash[_user_uuid] _online_devices = _user.get("_online_devices") _real_push = not _user.get("user_mute_notification") _pid = self._push_to_db(_user_uuid) for _device_uuid in _online_devices: self._devices_hash[_device_uuid]["push_uuid"] = _pid self._push_to_socket(_user_uuid, _device_uuid) if _real_push == True: self._push_to_mobile(_user_uuid, _device_uuid) return def _other_device(self): """ the other device uuid belong to same user uuid """ if self._task.get("from_device_uuid") == None: return if self._task.get("from_type") != YVOBJECT.DU: return if self._task.get("_user") == None: return if self._task["conversation_type"] == CONVERSATION_TYPE.P2S: if self._task["_user"]["ppcom_mobile_device_uuid"] == None or \ self._task["_user"]["ppcom_browser_device_uuid"] == None: return if self._task["conversation_type"] == CONVERSATION_TYPE.S2S or \ self._task["conversation_type"] == CONVERSATION_TYPE.S2P: if self._task["_user"]["mobile_device_uuid"] == None or \ self._task["_user"]["browser_device_uuid"] == None: return _device_uuid = None if self._task["conversation_type"] == CONVERSATION_TYPE.P2S: _device_uuid = self._task["_user"]["ppcom_mobile_device_uuid"] if self._task["from_device_uuid"] == self._task["_user"]["ppcom_mobile_device_uuid"]: _device_uuid = self._task["_user"]["ppcom_browser_device_uuid"] else: _device_uuid = self._task["_user"]["mobile_device_uuid"] if self._task["from_device_uuid"] == self._task["_user"]["mobile_device_uuid"]: _device_uuid = self._task["_user"]["browser_device_uuid"] if _device_uuid not in self._devices_hash: _device = redis_hash_to_dict(self._redis, DeviceInfo, _device_uuid) if _device == None or _device["device_is_online"] != True: return self._devices_hash[_device_uuid] = _device _user_uuid = self._task["from_uuid"] if _user_uuid not in self._users_hash: self._users_hash[_user_uuid] = self._task["_user"] _pid = self._push_to_db(_user_uuid) self._devices_hash[_device_uuid]["push_uuid"] = _pid self._push_to_socket(_user_uuid, _device_uuid) return def _explicit(self): """ explicit message SYS type """ _device_uuid = self._task.get("to_device_uuid") _device = redis_hash_to_dict(self._redis, DeviceInfo, _device_uuid) if _device == None: logging.error("no device:%s" % _device_uuid) return _user_uuid = self._task.get("from_uuid") self._users_hash[_user_uuid] = self._task["_user"] self._devices_hash[_device_uuid] = _device # not save db for explicit message self._push_to_socket(_user_uuid, _device_uuid) return def _send_apologize(self, _text): _task = { "uuid": str(uuid.uuid1()), "app_uuid": self._task["app_uuid"], "conversation_uuid": self._task["conversation_uuid"], "conversation_type": CONVERSATION_TYPE.S2P, "message_type": MESSAGE_TYPE.NOTI, "message_subtype": MESSAGE_SUBTYPE.TEXT, "from_uuid": self._task["to_uuid"], "from_type": self._task["to_type"], "to_uuid": self._task["to_uuid"], "to_type": self._task["to_type"], "body": _text, "task_status": TASK_STATUS.PENDING, } _row = MessagePushTask(**_task) _row.async_add(self._redis) _row.create_redis_keys(self._redis) _m = {"task_uuid": _row.uuid} self._redis.rpush(REDIS_DISPATCHER_NOTIFICATION_KEY, json.dumps(_m)) return def _get_app_apologize(self): _text = None _lang = self._task["_user"]["user_language"] if _lang == None or len(_lang) == 0: _lang = "zh_cn" _offline = "offline_" + _lang _text = self._task["_app"][_offline] if _text == None: _text = PPCOM_OFFLINE[_lang] return _text def no_online_user(self): if self._task["conversation_type"] != CONVERSATION_TYPE.P2S: return if self._task["_app"].get("return_offline_message") != True: logging.info("return_offline_message is not set") return _text = self._get_app_apologize() if _text == None: return self._send_apologize(_text) return def users(self): _app_uuid = self._task["app_uuid"] _conversation_uuid = self._task["conversation_uuid"] _users = AbstractPolicy.conversation_users(_app_uuid, _conversation_uuid, self._redis) _datas = AbstractPolicy.conversation_datas(_app_uuid, _conversation_uuid, _users, self._redis) _datas = dict(zip(_users, _datas)) # the is_service_user include the sender user_uuid _table = AppUserData.__tablename__ + ".app_uuid." + _app_uuid + ".user_uuid." _pi = self._redis.pipeline() for _user_uuid in _users: _key = _table + _user_uuid _pi.get(_key) _is = _pi.execute() _is_list = [] for _i in _is: if _i == None or len(_i) == 0: _is_list.append(False) continue _d = json.loads(_i) _is_list.append(_d.get("is_service_user")) self._is_service_user = dict(zip(_users, _is_list)) # remove the sender self if self._task["from_type"] == YVOBJECT.DU: _user_uuid = self._task["from_uuid"] if _user_uuid in _users: _users.remove(_user_uuid) if _user_uuid in _datas: del _datas[_user_uuid] self._users = _users self._conversation_users = _users self._conversation_user_datas_uuid = _datas return def dispatch(self): self._body() if self._task.get("to_device_uuid") != None: self._explicit() return if self._task.get("conversation_uuid") == None: logging.error("no conversation should be explicit") return self.users() self._users_devices() self._push() self._other_device() return class BroadcastPolicy(AbstractPolicy): def __init__(self, dis): super(BroadcastPolicy, self).__init__(dis) return def users(self): super(BroadcastPolicy, self).users() return @classmethod def create_conversation_users(cls, _app_uuid, _group_uuid, _redis): return AbstractPolicy.distributor_users(_app_uuid, _redis) @classmethod def get_service_care_users(cls, _app_uuid, _user_uuid, _redis): _a_users = AbstractPolicy.app_users(_app_uuid, True, _redis) _b_users = AbstractPolicy.app_users(_app_uuid, False, _redis) return _a_users + _b_users @classmethod def get_portal_care_users(cls, _app_uuid, _user_uuid, _redis): _a_users = AbstractPolicy.app_users(_app_uuid, True, _redis) return _a_users
[ [ [ 138, 152 ], [ 9799, 9813 ] ], [ [ 189, 206 ], [ 5201, 5218 ], [ 15455, 15472 ], [ 15697, 15714 ], [ 15770, 15787 ], [ 16028, 16045 ], [ 18006, 18023 ], [ 19087, 19104 ] ], [ [ 243, 258 ], [ 18107, 18122 ] ], [ [ 295, 309 ], [ 8593, 8607 ] ], [ [ 346, 358 ], [ 18057, 18069 ] ], [ [ 395, 406 ], [ 5994, 6005 ], [ 18371, 18382 ] ], [ [ 444, 477 ], [ 18586, 18619 ] ], [ [ 514, 541 ], [ 13827, 13854 ] ], [ [ 578, 596 ] ], [ [ 633, 650 ], [ 12362, 12379 ] ], [ [ 687, 704 ], [ 10959, 10976 ] ], [ [ 741, 756 ], [ 12152, 12167 ] ], [ [ 793, 806 ], [ 18964, 18977 ] ], [ [ 843, 851 ], [ 5305, 5313 ], [ 13203, 13211 ], [ 13433, 13441 ], [ 13530, 13538 ], [ 15313, 15321 ], [ 20502, 20510 ] ], [ [ 888, 895 ] ], [ [ 932, 934 ], [ 14135, 14137 ], [ 14258, 14260 ] ], [ [ 968, 976 ] ], [ [ 1009, 1019 ], [ 7620, 7630 ] ], [ [ 1052, 1062 ], [ 7003, 7013 ], [ 16659, 16669 ], [ 17356, 17366 ] ], [ [ 1095, 1111 ], [ 3997, 4013 ] ], [ [ 1144, 1155 ], [ 3363, 3374 ], [ 3733, 3744 ], [ 19885, 19896 ] ], [ [ 1188, 1199 ], [ 8882, 8893 ], [ 10240, 10251 ], [ 11395, 11406 ] ], [ [ 1232, 1247 ], [ 6085, 6100 ], [ 18417, 18432 ] ], [ [ 1280, 1292 ], [ 8265, 8277 ] ], [ [ 1325, 1343 ], [ 7987, 8005 ] ], [ [ 1376, 1396 ], [ 2520, 2540 ], [ 2812, 2832 ] ], [ [ 1431, 1449 ], [ 6971, 6989 ], [ 7588, 7606 ], [ 8238, 8256 ], [ 16627, 16645 ], [ 17324, 17342 ] ], [ [ 1498, 1519 ], [ 13347, 13368 ] ], [ [ 1568, 1601 ], [ 5610, 5643 ] ], [ [ 1624, 1634 ] ], [ [ 1643, 1647 ], [ 8661, 8665 ], [ 17844, 17848 ] ], [ [ 1655, 1659 ] ], [ [ 1667, 1671 ], [ 5750, 5754 ], [ 10978, 10982 ], [ 12169, 12173 ], [ 12381, 12385 ], [ 13949, 13953 ], [ 18621, 18625 ], [ 20288, 20292 ] ], [ [ 1679, 1686 ], [ 6441, 6448 ], [ 7712, 7719 ], [ 7800, 7807 ], [ 8144, 8151 ], [ 8334, 8341 ], [ 9073, 9080 ], [ 9408, 9415 ], [ 9512, 9519 ], [ 9687, 9694 ], [ 9827, 9834 ], [ 10079, 10086 ], [ 10891, 10898 ], [ 11895, 11902 ], [ 12426, 12433 ], [ 12661, 12668 ], [ 17422, 17429 ], [ 19211, 19218 ], [ 21083, 21090 ] ], [ [ 1694, 1698 ], [ 1818, 1822 ] ], [ [ 1809, 1815 ], [ 1869, 1875 ] ], [ [ 1854, 1868 ], [ 21306, 21320 ], [ 19584, 19598 ], [ 19679, 19693 ], [ 21605, 21619 ], [ 21762, 21776 ], [ 21831, 21845 ], [ 22021, 22035 ] ], [ [ 21290, 21305 ], [ 21366, 21381 ], [ 21454, 21469 ] ] ]
#!/usr/bin/env python # # author: syl20bnr (2013) # goal: Focus the nth window in the current workspace (limited to 10 firsts) # # Example of usage in i3 config: # # bindsym $mod+0 exec focus_win.py -n 0 # bindsym $mod+1 exec focus_win.py -n 1 # ... ... # bindsym $mod+8 exec focus_win.py -n 8 # bindsym $mod+9 exec focus_win.py -n 9 import argparse from subprocess import Popen import i3 PARSER = argparse.ArgumentParser(prog='focus_win') PARSER.add_argument('-n', '--number', required=True, type=int, choices=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], help='Window number (limited to [0,9]).') def focus_nth_window(nth): ''' Roughly focus the nth window in the hierarchy (limited to 10 first) ''' wins = get_windows_from_current_workspace() if nth == 0: nth = 10 cmd = 'i3-msg [con_id={0}] focus'.format(wins[nth-1]) Popen(cmd, shell=True) def get_windows_from_current_workspace(): res = [] ws = get_current_workspace() workspace = i3.filter(name=ws) if workspace: workspace = workspace[0] windows = i3.filter(workspace, nodes=[]) for window in windows: res.append(window['id']) return res def get_current_workspace(): ''' Returns the current workspace ''' workspaces = i3.msg('get_workspaces') workspace = i3.filter(tree=workspaces, focused=True) if workspace: return workspace[0]['name'] return '' if __name__ == '__main__': args = PARSER.parse_args() focus_nth_window(args.number)
[ [ [ 363, 371 ], [ 422, 430 ] ], [ [ 395, 400 ], [ 942, 947 ] ], [ [ 408, 410 ], [ 1071, 1073 ], [ 1159, 1161 ], [ 1363, 1365 ], [ 1404, 1406 ] ], [ [ 413, 419 ], [ 464, 470 ], [ 1553, 1559 ] ], [ [ 695, 711 ], [ 1577, 1593 ] ], [ [ 971, 1005 ], [ 809, 843 ] ], [ [ 1279, 1300 ], [ 1031, 1052 ] ], [ [ 1546, 1550 ], [ 1594, 1598 ] ] ]
import datetime from jasonpi.normalizers import facebook_profile, google_profile def test_facebook_profile(): """ Test that facebook_profile computes a correct profile received from facebook oauth. """ data = { 'email': 'some@email.com', 'first_name': 'Alfred', 'last_name': 'Dupont', 'gender': 'male', 'birthday': '02/25/1970' } profile = facebook_profile(data) assert profile['email'] == data['email'] assert profile['first_name'] == data['first_name'] assert profile['last_name'] == data['last_name'] assert profile['gender'] == data['gender'] assert profile['birthday'] == datetime.date(1970, 2, 25) def test_google_profile(): """ Test that google_profile computes a correct profile received from google oauth. """ data = { 'emailAddresses': [{'value': 'some@email.com'}], 'names': [{'givenName': 'Alfred', 'familyName': 'Dupont'}], 'genders': [{'value': 'male'}], 'birthdays': [{'date': {'year': 1970, 'month': 2, 'day': 25}}] } profile = google_profile(data) assert profile['email'] == data['emailAddresses'][0]['value'] assert profile['first_name'] == data['names'][0]['givenName'] assert profile['last_name'] == data['names'][0]['familyName'] assert profile['gender'] == data['genders'][0]['value'] assert profile['birthday'] == datetime.date(1970, 2, 25)
[ [ [ 7, 15 ], [ 668, 676 ], [ 1410, 1418 ] ], [ [ 49, 65 ], [ 411, 427 ] ], [ [ 67, 81 ], [ 1097, 1111 ] ], [ [ 88, 109 ] ], [ [ 701, 720 ] ] ]
# x_6_8 # # class StockError(Exception): pass class NumberError(Exception): pass order_count = input('きび団子を何個注文しますか?:') card_number = input('カード番号を入力してください?(例、0000-0000-0000-0000):') try: if int(order_count) > 100: raise StockError if card_number != '1111-1111-1111-1111': raise NumberError except StockError: print('在庫切れです') except NumberError: print('カードエラー') else: print('ご購入ありがとうございます')
[ [ [ 19, 29 ], [ 247, 257 ], [ 336, 346 ] ], [ [ 59, 70 ], [ 317, 328 ], [ 375, 386 ] ], [ [ 94, 105 ], [ 213, 224 ] ], [ [ 133, 144 ], [ 265, 276 ] ] ]
# Copyright (c) 2016-2017, Neil Booth # # All rights reserved. # # See the file "LICENCE" for information about the copyright # and warranty status of this software. '''Class for handling asynchronous connections to a blockchain daemon.''' import asyncio import itertools import json import time import aiohttp from aiorpcx import JSONRPC from electrumx.lib.util import hex_to_bytes, class_logger class DaemonError(Exception): '''Raised when the daemon returns an error in its results.''' class WarmingUpError(Exception): '''Internal - when the daemon is warming up.''' class ServiceRefusedError(Exception): '''Internal - when the daemon doesn't provide a JSON response, only an HTTP error, for some reason.''' class Daemon(object): '''Handles connections to a daemon at the given URL.''' WARMING_UP = -28 id_counter = itertools.count() def __init__(self, coin, url, *, max_workqueue=10, init_retry=0.25, max_retry=4.0): self.coin = coin self.logger = class_logger(__name__, self.__class__.__name__) self.url_index = None self.urls = [] self.set_url(url) # Limit concurrent RPC calls to this number. # See DEFAULT_HTTP_WORKQUEUE in bitcoind, which is typically 16 self.workqueue_semaphore = asyncio.Semaphore(value=max_workqueue) self.init_retry = init_retry self.max_retry = max_retry self._height = None self.available_rpcs = {} self.session = None async def __aenter__(self): self.session = aiohttp.ClientSession(connector=self.connector()) return self async def __aexit__(self, exc_type, exc_value, traceback): await self.session.close() self.session = None def connector(self): return None def set_url(self, url): '''Set the URLS to the given list, and switch to the first one.''' urls = url.split(',') urls = [self.coin.sanitize_url(url) for url in urls] for n, url in enumerate(urls): status = '' if n else ' (current)' logged_url = self.logged_url(url) self.logger.info(f'daemon #{n + 1} at {logged_url}{status}') self.url_index = 0 self.urls = urls def current_url(self): '''Returns the current daemon URL.''' return self.urls[self.url_index] def logged_url(self, url=None): '''The host and port part, for logging.''' url = url or self.current_url() return url[url.rindex('@') + 1:] def failover(self): '''Call to fail-over to the next daemon URL. Returns False if there is only one, otherwise True. ''' if len(self.urls) > 1: self.url_index = (self.url_index + 1) % len(self.urls) self.logger.info(f'failing over to {self.logged_url()}') return True return False async def _send_data(self, data): async with self.workqueue_semaphore: async with self.session.post(self.current_url(), data=data) as resp: kind = resp.headers.get('Content-Type', None) if kind == 'application/json': return await resp.json() text = await resp.text() text = text.strip() or resp.reason raise ServiceRefusedError(text) async def _send(self, payload, processor): '''Send a payload to be converted to JSON. Handles temporary connection issues. Daemon reponse errors are raise through DaemonError. ''' def log_error(error): nonlocal last_error_log, retry now = time.time() if now - last_error_log > 60: last_error_log = now self.logger.error(f'{error}. Retrying occasionally...') if retry == self.max_retry and self.failover(): retry = 0 on_good_message = None last_error_log = 0 data = json.dumps(payload) retry = self.init_retry while True: try: result = await self._send_data(data) result = processor(result) if on_good_message: self.logger.info(on_good_message) return result except asyncio.TimeoutError: log_error('timeout error') except aiohttp.ServerDisconnectedError: log_error('disconnected') on_good_message = 'connection restored' except ConnectionResetError: log_error('connection reset') on_good_message = 'connection restored' except aiohttp.ClientConnectionError: log_error('connection problem - check your daemon is running') on_good_message = 'connection restored' except aiohttp.ClientError as e: log_error(f'daemon error: {e}') on_good_message = 'running normally' except ServiceRefusedError as e: log_error(f'daemon service refused: {e}') on_good_message = 'running normally' except WarmingUpError: log_error('starting up checking blocks') on_good_message = 'running normally' await asyncio.sleep(retry) retry = max(min(self.max_retry, retry * 2), self.init_retry) async def _send_single(self, method, params=None): '''Send a single request to the daemon.''' def processor(result): err = result['error'] if not err: return result['result'] if err.get('code') == self.WARMING_UP: raise WarmingUpError raise DaemonError(err) payload = {'method': method, 'id': next(self.id_counter)} if params: payload['params'] = params return await self._send(payload, processor) async def _send_vector(self, method, params_iterable, replace_errs=False): '''Send several requests of the same method. The result will be an array of the same length as params_iterable. If replace_errs is true, any item with an error is returned as None, otherwise an exception is raised.''' def processor(result): errs = [item['error'] for item in result if item['error']] if any(err.get('code') == self.WARMING_UP for err in errs): raise WarmingUpError if not errs or replace_errs: return [item['result'] for item in result] raise DaemonError(errs) payload = [{'method': method, 'params': p, 'id': next(self.id_counter)} for p in params_iterable] if payload: return await self._send(payload, processor) return [] async def _is_rpc_available(self, method): '''Return whether given RPC method is available in the daemon. Results are cached and the daemon will generally not be queried with the same method more than once.''' available = self.available_rpcs.get(method) if available is None: available = True try: await self._send_single(method) except DaemonError as e: err = e.args[0] error_code = err.get("code") available = error_code != JSONRPC.METHOD_NOT_FOUND self.available_rpcs[method] = available return available async def block_hex_hashes(self, first, count): '''Return the hex hashes of count block starting at height first.''' params_iterable = ((h, ) for h in range(first, first + count)) return await self._send_vector('getblockhash', params_iterable) async def deserialised_block(self, hex_hash): '''Return the deserialised block with the given hex hash.''' return await self._send_single('getblock', (hex_hash, True)) async def raw_blocks(self, hex_hashes): '''Return the raw binary blocks with the given hex hashes.''' params_iterable = ((h, False) for h in hex_hashes) blocks = await self._send_vector('getblock', params_iterable) # Convert hex string to bytes return [hex_to_bytes(block) for block in blocks] async def mempool_hashes(self): '''Update our record of the daemon's mempool hashes.''' return await self._send_single('getrawmempool') async def getnetworkinfo(self): '''Return the result of the 'getnetworkinfo' RPC call.''' return await self._send_single('getnetworkinfo') async def getrawtransaction(self, hex_hash, verbose=False): '''Return the serialized raw transaction with the given hash.''' # Cast to int because some coin daemons are old and require it return await self._send_single('getrawtransaction', (hex_hash, int(verbose))) async def getrawtransactions(self, hex_hashes, replace_errs=True): '''Return the serialized raw transactions with the given hashes. Replaces errors with None by default.''' params_iterable = ((hex_hash, 0) for hex_hash in hex_hashes) txs = await self._send_vector('getrawtransaction', params_iterable, replace_errs=replace_errs) # Convert hex strings to bytes return [hex_to_bytes(tx) if tx else None for tx in txs] async def broadcast_transaction(self, raw_tx): '''Broadcast a transaction to the network.''' return await self._send_single('sendrawtransaction', (raw_tx, )) async def height(self): '''Query the daemon for its current height.''' self._height = await self._send_single('getblockcount') return self._height def cached_height(self): '''Return the cached daemon height. If the daemon has not been queried yet this returns None.''' return self._height
[ [ [ 249, 256 ], [ 1301, 1308 ], [ 4316, 4323 ], [ 5325, 5332 ] ], [ [ 264, 273 ], [ 860, 869 ] ], [ [ 281, 285 ], [ 3992, 3996 ] ], [ [ 293, 297 ], [ 3668, 3672 ] ], [ [ 306, 313 ], [ 1557, 1564 ], [ 4400, 4407 ], [ 4693, 4700 ], [ 4878, 4885 ] ], [ [ 334, 341 ], [ 7425, 7432 ] ], [ [ 374, 386 ], [ 8287, 8299 ], [ 9439, 9451 ] ], [ [ 388, 400 ], [ 1014, 1026 ] ], [ [ 409, 420 ], [ 7288, 7299 ], [ 5761, 5772 ], [ 6615, 6626 ] ], [ [ 507, 521 ], [ 5180, 5194 ], [ 5728, 5742 ], [ 6482, 6496 ] ], [ [ 594, 613 ], [ 3332, 3351 ], [ 5024, 5043 ] ], [ [ 745, 751 ] ] ]
# Generated by Django 2.2.4 on 2020-06-21 18:32 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='task', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('complete', models.BooleanField(default=False)), ('created', models.DateTimeField(auto_now_add=True)), ], ), ]
[ [ [ 73, 83 ], [ 113, 123 ], [ 220, 230 ] ], [ [ 85, 91 ], [ 316, 322 ], [ 435, 441 ], [ 500, 506 ], [ 566, 572 ] ], [ [ 103, 112 ] ] ]
""" The :mod:`sportsbet.datasets` module provides the tools to download and transform sports betting data. """ from ._base import load from ._soccer._combined import SoccerDataLoader from ._soccer._fd import FDSoccerDataLoader from ._soccer._fte import FTESoccerDataLoader from ._soccer._dummy import DummySoccerDataLoader __all__ = [ 'SoccerDataLoader', 'FDSoccerDataLoader', 'FTESoccerDataLoader', 'DummySoccerDataLoader', 'load', ]
[ [ [ 131, 135 ] ], [ [ 167, 183 ] ], [ [ 209, 227 ] ], [ [ 254, 273 ] ], [ [ 302, 323 ] ], [ [ 325, 332 ] ] ]
import logging import os import urllib from markupsafe import escape import paste.httpexceptions from six import string_types, text_type from sqlalchemy import false, true from galaxy import datatypes, model, util, web from galaxy import managers from galaxy.datatypes.display_applications.util import decode_dataset_user, encode_dataset_user from galaxy.model.item_attrs import UsesAnnotations, UsesItemRatings from galaxy.util import inflector, smart_str from galaxy.util.sanitize_html import sanitize_html from galaxy.web.base.controller import BaseUIController, ERROR, SUCCESS, url_for, UsesExtendedMetadataMixin from galaxy.web.framework.helpers import grids, iff, time_ago, to_unicode from galaxy.tools.errors import EmailErrorReporter log = logging.getLogger( __name__ ) comptypes = [] try: import zlib # noqa: F401 comptypes.append( 'zip' ) except ImportError: pass class HistoryDatasetAssociationListGrid( grids.Grid ): # Custom columns for grid. class HistoryColumn( grids.GridColumn ): def get_value( self, trans, grid, hda): return escape(hda.history.name) class StatusColumn( grids.GridColumn ): def get_value( self, trans, grid, hda ): if hda.deleted: return "deleted" return "" def get_accepted_filters( self ): """ Returns a list of accepted filters for this column. """ accepted_filter_labels_and_vals = { "Active" : "False", "Deleted" : "True", "All": "All" } accepted_filters = [] for label, val in accepted_filter_labels_and_vals.items(): args = { self.key: val } accepted_filters.append( grids.GridColumnFilter( label, args) ) return accepted_filters # Grid definition title = "Saved Datasets" model_class = model.HistoryDatasetAssociation template = '/dataset/grid.mako' default_sort_key = "-update_time" columns = [ grids.TextColumn( "Name", key="name", # Link name to dataset's history. link=( lambda item: iff( item.history.deleted, None, dict( operation="switch", id=item.id ) ) ), filterable="advanced", attach_popup=True ), HistoryColumn( "History", key="history", sortable=False, target="inbound", link=( lambda item: iff( item.history.deleted, None, dict( operation="switch_history", id=item.id ) ) ) ), grids.IndividualTagsColumn( "Tags", key="tags", model_tag_association_class=model.HistoryDatasetAssociationTagAssociation, filterable="advanced", grid_name="HistoryDatasetAssocationListGrid" ), StatusColumn( "Status", key="deleted", attach_popup=False ), grids.GridColumn( "Last Updated", key="update_time", format=time_ago ), ] columns.append( grids.MulticolFilterColumn( "Search", cols_to_filter=[ columns[0], columns[2] ], key="free-text-search", visible=False, filterable="standard" ) ) operations = [ grids.GridOperation( "Copy to current history", condition=( lambda item: not item.deleted ), async_compatible=True ), ] standard_filters = [] default_filter = dict( name="All", deleted="False", tags="All" ) preserve_state = False use_async = True use_paging = True num_rows_per_page = 50 def build_initial_query( self, trans, **kwargs ): # Show user's datasets that are not deleted, not in deleted histories, and not hidden. # To filter HDAs by user, need to join model class/HDA and History table so that it is # possible to filter by user. However, for dictionary-based filtering to work, need a # primary table for the query. return trans.sa_session.query( self.model_class ).select_from( self.model_class.table.join( model.History.table ) ) \ .filter( model.History.user == trans.user ) \ .filter( self.model_class.deleted == false() ) \ .filter( model.History.deleted == false() ) \ .filter( self.model_class.visible == true() ) class DatasetInterface( BaseUIController, UsesAnnotations, UsesItemRatings, UsesExtendedMetadataMixin ): stored_list_grid = HistoryDatasetAssociationListGrid() def __init__( self, app ): super( DatasetInterface, self ).__init__( app ) self.history_manager = managers.histories.HistoryManager( app ) self.hda_manager = managers.hdas.HDAManager( app ) def _get_job_for_dataset( self, trans, dataset_id ): ''' Return the job for the given dataset. This will throw an error if the dataset is either nonexistent or inaccessible to the user. ''' hda = trans.sa_session.query( trans.app.model.HistoryDatasetAssociation ).get( self.decode_id( dataset_id ) ) assert hda and self._can_access_dataset( trans, hda ) return hda.creating_job def _can_access_dataset( self, trans, dataset_association, allow_admin=True, additional_roles=None ): roles = trans.get_current_user_roles() if additional_roles: roles = roles + additional_roles return ( allow_admin and trans.user_is_admin() ) or trans.app.security_agent.can_access_dataset( roles, dataset_association.dataset ) @web.expose def errors( self, trans, id ): hda = trans.sa_session.query( model.HistoryDatasetAssociation ).get( self.decode_id( id ) ) if not hda or not self._can_access_dataset( trans, hda ): return trans.show_error_message( "Either this dataset does not exist or you do not have permission to access it." ) return trans.fill_template( "dataset/errors.mako", hda=hda ) @web.expose def stdout( self, trans, dataset_id=None, **kwargs ): trans.response.set_content_type( 'text/plain' ) stdout = "" try: job = self._get_job_for_dataset( trans, dataset_id ) stdout = job.stdout except: stdout = "Invalid dataset ID or you are not allowed to access this dataset" return smart_str( stdout ) @web.expose # TODO: Migrate stderr and stdout to use _get_job_for_dataset; it wasn't tested. def stderr( self, trans, dataset_id=None, **kwargs ): trans.response.set_content_type( 'text/plain' ) stderr = "" try: job = self._get_job_for_dataset( trans, dataset_id ) stderr = job.stderr except: stderr = "Invalid dataset ID or you are not allowed to access this dataset" return smart_str( stderr ) @web.expose def exit_code( self, trans, dataset_id=None, **kwargs ): trans.response.set_content_type( 'text/plain' ) exit_code = "" try: job = self._get_job_for_dataset( trans, dataset_id ) exit_code = job.exit_code except: exit_code = "Invalid dataset ID or you are not allowed to access this dataset" return exit_code @web.expose def report_error( self, trans, id, email='', message="", **kwd ): biostar_report = 'biostar' in str( kwd.get( 'submit_error_report') ).lower() if biostar_report: return trans.response.send_redirect( url_for( controller='biostar', action='biostar_tool_bug_report', hda=id, email=email, message=message ) ) try: error_reporter = EmailErrorReporter( id, trans.app ) error_reporter.send_report( user=trans.user, email=email, message=message ) return trans.show_ok_message( "Your error report has been sent" ) except Exception as e: return trans.show_error_message( "An error occurred sending the report by email: %s" % str( e ) ) @web.expose def default(self, trans, dataset_id=None, **kwd): return 'This link may not be followed from within Galaxy.' @web.expose def get_metadata_file(self, trans, hda_id, metadata_name): """ Allows the downloading of metadata files associated with datasets (eg. bai index for bam files) """ data = trans.sa_session.query( trans.app.model.HistoryDatasetAssociation ).get( self.decode_id( hda_id ) ) if not data or not self._can_access_dataset( trans, data ): return trans.show_error_message( "You are not allowed to access this dataset" ) fname = ''.join(c in util.FILENAME_VALID_CHARS and c or '_' for c in data.name)[0:150] file_ext = data.metadata.spec.get(metadata_name).get("file_ext", metadata_name) trans.response.headers["Content-Type"] = "application/octet-stream" trans.response.headers["Content-Disposition"] = 'attachment; filename="Galaxy%s-[%s].%s"' % (data.hid, fname, file_ext) return open(data.metadata.get(metadata_name).file_name) def _check_dataset(self, trans, hda_id): # DEPRECATION: We still support unencoded ids for backward compatibility try: data = trans.sa_session.query( trans.app.model.HistoryDatasetAssociation ).get( self.decode_id( hda_id) ) if data is None: raise ValueError( 'Invalid reference dataset id: %s.' % hda_id) except: try: data = trans.sa_session.query( trans.app.model.HistoryDatasetAssociation ).get( int( hda_id ) ) except: data = None if not data: raise paste.httpexceptions.HTTPRequestRangeNotSatisfiable( "Invalid reference dataset id: %s." % str( hda_id ) ) if not self._can_access_dataset( trans, data ): return trans.show_error_message( "You are not allowed to access this dataset" ) if data.purged: return trans.show_error_message( "The dataset you are attempting to view has been purged." ) if data.deleted and not ( trans.user_is_admin() or ( data.history and trans.get_user() == data.history.user ) ): return trans.show_error_message( "The dataset you are attempting to view has been deleted." ) if data.state == trans.model.Dataset.states.UPLOAD: return trans.show_error_message( "Please wait until this dataset finishes uploading before attempting to view it." ) return data @web.expose @web.json def transfer_status(self, trans, dataset_id, filename=None): """ Primarily used for the S3ObjectStore - get the status of data transfer if the file is not in cache """ data = self._check_dataset(trans, dataset_id) if isinstance( data, string_types ): return data log.debug( "Checking transfer status for dataset %s..." % data.dataset.id ) # Pulling files in extra_files_path into cache is not handled via this # method but that's primarily because those files are typically linked to # through tool's output page anyhow so tying a JavaScript event that will # call this method does not seem doable? if data.dataset.external_filename: return True else: return trans.app.object_store.file_ready(data.dataset) @web.expose def display(self, trans, dataset_id=None, preview=False, filename=None, to_ext=None, offset=None, ck_size=None, **kwd): data = self._check_dataset(trans, dataset_id) if not isinstance( data, trans.app.model.DatasetInstance ): return data # Ensure offset is an integer before passing through to datatypes. if offset: offset = int(offset) # Ensure ck_size is an integer before passing through to datatypes. if ck_size: ck_size = int(ck_size) return data.datatype.display_data(trans, data, preview, filename, to_ext, offset=offset, ck_size=ck_size, **kwd) @web.expose def edit(self, trans, dataset_id=None, filename=None, hid=None, **kwd): """Allows user to modify parameters of an HDA.""" message = None status = 'done' refresh_frames = [] error = False def __ok_to_edit_metadata( dataset_id ): # prevent modifying metadata when dataset is queued or running as input/output # This code could be more efficient, i.e. by using mappers, but to prevent slowing down loading a History panel, we'll leave the code here for now for job_to_dataset_association in trans.sa_session.query( self.app.model.JobToInputDatasetAssociation ) \ .filter_by( dataset_id=dataset_id ) \ .all() \ + trans.sa_session.query( self.app.model.JobToOutputDatasetAssociation ) \ .filter_by( dataset_id=dataset_id ) \ .all(): if job_to_dataset_association.job.state not in [ job_to_dataset_association.job.states.OK, job_to_dataset_association.job.states.ERROR, job_to_dataset_association.job.states.DELETED ]: return False return True if hid is not None: history = trans.get_history() # TODO: hid handling data = history.datasets[ int( hid ) - 1 ] id = None elif dataset_id is not None: id = self.decode_id( dataset_id ) data = trans.sa_session.query( self.app.model.HistoryDatasetAssociation ).get( id ) else: trans.log_event( "dataset_id and hid are both None, cannot load a dataset to edit" ) return trans.show_error_message( "You must provide a history dataset id to edit" ) if data is None: trans.log_event( "Problem retrieving dataset (encoded: %s, decoded: %s) with history id %s." % ( str( dataset_id ), str( id ), str( hid ) ) ) return trans.show_error_message( "History dataset id is invalid" ) if dataset_id is not None and data.history.user is not None and data.history.user != trans.user: trans.log_event( "User attempted to edit an HDA they do not own (encoded: %s, decoded: %s)" % ( dataset_id, id ) ) # Do not reveal the dataset's existence return trans.show_error_message( "History dataset id is invalid" ) current_user_roles = trans.get_current_user_roles() if data.history.user and not data.dataset.has_manage_permissions_roles( trans ): # Permission setting related to DATASET_MANAGE_PERMISSIONS was broken for a period of time, # so it is possible that some Datasets have no roles associated with the DATASET_MANAGE_PERMISSIONS # permission. In this case, we'll reset this permission to the hda user's private role. manage_permissions_action = trans.app.security_agent.get_action( trans.app.security_agent.permitted_actions.DATASET_MANAGE_PERMISSIONS.action ) permissions = { manage_permissions_action : [ trans.app.security_agent.get_private_user_role( data.history.user ) ] } trans.app.security_agent.set_dataset_permission( data.dataset, permissions ) if self._can_access_dataset( trans, data ): if data.state == trans.model.Dataset.states.UPLOAD: return trans.show_error_message( "Please wait until this dataset finishes uploading before attempting to edit its metadata." ) params = util.Params( kwd, sanitize=False ) if params.change: # The user clicked the Save button on the 'Change data type' form if data.datatype.allow_datatype_change and trans.app.datatypes_registry.get_datatype_by_extension( params.datatype ).allow_datatype_change: # prevent modifying datatype when dataset is queued or running as input/output if not __ok_to_edit_metadata( data.id ): message = "This dataset is currently being used as input or output. You cannot change datatype until the jobs have completed or you have canceled them." error = True else: trans.app.datatypes_registry.change_datatype( data, params.datatype ) trans.sa_session.flush() trans.app.datatypes_registry.set_external_metadata_tool.tool_action.execute( trans.app.datatypes_registry.set_external_metadata_tool, trans, incoming={ 'input1': data }, overwrite=False ) # overwrite is False as per existing behavior message = "Changed the type of dataset '%s' to %s" % ( to_unicode( data.name ), params.datatype ) refresh_frames = ['history'] else: message = "You are unable to change datatypes in this manner. Changing %s to %s is not allowed." % ( data.extension, params.datatype ) error = True elif params.save: # The user clicked the Save button on the 'Edit Attributes' form data.name = params.name if params.name else '' data.info = params.info if params.info else '' message = '' if __ok_to_edit_metadata( data.id ): # The following for loop will save all metadata_spec items for name, spec in data.datatype.metadata_spec.items(): if spec.get("readonly"): continue optional = params.get("is_" + name, None) other = params.get("or_" + name, None) if optional and optional == '__NOTHING__': # optional element... == '__NOTHING__' actually means it is NOT checked (and therefore omitted) setattr(data.metadata, name, None) else: if other: setattr( data.metadata, name, other ) else: setattr( data.metadata, name, spec.unwrap( params.get(name, None) ) ) data.datatype.after_setting_metadata( data ) # Sanitize annotation before adding it. if params.annotation: annotation = sanitize_html( params.annotation, 'utf-8', 'text/html' ) self.add_item_annotation( trans.sa_session, trans.get_user(), data, annotation ) # This block on controller code is inactive until the 'extended_metadata' edit box is added back into the UI # Add or delete extended metadata # if params.extended_metadata: # em_string = params.extended_metadata # if len(em_string): # em_payload = None # try: # em_payload = loads(em_string) # except Exception as e: # message = 'Invalid JSON input' # error = True # if em_payload is not None: # if data is not None: # ex_obj = self.get_item_extended_metadata_obj(trans, data) # if ex_obj is not None: # self.unset_item_extended_metadata_obj(trans, data) # self.delete_extended_metadata(trans, ex_obj) # ex_obj = self.create_extended_metadata(trans, em_payload) # self.set_item_extended_metadata_obj(trans, data, ex_obj) # message = "Updated Extended metadata '%s'." % data.name # status = 'done' # else: # message = "data not found" # error = True # else: # if data is not None: # ex_obj = self.get_item_extended_metadata_obj(trans, data) # if ex_obj is not None: # self.unset_item_extended_metadata_obj(trans, data) # self.delete_extended_metadata(trans, ex_obj) # message = "Deleted Extended metadata '%s'." % data.name # status = 'done' # If setting metadata previously failed and all required elements have now been set, clear the failed state. if data._state == trans.model.Dataset.states.FAILED_METADATA and not data.missing_meta(): data._state = None trans.sa_session.flush() message = "Attributes updated%s" % message refresh_frames = ['history'] else: trans.sa_session.flush() message = "Attributes updated, but metadata could not be changed because this dataset is currently being used as input or output. You must cancel or wait for these jobs to complete before changing metadata." status = "warning" refresh_frames = ['history'] elif params.detect: # The user clicked the Auto-detect button on the 'Edit Attributes' form # prevent modifying metadata when dataset is queued or running as input/output if not __ok_to_edit_metadata( data.id ): message = "This dataset is currently being used as input or output. You cannot change metadata until the jobs have completed or you have canceled them." error = True else: for name, spec in data.metadata.spec.items(): # We need to be careful about the attributes we are resetting if name not in [ 'name', 'info', 'dbkey', 'base_name' ]: if spec.get( 'default' ): setattr( data.metadata, name, spec.unwrap( spec.get( 'default' ) ) ) message = 'Attributes have been queued to be updated' trans.app.datatypes_registry.set_external_metadata_tool.tool_action.execute( trans.app.datatypes_registry.set_external_metadata_tool, trans, incoming={ 'input1': data } ) trans.sa_session.flush() refresh_frames = ['history'] elif params.convert_data: target_type = kwd.get("target_type", None) if target_type: message = data.datatype.convert_dataset(trans, data, target_type) refresh_frames = ['history'] elif params.update_roles_button: if not trans.user: return trans.show_error_message( "You must be logged in if you want to change permissions." ) if trans.app.security_agent.can_manage_dataset( current_user_roles, data.dataset ): access_action = trans.app.security_agent.get_action( trans.app.security_agent.permitted_actions.DATASET_ACCESS.action ) manage_permissions_action = trans.app.security_agent.get_action( trans.app.security_agent.permitted_actions.DATASET_MANAGE_PERMISSIONS.action ) # The user associated the DATASET_ACCESS permission on the dataset with 1 or more roles. We # need to ensure that they did not associate roles that would cause accessibility problems. permissions, in_roles, error, message = \ trans.app.security_agent.derive_roles_from_access( trans, data.dataset.id, 'root', **kwd ) if error: # Keep the original role associations for the DATASET_ACCESS permission on the dataset. permissions[ access_action ] = data.dataset.get_access_roles( trans ) status = 'error' else: error = trans.app.security_agent.set_all_dataset_permissions( data.dataset, permissions ) if error: message += error status = 'error' else: message = 'Your changes completed successfully.' trans.sa_session.refresh( data.dataset ) else: message = "You are not authorized to change this dataset's permissions" error = True else: if "dbkey" in data.datatype.metadata_spec and not data.metadata.dbkey: # Copy dbkey into metadata, for backwards compatability # This looks like it does nothing, but getting the dbkey # returns the metadata dbkey unless it is None, in which # case it resorts to the old dbkey. Setting the dbkey # sets it properly in the metadata # This is likely no longer required, since the dbkey exists entirely within metadata (the old_dbkey field is gone): REMOVE ME? data.metadata.dbkey = data.dbkey # let's not overwrite the imported datatypes module with the variable datatypes? # the built-in 'id' is overwritten in lots of places as well ldatatypes = [ dtype_name for dtype_name, dtype_value in trans.app.datatypes_registry.datatypes_by_extension.iteritems() if dtype_value.allow_datatype_change ] ldatatypes.sort() all_roles = trans.app.security_agent.get_legitimate_roles( trans, data.dataset, 'root' ) if error: status = 'error' return trans.fill_template( "/dataset/edit_attributes.mako", data=data, data_annotation=self.get_item_annotation_str( trans.sa_session, trans.user, data ), datatypes=ldatatypes, current_user_roles=current_user_roles, all_roles=all_roles, message=message, status=status, dataset_id=dataset_id, refresh_frames=refresh_frames ) else: return trans.show_error_message( "You do not have permission to edit this dataset's ( id: %s ) information." % str( dataset_id ) ) @web.expose @web.require_login( "see all available datasets" ) def list( self, trans, **kwargs ): """List all available datasets""" status = message = None if 'operation' in kwargs: operation = kwargs['operation'].lower() hda_ids = util.listify( kwargs.get( 'id', [] ) ) # Display no message by default status, message = None, None # Load the hdas and ensure they all belong to the current user hdas = [] for encoded_hda_id in hda_ids: hda_id = self.decode_id( encoded_hda_id ) hda = trans.sa_session.query( model.HistoryDatasetAssociation ).filter_by( id=hda_id ).first() if hda: # Ensure history is owned by current user if hda.history.user_id is not None and trans.user: assert trans.user.id == hda.history.user_id, "HistoryDatasetAssocation does not belong to current user" hdas.append( hda ) else: log.warning( "Invalid history_dataset_association id '%r' passed to list", hda_id ) if hdas: if operation == "switch" or operation == "switch_history": # Switch to a history that the HDA resides in. # Convert hda to histories. histories = [] for hda in hdas: histories.append( hda.history ) # Use history controller to switch the history. TODO: is this reasonable? status, message = trans.webapp.controllers['history']._list_switch( trans, histories ) # Current history changed, refresh history frame; if switching to a dataset, set hda seek. trans.template_context['refresh_frames'] = ['history'] if operation == "switch": hda_ids = [ trans.security.encode_id( hda.id ) for hda in hdas ] trans.template_context[ 'seek_hda_ids' ] = hda_ids elif operation == "copy to current history": # # Copy datasets to the current history. # target_histories = [ trans.get_history() ] # Reverse HDAs so that they appear in the history in the order they are provided. hda_ids.reverse() status, message = self._copy_datasets( trans, hda_ids, target_histories ) # Current history changed, refresh history frame. trans.template_context['refresh_frames'] = ['history'] # Render the list view return self.stored_list_grid( trans, status=status, message=message, **kwargs ) @web.expose def imp( self, trans, dataset_id=None, **kwd ): """ Import another user's dataset via a shared URL; dataset is added to user's current history. """ # Set referer message. referer = trans.request.referer if referer: referer_message = "<a href='%s'>return to the previous page</a>" % escape(referer) else: referer_message = "<a href='%s'>go to Galaxy's start page</a>" % url_for( '/' ) # Error checking. if not dataset_id: return trans.show_error_message( "You must specify a dataset to import. You can %s." % referer_message, use_panels=True ) # Do import. cur_history = trans.get_history( create=True ) status, message = self._copy_datasets( trans, [ dataset_id ], [ cur_history ], imported=True ) message = "Dataset imported. <br>You can <a href='%s'>start using the dataset</a> or %s." % ( url_for('/'), referer_message ) return trans.show_message( message, type=status, use_panels=True ) @web.expose @web.json @web.require_login( "use Galaxy datasets" ) def get_name_and_link_async( self, trans, id=None ): """ Returns dataset's name and link. """ decoded_id = self.decode_id( id ) dataset = self.hda_manager.get_accessible( decoded_id, trans.user ) dataset = self.hda_manager.error_if_uploading( dataset ) return_dict = { "name" : dataset.name, "link" : url_for( controller='dataset', action="display_by_username_and_slug", username=dataset.history.user.username, slug=trans.security.encode_id( dataset.id ) ) } return return_dict @web.expose def get_embed_html_async( self, trans, id ): """ Returns HTML for embedding a dataset in a page. """ decoded_id = self.decode_id( id ) dataset = self.hda_manager.get_accessible( decoded_id, trans.user ) dataset = self.hda_manager.error_if_uploading( dataset ) if dataset: return "Embedded Dataset '%s'" % dataset.name @web.expose @web.require_login( "use Galaxy datasets" ) def set_accessible_async( self, trans, id=None, accessible=False ): """ Does nothing because datasets do not have an importable/accessible attribute. This method could potentially set another attribute. """ return @web.expose @web.require_login( "rate items" ) @web.json def rate_async( self, trans, id, rating ): """ Rate a dataset asynchronously and return updated community data. """ decoded_id = self.decode_id( id ) dataset = self.hda_manager.get_accessible( decoded_id, trans.user ) dataset = self.hda_manager.error_if_uploading( dataset ) if not dataset: return trans.show_error_message( "The specified dataset does not exist." ) # Rate dataset. self.rate_item( trans.sa_session, trans.get_user(), dataset, rating ) return self.get_ave_item_rating_data( trans.sa_session, dataset ) @web.expose def display_by_username_and_slug( self, trans, username, slug, filename=None, preview=True ): """ Display dataset by username and slug; because datasets do not yet have slugs, the slug is the dataset's id. """ id = slug decoded_id = self.decode_id( id ) dataset = self.hda_manager.get_accessible( decoded_id, trans.user ) dataset = self.hda_manager.error_if_uploading( dataset ) if dataset: # Filename used for composite types. if filename: return self.display( trans, dataset_id=slug, filename=filename) truncated, dataset_data = self.hda_manager.text_data( dataset, preview ) dataset.annotation = self.get_item_annotation_str( trans.sa_session, dataset.history.user, dataset ) # If dataset is chunkable, get first chunk. first_chunk = None if dataset.datatype.CHUNKABLE: first_chunk = dataset.datatype.get_chunk(trans, dataset, 0) # If data is binary or an image, stream without template; otherwise, use display template. # TODO: figure out a way to display images in display template. if isinstance(dataset.datatype, datatypes.binary.Binary) or isinstance(dataset.datatype, datatypes.images.Image) or isinstance(dataset.datatype, datatypes.text.Html): trans.response.set_content_type( dataset.get_mime() ) return open( dataset.file_name ) else: # Get rating data. user_item_rating = 0 if trans.get_user(): user_item_rating = self.get_user_item_rating( trans.sa_session, trans.get_user(), dataset ) if user_item_rating: user_item_rating = user_item_rating.rating else: user_item_rating = 0 ave_item_rating, num_ratings = self.get_ave_item_rating_data( trans.sa_session, dataset ) return trans.fill_template_mako( "/dataset/display.mako", item=dataset, item_data=dataset_data, truncated=truncated, user_item_rating=user_item_rating, ave_item_rating=ave_item_rating, num_ratings=num_ratings, first_chunk=first_chunk ) else: raise web.httpexceptions.HTTPNotFound() @web.expose def get_item_content_async( self, trans, id ): """ Returns item content in HTML format. """ decoded_id = self.decode_id( id ) dataset = self.hda_manager.get_accessible( decoded_id, trans.user ) dataset = self.hda_manager.error_if_uploading( dataset ) if dataset is None: raise web.httpexceptions.HTTPNotFound() truncated, dataset_data = self.hda_manager.text_data( dataset, preview=True ) # Get annotation. dataset.annotation = self.get_item_annotation_str( trans.sa_session, trans.user, dataset ) return trans.stream_template_mako( "/dataset/item_content.mako", item=dataset, item_data=dataset_data, truncated=truncated ) @web.expose def annotate_async( self, trans, id, new_annotation=None, **kwargs ): # TODO:?? why is this an access check only? decoded_id = self.decode_id( id ) dataset = self.hda_manager.get_accessible( decoded_id, trans.user ) dataset = self.hda_manager.error_if_uploading( dataset ) if not dataset: web.httpexceptions.HTTPNotFound() if dataset and new_annotation: # Sanitize annotation before adding it. new_annotation = sanitize_html( new_annotation, 'utf-8', 'text/html' ) self.add_item_annotation( trans.sa_session, trans.get_user(), dataset, new_annotation ) trans.sa_session.flush() return new_annotation @web.expose def get_annotation_async( self, trans, id ): decoded_id = self.decode_id( id ) dataset = self.hda_manager.get_accessible( decoded_id, trans.user ) dataset = self.hda_manager.error_if_uploading( dataset ) if not dataset: web.httpexceptions.HTTPNotFound() annotation = self.get_item_annotation_str( trans.sa_session, trans.user, dataset ) if annotation and isinstance( annotation, text_type ): annotation = annotation.encode( 'ascii', 'replace' ) # paste needs ascii here return annotation @web.expose def display_at( self, trans, dataset_id, filename=None, **kwd ): """Sets up a dataset permissions so it is viewable at an external site""" if not trans.app.config.enable_old_display_applications: return trans.show_error_message( "This method of accessing external display applications has been disabled by a Galaxy administrator." ) site = filename data = trans.sa_session.query( trans.app.model.HistoryDatasetAssociation ).get( dataset_id ) if not data: raise paste.httpexceptions.HTTPRequestRangeNotSatisfiable( "Invalid reference dataset id: %s." % str( dataset_id ) ) if 'display_url' not in kwd or 'redirect_url' not in kwd: return trans.show_error_message( 'Invalid parameters specified for "display at" link, please contact a Galaxy administrator' ) try: redirect_url = kwd['redirect_url'] % urllib.quote_plus( kwd['display_url'] ) except: redirect_url = kwd['redirect_url'] # not all will need custom text if trans.app.security_agent.dataset_is_public( data.dataset ): return trans.response.send_redirect( redirect_url ) # anon access already permitted by rbac if self._can_access_dataset( trans, data ): trans.app.host_security_agent.set_dataset_permissions( data, trans.user, site ) return trans.response.send_redirect( redirect_url ) else: return trans.show_error_message( "You are not allowed to view this dataset at external sites. Please contact your Galaxy administrator to acquire management permissions for this dataset." ) @web.expose def display_application( self, trans, dataset_id=None, user_id=None, app_name=None, link_name=None, app_action=None, action_param=None, action_param_extra=None, **kwds ): """Access to external display applications""" # Build list of parameters to pass in to display application logic (app_kwds) app_kwds = {} for name, value in dict(kwds).iteritems(): # clone kwds because we remove stuff as we go. if name.startswith( "app_" ): app_kwds[ name[ len( "app_" ): ] ] = value del kwds[ name ] if kwds: log.debug( "Unexpected Keywords passed to display_application: %s" % kwds ) # route memory? # decode ids data, user = decode_dataset_user( trans, dataset_id, user_id ) if not data: raise paste.httpexceptions.HTTPRequestRangeNotSatisfiable( "Invalid reference dataset id: %s." % str( dataset_id ) ) if user is None: user = trans.user if user: user_roles = user.all_roles() else: user_roles = [] # Decode application name and link name app_name = urllib.unquote_plus( app_name ) link_name = urllib.unquote_plus( link_name ) if None in [ app_name, link_name ]: return trans.show_error_message( "A display application name and link name must be provided." ) if self._can_access_dataset( trans, data, additional_roles=user_roles ): msg = [] preparable_steps = [] refresh = False display_app = trans.app.datatypes_registry.display_applications.get( app_name ) if not display_app: log.debug( "Unknown display application has been requested: %s", app_name ) return paste.httpexceptions.HTTPNotFound( "The requested display application (%s) is not available." % ( app_name ) ) dataset_hash, user_hash = encode_dataset_user( trans, data, user ) try: display_link = display_app.get_link( link_name, data, dataset_hash, user_hash, trans, app_kwds ) except Exception as e: log.debug( "Error generating display_link: %s", e ) # User can sometimes recover from, e.g. conversion errors by fixing input metadata, so use conflict return paste.httpexceptions.HTTPConflict( "Error generating display_link: %s" % e ) if not display_link: log.debug( "Unknown display link has been requested: %s", link_name ) return paste.httpexceptions.HTTPNotFound( "Unknown display link has been requested: %s" % link_name ) if data.state == data.states.ERROR: msg.append( ( 'This dataset is in an error state, you cannot view it at an external display application.', 'error' ) ) elif data.deleted: msg.append( ( 'This dataset has been deleted, you cannot view it at an external display application.', 'error' ) ) elif data.state != data.states.OK: msg.append( ( 'You must wait for this dataset to be created before you can view it at an external display application.', 'info' ) ) refresh = True else: # We have permissions, dataset is not deleted and is in OK state, allow access if display_link.display_ready(): if app_action in [ 'data', 'param' ]: assert action_param, "An action param must be provided for a data or param action" # data is used for things with filenames that could be passed off to a proxy # in case some display app wants all files to be in the same 'directory', # data can be forced to param, but not the other way (no filename for other direction) # get param name from url param name try: action_param = display_link.get_param_name_by_url( action_param ) except ValueError as e: log.debug( e ) return paste.httpexceptions.HTTPNotFound( str( e ) ) value = display_link.get_param_value( action_param ) assert value, "An invalid parameter name was provided: %s" % action_param assert value.parameter.viewable, "This parameter is not viewable." if value.parameter.type == 'data': try: if action_param_extra: assert value.parameter.allow_extra_files_access, "Extra file content requested (%s), but allow_extra_files_access is False." % ( action_param_extra ) file_name = os.path.join( value.extra_files_path, action_param_extra ) else: file_name = value.file_name content_length = os.path.getsize( file_name ) rval = open( file_name ) except OSError as e: log.debug( "Unable to access requested file in display application: %s", e ) return paste.httpexceptions.HTTPNotFound( "This file is no longer available." ) else: rval = str( value ) content_length = len( rval ) trans.response.set_content_type( value.mime_type( action_param_extra=action_param_extra ) ) trans.response.headers[ 'Content-Length' ] = content_length return rval elif app_action is None: # redirect user to url generated by display link # Fix for Safari caching display links, which can change if the underlying dataset has an attribute change, e.g. name, metadata, etc trans.response.headers[ 'Cache-Control' ] = [ 'no-cache', 'max-age=0', 'no-store', 'must-revalidate' ] return trans.response.send_redirect( display_link.display_url() ) else: msg.append( ( 'Invalid action provided: %s' % app_action, 'error' ) ) else: if app_action is None: if trans.history != data.history: msg.append( ( 'You must import this dataset into your current history before you can view it at the desired display application.', 'error' ) ) else: refresh = True msg.append( ( 'Launching this display application required additional datasets to be generated, you can view the status of these jobs below. ', 'info' ) ) if not display_link.preparing_display(): display_link.prepare_display() preparable_steps = display_link.get_prepare_steps() else: raise Exception( 'Attempted a view action (%s) on a non-ready display application' % app_action ) return trans.fill_template_mako( "dataset/display_application/display.mako", msg=msg, display_app=display_app, display_link=display_link, refresh=refresh, preparable_steps=preparable_steps ) return trans.show_error_message( 'You do not have permission to view this dataset at an external display application.' ) def _delete( self, trans, dataset_id ): message = None status = 'done' id = None try: id = self.decode_id( dataset_id ) hda = trans.sa_session.query( self.app.model.HistoryDatasetAssociation ).get( id ) assert hda, 'Invalid HDA: %s' % id # Walk up parent datasets to find the containing history topmost_parent = hda while topmost_parent.parent: topmost_parent = topmost_parent.parent assert topmost_parent in trans.history.datasets, "Data does not belong to current history" # Mark deleted and cleanup hda.mark_deleted() hda.clear_associated_files() trans.log_event( "Dataset id %s marked as deleted" % str(id) ) self.hda_manager.stop_creating_job( hda ) trans.sa_session.flush() except Exception as e: msg = 'HDA deletion failed (encoded: %s, decoded: %s)' % ( dataset_id, id ) log.exception( msg + ': ' + str( e ) ) trans.log_event( msg ) message = 'Dataset deletion failed' status = 'error' return ( message, status ) def _undelete( self, trans, dataset_id ): message = None status = 'done' id = None try: id = self.decode_id( dataset_id ) history = trans.get_history() hda = trans.sa_session.query( self.app.model.HistoryDatasetAssociation ).get( id ) assert hda and hda.undeletable, 'Invalid HDA: %s' % id # Walk up parent datasets to find the containing history topmost_parent = hda while topmost_parent.parent: topmost_parent = topmost_parent.parent assert topmost_parent in history.datasets, "Data does not belong to current history" # Mark undeleted hda.mark_undeleted() trans.sa_session.flush() trans.log_event( "Dataset id %s has been undeleted" % str(id) ) except Exception: msg = 'HDA undeletion failed (encoded: %s, decoded: %s)' % ( dataset_id, id ) log.exception( msg ) trans.log_event( msg ) message = 'Dataset undeletion failed' status = 'error' return ( message, status ) def _unhide( self, trans, dataset_id ): try: id = self.decode_id( dataset_id ) except: return False history = trans.get_history() hda = trans.sa_session.query( self.app.model.HistoryDatasetAssociation ).get( id ) if hda: # Walk up parent datasets to find the containing history topmost_parent = hda while topmost_parent.parent: topmost_parent = topmost_parent.parent assert topmost_parent in history.datasets, "Data does not belong to current history" # Mark undeleted hda.mark_unhidden() trans.sa_session.flush() trans.log_event( "Dataset id %s has been unhidden" % str(id) ) return True return False def _purge( self, trans, dataset_id ): message = None status = 'done' try: id = self.decode_id( dataset_id ) user = trans.get_user() hda = trans.sa_session.query( self.app.model.HistoryDatasetAssociation ).get( id ) # Invalid HDA assert hda, 'Invalid history dataset ID' # Walk up parent datasets to find the containing history topmost_parent = hda while topmost_parent.parent: topmost_parent = topmost_parent.parent # If the user is anonymous, make sure the HDA is owned by the current session. if not user: current_history_id = trans.galaxy_session.current_history_id assert topmost_parent.history.id == current_history_id, 'Data does not belong to current user' # If the user is known, make sure the HDA is owned by the current user. else: assert topmost_parent.history.user == user, 'Data does not belong to current user' # Ensure HDA is deleted hda.deleted = True # HDA is purgeable # Decrease disk usage first if user: user.adjust_total_disk_usage(-hda.quota_amount(user)) # Mark purged hda.purged = True trans.sa_session.add( hda ) trans.log_event( "HDA id %s has been purged" % hda.id ) trans.sa_session.flush() # Don't delete anything if there are active HDAs or any LDDAs, even if # the LDDAs are deleted. Let the cleanup scripts get it in the latter # case. if hda.dataset.user_can_purge: try: hda.dataset.full_delete() trans.log_event( "Dataset id %s has been purged upon the the purge of HDA id %s" % ( hda.dataset.id, hda.id ) ) trans.sa_session.add( hda.dataset ) except: log.exception( 'Unable to purge dataset (%s) on purge of HDA (%s):' % ( hda.dataset.id, hda.id ) ) trans.sa_session.flush() except Exception as exc: msg = 'HDA purge failed (encoded: %s, decoded: %s): %s' % ( dataset_id, id, exc ) log.exception( msg ) trans.log_event( msg ) message = 'Dataset removal from disk failed' status = 'error' return ( message, status ) @web.expose def delete( self, trans, dataset_id, filename, show_deleted_on_refresh=False ): message, status = self._delete( trans, dataset_id ) return trans.response.send_redirect( web.url_for( controller='root', action='history', show_deleted=show_deleted_on_refresh, message=message, status=status ) ) @web.expose def delete_async( self, trans, dataset_id, filename ): message, status = self._delete( trans, dataset_id ) if status == 'done': return "OK" else: raise Exception( message ) @web.expose def undelete( self, trans, dataset_id, filename ): message, status = self._undelete( trans, dataset_id ) return trans.response.send_redirect( web.url_for( controller='root', action='history', show_deleted=True, message=message, status=status ) ) @web.expose def undelete_async( self, trans, dataset_id, filename ): message, status = self._undelete( trans, dataset_id ) if status == 'done': return "OK" else: raise Exception( message ) @web.expose def unhide( self, trans, dataset_id, filename ): if self._unhide( trans, dataset_id ): return trans.response.send_redirect( web.url_for( controller='root', action='history', show_hidden=True ) ) raise Exception( "Error unhiding" ) @web.expose def purge( self, trans, dataset_id, filename, show_deleted_on_refresh=False ): if trans.app.config.allow_user_dataset_purge: message, status = self._purge( trans, dataset_id ) else: message = "Removal of datasets by users is not allowed in this Galaxy instance. Please contact your Galaxy administrator." status = 'error' return trans.response.send_redirect( web.url_for( controller='root', action='history', show_deleted=show_deleted_on_refresh, message=message, status=status ) ) @web.expose def purge_async( self, trans, dataset_id, filename ): if trans.app.config.allow_user_dataset_purge: message, status = self._purge( trans, dataset_id ) else: message = "Removal of datasets by users is not allowed in this Galaxy instance. Please contact your Galaxy administrator." status = 'error' if status == 'done': return "OK" else: raise Exception( message ) @web.expose def show_params( self, trans, dataset_id=None, from_noframe=None, **kwd ): """ Show the parameters used for the job associated with an HDA """ try: hda = trans.sa_session.query( trans.app.model.HistoryDatasetAssociation ).get( self.decode_id( dataset_id ) ) except ValueError: hda = None if not hda: raise paste.httpexceptions.HTTPRequestRangeNotSatisfiable( "Invalid reference dataset id: %s." % escape( str( dataset_id ) ) ) if not self._can_access_dataset( trans, hda ): return trans.show_error_message( "You are not allowed to access this dataset" ) # Get the associated job, if any. If this hda was copied from another, # we need to find the job that created the origial dataset association. params_objects = None job = None tool = None upgrade_messages = {} has_parameter_errors = False inherit_chain = hda.source_dataset_chain if inherit_chain: job_dataset_association = inherit_chain[-1][0] else: job_dataset_association = hda if job_dataset_association.creating_job_associations: job = job_dataset_association.creating_job_associations[0].job if job: # Get the tool object try: # Load the tool toolbox = self.get_toolbox() tool = toolbox.get_tool( job.tool_id ) assert tool is not None, 'Requested tool has not been loaded.' # Load parameter objects, if a parameter type has changed, it's possible for the value to no longer be valid try: params_objects = job.get_param_values( trans.app, ignore_errors=False ) except: params_objects = job.get_param_values( trans.app, ignore_errors=True ) # use different param_objects in the following line, since we want to display original values as much as possible upgrade_messages = tool.check_and_update_param_values( job.get_param_values( trans.app, ignore_errors=True ), trans, update_values=False ) has_parameter_errors = True except: pass if job is None: return trans.show_error_message( "Job information is not available for this dataset." ) # TODO: we should provide the basic values along with the objects, in order to better handle reporting of old values during upgrade return trans.fill_template( "show_params.mako", inherit_chain=inherit_chain, history=trans.get_history(), hda=hda, job=job, tool=tool, params_objects=params_objects, upgrade_messages=upgrade_messages, has_parameter_errors=has_parameter_errors ) @web.expose def copy_datasets( self, trans, source_history=None, source_content_ids="", target_history_id=None, target_history_ids="", new_history_name="", do_copy=False, **kwd ): user = trans.get_user() if source_history is not None: decoded_source_history_id = self.decode_id( source_history ) history = self.history_manager.get_owned( decoded_source_history_id, trans.user, current_history=trans.history ) current_history = trans.get_history() else: history = current_history = trans.get_history() refresh_frames = [] if source_content_ids: if not isinstance( source_content_ids, list ): source_content_ids = source_content_ids.split(",") encoded_dataset_collection_ids = [ s[ len("dataset_collection|"): ] for s in source_content_ids if s.startswith("dataset_collection|") ] encoded_dataset_ids = [ s[ len("dataset|"): ] for s in source_content_ids if s.startswith("dataset|") ] decoded_dataset_collection_ids = set(map( self.decode_id, encoded_dataset_collection_ids )) decoded_dataset_ids = set(map( self.decode_id, encoded_dataset_ids )) else: decoded_dataset_collection_ids = [] decoded_dataset_ids = [] if new_history_name: target_history_ids = [] else: if target_history_id: target_history_ids = [ self.decode_id(target_history_id) ] elif target_history_ids: if not isinstance( target_history_ids, list ): target_history_ids = target_history_ids.split(",") target_history_ids = list(set([ self.decode_id(h) for h in target_history_ids if h ])) else: target_history_ids = [] done_msg = error_msg = "" new_history = None if do_copy: invalid_contents = 0 if not ( decoded_dataset_ids or decoded_dataset_collection_ids ) or not ( target_history_ids or new_history_name ): error_msg = "You must provide both source datasets and target histories. " else: if new_history_name: new_history = trans.app.model.History() new_history.name = new_history_name new_history.user = user trans.sa_session.add( new_history ) trans.sa_session.flush() target_history_ids.append( new_history.id ) if user: target_histories = [ hist for hist in map( trans.sa_session.query( trans.app.model.History ).get, target_history_ids ) if hist is not None and hist.user == user ] else: target_histories = [ history ] if len( target_histories ) != len( target_history_ids ): error_msg = error_msg + "You do not have permission to add datasets to %i requested histories. " % ( len( target_history_ids ) - len( target_histories ) ) source_contents = map( trans.sa_session.query( trans.app.model.HistoryDatasetAssociation ).get, decoded_dataset_ids ) source_contents.extend( map( trans.sa_session.query( trans.app.model.HistoryDatasetCollectionAssociation ).get, decoded_dataset_collection_ids ) ) source_contents.sort(key=lambda content: content.hid) for content in source_contents: if content is None: error_msg = error_msg + "You tried to copy a dataset that does not exist. " invalid_contents += 1 elif content.history != history: error_msg = error_msg + "You tried to copy a dataset which is not in your current history. " invalid_contents += 1 else: for hist in target_histories: if content.history_content_type == "dataset": hist.add_dataset( content.copy( copy_children=True ) ) else: copy_collected_datasets = True copy_kwds = {} if copy_collected_datasets: copy_kwds["element_destination"] = hist hist.add_dataset_collection( content.copy( **copy_kwds ) ) if current_history in target_histories: refresh_frames = ['history'] trans.sa_session.flush() hist_names_str = ", ".join( ['<a href="%s" target="_top">%s</a>' % ( url_for( controller="history", action="switch_to_history", hist_id=trans.security.encode_id( hist.id ) ), escape(hist.name) ) for hist in target_histories ] ) num_source = len( source_content_ids ) - invalid_contents num_target = len(target_histories) done_msg = "%i %s copied to %i %s: %s." % (num_source, inflector.cond_plural(num_source, "dataset"), num_target, inflector.cond_plural(num_target, "history"), hist_names_str ) trans.sa_session.refresh( history ) source_contents = history.active_contents target_histories = [history] if user: target_histories = user.active_histories return trans.fill_template( "/dataset/copy_view.mako", source_history=history, current_history=current_history, source_content_ids=source_content_ids, target_history_id=target_history_id, target_history_ids=target_history_ids, source_contents=source_contents, target_histories=target_histories, new_history_name=new_history_name, done_msg=done_msg, error_msg=error_msg, refresh_frames=refresh_frames ) def _copy_datasets( self, trans, dataset_ids, target_histories, imported=False ): """ Helper method for copying datasets. """ user = trans.get_user() done_msg = error_msg = "" invalid_datasets = 0 if not dataset_ids or not target_histories: error_msg = "You must provide both source datasets and target histories." else: # User must own target histories to copy datasets to them. for history in target_histories: if user != history.user: error_msg = error_msg + "You do not have permission to add datasets to %i requested histories. " % ( len( target_histories ) ) for dataset_id in dataset_ids: decoded_id = self.decode_id( dataset_id ) data = self.hda_manager.get_accessible( decoded_id, trans.user ) data = self.hda_manager.error_if_uploading( data ) if data is None: error_msg = error_msg + "You tried to copy a dataset that does not exist or that you do not have access to. " invalid_datasets += 1 else: for hist in target_histories: dataset_copy = data.copy( copy_children=True ) if imported: dataset_copy.name = "imported: " + dataset_copy.name hist.add_dataset( dataset_copy ) trans.sa_session.flush() num_datasets_copied = len( dataset_ids ) - invalid_datasets done_msg = "%i dataset%s copied to %i histor%s." % \ ( num_datasets_copied, iff( num_datasets_copied == 1, "", "s"), len( target_histories ), iff( len( target_histories ) == 1, "y", "ies") ) trans.sa_session.refresh( history ) if error_msg != "": status = ERROR message = error_msg else: status = SUCCESS message = done_msg return status, message
[ [ [ 7, 14 ], [ 751, 758 ] ], [ [ 22, 24 ], [ 43625, 43627 ], [ 43835, 43837 ] ], [ [ 32, 38 ], [ 37987, 37993 ], [ 39898, 39904 ], [ 39950, 39956 ] ], [ [ 63, 69 ], [ 1092, 1098 ], [ 29848, 29854 ], [ 55191, 55197 ], [ 62980, 62986 ] ], [ [ 77, 97 ], [ 9402, 9407 ], [ 37609, 37614 ], [ 39564, 39569 ], [ 40538, 40543 ], [ 41100, 41105 ], [ 41319, 41324 ], [ 42932, 42937 ], [ 44118, 44123 ], [ 55100, 55105 ] ], [ [ 114, 126 ], [ 10524, 10536 ] ], [ [ 128, 137 ], [ 36933, 36942 ] ], [ [ 161, 166 ], [ 3977, 3982 ], [ 4035, 4040 ] ], [ [ 168, 172 ], [ 4096, 4100 ] ], [ [ 193, 202 ], [ 33759, 33768 ], [ 33816, 33825 ], [ 33872, 33881 ] ], [ [ 204, 209 ], [ 1844, 1849 ], [ 2536, 2541 ], [ 3844, 3849 ], [ 3891, 3896 ], [ 4010, 4015 ], [ 5390, 5395 ], [ 27316, 27321 ] ], [ [ 211, 215 ], [ 8380, 8384 ], [ 15273, 15277 ], [ 26946, 26950 ] ], [ [ 217, 220 ], [ 5306, 5309 ], [ 5722, 5725 ], [ 6122, 6125 ], [ 6607, 6610 ], [ 7012, 7015 ], [ 7751, 7754 ], [ 7889, 7892 ], [ 10228, 10231 ], [ 10244, 10247 ], [ 11095, 11098 ], [ 11761, 11764 ], [ 26658, 26661 ], [ 26674, 26677 ], [ 29507, 29510 ], [ 30551, 30554 ], [ 30567, 30570 ], [ 30581, 30584 ], [ 31160, 31163 ], [ 31551, 31554 ], [ 31567, 31570 ], [ 31850, 31853 ], [ 31866, 31869 ], [ 31905, 31908 ], [ 32521, 32524 ], [ 35009, 35012 ], [ 35738, 35741 ], [ 36479, 36482 ], [ 37069, 37072 ], [ 38730, 38733 ], [ 52274, 52277 ], [ 52603, 52606 ], [ 52845, 52848 ], [ 53128, 53131 ], [ 53374, 53377 ], [ 53654, 53657 ], [ 54218, 54221 ], [ 54695, 54698 ], [ 58041, 58044 ], [ 34969, 34972 ], [ 35354, 35357 ], [ 36094, 36097 ], [ 36758, 36761 ], [ 52474, 52477 ], [ 53018, 53021 ], [ 53533, 53536 ], [ 54089, 54092 ] ], [ [ 240, 248 ], [ 4391, 4399 ], [ 4459, 4467 ] ], [ [ 304, 323 ], [ 39475, 39494 ] ], [ [ 325, 344 ], [ 40687, 40706 ] ], [ [ 381, 396 ], [ 4149, 4164 ] ], [ [ 398, 413 ], [ 4166, 4181 ] ], [ [ 438, 447 ], [ 63273, 63282 ], [ 63331, 63340 ] ], [ [ 449, 458 ], [ 6096, 6105 ], [ 6581, 6590 ] ], [ [ 497, 510 ], [ 18184, 18197 ], [ 36248, 36261 ] ], [ [ 550, 566 ], [ 4131, 4147 ] ], [ [ 568, 573 ], [ 66301, 66306 ] ], [ [ 575, 582 ], [ 66374, 66381 ] ], [ [ 584, 591 ], [ 7254, 7261 ], [ 29955, 29962 ], [ 30438, 30445 ], [ 30969, 30976 ], [ 62819, 62826 ] ], [ [ 593, 618 ], [ 4183, 4208 ] ], [ [ 660, 665 ], [ 935, 940 ], [ 1005, 1010 ], [ 1142, 1147 ], [ 1974, 1979 ], [ 2460, 2465 ], [ 2731, 2736 ], [ 2837, 2842 ], [ 3050, 3055 ], [ 1699, 1704 ] ], [ [ 667, 670 ], [ 2118, 2121 ], [ 2365, 2368 ], [ 66088, 66091 ], [ 66154, 66157 ] ], [ [ 672, 680 ], [ 2791, 2799 ] ], [ [ 682, 692 ], [ 16458, 16468 ] ], [ [ 725, 743 ], [ 7402, 7420 ] ], [ [ 745, 748 ], [ 10572, 10575 ], [ 27747, 27750 ], [ 39340, 39343 ], [ 40439, 40442 ], [ 40909, 40912 ], [ 41226, 41229 ], [ 42882, 42885 ], [ 44002, 44005 ], [ 47661, 47664 ], [ 48820, 48823 ], [ 51816, 51819 ], [ 52091, 52094 ] ], [ [ 782, 791 ], [ 837, 846 ] ], [ [ 814, 818 ] ], [ [ 900, 933 ], [ 4236, 4269 ] ], [ [ 4113, 4129 ], [ 4319, 4335 ] ] ]
#=============================================================================== # Copyright 2020-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py KNN classification scikit-learn-compatible classes from ._base import NeighborsBase, KNeighborsMixin from ._base import parse_auto_method, prediction_algorithm from sklearn.base import ClassifierMixin as BaseClassifierMixin from .._utils import ( getFPType, sklearn_check_version, get_patch_message, PatchingConditionsChain) from .._device_offload import support_usm_ndarray from sklearn.utils.validation import check_array import numpy as np from scipy import sparse as sp import logging if sklearn_check_version("0.22"): from sklearn.neighbors._classification import KNeighborsClassifier as \ BaseKNeighborsClassifier from sklearn.neighbors._base import _check_weights from sklearn.utils.validation import _deprecate_positional_args else: from sklearn.neighbors.classification import KNeighborsClassifier as \ BaseKNeighborsClassifier from sklearn.neighbors.base import _check_weights def _deprecate_positional_args(f): return f def daal4py_classifier_predict(estimator, X, base_predict): if sklearn_check_version('1.0'): estimator._check_feature_names(X, reset=False) X = check_array(X, accept_sparse='csr', dtype=[np.float64, np.float32]) daal_model = getattr(estimator, '_daal_model', None) n_features = getattr(estimator, 'n_features_in_', None) shape = getattr(X, 'shape', None) if n_features and shape and len(shape) > 1 and shape[1] != n_features: raise ValueError((f'X has {X.shape[1]} features, ' f'but KNNClassifier is expecting ' f'{n_features} features as input')) try: fptype = getFPType(X) except ValueError: fptype = None _patching_status = PatchingConditionsChain( "sklearn.neighbors.KNeighborsClassifier.predict") _dal_ready = _patching_status.and_conditions([ (daal_model is not None, "oneDAL model was not trained."), (fptype is not None, "Unable to get dtype."), (not sp.issparse(X), "X is sparse. Sparse input is not supported.")]) _patching_status.write_log() if _dal_ready: params = { 'method': 'defaultDense', 'k': estimator.n_neighbors, 'nClasses': len(estimator.classes_), 'voteWeights': 'voteUniform' if estimator.weights == 'uniform' else 'voteDistance', 'resultsToEvaluate': 'computeClassLabels', 'resultsToCompute': '' } method = parse_auto_method( estimator, estimator.algorithm, estimator.n_samples_fit_, n_features) predict_alg = prediction_algorithm(method, fptype, params) prediction_result = predict_alg.compute(X, daal_model) result = estimator.classes_.take( np.asarray(prediction_result.prediction.ravel(), dtype=np.intp)) else: result = base_predict(estimator, X) return result if sklearn_check_version("0.24"): class KNeighborsClassifier_(KNeighborsMixin, BaseClassifierMixin, NeighborsBase): @_deprecate_positional_args def __init__(self, n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs): super().__init__( n_neighbors=n_neighbors, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs) self.weights = \ weights if sklearn_check_version("1.0") else _check_weights(weights) elif sklearn_check_version("0.22"): from sklearn.neighbors._base import SupervisedIntegerMixin as \ BaseSupervisedIntegerMixin class KNeighborsClassifier_(NeighborsBase, KNeighborsMixin, BaseSupervisedIntegerMixin, BaseClassifierMixin): @_deprecate_positional_args def __init__(self, n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs): super().__init__( n_neighbors=n_neighbors, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs) self.weights = _check_weights(weights) else: from sklearn.neighbors.base import SupervisedIntegerMixin as \ BaseSupervisedIntegerMixin class KNeighborsClassifier_(NeighborsBase, KNeighborsMixin, BaseSupervisedIntegerMixin, BaseClassifierMixin): @_deprecate_positional_args def __init__(self, n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs): super().__init__( n_neighbors=n_neighbors, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs) self.weights = _check_weights(weights) class KNeighborsClassifier(KNeighborsClassifier_): @_deprecate_positional_args def __init__(self, n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs): super().__init__( n_neighbors=n_neighbors, weights=weights, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs) @support_usm_ndarray() def fit(self, X, y): return NeighborsBase._fit(self, X, y) @support_usm_ndarray() def predict(self, X): return daal4py_classifier_predict(self, X, BaseKNeighborsClassifier.predict) @support_usm_ndarray() def predict_proba(self, X): if sklearn_check_version('1.0'): self._check_feature_names(X, reset=False) return BaseKNeighborsClassifier.predict_proba(self, X)
[ [ [ 830, 843 ], [ 3795, 3808 ], [ 4612, 4625 ], [ 5433, 5446 ], [ 6734, 6747 ] ], [ [ 845, 860 ], [ 3757, 3772 ], [ 4627, 4642 ], [ 5448, 5463 ] ], [ [ 880, 897 ], [ 3266, 3283 ] ], [ [ 899, 919 ], [ 3389, 3409 ] ], [ [ 945, 983 ], [ 3774, 3793 ], [ 4704, 4723 ], [ 5525, 5544 ] ], [ [ 1011, 1020 ], [ 2426, 2435 ] ], [ [ 1026, 1047 ], [ 1269, 1290 ], [ 3694, 3715 ], [ 4445, 4466 ], [ 1826, 1847 ], [ 4382, 4403 ], [ 6975, 6996 ] ], [ [ 1053, 1070 ] ], [ [ 1076, 1099 ], [ 2508, 2531 ] ], [ [ 1131, 1150 ], [ 6672, 6691 ], [ 6771, 6790 ], [ 6910, 6929 ] ], [ [ 1188, 1199 ], [ 1919, 1930 ] ], [ [ 1207, 1218 ], [ 1962, 1964 ], [ 1974, 1976 ], [ 3551, 3553 ], [ 3606, 3608 ] ], [ [ 1237, 1249 ], [ 2776, 2778 ] ], [ [ 1257, 1264 ] ], [ [ 1350, 1408 ], [ 6870, 6894 ], [ 7074, 7098 ] ], [ [ 1449, 1463 ], [ 4416, 4430 ], [ 5268, 5282 ], [ 6089, 6103 ] ], [ [ 1505, 1531 ], [ 3820, 3846 ], [ 4735, 4761 ], [ 5556, 5582 ], [ 6171, 6197 ] ], [ [ 1587, 1645 ], [ 6870, 6894 ], [ 7074, 7098 ] ], [ [ 1685, 1699 ], [ 4416, 4430 ], [ 5268, 5282 ], [ 6089, 6103 ] ], [ [ 1709, 1735 ], [ 3820, 3846 ], [ 4735, 4761 ], [ 5556, 5582 ], [ 6171, 6197 ] ], [ [ 1763, 1789 ], [ 6834, 6860 ] ], [ [ 3735, 3756 ], [ 6142, 6163 ] ], [ [ 4516, 4578 ], [ 4676, 4702 ] ], [ [ 4590, 4611 ], [ 6142, 6163 ] ], [ [ 5337, 5399 ], [ 5497, 5523 ] ], [ [ 5411, 5432 ], [ 6142, 6163 ] ], [ [ 6121, 6141 ] ] ]
''' Created by auto_sdk on 2020.08.19 ''' from dingtalk.api.base import RestApi class OapiAtsChannelAccountAddRequest(RestApi): def __init__(self,url=None): RestApi.__init__(self,url) self.biz_code = None self.channel_user_identify = None self.userid = None def getHttpMethod(self): return 'POST' def getapiname(self): return 'dingtalk.oapi.ats.channel.account.add'
[ [ [ 72, 79 ], [ 118, 125 ], [ 160, 167 ] ], [ [ 86, 117 ] ] ]
#!/usr/bin/python3 """ Unit Test for api v1 Flask App """ import inspect import pep8 import web_flask import unittest from os import stat web_flask = __import__('web_flask.2-c_route', globals(), locals(), ['*']) class TestCRouteDocs(unittest.TestCase): """Class for testing Hello Route docs""" all_funcs = inspect.getmembers(web_flask, inspect.isfunction) @classmethod def setUpClass(cls): print('\n\n.................................') print('..... Testing Documentation .....') print('............ C Route ...........') print('.................................\n\n') def test_doc_file(self): """... documentation for the file""" actual = web_flask.__doc__ self.assertIsNotNone(actual) def test_all_function_docs(self): """... tests for ALL DOCS for all functions""" all_functions = TestCRouteDocs.all_funcs for function in all_functions: self.assertIsNotNone(function[1].__doc__) def test_pep8(self): """... tests if file conforms to PEP8 Style""" pep8style = pep8.StyleGuide(quiet=True) errors = pep8style.check_files(['web_flask/2-c_route.py']) self.assertEqual(errors.total_errors, 0, errors.messages) def test_file_is_executable(self): """... tests if file has correct permissions so user can execute""" file_stat = stat('web_flask/2-c_route.py') permissions = str(oct(file_stat[0])) actual = int(permissions[5:-2]) >= 5 self.assertTrue(actual) if __name__ == '__main__': """ MAIN TESTS """ unittest.main
[ [ [ 65, 72 ], [ 317, 324 ], [ 347, 354 ] ], [ [ 80, 84 ], [ 1106, 1110 ] ], [ [ 92, 101 ] ], [ [ 109, 117 ], [ 235, 243 ], [ 1620, 1628 ] ], [ [ 133, 137 ], [ 1403, 1407 ] ], [ [ 138, 147 ], [ 336, 345 ], [ 714, 723 ] ], [ [ 220, 234 ], [ 887, 901 ] ] ]
from genologics.lims import Lims from genologics.config import BASEURI, USERNAME, PASSWORD from multiqc.utils import report, config from multiqc.modules.base_module import BaseMultiqcModule from multiqc.plots import table from collections import OrderedDict import logging import re class MultiQC_clarity_metadata(BaseMultiqcModule): def __init__(self): self.log = logging.getLogger('multiqc') # Check that this plugin hasn't been disabled if config.kwargs.get('disable_clarity', False) is True: self.log.info("Skipping MultiQC_Clarity as disabled on command line") return None if getattr(config, 'disable_clarity', False) is True: self.log.debug("Skipping MultiQC_Clarity as specified in config file") return None super(MultiQC_clarity_metadata, self).__init__(name='Clarity LIMS', anchor='clarity') self.intro = '''<p>The <a href="https://github.com/MultiQC/MultiQC_Clarity" target="_blank">MultiQC_Clarity</a> plugin fetches data from a specified <a href="https://www.genologics.com/clarity-lims/" target="_blank">Basespace Clarity LIMS</a> instance.</p>''' self.lims = Lims(BASEURI, USERNAME, PASSWORD) self.metadata = {} self.header_metadata = {} self.general_metadata = {} self.tab_metadata = {} self.samples = [] self.schema = getattr(config, 'clarity', None) if self.schema is None: self.log.debug("No config found for MultiQC_Clarity") return None self.name_edit_regex = self.schema.get("name_edit_regex") self.get_samples() self.get_metadata('report_header_info') self.get_metadata('general_stats') self.get_metadata('clarity_module') self.update_multiqc_report() self.make_sections() report.modules_output.append(self) def get_samples(self): if config.kwargs.get('clarity_project'): pj = self.lims.get_projects(name=config.kwargs['clarity_project']) if len(pj) > 1: self.log.error("Found multiple match projects in Clarity.") elif len(pj) < 1: self.log.error("Could not identify project in Clarity.") else: self.samples = self.lims.get_samples(projectlimsid=pj[0].id) else: names = set() for x in report.general_stats_data: names.update(x.keys()) for d in report.saved_raw_data.values(): try: self.names.update(d.keys()) except AttributeError: pass if not config.kwargs.get('clarity_skip_edit_names'): names = self.edit_names(names) self.log.info("Looking into Clarity for samples {}".format(", ".join(names))) found = 0 try: for name in names: matching_samples = self.lims.get_samples(name=name) if not matching_samples: self.log.error("Could not find a sample matching {0}, skipping.".format(name)) continue if len(matching_samples) > 1: self.log.error("Found multiple samples matching {0}, skipping".format(name)) continue found += 1 self.samples.append(matching_samples[0]) except Exception as e: self.log.warn("Could not connect to Clarity LIMS: {}".format(e)) return None self.log.info("Found {} out of {} samples in LIMS.".format(found, len(names))) def edit_names(self, names): if self.name_edit_regex: return self.edit_names_with_regex(names) edited=[] for name in names: if name.endswith("_1") or name.endswith("_2"): edited.append(name[:-2]) elif name.endswith("_R1") or name.endswith("_R2"): edited.append(name[:-3]) else: edited.append(name) return edited def edit_names_with_regex(self, names): edited = [] for name in names: matches = re.search(re.compile(self.name_edit_regex), name) edited.append(matches.group(1)) return edited def flatten_metadata(self, metadata): for first_level in metadata: for second_level in metadata[first_level]: if isinstance(metadata[first_level][second_level], set) or isinstance(metadata[first_level][second_level], list): metadata[first_level][second_level] = ", ".join(metadata[first_level][second_level]) return metadata def get_project_metadata(self, udfs): project_metadata={} for sample in self.samples: project_metadata[sample.project.name]={} for udf in udfs: if udf in sample.project.udf: try: project_metadata[sample.project.name][udf].add(str(sample.project.udf[udf])) except: project_metadata[sample.project.name][udf] = set() project_metadata[sample.project.name][udf].add(str(sample.project.udf[udf])) return self.flatten_metadata(project_metadata) def get_sample_metadata(self, udfs): sample_metadata={} for sample in self.samples: sample_metadata[sample.name]={} for udf in udfs: if udf in sample.udf: try: sample_metadata[sample.name][udf].add(str(sample.udf[udf])) except: sample_metadata[sample.name][udf] = set() sample_metadata[sample.name][udf].add(str(sample.udf[udf])) return self.flatten_metadata(sample_metadata) def get_metadata(self, part): for key in self.schema[part]: if key == 'Project': metadata = self.get_project_metadata(self.schema[part]['Project']) elif key == 'Sample': metadata =self.get_sample_metadata(self.schema[part]['Sample']) else: metadata = self.get_artifact_metadata(self.schema[part]) if part == "report_header_info": self.header_metadata.update(metadata) elif part == "general_stats": self.general_metadata.update(metadata) else: self.tab_metadata.update(metadata) def get_artifact_metadata(self, pt_to_udfs): artifact_metadata={} for sample in self.samples: artifact_metadata[sample.name]={} for process_type in pt_to_udfs: if process_type == 'Sample': continue if process_type == 'Project': continue artifacts = self.lims.get_artifacts(sample_name=sample.name, process_type=process_type) for udf_name in pt_to_udfs[process_type].get("outputs", []): values = [] for artifact in artifacts: if udf_name in artifact.udf: values.append(str(artifact.udf[udf_name])) artifact_metadata[sample.name][udf_name]=values processes = set([art.parent_process for art in artifacts]) inputs=[] for p in processes: inputs.extend([art for art in p.all_inputs() if sample.name in [s.name for s in art.samples]]) for udf_name in pt_to_udfs[process_type].get("inputs", []): values = [] for artifact in inputs: if udf_name in artifact.udf: values.append(str(artifact.udf[udf_name])) artifact_metadata[sample.name][udf_name]=values return self.flatten_metadata(artifact_metadata) def update_multiqc_report(self): if config.report_header_info is None: config.report_header_info = [] for first_level in self.header_metadata: d = {} for key in self.header_metadata[first_level]: d[key] = self.header_metadata[first_level][key] config.report_header_info.append(d) headers = {} for first_level in self.schema["general_stats"]: for header in self.schema["general_stats"][first_level]: headers[header] = {} if isinstance(self.schema["general_stats"][first_level][header], dict): for subsubkey, cfg in self.schema["general_stats"][first_level][header].items(): if subsubkey == 'multiply_by': mby = str(cfg)[:] headers[header]['modify'] = lambda x: float(x) * float(mby) else: headers[header][subsubkey] = cfg headers[header]['description'] = headers[header].get('description', '{} - {}'.format(first_level, header)) headers[header]['namespace'] = headers[header].get('namespace', 'Clarity LIMS') headers[header]['scale'] = headers[header].get('scale', 'YlGn') report.general_stats_headers.append(headers) report.general_stats_data.append(self.general_metadata) def make_sections(self): headers = OrderedDict() for first_level in self.tab_metadata: for header in self.tab_metadata[first_level]: desc = header if header not in headers: headers[header] = {} for key in self.schema['clarity_module']: if header in self.schema['clarity_module'][key]: desc = key elif isinstance(self.schema['clarity_module'][key], dict): for subkey, val in self.schema['clarity_module'][key].items(): # print(val) if val is None: break elif header in val: desc = key if isinstance(val[header], dict): for subsubkey, cfg in val[header].items(): if subsubkey == 'multiply_by': mby = str(cfg)[:] headers[header]['modify'] = lambda x: float(x) * float(mby) else: headers[header][subsubkey] = cfg headers[header]['namespace'] = headers[header].get('namespace', desc) headers[header]['title'] = headers[header].get('title', header) headers[header]['description'] = headers[header].get('description', header) self.intro += table.plot(self.tab_metadata, headers)
[ [ [ 29, 33 ], [ 1214, 1218 ] ], [ [ 64, 71 ], [ 1219, 1226 ] ], [ [ 73, 81 ], [ 1228, 1236 ] ], [ [ 83, 91 ], [ 1238, 1246 ] ], [ [ 119, 125 ], [ 1883, 1889 ], [ 2438, 2444 ], [ 2525, 2531 ], [ 9435, 9441 ], [ 9488, 9494 ] ], [ [ 127, 133 ], [ 477, 483 ], [ 655, 661 ], [ 1432, 1438 ], [ 1958, 1964 ], [ 2041, 2047 ], [ 2709, 2715 ], [ 8157, 8163 ], [ 8204, 8210 ], [ 8437, 8443 ] ], [ [ 174, 191 ], [ 318, 335 ] ], [ [ 218, 223 ], [ 11232, 11237 ] ], [ [ 249, 260 ], [ 9592, 9603 ] ], [ [ 268, 275 ], [ 382, 389 ] ], [ [ 283, 285 ], [ 4293, 4295 ], [ 4303, 4305 ] ], [ [ 293, 317 ], [ 820, 844 ] ] ]
#!/usr/bin/env python # -*- coding: utf-8 -*- from setuptools import setup with open("README.rst", "rt") as inf: readme = inf.read() ver_dic = {} with open("cgen/version.py") as version_file: version_file_contents = version_file.read() exec(compile(version_file_contents, "cgen/version.py", 'exec'), ver_dic) setup( name="cgen", version=ver_dic["VERSION_TEXT"], description="C/C++ source generation from an AST", long_description=readme, classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Other Audience', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python', 'Topic :: Scientific/Engineering', 'Topic :: Software Development :: Libraries', 'Topic :: Utilities', ], author="Andreas Kloeckner", author_email="inform@tiker.net", license="MIT", url="http://documen.tician.de/cgen/", packages=["cgen"], python_requires="~=3.6", install_requires=[ "pytools>=2015.1.2", "numpy>=1.6", ])
[ [ [ 70, 75 ], [ 322, 327 ] ], [ [ 110, 113 ], [ 128, 131 ] ], [ [ 119, 125 ], [ 475, 481 ] ], [ [ 140, 147 ], [ 312, 319 ], [ 366, 373 ] ], [ [ 185, 197 ], [ 227, 239 ] ], [ [ 203, 224 ], [ 261, 282 ] ] ]
# Copyright 2008-2015 Nokia Networks # Copyright 2016- Robot Framework Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pkg_resources import parse_version def cmp_versions(version1, version2): if version1 is None: if version2 is None: return 0 else: return -1 if version2 is None: return 1 if parse_version(version1) == parse_version(version2): return 0 elif parse_version(version1) > parse_version(version2): return 1 return -1
[ [ [ 670, 683 ], [ 884, 897 ], [ 911, 924 ], [ 962, 975 ], [ 988, 1001 ] ], [ [ 690, 702 ] ] ]
import cv2 import numpy as np import time ''' TEST FILE using 1000, 1000 output image. Actual code will have an output image of 200,200, which also means a different homography ''' #recalculated homography # homography_front = np.array([[3.12570133882145e-05, 0.000286172662353515, -0.680179732686621], # [0.000967963380750764,-0.00220708598330688,-0.733040431894039], # [9.31003590466217e-08,-7.28146482745869e-06,-0.00116847956395974]]) # homography_left = np.array([[-0.000710128671370178, 6.65307627276203e-05, -0.0692689783742822], # [0.000516381003921171, -0.00181011134155597, -0.997595526929844], # [-2.51074118905076e-08, -6.83854860981181e-06, -0.000959883483255739]]) # homography_right = np.array([[-0.000926831714971124,-7.57332958427531e-05,0.994215703860414], # [-0.000923137149283102,0.00327126641381199,0.107337667969103], # [-2.77833313194565e-07,1.03110471009649e-05,0.00115801865068319]]) # Original homography_front = np.array([[4.62227601649053e-05, 0.000243520884225642, -0.678748083960862], [0.000969465596108860, -0.00207033488113324, -0.734366621126640], [1.58512860546350e-07, -6.83048800828728e-06, -0.00119023476366804]]) homography_left = np.array([[-0.000759672412515488, 2.34075591542924e-05, -0.0699936817773495], [0.000483107853918350, -0.00189886717269873, -0.997544805245074], [-1.49265515027449e-07, -7.08702713960990e-06, -0.000910631508297557]]) homography_right = np.array([[-0.000908962187561903, -3.67579540055241e-05, 0.994837127281325], [-0.000886484342219692, 0.00317263543314027, 0.101420799019439], [-1.14460320494404e-07, 9.99234254412552e-06, 0.00111021419224332]]) #LARGER RANGE OF VIEW translation = np.array([[1, 0, 0],[0,1,100],[0,0,1]]) def warp_image(image, homography): im_out = cv2.warpPerspective(image, np.matmul(translation,homography), (600, 800)) # cv2.imshow('warped', im_out) # cv2.waitKey(0) #cv2.imshow('image', im_out) return im_out def left_hom(image): im_out = cv2.warp # Create mask of front image. im_mask indicates black pixel area def find_mask(image): black_range1 = np.array([0,0,0]) im_mask = (cv2.inRange(image, black_range1, black_range1)).astype('bool') im_mask_inv = (1-im_mask).astype('bool') im_mask_inv = np.dstack((im_mask_inv, im_mask_inv, im_mask_inv)) im_mask= np.dstack((im_mask, im_mask, im_mask)) return im_mask_inv, im_mask if __name__ == "__main__": count = 0 while True: img_front = cv2.imread('../collected_images/5/center/'+ str(count)+'.jpg') img_left = cv2.imread('../collected_images/5/left/'+ str(count)+'.jpg') img_right = cv2.imread('../collected_images/5/right/'+ str(count)+'.jpg') im_front = warp_image(img_front, homography_front).astype('uint8') im_left = warp_image(img_left, homography_left).astype('uint8') im_right = warp_image(img_right, homography_right).astype('uint8') init_time = time.time() im_side = im_left + im_right im_mask_inv, im_mask = find_mask(im_side) front_masked = np.multiply(im_front, im_mask).astype('uint8') side_masked = np.multiply(im_side, im_mask_inv).astype('uint8') print("Masking Time: ", time.time()-init_time) summed_image = front_masked + side_masked #Gaussian Blurring? #summed_image = cv2.GaussianBlur(summed_image, (5,5), 0) # cv2.imshow('front', front_masked) # cv2.imshow('left', im_left) # cv2.imshow('right', im_right) # cv2.imshow('front', im_front) cv2.imshow('summed', summed_image) cv2.imwrite('../collected_images/5/mosaic_full/'+str(count) + '.jpg', summed_image) #summed_image_cropped = summed_image[200:800, :500, :] print("Time elapsed: ", (time.time() - init_time)) #cv2.imshow('summed cropped', summed_image_cropped) count +=1 k = cv2.waitKey(1) & 0xFF if k == 27: break
[ [ [ 7, 10 ], [ 2526, 2529 ], [ 2608, 2611 ], [ 2689, 2692 ], [ 3605, 3608 ], [ 3649, 3652 ], [ 3946, 3949 ], [ 1822, 1825 ], [ 2038, 2041 ], [ 2187, 2190 ] ], [ [ 18, 29 ], [ 994, 996 ], [ 1233, 1235 ], [ 1477, 1479 ], [ 1733, 1735 ], [ 3118, 3120 ], [ 3187, 3189 ], [ 1849, 1851 ], [ 2154, 2156 ], [ 2313, 2315 ], [ 2377, 2379 ] ], [ [ 37, 41 ], [ 2996, 3000 ], [ 3269, 3273 ], [ 3829, 3833 ] ], [ [ 975, 991 ], [ 2794, 2810 ] ], [ [ 1215, 1230 ], [ 2867, 2882 ] ], [ [ 1458, 1474 ], [ 2941, 2957 ] ], [ [ 1719, 1730 ], [ 1859, 1870 ] ], [ [ 1778, 1788 ], [ 2772, 2782 ], [ 2846, 2856 ], [ 2919, 2929 ] ], [ [ 2008, 2016 ] ], [ [ 2117, 2126 ], [ 3076, 3085 ] ], [ [ 2480, 2485 ], [ 2574, 2579 ], [ 2654, 2659 ], [ 2736, 2741 ], [ 3702, 3707 ], [ 3924, 3929 ] ], [ [ 2514, 2523 ], [ 2783, 2792 ] ], [ [ 2597, 2605 ], [ 2857, 2865 ] ], [ [ 2677, 2686 ], [ 2930, 2939 ] ], [ [ 2761, 2769 ], [ 3130, 3138 ] ], [ [ 2836, 2843 ], [ 3026, 3033 ] ], [ [ 2908, 2916 ], [ 3036, 3044 ] ], [ [ 2984, 2993 ], [ 3281, 3290 ], [ 3843, 3852 ] ], [ [ 3016, 3023 ], [ 3086, 3093 ], [ 3199, 3206 ] ], [ [ 3053, 3064 ], [ 3208, 3219 ] ], [ [ 3066, 3073 ], [ 3140, 3147 ] ], [ [ 3103, 3115 ], [ 3315, 3327 ] ], [ [ 3173, 3184 ], [ 3330, 3341 ] ], [ [ 3300, 3312 ], [ 3626, 3638 ], [ 3719, 3731 ] ], [ [ 3942, 3943 ], [ 3979, 3980 ] ] ]
from flask_wtf import Form from wtforms import TextField, PasswordField from wtforms.validators import (Required, Length, Email, ValidationError, EqualTo) from app.models import User class Unique(object): ''' Custom validator to check an object's attribute is unique. For example users should not be able to create an account if the account's email address is already in the database. This class supposes you are using SQLAlchemy to query the database. ''' def __init__(self, model, field, message): self.model = model self.field = field self.message = message def __call__(self, form, field): check = self.model.query.filter(self.field == field.data).first() if check: raise ValidationError(self.message) class Forgot(Form): ''' User forgot password form. ''' email = TextField(validators=[Required(), Email()], description='Email address') class Resend(Form): ''' User forgot password form. ''' email = TextField(validators=[Required(), Email()], description='Email address') class Reset(Form): ''' User reset password form. ''' password = PasswordField(validators=[ Required(), Length(min=6), EqualTo('confirm', message='Passwords must match.') ], description='Password') confirm = PasswordField(description='Confirm password') class Login(Form): ''' User login form. ''' email = TextField(validators=[Required(), Email()], description='Email address') password = PasswordField(validators=[Required()], description='Password') class SignUp(Form): ''' User sign up form. ''' first_name = TextField(validators=[Required(), Length(min=2)], description='Name') last_name = TextField(validators=[Required(), Length(min=2)], description='Surname') email = TextField(validators=[Required(), Email(), Unique(User, User.email, 'This email address is ' + 'already linked to an account.')], description='Email address') password = PasswordField(validators=[ Required(), Length(min=6), EqualTo('confirm', message='Passwords must match.') ], description='Password') confirm = PasswordField(description='Confirm password')
[ [ [ 22, 26 ], [ 850, 854 ], [ 1020, 1024 ], [ 1189, 1193 ], [ 1478, 1482 ], [ 1745, 1749 ] ], [ [ 47, 56 ], [ 910, 919 ], [ 1080, 1089 ], [ 1528, 1537 ], [ 1802, 1811 ], [ 1909, 1918 ], [ 2018, 2027 ] ], [ [ 58, 71 ], [ 1251, 1264 ], [ 1418, 1431 ], [ 1638, 1651 ], [ 2330, 2343 ], [ 2497, 2510 ] ], [ [ 104, 112 ], [ 932, 940 ], [ 1102, 1110 ], [ 1286, 1294 ], [ 1550, 1558 ], [ 1664, 1672 ], [ 1824, 1832 ], [ 1931, 1939 ], [ 2040, 2048 ], [ 2365, 2373 ] ], [ [ 114, 120 ], [ 1298, 1304 ], [ 1836, 1842 ], [ 1943, 1949 ], [ 2377, 2383 ] ], [ [ 122, 127 ], [ 944, 949 ], [ 1114, 1119 ], [ 1562, 1567 ], [ 2052, 2057 ] ], [ [ 129, 144 ], [ 805, 820 ] ], [ [ 178, 185 ], [ 1321, 1328 ], [ 2400, 2407 ] ], [ [ 210, 214 ], [ 2102, 2106 ], [ 2108, 2112 ] ], [ [ 223, 229 ], [ 2095, 2101 ] ], [ [ 843, 849 ] ], [ [ 1013, 1019 ] ], [ [ 1183, 1188 ] ], [ [ 1472, 1477 ] ], [ [ 1738, 1744 ] ] ]
# Call Domain api here
[]
#! /usr/bin/env python3 # # makesedonac.py # # Compile sedonac.jar # # Author: Brian Frank # Creation: 7 Dec 07 # from __future__ import print_function import os import env import compilejar depends = [env.sedonaJar] srcDir = os.path.join(env.src, "sedonac", "src") jarFile = env.sedonacJar packages = [ "sedonac", "sedonac.analysis", "sedonac.asm", "sedonac.ast", "sedonac.gen", "sedonac.ir", "sedonac.namespace", "sedonac.parser", "sedonac.platform", "sedonac.scode", "sedonac.steps", "sedonac.test", "sedonac.translate", "sedonac.util", ] # Make def compile(): try: compilejar.compile(srcDir, depends, packages, jarFile) except env.BuildError: print("**") print("** FAILED [" + jarFile + "]") print("**") return 1 # Main if __name__ == '__main__': compile()
[ [ [ 147, 161 ] ], [ [ 169, 171 ], [ 248, 250 ] ], [ [ 179, 182 ], [ 223, 226 ], [ 261, 264 ], [ 298, 301 ], [ 691, 694 ] ], [ [ 190, 200 ], [ 627, 637 ] ], [ [ 212, 219 ], [ 654, 661 ] ], [ [ 238, 244 ], [ 646, 652 ] ], [ [ 288, 295 ], [ 673, 680 ], [ 749, 756 ] ], [ [ 313, 321 ], [ 663, 671 ] ], [ [ 605, 612 ], [ 835, 842 ] ] ]
from edsa_packages import recursion, sorting #Recursion tests def test_sum_array(): ''' Make sure sum_array works ''' assert recursion.sum_array([8, 3, 2, 7, 4]) == 24, 'incorrect' assert recursion.sum_array([5, 7, 8, 8, 6, 3, 4]) == 41, 'incorrect' assert recursion.sum_array([25, 14, 2, 3, 5]) == 49, 'incorrect' def test_fibonacci(): ''' Make sure fibonacci works ''' assert recursion.fibonacci(8) == 22, 'incorrect' assert recursion.fibonacci(10) == 55, 'incorrect' assert recursion.fibonacci(5) == 5, 'incorrect' def test_factorial(): ''' Make sure factorial works ''' assert recursion.factorial(4) == 24, 'incorrect' assert recursion.factorial(8) == 40320, 'incorrect' assert recursion.factorial(3) == 6, 'incorrect' def test_reverse(): ''' Make sure reverse works ''' assert recursion.reverse('apple') == 'elppa', 'incorrect' assert recursion.reverse('test') == 'tset', 'incorrect' assert recursion.reverse('peanut') == 'tunaep', 'incorrect' #Sorting tests def test_bubble_sort(): ''' Make sure bubble_sort works ''' assert sorting.bubble_sort(['apple', 'pear', 'orange', 'pineapple', 'strawberry', 'lemon']) == ['apple', 'lemon', 'orange', 'pear', 'pineapple', 'strawberry'], 'incorrect' assert sorting.bubble_sort(['horse', 'cat', 'aardvark', 'dog', 'fish', 'bird']) == ['aardvark', 'bird', 'cat', 'dog', 'fish', 'horse'], 'incorrect' assert sorting.bubble_sort(['Ford', 'Mitsubishi', 'BMW', 'VW']) == ['BMW', 'Ford', 'Mitsubishi', 'VW'], 'incorrect' def test_merge_sort(): ''' Make sure merge_sort works ''' assert sorting.merge_sort(['apple', 'pear', 'orange', 'pineapple', 'strawberry', 'lemon']) == ['apple', 'lemon', 'orange', 'pear', 'pineapple', 'strawberry'], 'incorrect' assert sorting.merge_sort(['horse', 'cat', 'aardvark', 'dog', 'fish', 'bird']) == ['aardvark', 'bird', 'cat', 'dog', 'fish', 'horse'], 'incorrect' assert sorting.merge_sort(['Ford', 'Mitsubishi', 'BMW', 'VW']) == ['BMW', 'Ford', 'Mitsubishi', 'VW'], 'incorrect' def test_quick_sort(): ''' Make sure quick_sort works ''' assert sorting.quick_sort(['apple', 'pear', 'orange', 'pineapple', 'strawberry', 'lemon']) == ['apple', 'lemon', 'orange', 'pear', 'pineapple', 'strawberry'], 'incorrect' assert sorting.quick_sort(['horse', 'cat', 'aardvark', 'dog', 'fish', 'bird']) == ['aardvark', 'bird', 'cat', 'dog', 'fish', 'horse'], 'incorrect' assert sorting.quick_sort(['Ford', 'Mitsubishi', 'BMW', 'VW']) == ['BMW', 'Ford', 'Mitsubishi', 'VW'], 'incorrect'
[ [ [ 26, 35 ], [ 143, 152 ], [ 210, 219 ], [ 283, 292 ], [ 421, 430 ], [ 474, 483 ], [ 528, 537 ], [ 649, 658 ], [ 702, 711 ], [ 758, 767 ], [ 875, 884 ], [ 937, 946 ], [ 997, 1006 ] ], [ [ 37, 44 ], [ 1150, 1157 ], [ 1326, 1333 ], [ 1478, 1485 ], [ 1669, 1676 ], [ 1844, 1851 ], [ 1995, 2002 ], [ 2185, 2192 ], [ 2360, 2367 ], [ 2511, 2518 ] ], [ [ 68, 82 ] ], [ [ 346, 360 ] ], [ [ 574, 588 ] ], [ [ 804, 816 ] ], [ [ 1071, 1087 ] ], [ [ 1592, 1607 ] ], [ [ 2108, 2123 ] ] ]
# Copyright 2013 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import logging from hashlib import sha1 import hmac import base64 import datetime from awscli.compat import six from awscli.arguments import CustomArgument logger = logging.getLogger('ec2bundleinstance') # This customization adds the following scalar parameters to the # bundle-instance operation: # --bucket: BUCKET_DOCS = ('The bucket in which to store the AMI. ' 'You can specify a bucket that you already own or ' 'a new bucket that Amazon EC2 creates on your behalf. ' 'If you specify a bucket that belongs to someone else, ' 'Amazon EC2 returns an error.') # --prefix: PREFIX_DOCS = ('The prefix for the image component names being stored ' 'in Amazon S3.') # --owner-akid OWNER_AKID_DOCS = 'The access key ID of the owner of the Amazon S3 bucket.' # --policy POLICY_DOCS = ( "An Amazon S3 upload policy that gives " "Amazon EC2 permission to upload items into Amazon S3 " "on the user's behalf. If you provide this parameter, " "you must also provide " "your secret access key, so we can create a policy " "signature for you (the secret access key is not passed " "to Amazon EC2). If you do not provide this parameter, " "we generate an upload policy for you automatically. " "For more information about upload policies see the " "sections about policy construction and signatures in the " '<a href="http://docs.aws.amazon.com/AmazonS3/latest/dev' '/HTTPPOSTForms.html">' 'Amazon Simple Storage Service Developer Guide</a>.') # --owner-sak OWNER_SAK_DOCS = ('The AWS secret access key for the owner of the ' 'Amazon S3 bucket specified in the --bucket ' 'parameter. This parameter is required so that a ' 'signature can be computed for the policy.') def _add_params(argument_table, **kwargs): # Add the scalar parameters and also change the complex storage # param to not be required so the user doesn't get an error from # argparse if they only supply scalar params. storage_arg = argument_table['storage'] storage_arg.required = False arg = BundleArgument(storage_param='Bucket', name='bucket', help_text=BUCKET_DOCS) argument_table['bucket'] = arg arg = BundleArgument(storage_param='Prefix', name='prefix', help_text=PREFIX_DOCS) argument_table['prefix'] = arg arg = BundleArgument(storage_param='AWSAccessKeyId', name='owner-akid', help_text=OWNER_AKID_DOCS) argument_table['owner-akid'] = arg arg = BundleArgument(storage_param='_SAK', name='owner-sak', help_text=OWNER_SAK_DOCS) argument_table['owner-sak'] = arg arg = BundleArgument(storage_param='UploadPolicy', name='policy', help_text=POLICY_DOCS) argument_table['policy'] = arg def _check_args(parsed_args, **kwargs): # This function checks the parsed args. If the user specified # the --ip-permissions option with any of the scalar options we # raise an error. logger.debug(parsed_args) arg_dict = vars(parsed_args) if arg_dict['storage']: for key in ('bucket', 'prefix', 'owner_akid', 'owner_sak', 'policy'): if arg_dict[key]: msg = ('Mixing the --storage option ' 'with the simple, scalar options is ' 'not recommended.') raise ValueError(msg) POLICY = ('{{"expiration": "{expires}",' '"conditions": [' '{{"bucket": "{bucket}"}},' '{{"acl": "ec2-bundle-read"}},' '["starts-with", "$key", "{prefix}"]' ']}}' ) def _generate_policy(params): # Called if there is no policy supplied by the user. # Creates a policy that provides access for 24 hours. delta = datetime.timedelta(hours=24) expires = datetime.datetime.utcnow() + delta expires_iso = expires.strftime("%Y-%m-%dT%H:%M:%S.%fZ") policy = POLICY.format(expires=expires_iso, bucket=params['Bucket'], prefix=params['Prefix']) params['UploadPolicy'] = policy def _generate_signature(params): # If we have a policy and a sak, create the signature. policy = params.get('UploadPolicy') sak = params.get('_SAK') if policy and sak: policy = base64.b64encode(six.b(policy)).decode('utf-8') new_hmac = hmac.new(sak.encode('utf-8'), digestmod=sha1) new_hmac.update(six.b(policy)) ps = base64.encodestring(new_hmac.digest()).strip().decode('utf-8') params['UploadPolicySignature'] = ps del params['_SAK'] def _check_params(params, **kwargs): # Called just before call but prior to building the params. # Adds information not supplied by the user. storage = params['Storage']['S3'] if 'UploadPolicy' not in storage: _generate_policy(storage) if 'UploadPolicySignature' not in storage: _generate_signature(storage) EVENTS = [ ('building-argument-table.ec2.bundle-instance', _add_params), ('operation-args-parsed.ec2.bundle-instance', _check_args), ('before-parameter-build.ec2.BundleInstance', _check_params), ] def register_bundleinstance(event_handler): # Register all of the events for customizing BundleInstance for event, handler in EVENTS: event_handler.register(event, handler) class BundleArgument(CustomArgument): def __init__(self, storage_param, *args, **kwargs): super(BundleArgument, self).__init__(*args, **kwargs) self._storage_param = storage_param def _build_storage(self, params, value): # Build up the Storage data structure if 'Storage' not in params: params['Storage'] = {'S3': {}} params['Storage']['S3'][self._storage_param] = value def add_to_params(self, parameters, value): if value: self._build_storage(parameters, value)
[ [ [ 573, 580 ], [ 734, 741 ] ], [ [ 601, 605 ], [ 5252, 5256 ] ], [ [ 613, 617 ], [ 5212, 5216 ] ], [ [ 625, 631 ], [ 5145, 5151 ], [ 5310, 5316 ] ], [ [ 639, 647 ], [ 4616, 4624 ], [ 4659, 4667 ] ], [ [ 675, 678 ], [ 5162, 5165 ], [ 5282, 5285 ] ], [ [ 709, 723 ], [ 6216, 6230 ] ], [ [ 725, 731 ], [ 3820, 3826 ] ], [ [ 881, 892 ], [ 2848, 2859 ] ], [ [ 1209, 1220 ], [ 3020, 3031 ] ], [ [ 1329, 1344 ], [ 3204, 3219 ] ], [ [ 1417, 1428 ], [ 3569, 3580 ] ], [ [ 2151, 2165 ], [ 3385, 3399 ] ], [ [ 2421, 2432 ], [ 5856, 5867 ] ], [ [ 3623, 3634 ], [ 5920, 5931 ] ], [ [ 4232, 4238 ], [ 4767, 4773 ] ], [ [ 4463, 4479 ], [ 5681, 5697 ] ], [ [ 4948, 4967 ], [ 5762, 5781 ] ], [ [ 5451, 5464 ], [ 5984, 5997 ] ], [ [ 5793, 5799 ], [ 6138, 6144 ] ], [ [ 6008, 6031 ] ], [ [ 6201, 6215 ], [ 2734, 2748 ], [ 2906, 2920 ], [ 3078, 3092 ], [ 3270, 3284 ], [ 3449, 3463 ], [ 6304, 6318 ] ] ]
import datetime from http import HTTPStatus from locust import HttpUser, task, between # This test can be run after installing locust through the cli as "locust --host=http://<deployed_host>:<port>" # Then url http://localhost:8089/ should be access to start the test. # Can also be run using no UI mode as "locust --no-web -c <number_of_clients> -r <clients_per_second> --run-time <time e.g. 1h30m> --host=http://<deployed_host>:<port>" class QuickstartUser(HttpUser): wait_time = between(1, 2) @task(1) def get_developers(self): r = self.client.get("/developers") assert r.status_code == HTTPStatus.OK, "Unexpected response code: " + str(r.status_code) @task(1) def get_developers_search(self): r = self.client.get("/developers/search/james") assert r.status_code == HTTPStatus.OK, "Unexpected response code: " + str(r.status_code)
[ [ [ 7, 15 ] ], [ [ 33, 43 ], [ 621, 631 ], [ 825, 835 ] ], [ [ 63, 71 ], [ 461, 469 ] ], [ [ 73, 77 ], [ 508, 512 ], [ 692, 696 ] ], [ [ 79, 86 ], [ 488, 495 ] ], [ [ 446, 460 ] ] ]
import json import sys from os import path header_comment = '# %%\n' def nb2py(notebook): result = [] cells = notebook['cells'] for cell in cells: cell_type = cell['cell_type'] if cell_type == 'markdown': result.append('%s"""\n%s\n"""'% (header_comment, ''.join(cell['source']))) if cell_type == 'code': result.append("%s%s" % (header_comment, ''.join(cell['source']))) return '\n\n'.join(result) def py2nb(py_str): # remove leading header comment if py_str.startswith(header_comment): py_str = py_str[len(header_comment):] cells = [] chunks = py_str.split('\n\n%s' % header_comment) for chunk in chunks: cell_type = 'code' if chunk.startswith("'''"): chunk = chunk.strip("'\n") cell_type = 'markdown' elif chunk.startswith('"""'): chunk = chunk.strip('"\n') cell_type = 'markdown' cell = { 'cell_type': cell_type, 'metadata': {}, 'source': chunk.splitlines(True), } if cell_type == 'code': cell.update({'outputs': [], 'execution_count': None}) cells.append(cell) notebook = { 'cells': cells, 'metadata': { 'anaconda-cloud': {}, 'kernelspec': { 'display_name': 'Python 3', 'language': 'python', 'name': 'python3'}, 'language_info': { 'codemirror_mode': {'name': 'ipython', 'version': 3}, 'file_extension': '.py', 'mimetype': 'text/x-python', 'name': 'python', 'nbconvert_exporter': 'python', 'pygments_lexer': 'ipython3', 'version': '3.6.1'}}, 'nbformat': 4, 'nbformat_minor': 1 } return notebook def convert(in_file, out_file): _, in_ext = path.splitext(in_file) _, out_ext = path.splitext(out_file) if in_ext == '.ipynb' and out_ext == '.py': with open(in_file, 'r') as f: notebook = json.load(f) py_str = nb2py(notebook) with open(out_file, 'w') as f: f.write(py_str) elif in_ext == '.py' and out_ext == '.ipynb': with open(in_file, 'r') as f: py_str = f.read() notebook = py2nb(py_str) with open(out_file, 'w') as f: json.dump(notebook, f, indent=2) else: raise(Exception('Extensions must be .ipynb and .py or vice versa')) def main(): argv = sys.argv if len(argv) < 3: print('Usage: ipynb-py-convert in.ipynb out.py') print('or: ipynb-py-convert in.py out.ipynb') sys.exit(1) convert(in_file=argv[1], out_file=argv[2]) if __name__ == '__main__': main()
[ [ [ 7, 11 ], [ 2147, 2151 ], [ 2463, 2467 ] ], [ [ 19, 22 ], [ 2608, 2611 ], [ 2761, 2764 ] ], [ [ 38, 42 ], [ 1973, 1977 ], [ 2013, 2017 ] ], [ [ 44, 58 ], [ 309, 323 ], [ 420, 434 ], [ 576, 590 ], [ 621, 635 ], [ 692, 706 ] ], [ [ 76, 81 ], [ 2177, 2182 ] ], [ [ 500, 505 ], [ 2398, 2403 ] ], [ [ 1929, 1936 ], [ 2778, 2785 ] ], [ [ 2589, 2593 ], [ 2854, 2858 ] ] ]
import sys input_file = open(sys.argv[1]) input_lines = input_file.readlines() total_wrapping = 0 total_ribbon = 0 for line in input_lines: l, w, h = line.split("x") l = int(l) w = int(w) h = int(h) dimensions = [l, w, h] min_1 = min(dimensions) dimensions.remove(min_1) min_2 = min(dimensions) total_wrapping += (2 * l * w) + (2 * w * h) + (2 * h * l) + (min_1 * min_2) total_ribbon += ((min_1 * 2) + (min_2 * 2)) + (l * w * h) # first half print("total_wrapping", total_wrapping) # second half print("total_ribbon", total_ribbon)
[ [ [ 8, 11 ], [ 31, 34 ] ], [ [ 13, 23 ], [ 58, 68 ] ], [ [ 44, 55 ], [ 131, 142 ] ], [ [ 82, 96 ], [ 337, 351 ], [ 513, 527 ] ], [ [ 101, 113 ], [ 417, 429 ], [ 566, 578 ] ], [ [ 123, 127 ], [ 158, 162 ] ], [ [ 148, 149 ], [ 186, 187 ] ], [ [ 151, 152 ], [ 201, 202 ] ], [ [ 154, 155 ], [ 216, 217 ] ], [ [ 178, 179 ], [ 238, 239 ], [ 360, 361 ], [ 392, 393 ], [ 464, 465 ] ], [ [ 193, 194 ], [ 241, 242 ], [ 364, 365 ], [ 374, 375 ], [ 468, 469 ] ], [ [ 208, 209 ], [ 244, 245 ], [ 378, 379 ], [ 388, 389 ], [ 472, 473 ] ], [ [ 224, 234 ], [ 263, 273 ], [ 279, 289 ], [ 320, 330 ] ], [ [ 251, 256 ], [ 297, 302 ], [ 398, 403 ], [ 435, 440 ] ], [ [ 308, 313 ], [ 406, 411 ], [ 449, 454 ] ] ]
import io import json import gzip from base64 import b64decode from http.cookies import SimpleCookie import chardet import rfc3986 import graphene import yaml from requests.structures import CaseInsensitiveDict from requests.cookies import RequestsCookieJar from starlette.datastructures import MutableHeaders from starlette.requests import Request as StarletteRequest from starlette.responses import Response as StarletteResponse from urllib.parse import parse_qs from .status_codes import HTTP_200 from .statics import DEFAULT_ENCODING class QueryDict(dict): def __init__(self, query_string): self.update(parse_qs(query_string)) def __getitem__(self, key): """ Return the last data value for this key, or [] if it's an empty list; raise KeyError if not found. """ list_ = super().__getitem__(key) try: return list_[-1] except IndexError: return [] def get(self, key, default=None): """ Return the last data value for the passed key. If key doesn't exist or value is an empty list, return `default`. """ try: val = self[key] except KeyError: return default if val == []: return default return val def _get_list(self, key, default=None, force_list=False): """ Return a list of values for the key. Used internally to manipulate values list. If force_list is True, return a new copy of values. """ try: values = super().__getitem__(key) except KeyError: if default is None: return [] return default else: if force_list: values = list(values) if values is not None else None return values def get_list(self, key, default=None): """ Return the list of values for the key. If key doesn't exist, return a default value. """ return self._get_list(key, default, force_list=True) def items(self): """ Yield (key, value) pairs, where value is the last item in the list associated with the key. """ for key in self: yield key, self[key] def items_list(self): """ Yield (key, value) pairs, where value is the the list. """ yield from super().items() # TODO: add slots class Request: __slots__ = ["_starlette", "formats", "_headers", "_encoding", "api", "_content"] def __init__(self, scope, receive, api=None): self._starlette = StarletteRequest(scope, receive) self.formats = None self._encoding = None self.api = api self._content = None headers = CaseInsensitiveDict() for key, value in self._starlette.headers.items(): headers[key] = value self._headers = headers @property def session(self): """The session data, in dict form, from the Request.""" if "Responder-Session" in self.cookies: data = self.cookies[self.api.session_cookie] data = self.api._signer.unsign(data) data = b64decode(data) return json.loads(data) return {} @property def headers(self): """A case-insensitive dictionary, containing all headers sent in the Request.""" return self._headers @property def mimetype(self): return self.headers.get("Content-Type", "") @property def method(self): """The incoming HTTP method used for the request, lower-cased.""" return self._starlette.method.lower() @property def full_url(self): """The full URL of the Request, query parameters and all.""" return str(self._starlette.url) @property def url(self): """The parsed URL of the Request.""" return rfc3986.urlparse(self.full_url) @property def cookies(self): """The cookies sent in the Request, as a dictionary.""" cookies = RequestsCookieJar() cookie_header = self.headers.get("Cookie", "") bc = SimpleCookie(cookie_header) for k, v in bc.items(): cookies[k] = v return cookies.get_dict() @property def params(self): """A dictionary of the parsed query parameters used for the Request.""" try: return QueryDict(self.url.query) except AttributeError: return QueryDict({}) @property async def encoding(self): """The encoding of the Request's body. Can be set, manually. Must be awaited.""" # Use the user-set encoding first. if self._encoding: return self._encoding # Then try what's defined by the Request. elif await self.declared_encoding: return self.declared_encoding # Then, automatically detect the encoding. else: return await self.apparent_encoding @encoding.setter def encoding(self, value): self._encoding = value @property async def content(self): """The Request body, as bytes. Must be awaited.""" if not self._content: self._content = await self._starlette.body() return self._content @property async def text(self): """The Request body, as unicode. Must be awaited.""" return (await self.content).decode(await self.encoding) @property async def declared_encoding(self): if "Encoding" in self.headers: return self.headers["Encoding"] @property async def apparent_encoding(self): """The apparent encoding, provided by the chardet library. Must be awaited.""" declared_encoding = await self.declared_encoding if declared_encoding: return declared_encoding else: return chardet.detect(await self.content)["encoding"] @property def is_secure(self): return self.url.scheme == "https" def accepts(self, content_type): """Returns ``True`` if the incoming Request accepts the given ``content_type``.""" return content_type in self.headers.get("Accept", []) async def media(self, format=None): """Renders incoming json/yaml/form data as Python objects. Must be awaited. :param format: The name of the format being used. Alternatively accepts a custom callable for the format type. """ if format is None: format = "yaml" if "yaml" in self.mimetype or "" else "json" format = "form" if "form" in self.mimetype or "" else format if format in self.formats: return await self.formats[format](self) else: return await format(self) class Response: __slots__ = [ "req", "status_code", "text", "content", "encoding", "media", "headers", "formats", "cookies", "session", ] def __init__(self, req, *, formats): self.req = req self.status_code = None #: The HTTP Status Code to use for the Response. self.text = None #: A unicode representation of the response body. self.content = None #: A bytes representation of the response body. self.encoding = DEFAULT_ENCODING self.media = ( None ) #: A Python object that will be content-negotiated and sent back to the client. Typically, in JSON formatting. self.headers = ( {} ) #: A Python dictionary of ``{key: value}``, representing the headers of the response. self.formats = formats self.cookies = {} #: The cookies set in the Response, as a dictionary self.session = ( req.session.copy() ) #: The cookie-based session data, in dict form, to add to the Response. @property async def body(self): if self.content: return (self.content, {}) if self.text: return (self.text.encode(self.encoding), {"Encoding": self.encoding}) for format in self.formats: if self.req.accepts(format): return (await self.formats[format](self, encode=True)), {} # Default to JSON anyway. return ( await self.formats["json"](self, encode=True), {"Content-Type": "application/json"}, ) async def __call__(self, receive, send): body, headers = await self.body if self.headers: headers.update(self.headers) response = StarletteResponse( body, status_code=self.status_code, headers=headers ) await response(receive, send)
[ [ [ 7, 9 ] ], [ [ 17, 21 ], [ 3266, 3270 ] ], [ [ 29, 33 ] ], [ [ 53, 62 ], [ 3231, 3240 ] ], [ [ 88, 100 ], [ 4188, 4200 ] ], [ [ 110, 117 ], [ 5942, 5949 ] ], [ [ 125, 132 ], [ 3947, 3954 ] ], [ [ 140, 148 ] ], [ [ 156, 160 ] ], [ [ 193, 212 ], [ 2807, 2826 ] ], [ [ 242, 259 ], [ 4099, 4116 ] ], [ [ 297, 311 ] ], [ [ 343, 370 ], [ 2645, 2661 ] ], [ [ 403, 432 ], [ 8655, 8672 ] ], [ [ 459, 467 ], [ 625, 633 ] ], [ [ 495, 503 ] ], [ [ 525, 541 ], [ 7385, 7401 ] ], [ [ 550, 559 ], [ 4459, 4468 ], [ 4535, 4544 ] ], [ [ 2473, 2480 ] ], [ [ 6841, 6849 ] ] ]
# Copyright 2018 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python """Adversarial autoencoder. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math from absl import app from absl import flags import tensorflow as tf from lib import data, layers, train, utils, classifiers, eval FLAGS = flags.FLAGS class AAE(train.AE): def model(self, latent, depth, scales, adversary_lr, disc_layer_sizes): x = tf.placeholder(tf.float32, [None, self.height, self.width, self.colors], 'x') l = tf.placeholder(tf.float32, [None, self.nclass], 'label') h = tf.placeholder( tf.float32, [None, self.height >> scales, self.width >> scales, latent], 'h') def encoder(x): return layers.encoder(x, scales, depth, latent, 'ae_enc') def decoder(h): return layers.decoder(h, scales, depth, self.colors, 'ae_dec') def discriminator(h): with tf.variable_scope('disc', reuse=tf.AUTO_REUSE): h = tf.layers.flatten(h) for size in [int(s) for s in disc_layer_sizes.split(',')]: h = tf.layers.dense(h, size, tf.nn.leaky_relu) return tf.layers.dense(h, 1) encode = encoder(x) decode = decoder(h) ae = decoder(encode) loss_ae = tf.losses.mean_squared_error(x, ae) prior_samples = tf.random_normal(tf.shape(encode), dtype=encode.dtype) adversary_logit_latent = discriminator(encode) adversary_logit_prior = discriminator(prior_samples) adversary_loss_latents = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( logits=adversary_logit_latent, labels=tf.zeros_like(adversary_logit_latent))) adversary_loss_prior = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( logits=adversary_logit_prior, labels=tf.ones_like(adversary_logit_prior))) autoencoder_loss_latents = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( logits=adversary_logit_latent, labels=tf.ones_like(adversary_logit_latent))) def _accuracy(logits, label): labels = tf.logical_and(label, tf.ones_like(logits, dtype=bool)) correct = tf.equal(tf.greater(logits, 0), labels) return tf.reduce_mean(tf.to_float(correct)) latent_accuracy = _accuracy(adversary_logit_latent, False) prior_accuracy = _accuracy(adversary_logit_prior, True) adversary_accuracy = (latent_accuracy + prior_accuracy)/2 utils.HookReport.log_tensor(loss_ae, 'loss_ae') utils.HookReport.log_tensor(adversary_loss_latents, 'loss_adv_latent') utils.HookReport.log_tensor(adversary_loss_prior, 'loss_adv_prior') utils.HookReport.log_tensor(autoencoder_loss_latents, 'loss_ae_latent') utils.HookReport.log_tensor(adversary_accuracy, 'adversary_accuracy') xops = classifiers.single_layer_classifier( tf.stop_gradient(encode), l, self.nclass) xloss = tf.reduce_mean(xops.loss) utils.HookReport.log_tensor(xloss, 'classify_latent') update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) ae_vars = tf.global_variables('ae_') disc_vars = tf.global_variables('disc') xl_vars = tf.global_variables('single_layer_classifier') with tf.control_dependencies(update_ops): train_ae = tf.train.AdamOptimizer(FLAGS.lr).minimize( loss_ae + autoencoder_loss_latents, var_list=ae_vars) train_disc = tf.train.AdamOptimizer(adversary_lr).minimize( adversary_loss_prior + adversary_loss_latents, var_list=disc_vars) train_xl = tf.train.AdamOptimizer(FLAGS.lr).minimize( xloss, tf.train.get_global_step(), var_list=xl_vars) ops = train.AEOps(x, h, l, encode, decode, ae, tf.group(train_ae, train_disc, train_xl), classify_latent=xops.output) n_interpolations = 16 n_images_per_interpolation = 16 def gen_images(): return self.make_sample_grid_and_save( ops, interpolation=n_interpolations, height=n_images_per_interpolation) recon, inter, slerp, samples = tf.py_func( gen_images, [], [tf.float32]*4) tf.summary.image('reconstruction', tf.expand_dims(recon, 0)) tf.summary.image('interpolation', tf.expand_dims(inter, 0)) tf.summary.image('slerp', tf.expand_dims(slerp, 0)) tf.summary.image('samples', tf.expand_dims(samples, 0)) if FLAGS.dataset == 'lines32': batched = (n_interpolations, 32, n_images_per_interpolation, 32, 1) batched_interp = tf.transpose( tf.reshape(inter, batched), [0, 2, 1, 3, 4]) mean_distance, mean_smoothness = tf.py_func( eval.line_eval, [batched_interp], [tf.float32, tf.float32]) tf.summary.scalar('mean_distance', mean_distance) tf.summary.scalar('mean_smoothness', mean_smoothness) return ops def main(argv): del argv # Unused. batch = FLAGS.batch dataset = data.get_dataset(FLAGS.dataset, dict(batch_size=batch)) scales = int(round(math.log(dataset.width // FLAGS.latent_width, 2))) model = AAE( dataset, FLAGS.train_dir, latent=FLAGS.latent, depth=FLAGS.depth, scales=scales, adversary_lr=FLAGS.adversary_lr, disc_layer_sizes=FLAGS.disc_layer_sizes) model.train() if __name__ == '__main__': flags.DEFINE_integer('depth', 64, 'Depth of first for convolution.') flags.DEFINE_integer( 'latent', 16, 'Latent space depth, the total latent size is the depth multiplied by ' 'latent_width ** 2.') flags.DEFINE_integer('latent_width', 4, 'Width of the latent space.') flags.DEFINE_float('adversary_lr', 1e-4, 'Learning rate for discriminator.') flags.DEFINE_string('disc_layer_sizes', '100,100', 'Comma-separated list of discriminator layer sizes.') app.run(main)
[ [ [ 643, 658 ] ], [ [ 682, 690 ] ], [ [ 714, 728 ] ], [ [ 737, 741 ], [ 5977, 5981 ] ], [ [ 760, 763 ], [ 6849, 6852 ] ], [ [ 781, 786 ], [ 883, 888 ], [ 6307, 6312 ], [ 6380, 6385 ], [ 6538, 6543 ], [ 6612, 6617 ], [ 6716, 6721 ] ], [ [ 795, 811 ], [ 1007, 1009 ], [ 1022, 1024 ], [ 1124, 1126 ], [ 1139, 1141 ], [ 1193, 1195 ], [ 1221, 1223 ], [ 1934, 1936 ], [ 1995, 1997 ], [ 2012, 2014 ], [ 2199, 2201 ], [ 2227, 2229 ], [ 2338, 2340 ], [ 2409, 2411 ], [ 2437, 2439 ], [ 2547, 2549 ], [ 2620, 2622 ], [ 2648, 2650 ], [ 2759, 2761 ], [ 3664, 3666 ], [ 3722, 3724 ], [ 3832, 3834 ], [ 3850, 3852 ], [ 3893, 3895 ], [ 3940, 3942 ], [ 3986, 3988 ], [ 4046, 4048 ], [ 4106, 4108 ], [ 4244, 4246 ], [ 4413, 4415 ], [ 4479, 4481 ], [ 4606, 4608 ], [ 4996, 4998 ], [ 5037, 5039 ], [ 5060, 5062 ], [ 5095, 5097 ], [ 5129, 5131 ], [ 5163, 5165 ], [ 5197, 5199 ], [ 5223, 5225 ], [ 5257, 5259 ], [ 5285, 5287 ], [ 5462, 5464 ], [ 5492, 5494 ], [ 5582, 5584 ], [ 5645, 5647 ], [ 5657, 5659 ], [ 5682, 5684 ], [ 5744, 5746 ], [ 1554, 1556 ], [ 1586, 1588 ], [ 1622, 1624 ], [ 1742, 1744 ], [ 1767, 1769 ], [ 1808, 1810 ], [ 2858, 2860 ], [ 2880, 2882 ], [ 2936, 2938 ], [ 2945, 2947 ], [ 2995, 2997 ], [ 3010, 3012 ] ], [ [ 828, 832 ], [ 5898, 5902 ] ], [ [ 834, 840 ], [ 1355, 1361 ], [ 1450, 1456 ] ], [ [ 842, 847 ], [ 907, 912 ], [ 4539, 4544 ] ], [ [ 849, 854 ], [ 3238, 3243 ], [ 3294, 3299 ], [ 3373, 3378 ], [ 3449, 3454 ], [ 3529, 3534 ], [ 3756, 3761 ] ], [ [ 856, 867 ], [ 3615, 3626 ] ], [ [ 869, 873 ], [ 5610, 5614 ] ], [ [ 875, 880 ], [ 4129, 4134 ], [ 4436, 4441 ], [ 5325, 5330 ], [ 5872, 5877 ], [ 5915, 5920 ], [ 6003, 6008 ], [ 6070, 6075 ], [ 6102, 6107 ], [ 6130, 6135 ], [ 6187, 6192 ], [ 6232, 6237 ] ], [ [ 903, 906 ], [ 6040, 6043 ] ], [ [ 5824, 5828 ], [ 6857, 6861 ] ] ]
from __future__ import unicode_literals import datetime import decimal from collections import defaultdict from django.contrib.auth import get_permission_codename from django.core.exceptions import FieldDoesNotExist from django.core.urlresolvers import NoReverseMatch, reverse from django.db import models from django.db.models.constants import LOOKUP_SEP from django.db.models.deletion import Collector from django.forms.forms import pretty_name from django.utils import formats, six, timezone from django.utils.encoding import force_str, force_text, smart_text from django.utils.html import conditional_escape, format_html from django.utils.safestring import mark_safe from django.utils.text import capfirst from django.utils.translation import ungettext def lookup_needs_distinct(opts, lookup_path): """ Returns True if 'distinct()' should be used to query the given lookup path. """ field_name = lookup_path.split('__', 1)[0] field = opts.get_field(field_name) if hasattr(field, 'get_path_info') and any(path.m2m for path in field.get_path_info()): return True return False def prepare_lookup_value(key, value): """ Returns a lookup value prepared to be used in queryset filtering. """ # if key ends with __in, split parameter into separate values if key.endswith('__in'): value = value.split(',') # if key ends with __isnull, special case '' and the string literals 'false' and '0' if key.endswith('__isnull'): if value.lower() in ('', 'false', '0'): value = False else: value = True return value def quote(s): """ Ensure that primary key values do not confuse the admin URLs by escaping any '/', '_' and ':' and similarly problematic characters. Similar to urllib.quote, except that the quoting is slightly different so that it doesn't get automatically unquoted by the Web browser. """ if not isinstance(s, six.string_types): return s res = list(s) for i in range(len(res)): c = res[i] if c in """:/_#?;@&=+$,"[]<>%\\""": res[i] = '_%02X' % ord(c) return ''.join(res) def unquote(s): """ Undo the effects of quote(). Based heavily on urllib.unquote(). """ mychr = chr myatoi = int list = s.split('_') res = [list[0]] myappend = res.append del list[0] for item in list: if item[1:2]: try: myappend(mychr(myatoi(item[:2], 16)) + item[2:]) except ValueError: myappend('_' + item) else: myappend('_' + item) return "".join(res) def flatten(fields): """Returns a list which is a single level of flattening of the original list.""" flat = [] for field in fields: if isinstance(field, (list, tuple)): flat.extend(field) else: flat.append(field) return flat def flatten_fieldsets(fieldsets): """Returns a list of field names from an admin fieldsets structure.""" field_names = [] for name, opts in fieldsets: field_names.extend( flatten(opts['fields']) ) return field_names def get_deleted_objects(objs, opts, user, admin_site, using): """ Find all objects related to ``objs`` that should also be deleted. ``objs`` must be a homogeneous iterable of objects (e.g. a QuerySet). Returns a nested list of strings suitable for display in the template with the ``unordered_list`` filter. """ collector = NestedObjects(using=using) collector.collect(objs) perms_needed = set() def format_callback(obj): has_admin = obj.__class__ in admin_site._registry opts = obj._meta no_edit_link = '%s: %s' % (capfirst(opts.verbose_name), force_text(obj)) if has_admin: try: admin_url = reverse('%s:%s_%s_change' % (admin_site.name, opts.app_label, opts.model_name), None, (quote(obj._get_pk_val()),)) except NoReverseMatch: # Change url doesn't exist -- don't display link to edit return no_edit_link p = '%s.%s' % (opts.app_label, get_permission_codename('delete', opts)) if not user.has_perm(p): perms_needed.add(opts.verbose_name) # Display a link to the admin page. return format_html('{}: <a href="{}">{}</a>', capfirst(opts.verbose_name), admin_url, obj) else: # Don't display link to edit, because it either has no # admin or is edited inline. return no_edit_link to_delete = collector.nested(format_callback) protected = [format_callback(obj) for obj in collector.protected] return to_delete, collector.model_count, perms_needed, protected class NestedObjects(Collector): def __init__(self, *args, **kwargs): super(NestedObjects, self).__init__(*args, **kwargs) self.edges = {} # {from_instance: [to_instances]} self.protected = set() self.model_count = defaultdict(int) def add_edge(self, source, target): self.edges.setdefault(source, []).append(target) def collect(self, objs, source=None, source_attr=None, **kwargs): for obj in objs: if source_attr and not source_attr.endswith('+'): related_name = source_attr % { 'class': source._meta.model_name, 'app_label': source._meta.app_label, } self.add_edge(getattr(obj, related_name), obj) else: self.add_edge(None, obj) self.model_count[obj._meta.verbose_name_plural] += 1 try: return super(NestedObjects, self).collect(objs, source_attr=source_attr, **kwargs) except models.ProtectedError as e: self.protected.update(e.protected_objects) def related_objects(self, related, objs): qs = super(NestedObjects, self).related_objects(related, objs) return qs.select_related(related.field.name) def _nested(self, obj, seen, format_callback): if obj in seen: return [] seen.add(obj) children = [] for child in self.edges.get(obj, ()): children.extend(self._nested(child, seen, format_callback)) if format_callback: ret = [format_callback(obj)] else: ret = [obj] if children: ret.append(children) return ret def nested(self, format_callback=None): """ Return the graph as a nested list. """ seen = set() roots = [] for root in self.edges.get(None, ()): roots.extend(self._nested(root, seen, format_callback)) return roots def can_fast_delete(self, *args, **kwargs): """ We always want to load the objects into memory so that we can display them to the user in confirm page. """ return False def model_format_dict(obj): """ Return a `dict` with keys 'verbose_name' and 'verbose_name_plural', typically for use with string formatting. `obj` may be a `Model` instance, `Model` subclass, or `QuerySet` instance. """ if isinstance(obj, (models.Model, models.base.ModelBase)): opts = obj._meta elif isinstance(obj, models.query.QuerySet): opts = obj.model._meta else: opts = obj return { 'verbose_name': force_text(opts.verbose_name), 'verbose_name_plural': force_text(opts.verbose_name_plural) } def model_ngettext(obj, n=None): """ Return the appropriate `verbose_name` or `verbose_name_plural` value for `obj` depending on the count `n`. `obj` may be a `Model` instance, `Model` subclass, or `QuerySet` instance. If `obj` is a `QuerySet` instance, `n` is optional and the length of the `QuerySet` is used. """ if isinstance(obj, models.query.QuerySet): if n is None: n = obj.count() obj = obj.model d = model_format_dict(obj) singular, plural = d["verbose_name"], d["verbose_name_plural"] return ungettext(singular, plural, n or 0) def lookup_field(name, obj, model_admin=None): opts = obj._meta try: f = _get_non_gfk_field(opts, name) except FieldDoesNotExist: # For non-field values, the value is either a method, property or # returned via a callable. if callable(name): attr = name value = attr(obj) elif (model_admin is not None and hasattr(model_admin, name) and not name == '__str__' and not name == '__unicode__'): attr = getattr(model_admin, name) value = attr(obj) else: attr = getattr(obj, name) if callable(attr): value = attr() else: value = attr f = None else: attr = None value = getattr(obj, name) return f, attr, value def _get_non_gfk_field(opts, name): """ For historical reasons, the admin app relies on GenericForeignKeys as being "not found" by get_field(). This could likely be cleaned up. """ field = opts.get_field(name) if field.is_relation and field.one_to_many and not field.related_model: raise FieldDoesNotExist() return field def label_for_field(name, model, model_admin=None, return_attr=False): """ Returns a sensible label for a field name. The name can be a callable, property (but not created with @property decorator) or the name of an object's attribute, as well as a genuine fields. If return_attr is True, the resolved attribute (which could be a callable) is also returned. This will be None if (and only if) the name refers to a field. """ attr = None try: field = _get_non_gfk_field(model._meta, name) try: label = field.verbose_name except AttributeError: # field is likely a ForeignObjectRel label = field.opts.verbose_name except FieldDoesNotExist: if name == "__unicode__": label = force_text(model._meta.verbose_name) attr = six.text_type elif name == "__str__": label = force_str(model._meta.verbose_name) attr = bytes else: if callable(name): attr = name elif model_admin is not None and hasattr(model_admin, name): attr = getattr(model_admin, name) elif hasattr(model, name): attr = getattr(model, name) else: message = "Unable to lookup '%s' on %s" % (name, model._meta.object_name) if model_admin: message += " or %s" % (model_admin.__class__.__name__,) raise AttributeError(message) if hasattr(attr, "short_description"): label = attr.short_description elif (isinstance(attr, property) and hasattr(attr, "fget") and hasattr(attr.fget, "short_description")): label = attr.fget.short_description elif callable(attr): if attr.__name__ == "<lambda>": label = "--" else: label = pretty_name(attr.__name__) else: label = pretty_name(name) if return_attr: return (label, attr) else: return label def help_text_for_field(name, model): help_text = "" try: field = _get_non_gfk_field(model._meta, name) except FieldDoesNotExist: pass else: if hasattr(field, 'help_text'): help_text = field.help_text return smart_text(help_text) def display_for_field(value, field): from django.contrib.admin.templatetags.admin_list import _boolean_icon from django.contrib.admin.views.main import EMPTY_CHANGELIST_VALUE if field.flatchoices: return dict(field.flatchoices).get(value, EMPTY_CHANGELIST_VALUE) # NullBooleanField needs special-case null-handling, so it comes # before the general null test. elif isinstance(field, models.BooleanField) or isinstance(field, models.NullBooleanField): return _boolean_icon(value) elif value is None: return EMPTY_CHANGELIST_VALUE elif isinstance(field, models.DateTimeField): return formats.localize(timezone.template_localtime(value)) elif isinstance(field, (models.DateField, models.TimeField)): return formats.localize(value) elif isinstance(field, models.DecimalField): return formats.number_format(value, field.decimal_places) elif isinstance(field, models.FloatField): return formats.number_format(value) elif isinstance(field, models.FileField): return mark_safe('<a href="%s">%s</a>' % ( conditional_escape(value.url), conditional_escape(value), )) else: return smart_text(value) def display_for_value(value, boolean=False): from django.contrib.admin.templatetags.admin_list import _boolean_icon from django.contrib.admin.views.main import EMPTY_CHANGELIST_VALUE if boolean: return _boolean_icon(value) elif value is None: return EMPTY_CHANGELIST_VALUE elif isinstance(value, datetime.datetime): return formats.localize(timezone.template_localtime(value)) elif isinstance(value, (datetime.date, datetime.time)): return formats.localize(value) elif isinstance(value, six.integer_types + (decimal.Decimal, float)): return formats.number_format(value) else: return smart_text(value) class NotRelationField(Exception): pass def get_model_from_relation(field): if hasattr(field, 'get_path_info'): return field.get_path_info()[-1].to_opts.model else: raise NotRelationField def reverse_field_path(model, path): """ Create a reversed field path. E.g. Given (Order, "user__groups"), return (Group, "user__order"). Final field must be a related model, not a data field. """ reversed_path = [] parent = model pieces = path.split(LOOKUP_SEP) for piece in pieces: field = parent._meta.get_field(piece) # skip trailing data field if extant: if len(reversed_path) == len(pieces) - 1: # final iteration try: get_model_from_relation(field) except NotRelationField: break # Field should point to another model if field.is_relation and not (field.auto_created and not field.concrete): related_name = field.related_query_name() parent = field.rel.to else: related_name = field.field.name parent = field.related_model reversed_path.insert(0, related_name) return (parent, LOOKUP_SEP.join(reversed_path)) def get_fields_from_path(model, path): """ Return list of Fields given path relative to model. e.g. (ModelX, "user__groups__name") -> [ <django.db.models.fields.related.ForeignKey object at 0x...>, <django.db.models.fields.related.ManyToManyField object at 0x...>, <django.db.models.fields.CharField object at 0x...>, ] """ pieces = path.split(LOOKUP_SEP) fields = [] for piece in pieces: if fields: parent = get_model_from_relation(fields[-1]) else: parent = model fields.append(parent._meta.get_field(piece)) return fields def remove_trailing_data_field(fields): """ Discard trailing non-relation field if extant. """ try: get_model_from_relation(fields[-1]) except NotRelationField: fields = fields[:-1] return fields def get_limit_choices_to_from_path(model, path): """ Return Q object for limiting choices if applicable. If final model in path is linked via a ForeignKey or ManyToManyField which has a ``limit_choices_to`` attribute, return it as a Q object. """ fields = get_fields_from_path(model, path) fields = remove_trailing_data_field(fields) get_limit_choices_to = ( fields and hasattr(fields[-1], 'rel') and getattr(fields[-1].rel, 'get_limit_choices_to', None)) if not get_limit_choices_to: return models.Q() # empty Q limit_choices_to = get_limit_choices_to() if isinstance(limit_choices_to, models.Q): return limit_choices_to # already a Q else: return models.Q(**limit_choices_to) # convert dict to Q
[ [ [ 23, 39 ] ], [ [ 48, 56 ], [ 13795, 13803 ], [ 13911, 13919 ], [ 13926, 13934 ] ], [ [ 64, 71 ], [ 14030, 14037 ] ], [ [ 96, 107 ], [ 5399, 5410 ] ], [ [ 141, 164 ], [ 4426, 4449 ] ], [ [ 200, 217 ], [ 8685, 8702 ], [ 9736, 9753 ], [ 10494, 10511 ], [ 12059, 12076 ] ], [ [ 255, 269 ], [ 4230, 4244 ] ], [ [ 271, 278 ], [ 3946, 3953 ] ], [ [ 301, 307 ], [ 6158, 6164 ], [ 7623, 7629 ], [ 7637, 7643 ], [ 7712, 7718 ], [ 8309, 8315 ], [ 12632, 12638 ], [ 12674, 12680 ], [ 12825, 12831 ], [ 12944, 12950 ], [ 12962, 12968 ], [ 13048, 13054 ], [ 13163, 13169 ], [ 13254, 13260 ], [ 16799, 16805 ], [ 16903, 16909 ], [ 16986, 16992 ] ], [ [ 347, 357 ], [ 14651, 14661 ], [ 15354, 15364 ], [ 15777, 15787 ] ], [ [ 396, 405 ], [ 5168, 5177 ] ], [ [ 437, 448 ], [ 11759, 11770 ], [ 11828, 11839 ] ], [ [ 474, 481 ], [ 12863, 12870 ], [ 12997, 13004 ], [ 13085, 13092 ], [ 13198, 13205 ], [ 13830, 13837 ], [ 13958, 13965 ], [ 14071, 14078 ] ], [ [ 483, 486 ], [ 1966, 1969 ], [ 10623, 10626 ], [ 14009, 14012 ] ], [ [ 488, 496 ], [ 12880, 12888 ], [ 13847, 13855 ] ], [ [ 531, 540 ], [ 10689, 10698 ] ], [ [ 542, 552 ], [ 7833, 7843 ], [ 7895, 7905 ], [ 10567, 10577 ], [ 3861, 3871 ] ], [ [ 554, 564 ], [ 12192, 12202 ], [ 13442, 13452 ], [ 14125, 14135 ] ], [ [ 595, 613 ], [ 13336, 13354 ], [ 13379, 13397 ] ], [ [ 615, 626 ], [ 4623, 4634 ] ], [ [ 663, 672 ], [ 13288, 13297 ] ], [ [ 703, 711 ], [ 3797, 3805 ], [ 4693, 4701 ] ], [ [ 749, 758 ], [ 8516, 8525 ] ], [ [ 765, 786 ] ], [ [ 1124, 1144 ] ], [ [ 1630, 1635 ], [ 4183, 4188 ] ], [ [ 2181, 2188 ] ], [ [ 2667, 2674 ], [ 3154, 3161 ] ], [ [ 2955, 2972 ] ], [ [ 3217, 3236 ] ], [ [ 5154, 5167 ], [ 3567, 3580 ], [ 5235, 5248 ], [ 6073, 6086 ], [ 6307, 6320 ] ], [ [ 7360, 7377 ], [ 8415, 8432 ] ], [ [ 7944, 7958 ] ], [ [ 8558, 8570 ] ], [ [ 9420, 9438 ], [ 8643, 8661 ], [ 10269, 10287 ], [ 12010, 12028 ] ], [ [ 9779, 9794 ] ], [ [ 11932, 11951 ] ], [ [ 12220, 12237 ] ], [ [ 13466, 13483 ] ], [ [ 14151, 14167 ], [ 14346, 14362 ], [ 14932, 14948 ], [ 16183, 16199 ] ], [ [ 14195, 14218 ], [ 14882, 14905 ], [ 15870, 15893 ], [ 16136, 16159 ] ], [ [ 14369, 14387 ] ], [ [ 15392, 15412 ], [ 16527, 16547 ] ], [ [ 16024, 16050 ], [ 16574, 16600 ] ], [ [ 16254, 16284 ] ] ]
# -*- coding: utf-8 -*- import collections import functools import os import struct import sys import types as pytypes import uuid import weakref from copy import deepcopy from numba import _dispatcher from numba.core import utils, types, errors, typing, serialize, config, compiler, sigutils from numba.core.compiler_lock import global_compiler_lock from numba.core.typeconv.rules import default_type_manager from numba.core.typing.templates import fold_arguments from numba.core.typing.typeof import Purpose, typeof from numba.core.bytecode import get_code_object from numba.core.caching import NullCache, FunctionCache from numba.core import entrypoints class OmittedArg(object): """ A placeholder for omitted arguments with a default value. """ def __init__(self, value): self.value = value def __repr__(self): return "omitted arg(%r)" % (self.value,) @property def _numba_type_(self): return types.Omitted(self.value) class _FunctionCompiler(object): def __init__(self, py_func, targetdescr, targetoptions, locals, pipeline_class): self.py_func = py_func self.targetdescr = targetdescr self.targetoptions = targetoptions self.locals = locals self.pysig = utils.pysignature(self.py_func) self.pipeline_class = pipeline_class # Remember key=(args, return_type) combinations that will fail # compilation to avoid compilation attempt on them. The values are # the exceptions. self._failed_cache = {} def fold_argument_types(self, args, kws): """ Given positional and named argument types, fold keyword arguments and resolve defaults by inserting types.Omitted() instances. A (pysig, argument types) tuple is returned. """ def normal_handler(index, param, value): return value def default_handler(index, param, default): return types.Omitted(default) def stararg_handler(index, param, values): return types.StarArgTuple(values) # For now, we take argument values from the @jit function, even # in the case of generated jit. args = fold_arguments(self.pysig, args, kws, normal_handler, default_handler, stararg_handler) return self.pysig, args def compile(self, args, return_type): status, retval = self._compile_cached(args, return_type) if status: return retval else: raise retval def _compile_cached(self, args, return_type): key = tuple(args), return_type try: return False, self._failed_cache[key] except KeyError: pass try: retval = self._compile_core(args, return_type) except errors.TypingError as e: self._failed_cache[key] = e return False, e else: return True, retval def _compile_core(self, args, return_type): flags = compiler.Flags() self.targetdescr.options.parse_as_flags(flags, self.targetoptions) flags = self._customize_flags(flags) impl = self._get_implementation(args, {}) cres = compiler.compile_extra(self.targetdescr.typing_context, self.targetdescr.target_context, impl, args=args, return_type=return_type, flags=flags, locals=self.locals, pipeline_class=self.pipeline_class) # Check typing error if object mode is used if cres.typing_error is not None and not flags.enable_pyobject: raise cres.typing_error return cres def get_globals_for_reduction(self): return serialize._get_function_globals_for_reduction(self.py_func) def _get_implementation(self, args, kws): return self.py_func def _customize_flags(self, flags): return flags class _GeneratedFunctionCompiler(_FunctionCompiler): def __init__(self, py_func, targetdescr, targetoptions, locals, pipeline_class): super(_GeneratedFunctionCompiler, self).__init__( py_func, targetdescr, targetoptions, locals, pipeline_class) self.impls = set() def get_globals_for_reduction(self): # This will recursively get the globals used by any nested # implementation function. return serialize._get_function_globals_for_reduction(self.py_func) def _get_implementation(self, args, kws): impl = self.py_func(*args, **kws) # Check the generating function and implementation signatures are # compatible, otherwise compiling would fail later. pysig = utils.pysignature(self.py_func) implsig = utils.pysignature(impl) ok = len(pysig.parameters) == len(implsig.parameters) if ok: for pyparam, implparam in zip(pysig.parameters.values(), implsig.parameters.values()): # We allow the implementation to omit default values, but # if it mentions them, they should have the same value... if (pyparam.name != implparam.name or pyparam.kind != implparam.kind or (implparam.default is not implparam.empty and implparam.default != pyparam.default)): ok = False if not ok: raise TypeError("generated implementation %s should be compatible " "with signature '%s', but has signature '%s'" % (impl, pysig, implsig)) self.impls.add(impl) return impl _CompileStats = collections.namedtuple( '_CompileStats', ('cache_path', 'cache_hits', 'cache_misses')) class _CompilingCounter(object): """ A simple counter that increment in __enter__ and decrement in __exit__. """ def __init__(self): self.counter = 0 def __enter__(self): assert self.counter >= 0 self.counter += 1 def __exit__(self, *args, **kwargs): self.counter -= 1 assert self.counter >= 0 def __bool__(self): return self.counter > 0 __nonzero__ = __bool__ class _DispatcherBase(_dispatcher.Dispatcher): """ Common base class for dispatcher Implementations. """ __numba__ = "py_func" def __init__(self, arg_count, py_func, pysig, can_fallback, exact_match_required): self._tm = default_type_manager # A mapping of signatures to compile results self.overloads = collections.OrderedDict() self.py_func = py_func # other parts of Numba assume the old Python 2 name for code object self.func_code = get_code_object(py_func) # but newer python uses a different name self.__code__ = self.func_code argnames = tuple(pysig.parameters) default_values = self.py_func.__defaults__ or () defargs = tuple(OmittedArg(val) for val in default_values) try: lastarg = list(pysig.parameters.values())[-1] except IndexError: has_stararg = False else: has_stararg = lastarg.kind == lastarg.VAR_POSITIONAL _dispatcher.Dispatcher.__init__(self, self._tm.get_pointer(), arg_count, self._fold_args, argnames, defargs, can_fallback, has_stararg, exact_match_required) self.doc = py_func.__doc__ self._compiling_counter = _CompilingCounter() weakref.finalize(self, self._make_finalizer()) def _compilation_chain_init_hook(self): """ This will be called ahead of any part of compilation taking place (this even includes being ahead of working out the types of the arguments). This permits activities such as initialising extension entry points so that the compiler knows about additional externally defined types etc before it does anything. """ entrypoints.init_all() def _reset_overloads(self): self._clear() self.overloads.clear() def _make_finalizer(self): """ Return a finalizer function that will release references to related compiled functions. """ overloads = self.overloads targetctx = self.targetctx # Early-bind utils.shutting_down() into the function's local namespace # (see issue #689) def finalizer(shutting_down=utils.shutting_down): # The finalizer may crash at shutdown, skip it (resources # will be cleared by the process exiting, anyway). if shutting_down(): return # This function must *not* hold any reference to self: # we take care to bind the necessary objects in the closure. for cres in overloads.values(): try: targetctx.remove_user_function(cres.entry_point) except KeyError: pass return finalizer @property def signatures(self): """ Returns a list of compiled function signatures. """ return list(self.overloads) @property def nopython_signatures(self): return [cres.signature for cres in self.overloads.values() if not cres.objectmode and not cres.interpmode] def disable_compile(self, val=True): """Disable the compilation of new signatures at call time. """ # If disabling compilation then there must be at least one signature assert (not val) or len(self.signatures) > 0 self._can_compile = not val def add_overload(self, cres): args = tuple(cres.signature.args) sig = [a._code for a in args] self._insert(sig, cres.entry_point, cres.objectmode, cres.interpmode) self.overloads[args] = cres def fold_argument_types(self, args, kws): return self._compiler.fold_argument_types(args, kws) def get_call_template(self, args, kws): """ Get a typing.ConcreteTemplate for this dispatcher and the given *args* and *kws* types. This allows to resolve the return type. A (template, pysig, args, kws) tuple is returned. """ # XXX how about a dispatcher template class automating the # following? # Fold keyword arguments and resolve default values pysig, args = self._compiler.fold_argument_types(args, kws) kws = {} # Ensure an overload is available if self._can_compile: self.compile(tuple(args)) # Create function type for typing func_name = self.py_func.__name__ name = "CallTemplate({0})".format(func_name) # The `key` isn't really used except for diagnosis here, # so avoid keeping a reference to `cfunc`. call_template = typing.make_concrete_template( name, key=func_name, signatures=self.nopython_signatures) return call_template, pysig, args, kws def get_overload(self, sig): """ Return the compiled function for the given signature. """ args, return_type = sigutils.normalize_signature(sig) return self.overloads[tuple(args)].entry_point @property def is_compiling(self): """ Whether a specialization is currently being compiled. """ return self._compiling_counter def _compile_for_args(self, *args, **kws): """ For internal use. Compile a specialized version of the function for the given *args* and *kws*, and return the resulting callable. """ assert not kws # call any initialisation required for the compilation chain (e.g. # extension point registration). self._compilation_chain_init_hook() def error_rewrite(e, issue_type): """ Rewrite and raise Exception `e` with help supplied based on the specified issue_type. """ if config.SHOW_HELP: help_msg = errors.error_extras[issue_type] e.patch_message('\n'.join((str(e).rstrip(), help_msg))) if config.FULL_TRACEBACKS: raise e else: raise e.with_traceback(None) argtypes = [] for a in args: if isinstance(a, OmittedArg): argtypes.append(types.Omitted(a.value)) else: argtypes.append(self.typeof_pyval(a)) try: return self.compile(tuple(argtypes)) except errors.ForceLiteralArg as e: # Received request for compiler re-entry with the list of arguments # indicated by e.requested_args. # First, check if any of these args are already Literal-ized already_lit_pos = [i for i in e.requested_args if isinstance(args[i], types.Literal)] if already_lit_pos: # Abort compilation if any argument is already a Literal. # Letting this continue will cause infinite compilation loop. m = ("Repeated literal typing request.\n" "{}.\n" "This is likely caused by an error in typing. " "Please see nested and suppressed exceptions.") info = ', '.join('Arg #{} is {}'.format(i, args[i]) for i in sorted(already_lit_pos)) raise errors.CompilerError(m.format(info)) # Convert requested arguments into a Literal. args = [(types.literal if i in e.requested_args else lambda x: x)(args[i]) for i, v in enumerate(args)] # Re-enter compilation with the Literal-ized arguments return self._compile_for_args(*args) except errors.TypingError as e: # Intercept typing error that may be due to an argument # that failed inferencing as a Numba type failed_args = [] for i, arg in enumerate(args): val = arg.value if isinstance(arg, OmittedArg) else arg try: tp = typeof(val, Purpose.argument) except ValueError as typeof_exc: failed_args.append((i, str(typeof_exc))) else: if tp is None: failed_args.append( (i, "cannot determine Numba type of value %r" % (val,))) if failed_args: # Patch error message to ease debugging msg = str(e).rstrip() + ( "\n\nThis error may have been caused by the following argument(s):\n%s\n" % "\n".join("- argument %d: %s" % (i, err) for i, err in failed_args)) e.patch_message(msg) error_rewrite(e, 'typing') except errors.UnsupportedError as e: # Something unsupported is present in the user code, add help info error_rewrite(e, 'unsupported_error') except (errors.NotDefinedError, errors.RedefinedError, errors.VerificationError) as e: # These errors are probably from an issue with either the code supplied # being syntactically or otherwise invalid error_rewrite(e, 'interpreter') except errors.ConstantInferenceError as e: # this is from trying to infer something as constant when it isn't # or isn't supported as a constant error_rewrite(e, 'constant_inference') except Exception as e: if config.SHOW_HELP: if hasattr(e, 'patch_message'): help_msg = errors.error_extras['reportable'] e.patch_message('\n'.join((str(e).rstrip(), help_msg))) # ignore the FULL_TRACEBACKS config, this needs reporting! raise e def inspect_llvm(self, signature=None): """Get the LLVM intermediate representation generated by compilation. Parameters ---------- signature : tuple of numba types, optional Specify a signature for which to obtain the LLVM IR. If None, the IR is returned for all available signatures. Returns ------- llvm : dict[signature, str] or str Either the LLVM IR string for the specified signature, or, if no signature was given, a dictionary mapping signatures to LLVM IR strings. """ if signature is not None: lib = self.overloads[signature].library return lib.get_llvm_str() return dict((sig, self.inspect_llvm(sig)) for sig in self.signatures) def inspect_asm(self, signature=None): """Get the generated assembly code. Parameters ---------- signature : tuple of numba types, optional Specify a signature for which to obtain the assembly code. If None, the assembly code is returned for all available signatures. Returns ------- asm : dict[signature, str] or str Either the assembly code for the specified signature, or, if no signature was given, a dictionary mapping signatures to assembly code. """ if signature is not None: lib = self.overloads[signature].library return lib.get_asm_str() return dict((sig, self.inspect_asm(sig)) for sig in self.signatures) def inspect_types(self, file=None, signature=None, pretty=False, style='default', **kwargs): """Print/return Numba intermediate representation (IR)-annotated code. Parameters ---------- file : file-like object, optional File to which to print. Defaults to sys.stdout if None. Must be None if ``pretty=True``. signature : tuple of numba types, optional Print/return the intermediate representation for only the given signature. If None, the IR is printed for all available signatures. pretty : bool, optional If True, an Annotate object will be returned that can render the IR with color highlighting in Jupyter and IPython. ``file`` must be None if ``pretty`` is True. Additionally, the ``pygments`` library must be installed for ``pretty=True``. style : str, optional Choose a style for rendering. Ignored if ``pretty`` is ``False``. This is directly consumed by ``pygments`` formatters. To see a list of available styles, import ``pygments`` and run ``list(pygments.styles.get_all_styles())``. Returns ------- annotated : Annotate object, optional Only returned if ``pretty=True``, otherwise this function is only used for its printing side effect. If ``pretty=True``, an Annotate object is returned that can render itself in Jupyter and IPython. """ overloads = self.overloads if signature is not None: overloads = {signature: self.overloads[signature]} if not pretty: if file is None: file = sys.stdout for ver, res in overloads.items(): print("%s %s" % (self.py_func.__name__, ver), file=file) print('-' * 80, file=file) print(res.type_annotation, file=file) print('=' * 80, file=file) else: if file is not None: raise ValueError("`file` must be None if `pretty=True`") from numba.core.annotations.pretty_annotate import Annotate return Annotate(self, signature=signature, style=style) def inspect_cfg(self, signature=None, show_wrapper=None): """ For inspecting the CFG of the function. By default the CFG of the user function is shown. The *show_wrapper* option can be set to "python" or "cfunc" to show the python wrapper function or the *cfunc* wrapper function, respectively. """ if signature is not None: cres = self.overloads[signature] lib = cres.library if show_wrapper == 'python': fname = cres.fndesc.llvm_cpython_wrapper_name elif show_wrapper == 'cfunc': fname = cres.fndesc.llvm_cfunc_wrapper_name else: fname = cres.fndesc.mangled_name return lib.get_function_cfg(fname) return dict((sig, self.inspect_cfg(sig, show_wrapper=show_wrapper)) for sig in self.signatures) def inspect_disasm_cfg(self, signature=None): """ For inspecting the CFG of the disassembly of the function. Requires python package: r2pipe Requires radare2 binary on $PATH. Notebook rendering requires python package: graphviz signature : tuple of Numba types, optional Print/return the disassembly CFG for only the given signatures. If None, the IR is printed for all available signatures. """ if signature is not None: cres = self.overloads[signature] lib = cres.library return lib.get_disasm_cfg() return dict((sig, self.inspect_disasm_cfg(sig)) for sig in self.signatures) def get_annotation_info(self, signature=None): """ Gets the annotation information for the function specified by signature. If no signature is supplied a dictionary of signature to annotation information is returned. """ signatures = self.signatures if signature is None else [signature] out = collections.OrderedDict() for sig in signatures: cres = self.overloads[sig] ta = cres.type_annotation key = (ta.func_id.filename + ':' + str(ta.func_id.firstlineno + 1), ta.signature) out[key] = ta.annotate_raw()[key] return out def _explain_ambiguous(self, *args, **kws): """ Callback for the C _Dispatcher object. """ assert not kws, "kwargs not handled" args = tuple([self.typeof_pyval(a) for a in args]) # The order here must be deterministic for testing purposes, which # is ensured by the OrderedDict. sigs = self.nopython_signatures # This will raise self.typingctx.resolve_overload(self.py_func, sigs, args, kws, allow_ambiguous=False) def _explain_matching_error(self, *args, **kws): """ Callback for the C _Dispatcher object. """ assert not kws, "kwargs not handled" args = [self.typeof_pyval(a) for a in args] msg = ("No matching definition for argument type(s) %s" % ', '.join(map(str, args))) raise TypeError(msg) def _search_new_conversions(self, *args, **kws): """ Callback for the C _Dispatcher object. Search for approximately matching signatures for the given arguments, and ensure the corresponding conversions are registered in the C++ type manager. """ assert not kws, "kwargs not handled" args = [self.typeof_pyval(a) for a in args] found = False for sig in self.nopython_signatures: conv = self.typingctx.install_possible_conversions(args, sig.args) if conv: found = True return found def __repr__(self): return "%s(%s)" % (type(self).__name__, self.py_func) def typeof_pyval(self, val): """ Resolve the Numba type of Python value *val*. This is called from numba._dispatcher as a fallback if the native code cannot decide the type. """ # Not going through the resolve_argument_type() indirection # can save a couple µs. try: tp = typeof(val, Purpose.argument) except ValueError: tp = types.pyobject else: if tp is None: tp = types.pyobject return tp class _MemoMixin: __uuid = None # A {uuid -> instance} mapping, for deserialization _memo = weakref.WeakValueDictionary() # hold refs to last N functions deserialized, retaining them in _memo # regardless of whether there is another reference _recent = collections.deque(maxlen=config.FUNCTION_CACHE_SIZE) @property def _uuid(self): """ An instance-specific UUID, to avoid multiple deserializations of a given instance. Note: this is lazily-generated, for performance reasons. """ u = self.__uuid if u is None: u = str(uuid.uuid1()) self._set_uuid(u) return u def _set_uuid(self, u): assert self.__uuid is None self.__uuid = u self._memo[u] = self self._recent.append(self) class Dispatcher(serialize.ReduceMixin, _MemoMixin, _DispatcherBase): """ Implementation of user-facing dispatcher objects (i.e. created using the @jit decorator). This is an abstract base class. Subclasses should define the targetdescr class attribute. """ _fold_args = True _impl_kinds = { 'direct': _FunctionCompiler, 'generated': _GeneratedFunctionCompiler, } __numba__ = 'py_func' def __init__(self, py_func, locals={}, targetoptions={}, impl_kind='direct', pipeline_class=compiler.Compiler): """ Parameters ---------- py_func: function object to be compiled locals: dict, optional Mapping of local variable names to Numba types. Used to override the types deduced by the type inference engine. targetoptions: dict, optional Target-specific config options. impl_kind: str Select the compiler mode for `@jit` and `@generated_jit` pipeline_class: type numba.compiler.CompilerBase The compiler pipeline type. """ self.typingctx = self.targetdescr.typing_context self.targetctx = self.targetdescr.target_context pysig = utils.pysignature(py_func) arg_count = len(pysig.parameters) can_fallback = not targetoptions.get('nopython', False) _DispatcherBase.__init__(self, arg_count, py_func, pysig, can_fallback, exact_match_required=False) functools.update_wrapper(self, py_func) self.targetoptions = targetoptions self.locals = locals self._cache = NullCache() compiler_class = self._impl_kinds[impl_kind] self._impl_kind = impl_kind self._compiler = compiler_class(py_func, self.targetdescr, targetoptions, locals, pipeline_class) self._cache_hits = collections.Counter() self._cache_misses = collections.Counter() self._type = types.Dispatcher(self) self.typingctx.insert_global(self, self._type) def dump(self, tab=''): print(f'{tab}DUMP {type(self).__name__}[{self.py_func.__name__}, type code={self._type._code}]') for cres in self.overloads.values(): cres.dump(tab = tab + ' ') print(f'{tab}END DUMP {type(self).__name__}[{self.py_func.__name__}]') @property def _numba_type_(self): return types.Dispatcher(self) def enable_caching(self): self._cache = FunctionCache(self.py_func) def __get__(self, obj, objtype=None): '''Allow a JIT function to be bound as a method to an object''' if obj is None: # Unbound method return self else: # Bound method return pytypes.MethodType(self, obj) def _reduce_states(self): """ Reduce the instance for pickling. This will serialize the original function as well the compilation options and compiled signatures, but not the compiled code itself. NOTE: part of ReduceMixin protocol """ if self._can_compile: sigs = [] else: sigs = [cr.signature for cr in self.overloads.values()] return dict( uuid=str(self._uuid), py_func=self.py_func, locals=self.locals, targetoptions=self.targetoptions, impl_kind=self._impl_kind, can_compile=self._can_compile, sigs=sigs, ) @classmethod def _rebuild(cls, uuid, py_func, locals, targetoptions, impl_kind, can_compile, sigs): """ Rebuild an Dispatcher instance after it was __reduce__'d. NOTE: part of ReduceMixin protocol """ try: return cls._memo[uuid] except KeyError: pass self = cls(py_func, locals, targetoptions, impl_kind) # Make sure this deserialization will be merged with subsequent ones self._set_uuid(uuid) for sig in sigs: self.compile(sig) self._can_compile = can_compile return self @global_compiler_lock def compile(self, sig): if not self._can_compile: raise RuntimeError("compilation disabled") # Use counter to track recursion compilation depth with self._compiling_counter: args, return_type = sigutils.normalize_signature(sig) # Don't recompile if signature already exists existing = self.overloads.get(tuple(args)) if existing is not None: return existing.entry_point # Try to load from disk cache cres = self._cache.load_overload(sig, self.targetctx) if cres is not None: self._cache_hits[sig] += 1 # XXX fold this in add_overload()? (also see compiler.py) if not cres.objectmode and not cres.interpmode: self.targetctx.insert_user_function(cres.entry_point, cres.fndesc, [cres.library]) self.add_overload(cres) return cres.entry_point self._cache_misses[sig] += 1 try: cres = self._compiler.compile(args, return_type) except errors.ForceLiteralArg as e: def folded(args, kws): return self._compiler.fold_argument_types(args, kws)[1] raise e.bind_fold_arguments(folded) self.add_overload(cres) self._cache.save_overload(sig, cres) return cres.entry_point def get_compile_result(self, sig): """Compile (if needed) and return the compilation result with the given signature. """ atypes = tuple(sig.args) if atypes not in self.overloads: self.compile(atypes) return self.overloads[atypes] def recompile(self): """ Recompile all signatures afresh. """ sigs = list(self.overloads) old_can_compile = self._can_compile # Ensure the old overloads are disposed of, including compiled functions. self._make_finalizer()() self._reset_overloads() self._cache.flush() self._can_compile = True try: for sig in sigs: self.compile(sig) finally: self._can_compile = old_can_compile @property def stats(self): return _CompileStats( cache_path=self._cache.cache_path, cache_hits=self._cache_hits, cache_misses=self._cache_misses, ) def parallel_diagnostics(self, signature=None, level=1): """ Print parallel diagnostic information for the given signature. If no signature is present it is printed for all known signatures. level is used to adjust the verbosity, level=1 (default) is minimal verbosity, and 2, 3, and 4 provide increasing levels of verbosity. """ def dump(sig): ol = self.overloads[sig] pfdiag = ol.metadata.get('parfor_diagnostics', None) if pfdiag is None: msg = "No parfors diagnostic available, is 'parallel=True' set?" raise ValueError(msg) pfdiag.dump(level) if signature is not None: dump(signature) else: [dump(sig) for sig in self.signatures] def get_metadata(self, signature=None): """ Obtain the compilation metadata for a given signature. """ if signature is not None: return self.overloads[signature].metadata else: return dict((sig, self.overloads[sig].metadata) for sig in self.signatures) def get_function_type(self): """Return unique function type of dispatcher when possible, otherwise return None. A Dispatcher instance has unique function type when it contains exactly one compilation result and its compilation has been disabled (via its disable_compile method). """ if not self._can_compile and len(self.overloads) == 1: cres = tuple(self.overloads.values())[0] return types.FunctionType(cres.signature) class LiftedCode(serialize.ReduceMixin, _MemoMixin, _DispatcherBase): """ Implementation of the hidden dispatcher objects used for lifted code (a lifted loop is really compiled as a separate function). """ _fold_args = False can_cache = False def __init__(self, func_ir, typingctx, targetctx, flags, locals): self.func_ir = func_ir self.lifted_from = None self.typingctx = typingctx self.targetctx = targetctx self.flags = flags self.locals = locals _DispatcherBase.__init__(self, self.func_ir.arg_count, self.func_ir.func_id.func, self.func_ir.func_id.pysig, can_fallback=True, exact_match_required=False) def _reduce_states(self): """ Reduce the instance for pickling. This will serialize the original function as well the compilation options and compiled signatures, but not the compiled code itself. NOTE: part of ReduceMixin protocol """ return dict( uuid=self._uuid, func_ir=self.func_ir, flags=self.flags, locals=self.locals, extras=self._reduce_extras(), ) def _reduce_extras(self): """ NOTE: sub-class can override to add extra states """ return {} @classmethod def _rebuild(cls, uuid, func_ir, flags, locals, extras): """ Rebuild an Dispatcher instance after it was __reduce__'d. NOTE: part of ReduceMixin protocol """ try: return cls._memo[uuid] except KeyError: pass # NOTE: We are assuming that this is must be cpu_target, which is true # for now. # TODO: refactor this to not assume on `cpu_target` from numba.core import registry typingctx = registry.cpu_target.typing_context targetctx = registry.cpu_target.target_context self = cls(func_ir, typingctx, targetctx, flags, locals, **extras) self._set_uuid(uuid) return self def get_source_location(self): """Return the starting line number of the loop. """ return self.func_ir.loc.line def _pre_compile(self, args, return_type, flags): """Pre-compile actions """ pass @global_compiler_lock def compile(self, sig): # Use counter to track recursion compilation depth with self._compiling_counter: # XXX this is mostly duplicated from Dispatcher. flags = self.flags args, return_type = sigutils.normalize_signature(sig) # Don't recompile if signature already exists # (e.g. if another thread compiled it before we got the lock) existing = self.overloads.get(tuple(args)) if existing is not None: return existing.entry_point self._pre_compile(args, return_type, flags) # Clone IR to avoid (some of the) mutation in the rewrite pass cloned_func_ir = self.func_ir.copy() cres = compiler.compile_ir(typingctx=self.typingctx, targetctx=self.targetctx, func_ir=cloned_func_ir, args=args, return_type=return_type, flags=flags, locals=self.locals, lifted=(), lifted_from=self.lifted_from, is_lifted_loop=True,) # Check typing error if object mode is used if cres.typing_error is not None and not flags.enable_pyobject: raise cres.typing_error self.add_overload(cres) return cres.entry_point class LiftedLoop(LiftedCode): def _pre_compile(self, args, return_type, flags): assert not flags.enable_looplift, "Enable looplift flags is on" class LiftedWith(LiftedCode): can_cache = True def _reduce_extras(self): return dict(output_types=self.output_types) @property def _numba_type_(self): return types.Dispatcher(self) def get_call_template(self, args, kws): """ Get a typing.ConcreteTemplate for this dispatcher and the given *args* and *kws* types. This enables the resolving of the return type. A (template, pysig, args, kws) tuple is returned. """ # Ensure an overload is available if self._can_compile: self.compile(tuple(args)) pysig = None # Create function type for typing func_name = self.py_func.__name__ name = "CallTemplate({0})".format(func_name) # The `key` isn't really used except for diagnosis here, # so avoid keeping a reference to `cfunc`. call_template = typing.make_concrete_template( name, key=func_name, signatures=self.nopython_signatures) return call_template, pysig, args, kws class ObjModeLiftedWith(LiftedWith): def __init__(self, *args, **kwargs): self.output_types = kwargs.pop('output_types', None) super(LiftedWith, self).__init__(*args, **kwargs) if not self.flags.force_pyobject: raise ValueError("expecting `flags.force_pyobject`") if self.output_types is None: raise TypeError('`output_types` must be provided') @property def _numba_type_(self): return types.ObjModeDispatcher(self) def get_call_template(self, args, kws): """ Get a typing.ConcreteTemplate for this dispatcher and the given *args* and *kws* types. This enables the resolving of the return type. A (template, pysig, args, kws) tuple is returned. """ assert not kws self._legalize_arg_types(args) # Coerce to object mode args = [types.ffi_forced_object] * len(args) if self._can_compile: self.compile(tuple(args)) signatures = [typing.signature(self.output_types, *args)] pysig = None func_name = self.py_func.__name__ name = "CallTemplate({0})".format(func_name) call_template = typing.make_concrete_template( name, key=func_name, signatures=signatures) return call_template, pysig, args, kws def _legalize_arg_types(self, args): for i, a in enumerate(args, start=1): if isinstance(a, types.List): msg = ( 'Does not support list type inputs into ' 'with-context for arg {}' ) raise errors.TypingError(msg.format(i)) elif isinstance(a, types.Dispatcher): msg = ( 'Does not support function type inputs into ' 'with-context for arg {}' ) raise errors.TypingError(msg.format(i)) # Initialize typeof machinery _dispatcher.typeof_init( OmittedArg, dict((str(t), t._code) for t in types.number_domain))
[ [ [ 33, 44 ], [ 5914, 5925 ], [ 25140, 25151 ], [ 6823, 6834 ], [ 22412, 22423 ], [ 27653, 27664 ], [ 27704, 27715 ] ], [ [ 52, 61 ], [ 27244, 27253 ] ], [ [ 69, 71 ] ], [ [ 79, 85 ] ], [ [ 93, 96 ], [ 19879, 19882 ] ], [ [ 104, 120 ], [ 28516, 28523 ] ], [ [ 128, 132 ], [ 25484, 25488 ] ], [ [ 140, 147 ], [ 24967, 24974 ], [ 7936, 7943 ] ], [ [ 165, 173 ] ], [ [ 193, 204 ], [ 6477, 6488 ], [ 41191, 41202 ], [ 7480, 7491 ] ], [ [ 228, 233 ], [ 1283, 1288 ], [ 4914, 4919 ], [ 4964, 4969 ], [ 8890, 8895 ], [ 26960, 26965 ] ], [ [ 235, 240 ], [ 41268, 41273 ], [ 957, 962 ], [ 12866, 12871 ], [ 13379, 13384 ], [ 14078, 14083 ], [ 24828, 24833 ], [ 24751, 24756 ], [ 27748, 27753 ], [ 28182, 28187 ], [ 34048, 34053 ], [ 38370, 38375 ], [ 39695, 39700 ], [ 40115, 40120 ], [ 40680, 40685 ], [ 40930, 40935 ], [ 1978, 1983 ], [ 2071, 2076 ] ], [ [ 242, 248 ], [ 2910, 2916 ], [ 13039, 13045 ], [ 13962, 13968 ], [ 14367, 14373 ], [ 15494, 15500 ], [ 15669, 15675 ], [ 15693, 15699 ], [ 15732, 15738 ], [ 15962, 15968 ], [ 16318, 16324 ], [ 31092, 31098 ], [ 40865, 40871 ], [ 41125, 41131 ], [ 12516, 12522 ] ], [ [ 250, 256 ], [ 11315, 11321 ], [ 39082, 39088 ], [ 40244, 40250 ], [ 40428, 40434 ] ], [ [ 258, 267 ], [ 25715, 25724 ], [ 34102, 34111 ], [ 3944, 3953 ], [ 4615, 4624 ] ], [ [ 269, 275 ], [ 25165, 25171 ], [ 16221, 16227 ], [ 12471, 12477 ], [ 12635, 12641 ] ], [ [ 277, 285 ], [ 26259, 26267 ], [ 3114, 3122 ], [ 3317, 3325 ], [ 37270, 37278 ] ], [ [ 287, 295 ], [ 11611, 11619 ], [ 30160, 30168 ], [ 36766, 36774 ] ], [ [ 333, 353 ], [ 29893, 29913 ], [ 36496, 36516 ] ], [ [ 392, 412 ], [ 6723, 6743 ] ], [ [ 453, 467 ], [ 2225, 2239 ] ], [ [ 505, 512 ], [ 14716, 14723 ], [ 24689, 24696 ] ], [ [ 514, 520 ], [ 14704, 14710 ], [ 24677, 24683 ] ], [ [ 553, 568 ], [ 6982, 6997 ] ], [ [ 600, 609 ], [ 27379, 27388 ] ], [ [ 611, 624 ], [ 28258, 28271 ] ], [ [ 648, 659 ], [ 8408, 8419 ] ], [ [ 668, 678 ], [ 41220, 41230 ], [ 7220, 7230 ], [ 12821, 12831 ], [ 14637, 14647 ] ], [ [ 991, 1008 ], [ 4175, 4192 ], [ 26040, 26057 ] ], [ [ 4148, 4174 ], [ 26080, 26106 ], [ 4312, 4338 ] ], [ [ 5898, 5911 ], [ 32276, 32289 ] ], [ [ 6013, 6030 ], [ 7908, 7925 ] ], [ [ 6461, 6476 ], [ 25750, 25765 ], [ 34137, 34152 ], [ 27102, 27117 ], [ 34622, 34637 ] ], [ [ 24869, 24879 ], [ 25738, 25748 ], [ 34125, 34135 ] ], [ [ 25704, 25714 ] ], [ [ 34091, 34101 ], [ 38035, 38045 ], [ 38193, 38203 ] ], [ [ 38024, 38034 ] ], [ [ 38182, 38192 ], [ 39256, 39266 ], [ 39385, 39395 ] ], [ [ 39238, 39255 ] ] ]
#!/bin/env python import sys import unittest from unittest.mock import Mock from unittest.mock import patch from textwrap import dedent ats_mock = Mock() with patch.dict('sys.modules', {'ats' : ats_mock}, autospec=True): import genie.parsergen from genie.parsergen import oper_fill from genie.parsergen import oper_check from genie.parsergen import oper_fill_tabular from genie.parsergen.examples.parsergen.pyAts import parsergen_demo_mkpg import xml.etree.ElementTree as ET from ats.topology import Device from genie.metaparser.util.exceptions import SchemaEmptyParserError from genie.libs.parser.iosxe.show_interface import ShowInterfacesSwitchport,\ ShowIpInterfaceBriefPipeVlan,\ ShowInterfaces, ShowIpInterface,\ ShowIpv6Interface, \ ShowInterfacesTrunk, \ ShowInterfacesCounters, \ ShowInterfacesAccounting, \ ShowIpInterfaceBriefPipeIp class test_show_interface_parsergen(unittest.TestCase): def test_tabular_parser(self): self.showCommandOutput=''' R1#show ip interface brief Interface IP-Address OK? Method Status Protocol GigabitEthernet0/0 10.1.10.20 YES NVRAM up up GigabitEthernet1/0/1 unassigned YES unset up up GigabitEthernet1/0/10 unassigned YES unset down down ''' self.outputDict = {'GigabitEthernet0/0': {'IP-Address': '10.1.10.20', 'Interface': 'GigabitEthernet0/0', 'Method': 'NVRAM', 'OK?': 'YES', 'Protocol': 'up', 'Status': 'up'}, 'GigabitEthernet1/0/1': {'IP-Address': 'unassigned', 'Interface': 'GigabitEthernet1/0/1', 'Method': 'unset', 'OK?': 'YES', 'Protocol': 'up', 'Status': 'up'}, 'GigabitEthernet1/0/10': {'IP-Address': 'unassigned', 'Interface': 'GigabitEthernet1/0/10', 'Method': 'unset', 'OK?': 'YES', 'Protocol': 'down', 'Status': 'down'}} # Define how device stub will behave when accessed by production parser. device_kwargs = {'is_connected.return_value':True, 'execute.return_value':dedent(self.showCommandOutput)} device1 = Mock(**device_kwargs) device1.name='router3' result = genie.parsergen.oper_fill_tabular(device=device1, show_command="show ip interface brief", refresh_cache=True, header_fields= [ "Interface", "IP-Address", "OK\?", "Method", "Status", "Protocol" ], label_fields= [ "Interface", "IP-Address", "OK?", "Method", "Status", "Protocol" ], index=[0]) self.assertEqual(result.entries, self.outputDict) args, kwargs = device1.execute.call_args self.assertTrue('show ip interface brief' in args, msg='The expected command was not sent to the router') ############################################################################# # unitest For Show Interfaces switchport ############################################################################# class test_show_ip_interfaces_brief_pipe_ip(unittest.TestCase): device = Device(name='aDevice') empty_output = {'execute.return_value': ''} golden_parsed_output = {'interface': {'GigabitEthernet0/0': {'interface_ok': 'YES', 'interface_status': 'up', 'ip_address': '10.1.18.80', 'method': 'manual', 'protocol_status': 'up'}}} golden_output = {'execute.return_value': ''' R1#sh ip int brief | i 10.1.18.80 GigabitEthernet0/0 10.1.18.80 YES manual up up '''} def test_golden(self): self.device = Mock(**self.golden_output) obj = ShowIpInterfaceBriefPipeIp(device=self.device) parsed_output = obj.parse(ip='10.1.18.80') self.assertEqual(parsed_output,self.golden_parsed_output) def test_empty(self): self.device1 = Mock(**self.empty_output) obj = ShowIpInterfaceBriefPipeIp(device=self.device1) with self.assertRaises(SchemaEmptyParserError): parsed_output = obj.parse(ip='10.1.18.80') # Comment out due to old version of yang, will enhance it # class test_show_interface_brief_pipe_vlan_yang(unittest.TestCase): # device = Device(name='aDevice') # device1 = Device(name='bDevice') # golden_parsed_output = {'interface': {'Vlan1': {'vlan_id': {'1': {'ip_address': 'unassigned'}}}, # 'Vlan100': {'vlan_id': {'100': {'ip_address': '201.0.12.1'}}}}} # class etree_holder(): # def __init__(self): # self.data = ET.fromstring(''' # <data> # <native xmlns="http://cisco.com/ns/yang/ned/ios"> # <interface> # <Vlan> # <name>1</name> # <ip> # <no-address> # <address>false</address> # </no-address> # </ip> # <shutdown/> # </Vlan> # <Vlan> # <name>100</name> # <ip> # <address> # <primary> # <address>201.0.12.1</address> # <mask>255.255.255.0</mask> # </primary> # </address> # </ip> # <ipv6> # <address> # <prefix-list> # <prefix>2001::12:30/128</prefix> # </prefix-list> # </address> # </ipv6> # </Vlan> # </interface> # </native> # </data> # ''') # golden_output = {'get.return_value': etree_holder()} # def test_golden(self): # self.device = Mock(**self.golden_output) # intf_obj = ShowIpInterfaceBriefPipeVlan(device=self.device) # intf_obj.context = Context.yang.value # parsed_output = intf_obj.parse() # self.assertEqual(parsed_output,self.golden_parsed_output) # empty_parsed_output = {'interface': {}} # class empty_etree_holder(): # def __init__(self): # self.data = ET.fromstring(''' # <data> # <native xmlns="http://cisco.com/ns/yang/ned/ios"> # <interface> # <Vlan> # </Vlan> # </interface> # </native> # </data> # ''') # empty_output = {'get.return_value': empty_etree_holder()} # def test_empty(self): # self.device1 = Mock(**self.empty_output) # intf_obj = ShowIpInterfaceBriefPipeVlan(device=self.device1) # intf_obj.context = Context.yang.value # parsed_output = intf_obj.parse() # self.assertEqual(parsed_output,self.empty_parsed_output) ############################################################################# # unitest For Show Interfaces switchport ############################################################################# class test_show_interfaces_switchport(unittest.TestCase): device = Device(name='aDevice') empty_output = {'execute.return_value': ''} golden_parsed_output = { "GigabitEthernet1/0/4": { "switchport_mode": "trunk", "pruning_vlans": "2-1001", 'operational_mode': 'trunk', "switchport_enable": True, "trunk_vlans": "200-211", "capture_mode": False, "private_vlan": { "native_vlan_tagging": True, "encapsulation": "dot1q" }, "access_vlan": "1", "unknown_unicast_blocked": False, "native_vlan_tagging": True, "unknown_multicast_blocked": False, "protected": False, "negotiation_of_trunk": True, "capture_vlans": "all", "encapsulation": { "operational_encapsulation": "dot1q", "native_vlan": "1", "administrative_encapsulation": "dot1q" } }, "GigabitEthernet1/0/2": { "pruning_vlans": "2-1001", "switchport_enable": True, "unknown_multicast_blocked": False, "trunk_vlans": "100-110", "port_channel": { "port_channel_int": "Port-channel12", "port_channel_member": True }, "access_vlan": "1", "operational_mode": "trunk", "unknown_unicast_blocked": False, "capture_mode": False, "private_vlan": { "native_vlan_tagging": True, "encapsulation": "dot1q", "operational": "10 (VLAN0010) 100 (VLAN0100)", "trunk_mappings": "10 (VLAN0010) 100 (VLAN0100)" }, "encapsulation": { "operational_encapsulation": "dot1q", "native_vlan": "1", "administrative_encapsulation": "dot1q" }, "protected": False, "native_vlan_tagging": True, "negotiation_of_trunk": True, "capture_vlans": "all", "switchport_mode": "trunk" }, "GigabitEthernet1/0/5": { "switchport_mode": "static access", "pruning_vlans": "2-1001", "switchport_enable": True, "trunk_vlans": "all", 'operational_mode': 'down', "capture_mode": False, "private_vlan": { "native_vlan_tagging": True, "encapsulation": "dot1q" }, "access_vlan": "1", "unknown_unicast_blocked": False, "native_vlan_tagging": True, "unknown_multicast_blocked": False, "protected": False, "negotiation_of_trunk": False, "capture_vlans": "all", "encapsulation": { "native_vlan": "1", "administrative_encapsulation": "dot1q" } }, "Port-channel12": { "switchport_enable": True, "private_vlan": { "encapsulation": "dot1q", "native_vlan_tagging": True }, "native_vlan_tagging": False, "negotiation_of_trunk": True, "unknown_unicast_blocked": False, "protected": False, "encapsulation": { "administrative_encapsulation": "dot1q", "native_vlan": "0" }, "switchport_mode": "trunk", "unknown_multicast_blocked": False, "trunk_vlans": "100-110", "operational_mode": "down", "pruning_vlans": "2-1001", "port_channel": { "port_channel_member": True, "port_channel_member_intfs": [ "GigabitEthernet1/0/2" ] } } } golden_output = {'execute.return_value': ''' Name: Gi1/0/2 Switchport: Enabled Administrative Mode: trunk Operational Mode: trunk (member of bundle Po12) Administrative Trunking Encapsulation: dot1q Operational Trunking Encapsulation: dot1q Negotiation of Trunking: On Access Mode VLAN: 1 (default) Trunking Native Mode VLAN: 1 (default) Administrative Native VLAN tagging: enabled Voice VLAN: none Administrative private-vlan host-association: none Administrative private-vlan mapping: none Administrative private-vlan trunk native VLAN: none Administrative private-vlan trunk Native VLAN tagging: enabled Administrative private-vlan trunk encapsulation: dot1q Administrative private-vlan trunk normal VLANs: none Administrative private-vlan trunk associations: none Administrative private-vlan trunk mappings: 10 (VLAN0010) 100 (VLAN0100) Operational private-vlan: 10 (VLAN0010) 100 (VLAN0100) Trunking VLANs Enabled: 100-110 Pruning VLANs Enabled: 2-1001 Capture Mode Disabled Capture VLANs Allowed: ALL Protected: false Unknown unicast blocked: disabled Unknown multicast blocked: disabled Appliance trust: none Name: Gi1/0/4 Switchport: Enabled Administrative Mode: trunk Operational Mode: trunk Administrative Trunking Encapsulation: dot1q Operational Trunking Encapsulation: dot1q Negotiation of Trunking: On Access Mode VLAN: 1 (default) Trunking Native Mode VLAN: 1 (default) Administrative Native VLAN tagging: enabled Voice VLAN: none Administrative private-vlan host-association: none Administrative private-vlan mapping: none Administrative private-vlan trunk native VLAN: none Administrative private-vlan trunk Native VLAN tagging: enabled Administrative private-vlan trunk encapsulation: dot1q Administrative private-vlan trunk normal VLANs: none Administrative private-vlan trunk associations: none Administrative private-vlan trunk mappings: none Operational private-vlan: none Trunking VLANs Enabled: 200-211 Pruning VLANs Enabled: 2-1001 Capture Mode Disabled Capture VLANs Allowed: ALL Protected: false Unknown unicast blocked: disabled Unknown multicast blocked: disabled Appliance trust: none Name: Gi1/0/5 Switchport: Enabled Administrative Mode: static access Operational Mode: down Administrative Trunking Encapsulation: dot1q Negotiation of Trunking: Off Access Mode VLAN: 1 (default) Trunking Native Mode VLAN: 1 (default) Administrative Native VLAN tagging: enabled Voice VLAN: none Administrative private-vlan host-association: none Administrative private-vlan mapping: none Administrative private-vlan trunk native VLAN: none Administrative private-vlan trunk Native VLAN tagging: enabled Administrative private-vlan trunk encapsulation: dot1q Administrative private-vlan trunk normal VLANs: none Administrative private-vlan trunk associations: none Administrative private-vlan trunk mappings: none Operational private-vlan: none Trunking VLANs Enabled: ALL Pruning VLANs Enabled: 2-1001 Capture Mode Disabled Capture VLANs Allowed: ALL Protected: false Unknown unicast blocked: disabled Unknown multicast blocked: disabled Appliance trust: none Name: Po12 Switchport: Enabled Administrative Mode: trunk Operational Mode: down Administrative Trunking Encapsulation: dot1q Negotiation of Trunking: On Access Mode VLAN: unassigned Trunking Native Mode VLAN: 0 (Inactive) Administrative Native VLAN tagging: disabled Voice VLAN: none Administrative private-vlan host-association: none Administrative private-vlan mapping: none Administrative private-vlan trunk native VLAN: none Administrative private-vlan trunk Native VLAN tagging: enabled Administrative private-vlan trunk encapsulation: dot1q Administrative private-vlan trunk normal VLANs: none Administrative private-vlan trunk associations: none Administrative private-vlan trunk mappings: none Operational private-vlan: none Trunking VLANs Enabled: 100-110 Pruning VLANs Enabled: 2-1001 Protected: false Unknown unicast blocked: disabled Unknown multicast blocked: disabled Appliance trust: none '''} def test_golden(self): self.device = Mock(**self.golden_output) intf_obj = ShowInterfacesSwitchport(device=self.device) parsed_output = intf_obj.parse() self.maxDiff = None self.assertEqual(parsed_output,self.golden_parsed_output) def test_empty(self): self.device1 = Mock(**self.empty_output) intf_obj = ShowInterfacesSwitchport(device=self.device1) with self.assertRaises(SchemaEmptyParserError): parsed_output = intf_obj.parse() ############################################################################# # unitest For Show Interfaces ############################################################################# class test_show_interfaces(unittest.TestCase): device = Device(name='aDevice') empty_output = {'execute.return_value': ''} golden_parsed_output = { "Port-channel12": { "flow_control": { "send": False, "receive": False }, "type": "EtherChannel", "counters": { "out_buffer_failure": 0, "out_underruns": 0, "in_giants": 0, "in_throttles": 0, "in_frame": 0, "in_ignored": 0, "last_clear": "1d23h", "out_interface_resets": 2, "in_mac_pause_frames": 0, "out_collision": 0, "rate": { "out_rate_pkts": 0, "load_interval": 300, "out_rate": 0, "in_rate": 2000, "in_rate_pkts": 2 }, "in_watchdog": 0, "out_deferred": 0, "out_mac_pause_frames": 0, "in_pkts": 961622, "in_multicast_pkts": 4286699522, "in_runts": 0, "out_unknown_protocl_drops": 0, "in_no_buffer": 0, "out_buffers_swapped": 0, "out_lost_carrier": 0, "out_errors": 0, "in_errors": 0, "in_octets": 72614643, "in_crc_errors": 0, "out_no_carrier": 0, "in_with_dribble": 0, "in_broadcast_pkts": 944788, "out_pkts": 39281, "out_late_collision": 0, "out_octets": 6235318, "in_overrun": 0, "out_babble": 0 }, "auto_negotiate": True, "phys_address": "0057.d228.1a02", "keepalive": 10, "output_hang": "never", "txload": "1/255", "oper_status": "up", "arp_type": "arpa", "rxload": "1/255", "duplex_mode": "full", "link_type": "auto", "queues": { "input_queue_size": 0, "total_output_drop": 0, "input_queue_drops": 0, "input_queue_max": 2000, "output_queue_size": 0, "input_queue_flushes": 0, "output_queue_max": 0, "queue_strategy": "fifo" }, "encapsulations": { "encapsulation": "qinq virtual lan", "first_dot1q": "10", "second_dot1q": "20", }, "last_input": "never", "last_output": "1d22h", "line_protocol": "up", "mac_address": "0057.d228.1a02", "connected": True, "port_channel": { "port_channel_member": True, "port_channel_member_intfs": ['GigabitEthernet1/0/2'], }, "arp_timeout": "04:00:00", "bandwidth": 1000000, "port_speed": "1000", "enabled": True, "mtu": 1500, "delay": 10, "reliability": "255/255" }, "GigabitEthernet1/0/1": { "flow_control": { "send": False, "receive": False }, "type": "Gigabit Ethernet", "counters": { "out_buffer_failure": 0, "out_underruns": 0, "in_giants": 0, "in_throttles": 0, "in_frame": 0, "in_ignored": 0, "last_clear": "1d02h", "out_interface_resets": 2, "in_mac_pause_frames": 0, "out_collision": 0, "rate": { "out_rate_pkts": 0, "load_interval": 30, "out_rate": 0, "in_rate": 0, "in_rate_pkts": 0 }, "in_watchdog": 0, "out_deferred": 0, "out_mac_pause_frames": 0, "in_pkts": 12127, "in_multicast_pkts": 4171, "in_runts": 0, "out_unknown_protocl_drops": 0, "in_no_buffer": 0, "out_buffers_swapped": 0, "out_lost_carrier": 0, "out_errors": 0, "in_errors": 0, "in_octets": 2297417, "in_crc_errors": 0, "out_no_carrier": 0, "in_with_dribble": 0, "in_broadcast_pkts": 0, "out_pkts": 12229, "out_late_collision": 0, "out_octets": 2321107, "in_overrun": 0, "out_babble": 0 }, "phys_address": "0057.d228.1a64", "keepalive": 10, "output_hang": "never", "txload": "1/255", "description": "desc", "oper_status": "down", "arp_type": "arpa", "rxload": "1/255", "duplex_mode": "auto", "queues": { "input_queue_size": 0, "total_output_drop": 0, "input_queue_drops": 0, "input_queue_max": 375, "output_queue_size": 0, "input_queue_flushes": 0, "output_queue_max": 40, "queue_strategy": "fifo" }, "ipv4": { "10.1.1.1/24": { "prefix_length": "24", "ip": "10.1.1.1" } }, "encapsulations": { "encapsulation": "arpa" }, "last_input": "never", "last_output": "04:39:18", "line_protocol": "down", "mac_address": "0057.d228.1a64", "connected": False, "port_channel": { "port_channel_member": False }, "media_type": "10/100/1000BaseTX", "bandwidth": 768, "port_speed": "1000", "enabled": False, "arp_timeout": "04:00:00", "mtu": 1500, "delay": 3330, "reliability": "255/255" }, "GigabitEthernet3": { "flow_control": { "send": False, "receive": False }, "type": "CSR vNIC", 'auto_negotiate': True, 'duplex_mode': 'full', 'link_type': 'auto', 'media_type': 'RJ45', 'port_speed': '1000', "counters": { "out_buffer_failure": 0, "out_underruns": 0, "in_giants": 0, "in_throttles": 0, "in_frame": 0, "in_ignored": 0, "last_clear": "never", "out_interface_resets": 1, "in_mac_pause_frames": 0, "out_collision": 0, "in_crc_errors": 0, "rate": { "out_rate_pkts": 0, "load_interval": 300, "out_rate": 0, "in_rate": 0, "in_rate_pkts": 0 }, "in_watchdog": 0, "out_deferred": 0, "out_mac_pause_frames": 0, "in_pkts": 6, "in_multicast_pkts": 0, "in_runts": 0, "in_no_buffer": 0, "out_buffers_swapped": 0, "out_errors": 0, "in_errors": 0, "in_octets": 480, "out_unknown_protocl_drops": 0, "out_no_carrier": 0, "out_lost_carrier": 0, "in_broadcast_pkts": 0, "out_pkts": 28, "out_late_collision": 0, "out_octets": 7820, "in_overrun": 0, "out_babble": 0 }, "phys_address": "5254.0072.9b0c", "keepalive": 10, "output_hang": "never", "txload": "1/255", "reliability": "255/255", "arp_type": "arpa", "rxload": "1/255", "queues": { "input_queue_size": 0, "total_output_drop": 0, "input_queue_drops": 0, "input_queue_max": 375, "output_queue_size": 0, "input_queue_flushes": 0, "output_queue_max": 40, "queue_strategy": "fifo" }, "ipv4": { "200.2.1.1/24": { "prefix_length": "24", "ip": "200.2.1.1" }, "unnumbered": { "interface_ref": "Loopback0" } }, "encapsulations": { "encapsulation": "arpa" }, "last_output": "00:00:27", "line_protocol": "up", "mac_address": "5254.0072.9b0c", "oper_status": "up", "port_channel": { "port_channel_member": False }, "arp_timeout": "04:00:00", "bandwidth": 1000000, "enabled": True, "mtu": 1500, "delay": 10, "last_input": "never" }, "Loopback0": { "queues": { "input_queue_size": 0, "total_output_drop": 0, "input_queue_drops": 0, "input_queue_max": 75, "output_queue_size": 0, "input_queue_flushes": 0, "output_queue_max": 0, "queue_strategy": "fifo" }, "mtu": 1514, "encapsulations": { "encapsulation": "loopback" }, "last_output": "never", "type": "Loopback", "line_protocol": "up", "oper_status": "up", "keepalive": 10, "output_hang": "never", "txload": "1/255", "counters": { "out_buffer_failure": 0, "out_underruns": 0, "in_giants": 0, "in_throttles": 0, "in_frame": 0, "in_ignored": 0, "last_clear": "1d04h", "out_interface_resets": 0, "out_collision": 0, "rate": { "out_rate_pkts": 0, "load_interval": 300, "out_rate": 0, "in_rate": 0, "in_rate_pkts": 0 }, "in_pkts": 0, "in_multicast_pkts": 0, "in_runts": 0, "in_no_buffer": 0, "out_buffers_swapped": 0, "out_errors": 0, "in_errors": 0, "in_octets": 0, "in_crc_errors": 0, "out_unknown_protocl_drops": 0, "in_broadcast_pkts": 0, "out_pkts": 72, "out_octets": 5760, "in_overrun": 0, "in_abort": 0 }, "reliability": "255/255", "bandwidth": 8000000, "port_channel": { "port_channel_member": False }, "enabled": True, "ipv4": { "200.2.1.1/24": { "prefix_length": "24", "ip": "200.2.1.1" } }, "rxload": "1/255", "delay": 5000, "last_input": "1d02h" }, "Vlan100": { "type": "Ethernet SVI", "counters": { "out_buffer_failure": 0, "out_underruns": 0, "in_giants": 0, "in_throttles": 0, "in_frame": 0, "in_ignored": 0, "last_clear": "1d04h", "out_interface_resets": 0, "rate": { "out_rate_pkts": 0, "load_interval": 300, "out_rate": 0, "in_rate": 0, "in_rate_pkts": 0 }, "in_pkts": 50790, "in_multicast_pkts": 0, "in_runts": 0, "in_no_buffer": 0, "out_buffers_swapped": 0, "out_errors": 0, "in_errors": 0, "in_octets": 3657594, "in_crc_errors": 0, "out_unknown_protocl_drops": 0, "in_broadcast_pkts": 0, "out_pkts": 72, "out_octets": 5526, "in_overrun": 0 }, "phys_address": "0057.d228.1a51", "queues": { "input_queue_size": 0, "total_output_drop": 0, "input_queue_drops": 0, "input_queue_max": 375, "output_queue_size": 0, "input_queue_flushes": 0, "output_queue_max": 40, "queue_strategy": "fifo" }, "txload": "1/255", "reliability": "255/255", "arp_type": "arpa", "rxload": "1/255", "output_hang": "never", "ipv4": { "201.0.12.1/24": { "prefix_length": "24", "ip": "201.0.12.1" } }, "encapsulations": { "encapsulation": "arpa" }, "last_output": "1d03h", "line_protocol": "up", "mac_address": "0057.d228.1a51", "oper_status": "up", "port_channel": { "port_channel_member": False }, "arp_timeout": "04:00:00", "bandwidth": 1000000, "enabled": True, "mtu": 1500, "delay": 10, "last_input": "never" }, "GigabitEthernet1/0/2": { "flow_control": { "send": False, "receive": False }, "type": "Gigabit Ethernet", "counters": { "out_buffer_failure": 0, "out_underruns": 0, "in_giants": 0, "in_throttles": 0, "in_frame": 0, "in_ignored": 0, "last_clear": "1d02h", "out_interface_resets": 5, "in_mac_pause_frames": 0, "out_collision": 0, "rate": { "out_rate_pkts": 0, "load_interval": 300, "out_rate": 0, "in_rate": 3000, "in_rate_pkts": 5 }, "in_watchdog": 0, "out_deferred": 0, "out_mac_pause_frames": 0, "in_pkts": 545526, "in_multicast_pkts": 535961, "in_runts": 0, "out_unknown_protocl_drops": 0, "in_no_buffer": 0, "out_buffers_swapped": 0, "out_lost_carrier": 0, "out_errors": 0, "in_errors": 0, "in_octets": 41210298, "in_crc_errors": 0, "out_no_carrier": 0, "in_with_dribble": 0, "in_broadcast_pkts": 535961, "out_pkts": 23376, "out_late_collision": 0, "out_octets": 3642296, "in_overrun": 0, "out_babble": 0 }, "phys_address": "0057.d228.1a02", "keepalive": 10, "output_hang": "never", "txload": "1/255", "oper_status": "up", "arp_type": "arpa", "media_type": "10/100/1000BaseTX", "rxload": "1/255", "duplex_mode": "full", "queues": { "input_queue_size": 0, "total_output_drop": 0, "input_queue_drops": 0, "input_queue_max": 2000, "output_queue_size": 0, "input_queue_flushes": 0, "output_queue_max": 40, "queue_strategy": "fifo" }, "encapsulations": { "encapsulation": "arpa" }, "last_input": "never", "last_output": "00:00:02", "line_protocol": "up", "mac_address": "0057.d228.1a02", "connected": True, "port_channel": { "port_channel_member": True, 'port_channel_int': 'Port-channel12', }, "arp_timeout": "04:00:00", "bandwidth": 1000000, "port_speed": "1000", "enabled": True, "mtu": 1500, "delay": 10, "reliability": "255/255" }, "GigabitEthernet0/0/4": { "arp_timeout": "04:00:00", "arp_type": "arpa", "bandwidth": 1000000, "counters": { "in_broadcast_pkts": 0, "in_crc_errors": 0, "in_errors": 0, "in_frame": 0, "in_giants": 0, "in_ignored": 0, "in_mac_pause_frames": 0, "in_multicast_pkts": 0, "in_no_buffer": 0, "in_octets": 0, "in_overrun": 0, "in_pkts": 0, "in_runts": 0, "in_throttles": 0, "in_watchdog": 0, "last_clear": "never", "out_babble": 0, "out_collision": 0, "out_deferred": 0, "out_errors": 0, "out_interface_resets": 1, "out_late_collision": 0, "out_lost_carrier": 0, "out_mac_pause_frames": 0, "out_no_carrier": 0, "out_octets": 0, "out_pkts": 0, "out_underruns": 0, "out_unknown_protocl_drops": 0, "rate": { "in_rate": 0, "in_rate_pkts": 0, "load_interval": 300, "out_rate": 0, "out_rate_pkts": 0 } }, "delay": 10, "enabled": False, "encapsulations": { "encapsulation": "arpa" }, "flow_control": { "receive": False, "send": False }, "last_input": "never", "last_output": "never", "line_protocol": "down", "mac_address": "380e.4d6c.7006", "phys_address": "380e.4d6c.7006", "mtu": 1500, "oper_status": "down", "output_hang": "never", "port_channel": { "port_channel_member": False }, "queues": { "input_queue_drops": 0, "input_queue_flushes": 0, "input_queue_max": 375, "input_queue_size": 0, "output_queue_max": 40, "output_queue_size": 0, "queue_strategy": "fifo", "total_output_drop": 0 }, "reliability": "255/255", "rxload": "1/255", "txload": "1/255", "type": "BUILT-IN-2T+6X1GE" } } golden_output = {'execute.return_value': ''' GigabitEthernet1/0/1 is administratively down, line protocol is down (disabled) Hardware is Gigabit Ethernet, address is 0057.d228.1a64 (bia 0057.d228.1a64) Description: desc Internet address is 10.1.1.1/24 MTU 1500 bytes, BW 768 Kbit/sec, DLY 3330 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set Keepalive set (10 sec) Auto-duplex, 1000Mb/s, media type is 10/100/1000BaseTX input flow-control is off, output flow-control is unsupported ARP type: ARPA, ARP Timeout 04:00:00 Last input never, output 04:39:18, output hang never Last clearing of "show interface" counters 1d02h Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max) 30 second input rate 0 bits/sec, 0 packets/sec 30 second output rate 0 bits/sec, 0 packets/sec 12127 packets input, 2297417 bytes, 0 no buffer Received 4173 broadcasts (0 IP multicasts) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 0 watchdog, 4171 multicast, 0 pause input 0 input packets with dribble condition detected 12229 packets output, 2321107 bytes, 0 underruns 0 output errors, 0 collisions, 2 interface resets 0 unknown protocol drops 0 babbles, 0 late collision, 0 deferred 0 lost carrier, 0 no carrier, 0 pause output 0 output buffer failures, 0 output buffers swapped out GigabitEthernet1/0/2 is up, line protocol is up (connected) Hardware is Gigabit Ethernet, address is 0057.d228.1a02 (bia 0057.d228.1a02) MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set Keepalive set (10 sec) Full-duplex, 1000Mb/s, media type is 10/100/1000BaseTX input flow-control is off, output flow-control is unsupported ARP type: ARPA, ARP Timeout 04:00:00 Last input never, output 00:00:02, output hang never Last clearing of "show interface" counters 1d02h Input queue: 0/2000/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max) 5 minute input rate 3000 bits/sec, 5 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 545526 packets input, 41210298 bytes, 0 no buffer Received 535996 broadcasts (535961 multicasts) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 0 watchdog, 535961 multicast, 0 pause input 0 input packets with dribble condition detected 23376 packets output, 3642296 bytes, 0 underruns 0 output errors, 0 collisions, 5 interface resets 0 unknown protocol drops 0 babbles, 0 late collision, 0 deferred 0 lost carrier, 0 no carrier, 0 pause output 0 output buffer failures, 0 output buffers swapped out GigabitEthernet3 is up, line protocol is up Hardware is CSR vNIC, address is 5254.0072.9b0c (bia 5254.0072.9b0c) Interface is unnumbered. Using address of Loopback0 (200.2.1.1) MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set Keepalive set (10 sec) Full Duplex, 1000Mbps, link type is auto, media type is RJ45 output flow-control is unsupported, input flow-control is unsupported ARP type: ARPA, ARP Timeout 04:00:00 Last input never, output 00:00:27, output hang never Last clearing of "show interface" counters never Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max) 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 6 packets input, 480 bytes, 0 no buffer Received 0 broadcasts (0 IP multicasts) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 0 watchdog, 0 multicast, 0 pause input 28 packets output, 7820 bytes, 0 underruns 0 output errors, 0 collisions, 1 interface resets 0 unknown protocol drops 0 babbles, 0 late collision, 0 deferred 0 lost carrier, 0 no carrier, 0 pause output 0 output buffer failures, 0 output buffers swapped out Loopback0 is up, line protocol is up Hardware is Loopback Internet address is 200.2.1.1/24 MTU 1514 bytes, BW 8000000 Kbit/sec, DLY 5000 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation LOOPBACK, loopback not set Keepalive set (10 sec) Last input 1d02h, output never, output hang never Last clearing of "show interface" counters 1d04h Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/0 (size/max) 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 0 packets input, 0 bytes, 0 no buffer Received 0 broadcasts (0 IP multicasts) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort 72 packets output, 5760 bytes, 0 underruns 0 output errors, 0 collisions, 0 interface resets 0 unknown protocol drops 0 output buffer failures, 0 output buffers swapped out Vlan100 is up, line protocol is up Hardware is Ethernet SVI, address is 0057.d228.1a51 (bia 0057.d228.1a51) Internet address is 201.0.12.1/24 MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set Keepalive not supported ARP type: ARPA, ARP Timeout 04:00:00 Last input never, output 1d03h, output hang never Last clearing of "show interface" counters 1d04h Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max) 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 50790 packets input, 3657594 bytes, 0 no buffer Received 0 broadcasts (0 IP multicasts) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 72 packets output, 5526 bytes, 0 underruns 0 output errors, 0 interface resets 0 unknown protocol drops 0 output buffer failures, 0 output buffers swapped out Port-channel12 is up, line protocol is up (connected) Hardware is EtherChannel, address is 0057.d228.1a02 (bia 0057.d228.1a02) MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation QinQ Virtual LAN, outer ID 10, inner ID 20 Keepalive set (10 sec) Full-duplex, 1000Mb/s, link type is auto, media type is input flow-control is off, output flow-control is unsupported Members in this channel: Gi1/0/2 ARP type: ARPA, ARP Timeout 04:00:00 Last input never, output 1d22h, output hang never Last clearing of "show interface" counters 1d23h Input queue: 0/2000/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/0 (size/max) 5 minute input rate 2000 bits/sec, 2 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 961622 packets input, 72614643 bytes, 0 no buffer Received 944818 broadcasts (944788 multicasts) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 0 watchdog, 4286699522 multicast, 0 pause input 0 input packets with dribble condition detected 39281 packets output, 6235318 bytes, 0 underruns 0 output errors, 0 collisions, 2 interface resets 0 unknown protocol drops 0 babbles, 0 late collision, 0 deferred 0 lost carrier, 0 no carrier, 0 pause output 0 output buffer failures, 0 output buffers swapped out GigabitEthernet0/0/4 is administratively down, line protocol is down Hardware is BUILT-IN-2T+6X1GE, address is 380e.4d6c.7006 (bia 380e.4d6c.7006) MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set Keepalive not supported Full Duplex, 1000Mbps, link type is auto, media type is unknown media type output flow-control is unsupported, input flow-control is unsupported ARP type: ARPA, ARP Timeout 04:00:00 Last input never, output never, output hang never Last clearing of "show interface" counters never Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max) 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 0 packets input, 0 bytes, 0 no buffer Received 0 broadcasts (0 IP multicasts) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 0 watchdog, 0 multicast, 0 pause input 0 packets output, 0 bytes, 0 underruns 0 output errors, 0 collisions, 1 interface resets 0 unknown protocol drops 0 babbles, 0 late collision, 0 deferred 0 lost carrier, 0 no carrier, 0 pause output '''} golden_interface_output = {'execute.return_value': ''' CE1#show interfaces GigabitEthernet1 GigabitEthernet1 is up, line protocol is up Hardware is CSR vNIC, address is 5e00.0001.0000 (bia 5e00.0001.0000) Internet address is 172.16.1.243/24 MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set Keepalive set (10 sec) Full Duplex, 1000Mbps, link type is auto, media type is Virtual output flow-control is unsupported, input flow-control is unsupported ARP type: ARPA, ARP Timeout 04:00:00 Last input 00:00:02, output 00:00:25, output hang never Last clearing of "show interface" counters never Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max) 5 minute input rate 32000 bits/sec, 28 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 7658 packets input, 1125842 bytes, 0 no buffer Received 0 broadcasts (0 IP multicasts) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 0 watchdog, 0 multicast, 0 pause input 44 packets output, 4324 bytes, 0 underruns 0 output errors, 0 collisions, 1 interface resets 0 unknown protocol drops 0 babbles, 0 late collision, 0 deferred 0 lost carrier, 0 no carrier, 0 pause output 0 output buffer failures, 0 output buffers swapped out ''' } golden_parsed_interface_output={ "GigabitEthernet1": { "rxload": "1/255", "phys_address": "5e00.0001.0000", "flow_control": { "send": False, "receive": False }, "arp_type": "arpa", "type": "CSR vNIC", "enabled": True, "media_type": "Virtual", "last_input": "00:00:02", "link_type": "auto", "last_output": "00:00:25", "counters": { "in_errors": 0, "in_frame": 0, "in_watchdog": 0, "out_babble": 0, "in_overrun": 0, "out_collision": 0, "out_buffer_failure": 0, "out_no_carrier": 0, "in_runts": 0, "out_late_collision": 0, "in_mac_pause_frames": 0, "out_underruns": 0, "out_pkts": 44, "in_ignored": 0, "in_pkts": 7658, "out_buffers_swapped": 0, "out_interface_resets": 1, "rate": { "out_rate": 0, "load_interval": 300, "in_rate_pkts": 28, "out_rate_pkts": 0, "in_rate": 32000 }, "out_mac_pause_frames": 0, "in_broadcast_pkts": 0, "in_no_buffer": 0, "out_deferred": 0, "in_crc_errors": 0, "out_octets": 4324, "out_lost_carrier": 0, "in_octets": 1125842, "out_unknown_protocl_drops": 0, "last_clear": "never", "in_throttles": 0, "in_multicast_pkts": 0, "out_errors": 0, "in_giants": 0 }, "keepalive": 10, "mtu": 1500, "delay": 10, "encapsulations": { "encapsulation": "arpa" }, "ipv4": { "172.16.1.243/24": { "ip": "172.16.1.243", "prefix_length": "24" } }, "queues": { "output_queue_size": 0, "input_queue_size": 0, "input_queue_flushes": 0, "queue_strategy": "fifo", "total_output_drop": 0, "output_queue_max": 40, "input_queue_drops": 0, "input_queue_max": 375 }, "auto_negotiate": True, "line_protocol": "up", "oper_status": "up", "duplex_mode": "full", "bandwidth": 1000000, "arp_timeout": "04:00:00", "port_speed": "1000", "port_channel": { "port_channel_member": False }, "output_hang": "never", "txload": "1/255", "mac_address": "5e00.0001.0000", "reliability": "255/255" } } def test_empty(self): self.device = Mock(**self.empty_output) interface_obj = ShowInterfaces(device=self.device) with self.assertRaises(SchemaEmptyParserError): parsed_output = interface_obj.parse() def test_golden(self): self.device = Mock(**self.golden_output) interface_obj = ShowInterfaces(device=self.device) parsed_output = interface_obj.parse() self.maxDiff = None self.assertEqual(parsed_output,self.golden_parsed_output) def test_show_interfaces(self): self.device = Mock(**self.golden_interface_output) interface_obj = ShowInterfaces(device=self.device) parsed_output = interface_obj.parse(interface='GigabitEthernet1') self.maxDiff = None self.assertEqual(parsed_output,self.golden_parsed_interface_output) ############################################################################# # unitest For Show ip interface ############################################################################# class test_show_ip_interface(unittest.TestCase): device = Device(name='aDevice') empty_output = {'execute.return_value': ''} golden_parsed_output = { "Vlan211": { "sevurity_level": "default", "ip_route_cache_flags": [ "CEF", "Fast" ], "enabled": True, "oper_status": "up", "address_determined_by": "configuration file", "router_discovery": False, "ip_multicast_fast_switching": False, "split_horizon": True, "bgp_policy_mapping": False, "ip_output_packet_accounting": False, "mtu": 1500, "policy_routing": False, "local_proxy_arp": False, "proxy_arp": True, "network_address_translation": False, "ip_cef_switching_turbo_vector": True, "icmp": { "redirects": "always sent", "mask_replies": "never sent", "unreachables": "always sent", }, "ipv4": { "201.11.14.1/24": { "prefix_length": "24", "ip": "201.11.14.1", "secondary": False, "broadcase_address": "255.255.255.255" } }, "ip_access_violation_accounting": False, "ip_cef_switching": True, "unicast_routing_topologies": { "topology": { "base": { "status": "up" } }, }, "ip_null_turbo_vector": True, "probe_proxy_name_replies": False, "ip_fast_switching": True, "ip_multicast_distributed_fast_switching": False, "tcp_ip_header_compression": False, "rtp_ip_header_compression": False, "input_features": ["MCI Check"], "directed_broadcast_forwarding": False, "ip_flow_switching": False }, "GigabitEthernet0/0": { "sevurity_level": "default", 'address_determined_by': 'setup command', "ip_route_cache_flags": [ "CEF", "Fast" ], "enabled": True, "oper_status": "up", "router_discovery": False, "ip_multicast_fast_switching": False, "split_horizon": True, "bgp_policy_mapping": False, "ip_output_packet_accounting": False, "mtu": 1500, "policy_routing": False, "local_proxy_arp": False, "vrf": "Mgmt-vrf", "proxy_arp": True, "network_address_translation": False, "ip_cef_switching_turbo_vector": True, "icmp": { "redirects": "always sent", "mask_replies": "never sent", "unreachables": "always sent", }, "ipv4": { "10.1.8.134/24": { "prefix_length": "24", "ip": "10.1.8.134", "secondary": False, "broadcase_address": "255.255.255.255" } }, "ip_access_violation_accounting": False, "ip_cef_switching": True, "unicast_routing_topologies": { "topology": { "base": { "status": "up" } }, }, "ip_null_turbo_vector": True, "probe_proxy_name_replies": False, "ip_fast_switching": True, "ip_multicast_distributed_fast_switching": False, "tcp_ip_header_compression": False, "rtp_ip_header_compression": False, "input_features": ["MCI Check"], "directed_broadcast_forwarding": False, "ip_flow_switching": False }, "GigabitEthernet2": { "enabled": False, "oper_status": "down" }, "GigabitEthernet1/0/1": { "sevurity_level": "default", 'address_determined_by': 'setup command', "ip_route_cache_flags": [ "CEF", "Fast" ], "enabled": False, "oper_status": "down", "router_discovery": False, "ip_multicast_fast_switching": False, "split_horizon": True, "bgp_policy_mapping": False, "ip_output_packet_accounting": False, "mtu": 1500, "policy_routing": False, "local_proxy_arp": False, "proxy_arp": True, "network_address_translation": False, "ip_cef_switching_turbo_vector": True, "icmp": { "redirects": "always sent", "mask_replies": "never sent", "unreachables": "always sent", }, "ipv4": { "10.1.1.1/24": { "prefix_length": "24", "ip": "10.1.1.1", "secondary": False, "broadcase_address": "255.255.255.255" }, "10.2.2.2/24": { "prefix_length": "24", "ip": "10.2.2.2", "secondary": True }, }, "ip_access_violation_accounting": False, "ip_cef_switching": True, "unicast_routing_topologies": { "topology": { "base": { "status": "up" } }, }, 'wccp': { 'redirect_outbound': False, 'redirect_inbound': False, 'redirect_exclude': False, }, "ip_null_turbo_vector": True, "probe_proxy_name_replies": False, "ip_fast_switching": True, "ip_multicast_distributed_fast_switching": False, "tcp_ip_header_compression": False, "rtp_ip_header_compression": False, "directed_broadcast_forwarding": False, "ip_flow_switching": False, "input_features": ["MCI Check", "QoS Classification", "QoS Marking"], } } golden_output = {'execute.return_value': ''' Vlan211 is up, line protocol is up Internet address is 201.11.14.1/24 Broadcast address is 255.255.255.255 Address determined by configuration file MTU is 1500 bytes Helper address is not set Directed broadcast forwarding is disabled Outgoing Common access list is not set Outgoing access list is not set Inbound Common access list is not set Inbound access list is not set Proxy ARP is enabled Local Proxy ARP is disabled Security level is default Split horizon is enabled ICMP redirects are always sent ICMP unreachables are always sent ICMP mask replies are never sent IP fast switching is enabled IP Flow switching is disabled IP CEF switching is enabled IP CEF switching turbo vector IP Null turbo vector Associated unicast routing topologies: Topology "base", operation state is UP IP multicast fast switching is disabled IP multicast distributed fast switching is disabled IP route-cache flags are Fast, CEF Router Discovery is disabled IP output packet accounting is disabled IP access violation accounting is disabled TCP/IP header compression is disabled RTP/IP header compression is disabled Probe proxy name replies are disabled Policy routing is disabled Network address translation is disabled BGP Policy Mapping is disabled Input features: MCI Check GigabitEthernet0/0 is up, line protocol is up Internet address is 10.1.8.134/24 Broadcast address is 255.255.255.255 Address determined by setup command MTU is 1500 bytes Helper address is not set Directed broadcast forwarding is disabled Outgoing Common access list is not set Outgoing access list is not set Inbound Common access list is not set Inbound access list is not set Proxy ARP is enabled Local Proxy ARP is disabled Security level is default Split horizon is enabled ICMP redirects are always sent ICMP unreachables are always sent ICMP mask replies are never sent IP fast switching is enabled IP Flow switching is disabled IP CEF switching is enabled IP CEF switching turbo vector IP Null turbo vector VPN Routing/Forwarding "Mgmt-vrf" Associated unicast routing topologies: Topology "base", operation state is UP IP multicast fast switching is disabled IP multicast distributed fast switching is disabled IP route-cache flags are Fast, CEF Router Discovery is disabled IP output packet accounting is disabled IP access violation accounting is disabled TCP/IP header compression is disabled RTP/IP header compression is disabled Probe proxy name replies are disabled Policy routing is disabled Network address translation is disabled BGP Policy Mapping is disabled Input features: MCI Check GigabitEthernet1/0/1 is administratively down, line protocol is down Internet address is 10.1.1.1/24 Broadcast address is 255.255.255.255 Address determined by setup command MTU is 1500 bytes Helper address is not set Directed broadcast forwarding is disabled Secondary address 10.2.2.2/24 Outgoing Common access list is not set Outgoing access list is not set Inbound Common access list is not set Inbound access list is not set Proxy ARP is enabled Local Proxy ARP is disabled Security level is default Split horizon is enabled ICMP redirects are always sent ICMP unreachables are always sent ICMP mask replies are never sent IP fast switching is enabled IP Flow switching is disabled IP CEF switching is enabled IP CEF switching turbo vector IP Null turbo vector Associated unicast routing topologies: Topology "base", operation state is UP IP multicast fast switching is disabled IP multicast distributed fast switching is disabled IP route-cache flags are Fast, CEF Router Discovery is disabled IP output packet accounting is disabled IP access violation accounting is disabled TCP/IP header compression is disabled RTP/IP header compression is disabled Probe proxy name replies are disabled Policy routing is disabled Network address translation is disabled BGP Policy Mapping is disabled Input features: QoS Classification, QoS Marking, MCI Check IPv4 WCCP Redirect outbound is disabled IPv4 WCCP Redirect inbound is disabled IPv4 WCCP Redirect exclude is disabled GigabitEthernet2 is administratively down, line protocol is down Internet protocol processing disabled '''} golden_interface_output = {'execute.return_value':''' CE1#show ip interface GigabitEthernet1 GigabitEthernet1 is up, line protocol is up Internet address is 172.16.1.243/24 Broadcast address is 255.255.255.255 Address determined by DHCP MTU is 1500 bytes Helper address is not set Directed broadcast forwarding is disabled Outgoing Common access list is not set Outgoing access list is not set Inbound Common access list is not set Inbound access list is not set Proxy ARP is enabled Local Proxy ARP is disabled Security level is default Split horizon is enabled ICMP redirects are always sent ICMP unreachables are always sent ICMP mask replies are never sent IP fast switching is enabled IP Flow switching is disabled IP CEF switching is enabled IP CEF switching turbo vector IP Null turbo vector Associated unicast routing topologies: Topology "base", operation state is UP IP multicast fast switching is enabled IP multicast distributed fast switching is disabled IP route-cache flags are Fast, CEF Router Discovery is disabled IP output packet accounting is disabled IP access violation accounting is disabled TCP/IP header compression is disabled RTP/IP header compression is disabled Probe proxy name replies are disabled Policy routing is disabled Network address translation is disabled BGP Policy Mapping is disabled Input features: MCI Check IPv4 WCCP Redirect outbound is disabled IPv4 WCCP Redirect inbound is disabled IPv4 WCCP Redirect exclude is disabled ''' } golden_parsed_interface_output = { "GigabitEthernet1": { "ip_multicast_fast_switching": True, "oper_status": "up", "ip_output_packet_accounting": False, "address_determined_by": "DHCP", "rtp_ip_header_compression": False, "ip_multicast_distributed_fast_switching": False, "wccp": { "redirect_exclude": False, "redirect_outbound": False, "redirect_inbound": False }, "unicast_routing_topologies": { "topology": { "base": { "status": "up" } } }, "router_discovery": False, "tcp_ip_header_compression": False, "probe_proxy_name_replies": False, "local_proxy_arp": False, "policy_routing": False, "mtu": 1500, "icmp": { "mask_replies": "never sent", "unreachables": "always sent", "redirects": "always sent" }, "enabled": True, "ip_route_cache_flags": [ "CEF", "Fast" ], "ip_cef_switching": True, "ip_fast_switching": True, "sevurity_level": "default", "directed_broadcast_forwarding": False, "proxy_arp": True, "ip_null_turbo_vector": True, "network_address_translation": False, "input_features": [ "MCI Check" ], "bgp_policy_mapping": False, "split_horizon": True, "ip_access_violation_accounting": False, "ip_cef_switching_turbo_vector": True, "ipv4": { "172.16.1.243/24": { "ip": "172.16.1.243", "prefix_length": "24", "broadcase_address": "255.255.255.255", "secondary": False } }, "ip_flow_switching": False } } def test_empty(self): self.device = Mock(**self.empty_output) interface_obj = ShowIpInterface(device=self.device) with self.assertRaises(SchemaEmptyParserError): parsed_output = interface_obj.parse() def test_golden(self): self.device = Mock(**self.golden_output) interface_obj = ShowIpInterface(device=self.device) parsed_output = interface_obj.parse() self.maxDiff = None self.assertEqual(parsed_output,self.golden_parsed_output) def test_interface_golden(self): self.device = Mock(**self.golden_interface_output) interface_obj = ShowIpInterface(device=self.device) parsed_output = interface_obj.parse(interface='GigabitEthernet1') self.maxDiff = None self.assertEqual(parsed_output, self.golden_parsed_interface_output) ############################################################################# # unitest For show ipv6 interface ############################################################################# class test_show_ipv6_interface(unittest.TestCase): device = Device(name='aDevice') empty_output = {'execute.return_value': ''} golden_parsed_output = { "GigabitEthernet1/0/1": { "joined_group_addresses": [ "FF02::1" ], "ipv6": { "2001:DB8:2:2::2/64": { "ip": "2001:DB8:2:2::2", "prefix_length": "64", "status": "tentative" }, "2000::1/126": { "ip": "2000::1", "prefix_length": "126", "status": "tentative" }, "2001:DB8:1:1::1/64": { "ip": "2001:DB8:1:1::1", "prefix_length": "64", "status": "tentative" }, "2001:DB8:4:4:257:D2FF:FE28:1A64/64": { "ip": "2001:DB8:4:4:257:D2FF:FE28:1A64", "prefix_length": "64", "status": "tentative", "eui_64": True }, "2001:DB8:3:3::3/64": { "ip": "2001:DB8:3:3::3", "prefix_length": "64", "status": "tentative", "anycast": True }, "FE80::257:D2FF:FE28:1A64": { "ip": "FE80::257:D2FF:FE28:1A64", "status": "tentative", "origin": "link_layer", }, "enabled": True, "nd": { "dad_attempts": 1, "ns_retransmit_interval": 1000, "dad_enabled": True, "reachable_time": 30000, "using_time": 30000 }, "icmp": { "error_messages_limited": 100, "redirects": True, "unreachables": "sent" }, }, "oper_status": "down", "enabled": False, "mtu": 1500 }, "Vlan211": { "joined_group_addresses": [ "FF02::1", "FF02::1:FF14:1", "FF02::1:FF28:1A71" ], "ipv6": { "2001:10::14:1/112": { "ip": "2001:10::14:1", "prefix_length": "112", "status": "valid", 'autoconf': { 'preferred_lifetime': 604711, 'valid_lifetime': 2591911, }, }, "FE80::257:D2FF:FE28:1A71": { "ip": "FE80::257:D2FF:FE28:1A71", "status": "valid", "origin": "link_layer", }, "enabled": True, "nd": { "dad_attempts": 1, "ns_retransmit_interval": 1000, "dad_enabled": True, "reachable_time": 30000, "using_time": 30000 }, "icmp": { "error_messages_limited": 100, "redirects": True, "unreachables": "sent" }, }, "oper_status": "up", "enabled": True, "autoconf": True, "mtu": 1500 }, "GigabitEthernet3": { "enabled": True, "joined_group_addresses": [ "FF02::1", "FF02::1:FF1E:4F2", "FF02::2" ], "ipv6": { "enabled": False, "FE80::5054:FF:FE1E:4F2": { "ip": "FE80::5054:FF:FE1E:4F2", "status": "valid", "origin": "link_layer", }, "unnumbered": { "interface_ref": "Loopback0", }, "nd": { "dad_attempts": 1, "reachable_time": 30000, "using_time": 30000, "dad_enabled": True }, "icmp": { "unreachables": "sent", "redirects": True, "error_messages_limited": 100 }, "nd": { "dad_attempts": 1, "dad_enabled": True, "reachable_time": 30000, "using_time": 30000, "advertised_reachable_time": 0, "advertised_retransmit_interval": 0, "router_advertisements_interval": 200, "router_advertisements_live": 1800, "advertised_default_router_preference": 'Medium', "advertised_reachable_time_unspecified": True, "advertised_retransmit_interval_unspecified": True, }, }, "oper_status": "up", "mtu": 1500, "addresses_config_method": 'stateless autoconfig', } } golden_output = {'execute.return_value': ''' Vlan211 is up, line protocol is up IPv6 is enabled, link-local address is FE80::257:D2FF:FE28:1A71 No Virtual link-local address(es): Stateless address autoconfig enabled Global unicast address(es): 2001:10::14:1, subnet is 2001:10::14:0/112 valid lifetime 2591911 preferred lifetime 604711 Joined group address(es): FF02::1 FF02::1:FF14:1 FF02::1:FF28:1A71 MTU is 1500 bytes ICMP error messages limited to one every 100 milliseconds ICMP redirects are enabled ICMP unreachables are sent ND DAD is enabled, number of DAD attempts: 1 ND reachable time is 30000 milliseconds (using 30000) ND NS retransmit interval is 1000 milliseconds GigabitEthernet1/0/1 is administratively down, line protocol is down IPv6 is tentative, link-local address is FE80::257:D2FF:FE28:1A64 [TEN] No Virtual link-local address(es): Description: desc Global unicast address(es): 2000::1, subnet is 2000::/126 [TEN] 2001:DB8:1:1::1, subnet is 2001:DB8:1:1::/64 [TEN] 2001:DB8:2:2::2, subnet is 2001:DB8:2:2::/64 [TEN] 2001:DB8:3:3::3, subnet is 2001:DB8:3:3::/64 [ANY/TEN] 2001:DB8:4:4:257:D2FF:FE28:1A64, subnet is 2001:DB8:4:4::/64 [EUI/TEN] Joined group address(es): FF02::1 MTU is 1500 bytes ICMP error messages limited to one every 100 milliseconds ICMP redirects are enabled ICMP unreachables are sent ND DAD is enabled, number of DAD attempts: 1 ND reachable time is 30000 milliseconds (using 30000) ND NS retransmit interval is 1000 milliseconds GigabitEthernet3 is up, line protocol is up IPv6 is enabled, link-local address is FE80::5054:FF:FE1E:4F2 No Virtual link-local address(es): Interface is unnumbered. Using address of Loopback0 No global unicast address is configured Joined group address(es): FF02::1 FF02::2 FF02::1:FF1E:4F2 MTU is 1500 bytes ICMP error messages limited to one every 100 milliseconds ICMP redirects are enabled ICMP unreachables are sent ND DAD is enabled, number of DAD attempts: 1 ND reachable time is 30000 milliseconds (using 30000) ND advertised reachable time is 0 (unspecified) ND advertised retransmit interval is 0 (unspecified) ND router advertisements are sent every 200 seconds ND router advertisements live for 1800 seconds ND advertised default router preference is Medium Hosts use stateless autoconfig for addresses. '''} def test_empty(self): self.device = Mock(**self.empty_output) interface_obj = ShowIpv6Interface(device=self.device) with self.assertRaises(SchemaEmptyParserError): parsed_output = interface_obj.parse() def test_golden(self): self.device = Mock(**self.golden_output) interface_obj = ShowIpv6Interface(device=self.device) parsed_output = interface_obj.parse() self.maxDiff = None self.assertEqual(parsed_output,self.golden_parsed_output) ############################################################################# # unitest For show interfaces trunk ############################################################################# class test_show_interfaces_trunk(unittest.TestCase): device = Device(name='aDevice') empty_output = {'execute.return_value': ''} golden_parsed_output = { "interface": { "GigabitEthernet1/0/4": { "vlans_allowed_active_in_mgmt_domain": '200-211', "vlans_allowed_on_trunk": '200-211', "mode": "on", "native_vlan": "1", "status": "trunking", "vlans_in_stp_forwarding_not_pruned": '200-211', "name": "GigabitEthernet1/0/4", "encapsulation": "802.1q" }, "GigabitEthernet1/0/23": { "vlans_allowed_active_in_mgmt_domain": '200-211', "vlans_allowed_on_trunk": '200-211', "mode": "on", "native_vlan": "1", "status": "trunking", "vlans_in_stp_forwarding_not_pruned": '200-211', "name": "GigabitEthernet1/0/23", "encapsulation": "802.1q" }, "Port-channel12": { "vlans_allowed_active_in_mgmt_domain": '100-110', "vlans_allowed_on_trunk": '100-110', "mode": "on", "native_vlan": "1", "status": "trunking", "vlans_in_stp_forwarding_not_pruned": '100-110', "name": "Port-channel12", "encapsulation": "802.1q" }, "Port-channel14": { "vlans_allowed_active_in_mgmt_domain": '200-211, 300-302', "vlans_allowed_on_trunk": '200-211', "mode": "on", "native_vlan": "1", "status": "trunking", "vlans_in_stp_forwarding_not_pruned": '200-211', "name": "Port-channel14", "encapsulation": "802.1q" } } } golden_output = {'execute.return_value': ''' Port Mode Encapsulation Status Native vlan Gi1/0/4 on 802.1q trunking 1 Gi1/0/23 on 802.1q trunking 1 Po12 on 802.1q trunking 1 Po14 on 802.1q trunking 1 Port Vlans allowed on trunk Gi1/0/4 200-211 Gi1/0/23 200-211 Po12 100-110 Po14 200-211 Port Vlans allowed and active in management domain Gi1/0/4 200-211 Gi1/0/23 200-211 Po12 100-110 Po14 200-211, 300-302 Port Vlans in spanning tree forwarding state and not pruned Gi1/0/4 200-211 Gi1/0/23 200-211 Po12 100-110 Port Vlans in spanning tree forwarding state and not pruned Po14 200-211 '''} def test_empty(self): self.device = Mock(**self.empty_output) interface_obj = ShowInterfacesTrunk(device=self.device) with self.assertRaises(SchemaEmptyParserError): parsed_output = interface_obj.parse() def test_golden(self): self.device = Mock(**self.golden_output) interface_obj = ShowInterfacesTrunk(device=self.device) parsed_output = interface_obj.parse() self.assertEqual(parsed_output,self.golden_parsed_output) ############################################################################# # unitest For show interfaces <WORD> counters ############################################################################# class test_show_interfaces_counters(unittest.TestCase): device = Device(name='aDevice') empty_output = {'execute.return_value': ''} golden_parsed_output = { "interface": { "GigabitEthernet1/0/1": { "out": { "mcast_pkts": 188396, "bcast_pkts": 0, "ucast_pkts": 124435064, "name": "GigabitEthernet1/0/1", "octets": 24884341205 }, "in": { "mcast_pkts": 214513, "bcast_pkts": 0, "ucast_pkts": 15716712, "name": "GigabitEthernet1/0/1", "octets": 3161931167 } } } } golden_output = {'execute.return_value': ''' Port InOctets InUcastPkts InMcastPkts InBcastPkts Gi1/0/1 3161931167 15716712 214513 0 Port OutOctets OutUcastPkts OutMcastPkts OutBcastPkts Gi1/0/1 24884341205 124435064 188396 0 '''} def test_empty(self): self.device = Mock(**self.empty_output) interface_obj = ShowInterfacesCounters(device=self.device) with self.assertRaises(SchemaEmptyParserError): parsed_output = interface_obj.parse(interface='Gi1/0/1') def test_golden(self): self.device = Mock(**self.golden_output) interface_obj = ShowInterfacesCounters(device=self.device) parsed_output = interface_obj.parse(interface='GigabitEthernet1/0/1') self.assertEqual(parsed_output,self.golden_parsed_output) ############################################################################# # unitest For show interfaces <interface> accounting ############################################################################# class test_show_interfaces_accounting(unittest.TestCase): device = Device(name='aDevice') empty_output = {'execute.return_value': ''} golden_parsed_output = \ { "GigabitEthernet1": { "accounting": { "arp": { "chars_in": 4590030, "chars_out": 120, "pkts_in": 109280, "pkts_out": 2 }, "ip": { "chars_in": 2173570, "chars_out": 2167858, "pkts_in": 22150, "pkts_out": 22121 }, "ipv6": { "chars_in": 1944, "chars_out": 0, "pkts_in": 24, "pkts_out": 0 }, "other": { "chars_in": 5306164, "chars_out": 120, "pkts_in": 112674, "pkts_out": 2 } } }, "GigabitEthernet2": { "accounting": { "arp": { "chars_in": 5460, "chars_out": 5520, "pkts_in": 91, "pkts_out": 92 }, "ip": { "chars_in": 968690, "chars_out": 1148402, "pkts_in": 11745, "pkts_out": 10821 }, "ipv6": { "chars_in": 70, "chars_out": 0, "pkts_in": 1, "pkts_out": 0 }, "other": { "chars_in": 741524, "chars_out": 5520, "pkts_in": 3483, "pkts_out": 92 } } }, "GigabitEthernet3": { "accounting": { "arp": { "chars_in": 5460, "chars_out": 5520, "pkts_in": 91, "pkts_out": 92 }, "ip": { "chars_in": 1190691, "chars_out": 1376253, "pkts_in": 15271, "pkts_out": 14382 }, "ipv6": { "chars_in": 70, "chars_out": 0, "pkts_in": 1, "pkts_out": 0 }, "other": { "chars_in": 741524, "chars_out": 5520, "pkts_in": 3483, "pkts_out": 92 } } } } golden_output = {'execute.return_value': ''' show interface accounting GigabitEthernet1 Protocol Pkts In Chars In Pkts Out Chars Out Other 112674 5306164 2 120 IP 22150 2173570 22121 2167858 ARP 109280 4590030 2 120 IPv6 24 1944 0 0 GigabitEthernet2 Protocol Pkts In Chars In Pkts Out Chars Out Other 3483 741524 92 5520 IP 11745 968690 10821 1148402 ARP 91 5460 92 5520 IPv6 1 70 0 0 GigabitEthernet3 Protocol Pkts In Chars In Pkts Out Chars Out Other 3483 741524 92 5520 IP 15271 1190691 14382 1376253 ARP 91 5460 92 5520 IPv6 1 70 0 0 Loopback0 Protocol Pkts In Chars In Pkts Out Chars Out No traffic sent or received on this interface. Loopback1 Protocol Pkts In Chars In Pkts Out Chars Out No traffic sent or received on this interface. '''} def test_empty(self): self.device = Mock(**self.empty_output) obj = ShowInterfacesAccounting(device=self.device) with self.assertRaises(SchemaEmptyParserError): parsed_output = obj.parse() def test_golden(self): self.device = Mock(**self.golden_output) obj = ShowInterfacesAccounting(device=self.device) parsed_output = obj.parse() self.assertEqual(parsed_output,self.golden_parsed_output) if __name__ == '__main__': unittest.main()
[ [ [ 26, 29 ] ], [ [ 37, 45 ], [ 1195, 1203 ], [ 4950, 4958 ], [ 9120, 9128 ], [ 18731, 18739 ], [ 55547, 55555 ], [ 71945, 71953 ], [ 80906, 80914 ], [ 84529, 84537 ], [ 86448, 86456 ], [ 90537, 90545 ] ], [ [ 72, 76 ], [ 149, 153 ], [ 3279, 3283 ], [ 5641, 5645 ], [ 5896, 5900 ], [ 18048, 18052 ], [ 18324, 18328 ], [ 54529, 54533 ], [ 54770, 54774 ], [ 55055, 55059 ], [ 70917, 70921 ], [ 71159, 71163 ], [ 71446, 71450 ], [ 80206, 80210 ], [ 80450, 80454 ], [ 83840, 83844 ], [ 84086, 84090 ], [ 85693, 85697 ], [ 85961, 85965 ], [ 90086, 90090 ], [ 90317, 90321 ] ], [ [ 103, 108 ], [ 161, 166 ] ], [ [ 130, 136 ], [ 3229, 3235 ] ], [ [ 138, 146 ], [ 204, 212 ] ], [ [ 242, 257 ], [ 3350, 3355 ] ], [ [ 290, 299 ] ], [ [ 332, 342 ] ], [ [ 375, 392 ] ], [ [ 450, 469 ] ], [ [ 478, 505 ] ], [ [ 532, 538 ], [ 4983, 4989 ], [ 9153, 9159 ], [ 18764, 18770 ], [ 55580, 55586 ], [ 71978, 71984 ], [ 80939, 80945 ], [ 84562, 84568 ], [ 86481, 86487 ] ], [ [ 585, 607 ], [ 6015, 6037 ], [ 18446, 18468 ], [ 54645, 54667 ], [ 71034, 71056 ], [ 80325, 80347 ], [ 83961, 83983 ], [ 85817, 85839 ], [ 90202, 90224 ] ], [ [ 660, 684 ], [ 18094, 18118 ], [ 18369, 18393 ] ], [ [ 727, 755 ] ], [ [ 798, 812 ], [ 54579, 54593 ], [ 54821, 54835 ], [ 55116, 55130 ] ], [ [ 814, 829 ], [ 70967, 70982 ], [ 71210, 71225 ], [ 71507, 71522 ] ], [ [ 872, 889 ], [ 80256, 80273 ], [ 80501, 80518 ] ], [ [ 933, 952 ], [ 83890, 83909 ], [ 84137, 84156 ] ], [ [ 996, 1018 ], [ 85743, 85765 ], [ 86012, 86034 ] ], [ [ 1062, 1086 ], [ 90126, 90150 ], [ 90358, 90382 ] ], [ [ 1130, 1156 ], [ 5682, 5708 ], [ 5936, 5962 ] ], [ [ 1165, 1194 ] ], [ [ 4912, 4949 ] ], [ [ 9088, 9119 ] ], [ [ 18710, 18730 ] ], [ [ 55524, 55546 ] ], [ [ 71920, 71944 ] ], [ [ 80879, 80905 ] ], [ [ 84499, 84528 ] ], [ [ 86416, 86447 ] ] ]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Author: Li Yuanming Email: yli056@e.ntu.edu.sg Date: 1/27/2021 ML model structure definitions. """ import abc import inspect from enum import Enum from typing import Optional, Union, Tuple, Dict, OrderedDict from pydantic import BaseModel, PositiveInt, conint, PositiveFloat, Field, validator from typing_extensions import Literal class Operation(Enum): """ Operation enum to the layer or connection. There are three kinds of operations: ``'A'`` for add the specific layer / connection, ``'D'`` for delete the specific layer / connection, ``M`` for modify the layer / connection, and ``E`` for no operation. """ ADD = 'A' DELETE = 'D' MODIFY = 'M' EMPTY = 'E' class LayerType(Enum): """ Enum of the supported layer type. This is to hint which class of layer the provided data is converted to. """ LINEAR = 'torch.nn.Linear' CONV_1D = 'torch.nn.Conv1d' CONV_2D = 'torch.nn.Conv2d' RELU = 'torch.nn.ReLU' TANH = 'torch.nn.Tanh' BN_1D = 'torch.nn.BatchNorm1d' BN_2D = 'torch.nn.BatchNorm2d' MP_1D = 'torch.nn.MaxPool1d' MP_2D = 'torch.nn.MaxPool2d' AAP_1D = 'torch.nn.AdaptiveAvgPool1d' AAP_2D = 'torch.nn.AdaptiveAvgPool2d' class ModelLayer(BaseModel, abc.ABC): # noinspection PyUnresolvedReferences """ Layer of the model structure. For layer attributes need to be set :code:`None`, use :code:`'null'` instead. This is for the reason of updated parameters with value :code:`None` will be viewed as not set. So we take special care to the desired :code:`None`, replacing it with :code:`'null'`. Attributes: op_ (Operation): Operation to the layer. type_ (LayerType): Indicates the type of this layer. This field also provides hint for :class:`pydantic` model conversion. __required_type__ (LayerType): By overriding this attributes, we can use :meth:`check_layer_type` to provide validation of the sub classes. """ op_: Operation type_: LayerType __required_type__: LayerType @classmethod def parse_layer_obj(cls, layer_obj): """ Parse from a ML layer object. This function will inspect the required parameters to build the layer, and try to obtain its parameter value from the layer object. The default parameter parser is python default :code:`getattr`, which assume we can get the value from the same-named attribute of the layer object. For parameter cannot parsed with default parser, set a function with the format: :code:`__{parameter_name}_parser__(layer_obj: Any) -> Any`. Has the following signature: Input Arguments: * layer_obj : Any The layer object to be parsed. Return Arguments: * Any The parsed value of the given parameter. TODO: Signature checking for __{parameter_name}_parser__ """ kwargs = {'op_': Operation.EMPTY, 'type_': cls.__required_type__} signature = inspect.signature(layer_obj.__init__) for param in signature.parameters: parser = getattr(cls, f'__{param}_parser__', lambda obj: getattr(obj, param)) kwargs[param] = parser(layer_obj) return cls(**kwargs) @validator('type_') def check_layer_type(cls, layer_type: LayerType) -> LayerType: # noqa """ Checks layer type value provided is the same as the required value. This is to generate validator for check :code:`layer_type` field of subclasses of :class:`ModelLayer`. """ if layer_type != cls.__required_type__: raise ValueError(f'Expected {cls.__required_type__} but got {layer_type}') return layer_type class Linear(ModelLayer): in_features: Optional[PositiveInt] out_features: Optional[PositiveInt] bias: Optional[bool] __required_type__ = LayerType.LINEAR @staticmethod def __bias_parser__(layer_obj): return layer_obj.bias is not None class _ConvNd(ModelLayer, abc.ABC): in_channels: Optional[PositiveInt] out_channels: Optional[PositiveInt] kernel_size: Optional[Union[PositiveInt, Tuple[PositiveInt, ...]]] stride: Optional[Union[PositiveInt, Tuple[PositiveInt, ...]]] padding: Optional[Union[conint(ge=0), Tuple[conint(ge=0), ...]]] dilation: Optional[Union[PositiveInt, Tuple[PositiveInt, ...]]] groups: PositiveInt bias: bool padding_mode: Literal['zeros', 'reflect', 'replicate', 'circular'] @staticmethod def __bias_parser__(layer_obj): return layer_obj.bias is not None class Conv1d(_ConvNd): __required_type__ = LayerType.CONV_1D class Conv2d(_ConvNd): __required_type__ = LayerType.CONV_2D class ReLU(ModelLayer): inplace: Optional[bool] __required_type__ = LayerType.RELU class Tanh(ModelLayer): __required_type__ = LayerType.TANH class _BatchNorm(ModelLayer, abc.ABC): num_features: Optional[PositiveInt] eps: Optional[PositiveFloat] momentum: Optional[Union[PositiveFloat, Literal['null']]] affine: Optional[bool] track_running_stats: Optional[bool] class BatchNorm1d(_BatchNorm): __required_type__ = LayerType.BN_1D class BatchNorm2d(_BatchNorm): __required_type__ = LayerType.BN_2D class _MaxPool(ModelLayer, abc.ABC): kernel_size: Union[PositiveInt, Tuple[PositiveInt, ...]] stride: Optional[Union[PositiveInt, Tuple[PositiveInt, ...]]] = None padding: Union[conint(ge=0), Tuple[conint(ge=0), ...]] = 0 dilation: Union[PositiveInt, Tuple[PositiveInt, ...]] = 1 return_indices: bool = False ceil_mode: bool = False class MaxPool1d(_MaxPool): __required_type__ = LayerType.MP_1D class MaxPool2d(_MaxPool): __required_type__ = LayerType.MP_2D class _AdaptiveAvgPool(ModelLayer, abc.ABC): output_size: Union[PositiveInt, Tuple[PositiveInt, ...]] class AdaptiveAvgPool1d(_AdaptiveAvgPool): __required_type__ = LayerType.AAP_1D class AdaptiveAvgPool2d(_AdaptiveAvgPool): __required_type__ = LayerType.AAP_2D _LayerType = Union[Linear, Conv1d, Conv2d, ReLU, Tanh, BatchNorm1d, BatchNorm2d, MaxPool1d, MaxPool2d, AdaptiveAvgPool1d, AdaptiveAvgPool2d] class Structure(BaseModel): # noinspection PyUnresolvedReferences """ Indicate a ML model structure using a graph data structure. :attr:`layer` is the graph node, representing a layer of the model. :attr:`connection` is the graph edge, representing which two layers are connected, and the directions of tensor pass. Attributes: layer (OrderedDict[str, _LayerType]): Layer mapping, the key is layer name, and the value is layer attributes. See :class:`ModelLayer` for reference. connection (Optional[Dict[str, Dict[str, Operation]]]): The connection (:attr:`connection`) maps the starting layer name, to the ending layer name with a connection operation. Examples:: >>> from collections import OrderedDict >>> # add a nn.Linear layer named 'fc1' with in_features=1024, out_features=10 >>> layer_mapping = OrderedDict({ ... 'fc1': LinearLayer(in_features=1024, out_features=10, type_=LayerType.LINEAR, op_=Operation.ADD), ... }) >>> # connection example for add connection from 'conv1' to 'fc1' >>> connection_mapping = {'conv1': {'fc1': Operation.ADD}} >>> struct = Structure(layer=layer_mapping, connection=connection_mapping) >>> print(struct) layer={'fc1': LinearLayer(in_features=1024, out_features=10, bias=None)} connection={'conv1': {'fc1': <Operation.ADD: 'A'>}} >>> # Other than using the model object, we can pass in a plain dictionary, ... # and utilize `Structure.parse_obj`. >>> structure_data = { ... 'layer': {'fc': {'in_features': 1024, 'out_features': 10, 'type_': 'torch.nn.Linear', 'op_': 'A'}}, ... 'connection': {'conv1': {'fc1': 'A'}} ... } >>> Structure.parse_obj(structure_data) Structure(layer={'fc': LinearLayer(in_features=1024, out_features=10, bias=None)}, connection={'conv1': {'fc1': <Operation.ADD: 'A'>}}) """ layer: OrderedDict[str, _LayerType] = Field( default_factory=OrderedDict, example={'fc': {'out_features': 10, 'type_': 'torch.nn.Linear', 'op_': 'M'}} ) connection: Optional[Dict[str, Dict[str, Operation]]] = Field( default_factory=dict, example={'conv1': {'fc1': 'A'}} )
[ [ [ 157, 160 ], [ 1301, 1304 ], [ 4152, 4155 ], [ 5046, 5049 ], [ 5433, 5436 ], [ 5938, 5941 ] ], [ [ 168, 175 ], [ 3134, 3141 ] ], [ [ 193, 197 ], [ 401, 405 ], [ 768, 772 ] ], [ [ 217, 225 ], [ 3898, 3906 ], [ 3938, 3946 ], [ 3970, 3978 ], [ 4179, 4187 ], [ 4219, 4227 ], [ 4258, 4266 ], [ 4324, 4332 ], [ 4391, 4399 ], [ 4461, 4469 ], [ 4895, 4903 ], [ 5074, 5082 ], [ 5105, 5113 ], [ 5143, 5151 ], [ 5203, 5211 ], [ 5243, 5251 ], [ 5516, 5524 ], [ 8528, 8536 ] ], [ [ 227, 232 ], [ 4267, 4272 ], [ 4333, 4338 ], [ 4400, 4405 ], [ 4470, 4475 ], [ 5152, 5157 ], [ 5460, 5465 ], [ 5525, 5530 ], [ 5590, 5595 ], [ 5654, 5659 ], [ 5965, 5970 ], [ 6196, 6201 ] ], [ [ 234, 239 ], [ 4286, 4291 ], [ 4352, 4357 ], [ 4420, 4425 ], [ 4489, 4494 ], [ 5479, 5484 ], [ 5544, 5549 ], [ 5610, 5615 ], [ 5673, 5678 ], [ 5984, 5989 ] ], [ [ 241, 245 ], [ 8537, 8541 ], [ 8547, 8551 ] ], [ [ 247, 258 ], [ 8408, 8419 ], [ 8346, 8357 ] ], [ [ 281, 290 ], [ 1290, 1299 ], [ 6361, 6370 ] ], [ [ 292, 303 ], [ 3907, 3918 ], [ 3947, 3958 ], [ 4188, 4199 ], [ 4228, 4239 ], [ 4273, 4284 ], [ 4292, 4303 ], [ 4339, 4350 ], [ 4358, 4369 ], [ 4476, 4487 ], [ 4495, 4506 ], [ 4527, 4538 ], [ 5083, 5094 ], [ 5466, 5477 ], [ 5485, 5496 ], [ 5531, 5542 ], [ 5550, 5561 ], [ 5660, 5671 ], [ 5679, 5690 ], [ 5971, 5982 ], [ 5990, 6001 ] ], [ [ 305, 311 ], [ 4406, 4412 ], [ 4426, 4432 ], [ 5596, 5602 ], [ 5616, 5622 ] ], [ [ 313, 326 ], [ 5114, 5127 ], [ 5158, 5171 ] ], [ [ 328, 333 ], [ 8377, 8382 ], [ 8572, 8577 ] ], [ [ 335, 344 ], [ 3387, 3396 ] ], [ [ 375, 382 ], [ 4572, 4579 ], [ 5173, 5180 ] ], [ [ 391, 400 ], [ 2056, 2065 ], [ 8557, 8566 ], [ 3065, 3074 ] ], [ [ 758, 767 ], [ 2077, 2086 ], [ 2111, 2120 ], [ 4010, 4019 ], [ 4771, 4780 ], [ 4838, 4847 ], [ 4935, 4944 ], [ 5000, 5009 ], [ 5315, 5324 ], [ 5388, 5397 ], [ 5816, 5825 ], [ 5885, 5894 ], [ 6078, 6087 ], [ 6164, 6173 ], [ 3462, 3471 ], [ 3448, 3457 ] ], [ [ 1279, 1289 ], [ 3868, 3878 ], [ 4140, 4150 ], [ 4869, 4879 ], [ 4963, 4973 ], [ 5034, 5044 ], [ 5421, 5431 ], [ 5926, 5936 ] ], [ [ 3861, 3867 ], [ 6202, 6208 ] ], [ [ 4132, 4139 ], [ 4737, 4744 ], [ 4804, 4811 ] ], [ [ 4730, 4736 ], [ 6210, 6216 ] ], [ [ 4797, 4803 ], [ 6218, 6224 ] ], [ [ 4864, 4868 ], [ 6226, 6230 ] ], [ [ 4958, 4962 ], [ 6232, 6236 ] ], [ [ 5023, 5033 ], [ 5278, 5288 ], [ 5351, 5361 ] ], [ [ 5266, 5277 ], [ 6238, 6249 ] ], [ [ 5339, 5350 ], [ 6251, 6262 ] ], [ [ 5412, 5420 ], [ 5781, 5789 ], [ 5850, 5858 ] ], [ [ 5771, 5780 ], [ 6264, 6273 ] ], [ [ 5840, 5849 ], [ 6275, 6284 ] ], [ [ 5909, 5925 ], [ 6035, 6051 ], [ 6121, 6137 ] ], [ [ 6017, 6034 ], [ 6305, 6322 ] ], [ [ 6103, 6120 ], [ 6324, 6341 ] ], [ [ 6183, 6193 ], [ 8363, 8373 ] ], [ [ 6351, 6360 ] ] ]
""" Author: Andrew Harris Python 3.8 """ import logging import os import pandas as pd from ete3 import Tree from tqdm import tqdm ############################### Set up logger ################################# def set_logger_level(WORKING_DIR, LOG_LEVEL): logger = logging.getLogger(__name__) # Remove existing log file if present if os.path.exists(WORKING_DIR / 'logs/topobin.log'): os.remove(WORKING_DIR / 'logs/topobin.log') formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') file_handler = logging.FileHandler(WORKING_DIR / 'logs/topobin.log') file_handler.setFormatter(formatter) stream_handler = logging.StreamHandler() logger.addHandler(file_handler) logger.addHandler(stream_handler) logger.setLevel(LOG_LEVEL) return logger ############################## Helper Functions ############################### def remove_heterotachy_info(l): """Remove any information in bracketsete3 does not support this format of newick""" if ("[" not in l) and ("]" not in l): return l open_brackets = [i for i, x in enumerate(l) if x == "["] close_brackets = [i for i, x in enumerate(l) if x == "]"] final_string = f'{l[:open_brackets[0]]}' for ob, cb in zip(open_brackets[1:], close_brackets[:-1]): final_string += l[cb+1:ob] final_string += l[close_brackets[-1]+1:] return final_string def tv_header_validation(df): """Return False if first four required column headers are not valid""" required_cols = list(df.columns[:4]) try: assert required_cols == ["Chromosome", "Window", "NewickTree", "TopologyID"] return True except AssertionError: return False ############################### Main Function ################################ def topobinner(TREEVIEWER_FN, UPDATED_TV_FILENAME, TOPOBIN_ROOTED, WORKING_DIR, MULTIPROCESS, LOG_LEVEL): logger = set_logger_level(WORKING_DIR, LOG_LEVEL) # Setup log file level # Load in Tree Viewer excel file df = pd.read_excel(TREEVIEWER_FN, engine='openpyxl') df = df.reset_index(drop=True) # Validate headers header_check = tv_header_validation(df) if not header_check: raise AssertionError("Input file headers are not valid, please ensure required headers are correct.") df['TopologyID'] = ['NULL']*len(df) trees = df['NewickTree'] topologies = dict() logger.info(f"{len(trees):,} trees to run") # Set root boolean value if TOPOBIN_ROOTED == "Y": TOPOBIN_ROOTED = False else: TOPOBIN_ROOTED = True # Bin Trees tqdm_text = "#" + "{}".format("run1").zfill(3) with tqdm(total=len(trees), desc=tqdm_text, ascii=True) as pbar: for n, t in enumerate(trees): # Check to see if tree is NoTree if t == "NoTree": pbar.update(1) continue # Set first tree in collection dictionary + # move to next tree if len(topologies.keys()) == 0: topologies[n] = {'count': 1, 'idx': [n]} pbar.update(1) continue else: # Iterate through topology list # add new topology if no rf == 0 # increase count if rf == 0 with topology new_topology = True for idx in topologies.keys(): if df.at[idx, 'NewickTree'] == "NoTree": continue t1 = Tree(remove_heterotachy_info(t)) t2 = Tree(remove_heterotachy_info(df.at[idx, 'NewickTree'])) comparison = t1.compare(t2, unrooted=TOPOBIN_ROOTED) rf = comparison['rf'] if rf == 0: topologies[idx]['count'] += 1 topologies[idx]['idx'].append(n) new_topology = False break else: continue if new_topology: topologies[n] = {'count': 1, 'idx': [n]} pbar.update(1) continue else: pbar.update(1) continue # Sort topologies dictionary by 'count' topologies = {k: v for k, v in sorted(topologies.items(), key=lambda item: item[1]['count'], reverse=True)} num_topologies = len(topologies.keys()) # Set zfill number if num_topologies < 100: zfillnum = 3 elif 100 < num_topologies < 1000: zfillnum = 4 else: zfillnum = 5 # Update DataFrame TopologyID column with results overview_df = pd.DataFrame( { "TopologyID": [("Tree" + "{}".format(str(i)).zfill(zfillnum)) for i in range(1, len(topologies.keys())+1)], "Count": [topologies[i]["count"] for i in topologies.keys()], "Rank": [i for i in range(1, len(topologies.keys())+1)], } ) topoCount = 1 for topo in topologies.keys(): idx = topologies[topo]['idx'] topoName = "Tree" + "{}".format(topoCount).zfill(zfillnum) for i in idx: df.at[i, 'TopologyID'] = topoName continue topoCount += 1 # Output updated Tree Viewer file df.to_excel(UPDATED_TV_FILENAME, index=False, engine='openpyxl') logger.info(f"{overview_df}") return
[ [ [ 48, 55 ], [ 270, 277 ], [ 465, 472 ], [ 547, 554 ], [ 663, 670 ] ], [ [ 63, 65 ], [ 347, 349 ], [ 405, 407 ] ], [ [ 74, 86 ], [ 2037, 2039 ], [ 4704, 4706 ] ], [ [ 104, 108 ], [ 3519, 3523 ], [ 3577, 3581 ] ], [ [ 126, 130 ], [ 2669, 2673 ] ], [ [ 215, 231 ], [ 1921, 1937 ] ], [ [ 895, 918 ], [ 3524, 3547 ], [ 3582, 3605 ] ], [ [ 1418, 1438 ], [ 2162, 2182 ] ], [ [ 1806, 1816 ] ] ]
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- #################################################################################### ### Copyright (C) 2015-2019 by ABLIFE #################################################################################### #################################################################################### #################################################################################### # Date Version Author ChangeLog # # # ##################################################################################### """ 程序功能说明: 1.统计reads or peaks 相对于TTS,TSS,STARTCODON,STOPCODON的分布 程序设计思路: 利用gffutils和HTSeq包进行统计 """ import re, os, sys, logging, time, datetime from optparse import OptionParser, OptionGroup reload(sys) sys.setdefaultencoding('utf-8') import subprocess import threading import gffutils import HTSeq import numpy import multiprocessing from matplotlib import pyplot sys.path.insert(1, os.path.split(os.path.realpath(__file__))[0] + "/../../") from ablib.utils.tools import * from ablib.utils.distribution import * if sys.version_info < (2, 7): print("Python Version error: please use phthon2.7") sys.exit(-1) _version = 'v0.1' # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- def configOpt(): """Init for option """ usage = 'Usage: %prog [option] [-h]' p = OptionParser(usage) ##basic options p.add_option( '-g', '--gff', dest='gff', action='store', type='string', help='gff file,do not have to provide it if db is exited') p.add_option( '-d', '--db', dest='db', default='gffdb', action='store', type='string', help='the gff database file to create or use') p.add_option( '-b', '--bamorbed', dest='bamorbed', action='store', type='string', help='bam or bed file, Important: the bamfile\'s suffix must be ".bam"') p.add_option( '-w', '--halfwinwidth', dest='halfwinwidth', default=1000, action='store', type='int', help='halfwinwidth,default is 1000') p.add_option( '-p', '--postype', dest='postype', action='store', type='string', help='gene position type:tss,tts,startcodon,stopcodon,intronstart,intronend') p.add_option( '-o', '--outfile', dest='outfile', default="distance2xxx_reads_density.txt", action='store', type='string', help='gene expression file') p.add_option( '-n', '--samplename', dest='samplename', default='', action='store', type='string', help='sample name,default is ""') group = OptionGroup(p, "Preset options") ##preset options group.add_option( '-O', '--outDir', dest='outDir', default='./', action='store', type='string', help='output directory', metavar="DIR") group.add_option( '-L', '--logDir', dest='logDir', default='', action='store', type='string', help='log dir ,default is same as outDir') group.add_option( '-P', '--logPrefix', dest='logPrefix', default='', action='store', type='string', help='log file prefix') group.add_option( '-E', '--email', dest='email', default='none', action='store', type='string', help='email address, if you want get a email when this job is finished,default is no email', metavar="EMAIL") group.add_option( '-Q', '--quiet', dest='quiet', default=True, action='store_true', help='do not print messages to stdout') group.add_option( '-K', '--keepTemp', dest='keepTemp', default=False, action='store_true', help='keep temp dir') group.add_option( '-T', '--test', dest='isTest', default=False, action='store_true', help='run this program for test') p.add_option_group(group) if len(sys.argv) == 1: p.print_help() sys.exit(1) opt, args = p.parse_args() return (p, opt, args) def listToString(x): """获得完整的命令 """ rVal = '' for a in x: rVal += a + ' ' return rVal opt_parser, opt, args = configOpt() if not opt.postype: opt_parser.error('Option -p must be assigned.\n') if opt.logDir == "": opt.logDir = opt.outDir + '/log/' sample = "" if opt.samplename != "": sample = opt.samplename + '_' if opt.outfile == 'distance2xxx_reads_density.txt': opt.outfile = sample + 'distance2' + opt.postype + '_reads_density.txt' intype = "bam" match = re.search(r'\.bam$', opt.bamorbed) if not match: intype = "bed" # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- scriptPath = os.path.abspath(os.path.dirname(__file__)) # absolute script path binPath = "/".join(scriptPath.split("/")[0:-2]) # absolute bin path outPath = os.path.abspath(opt.outDir) # absolute output path #os.mkdir(outPath) if not os.path.isdir(outPath) else None os.system('mkdir -p ' + outPath) logPath = os.path.abspath(opt.logDir) #os.mkdir(logPath) if not os.path.isdir(logPath) else None os.system('mkdir -p ' + logPath) tempPath = outPath + '/temp/' # absolute bin path # os.mkdir(tempPath) if not os.path.isdir(tempPath) else None resultPath = outPath + '/result/' # os.mkdir(resultPath) if not os.path.isdir(resultPath) else None # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- def initLogging(logFilename): """Init for logging """ logging.basicConfig( level=logging.DEBUG, format='[%(asctime)s : %(levelname)s] %(message)s', datefmt='%y-%m-%d %H:%M', filename=logFilename, filemode='w') if not opt.quiet: # define a Handler which writes INFO messages or higher to the sys.stderr console = logging.StreamHandler() console.setLevel(logging.INFO) # set a format which is simpler for console use formatter = logging.Formatter('[%(asctime)s : %(levelname)s] %(message)s', datefmt='%y-%m-%d %H:%M') # tell the handler to use this format console.setFormatter(formatter) logging.getLogger('').addHandler(console) dt = datetime.datetime.now() logFile = logPath + '/' + opt.logPrefix + 'log.' + str(dt.strftime('%Y%m%d.%H%M%S.%f')) + '.txt' initLogging(logFile) logging.debug(sys.modules[__name__].__doc__) # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- logging.debug('Program version: %s' % _version) logging.debug('Start the program with [%s]\n', listToString(sys.argv)) startTime = datetime.datetime.now() logging.debug("计时器:Program start at %s" % startTime) # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- ### S # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- ### E # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- def main(): print("Main procedure start...") if opt.gff: db = gffutils.create_db(opt.gff, opt.db, merge_strategy="create_unique", verbose=False, force=True) db = gffutils.FeatureDB(opt.db) Watcher() pool = multiprocessing.Pool(processes=15) server = multiprocessing.Manager() dis = server.dict() for chr in db.seqids(): # if chr != "chr1": # continue if intype == "bam": chr_dict = readBamHeader(opt.bamorbed) if not chr in chr_dict: continue # print(chr) dis[chr] = [0 for x in range(2 * opt.halfwinwidth)] pool.apply_async(distributionToOnePointByChr, args=(chr, opt.bamorbed, opt.db, opt.outfile, opt.postype, opt.halfwinwidth, dis)) pool.close() pool.join() d = dict(dis).copy() server.shutdown() profile = numpy.zeros(2 * opt.halfwinwidth, dtype='i') for chr in sorted(d.keys()): wincvg = numpy.fromiter(d[chr], dtype='i', count=2 * opt.halfwinwidth) profile += wincvg # pyplot.plot( numpy.arange( -opt.halfwinwidth, opt.halfwinwidth ), profile ) # pyplot.show() os.chdir(opt.outDir) fout = open(opt.outfile, 'w') fout.writelines( "+distance\tdensity\n") n = 0 for i in range(-opt.halfwinwidth, opt.halfwinwidth): fout.writelines(str(i) + '\t' + str(profile[n]) + '\n') n += 1 fout.close() #cmd = "cd " + outPath + "&& R --slave < /users/ablife/ablife-R/Line_single_ggplot2.r --args " + opt.outfile + " " + sample + 'distance2' + opt.postype + '_reads_density ./ \n' cmd = "cd " + outPath + "&& Rscript " + binPath + "/plot/Line_single_ggplot2.r -f " + opt.outfile + " -t " + sample + 'distance2' + opt.postype + '_reads_density -n ' + sample + 'distance2' + opt.postype + '_reads_density -o ./' os.system(cmd) if __name__ == '__main__': main() # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- if not opt.keepTemp: os.system('rm -rf ' + tempPath) logging.debug("Temp folder is deleted..") # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- logging.debug("Program ended") currentTime = datetime.datetime.now() runningTime = (currentTime - startTime).seconds # in seconds logging.debug("计时器:Program start at %s" % startTime) logging.debug("计时器:Program end at %s" % currentTime) logging.debug("计时器:Program ran %.2d:%.2d:%.2d" % (runningTime / 3600, (runningTime % 3600) / 60, runningTime % 60)) # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- if opt.email != "none": run_cmd = listToString(sys.argv) sendEmail(opt.email, str(startTime), str(currentTime), run_cmd, outPath) logging.info("发送邮件通知到 %s" % opt.email) # ----------------------------------------------------------------------------------- # -----------------------------------------------------------------------------------
[ [ [ 697, 699 ], [ 4531, 4533 ] ], [ [ 701, 703 ], [ 977, 979 ], [ 991, 993 ], [ 4962, 4964 ], [ 4978, 4980 ], [ 5109, 5111 ], [ 5220, 5222 ], [ 5263, 5265 ], [ 5350, 5352 ], [ 10821, 10823 ], [ 9694, 9696 ], [ 10385, 10387 ] ], [ [ 705, 708 ], [ 789, 792 ], [ 794, 797 ], [ 958, 961 ], [ 1112, 1115 ], [ 1199, 1202 ], [ 6861, 6864 ], [ 7348, 7351 ], [ 11998, 12001 ], [ 3898, 3901 ], [ 3945, 3948 ] ], [ [ 710, 717 ], [ 6847, 6854 ], [ 7240, 7247 ], [ 7288, 7295 ], [ 7395, 7402 ], [ 10857, 10864 ], [ 11247, 11254 ], [ 11378, 11385 ], [ 11431, 11438 ], [ 11484, 11491 ], [ 12089, 12096 ], [ 6016, 6023 ], [ 6051, 6058 ], [ 6334, 6341 ], [ 6383, 6390 ], [ 6473, 6480 ], [ 6656, 6663 ] ], [ [ 719, 723 ] ], [ [ 725, 733 ], [ 6705, 6713 ], [ 7371, 7379 ], [ 11292, 11300 ] ], [ [ 755, 767 ], [ 1504, 1516 ] ], [ [ 769, 780 ], [ 2696, 2707 ] ], [ [ 834, 844 ] ], [ [ 852, 861 ] ], [ [ 869, 877 ], [ 8588, 8596 ], [ 8693, 8701 ] ], [ [ 885, 890 ] ], [ [ 898, 903 ], [ 9404, 9409 ], [ 9499, 9504 ] ], [ [ 911, 926 ], [ 8747, 8762 ], [ 8795, 8810 ] ], [ [ 950, 956 ] ], [ [ 1065, 1066 ] ], [ [ 1104, 1105 ], [ 12012, 12021 ], [ 8726, 8733 ], [ 8976, 8989 ], [ 9171, 9198 ] ], [ [ 1214, 1222 ], [ 7278, 7286 ] ], [ [ 1411, 1420 ], [ 4157, 4166 ] ], [ [ 4020, 4032 ], [ 7335, 7347 ], [ 11985, 11997 ] ], [ [ 4133, 4143 ], [ 4194, 4204 ] ], [ [ 4145, 4148 ], [ 4177, 4180 ], [ 4248, 4251 ], [ 4283, 4286 ], [ 4270, 4273 ], [ 4320, 4323 ], [ 4355, 4358 ], [ 4380, 4383 ], [ 4470, 4473 ], [ 4433, 4436 ], [ 4552, 4555 ], [ 5125, 5128 ], [ 5279, 5282 ], [ 6755, 6758 ], [ 10803, 10806 ], [ 11950, 11953 ], [ 12022, 12025 ], [ 12131, 12134 ], [ 6223, 6226 ], [ 8566, 8569 ], [ 8607, 8610 ], [ 8616, 8619 ], [ 8712, 8715 ], [ 8990, 8993 ], [ 9127, 9130 ], [ 9236, 9239 ], [ 9250, 9253 ], [ 9258, 9261 ], [ 9271, 9274 ], [ 9284, 9287 ], [ 9420, 9423 ], [ 9543, 9546 ], [ 9703, 9706 ], [ 9731, 9734 ], [ 9833, 9836 ], [ 9851, 9854 ], [ 10238, 10241 ], [ 10284, 10287 ], [ 10344, 10347 ] ], [ [ 4150, 4154 ] ], [ [ 4305, 4311 ], [ 4447, 4453 ], [ 10261, 10267 ], [ 10321, 10327 ] ], [ [ 4346, 4352 ], [ 4447, 4453 ], [ 10261, 10267 ], [ 10321, 10327 ] ], [ [ 4508, 4514 ], [ 8936, 8942 ] ], [ [ 4523, 4528 ], [ 4573, 4578 ] ], [ [ 4584, 4590 ], [ 8936, 8942 ] ], [ [ 4949, 4959 ], [ 5048, 5058 ] ], [ [ 5029, 5036 ], [ 10192, 10199 ] ], [ [ 5099, 5106 ], [ 5244, 5251 ], [ 5394, 5401 ], [ 5509, 5516 ], [ 12076, 12083 ], [ 10166, 10173 ] ], [ [ 5253, 5260 ], [ 5374, 5381 ], [ 6739, 6746 ] ], [ [ 5383, 5391 ], [ 10843, 10851 ] ], [ [ 5496, 5506 ] ], [ [ 5954, 5965 ], [ 6826, 6837 ] ], [ [ 6700, 6702 ], [ 6784, 6786 ] ], [ [ 6729, 6736 ], [ 6838, 6845 ] ], [ [ 7359, 7368 ], [ 7445, 7454 ], [ 11345, 11354 ], [ 11428, 11437 ], [ 12037, 12046 ] ], [ [ 8511, 8515 ], [ 10440, 10444 ] ], [ [ 11278, 11289 ], [ 11331, 11342 ], [ 11479, 11490 ], [ 12053, 12064 ] ], [ [ 11316, 11327 ], [ 11542, 11553 ], [ 11563, 11574 ], [ 11589, 11600 ] ], [ [ 11975, 11982 ], [ 12067, 12074 ] ] ]
# this file structure follows http://flask.pocoo.org/docs/1.0/patterns/appfactories/ # initializing db in api.models.base instead of in api.__init__.py # to prevent circular dependencies from .base import db from .Email import Email from .Person import Person from .VideoInfo import VideoInfo __all__ = ["db", "Email", "Person", "VideoInfo"] # You must import all of the new Models you create to this page
[ [ [ 205, 207 ] ], [ [ 227, 232 ] ], [ [ 253, 259 ] ], [ [ 283, 292 ] ], [ [ 294, 301 ] ] ]
""" The Sims 4 Community Library is licensed under the Creative Commons Attribution 4.0 International public license (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/legalcode Copyright (c) COLONOLNUTTY """ from typing import Any, Union from interactions.base.interaction import Interaction from interactions.context import InteractionContext from protocolbuffers.Localization_pb2 import LocalizedString from sims.sim import Sim from sims4.utils import flexmethod from sims4communitylib.logging.has_class_log import HasClassLog from sims4communitylib.mod_support.mod_identity import CommonModIdentity class CommonInteractionOverrideName(HasClassLog): """CommonInteractionOverrideName() An inheritable class that provides a way to override the :func:`~get_name` function of :class:`.CommonInteraction`. .. warning:: This class is to be used in conjunction with :class:`.CommonInteraction`. Inheriting from this class will do nothing for class that does not also inherit from :class:`.CommonInteraction`. """ # noinspection PyMissingOrEmptyDocstring @classmethod def get_mod_identity(cls) -> Union[CommonModIdentity, None]: return None def __init__(self) -> None: super().__init__() HasClassLog.__init__(self) # noinspection PyMethodParameters,PyMissingOrEmptyDocstring @flexmethod def get_name(cls, inst: Interaction, target: Any=None, context: InteractionContext=None, **interaction_parameters) -> Union[LocalizedString, None]: inst_or_cls = inst or cls try: context_inst_or_cls = context or inst_or_cls interaction_sim = context_inst_or_cls.sim interaction_target = target or context_inst_or_cls.target cls.get_verbose_log().format_with_message( 'Creating display name.', class_name=cls.__name__, interaction_sim=interaction_sim, interaction_target=interaction_target, interaction=inst, interaction_context=context ) override_name = cls._create_display_name( interaction_sim, interaction_target, interaction=inst, interaction_context=context, **interaction_parameters ) if override_name is not None: return override_name except Exception as ex: cls.get_log().error('An error occurred while running get_name of interaction {}'.format(cls.__name__), exception=ex) return super(Interaction, inst_or_cls).get_name(target=target, context=context, **interaction_parameters) # noinspection PyUnusedLocal @classmethod def _create_display_name(cls, interaction_sim: Sim, interaction_target: Any, interaction: Union[Interaction, None]=None, interaction_context: Union[InteractionContext, None]=None, **interaction_parameters) -> Union[LocalizedString, None]: """_create_display_name(interaction_sim, interaction_target, interaction=None, interaction_context=None, **interaction_parameters) A hook that allows using a custom display name for an Interaction. :param interaction_sim: The source Sim of the interaction. :type interaction_sim: Sim :param interaction_target: The target Object of the interaction. :type interaction_target: Any :param interaction: An instance of an interaction or None if no instance of the interaction is available. Default is None. :type interaction: Union[Interaction, None], optional :param interaction_context: The context of the interaction or None if no interaction context is available. Default is None. :type interaction_context: Union[InteractionContext, None], optional :param interaction_parameters: Extra interaction parameters. :type interaction_parameters: Any :return: A Localized String to display for the interaction or None if the original display name should be used. :rtype: Union[LocalizedString, None] """ raise NotImplementedError()
[ [ [ 280, 283 ], [ 1455, 1458 ], [ 2859, 2862 ] ], [ [ 285, 290 ], [ 1178, 1183 ], [ 1528, 1533 ], [ 2996, 3001 ], [ 2877, 2882 ], [ 2929, 2934 ] ], [ [ 334, 345 ], [ 1434, 1445 ], [ 2639, 2650 ], [ 2883, 2894 ] ], [ [ 379, 397 ], [ 1474, 1492 ], [ 2935, 2953 ] ], [ [ 443, 458 ], [ 1534, 1549 ], [ 3002, 3017 ] ], [ [ 480, 483 ], [ 2834, 2837 ] ], [ [ 508, 518 ], [ 1395, 1405 ] ], [ [ 571, 582 ], [ 694, 705 ], [ 1298, 1309 ] ], [ [ 638, 655 ], [ 1184, 1201 ] ], [ [ 664, 693 ] ] ]
# -*- coding: utf-8 -*- # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=g-short-docstring-punctuation """Higher level ops for building layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import os import six from tensorflow.contrib.framework.python.ops import add_arg_scope from tensorflow.contrib.framework.python.ops import variables from tensorflow.contrib.layers.python.layers import initializers from tensorflow.contrib.layers.python.layers import utils from tensorflow.python.framework import dtypes from tensorflow.python.framework import function from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.layers import base from tensorflow.python.layers import convolutional as convolutional_layers from tensorflow.python.layers import core as core_layers from tensorflow.python.layers import normalization as normalization_layers from tensorflow.python.layers import pooling as pooling_layers from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import standard_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables as tf_variables from tensorflow.python.training import moving_averages from tensorflow.python.layers.maxout import maxout # TODO(b/28426988): Replace legacy_* fns migrated from slim. # TODO(b/28426988): Remove legacy_* when all uses have migrated to new API. __all__ = ['avg_pool2d', 'avg_pool3d', 'batch_norm', 'bias_add', 'conv2d', 'conv3d', 'conv2d_in_plane', 'conv2d_transpose', 'conv3d_transpose', 'convolution', 'convolution2d', 'convolution2d_in_plane', 'convolution2d_transpose', 'convolution3d', 'convolution3d_transpose', 'dropout', 'elu', 'flatten', 'fully_connected', 'GDN', 'gdn', 'layer_norm', 'linear', 'pool', 'max_pool2d', 'max_pool3d', 'one_hot_encoding', 'relu', 'relu6', 'repeat', 'scale_gradient', 'separable_conv2d', 'separable_convolution2d', 'softmax', 'spatial_softmax', 'stack', 'unit_norm', 'legacy_fully_connected', 'legacy_linear', 'legacy_relu', 'maxout'] DATA_FORMAT_NCHW = 'NCHW' DATA_FORMAT_NHWC = 'NHWC' DATA_FORMAT_NCDHW = 'NCDHW' DATA_FORMAT_NDHWC = 'NDHWC' _FUSED_DEFAULT = os.getenv('TF_DEFAULT_USES_FUSED_BATCH_NORM', '').lower() in ('true', 't', '1') @add_arg_scope def avg_pool2d(inputs, kernel_size, stride=2, padding='VALID', data_format=DATA_FORMAT_NHWC, outputs_collections=None, scope=None): """Adds a 2D average pooling op. It is assumed that the pooling is done per image but not in batch or channels. Args: inputs: A 4-D tensor of shape `[batch_size, height, width, channels]` if `data_format` is `NHWC`, and `[batch_size, channels, height, width]` if `data_format` is `NCHW`. kernel_size: A list of length 2: [kernel_height, kernel_width] of the pooling kernel over which the op is computed. Can be an int if both values are the same. stride: A list of length 2: [stride_height, stride_width]. Can be an int if both strides are the same. Note that presently both strides must have the same value. padding: The padding method, either 'VALID' or 'SAME'. data_format: A string. `NHWC` (default) and `NCHW` are supported. outputs_collections: The collections to which the outputs are added. scope: Optional scope for name_scope. Returns: A `Tensor` representing the results of the pooling operation. Raises: ValueError: If `data_format` is neither `NHWC` nor `NCHW`. """ if data_format not in (DATA_FORMAT_NCHW, DATA_FORMAT_NHWC): raise ValueError('data_format has to be either NCHW or NHWC.') with ops.name_scope(scope, 'AvgPool2D', [inputs]) as sc: inputs = ops.convert_to_tensor(inputs) df = ('channels_first' if data_format and data_format.startswith('NC') else 'channels_last') layer = pooling_layers.AveragePooling2D(pool_size=kernel_size, strides=stride, padding=padding, data_format=df, _scope=sc) outputs = layer.apply(inputs) return utils.collect_named_outputs(outputs_collections, sc, outputs) @add_arg_scope def avg_pool3d(inputs, kernel_size, stride=2, padding='VALID', data_format=DATA_FORMAT_NDHWC, outputs_collections=None, scope=None): """Adds a 3D average pooling op. It is assumed that the pooling is done per image but not in batch or channels. Args: inputs: A 5-D tensor of shape `[batch_size, depth, height, width, channels]` if `data_format` is `NDHWC`, and `[batch_size, channels, depth, height, width]` if `data_format` is `NCDHW`. kernel_size: A list of length 3: [kernel_depth, kernel_height, kernel_width] of the pooling kernel over which the op is computed. Can be an int if both values are the same. stride: A list of length 3: [stride_depth, stride_height, stride_width]. Can be an int if both strides are the same. Note that presently both strides must have the same value. padding: The padding method, either 'VALID' or 'SAME'. data_format: A string. `NDHWC` (default) and `NCDHW` are supported. outputs_collections: The collections to which the outputs are added. scope: Optional scope for name_scope. Returns: A `Tensor` representing the results of the pooling operation. Raises: ValueError: If `data_format` is neither `NDHWC` nor `NCDHW`. """ if data_format not in (DATA_FORMAT_NCDHW, DATA_FORMAT_NDHWC): raise ValueError('data_format has to be either NCDHW or NDHWC.') with ops.name_scope(scope, 'AvgPool3D', [inputs]) as sc: inputs = ops.convert_to_tensor(inputs) df = ('channels_first' if data_format and data_format.startswith('NC') else 'channels_last') layer = pooling_layers.AveragePooling3D(pool_size=kernel_size, strides=stride, padding=padding, data_format=df, _scope=sc) outputs = layer.apply(inputs) return utils.collect_named_outputs(outputs_collections, sc, outputs) def _fused_batch_norm( inputs, decay=0.999, center=True, scale=False, epsilon=0.001, activation_fn=None, param_initializers=None, updates_collections=ops.GraphKeys.UPDATE_OPS, is_training=True, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, data_format=DATA_FORMAT_NHWC, zero_debias_moving_mean=False, scope=None): """Adds a Batch Normalization layer from http://arxiv.org/abs/1502.03167. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift" Sergey Ioffe, Christian Szegedy Can be used as a normalizer function for conv2d and fully_connected. Note: when training, the moving_mean and moving_variance need to be updated. By default the update ops are placed in `tf.GraphKeys.UPDATE_OPS`, so they need to be added as a dependency to the `train_op`. For example: ```python update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = optimizer.minimize(loss) ``` One can set updates_collections=None to force the updates in place, but that can have a speed penalty, especially in distributed settings. Args: inputs: A tensor with 2 or more dimensions, where the first dimension has `batch_size`. The normalization is over all but the last dimension if `data_format` is `NHWC` and the second dimension if `data_format` is `NCHW`. decay: Decay for the moving average. Reasonable values for `decay` are close to 1.0, typically in the multiple-nines range: 0.999, 0.99, 0.9, etc. Lower `decay` value (recommend trying `decay`=0.9) if model experiences reasonably good training performance but poor validation and/or test performance. center: If True, add offset of `beta` to normalized tensor. If False, `beta` is ignored. scale: If True, multiply by `gamma`. If False, `gamma` is not used. When the next layer is linear (also e.g. `nn.relu`), this can be disabled since the scaling can be done by the next layer. epsilon: Small float added to variance to avoid dividing by zero. activation_fn: Activation function, default set to None to skip it and maintain a linear activation. param_initializers: Optional initializers for beta, gamma, moving mean and moving variance. updates_collections: Collections to collect the update ops for computation. The updates_ops need to be executed with the train_op. If None, a control dependency would be added to make sure the updates are computed in place. is_training: Whether or not the layer is in training mode. In training mode it would accumulate the statistics of the moments into `moving_mean` and `moving_variance` using an exponential moving average with the given `decay`. When it is not in training mode then it would use the values of the `moving_mean` and the `moving_variance`. reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. variables_collections: Optional collections for the variables. outputs_collections: Collections to add the outputs. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). data_format: A string. `NHWC` (default) and `NCHW` are supported. zero_debias_moving_mean: Use zero_debias for moving_mean. scope: Optional scope for `variable_scope`. Returns: A `Tensor` representing the output of the operation. Raises: ValueError: If `data_format` is neither `NHWC` nor `NCHW`. ValueError: If the rank of `inputs` is undefined. ValueError: If the rank of `inputs` is neither 2 or 4. ValueError: If rank or `C` dimension of `inputs` is undefined. """ if data_format not in (DATA_FORMAT_NCHW, DATA_FORMAT_NHWC): raise ValueError('data_format has to be either NCHW or NHWC.') with variable_scope.variable_scope( scope, 'BatchNorm', [inputs], reuse=reuse) as sc: inputs = ops.convert_to_tensor(inputs) original_shape = inputs.get_shape() original_inputs = inputs original_rank = original_shape.ndims if original_rank is None: raise ValueError('Inputs %s has undefined rank' % inputs.name) elif original_rank not in [2, 4]: raise ValueError('Inputs %s has unsupported rank.' ' Expected 2 or 4 but got %d' % ( inputs.name, original_rank)) if original_rank == 2: channels = inputs.get_shape()[-1].value if channels is None: raise ValueError('`C` dimension must be known but is None') new_shape = [-1, 1, 1, channels] if data_format == DATA_FORMAT_NCHW: new_shape = [-1, channels, 1, 1] inputs = array_ops.reshape(inputs, new_shape) inputs_shape = inputs.get_shape() dtype = inputs.dtype.base_dtype if data_format == DATA_FORMAT_NHWC: params_shape = inputs_shape[-1:] else: params_shape = inputs_shape[1:2] if not params_shape.is_fully_defined(): raise ValueError('Inputs %s has undefined `C` dimension %s.' % (inputs.name, params_shape)) # Allocate parameters for the beta and gamma of the normalization. trainable_beta = trainable and center beta_collections = utils.get_variable_collections(variables_collections, 'beta') if not param_initializers: param_initializers = {} if center: beta_initializer = param_initializers.get('beta', init_ops.zeros_initializer()) beta = variables.model_variable( 'beta', shape=params_shape, dtype=dtype, initializer=beta_initializer, collections=beta_collections, trainable=trainable_beta) else: beta = array_ops.constant(0.0, shape=params_shape) if scale: gamma_collections = utils.get_variable_collections( variables_collections, 'gamma') gamma_initializer = param_initializers.get('gamma', init_ops.ones_initializer()) gamma = variables.model_variable( 'gamma', shape=params_shape, dtype=dtype, initializer=gamma_initializer, collections=gamma_collections, trainable=trainable) else: gamma = array_ops.constant(1.0, shape=params_shape) # Create moving_mean and moving_variance variables and add them to the # appropriate collections. moving_mean_collections = utils.get_variable_collections( variables_collections, 'moving_mean') moving_mean_initializer = param_initializers.get( 'moving_mean', init_ops.zeros_initializer()) moving_mean = variables.model_variable( 'moving_mean', shape=params_shape, dtype=dtype, initializer=moving_mean_initializer, trainable=False, collections=moving_mean_collections) moving_variance_collections = utils.get_variable_collections( variables_collections, 'moving_variance') moving_variance_initializer = param_initializers.get( 'moving_variance', init_ops.ones_initializer()) moving_variance = variables.model_variable( 'moving_variance', shape=params_shape, dtype=dtype, initializer=moving_variance_initializer, trainable=False, collections=moving_variance_collections) def _fused_batch_norm_training(): return nn.fused_batch_norm( inputs, gamma, beta, epsilon=epsilon, data_format=data_format) def _fused_batch_norm_inference(): return nn.fused_batch_norm( inputs, gamma, beta, mean=moving_mean, variance=moving_variance, epsilon=epsilon, is_training=False, data_format=data_format) outputs, mean, variance = utils.smart_cond(is_training, _fused_batch_norm_training, _fused_batch_norm_inference) # If `is_training` doesn't have a constant value, because it is a `Tensor`, # a `Variable` or `Placeholder` then is_training_value will be None and # `need_updates` will be true. is_training_value = utils.constant_value(is_training) need_updates = is_training_value is None or is_training_value if need_updates: if updates_collections is None: no_updates = lambda: outputs def _force_updates(): """Internal function forces updates moving_vars if is_training.""" update_moving_mean = moving_averages.assign_moving_average( moving_mean, mean, decay, zero_debias=zero_debias_moving_mean) update_moving_variance = moving_averages.assign_moving_average( moving_variance, variance, decay, zero_debias=False) with ops.control_dependencies( [update_moving_mean, update_moving_variance]): return array_ops.identity(outputs) outputs = utils.smart_cond(is_training, _force_updates, no_updates) else: moving_vars_fn = lambda: (moving_mean, moving_variance) def _delay_updates(): """Internal function that delay updates moving_vars if is_training.""" update_moving_mean = moving_averages.assign_moving_average( moving_mean, mean, decay, zero_debias=zero_debias_moving_mean) update_moving_variance = moving_averages.assign_moving_average( moving_variance, variance, decay, zero_debias=False) return update_moving_mean, update_moving_variance update_mean, update_variance = utils.smart_cond(is_training, _delay_updates, moving_vars_fn) ops.add_to_collections(updates_collections, update_mean) ops.add_to_collections(updates_collections, update_variance) outputs.set_shape(inputs_shape) if original_shape.ndims == 2: outputs = array_ops.reshape(outputs, array_ops.shape(original_inputs)) if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.original_name_scope, outputs) @add_arg_scope def batch_norm(inputs, decay=0.999, center=True, scale=False, epsilon=0.001, activation_fn=None, param_initializers=None, param_regularizers=None, updates_collections=ops.GraphKeys.UPDATE_OPS, is_training=True, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, batch_weights=None, fused=None, data_format=DATA_FORMAT_NHWC, zero_debias_moving_mean=False, scope=None, renorm=False, renorm_clipping=None, renorm_decay=0.99): """Adds a Batch Normalization layer from http://arxiv.org/abs/1502.03167. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift" Sergey Ioffe, Christian Szegedy Can be used as a normalizer function for conv2d and fully_connected. Note: when training, the moving_mean and moving_variance need to be updated. By default the update ops are placed in `tf.GraphKeys.UPDATE_OPS`, so they need to be added as a dependency to the `train_op`. For example: ```python update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = optimizer.minimize(loss) ``` One can set updates_collections=None to force the updates in place, but that can have a speed penalty, especially in distributed settings. Args: inputs: A tensor with 2 or more dimensions, where the first dimension has `batch_size`. The normalization is over all but the last dimension if `data_format` is `NHWC` and the second dimension if `data_format` is `NCHW`. decay: Decay for the moving average. Reasonable values for `decay` are close to 1.0, typically in the multiple-nines range: 0.999, 0.99, 0.9, etc. Lower `decay` value (recommend trying `decay`=0.9) if model experiences reasonably good training performance but poor validation and/or test performance. Try zero_debias_moving_mean=True for improved stability. center: If True, add offset of `beta` to normalized tensor. If False, `beta` is ignored. scale: If True, multiply by `gamma`. If False, `gamma` is not used. When the next layer is linear (also e.g. `nn.relu`), this can be disabled since the scaling can be done by the next layer. epsilon: Small float added to variance to avoid dividing by zero. activation_fn: Activation function, default set to None to skip it and maintain a linear activation. param_initializers: Optional initializers for beta, gamma, moving mean and moving variance. param_regularizers: Optional regularizer for beta and gamma. updates_collections: Collections to collect the update ops for computation. The updates_ops need to be executed with the train_op. If None, a control dependency would be added to make sure the updates are computed in place. is_training: Whether or not the layer is in training mode. In training mode it would accumulate the statistics of the moments into `moving_mean` and `moving_variance` using an exponential moving average with the given `decay`. When it is not in training mode then it would use the values of the `moving_mean` and the `moving_variance`. reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. variables_collections: Optional collections for the variables. outputs_collections: Collections to add the outputs. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). batch_weights: An optional tensor of shape `[batch_size]`, containing a frequency weight for each batch item. If present, then the batch normalization uses weighted mean and variance. (This can be used to correct for bias in training example selection.) fused: if `True`, use a faster, fused implementation if possible. If `None`, use the system recommended implementation. data_format: A string. `NHWC` (default) and `NCHW` are supported. zero_debias_moving_mean: Use zero_debias for moving_mean. It creates a new pair of variables 'moving_mean/biased' and 'moving_mean/local_step'. scope: Optional scope for `variable_scope`. renorm: Whether to use Batch Renormalization (https://arxiv.org/abs/1702.03275). This adds extra variables during training. The inference is the same for either value of this parameter. renorm_clipping: A dictionary that may map keys 'rmax', 'rmin', 'dmax' to scalar `Tensors` used to clip the renorm correction. The correction `(r, d)` is used as `corrected_value = normalized_value * r + d`, with `r` clipped to [rmin, rmax], and `d` to [-dmax, dmax]. Missing rmax, rmin, dmax are set to inf, 0, inf, respectively. renorm_decay: Momentum used to update the moving means and standard deviations with renorm. Unlike `momentum`, this affects training and should be neither too small (which would add noise) nor too large (which would give stale estimates). Note that `decay` is still applied to get the means and variances for inference. Returns: A `Tensor` representing the output of the operation. Raises: ValueError: If `data_format` is neither `NHWC` nor `NCHW`. ValueError: If the rank of `inputs` is undefined. ValueError: If rank or channels dimension of `inputs` is undefined. """ # This environment variable is only used during the testing period of fused # batch norm and will be removed after that. if fused is None: fused = _FUSED_DEFAULT # Only use _fused_batch_norm if all of the following three # conditions are true: # (1) fused is set True; # (2) it is possible to use (currently it doesn't support batch weights, # renorm, and the case when rank is neither 2 nor 4); # (3) it is used with zero_debias_moving_mean, or an input shape of rank 2, # or non-default updates_collections (not implemented in # normalization_layers.BatchNormalization yet); otherwise use the fused # implementation in normalization_layers.BatchNormalization. inputs = ops.convert_to_tensor(inputs) rank = inputs.get_shape().ndims possible_to_fuse = batch_weights is None and not renorm and rank in [2, 4] if fused and possible_to_fuse and ( zero_debias_moving_mean or rank == 2 or updates_collections is not ops.GraphKeys.UPDATE_OPS): return _fused_batch_norm( inputs, decay=decay, center=center, scale=scale, epsilon=epsilon, activation_fn=activation_fn, param_initializers=param_initializers, updates_collections=updates_collections, is_training=is_training, reuse=reuse, variables_collections=variables_collections, outputs_collections=outputs_collections, trainable=trainable, data_format=data_format, zero_debias_moving_mean=zero_debias_moving_mean, scope=scope) if data_format not in (DATA_FORMAT_NCHW, DATA_FORMAT_NHWC): raise ValueError('data_format has to be either NCHW or NHWC.') layer_variable_getter = _build_variable_getter() with variable_scope.variable_scope( scope, 'BatchNorm', [inputs], reuse=reuse, custom_getter=layer_variable_getter) as sc: inputs = ops.convert_to_tensor(inputs) # Determine whether we can use the core layer class. if (batch_weights is None and updates_collections is ops.GraphKeys.UPDATE_OPS and not zero_debias_moving_mean): # Use the core layer class. axis = 1 if data_format == DATA_FORMAT_NCHW else -1 if not param_initializers: param_initializers = {} beta_initializer = param_initializers.get('beta', init_ops.zeros_initializer()) gamma_initializer = param_initializers.get('gamma', init_ops.ones_initializer()) moving_mean_initializer = param_initializers.get( 'moving_mean', init_ops.zeros_initializer()) moving_variance_initializer = param_initializers.get( 'moving_variance', init_ops.ones_initializer()) if not param_regularizers: param_regularizers = {} beta_regularizer = param_regularizers.get('beta') gamma_regularizer = param_regularizers.get('gamma') layer = normalization_layers.BatchNormalization( axis=axis, momentum=decay, epsilon=epsilon, center=center, scale=scale, beta_initializer=beta_initializer, gamma_initializer=gamma_initializer, moving_mean_initializer=moving_mean_initializer, moving_variance_initializer=moving_variance_initializer, beta_regularizer=beta_regularizer, gamma_regularizer=gamma_regularizer, trainable=trainable, renorm=renorm, renorm_clipping=renorm_clipping, renorm_momentum=renorm_decay, name=sc.name, _scope=sc, _reuse=reuse, fused=fused) outputs = layer.apply(inputs, training=is_training) # Add variables to collections. _add_variable_to_collections( layer.moving_mean, variables_collections, 'moving_mean') _add_variable_to_collections( layer.moving_variance, variables_collections, 'moving_variance') if layer.beta is not None: _add_variable_to_collections(layer.beta, variables_collections, 'beta') if layer.gamma is not None: _add_variable_to_collections( layer.gamma, variables_collections, 'gamma') if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.original_name_scope, outputs) # Not supported by layer class: batch_weights argument, # and custom updates_collections. In that case, use the legacy BN # implementation. # Custom updates collections are not supported because the update logic # is different in this case, in particular w.r.t. "forced updates" and # update op reuse. if renorm: raise ValueError('renorm is not supported with batch_weights, ' 'updates_collections or zero_debias_moving_mean') inputs_shape = inputs.get_shape() inputs_rank = inputs_shape.ndims if inputs_rank is None: raise ValueError('Inputs %s has undefined rank.' % inputs.name) dtype = inputs.dtype.base_dtype if batch_weights is not None: batch_weights = ops.convert_to_tensor(batch_weights) inputs_shape[0:1].assert_is_compatible_with(batch_weights.get_shape()) # Reshape batch weight values so they broadcast across inputs. nshape = [-1] + [1 for _ in range(inputs_rank - 1)] batch_weights = array_ops.reshape(batch_weights, nshape) if data_format == DATA_FORMAT_NCHW: moments_axes = [0] + list(range(2, inputs_rank)) params_shape = inputs_shape[1:2] # For NCHW format, rather than relying on implicit broadcasting, we # explicitly reshape the params to params_shape_broadcast when computing # the moments and the batch normalization. params_shape_broadcast = list( [1, inputs_shape[1].value] + [1 for _ in range(2, inputs_rank)]) else: moments_axes = list(range(inputs_rank - 1)) params_shape = inputs_shape[-1:] params_shape_broadcast = None if not params_shape.is_fully_defined(): raise ValueError('Inputs %s has undefined channels dimension %s.' % ( inputs.name, params_shape)) # Allocate parameters for the beta and gamma of the normalization. beta, gamma = None, None if not param_initializers: param_initializers = {} if center: beta_collections = utils.get_variable_collections(variables_collections, 'beta') beta_initializer = param_initializers.get('beta', init_ops.zeros_initializer()) beta = variables.model_variable('beta', shape=params_shape, dtype=dtype, initializer=beta_initializer, collections=beta_collections, trainable=trainable) if scale: gamma_collections = utils.get_variable_collections(variables_collections, 'gamma') gamma_initializer = param_initializers.get('gamma', init_ops.ones_initializer()) gamma = variables.model_variable('gamma', shape=params_shape, dtype=dtype, initializer=gamma_initializer, collections=gamma_collections, trainable=trainable) # Create moving_mean and moving_variance variables and add them to the # appropriate collections. We disable variable partitioning while creating # them, because assign_moving_average is not yet supported for partitioned # variables. partitioner = variable_scope.get_variable_scope().partitioner try: variable_scope.get_variable_scope().set_partitioner(None) moving_mean_collections = utils.get_variable_collections( variables_collections, 'moving_mean') moving_mean_initializer = param_initializers.get( 'moving_mean', init_ops.zeros_initializer()) moving_mean = variables.model_variable( 'moving_mean', shape=params_shape, dtype=dtype, initializer=moving_mean_initializer, trainable=False, collections=moving_mean_collections) moving_variance_collections = utils.get_variable_collections( variables_collections, 'moving_variance') moving_variance_initializer = param_initializers.get( 'moving_variance', init_ops.ones_initializer()) moving_variance = variables.model_variable( 'moving_variance', shape=params_shape, dtype=dtype, initializer=moving_variance_initializer, trainable=False, collections=moving_variance_collections) finally: variable_scope.get_variable_scope().set_partitioner(partitioner) # If `is_training` doesn't have a constant value, because it is a `Tensor`, # a `Variable` or `Placeholder` then is_training_value will be None and # `needs_moments` will be true. is_training_value = utils.constant_value(is_training) need_moments = is_training_value is None or is_training_value if need_moments: # Calculate the moments based on the individual batch. if batch_weights is None: if data_format == DATA_FORMAT_NCHW: mean, variance = nn.moments(inputs, moments_axes, keep_dims=True) mean = array_ops.reshape(mean, [-1]) variance = array_ops.reshape(variance, [-1]) else: mean, variance = nn.moments(inputs, moments_axes) else: if data_format == DATA_FORMAT_NCHW: mean, variance = nn.weighted_moments(inputs, moments_axes, batch_weights, keep_dims=True) mean = array_ops.reshape(mean, [-1]) variance = array_ops.reshape(variance, [-1]) else: mean, variance = nn.weighted_moments(inputs, moments_axes, batch_weights) moving_vars_fn = lambda: (moving_mean, moving_variance) if updates_collections is None: def _force_updates(): """Internal function forces updates moving_vars if is_training.""" update_moving_mean = moving_averages.assign_moving_average( moving_mean, mean, decay, zero_debias=zero_debias_moving_mean) update_moving_variance = moving_averages.assign_moving_average( moving_variance, variance, decay, zero_debias=False) with ops.control_dependencies([update_moving_mean, update_moving_variance]): return array_ops.identity(mean), array_ops.identity(variance) mean, variance = utils.smart_cond(is_training, _force_updates, moving_vars_fn) else: def _delay_updates(): """Internal function that delay updates moving_vars if is_training.""" update_moving_mean = moving_averages.assign_moving_average( moving_mean, mean, decay, zero_debias=zero_debias_moving_mean) update_moving_variance = moving_averages.assign_moving_average( moving_variance, variance, decay, zero_debias=False) return update_moving_mean, update_moving_variance update_mean, update_variance = utils.smart_cond(is_training, _delay_updates, moving_vars_fn) ops.add_to_collections(updates_collections, update_mean) ops.add_to_collections(updates_collections, update_variance) # Use computed moments during training and moving_vars otherwise. vars_fn = lambda: (mean, variance) mean, variance = utils.smart_cond(is_training, vars_fn, moving_vars_fn) else: mean, variance = moving_mean, moving_variance if data_format == DATA_FORMAT_NCHW: mean = array_ops.reshape(mean, params_shape_broadcast) variance = array_ops.reshape(variance, params_shape_broadcast) if beta is not None: beta = array_ops.reshape(beta, params_shape_broadcast) if gamma is not None: gamma = array_ops.reshape(gamma, params_shape_broadcast) # Compute batch_normalization. outputs = nn.batch_normalization(inputs, mean, variance, beta, gamma, epsilon) outputs.set_shape(inputs_shape) if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.original_name_scope, outputs) @add_arg_scope def bias_add(inputs, activation_fn=None, initializer=init_ops.zeros_initializer(), regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, data_format=DATA_FORMAT_NHWC, scope=None): """Adds a bias to the inputs. Can be used as a normalizer function for conv2d and fully_connected. Args: inputs: A tensor of with at least rank 2 and value for the last dimension, e.g. `[batch_size, depth]`, `[None, None, None, depth]`. activation_fn: Activation function, default set to None to skip it and maintain a linear activation. initializer: An initializer for the bias, defaults to 0. regularizer: A regularizer like the result of `l1_regularizer` or `l2_regularizer`. reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. variables_collections: Optional collections for the variables. outputs_collections: Collections to add the outputs. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). data_format: A string. 'NHWC' and 'NCHW' are supported. scope: Optional scope for variable_scope. Returns: A tensor representing the result of adding biases to the inputs. Raises: ValueError: If `data_format` is neither `NHWC` nor `NCHW`. ValueError: If `data_format` is `NCHW` and rank of `inputs` is not 4. ValueError: If the rank of `inputs` is undefined. ValueError: If rank or `C` dimension of `inputs` is undefined. """ if data_format not in (DATA_FORMAT_NCHW, DATA_FORMAT_NHWC): raise ValueError('data_format has to be either NCHW or NHWC.') with variable_scope.variable_scope(scope, 'BiasAdd', [inputs], reuse=reuse) as sc: inputs = ops.convert_to_tensor(inputs) dtype = inputs.dtype.base_dtype inputs_shape = inputs.get_shape() inputs_rank = inputs_shape.ndims if inputs_rank is None: raise ValueError('Dims of shape must be known but is None') elif inputs_rank != 4 and data_format == DATA_FORMAT_NCHW: raise ValueError('Data format NCHW only supports 4D Tensor') axis = 1 if data_format == DATA_FORMAT_NCHW else -1 num_features = inputs_shape[axis].value if num_features is None: raise ValueError('`C` dimension must be known but is None') biases_collections = utils.get_variable_collections(variables_collections, 'biases') biases = variables.model_variable('biases', shape=[num_features,], dtype=dtype, initializer=initializer, regularizer=regularizer, collections=biases_collections, trainable=trainable) outputs = nn.bias_add(inputs, biases, data_format=data_format) if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.original_name_scope, outputs) # TODO(jbms): change `rate` parameter to `dilation_rate` for consistency with # underlying op. @add_arg_scope def convolution(inputs, num_outputs, kernel_size, stride=1, padding='SAME', data_format=None, rate=1, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None): """Adds an N-D convolution followed by an optional batch_norm layer. It is required that 1 <= N <= 3. `convolution` creates a variable called `weights`, representing the convolutional kernel, that is convolved (actually cross-correlated) with the `inputs` to produce a `Tensor` of activations. If a `normalizer_fn` is provided (such as `batch_norm`), it is then applied. Otherwise, if `normalizer_fn` is None and a `biases_initializer` is provided then a `biases` variable would be created and added the activations. Finally, if `activation_fn` is not `None`, it is applied to the activations as well. Performs atrous convolution with input stride/dilation rate equal to `rate` if a value > 1 for any dimension of `rate` is specified. In this case `stride` values != 1 are not supported. Args: inputs: A Tensor of rank N+2 of shape `[batch_size] + input_spatial_shape + [in_channels]` if data_format does not start with "NC" (default), or `[batch_size, in_channels] + input_spatial_shape` if data_format starts with "NC". num_outputs: Integer, the number of output filters. kernel_size: A sequence of N positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions. stride: A sequence of N positive integers specifying the stride at which to compute output. Can be a single integer to specify the same value for all spatial dimensions. Specifying any `stride` value != 1 is incompatible with specifying any `rate` value != 1. padding: One of `"VALID"` or `"SAME"`. data_format: A string or None. Specifies whether the channel dimension of the `input` and output is the last dimension (default, or if `data_format` does not start with "NC"), or the second dimension (if `data_format` starts with "NC"). For N=1, the valid values are "NWC" (default) and "NCW". For N=2, the valid values are "NHWC" (default) and "NCHW". For N=3, the valid values are "NDHWC" (default) and "NCDHW". rate: A sequence of N positive integers specifying the dilation rate to use for atrous convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any `rate` value != 1 is incompatible with specifying any `stride` value != 1. activation_fn: Activation function. The default value is a ReLU function. Explicitly set it to None to skip it and maintain a linear activation. normalizer_fn: Normalization function to use instead of `biases`. If `normalizer_fn` is provided then `biases_initializer` and `biases_regularizer` are ignored and `biases` are not created nor added. default set to None for no normalizer function normalizer_params: Normalization function parameters. weights_initializer: An initializer for the weights. weights_regularizer: Optional regularizer for the weights. biases_initializer: An initializer for the biases. If None skip biases. biases_regularizer: Optional regularizer for the biases. reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. variables_collections: Optional list of collections for all the variables or a dictionary containing a different list of collection per variable. outputs_collections: Collection to add the outputs. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). scope: Optional scope for `variable_scope`. Returns: A tensor representing the output of the operation. Raises: ValueError: If `data_format` is invalid. ValueError: Both 'rate' and `stride` are not uniformly 1. """ if data_format not in [None, 'NWC', 'NCW', 'NHWC', 'NCHW', 'NDHWC', 'NCDHW']: raise ValueError('Invalid data_format: %r' % (data_format,)) layer_variable_getter = _build_variable_getter( {'bias': 'biases', 'kernel': 'weights'}) with variable_scope.variable_scope( scope, 'Conv', [inputs], reuse=reuse, custom_getter=layer_variable_getter) as sc: inputs = ops.convert_to_tensor(inputs) input_rank = inputs.get_shape().ndims if input_rank == 3: layer_class = convolutional_layers.Convolution1D elif input_rank == 4: layer_class = convolutional_layers.Convolution2D elif input_rank == 5: layer_class = convolutional_layers.Convolution3D else: raise ValueError('Convolution not supported for input with rank', input_rank) df = ('channels_first' if data_format and data_format.startswith('NC') else 'channels_last') layer = layer_class(filters=num_outputs, kernel_size=kernel_size, strides=stride, padding=padding, data_format=df, dilation_rate=rate, activation=None, use_bias=not normalizer_fn and biases_initializer, kernel_initializer=weights_initializer, bias_initializer=biases_initializer, kernel_regularizer=weights_regularizer, bias_regularizer=biases_regularizer, activity_regularizer=None, trainable=trainable, name=sc.name, dtype=inputs.dtype.base_dtype, _scope=sc, _reuse=reuse) outputs = layer.apply(inputs) # Add variables to collections. _add_variable_to_collections(layer.kernel, variables_collections, 'weights') if layer.use_bias: _add_variable_to_collections(layer.bias, variables_collections, 'biases') if normalizer_fn is not None: normalizer_params = normalizer_params or {} outputs = normalizer_fn(outputs, **normalizer_params) if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.original_name_scope, outputs) convolution2d = convolution convolution3d = convolution @add_arg_scope def convolution2d_in_plane( inputs, kernel_size, stride=1, padding='SAME', activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None): """Performs the same in-plane convolution to each channel independently. This is useful for performing various simple channel-independent convolution operations such as image gradients: image = tf.constant(..., shape=(16, 240, 320, 3)) vert_gradients = layers.conv2d_in_plane(image, kernel=[1, -1], kernel_size=[2, 1]) horz_gradients = layers.conv2d_in_plane(image, kernel=[1, -1], kernel_size=[1, 2]) Args: inputs: A 4-D tensor with dimensions [batch_size, height, width, channels]. kernel_size: A list of length 2 holding the [kernel_height, kernel_width] of of the pooling. Can be an int if both values are the same. stride: A list of length 2 `[stride_height, stride_width]`. Can be an int if both strides are the same. Note that presently both strides must have the same value. padding: The padding type to use, either 'SAME' or 'VALID'. activation_fn: Activation function. The default value is a ReLU function. Explicitly set it to None to skip it and maintain a linear activation. normalizer_fn: Normalization function to use instead of `biases`. If `normalizer_fn` is provided then `biases_initializer` and `biases_regularizer` are ignored and `biases` are not created nor added. default set to None for no normalizer function normalizer_params: Normalization function parameters. weights_initializer: An initializer for the weights. weights_regularizer: Optional regularizer for the weights. biases_initializer: An initializer for the biases. If None skip biases. biases_regularizer: Optional regularizer for the biases. reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. variables_collections: Optional list of collections for all the variables or a dictionary containing a different list of collection per variable. outputs_collections: Collection to add the outputs. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). scope: Optional scope for `variable_scope`. Returns: A `Tensor` representing the output of the operation. """ with variable_scope.variable_scope( scope, 'ConvInPlane', [inputs], reuse=reuse) as sc: dtype = inputs.dtype.base_dtype kernel_h, kernel_w = utils.two_element_tuple(kernel_size) stride_h, stride_w = utils.two_element_tuple(stride) num_filters_in = utils.last_dimension(inputs.get_shape(), min_rank=4) weights_shape = [kernel_h, kernel_w, 1, 1] weights_collections = utils.get_variable_collections( variables_collections, 'weights') weights = variables.model_variable('weights', shape=weights_shape, dtype=dtype, initializer=weights_initializer, regularizer=weights_regularizer, collections=weights_collections, trainable=trainable) depthwise_weights = array_ops.tile(weights, [1, 1, num_filters_in, 1]) outputs = nn.depthwise_conv2d(inputs, depthwise_weights, [1, stride_h, stride_w, 1], padding) if normalizer_fn is not None: normalizer_params = normalizer_params or {} outputs = normalizer_fn(outputs, **normalizer_params) else: if biases_initializer is not None: biases_collections = utils.get_variable_collections( variables_collections, 'biases') biases = variables.model_variable('biases', shape=[num_filters_in,], dtype=dtype, initializer=biases_initializer, regularizer=biases_regularizer, collections=biases_collections, trainable=trainable) outputs = nn.bias_add(outputs, biases) if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.original_name_scope, outputs) @add_arg_scope def convolution2d_transpose( inputs, num_outputs, kernel_size, stride=1, padding='SAME', data_format=DATA_FORMAT_NHWC, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None): """Adds a convolution2d_transpose with an optional batch normalization layer. The function creates a variable called `weights`, representing the kernel, that is convolved with the input. If `normalizer_fn` is `None`, a second variable called 'biases' is added to the result of the operation. Args: inputs: A 4-D `Tensor` of type `float` and shape `[batch, height, width, in_channels]` for `NHWC` data format or `[batch, in_channels, height, width]` for `NCHW` data format. num_outputs: Integer, the number of output filters. kernel_size: A list of length 2 holding the [kernel_height, kernel_width] of of the filters. Can be an int if both values are the same. stride: A list of length 2: [stride_height, stride_width]. Can be an int if both strides are the same. Note that presently both strides must have the same value. padding: One of 'VALID' or 'SAME'. data_format: A string. `NHWC` (default) and `NCHW` are supported. activation_fn: Activation function. The default value is a ReLU function. Explicitly set it to None to skip it and maintain a linear activation. normalizer_fn: Normalization function to use instead of `biases`. If `normalizer_fn` is provided then `biases_initializer` and `biases_regularizer` are ignored and `biases` are not created nor added. default set to None for no normalizer function normalizer_params: Normalization function parameters. weights_initializer: An initializer for the weights. weights_regularizer: Optional regularizer for the weights. biases_initializer: An initializer for the biases. If None skip biases. biases_regularizer: Optional regularizer for the biases. reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. variables_collections: Optional list of collections for all the variables or a dictionary containing a different list of collection per variable. outputs_collections: Collection to add the outputs. trainable: Whether or not the variables should be trainable or not. scope: Optional scope for variable_scope. Returns: A tensor representing the output of the operation. Raises: ValueError: If 'kernel_size' is not a list of length 2. ValueError: If `data_format` is neither `NHWC` nor `NCHW`. ValueError: If `C` dimension of `inputs` is None. """ layer_variable_getter = _build_variable_getter( {'bias': 'biases', 'kernel': 'weights'}) with variable_scope.variable_scope( scope, 'Conv2d_transpose', [inputs], reuse=reuse, custom_getter=layer_variable_getter) as sc: if data_format not in (DATA_FORMAT_NCHW, DATA_FORMAT_NHWC): raise ValueError('data_format has to be either NCHW or NHWC.') inputs = ops.convert_to_tensor(inputs) df = ('channels_first' if data_format and data_format.startswith('NC') else 'channels_last') layer = convolutional_layers.Convolution2DTranspose( filters=num_outputs, kernel_size=kernel_size, strides=stride, padding=padding, data_format=df, activation=None, use_bias=not normalizer_fn and biases_initializer, kernel_initializer=weights_initializer, bias_initializer=biases_initializer, kernel_regularizer=weights_regularizer, bias_regularizer=biases_regularizer, activity_regularizer=None, trainable=trainable, name=sc.name, dtype=inputs.dtype.base_dtype, _scope=sc, _reuse=reuse) outputs = layer.apply(inputs) # Add variables to collections. _add_variable_to_collections(layer.kernel, variables_collections, 'weights') if layer.bias: _add_variable_to_collections(layer.bias, variables_collections, 'biases') if normalizer_fn is not None: normalizer_params = normalizer_params or {} outputs = normalizer_fn(outputs, **normalizer_params) if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.original_name_scope, outputs) @add_arg_scope def convolution3d_transpose( inputs, num_outputs, kernel_size, stride=1, padding='SAME', data_format=DATA_FORMAT_NDHWC, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None): """Adds a convolution3d_transpose with an optional batch normalization layer. The function creates a variable called `weights`, representing the kernel, that is convolved with the input. If `batch_norm_params` is `None`, a second variable called 'biases' is added to the result of the operation. Args: inputs: A 5-D `Tensor` of type `float` and shape `[batch, depth, height, width, in_channels]` for `NDHWC` data format or `[batch, in_channels, depth, height, width]` for `NCDHW` data format. num_outputs: Integer, the number of output filters. kernel_size: A list of length 3 holding the [kernel_depth, kernel_height, kernel_width] of of the filters. Can be an int if both values are the same. stride: A list of length 3: [stride_depth, stride_height, stride_width]. Can be an int if both strides are the same. Note that presently both strides must have the same value. padding: One of 'VALID' or 'SAME'. data_format: A string. `NDHWC` (default) and `NCDHW` are supported. activation_fn: Activation function. The default value is a ReLU function. Explicitly set it to None to skip it and maintain a linear activation. normalizer_fn: Normalization function to use instead of `biases`. If `normalizer_fn` is provided then `biases_initializer` and `biases_regularizer` are ignored and `biases` are not created nor added. default set to None for no normalizer function normalizer_params: Normalization function parameters. weights_initializer: An initializer for the weights. weights_regularizer: Optional regularizer for the weights. biases_initializer: An initializer for the biases. If None skip biases. biases_regularizer: Optional regularizer for the biases. reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. variables_collections: Optional list of collections for all the variables or a dictionary containing a different list of collection per variable. outputs_collections: Collection to add the outputs. trainable: Whether or not the variables should be trainable or not. scope: Optional scope for variable_scope. Returns: A tensor representing the output of the operation. Raises: ValueError: If 'kernel_size' is not a list of length 3. ValueError: If `data_format` is neither `NDHWC` nor `NCDHW`. ValueError: If `C` dimension of `inputs` is None. """ layer_variable_getter = _build_variable_getter( {'bias': 'biases', 'kernel': 'weights'}) with variable_scope.variable_scope( scope, 'Conv3d_transpose', [inputs], reuse=reuse, custom_getter=layer_variable_getter) as sc: if data_format not in (DATA_FORMAT_NCDHW, DATA_FORMAT_NDHWC): raise ValueError('data_format has to be either NCDHW or NDHWC.') inputs = ops.convert_to_tensor(inputs) df = ('channels_first' if data_format and data_format.startswith('NC') else 'channels_last') layer = convolutional_layers.Convolution3DTranspose( filters=num_outputs, kernel_size=kernel_size, strides=stride, padding=padding, data_format=df, activation=None, use_bias=not normalizer_fn and biases_initializer, kernel_initializer=weights_initializer, bias_initializer=biases_initializer, kernel_regularizer=weights_regularizer, bias_regularizer=biases_regularizer, activity_regularizer=None, trainable=trainable, name=sc.name, dtype=inputs.dtype.base_dtype, _scope=sc, _reuse=reuse) outputs = layer.apply(inputs) # Add variables to collections. _add_variable_to_collections(layer.kernel, variables_collections, 'weights') if layer.bias: _add_variable_to_collections(layer.bias, variables_collections, 'biases') if normalizer_fn is not None: normalizer_params = normalizer_params or {} outputs = normalizer_fn(outputs, **normalizer_params) if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.original_name_scope, outputs) @add_arg_scope def dropout(inputs, keep_prob=0.5, noise_shape=None, is_training=True, outputs_collections=None, scope=None): """Returns a dropout op applied to the input. With probability `keep_prob`, outputs the input element scaled up by `1 / keep_prob`, otherwise outputs `0`. The scaling is so that the expected sum is unchanged. Args: inputs: The tensor to pass to the nn.dropout op. keep_prob: A scalar `Tensor` with the same type as x. The probability that each element is kept. noise_shape: A 1-D `Tensor` of type `int32`, representing the shape for randomly generated keep/drop flags. is_training: A bool `Tensor` indicating whether or not the model is in training mode. If so, dropout is applied and values scaled. Otherwise, inputs is returned. outputs_collections: Collection to add the outputs. scope: Optional scope for name_scope. Returns: A tensor representing the output of the operation. """ with variable_scope.variable_scope( scope, 'Dropout', [inputs], custom_getter=_model_variable_getter) as sc: inputs = ops.convert_to_tensor(inputs) layer = core_layers.Dropout(rate=1 - keep_prob, noise_shape=noise_shape, name=sc.name, _scope=sc) outputs = layer.apply(inputs, training=is_training) return utils.collect_named_outputs( outputs_collections, sc.original_name_scope, outputs) @add_arg_scope def flatten(inputs, outputs_collections=None, scope=None): """Flattens the input while maintaining the batch_size. Assumes that the first dimension represents the batch. Args: inputs: A tensor of size [batch_size, ...]. outputs_collections: Collection to add the outputs. scope: Optional scope for name_scope. Returns: A flattened tensor with shape [batch_size, k]. Raises: ValueError: If inputs rank is unknown or less than 2. """ with ops.name_scope(scope, 'Flatten', [inputs]) as sc: inputs = ops.convert_to_tensor(inputs) inputs_rank = inputs.get_shape().ndims if (inputs_rank is None) or (inputs_rank < 2): raise ValueError('Inputs must have a least 2 dimensions.') inputs_shape = array_ops.shape(inputs) batch_dim = array_ops.slice(inputs_shape, [0], [1]) spatial_dims = array_ops.slice(inputs_shape, [1], [inputs_rank - 1]) flat_spatial_dim = math_ops.reduce_prod(spatial_dims) flat_spatial_dim = array_ops.expand_dims(flat_spatial_dim, 0) flat_shape = array_ops.concat([batch_dim, flat_spatial_dim], 0) outputs = array_ops.reshape(inputs, flat_shape) # Attempt to propagate shape information, if it is defined. input_shape = inputs.get_shape().as_list() batch_dim, spatial_dims = input_shape[0], input_shape[1:] if all(spatial_dims): outputs.set_shape([batch_dim, functools.reduce(lambda x, y: x * y, spatial_dims)]) else: outputs.set_shape([batch_dim, None]) return utils.collect_named_outputs(outputs_collections, sc, outputs) def _sparse_inner_flatten(inputs, new_rank): """Helper function for `inner_flatten`.""" inputs_rank = inputs.dense_shape.get_shape().as_list()[0] if inputs_rank < new_rank: raise ValueError( 'Inputs has rank less than new_rank. {} must have rank at least' ' {}. Received rank {}, shape {}'.format(inputs, new_rank, inputs_rank, inputs.get_shape())) outer_dimensions = inputs.dense_shape[:new_rank - 1] inner_dimensions = inputs.dense_shape[new_rank - 1:] new_shape = array_ops.concat((outer_dimensions, [math_ops.reduce_prod(inner_dimensions)]), 0) flattened = sparse_ops.sparse_reshape(inputs, new_shape) return flattened def _dense_inner_flatten(inputs, new_rank): """Helper function for `inner_flatten`.""" rank_assertion = check_ops.assert_rank_at_least( inputs, new_rank, message='inputs has rank less than new_rank') with ops.control_dependencies([rank_assertion]): outer_dimensions = array_ops.strided_slice( array_ops.shape(inputs), [0], [new_rank - 1]) new_shape = array_ops.concat((outer_dimensions, [-1]), 0) reshaped = array_ops.reshape(inputs, new_shape) # if `new_rank` is an integer, try to calculate new shape. if isinstance(new_rank, six.integer_types): static_shape = inputs.get_shape() if static_shape is not None and static_shape.dims is not None: static_shape = static_shape.as_list() static_outer_dims = static_shape[:new_rank - 1] static_inner_dims = static_shape[new_rank - 1:] flattened_dimension = 1 for inner_dim in static_inner_dims: if inner_dim is None: flattened_dimension = None break flattened_dimension *= inner_dim reshaped.set_shape(static_outer_dims + [flattened_dimension]) return reshaped @add_arg_scope def _inner_flatten(inputs, new_rank, output_collections=None, scope=None): """Flattens inner dimensions of `inputs`, returns a Tensor with `new_rank`. For example: ''' x = tf.random_uniform(shape=[1, 2, 3, 4, 5, 6]) y = _inner_flatten(x, 4) assert y.get_shape().as_list() == [1, 2, 3, (4 * 5 * 6)] ''' This layer will fail at run time if `new_rank` is greater than the current rank of `inputs`. Args: inputs: A `Tensor` or `SparseTensor`. new_rank: The desired rank of the returned `Tensor` or `SparseTensor`. output_collections: Collection to which the outputs will be added. scope: Optional scope for `name_scope`. Returns: A `Tensor` or `SparseTensor` conataining the same values as `inputs`, but with innermost dimensions flattened to obtain rank `new_rank`. Raises: TypeError: `inputs` is not a `Tensor` or `SparseTensor`. """ with ops.name_scope(scope, 'InnerFlatten', [inputs, new_rank]) as sc: if isinstance(inputs, sparse_tensor.SparseTensor): flattened = _sparse_inner_flatten(inputs, new_rank) else: inputs = ops.convert_to_tensor(inputs) flattened = _dense_inner_flatten(inputs, new_rank) return utils.collect_named_outputs(output_collections, sc, flattened) def _model_variable_getter(getter, name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partitioner=None, rename=None, use_resource=None, **_): """Getter that uses model_variable for compatibility with core layers.""" short_name = name.split('/')[-1] if rename and short_name in rename: name_components = name.split('/') name_components[-1] = rename[short_name] name = '/'.join(name_components) return variables.model_variable( name, shape=shape, dtype=dtype, initializer=initializer, regularizer=regularizer, collections=collections, trainable=trainable, caching_device=caching_device, partitioner=partitioner, custom_getter=getter, use_resource=use_resource) def _build_variable_getter(rename=None): """Build a model variable getter that respects scope getter and renames.""" # VariableScope will nest the getters def layer_variable_getter(getter, *args, **kwargs): kwargs['rename'] = rename return _model_variable_getter(getter, *args, **kwargs) return layer_variable_getter def _add_variable_to_collections(variable, collections_set, collections_name): """Adds variable (or all its parts) to all collections with that name.""" collections = utils.get_variable_collections( collections_set, collections_name) or [] variables_list = [variable] if isinstance(variable, tf_variables.PartitionedVariable): variables_list = [v for v in variable] for collection in collections: for var in variables_list: if var not in ops.get_collection(collection): ops.add_to_collection(collection, var) @add_arg_scope def fully_connected(inputs, num_outputs, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None): """Adds a fully connected layer. `fully_connected` creates a variable called `weights`, representing a fully connected weight matrix, which is multiplied by the `inputs` to produce a `Tensor` of hidden units. If a `normalizer_fn` is provided (such as `batch_norm`), it is then applied. Otherwise, if `normalizer_fn` is None and a `biases_initializer` is provided then a `biases` variable would be created and added the hidden units. Finally, if `activation_fn` is not `None`, it is applied to the hidden units as well. Note: that if `inputs` have a rank greater than 2, then `inputs` is flattened prior to the initial matrix multiply by `weights`. Args: inputs: A tensor of at least rank 2 and static value for the last dimension; i.e. `[batch_size, depth]`, `[None, None, None, channels]`. num_outputs: Integer or long, the number of output units in the layer. activation_fn: Activation function. The default value is a ReLU function. Explicitly set it to None to skip it and maintain a linear activation. normalizer_fn: Normalization function to use instead of `biases`. If `normalizer_fn` is provided then `biases_initializer` and `biases_regularizer` are ignored and `biases` are not created nor added. default set to None for no normalizer function normalizer_params: Normalization function parameters. weights_initializer: An initializer for the weights. weights_regularizer: Optional regularizer for the weights. biases_initializer: An initializer for the biases. If None skip biases. biases_regularizer: Optional regularizer for the biases. reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. variables_collections: Optional list of collections for all the variables or a dictionary containing a different list of collections per variable. outputs_collections: Collection to add the outputs. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). scope: Optional scope for variable_scope. Returns: The tensor variable representing the result of the series of operations. Raises: ValueError: If x has rank less than 2 or if its last dimension is not set. """ if not isinstance(num_outputs, six.integer_types): raise ValueError( 'num_outputs should be int or long, got %s.' % (num_outputs,)) layer_variable_getter = _build_variable_getter({'bias': 'biases', 'kernel': 'weights'}) with variable_scope.variable_scope( scope, 'fully_connected', [inputs], reuse=reuse, custom_getter=layer_variable_getter) as sc: inputs = ops.convert_to_tensor(inputs) layer = core_layers.Dense( units=num_outputs, activation=None, use_bias=not normalizer_fn and biases_initializer, kernel_initializer=weights_initializer, bias_initializer=biases_initializer, kernel_regularizer=weights_regularizer, bias_regularizer=biases_regularizer, activity_regularizer=None, trainable=trainable, name=sc.name, dtype=inputs.dtype.base_dtype, _scope=sc, _reuse=reuse) outputs = layer.apply(inputs) # Add variables to collections. _add_variable_to_collections(layer.kernel, variables_collections, 'weights') if layer.bias is not None: _add_variable_to_collections(layer.bias, variables_collections, 'biases') # Apply normalizer function / layer. if normalizer_fn is not None: if not normalizer_params: normalizer_params = {} outputs = normalizer_fn(outputs, **normalizer_params) if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs( outputs_collections, sc.original_name_scope, outputs) class GDN(base.Layer): """Generalized divisive normalization layer. Based on the papers: "Density Modeling of Images using a Generalized Normalization Transformation" Johannes Ballé, Valero Laparra, Eero P. Simoncelli https://arxiv.org/abs/1511.06281 "End-to-end Optimized Image Compression" Johannes Ballé, Valero Laparra, Eero P. Simoncelli https://arxiv.org/abs/1611.01704 Implements an activation function that is essentially a multivariate generalization of a particular sigmoid-type function: ``` y[i] = x[i] / sqrt(beta[i] + sum_j(gamma[j, i] * x[j])) ``` where `i` and `j` run over channels. This implementation never sums across spatial dimensions. It is similar to local response normalization, but much more flexible, as `beta` and `gamma` are trainable parameters. Arguments: inverse: If `False` (default), compute GDN response. If `True`, compute IGDN response (one step of fixed point iteration to invert GDN; the division is replaced by multiplication). beta_min: Lower bound for beta, to prevent numerical error from causing square root of zero or negative values. gamma_init: The gamma matrix will be initialized as the identity matrix multiplied with this value. If set to zero, the layer is effectively initialized to the identity operation, since beta is initialized as one. A good default setting is somewhere between 0 and 0.5. reparam_offset: Offset added to the reparameterization of beta and gamma. The reparameterization of beta and gamma as their square roots lets the training slow down when their values are close to zero, which is desirable as small values in the denominator can lead to a situation where gradient noise on beta/gamma leads to extreme amounts of noise in the GDN activations. However, without the offset, we would get zero gradients if any elements of beta or gamma were exactly zero, and thus the training could get stuck. To prevent this, we add this small constant. The default value was empirically determined as a good starting point. Making it bigger potentially leads to more gradient noise on the activations, making it too small may lead to numerical precision issues. data_format: Format of input tensor. Currently supports `'channels_first'` and `'channels_last'`. activity_regularizer: Regularizer function for the output. trainable: Boolean, if `True`, also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require `reuse=True` in such cases. Properties: inverse: Boolean, whether GDN is computed (`True`) or IGDN (`False`). data_format: Format of input tensor. Currently supports `'channels_first'` and `'channels_last'`. beta: The beta parameter as defined above (1D `Tensor`). gamma: The gamma parameter as defined above (2D `Tensor`). """ def __init__(self, inverse=False, beta_min=1e-6, gamma_init=.1, reparam_offset=2 ** -18, data_format='channels_last', activity_regularizer=None, trainable=True, name=None, **kwargs): super(GDN, self).__init__(trainable=trainable, name=name, **kwargs) self.inverse = inverse self._beta_min = beta_min self._gamma_init = gamma_init self._reparam_offset = reparam_offset self.data_format = data_format self.activity_regularizer = activity_regularizer self._channel_axis() # trigger ValueError early self.input_spec = base.InputSpec(min_ndim=3, max_ndim=5) def _channel_axis(self): try: return {'channels_first': 1, 'channels_last': -1}[self.data_format] except KeyError: raise ValueError('Unsupported `data_format` for GDN layer: {}.'.format( self.data_format)) @staticmethod def _lower_bound(inputs, bound, name=None): """Same as tf.maximum, but with helpful gradient for inputs < bound. The gradient is overwritten so that it is passed through if the input is not hitting the bound. If it is, only gradients that push `inputs` higher than the bound are passed through. No gradients are passed through to the bound. Args: inputs: input tensor bound: lower bound for the input tensor name: name for this op Returns: tf.maximum(inputs, bound) """ with ops.name_scope(name, 'GDNLowerBound', [inputs, bound]) as scope: inputs = ops.convert_to_tensor(inputs, name='inputs') bound = ops.convert_to_tensor(bound, name='bound') with ops.get_default_graph().gradient_override_map( {'Maximum': 'GDNLowerBound'}): return math_ops.maximum(inputs, bound, name=scope) @staticmethod def _lower_bound_grad(op, grad): """Gradient for `_lower_bound`. Args: op: the tensorflow op for which to calculate a gradient grad: gradient with respect to the output of the op Returns: gradients with respect to the inputs of the op """ inputs = op.inputs[0] bound = op.inputs[1] pass_through_if = math_ops.logical_or(inputs >= bound, grad < 0) return [math_ops.cast(pass_through_if, grad.dtype) * grad, None] def build(self, input_shape): channel_axis = self._channel_axis() input_shape = tensor_shape.TensorShape(input_shape) num_channels = input_shape[channel_axis].value if num_channels is None: raise ValueError('The channel dimension of the inputs to `GDN` ' 'must be defined.') self._input_rank = input_shape.ndims self.input_spec = base.InputSpec(ndim=input_shape.ndims, axes={channel_axis: num_channels}) pedestal = array_ops.constant(self._reparam_offset ** 2, dtype=self.dtype) beta_bound = array_ops.constant( (self._beta_min + self._reparam_offset ** 2) ** .5, dtype=self.dtype) gamma_bound = array_ops.constant(self._reparam_offset, dtype=self.dtype) def beta_initializer(shape, dtype=None, partition_info=None): del partition_info # unused return math_ops.sqrt(array_ops.ones(shape, dtype=dtype) + pedestal) def gamma_initializer(shape, dtype=None, partition_info=None): del partition_info # unused assert len(shape) == 2 assert shape[0] == shape[1] eye = linalg_ops.eye(shape[0], dtype=dtype) return math_ops.sqrt(self._gamma_init * eye + pedestal) beta = self.add_variable('reparam_beta', shape=[num_channels], initializer=beta_initializer, dtype=self.dtype, trainable=True) beta = self._lower_bound(beta, beta_bound) self.beta = math_ops.square(beta) - pedestal gamma = self.add_variable('reparam_gamma', shape=[num_channels, num_channels], initializer=gamma_initializer, dtype=self.dtype, trainable=True) gamma = self._lower_bound(gamma, gamma_bound) self.gamma = math_ops.square(gamma) - pedestal self.built = True def call(self, inputs): inputs = ops.convert_to_tensor(inputs, dtype=self.dtype) ndim = self._input_rank shape = self.gamma.get_shape().as_list() gamma = array_ops.reshape(self.gamma, (ndim - 2) * [1] + shape) # Compute normalization pool. if self.data_format == 'channels_first': norm_pool = nn.convolution(math_ops.square(inputs), gamma, 'VALID', data_format='NC' + 'DHW'[-(ndim - 2):]) if ndim == 3: norm_pool = array_ops.expand_dims(norm_pool, 2) norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW') norm_pool = array_ops.squeeze(norm_pool, [2]) elif ndim == 5: shape = array_ops.shape(norm_pool) norm_pool = array_ops.reshape(norm_pool, shape[:3] + [-1]) norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW') norm_pool = array_ops.reshape(norm_pool, shape) else: # ndim == 4 norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW') else: # channels_last norm_pool = nn.convolution(math_ops.square(inputs), gamma, 'VALID') norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NHWC') norm_pool = math_ops.sqrt(norm_pool) if self.inverse: outputs = inputs * norm_pool else: outputs = inputs / norm_pool outputs.set_shape(inputs.get_shape()) return outputs def _compute_output_shape(self, input_shape): channel_axis = self._channel_axis() input_shape = tensor_shape.TensorShape(input_shape) if not 3 <= input_shape.ndim <= 5: raise ValueError('`input_shape` must be of rank 3 to 5, inclusive.') if input_shape[channel_axis].value is None: raise ValueError( 'The channel dimension of `input_shape` must be defined.') return input_shape ops.RegisterGradient('GDNLowerBound')(GDN._lower_bound_grad) # pylint:disable=protected-access def gdn(inputs, inverse=False, beta_min=1e-6, gamma_init=.1, reparam_offset=2 ** -18, data_format='channels_last', activity_regularizer=None, trainable=True, name=None, reuse=None): """Functional interface for GDN layer. Based on the papers: "Density Modeling of Images using a Generalized Normalization Transformation" Johannes Ballé, Valero Laparra, Eero P. Simoncelli https://arxiv.org/abs/1511.06281 "End-to-end Optimized Image Compression" Johannes Ballé, Valero Laparra, Eero P. Simoncelli https://arxiv.org/abs/1611.01704 Implements an activation function that is essentially a multivariate generalization of a particular sigmoid-type function: ``` y[i] = x[i] / sqrt(beta[i] + sum_j(gamma[j, i] * x[j])) ``` where `i` and `j` run over channels. This implementation never sums across spatial dimensions. It is similar to local response normalization, but much more flexible, as `beta` and `gamma` are trainable parameters. Args: inputs: Tensor input. inverse: If `False` (default), compute GDN response. If `True`, compute IGDN response (one step of fixed point iteration to invert GDN; the division is replaced by multiplication). beta_min: Lower bound for beta, to prevent numerical error from causing square root of zero or negative values. gamma_init: The gamma matrix will be initialized as the identity matrix multiplied with this value. If set to zero, the layer is effectively initialized to the identity operation, since beta is initialized as one. A good default setting is somewhere between 0 and 0.5. reparam_offset: Offset added to the reparameterization of beta and gamma. The reparameterization of beta and gamma as their square roots lets the training slow down when their values are close to zero, which is desirable as small values in the denominator can lead to a situation where gradient noise on beta/gamma leads to extreme amounts of noise in the GDN activations. However, without the offset, we would get zero gradients if any elements of beta or gamma were exactly zero, and thus the training could get stuck. To prevent this, we add this small constant. The default value was empirically determined as a good starting point. Making it bigger potentially leads to more gradient noise on the activations, making it too small may lead to numerical precision issues. data_format: Format of input tensor. Currently supports `'channels_first'` and `'channels_last'`. activity_regularizer: Regularizer function for the output. trainable: Boolean, if `True`, also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require `reuse=True` in such cases. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: Output tensor. """ layer = GDN(inverse=inverse, beta_min=beta_min, gamma_init=gamma_init, reparam_offset=reparam_offset, data_format=data_format, activity_regularizer=activity_regularizer, trainable=trainable, name=name, dtype=inputs.dtype.base_dtype, _scope=name, _reuse=reuse) return layer.apply(inputs) @add_arg_scope def layer_norm(inputs, center=True, scale=True, activation_fn=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, begin_norm_axis=1, begin_params_axis=-1, scope=None): """Adds a Layer Normalization layer. Based on the paper: "Layer Normalization" Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton https://arxiv.org/abs/1607.06450. Can be used as a normalizer function for conv2d and fully_connected. Given a tensor `inputs` of rank `R`, moments are calculated and normalization is performed over axes `begin_norm_axis ... R - 1`. Scaling and centering, if requested, is performed over axes `begin_shift_axis .. R - 1`. By default, `begin_norm_axis = 1` and `begin_params_axis = -1`, meaning that normalization is performed over all but the first axis (the `HWC` if `inputs` is `NHWC`), while the `beta` and `gamma` trainable parameters are calculated for the rightmost axis (the `C` if `inputs` is `NHWC`). Scaling and recentering is performed via broadcast of the `beta` and `gamma` parameters with the normalized tensor. The shapes of `beta` and `gamma` are `inputs.shape[begin_params_axis:]`, and this part of the inputs' shape must be fully defined. Args: inputs: A tensor having rank `R`. The normalization is performed over axes `begin_norm_axis ... R - 1` and centering and scaling parameters are calculated over `begin_params_axis ... R - 1`. center: If True, add offset of `beta` to normalized tensor. If False, `beta` is ignored. scale: If True, multiply by `gamma`. If False, `gamma` is not used. When the next layer is linear (also e.g. `nn.relu`), this can be disabled since the scaling can be done by the next layer. activation_fn: Activation function, default set to None to skip it and maintain a linear activation. reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. variables_collections: Optional collections for the variables. outputs_collections: Collections to add the outputs. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). begin_norm_axis: The first normalization dimension: normalization will be performed along dimensions `begin_norm_axis : rank(inputs)` begin_params_axis: The first parameter (beta, gamma) dimension: scale and centering parameters will have dimensions `begin_params_axis : rank(inputs)` and will be broadcast with the normalized inputs accordingly. scope: Optional scope for `variable_scope`. Returns: A `Tensor` representing the output of the operation, having the same shape and dtype as `inputs`. Raises: ValueError: If the rank of `inputs` is not known at graph build time, or if `inputs.shape[begin_params_axis:]` is not fully defined at graph build time. """ with variable_scope.variable_scope(scope, 'LayerNorm', [inputs], reuse=reuse) as sc: inputs = ops.convert_to_tensor(inputs) inputs_shape = inputs.shape inputs_rank = inputs_shape.ndims if inputs_rank is None: raise ValueError('Inputs %s has undefined rank.' % inputs.name) dtype = inputs.dtype.base_dtype if begin_norm_axis < 0: begin_norm_axis = inputs_rank + begin_norm_axis if begin_params_axis >= inputs_rank or begin_norm_axis >= inputs_rank: raise ValueError( 'begin_params_axis (%d) and begin_norm_axis (%d) ' 'must be < rank(inputs) (%d)' % (begin_params_axis, begin_norm_axis, inputs_rank)) params_shape = inputs_shape[begin_params_axis:] if not params_shape.is_fully_defined(): raise ValueError( 'Inputs %s: shape(inputs)[%s:] is not fully defined: %s' % ( inputs.name, begin_params_axis, inputs_shape)) # Allocate parameters for the beta and gamma of the normalization. beta, gamma = None, None if center: beta_collections = utils.get_variable_collections(variables_collections, 'beta') beta = variables.model_variable( 'beta', shape=params_shape, dtype=dtype, initializer=init_ops.zeros_initializer(), collections=beta_collections, trainable=trainable) if scale: gamma_collections = utils.get_variable_collections(variables_collections, 'gamma') gamma = variables.model_variable( 'gamma', shape=params_shape, dtype=dtype, initializer=init_ops.ones_initializer(), collections=gamma_collections, trainable=trainable) # Calculate the moments on the last axis (layer activations). norm_axes = list(range(begin_norm_axis, inputs_rank)) mean, variance = nn.moments(inputs, norm_axes, keep_dims=True) # Compute layer normalization using the batch_normalization function. variance_epsilon = 1e-12 outputs = nn.batch_normalization( inputs, mean, variance, offset=beta, scale=gamma, variance_epsilon=variance_epsilon) outputs.set_shape(inputs_shape) if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.original_name_scope, outputs) @add_arg_scope def max_pool2d(inputs, kernel_size, stride=2, padding='VALID', data_format=DATA_FORMAT_NHWC, outputs_collections=None, scope=None): """Adds a 2D Max Pooling op. It is assumed that the pooling is done per image but not in batch or channels. Args: inputs: A 4-D tensor of shape `[batch_size, height, width, channels]` if `data_format` is `NHWC`, and `[batch_size, channels, height, width]` if `data_format` is `NCHW`. kernel_size: A list of length 2: [kernel_height, kernel_width] of the pooling kernel over which the op is computed. Can be an int if both values are the same. stride: A list of length 2: [stride_height, stride_width]. Can be an int if both strides are the same. Note that presently both strides must have the same value. padding: The padding method, either 'VALID' or 'SAME'. data_format: A string. `NHWC` (default) and `NCHW` are supported. outputs_collections: The collections to which the outputs are added. scope: Optional scope for name_scope. Returns: A `Tensor` representing the results of the pooling operation. Raises: ValueError: If `data_format` is neither `NHWC` nor `NCHW`. ValueError: If 'kernel_size' is not a 2-D list """ if data_format not in (DATA_FORMAT_NCHW, DATA_FORMAT_NHWC): raise ValueError('data_format has to be either NCHW or NHWC.') with ops.name_scope(scope, 'MaxPool2D', [inputs]) as sc: inputs = ops.convert_to_tensor(inputs) df = ('channels_first' if data_format and data_format.startswith('NC') else 'channels_last') layer = pooling_layers.MaxPooling2D(pool_size=kernel_size, strides=stride, padding=padding, data_format=df, _scope=sc) outputs = layer.apply(inputs) return utils.collect_named_outputs(outputs_collections, sc, outputs) @add_arg_scope def max_pool3d(inputs, kernel_size, stride=2, padding='VALID', data_format=DATA_FORMAT_NDHWC, outputs_collections=None, scope=None): """Adds a 3D Max Pooling op. It is assumed that the pooling is done per image but not in batch or channels. Args: inputs: A 5-D tensor of shape `[batch_size, depth, height, width, channels]` if `data_format` is `NDHWC`, and `[batch_size, channels, depth, height, width]` if `data_format` is `NCDHW`. kernel_size: A list of length 3: [kernel_depth, kernel_height, kernel_width] of the pooling kernel over which the op is computed. Can be an int if both values are the same. stride: A list of length 3: [stride_depth, stride_height, stride_width]. Can be an int if both strides are the same. Note that presently both strides must have the same value. padding: The padding method, either 'VALID' or 'SAME'. data_format: A string. `NDHWC` (default) and `NCDHW` are supported. outputs_collections: The collections to which the outputs are added. scope: Optional scope for name_scope. Returns: A `Tensor` representing the results of the pooling operation. Raises: ValueError: If `data_format` is neither `NDHWC` nor `NCDHW`. ValueError: If 'kernel_size' is not a 3-D list """ if data_format not in (DATA_FORMAT_NCDHW, DATA_FORMAT_NDHWC): raise ValueError('data_format has to be either NCDHW or NDHWC.') with ops.name_scope(scope, 'MaxPool3D', [inputs]) as sc: inputs = ops.convert_to_tensor(inputs) df = ('channels_first' if data_format and data_format.startswith('NC') else 'channels_last') layer = pooling_layers.MaxPooling3D(pool_size=kernel_size, strides=stride, padding=padding, data_format=df, _scope=sc) outputs = layer.apply(inputs) return utils.collect_named_outputs(outputs_collections, sc, outputs) @add_arg_scope def pool(inputs, kernel_size, pooling_type, padding='VALID', data_format=None, dilation_rate=1, stride=1, outputs_collections=None, scope=None): # pylint: disable=line-too-long """Adds a pooling op. Args: inputs: Tensor of rank N+2, of shape `[batch_size] + input_spatial_shape + [num_channels]` if data_format does not start with "NC" (default), or `[batch_size, num_channels] + input_spatial_shape` if data_format starts with "NC". Pooling happens over the spatial dimensions only. kernel_size: Sequence of N ints >= 1. Can also be a single integer to specify the same value for all spatial dimensions. pooling_type: Specifies pooling operation, must be "AVG" or "MAX". padding: The padding algorithm, must be "SAME" or "VALID". data_format: A string or None. Specifies whether the channel dimension of the `input` and output is the last dimension (default, or if `data_format` does not start with "NC"), or the second dimension (if `data_format` starts with "NC"). For N=1, the valid values are "NWC" (default) and "NCW". For N=2, the valid values are "NHWC" (default) and "NCHW". For N=3, the valid values are "NDHWC" (default) and "NCDHW". dilation_rate: Optional. Dilation rate. Sequence of N ints >= 1. Defaults to [1]*N. Can also be a single integer to specify the same value for all spatial dimensions. If any value of dilation_rate is > 1, then all values of stride must be 1. stride: Optional. Sequence of N ints >= 1. Defaults to [1]*N. Can also be a single integer to specify the same value for all spatial dimensions. If any value of stride is > 1, then all values of dilation_rate must be 1. outputs_collections: The collections to which the outputs are added. scope: Optional scope for name_scope. Returns: A `Tensor` representing the results of the pooling operation. Raises: ValueError: If arguments are invalid. """ # pylint: enable=line-too-long with ops.name_scope(scope, '%s_pool' % (pooling_type.lower()), [inputs]) as sc: inputs = ops.convert_to_tensor(inputs) input_rank = inputs.get_shape().ndims if input_rank is None: raise ValueError('Rank of inputs must be known') if input_rank < 3: raise ValueError('Rank of inputs must be >= 3') num_spatial_dims = input_rank - 2 output = nn.pool( input=inputs, window_shape=utils.n_positive_integers(num_spatial_dims, kernel_size), pooling_type=pooling_type, padding=padding, data_format=data_format, dilation_rate=utils.n_positive_integers(num_spatial_dims, dilation_rate), strides=utils.n_positive_integers(num_spatial_dims, stride), name=sc) return utils.collect_named_outputs(outputs_collections, sc, output) @add_arg_scope def one_hot_encoding(labels, num_classes, on_value=1.0, off_value=0.0, outputs_collections=None, scope=None): """Transform numeric labels into onehot_labels using `tf.one_hot`. Args: labels: [batch_size] target labels. num_classes: Total number of classes. on_value: A scalar defining the on-value. off_value: A scalar defining the off-value. outputs_collections: Collection to add the outputs. scope: Optional scope for name_scope. Returns: One-hot encoding of the labels. """ with ops.name_scope(scope, 'OneHotEncoding', [labels, num_classes]) as sc: labels = ops.convert_to_tensor(labels) if labels.dtype == dtypes.int32: labels = standard_ops.to_int64(labels) outputs = standard_ops.one_hot(labels, num_classes, on_value=on_value, off_value=off_value) return utils.collect_named_outputs(outputs_collections, sc, outputs) def _apply_activation(y, activation_fn, output_collections): if activation_fn is not None: y = activation_fn(y) ops.add_to_collections(list(output_collections or []) + [ops.GraphKeys.ACTIVATIONS], y) return y def repeat(inputs, repetitions, layer, *args, **kwargs): """Applies the same layer with the same arguments repeatedly. ```python y = repeat(x, 3, conv2d, 64, [3, 3], scope='conv1') # It is equivalent to: x = conv2d(x, 64, [3, 3], scope='conv1/conv1_1') x = conv2d(x, 64, [3, 3], scope='conv1/conv1_2') y = conv2d(x, 64, [3, 3], scope='conv1/conv1_3') ``` If the `scope` argument is not given in `kwargs`, it is set to `layer.__name__`, or `layer.func.__name__` (for `functools.partial` objects). If neither `__name__` nor `func.__name__` is available, the layers are called with `scope='stack'`. Args: inputs: A `Tensor` suitable for layer. repetitions: Int, number of repetitions. layer: A layer with arguments `(inputs, *args, **kwargs)` *args: Extra args for the layer. **kwargs: Extra kwargs for the layer. Returns: A tensor result of applying the layer, repetitions times. Raises: ValueError: If the op is unknown or wrong. """ scope = kwargs.pop('scope', None) with variable_scope.variable_scope(scope, 'Repeat', [inputs]): inputs = ops.convert_to_tensor(inputs) if scope is None: if hasattr(layer, '__name__'): scope = layer.__name__ elif hasattr(layer, 'func') and hasattr(layer.func, '__name__'): scope = layer.func.__name__ # In case layer is a functools.partial. else: scope = 'repeat' outputs = inputs for i in range(repetitions): kwargs['scope'] = scope + '_' + str(i+1) outputs = layer(outputs, *args, **kwargs) return outputs def _scale_gradient_shape(op): """Shape helper function for scale_gradient function below.""" return [op.inputs[0].shape] def _scale_gradient_grad(op, grad): """Python gradient helper function for scale_gradient function below.""" return [grad * op.inputs[1], None] @function.Defun(python_grad_func=_scale_gradient_grad, shape_func=_scale_gradient_shape) def scale_gradient(inputs, gradient_multiplier): """Identity operation, but with the gradient multiplied by a tensor. The TensorFlow gradient system will compute the gradient with respect to `inputs` as the product of the gradient with respect to the `output` multiplied by a specified `gradient_multiplier` tensor. If `gradient_multiplier` is equal to 1, then this results in the true gradient. Otherwise, it results in a scaled gradient. This can be useful for adjusting the relative learning rate of different parameter tensors when performing gradient descent, and because this rescaling can be inserted at arbitrary locations within a graph, is often more convenient to apply than simply rescaling the final computed gradients. Args: inputs: Tensor to be output. gradient_multiplier: Tensor by which to multiply the gradient with respect to `output` to compute the gradient with respect to `inputs`. Its shape must be broadcastable to the shape of `inputs`. Returns: output Tensor, equal to `inputs`. """ # gradient_multiplier is implicitly saved by decorator, and only used for # gradient computation. del gradient_multiplier return inputs @add_arg_scope def separable_convolution2d( inputs, num_outputs, kernel_size, depth_multiplier, stride=1, padding='SAME', data_format=DATA_FORMAT_NHWC, rate=1, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None): """Adds a depth-separable 2D convolution with optional batch_norm layer. This op first performs a depthwise convolution that acts separately on channels, creating a variable called `depthwise_weights`. If `num_outputs` is not None, it adds a pointwise convolution that mixes channels, creating a variable called `pointwise_weights`. Then, if `normalizer_fn` is None, it adds bias to the result, creating a variable called 'biases', otherwise, the `normalizer_fn` is applied. It finally applies an activation function to produce the end result. Args: inputs: A tensor of size [batch_size, height, width, channels]. num_outputs: The number of pointwise convolution output filters. If is None, then we skip the pointwise convolution stage. kernel_size: A list of length 2: [kernel_height, kernel_width] of of the filters. Can be an int if both values are the same. depth_multiplier: The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `num_filters_in * depth_multiplier`. stride: A list of length 2: [stride_height, stride_width], specifying the depthwise convolution stride. Can be an int if both strides are the same. padding: One of 'VALID' or 'SAME'. data_format: A string. `NHWC` (default) and `NCHW` are supported. rate: A list of length 2: [rate_height, rate_width], specifying the dilation rates for atrous convolution. Can be an int if both rates are the same. If any value is larger than one, then both stride values need to be one. activation_fn: Activation function. The default value is a ReLU function. Explicitly set it to None to skip it and maintain a linear activation. normalizer_fn: Normalization function to use instead of `biases`. If `normalizer_fn` is provided then `biases_initializer` and `biases_regularizer` are ignored and `biases` are not created nor added. default set to None for no normalizer function normalizer_params: Normalization function parameters. weights_initializer: An initializer for the weights. weights_regularizer: Optional regularizer for the weights. biases_initializer: An initializer for the biases. If None skip biases. biases_regularizer: Optional regularizer for the biases. reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. variables_collections: Optional list of collections for all the variables or a dictionary containing a different list of collection per variable. outputs_collections: Collection to add the outputs. trainable: Whether or not the variables should be trainable or not. scope: Optional scope for variable_scope. Returns: A `Tensor` representing the output of the operation. Raises: ValueError: If `data_format` is invalid. """ if data_format not in (DATA_FORMAT_NCHW, DATA_FORMAT_NHWC): raise ValueError('data_format has to be either NCHW or NHWC.') layer_variable_getter = _build_variable_getter( {'bias': 'biases', 'depthwise_kernel': 'depthwise_weights', 'pointwise_kernel': 'pointwise_weights'}) with variable_scope.variable_scope( scope, 'SeparableConv2d', [inputs], reuse=reuse, custom_getter=layer_variable_getter) as sc: inputs = ops.convert_to_tensor(inputs) df = ('channels_first' if data_format and data_format.startswith('NC') else 'channels_last') if num_outputs is not None: # Apply separable conv using the SeparableConvolution2D layer. layer = convolutional_layers.SeparableConvolution2D( filters=num_outputs, kernel_size=kernel_size, strides=stride, padding=padding, data_format=df, dilation_rate=utils.two_element_tuple(rate), activation=None, depth_multiplier=depth_multiplier, use_bias=not normalizer_fn and biases_initializer, depthwise_initializer=weights_initializer, pointwise_initializer=weights_initializer, bias_initializer=biases_initializer, depthwise_regularizer=weights_regularizer, pointwise_regularizer=weights_regularizer, bias_regularizer=biases_regularizer, activity_regularizer=None, trainable=trainable, name=sc.name, dtype=inputs.dtype.base_dtype, _scope=sc, _reuse=reuse) outputs = layer.apply(inputs) # Add variables to collections. _add_variable_to_collections(layer.depthwise_kernel, variables_collections, 'weights') _add_variable_to_collections(layer.pointwise_kernel, variables_collections, 'weights') if layer.bias: _add_variable_to_collections(layer.bias, variables_collections, 'biases') if normalizer_fn is not None: normalizer_params = normalizer_params or {} outputs = normalizer_fn(outputs, **normalizer_params) else: # Actually apply depthwise conv instead of separable conv. dtype = inputs.dtype.base_dtype kernel_h, kernel_w = utils.two_element_tuple(kernel_size) stride_h, stride_w = utils.two_element_tuple(stride) num_filters_in = utils.channel_dimension( inputs.get_shape(), df, min_rank=4) weights_collections = utils.get_variable_collections( variables_collections, 'weights') depthwise_shape = [kernel_h, kernel_w, num_filters_in, depth_multiplier] depthwise_weights = variables.model_variable( 'depthwise_weights', shape=depthwise_shape, dtype=dtype, initializer=weights_initializer, regularizer=weights_regularizer, trainable=trainable, collections=weights_collections) strides = [1, stride_h, stride_w, 1] outputs = nn.depthwise_conv2d(inputs, depthwise_weights, strides, padding, rate=utils.two_element_tuple(rate), data_format=data_format) num_outputs = depth_multiplier * num_filters_in if normalizer_fn is not None: normalizer_params = normalizer_params or {} outputs = normalizer_fn(outputs, **normalizer_params) else: if biases_initializer is not None: biases_collections = utils.get_variable_collections( variables_collections, 'biases') biases = variables.model_variable('biases', shape=[num_outputs,], dtype=dtype, initializer=biases_initializer, regularizer=biases_regularizer, trainable=trainable, collections=biases_collections) outputs = nn.bias_add(outputs, biases, data_format=data_format) if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.original_name_scope, outputs) @add_arg_scope def softmax(logits, scope=None): """Performs softmax on Nth dimension of N-dimensional logit tensor. For two-dimensional logits this reduces to tf.nn.softmax. The N-th dimension needs to have a specified number of elements (number of classes). Args: logits: N-dimensional `Tensor` with logits, where N > 1. scope: Optional scope for variable_scope. Returns: A `Tensor` with same shape and type as logits. """ # TODO(jrru): Add axis argument which defaults to last dimension. with variable_scope.variable_scope(scope, 'softmax', [logits]): num_logits = utils.last_dimension(logits.get_shape(), min_rank=2) logits_2d = array_ops.reshape(logits, [-1, num_logits]) predictions = nn.softmax(logits_2d) predictions = array_ops.reshape(predictions, array_ops.shape(logits)) predictions.set_shape(logits.get_shape()) return predictions @add_arg_scope def spatial_softmax(features, temperature=None, name=None, variables_collections=None, trainable=True, data_format='NHWC'): """Computes the spatial softmax of a convolutional feature map. First computes the softmax over the spatial extent of each channel of a convolutional feature map. Then computes the expected 2D position of the points of maximal activation for each channel, resulting in a set of feature keypoints [x1, y1, ... xN, yN] for all N channels. Read more here: "Learning visual feature spaces for robotic manipulation with deep spatial autoencoders." Finn et. al, http://arxiv.org/abs/1509.06113. Args: features: A `Tensor` of size [batch_size, W, H, num_channels]; the convolutional feature map. temperature: Softmax temperature (optional). If None, a learnable temperature is created. name: A name for this operation (optional). variables_collections: Collections for the temperature variable. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). data_format: A string. `NHWC` (default) and `NCHW` are supported. Returns: feature_keypoints: A `Tensor` with size [batch_size, num_channels * 2]; the expected 2D locations of each channel's feature keypoint (normalized to the range (-1,1)). The inner dimension is arranged as [x1, y1, ... xN, yN]. Raises: ValueError: If unexpected data_format specified. ValueError: If num_channels dimension is unspecified. """ shape = array_ops.shape(features) static_shape = features.shape if data_format == DATA_FORMAT_NHWC: height, width, num_channels = shape[1], shape[2], static_shape[3] elif data_format == DATA_FORMAT_NCHW: num_channels, height, width = static_shape[1], shape[2], shape[3] else: raise ValueError('data_format has to be either NCHW or NHWC.') if num_channels.value is None: raise ValueError('The num_channels dimension of the inputs to ' '`spatial_softmax` should be defined. Found `None`.') with ops.name_scope(name, 'spatial_softmax', [features]) as name: # Create tensors for x and y coordinate values, scaled to range [-1, 1]. pos_x, pos_y = array_ops.meshgrid(math_ops.lin_space(-1., 1., num=height), math_ops.lin_space(-1., 1., num=width), indexing='ij') pos_x = array_ops.reshape(pos_x, [height * width]) pos_y = array_ops.reshape(pos_y, [height * width]) if temperature is None: temperature_collections = utils.get_variable_collections( variables_collections, 'temperature') temperature = variables.model_variable( 'temperature', shape=(), dtype=dtypes.float32, initializer=init_ops.ones_initializer(), collections=temperature_collections, trainable=trainable) if data_format == 'NCHW': features = array_ops.reshape(features, [-1, height * width]) else: features = array_ops.reshape( array_ops.transpose(features, [0, 3, 1, 2]), [-1, height * width]) softmax_attention = nn.softmax(features/temperature) expected_x = math_ops.reduce_sum( pos_x * softmax_attention, [1], keep_dims=True) expected_y = math_ops.reduce_sum( pos_y * softmax_attention, [1], keep_dims=True) expected_xy = array_ops.concat([expected_x, expected_y], 1) feature_keypoints = array_ops.reshape( expected_xy, [-1, num_channels.value * 2]) feature_keypoints.set_shape([None, num_channels.value * 2]) return feature_keypoints def stack(inputs, layer, stack_args, **kwargs): """Builds a stack of layers by applying layer repeatedly using stack_args. `stack` allows you to repeatedly apply the same operation with different arguments `stack_args[i]`. For each application of the layer, `stack` creates a new scope appended with an increasing number. For example: ```python y = stack(x, fully_connected, [32, 64, 128], scope='fc') # It is equivalent to: x = fully_connected(x, 32, scope='fc/fc_1') x = fully_connected(x, 64, scope='fc/fc_2') y = fully_connected(x, 128, scope='fc/fc_3') ``` If the `scope` argument is not given in `kwargs`, it is set to `layer.__name__`, or `layer.func.__name__` (for `functools.partial` objects). If neither `__name__` nor `func.__name__` is available, the layers are called with `scope='stack'`. Args: inputs: A `Tensor` suitable for layer. layer: A layer with arguments `(inputs, *args, **kwargs)` stack_args: A list/tuple of parameters for each call of layer. **kwargs: Extra kwargs for the layer. Returns: A `Tensor` result of applying the stacked layers. Raises: ValueError: If the op is unknown or wrong. """ scope = kwargs.pop('scope', None) if not isinstance(stack_args, (list, tuple)): raise ValueError('stack_args need to be a list or tuple') with variable_scope.variable_scope(scope, 'Stack', [inputs]): inputs = ops.convert_to_tensor(inputs) if scope is None: if hasattr(layer, '__name__'): scope = layer.__name__ elif hasattr(layer, 'func') and hasattr(layer.func, '__name__'): scope = layer.func.__name__ # In case layer is a functools.partial. else: scope = 'stack' outputs = inputs for i in range(len(stack_args)): kwargs['scope'] = scope + '_' + str(i+1) layer_args = stack_args[i] if not isinstance(layer_args, (list, tuple)): layer_args = [layer_args] outputs = layer(outputs, *layer_args, **kwargs) return outputs @add_arg_scope def unit_norm(inputs, dim, epsilon=1e-7, scope=None): """Normalizes the given input across the specified dimension to unit length. Note that the rank of `input` must be known. Args: inputs: A `Tensor` of arbitrary size. dim: The dimension along which the input is normalized. epsilon: A small value to add to the inputs to avoid dividing by zero. scope: Optional scope for variable_scope. Returns: The normalized `Tensor`. Raises: ValueError: If dim is smaller than the number of dimensions in 'inputs'. """ with variable_scope.variable_scope(scope, 'UnitNorm', [inputs]): if not inputs.get_shape(): raise ValueError('The input rank must be known.') input_rank = len(inputs.get_shape().as_list()) if dim < 0 or dim >= input_rank: raise ValueError( 'dim must be positive but smaller than the input rank.') lengths = math_ops.sqrt(epsilon + math_ops.reduce_sum( math_ops.square(inputs), dim, True)) multiples = [] if dim > 0: multiples.append(array_ops.ones([dim], dtypes.int32)) multiples.append( array_ops.strided_slice(array_ops.shape(inputs), [dim], [dim + 1])) if dim < (input_rank - 1): multiples.append(array_ops.ones([input_rank - 1 - dim], dtypes.int32)) multiples = array_ops.concat(multiples, 0) return math_ops.div(inputs, array_ops.tile(lengths, multiples)) def poincare_normalize(x, axis=1, epsilon=1e-5, name=None): """Project into the Poincare ball with norm <= 1.0 - epsilon. https://en.wikipedia.org/wiki/Poincare_ball_model Used in Poincare Embeddings for Learning Hierarchical Representations Maximilian Nickel, Douwe Kiela https://arxiv.org/pdf/1705.08039.pdf For a 1-D tensor with `axis = 0`, computes (x * (1 - epsilon)) / ||x|| if ||x|| > 1 - epsilon output = x otherwise For `x` with more dimensions, independently normalizes each 1-D slice along dimension `axis`. Args: x: A `Tensor`. axis: Axis along which to normalize. A scalar or a vector of integers. epsilon: A small deviation from the edge of the unit sphere for numerical stability. name: A name for this operation (optional). Returns: A `Tensor` with the same shape as `x`. """ with ops.name_scope(name, 'poincare_normalize', [x]) as name: x = ops.convert_to_tensor(x, name='x') square_sum = math_ops.reduce_sum(math_ops.square(x), axis, keep_dims=True) x_inv_norm = math_ops.rsqrt(square_sum) x_inv_norm = math_ops.minimum((1. - epsilon) * x_inv_norm, 1.) return math_ops.multiply(x, x_inv_norm, name=name) def legacy_fully_connected(x, num_output_units, activation_fn=None, weight_init=initializers.xavier_initializer(), bias_init=init_ops.zeros_initializer(), name=None, weight_collections=(ops.GraphKeys.WEIGHTS,), bias_collections=(ops.GraphKeys.BIASES,), output_collections=(ops.GraphKeys.ACTIVATIONS,), trainable=True, weight_regularizer=None, bias_regularizer=None): # pylint: disable=anomalous-backslash-in-string r"""Adds the parameters for a fully connected layer and returns the output. A fully connected layer is generally defined as a matrix multiply: `y = f(w * x + b)` where `f` is given by `activation_fn`. If `activation_fn` is `None`, the result of `y = w * x + b` is returned. If `x` has shape [\\\(\\text{dim}_0, \\text{dim}_1, ..., \\text{dim}_n\\\)] with more than 2 dimensions (\\\(n > 1\\\)), then we repeat the matrix multiply along the first dimensions. The result r is a tensor of shape [\\\(\\text{dim}_0, ..., \\text{dim}_{n-1},\\\) `num_output_units`], where \\\( r_{i_0, ..., i_{n-1}, k} = \\sum_{0 \\leq j < \\text{dim}_n} x_{i_0, ... i_{n-1}, j} \cdot w_{j, k}\\\). This is accomplished by reshaping `x` to 2-D [\\\(\\text{dim}_0 \\cdot ... \\cdot \\text{dim}_{n-1}, \\text{dim}_n\\\)] before the matrix multiply and afterwards reshaping it to [\\\(\\text{dim}_0, ..., \\text{dim}_{n-1},\\\) `num_output_units`]. This op creates `w` and optionally `b`. Bias (`b`) can be disabled by setting `bias_init` to `None`. The variable creation is compatible with `tf.variable_scope` and so can be reused with `tf.variable_scope` or `tf.make_template`. Most of the details of variable creation can be controlled by specifying the initializers (`weight_init` and `bias_init`) and in which collections to place the created variables (`weight_collections` and `bias_collections`; note that the variables are always added to the `VARIABLES` collection). The output of the layer can be placed in custom collections using `output_collections`. The collections arguments default to `WEIGHTS`, `BIASES` and `ACTIVATIONS`, respectively. A per layer regularization can be specified by setting `weight_regularizer` and `bias_regularizer`, which are applied to the weights and biases respectively, and whose output is added to the `REGULARIZATION_LOSSES` collection. Args: x: The input `Tensor`. num_output_units: The size of the output. activation_fn: Activation function, default set to None to skip it and maintain a linear activation. weight_init: An optional weight initialization, defaults to `xavier_initializer`. bias_init: An initializer for the bias, defaults to 0. Set to `None` in order to disable bias. name: The name for this operation is used to name operations and to find variables. If specified it must be unique for this scope, otherwise a unique name starting with "fully_connected" will be created. See `tf.variable_scope` for details. weight_collections: List of graph collections to which weights are added. bias_collections: List of graph collections to which biases are added. output_collections: List of graph collections to which outputs are added. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). weight_regularizer: A regularizer like the result of `l1_regularizer` or `l2_regularizer`. Used for weights. bias_regularizer: A regularizer like the result of `l1_regularizer` or `l2_regularizer`. Used for biases. Returns: The output of the fully connected layer. Raises: ValueError: If x has rank less than 2 or if its last dimension is not set. """ with variable_scope.variable_scope(name, 'fully_connected', [x]): x = ops.convert_to_tensor(x) dims = x.get_shape().dims if dims is None: raise ValueError('dims of x must be known but is None') if len(dims) < 2: raise ValueError('rank of x must be at least 2 not: %d' % len(dims)) num_input_units = dims[-1].value if num_input_units is None: raise ValueError('last dimension of x must be known but is None') dtype = x.dtype.base_dtype weight_collections = set(list(weight_collections or []) + [ops.GraphKeys.GLOBAL_VARIABLES]) w = variable_scope.get_variable('weights', shape=[num_input_units, num_output_units], dtype=dtype, initializer=weight_init, collections=weight_collections, regularizer=weight_regularizer, trainable=trainable) x_2_dim = x if len(dims) <= 2 else array_ops.reshape(x, [-1, num_input_units]) y = standard_ops.matmul(x_2_dim, w) if bias_init is not None: bias_collections = set(list(bias_collections or []) + [ops.GraphKeys.GLOBAL_VARIABLES]) b = variable_scope.get_variable('bias', shape=[num_output_units], dtype=dtype, initializer=bias_init, collections=bias_collections, regularizer=bias_regularizer, trainable=trainable) y = nn.bias_add(y, b) if len(dims) > 2: out_shape = array_ops.unstack(array_ops.shape(x)) out_shape[-1] = num_output_units y = array_ops.reshape(y, array_ops.stack(out_shape)) static_shape = x.get_shape().as_list() static_shape[-1] = num_output_units y.set_shape(static_shape) return _apply_activation(y, activation_fn, output_collections) # TODO(eiderm): Verify and fix autocomplete in colab (also relu6). # Simple aliases which remove the activation_fn parameter. elu = functools.partial(fully_connected, activation_fn=nn.elu) legacy_relu = functools.partial(legacy_fully_connected, activation_fn=nn.relu) legacy_linear = functools.partial(legacy_fully_connected, activation_fn=None) relu = functools.partial(fully_connected, activation_fn=nn.relu) relu6 = functools.partial(fully_connected, activation_fn=nn.relu6) linear = functools.partial(fully_connected, activation_fn=None) # Simple alias. conv2d = convolution2d conv3d = convolution3d conv2d_transpose = convolution2d_transpose conv3d_transpose = convolution3d_transpose conv2d_in_plane = convolution2d_in_plane separable_conv2d = separable_convolution2d
[ [ [ 830, 845 ] ], [ [ 869, 877 ] ], [ [ 901, 915 ] ], [ [ 924, 933 ], [ 129028, 129037 ], [ 129099, 129108 ], [ 129180, 129189 ], [ 129249, 129258 ], [ 129315, 129324 ], [ 129383, 129392 ], [ 65275, 65284 ] ], [ [ 941, 943 ], [ 3660, 3662 ] ], [ [ 951, 954 ], [ 66765, 66768 ], [ 73385, 73388 ] ], [ [ 1008, 1021 ], [ 3770, 3783 ], [ 5824, 5837 ], [ 18466, 18479 ], [ 37228, 37241 ], [ 40700, 40713 ], [ 47745, 47758 ], [ 52752, 52765 ], [ 57484, 57497 ], [ 62270, 62283 ], [ 63828, 63841 ], [ 67327, 67340 ], [ 70381, 70394 ], [ 87851, 87864 ], [ 93567, 93580 ], [ 95648, 95661 ], [ 97782, 97795 ], [ 100794, 100807 ], [ 105347, 105360 ], [ 113278, 113291 ], [ 114178, 114191 ], [ 119975, 119988 ] ], [ [ 1074, 1083 ], [ 13706, 13715 ], [ 14251, 14260 ], [ 14870, 14879 ], [ 15335, 15344 ], [ 30918, 30927 ], [ 31565, 31574 ], [ 32543, 32552 ], [ 33030, 33039 ], [ 39928, 39937 ], [ 51105, 51114 ], [ 52054, 52063 ], [ 69211, 69220 ], [ 92236, 92245 ], [ 92630, 92639 ], [ 111624, 111633 ], [ 112544, 112553 ], [ 116997, 117006 ] ], [ [ 1136, 1148 ], [ 41063, 41075 ], [ 47953, 47965 ], [ 53012, 53024 ], [ 57745, 57757 ], [ 70623, 70635 ], [ 105641, 105653 ], [ 122836, 122848 ] ], [ [ 1201, 1206 ], [ 5759, 5764 ], [ 7866, 7871 ], [ 13367, 13372 ], [ 14027, 14032 ], [ 14667, 14672 ], [ 15117, 15122 ], [ 16015, 16020 ], [ 16412, 16417 ], [ 17170, 17175 ], [ 17802, 17807 ], [ 18342, 18347 ], [ 28532, 28537 ], [ 30653, 30658 ], [ 31295, 31300 ], [ 32332, 32337 ], [ 32804, 32809 ], [ 33568, 33573 ], [ 35251, 35256 ], [ 35908, 35913 ], [ 36358, 36363 ], [ 37104, 37109 ], [ 39795, 39800 ], [ 40481, 40486 ], [ 47564, 47569 ], [ 50776, 50781 ], [ 50838, 50843 ], [ 50891, 50896 ], [ 51017, 51022 ], [ 51960, 51965 ], [ 52628, 52633 ], [ 57360, 57365 ], [ 62146, 62151 ], [ 63734, 63739 ], [ 65393, 65398 ], [ 68548, 68553 ], [ 70002, 70007 ], [ 74868, 74873 ], [ 92105, 92110 ], [ 92496, 92501 ], [ 93404, 93409 ], [ 95583, 95588 ], [ 97717, 97722 ], [ 100352, 100357 ], [ 100525, 100530 ], [ 100649, 100654 ], [ 100730, 100735 ], [ 101843, 101848 ], [ 109789, 109794 ], [ 111199, 111204 ], [ 111263, 111268 ], [ 111318, 111323 ], [ 111417, 111422 ], [ 112063, 112068 ], [ 112446, 112451 ], [ 113154, 113159 ], [ 113879, 113884 ], [ 116897, 116902 ] ], [ [ 1247, 1253 ], [ 101572, 101578 ], [ 117084, 117090 ], [ 121055, 121061 ], [ 121261, 121267 ] ], [ [ 1294, 1302 ], [ 104029, 104037 ] ], [ [ 1343, 1346 ], [ 8112, 8115 ], [ 18767, 18770 ], [ 84181, 84184 ], [ 123023, 123026 ], [ 123093, 123096 ], [ 123164, 123167 ], [ 5209, 5212 ], [ 5274, 5277 ], [ 7316, 7319 ], [ 7381, 7384 ], [ 12074, 12077 ], [ 17984, 17987 ], [ 18049, 18052 ], [ 24933, 24936 ], [ 25191, 25194 ], [ 26115, 26118 ], [ 26268, 26271 ], [ 29405, 29408 ], [ 36090, 36093 ], [ 36155, 36158 ], [ 39210, 39213 ], [ 45653, 45656 ], [ 56113, 56116 ], [ 60899, 60902 ], [ 63439, 63442 ], [ 64342, 64345 ], [ 64405, 64408 ], [ 66417, 66420 ], [ 68249, 68252 ], [ 68452, 68455 ], [ 70299, 70302 ], [ 70339, 70342 ], [ 73796, 73799 ], [ 79574, 79577 ], [ 79654, 79657 ], [ 79713, 79716 ], [ 79767, 79770 ], [ 82397, 82400 ], [ 91135, 91138 ], [ 95053, 95056 ], [ 95118, 95121 ], [ 97187, 97190 ], [ 97252, 97255 ], [ 99908, 99911 ], [ 100018, 100021 ], [ 101436, 101439 ], [ 101519, 101522 ], [ 102027, 102030 ], [ 102109, 102112 ], [ 103275, 103278 ], [ 109322, 109325 ], [ 116379, 116382 ], [ 119371, 119374 ], [ 122328, 122331 ], [ 122393, 122396 ], [ 126786, 126789 ], [ 127286, 127289 ], [ 128049, 128052 ], [ 17018, 17021 ], [ 35039, 35042 ] ], [ [ 1387, 1400 ], [ 68340, 68353 ] ], [ [ 1441, 1453 ], [ 80488, 80500 ], [ 83863, 83875 ] ], [ [ 1491, 1495 ], [ 74971, 74975 ], [ 78743, 78747 ], [ 80783, 80787 ] ], [ [ 1533, 1570 ], [ 45770, 45790 ], [ 45851, 45871 ], [ 45932, 45952 ], [ 56263, 56283 ], [ 61049, 61069 ], [ 109575, 109595 ] ], [ [ 1608, 1627 ], [ 63481, 63492 ], [ 73838, 73849 ] ], [ [ 1665, 1702 ], [ 27184, 27204 ] ], [ [ 1740, 1765 ], [ 5423, 5437 ], [ 7530, 7544 ], [ 95267, 95281 ], [ 97401, 97415 ] ], [ [ 1800, 1809 ], [ 12826, 12835 ], [ 13942, 13951 ], [ 14486, 14495 ], [ 18197, 18206 ], [ 18224, 18233 ], [ 29668, 29677 ], [ 33919, 33928 ], [ 33970, 33979 ], [ 34298, 34307 ], [ 34349, 34358 ], [ 36528, 36537 ], [ 36593, 36602 ], [ 36687, 36696 ], [ 36779, 36788 ], [ 51553, 51562 ], [ 64614, 64623 ], [ 64655, 64664 ], [ 64714, 64723 ], [ 64850, 64859 ], [ 64910, 64919 ], [ 64976, 64985 ], [ 66006, 66015 ], [ 66484, 66493 ], [ 66517, 66526 ], [ 66579, 66588 ], [ 66640, 66649 ], [ 80910, 80919 ], [ 80991, 81000 ], [ 81107, 81116 ], [ 82531, 82540 ], [ 82854, 82863 ], [ 82984, 82993 ], [ 83056, 83065 ], [ 83103, 83112 ], [ 83244, 83253 ], [ 113948, 113957 ], [ 114050, 114059 ], [ 114081, 114090 ], [ 115844, 115853 ], [ 116536, 116545 ], [ 116739, 116748 ], [ 116794, 116803 ], [ 117276, 117285 ], [ 117353, 117362 ], [ 117382, 117391 ], [ 117713, 117722 ], [ 117783, 117792 ], [ 121033, 121042 ], [ 121100, 121109 ], [ 121124, 121133 ], [ 121222, 121231 ], [ 121292, 121301 ], [ 121355, 121364 ], [ 127787, 127796 ], [ 128569, 128578 ], [ 128587, 128596 ], [ 128657, 128666 ], [ 128678, 128687 ], [ 17124, 17133 ], [ 35171, 35180 ], [ 35197, 35206 ], [ 81295, 81304 ] ], [ [ 1844, 1853 ], [ 66308, 66317 ] ], [ [ 1888, 1896 ], [ 37321, 37329 ], [ 41175, 41183 ], [ 48041, 48049 ], [ 53100, 53108 ], [ 57833, 57841 ], [ 70743, 70751 ], [ 105729, 105737 ], [ 122908, 122916 ], [ 13663, 13671 ], [ 14208, 14216 ], [ 14822, 14830 ], [ 15284, 15292 ], [ 26596, 26604 ], [ 26733, 26741 ], [ 26843, 26851 ], [ 26962, 26970 ], [ 30875, 30883 ], [ 31522, 31530 ], [ 32493, 32501 ], [ 32977, 32985 ], [ 92355, 92363 ], [ 92750, 92758 ], [ 117122, 117130 ] ], [ [ 1931, 1941 ], [ 81520, 81530 ] ], [ [ 1976, 1984 ], [ 64792, 64800 ], [ 66075, 66083 ], [ 79870, 79878 ], [ 80281, 80289 ], [ 80340, 80348 ], [ 81931, 81939 ], [ 82300, 82308 ], [ 82700, 82708 ], [ 83439, 83447 ], [ 83568, 83576 ], [ 116555, 116563 ], [ 116634, 116642 ], [ 117524, 117532 ], [ 117618, 117626 ], [ 120885, 120893 ], [ 120909, 120917 ], [ 120938, 120946 ], [ 121334, 121342 ], [ 122445, 122453 ], [ 122465, 122473 ], [ 122524, 122532 ], [ 122568, 122576 ], [ 122629, 122637 ], [ 81281, 81289 ], [ 81571, 81579 ] ], [ [ 2019, 2021 ], [ 40942, 40944 ], [ 47868, 47870 ], [ 52927, 52929 ], [ 57660, 57662 ], [ 70490, 70492 ], [ 105556, 105558 ], [ 129077, 129079 ], [ 129155, 129157 ], [ 129298, 129300 ], [ 129364, 129366 ], [ 33853, 33855 ], [ 34045, 34047 ], [ 34161, 34163 ], [ 34424, 34426 ], [ 36878, 36880 ], [ 40344, 40346 ], [ 51618, 51620 ], [ 52514, 52516 ], [ 82685, 82687 ], [ 82910, 82912 ], [ 83170, 83172 ], [ 83325, 83327 ], [ 83424, 83426 ], [ 83498, 83500 ], [ 92996, 92998 ], [ 93159, 93161 ], [ 100300, 100302 ], [ 111957, 111959 ], [ 113015, 113017 ], [ 114010, 114012 ], [ 117474, 117476 ], [ 128510, 128512 ], [ 15612, 15614 ], [ 15758, 15760 ] ], [ [ 2056, 2066 ], [ 66134, 66144 ] ], [ [ 2101, 2113 ], [ 101601, 101613 ], [ 101645, 101657 ], [ 127896, 127908 ] ], [ [ 2148, 2162 ], [ 11974, 11988 ], [ 25972, 25986 ], [ 32179, 32193 ], [ 32242, 32256 ], [ 33286, 33300 ], [ 39082, 39096 ], [ 45515, 45529 ], [ 50626, 50640 ], [ 55829, 55843 ], [ 60611, 60625 ], [ 63316, 63330 ], [ 73647, 73661 ], [ 91005, 91019 ], [ 103204, 103218 ], [ 109173, 109187 ], [ 113803, 113817 ], [ 119301, 119315 ], [ 120544, 120558 ], [ 126717, 126731 ], [ 127327, 127341 ], [ 128092, 128106 ] ], [ [ 2197, 2222 ], [ 70137, 70149 ] ], [ [ 2262, 2277 ], [ 16746, 16761 ], [ 16897, 16912 ], [ 17446, 17461 ], [ 17597, 17612 ], [ 34767, 34782 ], [ 34918, 34933 ], [ 35551, 35566 ], [ 35702, 35717 ] ], [ [ 2322, 2328 ] ], [ [ 2467, 2474 ] ], [ [ 3535, 3551 ], [ 5098, 5114 ], [ 11863, 11879 ], [ 12752, 12768 ], [ 25809, 25825 ], [ 26402, 26418 ], [ 29732, 29748 ], [ 33808, 33824 ], [ 34116, 34132 ], [ 36497, 36513 ], [ 38971, 38987 ], [ 39490, 39506 ], [ 39606, 39622 ], [ 55993, 56009 ], [ 94942, 94958 ], [ 108889, 108905 ], [ 116032, 116048 ] ], [ [ 3561, 3577 ], [ 3919, 3935 ], [ 8274, 8290 ], [ 19057, 19073 ], [ 37541, 37557 ], [ 52891, 52907 ], [ 93716, 93732 ], [ 105508, 105524 ], [ 5116, 5132 ], [ 11881, 11897 ], [ 12959, 12975 ], [ 25827, 25843 ], [ 38989, 39005 ], [ 56011, 56027 ], [ 94960, 94976 ], [ 108907, 108923 ], [ 115922, 115938 ] ], [ [ 3587, 3604 ], [ 7201, 7218 ], [ 60775, 60792 ], [ 97072, 97089 ] ], [ [ 3615, 3632 ], [ 5973, 5990 ], [ 57623, 57640 ], [ 95797, 95814 ], [ 7220, 7237 ], [ 60794, 60811 ], [ 97091, 97108 ] ], [ [ 3643, 3657 ], [ 24380, 24394 ] ], [ [ 3788, 3798 ] ], [ [ 5842, 5852 ] ], [ [ 7934, 7951 ], [ 25229, 25246 ] ], [ [ 18484, 18494 ] ], [ [ 37246, 37254 ] ], [ [ 40718, 40729 ], [ 47702, 47713 ], [ 47730, 47741 ] ], [ [ 47686, 47699 ], [ 129464, 129477 ] ], [ [ 47714, 47727 ], [ 129487, 129500 ] ], [ [ 47763, 47785 ], [ 129605, 129627 ] ], [ [ 52770, 52793 ], [ 129520, 129543 ] ], [ [ 57502, 57525 ], [ 129563, 129586 ] ], [ [ 62288, 62295 ] ], [ [ 63846, 63853 ] ], [ [ 65461, 65482 ], [ 68387, 68408 ] ], [ [ 66204, 66224 ], [ 68500, 68520 ] ], [ [ 67345, 67359 ] ], [ [ 68617, 68639 ], [ 63395, 63417 ], [ 69750, 69772 ] ], [ [ 69500, 69522 ], [ 25940, 25962 ], [ 45436, 45458 ], [ 55750, 55772 ], [ 60532, 60554 ], [ 73525, 73547 ], [ 109019, 109041 ] ], [ [ 69835, 69863 ], [ 27991, 28019 ], [ 28094, 28122 ], [ 28240, 28268 ], [ 28354, 28382 ], [ 47154, 47182 ], [ 47260, 47288 ], [ 56954, 56982 ], [ 57056, 57084 ], [ 61740, 61768 ], [ 61842, 61870 ], [ 74395, 74423 ], [ 74509, 74537 ], [ 110518, 110546 ], [ 110646, 110674 ], [ 110797, 110825 ] ], [ [ 70399, 70414 ], [ 129046, 129061 ], [ 129267, 129282 ], [ 129333, 129348 ], [ 129401, 129416 ] ], [ [ 74967, 74970 ], [ 84219, 84222 ], [ 78385, 78388 ], [ 87427, 87430 ] ], [ [ 84283, 84286 ] ], [ [ 87869, 87879 ] ], [ [ 93585, 93595 ] ], [ [ 95666, 95676 ] ], [ [ 97800, 97804 ] ], [ [ 100812, 100828 ] ], [ [ 101911, 101928 ], [ 128838, 128855 ] ], [ [ 102157, 102163 ] ], [ [ 103754, 103775 ], [ 104110, 104131 ] ], [ [ 103882, 103902 ], [ 104061, 104081 ] ], [ [ 104137, 104151 ] ], [ [ 105365, 105388 ], [ 129647, 129670 ] ], [ [ 113296, 113303 ] ], [ [ 114196, 114211 ] ], [ [ 117952, 117957 ] ], [ [ 119993, 120002 ] ], [ [ 121397, 121415 ] ], [ [ 122679, 122701 ], [ 129117, 129139 ], [ 129198, 129220 ] ], [ [ 129022, 129025 ] ], [ [ 129085, 129096 ] ], [ [ 129164, 129177 ] ], [ [ 129242, 129246 ] ], [ [ 129307, 129312 ] ], [ [ 129374, 129380 ] ], [ [ 129455, 129461 ] ], [ [ 129478, 129484 ] ], [ [ 129501, 129517 ] ], [ [ 129544, 129560 ] ], [ [ 129587, 129602 ] ], [ [ 129628, 129644 ] ] ]
#!/usr/bin/env python """ Maps point charges obtained by GPAW and HORTON on the original' ' GROMACS topology initially modified by insertHbyList.py """ ## jlh 2018/04/02 import ast import h5py import ase.io from ase.io.cube import read_cube_data import parmed as pmd from parmed import gromacs from insertHbyList import insertHbyList import argparse def main(): parser = argparse.ArgumentParser(\ description='Converts an all-atom cube file into united-atom' ' representation based on certain replacement rules') #parser.add_argument('-c', '--charge',metavar='INTEGER_CHARGE', # type=int,nargs='?', const=1, default=0) #parser.add_argument('infile', nargs='?') parser.add_argument('infile_pdb', nargs='?', metavar='infile.pdb', default='system.pdb', help="Original .pdb file, before insertion of implicit hydrogen.") parser.add_argument('infile_top', nargs='?', metavar='infile.top', default='system.top', help="Original GROMACS .top file") parser.add_argument('infile_cube', nargs='?', metavar='infile.cube', default='esp.cube', help="ESP descrition (or other scalar field) in all-atom cube file.") parser.add_argument('outfile_cube', nargs='?', metavar='outfile.cube', default='esp_fitted_system.top', help="Output truncated by atoms only" "present in all-atoms description") parser.add_argument('-i','--insertion-rules', default="{'CD4':1,'CD3':1,'CA2':2,'CA3':2,'CA4':2,'CB2':2,'CB3':2}", help="A string representation of a python dictionary, describing how " "many implicit hydrogens have been inserted at which atom. Example: " "{'CD4':1,'CD3':1,'CA2':2,'CA3':2,'CA4':2,'CB2':2,'CB3':2}") args = parser.parse_args() #implicitHbondingPartners={'CD4':1,'CD3':1,'CA2':2,'CA3':2,'CA4':2,'CB2':2,'CB3':2} print('Using replacement rules "{}"...'.format(args.insertion_rules)) implicitHbondingPartners = ast.literal_eval(args.insertion_rules) aa2ua_cube(args.infile_pdb, args.infile_top, args.infile_cube, args.outfile_cube,implicitHbondingPartners=implicitHbondingPartners) def aa2ua_cube(infile_pdb, infile_top, infile_cube, outfile_cube,implicitHbondingPartners= {'CD4':1,'CD3':1,'CA2':2,'CA3':2,'CA4':2,'CB2':2,'CB3':2}): #infile_pdb = args.infile_pdb #infile_top = args.infile_top #infile_cube = args.infile_cube #outfile_cube = args.outfile_cube ase_struct=ase.io.read(infile_pdb) pmd_struct = pmd.load_file(infile_pdb) pmd_top = gromacs.GromacsTopologyFile(infile_top,parametrize=False) # throws some warnings on angle types, does not matter for bonding info pmd_top.strip(':SOL,CL') # strip water and electrolyte from system pmd_top.box = pmd_struct.box # Needed because .prmtop contains box info pmd_top.positions = pmd_struct.positions new_ase_struct, new_pmd_struct, names, residues = insertHbyList( ase_struct,pmd_top,implicitHbondingPartners,1.0) surplus_atoms = len(new_ase_struct) - len(ase_struct) print("{} atoms are going to be truncated from file" "{}...".format(surplus_atoms,infile_cube)) # hdf5 = h5py.File(infile_h5,'r') cube_data, cube_atoms = read_cube_data(infile_cube) ase.io.write(outfile_cube, cube_atoms[0:len(ase_struct)], data=cube_data) # ATTENTION: this script just truncates atoms based on total count difference # in UA and AA representations if __name__ == '__main__': main()
[ [ [ 189, 192 ], [ 2030, 2033 ] ], [ [ 200, 204 ] ], [ [ 212, 218 ], [ 2564, 2567 ], [ 3366, 3369 ] ], [ [ 243, 257 ], [ 3334, 3348 ] ], [ [ 265, 278 ], [ 2605, 2608 ] ], [ [ 298, 305 ], [ 2645, 2652 ] ], [ [ 332, 345 ], [ 3026, 3039 ] ], [ [ 354, 362 ], [ 389, 397 ] ], [ [ 368, 372 ], [ 3589, 3593 ] ], [ [ 2227, 2237 ], [ 2073, 2083 ] ] ]
""" This module contains the formulas for comparing Lab values with matrices and vectors. The benefit of using NumPy's matrix capabilities is speed. These calls can be used to efficiently compare large volumes of Lab colors. """ import numpy def delta_e_cie1976(lab_color_vector, lab_color_matrix): """ Calculates the Delta E (CIE1976) between `lab_color_vector` and all colors in `lab_color_matrix`. """ return numpy.sqrt( numpy.sum(numpy.power(lab_color_vector - lab_color_matrix, 2), axis=1)) # noinspection PyPep8Naming def delta_e_cie1994(lab_color_vector, lab_color_matrix, K_L=1, K_C=1, K_H=1, K_1=0.045, K_2=0.015): """ Calculates the Delta E (CIE1994) of two colors. K_l: 0.045 graphic arts 0.048 textiles K_2: 0.015 graphic arts 0.014 textiles K_L: 1 default 2 textiles """ C_1 = numpy.sqrt(numpy.sum(numpy.power(lab_color_vector[1:], 2))) C_2 = numpy.sqrt(numpy.sum(numpy.power(lab_color_matrix[:, 1:], 2), axis=1)) delta_lab = lab_color_vector - lab_color_matrix delta_L = delta_lab[:, 0].copy() delta_C = C_1 - C_2 delta_lab[:, 0] = delta_C delta_H_sq = numpy.sum(numpy.power(delta_lab, 2) * numpy.array([-1, 1, 1]), axis=1) # noinspection PyArgumentList delta_H = numpy.sqrt(delta_H_sq.clip(min=0)) S_L = 1 S_C = 1 + K_1 * C_1 S_H = 1 + K_2 * C_1 LCH = numpy.vstack([delta_L, delta_C, delta_H]) params = numpy.array([[K_L * S_L], [K_C * S_C], [K_H * S_H]]) return numpy.sqrt(numpy.sum(numpy.power(LCH / params, 2), axis=0)) # noinspection PyPep8Naming def delta_e_cmc(lab_color_vector, lab_color_matrix, pl=2, pc=1): """ Calculates the Delta E (CIE1994) of two colors. CMC values Acceptability: pl=2, pc=1 Perceptability: pl=1, pc=1 """ L, a, b = lab_color_vector C_1 = numpy.sqrt(numpy.sum(numpy.power(lab_color_vector[1:], 2))) C_2 = numpy.sqrt(numpy.sum(numpy.power(lab_color_matrix[:, 1:], 2), axis=1)) delta_lab = lab_color_vector - lab_color_matrix delta_L = delta_lab[:, 0].copy() delta_C = C_1 - C_2 delta_lab[:, 0] = delta_C H_1 = numpy.degrees(numpy.arctan2(b, a)) if H_1 < 0: H_1 += 360 F = numpy.sqrt(numpy.power(C_1, 4) / (numpy.power(C_1, 4) + 1900.0)) # noinspection PyChainedComparisons if 164 <= H_1 and H_1 <= 345: T = 0.56 + abs(0.2 * numpy.cos(numpy.radians(H_1 + 168))) else: T = 0.36 + abs(0.4 * numpy.cos(numpy.radians(H_1 + 35))) if L < 16: S_L = 0.511 else: S_L = (0.040975 * L) / (1 + 0.01765 * L) S_C = ((0.0638 * C_1) / (1 + 0.0131 * C_1)) + 0.638 S_H = S_C * (F * T + 1 - F) delta_C = C_1 - C_2 delta_H_sq = numpy.sum(numpy.power(delta_lab, 2) * numpy.array([-1, 1, 1]), axis=1) # noinspection PyArgumentList delta_H = numpy.sqrt(delta_H_sq.clip(min=0)) LCH = numpy.vstack([delta_L, delta_C, delta_H]) params = numpy.array([[pl * S_L], [pc * S_C], [S_H]]) return numpy.sqrt(numpy.sum(numpy.power(LCH / params, 2), axis=0)) # noinspection PyPep8Naming def delta_e_cie2000(lab_color_vector, lab_color_matrix, Kl=1, Kc=1, Kh=1): """ Calculates the Delta E (CIE2000) of two colors. """ L, a, b = lab_color_vector avg_Lp = (L + lab_color_matrix[:, 0]) / 2.0 C1 = numpy.sqrt(numpy.sum(numpy.power(lab_color_vector[1:], 2))) C2 = numpy.sqrt(numpy.sum(numpy.power(lab_color_matrix[:, 1:], 2), axis=1)) avg_C1_C2 = (C1 + C2) / 2.0 G = 0.5 * (1 - numpy.sqrt(numpy.power(avg_C1_C2, 7.0) / (numpy.power(avg_C1_C2, 7.0) + numpy.power(25.0, 7.0)))) a1p = (1.0 + G) * a a2p = (1.0 + G) * lab_color_matrix[:, 1] C1p = numpy.sqrt(numpy.power(a1p, 2) + numpy.power(b, 2)) C2p = numpy.sqrt(numpy.power(a2p, 2) + numpy.power(lab_color_matrix[:, 2], 2)) avg_C1p_C2p = (C1p + C2p) / 2.0 h1p = numpy.degrees(numpy.arctan2(b, a1p)) h1p += (h1p < 0) * 360 h2p = numpy.degrees(numpy.arctan2(lab_color_matrix[:, 2], a2p)) h2p += (h2p < 0) * 360 avg_Hp = (((numpy.fabs(h1p - h2p) > 180) * 360) + h1p + h2p) / 2.0 T = 1 - 0.17 * numpy.cos(numpy.radians(avg_Hp - 30)) + \ 0.24 * numpy.cos(numpy.radians(2 * avg_Hp)) + \ 0.32 * numpy.cos(numpy.radians(3 * avg_Hp + 6)) - \ 0.2 * numpy.cos(numpy.radians(4 * avg_Hp - 63)) diff_h2p_h1p = h2p - h1p delta_hp = diff_h2p_h1p + (numpy.fabs(diff_h2p_h1p) > 180) * 360 delta_hp -= (h2p > h1p) * 720 delta_Lp = lab_color_matrix[:, 0] - L delta_Cp = C2p - C1p delta_Hp = 2 * numpy.sqrt(C2p * C1p) * numpy.sin(numpy.radians(delta_hp) / 2.0) S_L = 1 + ((0.015 * numpy.power(avg_Lp - 50, 2)) / numpy.sqrt(20 + numpy.power(avg_Lp - 50, 2.0))) S_C = 1 + 0.045 * avg_C1p_C2p S_H = 1 + 0.015 * avg_C1p_C2p * T delta_ro = 30 * numpy.exp(-(numpy.power(((avg_Hp - 275) / 25), 2.0))) R_C = numpy.sqrt((numpy.power(avg_C1p_C2p, 7.0)) / (numpy.power(avg_C1p_C2p, 7.0) + numpy.power(25.0, 7.0))) R_T = -2 * R_C * numpy.sin(2 * numpy.radians(delta_ro)) return numpy.sqrt( numpy.power(delta_Lp / (S_L * Kl), 2) + numpy.power(delta_Cp / (S_C * Kc), 2) + numpy.power(delta_Hp / (S_H * Kh), 2) + R_T * (delta_Cp / (S_C * Kc)) * (delta_Hp / (S_H * Kh)))
[ [ [ 237, 242 ], [ 435, 440 ], [ 455, 460 ], [ 465, 470 ], [ 908, 913 ], [ 919, 924 ], [ 929, 934 ], [ 978, 983 ], [ 989, 994 ], [ 999, 1004 ], [ 1212, 1217 ], [ 1222, 1227 ], [ 1250, 1255 ], [ 1331, 1336 ], [ 1438, 1443 ], [ 1493, 1498 ], [ 1558, 1563 ], [ 1569, 1574 ], [ 1579, 1584 ], [ 1904, 1909 ], [ 1915, 1920 ], [ 1925, 1930 ], [ 1974, 1979 ], [ 1985, 1990 ], [ 1995, 2000 ], [ 2201, 2206 ], [ 2215, 2220 ], [ 2281, 2286 ], [ 2292, 2297 ], [ 2315, 2320 ], [ 2450, 2455 ], [ 2460, 2465 ], [ 2526, 2531 ], [ 2536, 2541 ], [ 2789, 2794 ], [ 2799, 2804 ], [ 2827, 2832 ], [ 2908, 2913 ], [ 2954, 2959 ], [ 3009, 3014 ], [ 3066, 3071 ], [ 3077, 3082 ], [ 3087, 3092 ], [ 3389, 3394 ], [ 3400, 3405 ], [ 3410, 3415 ], [ 3458, 3463 ], [ 3469, 3474 ], [ 3479, 3484 ], [ 3582, 3587 ], [ 3593, 3598 ], [ 3624, 3629 ], [ 3654, 3659 ], [ 3761, 3766 ], [ 3772, 3777 ], [ 3794, 3799 ], [ 3823, 3828 ], [ 3834, 3839 ], [ 3856, 3861 ], [ 3944, 3949 ], [ 3958, 3963 ], [ 4019, 4024 ], [ 4033, 4038 ], [ 4121, 4126 ], [ 4196, 4201 ], [ 4206, 4211 ], [ 4253, 4258 ], [ 4263, 4268 ], [ 4309, 4314 ], [ 4319, 4324 ], [ 4368, 4373 ], [ 4378, 4383 ], [ 4471, 4476 ], [ 4630, 4635 ], [ 4654, 4659 ], [ 4664, 4669 ], [ 4720, 4725 ], [ 4751, 4756 ], [ 4767, 4772 ], [ 4892, 4897 ], [ 4904, 4909 ], [ 4956, 4961 ], [ 4968, 4973 ], [ 5002, 5007 ], [ 5034, 5039 ], [ 5080, 5085 ], [ 5094, 5099 ], [ 5131, 5136 ], [ 5151, 5156 ], [ 5199, 5204 ], [ 5247, 5252 ] ], [ [ 249, 264 ] ], [ [ 561, 576 ] ], [ [ 1652, 1663 ] ], [ [ 3160, 3175 ] ] ]
import os import webbrowser import time import random import requests from bs4 import BeautifulSoup from prettytable import PrettyTable from time import sleep cont = 1 print("Welcome to Qp Bank !") sleep(1) print("Crafted with love by Mathan.S") sleep(1) print("Ensure your connectivity to Amrita Wifi for smooth experience :)") # Captcha Disabled """a=["M234x","Ad34T","Fr45C","J234r","PKa67"] z=random.randint(0,4) print(a[z]) captcha=input("Enter the captcha") while(captcha!=a[z]): print("Enter the correct captcha..") a=["M234x","Ad34T","Fr45C","J234r","PKa67"] z=random.randint(0,4) print(a[z]) captcha=input("Enter the captcha")""" while(cont==1): url="http://dspace.amritanet.edu:8080/xmlui/handle/123456789/150" page=requests.get(url) soup=BeautifulSoup(page.content,'html.parser') div=soup.div main_div=soup.find(id="aspect_artifactbrowser_CommunityViewer_div_community-view") t=PrettyTable(["S.No","Attribute"]) main_list_item=main_div.ul items=main_list_item.findAll("li") for i in range(len(items)): t.add_row([i+1,items[i].a.text.strip()]) print(t) ch=int(input("Enter your Semester ")) while((ch>len(items)) or (ch<0)): ch=int(input("Enter your Semester ")) url="http://dspace.amritanet.edu:8080" url+=items[ch-1].a["href"] print("Give me just a minute...") sec_page=requests.get(url) sec_soup=BeautifulSoup(sec_page.content,'html.parser') u=sec_soup.findAll("ul") if ch<=6: sec_li=u[3].findAll("li") else: sec_li=u[2].findAll("li") p=PrettyTable(["S.No","Title"]) for j in range(len(sec_li)): p.add_row([j+1,sec_li[j].a.text.strip()]) print(p) ch3=int(input("Enter your choice ")) while((ch3>len(sec_li)) or (ch3<0)): ch3=int(input("Enter your choice ")) url="http://dspace.amritanet.edu:8080/" url+=sec_li[ch3-1].a["href"] third_page=requests.get(url) third_soup=BeautifulSoup(third_page.content,'html.parser') u3_div=third_soup.findAll("div",class_="ds-static-div secondary recent-submission") third_div=u3_div[0].a.text.strip() third_li=u3_div[0].findAll("li") m=PrettyTable(["S.No","Title"]) m.add_row([1,third_div]) print(m) ch4=int(input("Enter your choice ")) while((ch4>len(third_li)) or (ch4<0)): ch4=int(input("Enter your choice ")) url="http://dspace.amritanet.edu:8080/" url+=third_li[ch4-1].a["href"] fourth_page=requests.get(url) fourth_soup=BeautifulSoup(fourth_page.content,'html.parser') u4_div=fourth_soup.findAll("div",class_="file-metadata") v=PrettyTable(["S.No","Subjects"]) u4_temp=[] mod_u4_temp=[] for i in range(len(u4_div)): u4_temp.append((u4_div[i].findAll("span")[1].text)) for j in range(len(u4_temp)): mod_u4_temp=u4_temp[j].split(",") v.add_row([j+1,mod_u4_temp[0]]) print(v) last_ch=int(input("Enter your choice ")) last_div=fourth_soup.findAll("div",class_="file-link") while((last_ch>len(last_div)) or (last_ch<0)): last_ch=int(input("Enter your choice ")) url_last="http://dspace.amritanet.edu:8080" url_last+=last_div[last_ch-1].a["href"] print("All the very best for your exams :)") sleep(1) download=int(input("Enter 1 to download or 0 to open in browser ")) while(download!=1 and download!=0): download=int(input("Enter 1 to download or 0 to open in browser ")) print("Give me just a minute :)") if(download==1): response = requests.get(url_last) spliturl=url_last.split("/") namewithext=spliturl[-1] name_reduced=namewithext.split("?") save=name_reduced[0] #save+=".pdf" with open(save,'wb') as f: f.write(response.content) print("The Qp is waiting for you at "+os.getcwd()) else: print("The Qp is waiting for you :)") webbrowser.open_new(url_last) cont=int(input("Enter 1 to view another Qp or 0 to exit "))
[ [ [ 7, 9 ], [ 3666, 3668 ] ], [ [ 18, 28 ], [ 3731, 3741 ] ], [ [ 37, 41 ] ], [ [ 50, 56 ] ], [ [ 65, 73 ], [ 772, 780 ], [ 1366, 1374 ], [ 1877, 1885 ], [ 2399, 2407 ], [ 3402, 3410 ] ], [ [ 91, 104 ], [ 797, 810 ], [ 1395, 1408 ], [ 1908, 1921 ], [ 2431, 2444 ] ], [ [ 130, 141 ], [ 943, 954 ], [ 1554, 1565 ], [ 2120, 2131 ], [ 2545, 2556 ] ], [ [ 160, 165 ], [ 212, 217 ], [ 262, 267 ], [ 3145, 3150 ] ], [ [ 169, 173 ], [ 683, 687 ] ], [ [ 699, 702 ], [ 785, 788 ] ], [ [ 767, 771 ], [ 811, 815 ] ], [ [ 792, 796 ], [ 845, 849 ], [ 865, 869 ] ], [ [ 841, 844 ] ], [ [ 856, 864 ], [ 994, 1002 ] ], [ [ 941, 942 ], [ 1076, 1077 ], [ 1125, 1126 ] ], [ [ 979, 993 ], [ 1014, 1028 ] ], [ [ 1008, 1013 ], [ 1064, 1069 ], [ 1091, 1096 ], [ 1184, 1189 ], [ 1293, 1298 ] ], [ [ 1049, 1050 ], [ 1087, 1088 ], [ 1097, 1098 ] ], [ [ 1130, 1132 ], [ 1177, 1179 ], [ 1196, 1198 ], [ 1299, 1301 ], [ 1475, 1477 ] ], [ [ 1207, 1209 ], [ 1177, 1179 ], [ 1196, 1198 ], [ 1299, 1301 ], [ 1475, 1477 ] ], [ [ 1247, 1250 ], [ 1288, 1291 ] ], [ [ 1357, 1365 ], [ 1409, 1417 ] ], [ [ 1386, 1394 ], [ 1445, 1453 ] ], [ [ 1443, 1444 ], [ 1492, 1493 ], [ 1529, 1530 ] ], [ [ 1485, 1491 ], [ 1605, 1611 ], [ 1633, 1639 ], [ 1729, 1735 ], [ 1840, 1846 ] ], [ [ 1522, 1528 ], [ 1605, 1611 ], [ 1633, 1639 ], [ 1729, 1735 ], [ 1840, 1846 ] ], [ [ 1552, 1553 ], [ 1618, 1619 ], [ 1668, 1669 ] ], [ [ 1590, 1591 ], [ 1629, 1630 ], [ 1640, 1641 ] ], [ [ 1675, 1678 ], [ 1721, 1724 ], [ 1742, 1745 ], [ 1847, 1850 ] ], [ [ 1754, 1757 ], [ 1721, 1724 ], [ 1742, 1745 ], [ 1847, 1850 ] ], [ [ 1793, 1796 ], [ 1835, 1838 ] ], [ [ 1866, 1876 ], [ 1922, 1932 ] ], [ [ 1897, 1907 ], [ 1965, 1975 ] ], [ [ 1958, 1964 ], [ 2054, 2060 ], [ 2090, 2096 ] ], [ [ 2044, 2053 ], [ 2165, 2174 ] ], [ [ 2081, 2089 ], [ 2246, 2254 ], [ 2359, 2367 ] ], [ [ 2118, 2119 ], [ 2152, 2153 ], [ 2185, 2186 ] ], [ [ 2192, 2195 ], [ 2238, 2241 ], [ 2261, 2264 ], [ 2368, 2371 ] ], [ [ 2273, 2276 ], [ 2238, 2241 ], [ 2261, 2264 ], [ 2368, 2371 ] ], [ [ 2312, 2315 ], [ 2354, 2357 ] ], [ [ 2387, 2398 ], [ 2445, 2456 ] ], [ [ 2419, 2430 ], [ 2489, 2500 ], [ 2867, 2878 ] ], [ [ 2482, 2488 ], [ 2629, 2635 ], [ 2658, 2664 ] ], [ [ 2543, 2544 ], [ 2766, 2767 ], [ 2808, 2809 ] ], [ [ 2580, 2587 ], [ 2642, 2649 ], [ 2715, 2722 ], [ 2741, 2748 ] ], [ [ 2593, 2604 ] ], [ [ 2614, 2615 ], [ 2665, 2666 ] ], [ [ 2700, 2701 ], [ 2749, 2750 ], [ 2777, 2778 ] ], [ [ 2729, 2740 ], [ 2781, 2792 ] ], [ [ 2815, 2822 ], [ 2922, 2929 ], [ 2949, 2956 ], [ 3073, 3080 ] ], [ [ 2858, 2866 ], [ 2934, 2942 ], [ 3064, 3072 ] ], [ [ 2965, 2972 ], [ 2922, 2929 ], [ 2949, 2956 ], [ 3073, 3080 ] ], [ [ 3008, 3016 ], [ 3054, 3062 ] ], [ [ 3156, 3164 ], [ 3232, 3240 ], [ 3248, 3256 ], [ 3374, 3382 ] ], [ [ 3265, 3273 ], [ 3232, 3240 ], [ 3248, 3256 ], [ 3374, 3382 ] ], [ [ 3391, 3399 ], [ 3607, 3615 ] ], [ [ 3428, 3436 ], [ 3472, 3480 ] ], [ [ 3460, 3471 ], [ 3501, 3512 ] ], [ [ 3488, 3500 ], [ 3532, 3544 ] ], [ [ 3527, 3531 ], [ 3578, 3582 ] ], [ [ 3592, 3593 ], [ 3599, 3600 ] ], [ [ 3763, 3767 ], [ 683, 687 ] ] ]
from __future__ import annotations from .data_structures import Stack from .operation import Operation class HistoryManager: def __init__(self): self.undo_stack: Stack[Operation] = Stack() self.redo_stack: Stack[Operation] = Stack() def add_operation(self, operation_instance: Operation): self.undo_stack.append(operation_instance) def undo(self) -> Operation: operation_to_undo = self.undo_stack.pop() self.redo_stack.append(operation_to_undo) return operation_to_undo def redo(self) -> Operation: operation_to_redo = self.redo_stack.pop() self.undo_stack.append(operation_to_redo) return operation_to_redo def __contains__(self, item): if isinstance(item, Operation): return item in self.undo_stack
[ [ [ 23, 34 ] ], [ [ 65, 70 ], [ 196, 201 ], [ 177, 182 ], [ 248, 253 ], [ 229, 234 ] ], [ [ 94, 103 ], [ 183, 192 ], [ 235, 244 ], [ 305, 314 ], [ 391, 400 ], [ 558, 567 ], [ 765, 774 ] ], [ [ 112, 126 ] ] ]
import plotly.graph_objects as go from mainapp.app_settings import cell_length_meter def getLineChart( data, timestamp, coordinates, colorScale, timeline, color_range, dragmode=False, quick_select_range=True, calibration_time=None, show_legend=False): if len(data) < 1: return { 'data': [], 'layout': go.Layout(title=go.layout.Title(text='No data found')) } x = data.iloc[:, 0].values linechart_fig = go.Figure() means = data.iloc[:, 1:].transpose().mean().transpose() var = data.iloc[:, 1:].transpose().std().transpose() # Add continuous error bars to the plot '''error_colors = ['#d9d9d9', '#bdbdbd', '#969696'] for i in reversed(range(1, 4)): fill_color = error_colors[i-1] if data.shape[1] > 2: linechart_fig.add_trace(go.Scatter( x=x, y=means - i * var, mode='lines', line=dict(width=1, color='black'), showlegend=False )) linechart_fig.add_trace(go.Scatter( name='{} sigma'.format(i), x=x, y=means + i * var, mode='lines', marker=dict(color="#444"), line=dict(width=1, color='black'), fillcolor=fill_color, fill='tonexty'))''' # Add individual traces to the plot ys = data.shape[1] for y in range(1, ys): coord = coordinates[y-1] y = data.iloc[:, y].values linechart_fig.add_trace(go.Scatter( name='[{:2d},{:2d}]'.format(coord['x'], coord['y']), x=x, y=y, mode='lines+markers', line=dict( width=1, color='#292929'), marker=dict( size=2, color='#292929'), showlegend=show_legend )) # Add central values to the plot '''if data.shape[1] > 1: if data.shape[1] == 2: trace_name = '[{:d},{:d}]'.format(coordinates[0]['x'], coordinates[0]['y']) else: trace_name = 'Average' linechart_fig.add_trace(go.Scatter( name=trace_name, x=x, y=means, mode='lines+markers', line=dict( color='#292929', width=1, ), marker=dict( color='#292929', size=3, ), showlegend=True, ))''' # Add vertical line representing selected timestamp linechart_fig.add_shape( # Line Vertical dict( name='selected timestamp', type="line", yref='paper', x0=timestamp, y0=0, x1=timestamp, y1=1, line=dict( color="black", width=5 ), )) # Add vertical line representing selected calibration if calibration_time is not None: linechart_fig.add_shape( # Line Vertical dict( name='calibration time', type="line", yref='paper', x0=calibration_time, y0=0, x1=calibration_time, y1=1, line=dict( color="green", width=5 ), )) #Add colorbar to plot if color_range['min'] is not None and color_range['max'] is not None: min = color_range['min'] max = color_range['max'] width_of_line = (color_range['max'] - color_range['min']) / len(colorScale) for i in range(len(colorScale)): linechart_fig.add_shape( dict( type="rect", xref="paper", yref="y", x0=0, y0= min + i*width_of_line, #if i > 0 else 0 if min <= max else 12000, x1=1, y1=min + (i+1)*width_of_line, #if i < len(colorScale)-1 else 12000 if min <= max else 0, fillcolor=colorScale[i][1], opacity=0.6, layer="below", line_width=0, ) ) range_selector = None if quick_select_range: range_selector = dict( buttons=list([ dict(count=1, label="1m", step="minute", stepmode="backward"), dict(count=1, label="1h", step="hour", stepmode="backward"), dict(count=1, label="1d", step="day", stepmode="backward"), dict(count=7, label="1w", step="day", stepmode="backward") ]) ) linechart_fig.update_layout( xaxis=dict( range=[timeline['start'], timeline['end']], type="date", linecolor='black', gridcolor='LightGrey', rangeselector=range_selector ), yaxis=dict( title='Resistivity (Ohm)', rangemode='tozero', linecolor='black', gridcolor='LightGrey', fixedrange=True ), margin=dict( l=15, r=0, t=30, b=5, pad=0 ), plot_bgcolor='white', dragmode=dragmode, height=250, ) return linechart_fig
[ [ [ 7, 33 ], [ 404, 406 ], [ 420, 422 ], [ 518, 520 ], [ 1624, 1626 ] ], [ [ 68, 85 ] ], [ [ 92, 104 ] ] ]
from __future__ import absolute_import from sentry.testutils import TestCase from sentry.api.fields.actor import Actor from sentry.models import ProjectOwnership, User, Team from sentry.models.projectownership import resolve_actors from sentry.ownership.grammar import Rule, Owner, Matcher, dump_schema class ProjectOwnershipTestCase(TestCase): def assert_ownership_equals(self, o1, o2): assert ( sorted(o1[0]) == sorted(o2[0]) and sorted(o1[1]) == sorted(o2[1]) ) def test_get_owners_default(self): assert ProjectOwnership.get_owners(self.project.id, {}) == (ProjectOwnership.Everyone, None) def test_get_owners_basic(self): rule_a = Rule( Matcher('path', '*.py'), [ Owner('team', self.team.slug), ]) rule_b = Rule( Matcher('path', 'src/*'), [ Owner('user', self.user.email), ]) ProjectOwnership.objects.create( project_id=self.project.id, schema=dump_schema([rule_a, rule_b]), fallthrough=True, ) # No data matches assert ProjectOwnership.get_owners(self.project.id, {}) == (ProjectOwnership.Everyone, None) # Match only rule_a self.assert_ownership_equals(ProjectOwnership.get_owners( self.project.id, { 'sentry.interfaces.Stacktrace': { 'frames': [{ 'filename': 'foo.py', }] } } ), ([Actor(self.team.id, Team)], [rule_a])) # Match only rule_b self.assert_ownership_equals(ProjectOwnership.get_owners( self.project.id, { 'sentry.interfaces.Stacktrace': { 'frames': [{ 'filename': 'src/thing.txt', }] } } ), ([Actor(self.user.id, User)], [rule_b])) # Matches both rule_a and rule_b self.assert_ownership_equals(ProjectOwnership.get_owners( self.project.id, { 'sentry.interfaces.Stacktrace': { 'frames': [{ 'filename': 'src/foo.py', }] } } ), ([Actor(self.user.id, User), Actor(self.team.id, Team)], [rule_a, rule_b])) assert ProjectOwnership.get_owners( self.project.id, { 'sentry.interfaces.Stacktrace': { 'frames': [{ 'filename': 'xxxx', }] } } ) == (ProjectOwnership.Everyone, None) # When fallthrough = False, we don't implicitly assign to Everyone ProjectOwnership.objects.filter( project_id=self.project.id, ).update(fallthrough=False) assert ProjectOwnership.get_owners( self.project.id, { 'sentry.interfaces.Stacktrace': { 'frames': [{ 'filename': 'xxxx', }] } } ) == ([], None) class ResolveActorsTestCase(TestCase): def test_no_actors(self): assert resolve_actors([], self.project.id) == {} def test_basic(self): owners = [ Owner('user', self.user.email), Owner('team', self.team.slug), ] assert resolve_actors(owners, self.project.id) == { owners[0]: Actor(self.user.id, User), owners[1]: Actor(self.team.id, Team), } def test_teams(self): # Normal team owner1 = Owner('team', self.team.slug) actor1 = Actor(self.team.id, Team) # Team that doesn't exist owner2 = Owner('team', 'nope') actor2 = None # A team that's not ours otherteam = Team.objects.exclude(projectteam__project_id=self.project.id)[0] owner3 = Owner('team', otherteam.slug) actor3 = None assert resolve_actors([owner1, owner2, owner3], self.project.id) == { owner1: actor1, owner2: actor2, owner3: actor3, } def test_users(self): # Normal user owner1 = Owner('user', self.user.email) actor1 = Actor(self.user.id, User) # An extra secondary email email1 = self.create_useremail(self.user, None, is_verified=True).email owner2 = Owner('user', email1) actor2 = actor1 # They map to the same user since it's just a secondary email # Another secondary email, that isn't verified email2 = self.create_useremail(self.user, None, is_verified=False).email owner3 = Owner('user', email2) # Intentionally allow unverified emails # actor3 = None actor3 = actor1 # An entirely unknown user owner4 = Owner('user', 'nope') actor4 = None # A user that doesn't belong with us otheruser = self.create_user() owner5 = Owner('user', otheruser.email) actor5 = None # Case-insensitive for user owner6 = Owner('user', self.user.email.upper()) actor6 = actor1 assert resolve_actors([owner1, owner2, owner3, owner4, owner5, owner6], self.project.id) == { owner1: actor1, owner2: actor2, owner3: actor3, owner4: actor4, owner5: actor5, owner6: actor6, }
[ [ [ 23, 38 ] ], [ [ 69, 77 ], [ 337, 345 ], [ 3197, 3205 ] ], [ [ 114, 119 ], [ 1565, 1570 ], [ 1934, 1939 ], [ 2313, 2318 ], [ 2340, 2345 ], [ 3521, 3526 ], [ 3571, 3576 ], [ 3721, 3726 ], [ 4318, 4323 ] ], [ [ 146, 162 ], [ 567, 583 ], [ 620, 636 ], [ 951, 967 ], [ 1156, 1172 ], [ 1209, 1225 ], [ 1308, 1324 ], [ 1670, 1686 ], [ 2052, 2068 ], [ 2403, 2419 ], [ 2659, 2675 ], [ 2776, 2792 ], [ 2901, 2917 ] ], [ [ 164, 168 ], [ 1954, 1958 ], [ 2333, 2337 ], [ 3541, 3545 ], [ 4338, 4342 ] ], [ [ 170, 174 ], [ 1585, 1589 ], [ 2360, 2364 ], [ 3591, 3595 ], [ 3741, 3745 ], [ 3897, 3901 ] ], [ [ 218, 232 ], [ 3253, 3267 ], [ 3453, 3467 ], [ 4047, 4061 ], [ 5243, 5257 ] ], [ [ 270, 274 ], [ 708, 712 ], [ 833, 837 ] ], [ [ 276, 281 ], [ 769, 774 ], [ 895, 900 ], [ 3353, 3358 ], [ 3397, 3402 ], [ 3674, 3679 ], [ 3799, 3804 ], [ 3979, 3984 ], [ 4270, 4275 ], [ 4477, 4482 ], [ 4740, 4745 ], [ 4911, 4916 ], [ 5057, 5062 ], [ 5164, 5169 ] ], [ [ 283, 290 ], [ 726, 733 ], [ 851, 858 ] ], [ [ 292, 303 ], [ 1043, 1054 ] ], [ [ 312, 336 ] ], [ [ 3175, 3196 ] ] ]
import os import time # os.system("adb shell monkey -p com.xingin.xhs -c android.intent.category.LAUNCHER 1") # os.system("sleep 4") # os.system("adb shell input tap 1000 150") # os.system("sleep 2") # os.system("adb shell input text PUCO") # os.system("sleep 2") # os.system("adb shell input tap 1000 150") # os.system("adb shell input swipe 340 800 340 500 1000") for i in range(0,50): os.system("adb shell input swipe 340 1200 340 400 1000") os.system("adb shell input swipe 340 600 340 1800 1000") time.sleep(1) os.system("adb shell input swipe 340 1400 340 200 1000") time.sleep(2)
[ [ [ 7, 9 ], [ 394, 396 ], [ 455, 457 ], [ 534, 536 ] ], [ [ 17, 21 ], [ 516, 520 ], [ 595, 599 ] ], [ [ 372, 373 ] ] ]
import os import helpers import numpy import pytest import toughio write_read = lambda output, writer_kws, reader_kws: helpers.write_read( "output", output, toughio.write_output, toughio.read_output, writer_kws=writer_kws, reader_kws=reader_kws, ) @pytest.mark.parametrize( "filename, data_ref", [ ( "FOFT_A1912.csv", { "TIME": 4.393722000e9, "PRES": 1.8740899675005e8, "TEMP": 720.0, "SAT_G": 0.0, "SAT_L": 24.0, }, ), ( "FOFT_A1912_T2.csv", { "TIME": 3.06639400e9, "PRES": 1.83000721e8, "TEMP": 660.0, "SAT_G": 0.0, "SAT_L": 22.0, }, ), ( "GOFT_A1162.csv", {"TIME": 4.393722000e9, "GEN": -30.0, "ENTG": 1.528048035348e7, "PWB": 0.0}, ), ( "GOFT_A1162_T2.csv", {"TIME": 3.06639400e9, "GEN": -27.5, "ENTG": 1.40141971e7, "PWB": 0.0}, ), ], ) def test_history(filename, data_ref): this_dir = os.path.dirname(os.path.abspath(__file__)) filename = os.path.join(this_dir, "support_files", "outputs", filename) data = toughio.read_history(filename) for k, v in data_ref.items(): assert numpy.allclose(v, data[k].sum()) @pytest.mark.parametrize( "filename, filename_ref", [ ("OUTPUT_ELEME.csv", "SAVE.out"), ("OUTPUT_ELEME.tec", "SAVE.out"), ("OUTPUT_ELEME_PETRASIM.csv", "SAVE.out"), ("OUTPUT.out", "SAVE.out"), ("OUTPUT_6.out", "SAVE_6.out"), ], ) def test_output_eleme(filename, filename_ref): this_dir = os.path.dirname(os.path.abspath(__file__)) filename = os.path.join(this_dir, "support_files", "outputs", filename) outputs = toughio.read_output(filename) filename = os.path.join(this_dir, "support_files", "outputs", filename_ref) save = toughio.read_output(filename) assert len(outputs) == 5 times_ref = [ 0.2592000e08, 0.3155800e08, 0.1577900e09, 0.3155800e09, 0.7889400e09, ] keys_ref = ["POR", "PRES", "SAT_G", "TEMP", "X", "Y", "Z"] for output, time_ref in zip(outputs, times_ref): assert time_ref == output.time assert ( save.labels.tolist() == output.labels.tolist() if output.format in {"csv", "petrasim", "tough"} else output.labels == None ) if output.format != "tough": assert keys_ref == sorted(list(output.data.keys())) assert numpy.allclose(save.data["X1"], outputs[-1].data["PRES"]) assert numpy.allclose(save.data["X2"], outputs[-1].data["TEMP"], atol=0.1) @pytest.mark.parametrize( "filename", ["OUTPUT_CONNE.csv", "OUTPUT.out", "OUTPUT_6.out"], ) def test_output_conne(filename): this_dir = os.path.dirname(os.path.abspath(__file__)) filename = os.path.join(this_dir, "support_files", "outputs", filename) outputs = toughio.read_output(filename, connection=True) times_ref = [ 0.2592000e08, 0.3155800e08, 0.1577900e09, 0.3155800e09, 0.7889400e09, ] data_ref = [ 52542.0, 52475.0, 51146.0, 49600.0, 45623.0, ] for output, time_ref, data in zip(outputs, times_ref, data_ref): assert time_ref == output.time assert ( len(set("".join(labels) for labels in output.labels)) == output.data["HEAT"].size ) assert numpy.allclose(data, numpy.abs(output.data["HEAT"]).mean(), atol=1.0) @pytest.mark.parametrize( "output_ref, file_format", [ (helpers.output_eleme, "csv"), (helpers.output_eleme[0], "csv"), (helpers.output_eleme, "petrasim"), (helpers.output_eleme[0], "petrasim"), (helpers.output_eleme, "tecplot"), (helpers.output_eleme[0], "tecplot"), (helpers.output_conne, "csv"), (helpers.output_conne[0], "csv"), ], ) def test_output(output_ref, file_format): output = write_read( output=output_ref, writer_kws={"file_format": file_format}, reader_kws={}, ) output_ref = output_ref if isinstance(output_ref, list) else [output_ref] for out_ref, out in zip(output_ref, output): helpers.allclose_output(out_ref, out) def test_save(): this_dir = os.path.dirname(os.path.abspath(__file__)) filename = os.path.join(this_dir, "support_files", "outputs", "SAVE.out") save = toughio.read_output(filename) x_ref = [6.35804123e05, 1.42894499e02, 9.91868799e-01] assert numpy.allclose( x_ref, numpy.mean([save.data["X1"], save.data["X2"], save.data["X3"]], axis=1) ) assert numpy.allclose(0.01, save.data["porosity"].mean()) assert "userx" not in save.data.keys()
[ [ [ 7, 9 ], [ 1180, 1182 ], [ 1196, 1198 ], [ 1238, 1240 ], [ 1770, 1772 ], [ 1786, 1788 ], [ 1828, 1830 ], [ 1949, 1951 ], [ 2961, 2963 ], [ 2977, 2979 ], [ 3019, 3021 ], [ 4506, 4508 ], [ 4522, 4524 ], [ 4564, 4566 ] ], [ [ 18, 25 ], [ 3784, 3791 ], [ 3823, 3830 ], [ 3865, 3872 ], [ 3909, 3916 ], [ 3956, 3963 ], [ 3999, 4006 ], [ 4045, 4052 ], [ 4084, 4091 ], [ 122, 129 ], [ 4434, 4441 ] ], [ [ 33, 38 ], [ 1391, 1396 ], [ 2674, 2679 ], [ 2743, 2748 ], [ 3640, 3645 ], [ 3661, 3666 ], [ 4739, 4744 ], [ 4770, 4775 ], [ 4860, 4865 ] ], [ [ 46, 52 ], [ 278, 284 ], [ 1427, 1433 ], [ 2814, 2820 ], [ 3713, 3719 ] ], [ [ 61, 68 ], [ 172, 179 ], [ 198, 205 ], [ 1310, 1317 ], [ 1903, 1910 ], [ 2025, 2032 ], [ 3094, 3101 ], [ 4638, 4645 ] ], [ [ 70, 80 ], [ 4181, 4191 ] ], [ [ 1131, 1143 ] ], [ [ 1712, 1729 ] ], [ [ 2917, 2934 ] ], [ [ 4130, 4141 ] ], [ [ 4478, 4487 ] ] ]
#Question Link #https://www.codechef.com/problems/XORAGN t=int(input()) for a0 in range(t): n=int(input()) a=list(map(int,input().split())) res=0 for i in a: res=res^i #xorring all the values present print(2*res) #doubling the result obtained
[ [ [ 57, 58 ], [ 88, 89 ] ], [ [ 76, 78 ] ], [ [ 96, 97 ] ], [ [ 115, 116 ], [ 171, 172 ] ], [ [ 152, 155 ], [ 186, 189 ], [ 236, 239 ] ], [ [ 166, 167 ], [ 190, 191 ] ], [ [ 182, 185 ], [ 186, 189 ], [ 236, 239 ] ] ]
import control as ctl import numpy as np def damp(sys,display=False): pole_list = [] m_list = [] wn_list = [] for pole in sys.pole(): pole = pole.astype(complex) # WTF: the python control "damp" function is buggy due to this missing cast ! if ctl.isctime(sys): pole_continuous = pole else: pole_continuous = np.log(pole)/sys.dt wn = np.abs(pole_continuous) m = -np.real(pole_continuous)/wn pole_list.append(pole) wn_list.append(wn) m_list.append(m) if display: print("pole {:.3f} : wn={:.3f} rad/s, m= {:.3f}".format(pole, wn, m)) return wn_list, m_list, pole_list
[ [ [ 7, 21 ], [ 278, 281 ] ], [ [ 29, 40 ], [ 375, 377 ], [ 417, 419 ], [ 454, 456 ] ], [ [ 46, 50 ] ] ]
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from airflow.providers.apache.hive.hooks.hive import HiveMetastoreHook from airflow.sensors.base_sensor_operator import BaseSensorOperator from airflow.utils.decorators import apply_defaults class HivePartitionSensor(BaseSensorOperator): """ Waits for a partition to show up in Hive. Note: Because ``partition`` supports general logical operators, it can be inefficient. Consider using NamedHivePartitionSensor instead if you don't need the full flexibility of HivePartitionSensor. :param table: The name of the table to wait for, supports the dot notation (my_database.my_table) :type table: str :param partition: The partition clause to wait for. This is passed as is to the metastore Thrift client ``get_partitions_by_filter`` method, and apparently supports SQL like notation as in ``ds='2015-01-01' AND type='value'`` and comparison operators as in ``"ds>=2015-01-01"`` :type partition: str :param metastore_conn_id: reference to the metastore thrift service connection id :type metastore_conn_id: str """ template_fields = ('schema', 'table', 'partition',) ui_color = '#C5CAE9' @apply_defaults def __init__(self, table, partition="ds='{{ ds }}'", metastore_conn_id='metastore_default', schema='default', poke_interval=60 * 3, *args, **kwargs): super().__init__( poke_interval=poke_interval, *args, **kwargs) if not partition: partition = "ds='{{ ds }}'" self.metastore_conn_id = metastore_conn_id self.table = table self.partition = partition self.schema = schema def poke(self, context): if '.' in self.table: self.schema, self.table = self.table.split('.') self.log.info( 'Poking for table %s.%s, partition %s', self.schema, self.table, self.partition ) if not hasattr(self, 'hook'): hook = HiveMetastoreHook( metastore_conn_id=self.metastore_conn_id) return hook.check_for_partition( self.schema, self.table, self.partition)
[ [ [ 841, 858 ], [ 2843, 2860 ] ], [ [ 908, 926 ], [ 1007, 1025 ] ], [ [ 964, 978 ], [ 1978, 1992 ] ], [ [ 987, 1006 ] ] ]
import logging from abc import abstractmethod from dataclasses import dataclass, field from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Type from urllib.parse import quote_plus import pydantic from sqlalchemy import create_engine, inspect from sqlalchemy.engine.reflection import Inspector from sqlalchemy.sql import sqltypes as types from datahub.configuration.common import AllowDenyPattern, ConfigModel from datahub.emitter.mce_builder import DEFAULT_ENV from datahub.ingestion.api.common import PipelineContext from datahub.ingestion.api.source import Source, SourceReport from datahub.ingestion.api.workunit import MetadataWorkUnit from datahub.metadata.com.linkedin.pegasus2avro.metadata.snapshot import DatasetSnapshot from datahub.metadata.com.linkedin.pegasus2avro.mxe import MetadataChangeEvent from datahub.metadata.com.linkedin.pegasus2avro.schema import ( ArrayTypeClass, BooleanTypeClass, BytesTypeClass, DateTypeClass, EnumTypeClass, MySqlDDL, NullTypeClass, NumberTypeClass, RecordTypeClass, SchemaField, SchemaFieldDataType, SchemaMetadata, StringTypeClass, TimeTypeClass, ) from datahub.metadata.schema_classes import DatasetPropertiesClass logger: logging.Logger = logging.getLogger(__name__) def make_sqlalchemy_uri( scheme: str, username: Optional[str], password: Optional[str], at: Optional[str], db: Optional[str], uri_opts: Optional[Dict[str, Any]] = None, ) -> str: url = f"{scheme}://" if username is not None: url += f"{quote_plus(username)}" if password is not None: url += f":{quote_plus(password)}" url += "@" if at is not None: url += f"{at}" if db is not None: url += f"/{db}" if uri_opts is not None: if db is None: url += "/" params = "&".join( f"{key}={quote_plus(value)}" for (key, value) in uri_opts.items() if value ) url = f"{url}?{params}" return url @dataclass class SQLSourceReport(SourceReport): tables_scanned: int = 0 views_scanned: int = 0 filtered: List[str] = field(default_factory=list) def report_entity_scanned(self, name: str, ent_type: str = "table") -> None: """ Entity could be a view or a table """ if ent_type == "table": self.tables_scanned += 1 elif ent_type == "view": self.views_scanned += 1 else: raise KeyError(f"Unknown entity {ent_type}.") def report_dropped(self, ent_name: str) -> None: self.filtered.append(ent_name) class SQLAlchemyConfig(ConfigModel): env: str = DEFAULT_ENV options: dict = {} # Although the 'table_pattern' enables you to skip everything from certain schemas, # having another option to allow/deny on schema level is an optimization for the case when there is a large number # of schemas that one wants to skip and you want to avoid the time to needlessly fetch those tables only to filter # them out afterwards via the table_pattern. schema_pattern: AllowDenyPattern = AllowDenyPattern.allow_all() table_pattern: AllowDenyPattern = AllowDenyPattern.allow_all() view_pattern: AllowDenyPattern = AllowDenyPattern.allow_all() include_views: Optional[bool] = True include_tables: Optional[bool] = True @abstractmethod def get_sql_alchemy_url(self): pass def get_identifier(self, schema: str, table: str) -> str: return f"{schema}.{table}" def standardize_schema_table_names( self, schema: str, entity: str ) -> Tuple[str, str]: # Some SQLAlchemy dialects need a standardization step to clean the schema # and table names. See BigQuery for an example of when this is useful. return schema, entity class BasicSQLAlchemyConfig(SQLAlchemyConfig): username: Optional[str] = None password: Optional[pydantic.SecretStr] = None host_port: str database: Optional[str] = None database_alias: Optional[str] = None scheme: str def get_sql_alchemy_url(self, uri_opts=None): return make_sqlalchemy_uri( self.scheme, self.username, self.password.get_secret_value() if self.password else None, self.host_port, self.database, uri_opts=uri_opts, ) @dataclass class SqlWorkUnit(MetadataWorkUnit): pass _field_type_mapping: Dict[Type[types.TypeEngine], Type] = { types.Integer: NumberTypeClass, types.Numeric: NumberTypeClass, types.Boolean: BooleanTypeClass, types.Enum: EnumTypeClass, types._Binary: BytesTypeClass, types.LargeBinary: BytesTypeClass, types.PickleType: BytesTypeClass, types.ARRAY: ArrayTypeClass, types.String: StringTypeClass, types.Date: DateTypeClass, types.DATE: DateTypeClass, types.Time: TimeTypeClass, types.DateTime: TimeTypeClass, types.DATETIME: TimeTypeClass, types.TIMESTAMP: TimeTypeClass, types.JSON: RecordTypeClass, # When SQLAlchemy is unable to map a type into its internally hierarchy, it # assigns the NullType by default. We want to carry this warning through. types.NullType: NullTypeClass, } _known_unknown_field_types: Set[Type[types.TypeEngine]] = { types.Interval, types.CLOB, } def register_custom_type( tp: Type[types.TypeEngine], output: Optional[Type] = None ) -> None: if output: _field_type_mapping[tp] = output else: _known_unknown_field_types.add(tp) class _CustomSQLAlchemyDummyType(types.TypeDecorator): impl = types.LargeBinary def make_sqlalchemy_type(name: str) -> Type[types.TypeEngine]: # This usage of type() dynamically constructs a class. # See https://stackoverflow.com/a/15247202/5004662 and # https://docs.python.org/3/library/functions.html#type. sqlalchemy_type: Type[types.TypeEngine] = type( name, (_CustomSQLAlchemyDummyType,), { "__repr__": lambda self: f"{name}()", }, ) return sqlalchemy_type def get_column_type( sql_report: SQLSourceReport, dataset_name: str, column_type: Any ) -> SchemaFieldDataType: """ Maps SQLAlchemy types (https://docs.sqlalchemy.org/en/13/core/type_basics.html) to corresponding schema types """ TypeClass: Optional[Type] = None for sql_type in _field_type_mapping.keys(): if isinstance(column_type, sql_type): TypeClass = _field_type_mapping[sql_type] break if TypeClass is None: for sql_type in _known_unknown_field_types: if isinstance(column_type, sql_type): TypeClass = NullTypeClass break if TypeClass is None: sql_report.report_warning( dataset_name, f"unable to map type {column_type!r} to metadata schema" ) TypeClass = NullTypeClass return SchemaFieldDataType(type=TypeClass()) def get_schema_metadata( sql_report: SQLSourceReport, dataset_name: str, platform: str, columns: List[dict] ) -> SchemaMetadata: canonical_schema: List[SchemaField] = [] for column in columns: field = SchemaField( fieldPath=column["name"], type=get_column_type(sql_report, dataset_name, column["type"]), nativeDataType=column.get("full_type", repr(column["type"])), description=column.get("comment", None), nullable=column["nullable"], recursive=False, ) canonical_schema.append(field) schema_metadata = SchemaMetadata( schemaName=dataset_name, platform=f"urn:li:dataPlatform:{platform}", version=0, hash="", platformSchema=MySqlDDL(tableSchema=""), fields=canonical_schema, ) return schema_metadata class SQLAlchemySource(Source): """A Base class for all SQL Sources that use SQLAlchemy to extend""" def __init__(self, config: SQLAlchemyConfig, ctx: PipelineContext, platform: str): super().__init__(ctx) self.config = config self.platform = platform self.report = SQLSourceReport() def get_inspectors(self) -> Iterable[Inspector]: # This method can be overridden in the case that you want to dynamically # run on multiple databases. url = self.config.get_sql_alchemy_url() logger.debug(f"sql_alchemy_url={url}") engine = create_engine(url, **self.config.options) inspector = inspect(engine) yield inspector def get_workunits(self) -> Iterable[SqlWorkUnit]: sql_config = self.config if logger.isEnabledFor(logging.DEBUG): # If debug logging is enabled, we also want to echo each SQL query issued. sql_config.options["echo"] = True for inspector in self.get_inspectors(): for schema in inspector.get_schema_names(): if not sql_config.schema_pattern.allowed(schema): self.report.report_dropped(f"{schema}.*") continue if sql_config.include_tables: yield from self.loop_tables(inspector, schema, sql_config) if sql_config.include_views: yield from self.loop_views(inspector, schema, sql_config) def loop_tables( self, inspector: Inspector, schema: str, sql_config: SQLAlchemyConfig, ) -> Iterable[SqlWorkUnit]: for table in inspector.get_table_names(schema): schema, table = sql_config.standardize_schema_table_names(schema, table) dataset_name = sql_config.get_identifier(schema, table) self.report.report_entity_scanned(dataset_name, ent_type="table") if not sql_config.table_pattern.allowed(dataset_name): self.report.report_dropped(dataset_name) continue columns = inspector.get_columns(table, schema) if len(columns) == 0: self.report.report_warning(dataset_name, "missing column information") try: # SQLALchemy stubs are incomplete and missing this method. # PR: https://github.com/dropbox/sqlalchemy-stubs/pull/223. table_info: dict = inspector.get_table_comment(table, schema) # type: ignore except NotImplementedError: description: Optional[str] = None properties: Dict[str, str] = {} else: description = table_info["text"] # The "properties" field is a non-standard addition to SQLAlchemy's interface. properties = table_info.get("properties", {}) # TODO: capture inspector.get_pk_constraint # TODO: capture inspector.get_sorted_table_and_fkc_names dataset_snapshot = DatasetSnapshot( urn=f"urn:li:dataset:(urn:li:dataPlatform:{self.platform},{dataset_name},{self.config.env})", aspects=[], ) if description is not None or properties: dataset_properties = DatasetPropertiesClass( description=description, customProperties=properties, ) dataset_snapshot.aspects.append(dataset_properties) schema_metadata = get_schema_metadata( self.report, dataset_name, self.platform, columns ) dataset_snapshot.aspects.append(schema_metadata) mce = MetadataChangeEvent(proposedSnapshot=dataset_snapshot) wu = SqlWorkUnit(id=dataset_name, mce=mce) self.report.report_workunit(wu) yield wu def loop_views( self, inspector: Inspector, schema: str, sql_config: SQLAlchemyConfig, ) -> Iterable[SqlWorkUnit]: for view in inspector.get_view_names(schema): schema, view = sql_config.standardize_schema_table_names(schema, view) dataset_name = sql_config.get_identifier(schema, view) self.report.report_entity_scanned(dataset_name, ent_type="view") if not sql_config.view_pattern.allowed(dataset_name): self.report.report_dropped(dataset_name) continue try: columns = inspector.get_columns(view, schema) except KeyError: # For certain types of views, we are unable to fetch the list of columns. self.report.report_warning( dataset_name, "unable to get schema for this view" ) schema_metadata = None else: schema_metadata = get_schema_metadata( self.report, dataset_name, self.platform, columns ) try: # SQLALchemy stubs are incomplete and missing this method. # PR: https://github.com/dropbox/sqlalchemy-stubs/pull/223. view_info: dict = inspector.get_table_comment(view, schema) # type: ignore except NotImplementedError: description: Optional[str] = None properties: Dict[str, str] = {} else: description = view_info["text"] # The "properties" field is a non-standard addition to SQLAlchemy's interface. properties = view_info.get("properties", {}) try: view_definition = inspector.get_view_definition(view, schema) if view_definition is None: view_definition = "" else: # Some dialects return a TextClause instead of a raw string, # so we need to convert them to a string. view_definition = str(view_definition) except NotImplementedError: view_definition = "" properties["view_definition"] = view_definition properties["is_view"] = "True" dataset_snapshot = DatasetSnapshot( urn=f"urn:li:dataset:(urn:li:dataPlatform:{self.platform},{dataset_name},{self.config.env})", aspects=[], ) if description is not None or properties: dataset_properties = DatasetPropertiesClass( description=description, customProperties=properties, # uri=dataset_name, ) dataset_snapshot.aspects.append(dataset_properties) if schema_metadata: dataset_snapshot.aspects.append(schema_metadata) mce = MetadataChangeEvent(proposedSnapshot=dataset_snapshot) wu = SqlWorkUnit(id=dataset_name, mce=mce) self.report.report_workunit(wu) yield wu def get_report(self): return self.report def close(self): pass
[ [ [ 7, 14 ], [ 1262, 1269 ], [ 1245, 1252 ], [ 8706, 8713 ] ], [ [ 31, 45 ], [ 3392, 3406 ] ], [ [ 70, 79 ], [ 2030, 2039 ], [ 4407, 4416 ] ], [ [ 81, 86 ], [ 2158, 2163 ] ], [ [ 106, 109 ], [ 1471, 1474 ], [ 6207, 6210 ] ], [ [ 111, 115 ], [ 4486, 4490 ], [ 1461, 1465 ], [ 10523, 10527 ], [ 13273, 13277 ] ], [ [ 117, 125 ], [ 8233, 8241 ], [ 8619, 8627 ], [ 9501, 9509 ], [ 11909, 11917 ] ], [ [ 127, 131 ], [ 2146, 2150 ], [ 7105, 7109 ], [ 7159, 7163 ] ], [ [ 133, 141 ], [ 3322, 3330 ], [ 3364, 3372 ], [ 3914, 3922 ], [ 3949, 3957 ], [ 4018, 4026 ], [ 4059, 4067 ], [ 1348, 1356 ], [ 1377, 1385 ], [ 1400, 1408 ], [ 1423, 1431 ], [ 1452, 1460 ], [ 5438, 5446 ], [ 6383, 6391 ], [ 10474, 10482 ], [ 13224, 13232 ] ], [ [ 143, 146 ], [ 5300, 5303 ] ], [ [ 148, 153 ], [ 3642, 3647 ] ], [ [ 155, 159 ], [ 4491, 4495 ], [ 4515, 4519 ], [ 5304, 5308 ], [ 5406, 5410 ], [ 5447, 5451 ], [ 5707, 5711 ], [ 5931, 5935 ], [ 6392, 6396 ] ], [ [ 185, 195 ], [ 1567, 1577 ], [ 1646, 1656 ], [ 1904, 1914 ] ], [ [ 204, 212 ], [ 3958, 3966 ] ], [ [ 236, 249 ], [ 8485, 8498 ] ], [ [ 251, 258 ], [ 8547, 8554 ] ], [ [ 300, 309 ], [ 8242, 8251 ], [ 9422, 9431 ], [ 11830, 11839 ] ], [ [ 337, 354 ], [ 4529, 4534 ], [ 4565, 4570 ], [ 4601, 4606 ], [ 4638, 4643 ], [ 4669, 4674 ], [ 4704, 4709 ], [ 4743, 4748 ], [ 4781, 4786 ], [ 4814, 4819 ], [ 4849, 4854 ], [ 4880, 4885 ], [ 4911, 4916 ], [ 4942, 4947 ], [ 4977, 4982 ], [ 5012, 5017 ], [ 5048, 5053 ], [ 5239, 5244 ], [ 4496, 4501 ], [ 5336, 5341 ], [ 5356, 5361 ], [ 5309, 5314 ], [ 5615, 5620 ], [ 5648, 5653 ], [ 5411, 5416 ], [ 5712, 5717 ], [ 5936, 5941 ] ], [ [ 397, 413 ], [ 3140, 3156 ], [ 3121, 3137 ], [ 3207, 3223 ], [ 3188, 3204 ], [ 3273, 3289 ], [ 3254, 3270 ] ], [ [ 415, 426 ], [ 2662, 2673 ] ], [ [ 467, 478 ], [ 2691, 2702 ] ], [ [ 520, 535 ], [ 8035, 8050 ] ], [ [ 577, 583 ], [ 7898, 7904 ] ], [ [ 585, 597 ], [ 2062, 2074 ] ], [ [ 641, 657 ], [ 4435, 4451 ] ], [ [ 731, 746 ], [ 10926, 10941 ], [ 14133, 14148 ] ], [ [ 806, 825 ], [ 11601, 11620 ], [ 14754, 14773 ] ], [ [ 894, 908 ], [ 4794, 4808 ] ], [ [ 914, 930 ], [ 4616, 4632 ] ], [ [ 936, 950 ], [ 4684, 4698 ], [ 4723, 4737 ], [ 4761, 4775 ] ], [ [ 956, 969 ], [ 4861, 4874 ], [ 4892, 4905 ] ], [ [ 975, 988 ], [ 4650, 4663 ] ], [ [ 994, 1002 ], [ 7781, 7789 ] ], [ [ 1008, 1021 ], [ 5255, 5268 ], [ 6727, 6740 ], [ 6938, 6951 ] ], [ [ 1027, 1042 ], [ 4544, 4559 ], [ 4580, 4595 ] ], [ [ 1048, 1063 ], [ 5060, 5075 ] ], [ [ 1069, 1080 ], [ 7164, 7175 ], [ 7225, 7236 ] ], [ [ 1086, 1105 ], [ 6216, 6235 ], [ 6964, 6983 ] ], [ [ 1111, 1125 ], [ 7121, 7135 ], [ 7621, 7635 ] ], [ [ 1131, 1146 ], [ 4828, 4843 ] ], [ [ 1152, 1165 ], [ 4923, 4936 ], [ 4958, 4971 ], [ 4993, 5006 ], [ 5029, 5042 ] ], [ [ 1213, 1235 ], [ 11186, 11208 ], [ 14393, 14415 ] ], [ [ 1237, 1243 ], [ 1245, 1259 ], [ 8429, 8435 ], [ 8686, 8692 ] ], [ [ 1296, 1315 ], [ 4162, 4181 ] ], [ [ 2046, 2061 ], [ 6158, 6173 ], [ 7045, 7060 ], [ 8182, 8197 ] ], [ [ 2645, 2661 ], [ 3881, 3897 ], [ 8012, 8028 ], [ 9474, 9490 ], [ 11882, 11898 ] ], [ [ 3859, 3880 ] ], [ [ 4423, 4434 ], [ 8628, 8639 ], [ 9510, 9521 ], [ 11673, 11684 ], [ 11918, 11929 ], [ 14826, 14837 ] ], [ [ 4465, 4484 ], [ 4486, 4520 ], [ 5494, 5513 ], [ 6425, 6444 ], [ 6523, 6542 ] ], [ [ 5272, 5298 ], [ 5300, 5327 ], [ 5545, 5571 ], [ 6621, 6647 ] ], [ [ 5376, 5396 ] ], [ [ 5588, 5614 ], [ 5985, 6011 ] ], [ [ 5672, 5692 ] ], [ [ 6125, 6140 ], [ 7293, 7308 ] ], [ [ 7008, 7027 ], [ 11420, 11439 ], [ 12785, 12804 ] ], [ [ 7881, 7897 ] ] ]
""" Test script for the Unicode implementation. Written by Marc-Andre Lemburg (mal@lemburg.com). (c) Copyright CNRI, All Rights Reserved. NO WARRANTY. """ import _string import codecs import itertools import operator import struct import string import sys import unittest import warnings from test import support, string_tests # Error handling (bad decoder return) def search_function(encoding): def decode1(input, errors="strict"): return 42 # not a tuple def encode1(input, errors="strict"): return 42 # not a tuple def encode2(input, errors="strict"): return (42, 42) # no unicode def decode2(input, errors="strict"): return (42, 42) # no unicode if encoding=="test.unicode1": return (encode1, decode1, None, None) elif encoding=="test.unicode2": return (encode2, decode2, None, None) else: return None codecs.register(search_function) def duplicate_string(text): """ Try to get a fresh clone of the specified text: new object with a reference count of 1. This is a best-effort: latin1 single letters and the empty string ('') are singletons and cannot be cloned. """ return text.encode().decode() class StrSubclass(str): pass class UnicodeTest(string_tests.CommonTest, string_tests.MixinStrUnicodeUserStringTest, string_tests.MixinStrUnicodeTest, unittest.TestCase): type2test = str def checkequalnofix(self, result, object, methodname, *args): method = getattr(object, methodname) realresult = method(*args) self.assertEqual(realresult, result) self.assertTrue(type(realresult) is type(result)) # if the original is returned make sure that # this doesn't happen with subclasses if realresult is object: class usub(str): def __repr__(self): return 'usub(%r)' % str.__repr__(self) object = usub(object) method = getattr(object, methodname) realresult = method(*args) self.assertEqual(realresult, result) self.assertTrue(object is not realresult) def test_literals(self): self.assertEqual('\xff', '\u00ff') self.assertEqual('\uffff', '\U0000ffff') self.assertRaises(SyntaxError, eval, '\'\\Ufffffffe\'') self.assertRaises(SyntaxError, eval, '\'\\Uffffffff\'') self.assertRaises(SyntaxError, eval, '\'\\U%08x\'' % 0x110000) # raw strings should not have unicode escapes self.assertNotEqual(r"\u0020", " ") def test_ascii(self): if not sys.platform.startswith('java'): # Test basic sanity of repr() self.assertEqual(ascii('abc'), "'abc'") self.assertEqual(ascii('ab\\c'), "'ab\\\\c'") self.assertEqual(ascii('ab\\'), "'ab\\\\'") self.assertEqual(ascii('\\c'), "'\\\\c'") self.assertEqual(ascii('\\'), "'\\\\'") self.assertEqual(ascii('\n'), "'\\n'") self.assertEqual(ascii('\r'), "'\\r'") self.assertEqual(ascii('\t'), "'\\t'") self.assertEqual(ascii('\b'), "'\\x08'") self.assertEqual(ascii("'\""), """'\\'"'""") self.assertEqual(ascii("'\""), """'\\'"'""") self.assertEqual(ascii("'"), '''"'"''') self.assertEqual(ascii('"'), """'"'""") latin1repr = ( "'\\x00\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\t\\n\\x0b\\x0c\\r" "\\x0e\\x0f\\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a" "\\x1b\\x1c\\x1d\\x1e\\x1f !\"#$%&\\'()*+,-./0123456789:;<=>?@ABCDEFGHI" "JKLMNOPQRSTUVWXYZ[\\\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f" "\\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d" "\\x8e\\x8f\\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b" "\\x9c\\x9d\\x9e\\x9f\\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9" "\\xaa\\xab\\xac\\xad\\xae\\xaf\\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7" "\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\\xc0\\xc1\\xc2\\xc3\\xc4\\xc5" "\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\\xd0\\xd1\\xd2\\xd3" "\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\\xe0\\xe1" "\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef" "\\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd" "\\xfe\\xff'") testrepr = ascii(''.join(map(chr, range(256)))) self.assertEqual(testrepr, latin1repr) # Test ascii works on wide unicode escapes without overflow. self.assertEqual(ascii("\U00010000" * 39 + "\uffff" * 4096), ascii("\U00010000" * 39 + "\uffff" * 4096)) class WrongRepr: def __repr__(self): return b'byte-repr' self.assertRaises(TypeError, ascii, WrongRepr()) def test_repr(self): if not sys.platform.startswith('java'): # Test basic sanity of repr() self.assertEqual(repr('abc'), "'abc'") self.assertEqual(repr('ab\\c'), "'ab\\\\c'") self.assertEqual(repr('ab\\'), "'ab\\\\'") self.assertEqual(repr('\\c'), "'\\\\c'") self.assertEqual(repr('\\'), "'\\\\'") self.assertEqual(repr('\n'), "'\\n'") self.assertEqual(repr('\r'), "'\\r'") self.assertEqual(repr('\t'), "'\\t'") self.assertEqual(repr('\b'), "'\\x08'") self.assertEqual(repr("'\""), """'\\'"'""") self.assertEqual(repr("'\""), """'\\'"'""") self.assertEqual(repr("'"), '''"'"''') self.assertEqual(repr('"'), """'"'""") latin1repr = ( "'\\x00\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\t\\n\\x0b\\x0c\\r" "\\x0e\\x0f\\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a" "\\x1b\\x1c\\x1d\\x1e\\x1f !\"#$%&\\'()*+,-./0123456789:;<=>?@ABCDEFGHI" "JKLMNOPQRSTUVWXYZ[\\\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f" "\\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d" "\\x8e\\x8f\\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b" "\\x9c\\x9d\\x9e\\x9f\\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9" "\xaa\xab\xac\\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7" "\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xc1\xc2\xc3\xc4\xc5" "\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3" "\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1" "\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef" "\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd" "\xfe\xff'") testrepr = repr(''.join(map(chr, range(256)))) self.assertEqual(testrepr, latin1repr) # Test repr works on wide unicode escapes without overflow. self.assertEqual(repr("\U00010000" * 39 + "\uffff" * 4096), repr("\U00010000" * 39 + "\uffff" * 4096)) class WrongRepr: def __repr__(self): return b'byte-repr' self.assertRaises(TypeError, repr, WrongRepr()) def test_iterators(self): # Make sure unicode objects have an __iter__ method it = "\u1111\u2222\u3333".__iter__() self.assertEqual(next(it), "\u1111") self.assertEqual(next(it), "\u2222") self.assertEqual(next(it), "\u3333") self.assertRaises(StopIteration, next, it) def test_count(self): string_tests.CommonTest.test_count(self) # check mixed argument types self.checkequalnofix(3, 'aaa', 'count', 'a') self.checkequalnofix(0, 'aaa', 'count', 'b') self.checkequalnofix(3, 'aaa', 'count', 'a') self.checkequalnofix(0, 'aaa', 'count', 'b') self.checkequalnofix(0, 'aaa', 'count', 'b') self.checkequalnofix(1, 'aaa', 'count', 'a', -1) self.checkequalnofix(3, 'aaa', 'count', 'a', -10) self.checkequalnofix(2, 'aaa', 'count', 'a', 0, -1) self.checkequalnofix(0, 'aaa', 'count', 'a', 0, -10) # test mixed kinds self.checkequal(10, '\u0102' + 'a' * 10, 'count', 'a') self.checkequal(10, '\U00100304' + 'a' * 10, 'count', 'a') self.checkequal(10, '\U00100304' + '\u0102' * 10, 'count', '\u0102') self.checkequal(0, 'a' * 10, 'count', '\u0102') self.checkequal(0, 'a' * 10, 'count', '\U00100304') self.checkequal(0, '\u0102' * 10, 'count', '\U00100304') self.checkequal(10, '\u0102' + 'a_' * 10, 'count', 'a_') self.checkequal(10, '\U00100304' + 'a_' * 10, 'count', 'a_') self.checkequal(10, '\U00100304' + '\u0102_' * 10, 'count', '\u0102_') self.checkequal(0, 'a' * 10, 'count', 'a\u0102') self.checkequal(0, 'a' * 10, 'count', 'a\U00100304') self.checkequal(0, '\u0102' * 10, 'count', '\u0102\U00100304') def test_find(self): string_tests.CommonTest.test_find(self) # test implementation details of the memchr fast path self.checkequal(100, 'a' * 100 + '\u0102', 'find', '\u0102') self.checkequal(-1, 'a' * 100 + '\u0102', 'find', '\u0201') self.checkequal(-1, 'a' * 100 + '\u0102', 'find', '\u0120') self.checkequal(-1, 'a' * 100 + '\u0102', 'find', '\u0220') self.checkequal(100, 'a' * 100 + '\U00100304', 'find', '\U00100304') self.checkequal(-1, 'a' * 100 + '\U00100304', 'find', '\U00100204') self.checkequal(-1, 'a' * 100 + '\U00100304', 'find', '\U00102004') # check mixed argument types self.checkequalnofix(0, 'abcdefghiabc', 'find', 'abc') self.checkequalnofix(9, 'abcdefghiabc', 'find', 'abc', 1) self.checkequalnofix(-1, 'abcdefghiabc', 'find', 'def', 4) self.assertRaises(TypeError, 'hello'.find) self.assertRaises(TypeError, 'hello'.find, 42) # test mixed kinds self.checkequal(100, '\u0102' * 100 + 'a', 'find', 'a') self.checkequal(100, '\U00100304' * 100 + 'a', 'find', 'a') self.checkequal(100, '\U00100304' * 100 + '\u0102', 'find', '\u0102') self.checkequal(-1, 'a' * 100, 'find', '\u0102') self.checkequal(-1, 'a' * 100, 'find', '\U00100304') self.checkequal(-1, '\u0102' * 100, 'find', '\U00100304') self.checkequal(100, '\u0102' * 100 + 'a_', 'find', 'a_') self.checkequal(100, '\U00100304' * 100 + 'a_', 'find', 'a_') self.checkequal(100, '\U00100304' * 100 + '\u0102_', 'find', '\u0102_') self.checkequal(-1, 'a' * 100, 'find', 'a\u0102') self.checkequal(-1, 'a' * 100, 'find', 'a\U00100304') self.checkequal(-1, '\u0102' * 100, 'find', '\u0102\U00100304') def test_rfind(self): string_tests.CommonTest.test_rfind(self) # test implementation details of the memrchr fast path self.checkequal(0, '\u0102' + 'a' * 100 , 'rfind', '\u0102') self.checkequal(-1, '\u0102' + 'a' * 100 , 'rfind', '\u0201') self.checkequal(-1, '\u0102' + 'a' * 100 , 'rfind', '\u0120') self.checkequal(-1, '\u0102' + 'a' * 100 , 'rfind', '\u0220') self.checkequal(0, '\U00100304' + 'a' * 100, 'rfind', '\U00100304') self.checkequal(-1, '\U00100304' + 'a' * 100, 'rfind', '\U00100204') self.checkequal(-1, '\U00100304' + 'a' * 100, 'rfind', '\U00102004') # check mixed argument types self.checkequalnofix(9, 'abcdefghiabc', 'rfind', 'abc') self.checkequalnofix(12, 'abcdefghiabc', 'rfind', '') self.checkequalnofix(12, 'abcdefghiabc', 'rfind', '') # test mixed kinds self.checkequal(0, 'a' + '\u0102' * 100, 'rfind', 'a') self.checkequal(0, 'a' + '\U00100304' * 100, 'rfind', 'a') self.checkequal(0, '\u0102' + '\U00100304' * 100, 'rfind', '\u0102') self.checkequal(-1, 'a' * 100, 'rfind', '\u0102') self.checkequal(-1, 'a' * 100, 'rfind', '\U00100304') self.checkequal(-1, '\u0102' * 100, 'rfind', '\U00100304') self.checkequal(0, '_a' + '\u0102' * 100, 'rfind', '_a') self.checkequal(0, '_a' + '\U00100304' * 100, 'rfind', '_a') self.checkequal(0, '_\u0102' + '\U00100304' * 100, 'rfind', '_\u0102') self.checkequal(-1, 'a' * 100, 'rfind', '\u0102a') self.checkequal(-1, 'a' * 100, 'rfind', '\U00100304a') self.checkequal(-1, '\u0102' * 100, 'rfind', '\U00100304\u0102') def test_index(self): string_tests.CommonTest.test_index(self) self.checkequalnofix(0, 'abcdefghiabc', 'index', '') self.checkequalnofix(3, 'abcdefghiabc', 'index', 'def') self.checkequalnofix(0, 'abcdefghiabc', 'index', 'abc') self.checkequalnofix(9, 'abcdefghiabc', 'index', 'abc', 1) self.assertRaises(ValueError, 'abcdefghiabc'.index, 'hib') self.assertRaises(ValueError, 'abcdefghiab'.index, 'abc', 1) self.assertRaises(ValueError, 'abcdefghi'.index, 'ghi', 8) self.assertRaises(ValueError, 'abcdefghi'.index, 'ghi', -1) # test mixed kinds self.checkequal(100, '\u0102' * 100 + 'a', 'index', 'a') self.checkequal(100, '\U00100304' * 100 + 'a', 'index', 'a') self.checkequal(100, '\U00100304' * 100 + '\u0102', 'index', '\u0102') self.assertRaises(ValueError, ('a' * 100).index, '\u0102') self.assertRaises(ValueError, ('a' * 100).index, '\U00100304') self.assertRaises(ValueError, ('\u0102' * 100).index, '\U00100304') self.checkequal(100, '\u0102' * 100 + 'a_', 'index', 'a_') self.checkequal(100, '\U00100304' * 100 + 'a_', 'index', 'a_') self.checkequal(100, '\U00100304' * 100 + '\u0102_', 'index', '\u0102_') self.assertRaises(ValueError, ('a' * 100).index, 'a\u0102') self.assertRaises(ValueError, ('a' * 100).index, 'a\U00100304') self.assertRaises(ValueError, ('\u0102' * 100).index, '\u0102\U00100304') def test_rindex(self): string_tests.CommonTest.test_rindex(self) self.checkequalnofix(12, 'abcdefghiabc', 'rindex', '') self.checkequalnofix(3, 'abcdefghiabc', 'rindex', 'def') self.checkequalnofix(9, 'abcdefghiabc', 'rindex', 'abc') self.checkequalnofix(0, 'abcdefghiabc', 'rindex', 'abc', 0, -1) self.assertRaises(ValueError, 'abcdefghiabc'.rindex, 'hib') self.assertRaises(ValueError, 'defghiabc'.rindex, 'def', 1) self.assertRaises(ValueError, 'defghiabc'.rindex, 'abc', 0, -1) self.assertRaises(ValueError, 'abcdefghi'.rindex, 'ghi', 0, 8) self.assertRaises(ValueError, 'abcdefghi'.rindex, 'ghi', 0, -1) # test mixed kinds self.checkequal(0, 'a' + '\u0102' * 100, 'rindex', 'a') self.checkequal(0, 'a' + '\U00100304' * 100, 'rindex', 'a') self.checkequal(0, '\u0102' + '\U00100304' * 100, 'rindex', '\u0102') self.assertRaises(ValueError, ('a' * 100).rindex, '\u0102') self.assertRaises(ValueError, ('a' * 100).rindex, '\U00100304') self.assertRaises(ValueError, ('\u0102' * 100).rindex, '\U00100304') self.checkequal(0, '_a' + '\u0102' * 100, 'rindex', '_a') self.checkequal(0, '_a' + '\U00100304' * 100, 'rindex', '_a') self.checkequal(0, '_\u0102' + '\U00100304' * 100, 'rindex', '_\u0102') self.assertRaises(ValueError, ('a' * 100).rindex, '\u0102a') self.assertRaises(ValueError, ('a' * 100).rindex, '\U00100304a') self.assertRaises(ValueError, ('\u0102' * 100).rindex, '\U00100304\u0102') def test_maketrans_translate(self): # these work with plain translate() self.checkequalnofix('bbbc', 'abababc', 'translate', {ord('a'): None}) self.checkequalnofix('iiic', 'abababc', 'translate', {ord('a'): None, ord('b'): ord('i')}) self.checkequalnofix('iiix', 'abababc', 'translate', {ord('a'): None, ord('b'): ord('i'), ord('c'): 'x'}) self.checkequalnofix('c', 'abababc', 'translate', {ord('a'): None, ord('b'): ''}) self.checkequalnofix('xyyx', 'xzx', 'translate', {ord('z'): 'yy'}) # this needs maketrans() self.checkequalnofix('abababc', 'abababc', 'translate', {'b': '<i>'}) tbl = self.type2test.maketrans({'a': None, 'b': '<i>'}) self.checkequalnofix('<i><i><i>c', 'abababc', 'translate', tbl) # test alternative way of calling maketrans() tbl = self.type2test.maketrans('abc', 'xyz', 'd') self.checkequalnofix('xyzzy', 'abdcdcbdddd', 'translate', tbl) # various tests switching from ASCII to latin1 or the opposite; # same length, remove a letter, or replace with a longer string. self.assertEqual("[a]".translate(str.maketrans('a', 'X')), "[X]") self.assertEqual("[a]".translate(str.maketrans({'a': 'X'})), "[X]") self.assertEqual("[a]".translate(str.maketrans({'a': None})), "[]") self.assertEqual("[a]".translate(str.maketrans({'a': 'XXX'})), "[XXX]") self.assertEqual("[a]".translate(str.maketrans({'a': '\xe9'})), "[\xe9]") self.assertEqual('axb'.translate(str.maketrans({'a': None, 'b': '123'})), "x123") self.assertEqual('axb'.translate(str.maketrans({'a': None, 'b': '\xe9'})), "x\xe9") # test non-ASCII (don't take the fast-path) self.assertEqual("[a]".translate(str.maketrans({'a': '<\xe9>'})), "[<\xe9>]") self.assertEqual("[\xe9]".translate(str.maketrans({'\xe9': 'a'})), "[a]") self.assertEqual("[\xe9]".translate(str.maketrans({'\xe9': None})), "[]") self.assertEqual("[\xe9]".translate(str.maketrans({'\xe9': '123'})), "[123]") self.assertEqual("[a\xe9]".translate(str.maketrans({'a': '<\u20ac>'})), "[<\u20ac>\xe9]") # invalid Unicode characters invalid_char = 0x10ffff+1 for before in "a\xe9\u20ac\U0010ffff": mapping = str.maketrans({before: invalid_char}) text = "[%s]" % before self.assertRaises(ValueError, text.translate, mapping) # errors self.assertRaises(TypeError, self.type2test.maketrans) self.assertRaises(ValueError, self.type2test.maketrans, 'abc', 'defg') self.assertRaises(TypeError, self.type2test.maketrans, 2, 'def') self.assertRaises(TypeError, self.type2test.maketrans, 'abc', 2) self.assertRaises(TypeError, self.type2test.maketrans, 'abc', 'def', 2) self.assertRaises(ValueError, self.type2test.maketrans, {'xy': 2}) self.assertRaises(TypeError, self.type2test.maketrans, {(1,): 2}) self.assertRaises(TypeError, 'hello'.translate) self.assertRaises(TypeError, 'abababc'.translate, 'abc', 'xyz') def test_split(self): string_tests.CommonTest.test_split(self) # test mixed kinds for left, right in ('ba', '\u0101\u0100', '\U00010301\U00010300'): left *= 9 right *= 9 for delim in ('c', '\u0102', '\U00010302'): self.checkequal([left + right], left + right, 'split', delim) self.checkequal([left, right], left + delim + right, 'split', delim) self.checkequal([left + right], left + right, 'split', delim * 2) self.checkequal([left, right], left + delim * 2 + right, 'split', delim *2) def test_rsplit(self): string_tests.CommonTest.test_rsplit(self) # test mixed kinds for left, right in ('ba', '\u0101\u0100', '\U00010301\U00010300'): left *= 9 right *= 9 for delim in ('c', '\u0102', '\U00010302'): self.checkequal([left + right], left + right, 'rsplit', delim) self.checkequal([left, right], left + delim + right, 'rsplit', delim) self.checkequal([left + right], left + right, 'rsplit', delim * 2) self.checkequal([left, right], left + delim * 2 + right, 'rsplit', delim *2) def test_partition(self): string_tests.MixinStrUnicodeUserStringTest.test_partition(self) # test mixed kinds self.checkequal(('ABCDEFGH', '', ''), 'ABCDEFGH', 'partition', '\u4200') for left, right in ('ba', '\u0101\u0100', '\U00010301\U00010300'): left *= 9 right *= 9 for delim in ('c', '\u0102', '\U00010302'): self.checkequal((left + right, '', ''), left + right, 'partition', delim) self.checkequal((left, delim, right), left + delim + right, 'partition', delim) self.checkequal((left + right, '', ''), left + right, 'partition', delim * 2) self.checkequal((left, delim * 2, right), left + delim * 2 + right, 'partition', delim * 2) def test_rpartition(self): string_tests.MixinStrUnicodeUserStringTest.test_rpartition(self) # test mixed kinds self.checkequal(('', '', 'ABCDEFGH'), 'ABCDEFGH', 'rpartition', '\u4200') for left, right in ('ba', '\u0101\u0100', '\U00010301\U00010300'): left *= 9 right *= 9 for delim in ('c', '\u0102', '\U00010302'): self.checkequal(('', '', left + right), left + right, 'rpartition', delim) self.checkequal((left, delim, right), left + delim + right, 'rpartition', delim) self.checkequal(('', '', left + right), left + right, 'rpartition', delim * 2) self.checkequal((left, delim * 2, right), left + delim * 2 + right, 'rpartition', delim * 2) def test_join(self): string_tests.MixinStrUnicodeUserStringTest.test_join(self) class MyWrapper: def __init__(self, sval): self.sval = sval def __str__(self): return self.sval # mixed arguments self.checkequalnofix('a b c d', ' ', 'join', ['a', 'b', 'c', 'd']) self.checkequalnofix('abcd', '', 'join', ('a', 'b', 'c', 'd')) self.checkequalnofix('w x y z', ' ', 'join', string_tests.Sequence('wxyz')) self.checkequalnofix('a b c d', ' ', 'join', ['a', 'b', 'c', 'd']) self.checkequalnofix('a b c d', ' ', 'join', ['a', 'b', 'c', 'd']) self.checkequalnofix('abcd', '', 'join', ('a', 'b', 'c', 'd')) self.checkequalnofix('w x y z', ' ', 'join', string_tests.Sequence('wxyz')) self.checkraises(TypeError, ' ', 'join', ['1', '2', MyWrapper('foo')]) self.checkraises(TypeError, ' ', 'join', ['1', '2', '3', bytes()]) self.checkraises(TypeError, ' ', 'join', [1, 2, 3]) self.checkraises(TypeError, ' ', 'join', ['1', '2', 3]) @unittest.skipIf(sys.maxsize > 2**32, 'needs too much memory on a 64-bit platform') def test_join_overflow(self): size = int(sys.maxsize**0.5) + 1 seq = ('A' * size,) * size self.assertRaises(OverflowError, ''.join, seq) def test_replace(self): string_tests.CommonTest.test_replace(self) # method call forwarded from str implementation because of unicode argument self.checkequalnofix('one@two!three!', 'one!two!three!', 'replace', '!', '@', 1) self.assertRaises(TypeError, 'replace'.replace, "r", 42) # test mixed kinds for left, right in ('ba', '\u0101\u0100', '\U00010301\U00010300'): left *= 9 right *= 9 for delim in ('c', '\u0102', '\U00010302'): for repl in ('d', '\u0103', '\U00010303'): self.checkequal(left + right, left + right, 'replace', delim, repl) self.checkequal(left + repl + right, left + delim + right, 'replace', delim, repl) self.checkequal(left + right, left + right, 'replace', delim * 2, repl) self.checkequal(left + repl + right, left + delim * 2 + right, 'replace', delim * 2, repl) @support.cpython_only def test_replace_id(self): pattern = 'abc' text = 'abc def' self.assertIs(text.replace(pattern, pattern), text) def test_bytes_comparison(self): with support.check_warnings(): warnings.simplefilter('ignore', BytesWarning) self.assertEqual('abc' == b'abc', False) self.assertEqual('abc' != b'abc', True) self.assertEqual('abc' == bytearray(b'abc'), False) self.assertEqual('abc' != bytearray(b'abc'), True) def test_comparison(self): # Comparisons: self.assertEqual('abc', 'abc') self.assertTrue('abcd' > 'abc') self.assertTrue('abc' < 'abcd') if 0: # Move these tests to a Unicode collation module test... # Testing UTF-16 code point order comparisons... # No surrogates, no fixup required. self.assertTrue('\u0061' < '\u20ac') # Non surrogate below surrogate value, no fixup required self.assertTrue('\u0061' < '\ud800\udc02') # Non surrogate above surrogate value, fixup required def test_lecmp(s, s2): self.assertTrue(s < s2) def test_fixup(s): s2 = '\ud800\udc01' test_lecmp(s, s2) s2 = '\ud900\udc01' test_lecmp(s, s2) s2 = '\uda00\udc01' test_lecmp(s, s2) s2 = '\udb00\udc01' test_lecmp(s, s2) s2 = '\ud800\udd01' test_lecmp(s, s2) s2 = '\ud900\udd01' test_lecmp(s, s2) s2 = '\uda00\udd01' test_lecmp(s, s2) s2 = '\udb00\udd01' test_lecmp(s, s2) s2 = '\ud800\ude01' test_lecmp(s, s2) s2 = '\ud900\ude01' test_lecmp(s, s2) s2 = '\uda00\ude01' test_lecmp(s, s2) s2 = '\udb00\ude01' test_lecmp(s, s2) s2 = '\ud800\udfff' test_lecmp(s, s2) s2 = '\ud900\udfff' test_lecmp(s, s2) s2 = '\uda00\udfff' test_lecmp(s, s2) s2 = '\udb00\udfff' test_lecmp(s, s2) test_fixup('\ue000') test_fixup('\uff61') # Surrogates on both sides, no fixup required self.assertTrue('\ud800\udc02' < '\ud84d\udc56') def test_islower(self): super().test_islower() self.checkequalnofix(False, '\u1FFc', 'islower') self.assertFalse('\u2167'.islower()) self.assertTrue('\u2177'.islower()) # non-BMP, uppercase self.assertFalse('\U00010401'.islower()) self.assertFalse('\U00010427'.islower()) # non-BMP, lowercase self.assertTrue('\U00010429'.islower()) self.assertTrue('\U0001044E'.islower()) # non-BMP, non-cased self.assertFalse('\U0001F40D'.islower()) self.assertFalse('\U0001F46F'.islower()) def test_isupper(self): super().test_isupper() if not sys.platform.startswith('java'): self.checkequalnofix(False, '\u1FFc', 'isupper') self.assertTrue('\u2167'.isupper()) self.assertFalse('\u2177'.isupper()) # non-BMP, uppercase self.assertTrue('\U00010401'.isupper()) self.assertTrue('\U00010427'.isupper()) # non-BMP, lowercase self.assertFalse('\U00010429'.isupper()) self.assertFalse('\U0001044E'.isupper()) # non-BMP, non-cased self.assertFalse('\U0001F40D'.isupper()) self.assertFalse('\U0001F46F'.isupper()) def test_istitle(self): super().test_istitle() self.checkequalnofix(True, '\u1FFc', 'istitle') self.checkequalnofix(True, 'Greek \u1FFcitlecases ...', 'istitle') # non-BMP, uppercase + lowercase self.assertTrue('\U00010401\U00010429'.istitle()) self.assertTrue('\U00010427\U0001044E'.istitle()) # apparently there are no titlecased (Lt) non-BMP chars in Unicode 6 for ch in ['\U00010429', '\U0001044E', '\U0001F40D', '\U0001F46F']: self.assertFalse(ch.istitle(), '{!a} is not title'.format(ch)) def test_isspace(self): super().test_isspace() self.checkequalnofix(True, '\u2000', 'isspace') self.checkequalnofix(True, '\u200a', 'isspace') self.checkequalnofix(False, '\u2014', 'isspace') # apparently there are no non-BMP spaces chars in Unicode 6 for ch in ['\U00010401', '\U00010427', '\U00010429', '\U0001044E', '\U0001F40D', '\U0001F46F']: self.assertFalse(ch.isspace(), '{!a} is not space.'.format(ch)) def test_isalnum(self): super().test_isalnum() for ch in ['\U00010401', '\U00010427', '\U00010429', '\U0001044E', '\U0001D7F6', '\U00011066', '\U000104A0', '\U0001F107']: self.assertTrue(ch.isalnum(), '{!a} is alnum.'.format(ch)) def test_isalpha(self): super().test_isalpha() self.checkequalnofix(True, '\u1FFc', 'isalpha') # non-BMP, cased self.assertTrue('\U00010401'.isalpha()) self.assertTrue('\U00010427'.isalpha()) self.assertTrue('\U00010429'.isalpha()) self.assertTrue('\U0001044E'.isalpha()) # non-BMP, non-cased self.assertFalse('\U0001F40D'.isalpha()) self.assertFalse('\U0001F46F'.isalpha()) def test_isdecimal(self): self.checkequalnofix(False, '', 'isdecimal') self.checkequalnofix(False, 'a', 'isdecimal') self.checkequalnofix(True, '0', 'isdecimal') self.checkequalnofix(False, '\u2460', 'isdecimal') # CIRCLED DIGIT ONE self.checkequalnofix(False, '\xbc', 'isdecimal') # VULGAR FRACTION ONE QUARTER self.checkequalnofix(True, '\u0660', 'isdecimal') # ARABIC-INDIC DIGIT ZERO self.checkequalnofix(True, '0123456789', 'isdecimal') self.checkequalnofix(False, '0123456789a', 'isdecimal') self.checkraises(TypeError, 'abc', 'isdecimal', 42) for ch in ['\U00010401', '\U00010427', '\U00010429', '\U0001044E', '\U0001F40D', '\U0001F46F', '\U00011065', '\U0001F107']: self.assertFalse(ch.isdecimal(), '{!a} is not decimal.'.format(ch)) for ch in ['\U0001D7F6', '\U00011066', '\U000104A0']: self.assertTrue(ch.isdecimal(), '{!a} is decimal.'.format(ch)) def test_isdigit(self): super().test_isdigit() self.checkequalnofix(True, '\u2460', 'isdigit') self.checkequalnofix(False, '\xbc', 'isdigit') self.checkequalnofix(True, '\u0660', 'isdigit') for ch in ['\U00010401', '\U00010427', '\U00010429', '\U0001044E', '\U0001F40D', '\U0001F46F', '\U00011065']: self.assertFalse(ch.isdigit(), '{!a} is not a digit.'.format(ch)) for ch in ['\U0001D7F6', '\U00011066', '\U000104A0', '\U0001F107']: self.assertTrue(ch.isdigit(), '{!a} is a digit.'.format(ch)) def test_isnumeric(self): self.checkequalnofix(False, '', 'isnumeric') self.checkequalnofix(False, 'a', 'isnumeric') self.checkequalnofix(True, '0', 'isnumeric') self.checkequalnofix(True, '\u2460', 'isnumeric') self.checkequalnofix(True, '\xbc', 'isnumeric') self.checkequalnofix(True, '\u0660', 'isnumeric') self.checkequalnofix(True, '0123456789', 'isnumeric') self.checkequalnofix(False, '0123456789a', 'isnumeric') self.assertRaises(TypeError, "abc".isnumeric, 42) for ch in ['\U00010401', '\U00010427', '\U00010429', '\U0001044E', '\U0001F40D', '\U0001F46F']: self.assertFalse(ch.isnumeric(), '{!a} is not numeric.'.format(ch)) for ch in ['\U00011065', '\U0001D7F6', '\U00011066', '\U000104A0', '\U0001F107']: self.assertTrue(ch.isnumeric(), '{!a} is numeric.'.format(ch)) def test_isidentifier(self): self.assertTrue("a".isidentifier()) self.assertTrue("Z".isidentifier()) self.assertTrue("_".isidentifier()) self.assertTrue("b0".isidentifier()) self.assertTrue("bc".isidentifier()) self.assertTrue("b_".isidentifier()) self.assertTrue("µ".isidentifier()) self.assertTrue("𝔘𝔫𝔦𝔠𝔬𝔡𝔢".isidentifier()) self.assertFalse(" ".isidentifier()) self.assertFalse("[".isidentifier()) self.assertFalse("©".isidentifier()) self.assertFalse("0".isidentifier()) def test_isprintable(self): self.assertTrue("".isprintable()) self.assertTrue(" ".isprintable()) self.assertTrue("abcdefg".isprintable()) self.assertFalse("abcdefg\n".isprintable()) # some defined Unicode character self.assertTrue("\u0374".isprintable()) # undefined character self.assertFalse("\u0378".isprintable()) # single surrogate character self.assertFalse("\ud800".isprintable()) self.assertTrue('\U0001F46F'.isprintable()) self.assertFalse('\U000E0020'.isprintable()) def test_surrogates(self): for s in ('a\uD800b\uDFFF', 'a\uDFFFb\uD800', 'a\uD800b\uDFFFa', 'a\uDFFFb\uD800a'): self.assertTrue(s.islower()) self.assertFalse(s.isupper()) self.assertFalse(s.istitle()) for s in ('A\uD800B\uDFFF', 'A\uDFFFB\uD800', 'A\uD800B\uDFFFA', 'A\uDFFFB\uD800A'): self.assertFalse(s.islower()) self.assertTrue(s.isupper()) self.assertTrue(s.istitle()) for meth_name in ('islower', 'isupper', 'istitle'): meth = getattr(str, meth_name) for s in ('\uD800', '\uDFFF', '\uD800\uD800', '\uDFFF\uDFFF'): self.assertFalse(meth(s), '%a.%s() is False' % (s, meth_name)) for meth_name in ('isalpha', 'isalnum', 'isdigit', 'isspace', 'isdecimal', 'isnumeric', 'isidentifier', 'isprintable'): meth = getattr(str, meth_name) for s in ('\uD800', '\uDFFF', '\uD800\uD800', '\uDFFF\uDFFF', 'a\uD800b\uDFFF', 'a\uDFFFb\uD800', 'a\uD800b\uDFFFa', 'a\uDFFFb\uD800a'): self.assertFalse(meth(s), '%a.%s() is False' % (s, meth_name)) def test_lower(self): string_tests.CommonTest.test_lower(self) self.assertEqual('\U00010427'.lower(), '\U0001044F') self.assertEqual('\U00010427\U00010427'.lower(), '\U0001044F\U0001044F') self.assertEqual('\U00010427\U0001044F'.lower(), '\U0001044F\U0001044F') self.assertEqual('X\U00010427x\U0001044F'.lower(), 'x\U0001044Fx\U0001044F') self.assertEqual('fi'.lower(), 'fi') self.assertEqual('\u0130'.lower(), '\u0069\u0307') # Special case for GREEK CAPITAL LETTER SIGMA U+03A3 self.assertEqual('\u03a3'.lower(), '\u03c3') self.assertEqual('\u0345\u03a3'.lower(), '\u0345\u03c3') self.assertEqual('A\u0345\u03a3'.lower(), 'a\u0345\u03c2') self.assertEqual('A\u0345\u03a3a'.lower(), 'a\u0345\u03c3a') self.assertEqual('A\u0345\u03a3'.lower(), 'a\u0345\u03c2') self.assertEqual('A\u03a3\u0345'.lower(), 'a\u03c2\u0345') self.assertEqual('\u03a3\u0345 '.lower(), '\u03c3\u0345 ') self.assertEqual('\U0008fffe'.lower(), '\U0008fffe') self.assertEqual('\u2177'.lower(), '\u2177') def test_casefold(self): self.assertEqual('hello'.casefold(), 'hello') self.assertEqual('hELlo'.casefold(), 'hello') self.assertEqual('ß'.casefold(), 'ss') self.assertEqual('fi'.casefold(), 'fi') self.assertEqual('\u03a3'.casefold(), '\u03c3') self.assertEqual('A\u0345\u03a3'.casefold(), 'a\u03b9\u03c3') self.assertEqual('\u00b5'.casefold(), '\u03bc') def test_upper(self): string_tests.CommonTest.test_upper(self) self.assertEqual('\U0001044F'.upper(), '\U00010427') self.assertEqual('\U0001044F\U0001044F'.upper(), '\U00010427\U00010427') self.assertEqual('\U00010427\U0001044F'.upper(), '\U00010427\U00010427') self.assertEqual('X\U00010427x\U0001044F'.upper(), 'X\U00010427X\U00010427') self.assertEqual('fi'.upper(), 'FI') self.assertEqual('\u0130'.upper(), '\u0130') self.assertEqual('\u03a3'.upper(), '\u03a3') self.assertEqual('ß'.upper(), 'SS') self.assertEqual('\u1fd2'.upper(), '\u0399\u0308\u0300') self.assertEqual('\U0008fffe'.upper(), '\U0008fffe') self.assertEqual('\u2177'.upper(), '\u2167') def test_capitalize(self): string_tests.CommonTest.test_capitalize(self) self.assertEqual('\U0001044F'.capitalize(), '\U00010427') self.assertEqual('\U0001044F\U0001044F'.capitalize(), '\U00010427\U0001044F') self.assertEqual('\U00010427\U0001044F'.capitalize(), '\U00010427\U0001044F') self.assertEqual('\U0001044F\U00010427'.capitalize(), '\U00010427\U0001044F') self.assertEqual('X\U00010427x\U0001044F'.capitalize(), 'X\U0001044Fx\U0001044F') self.assertEqual('h\u0130'.capitalize(), 'H\u0069\u0307') exp = '\u0399\u0308\u0300\u0069\u0307' self.assertEqual('\u1fd2\u0130'.capitalize(), exp) self.assertEqual('finnish'.capitalize(), 'FInnish') self.assertEqual('A\u0345\u03a3'.capitalize(), 'A\u0345\u03c2') def test_title(self): super().test_title() self.assertEqual('\U0001044F'.title(), '\U00010427') self.assertEqual('\U0001044F\U0001044F'.title(), '\U00010427\U0001044F') self.assertEqual('\U0001044F\U0001044F \U0001044F\U0001044F'.title(), '\U00010427\U0001044F \U00010427\U0001044F') self.assertEqual('\U00010427\U0001044F \U00010427\U0001044F'.title(), '\U00010427\U0001044F \U00010427\U0001044F') self.assertEqual('\U0001044F\U00010427 \U0001044F\U00010427'.title(), '\U00010427\U0001044F \U00010427\U0001044F') self.assertEqual('X\U00010427x\U0001044F X\U00010427x\U0001044F'.title(), 'X\U0001044Fx\U0001044F X\U0001044Fx\U0001044F') self.assertEqual('fiNNISH'.title(), 'Finnish') self.assertEqual('A\u03a3 \u1fa1xy'.title(), 'A\u03c2 \u1fa9xy') self.assertEqual('A\u03a3A'.title(), 'A\u03c3a') def test_swapcase(self): string_tests.CommonTest.test_swapcase(self) self.assertEqual('\U0001044F'.swapcase(), '\U00010427') self.assertEqual('\U00010427'.swapcase(), '\U0001044F') self.assertEqual('\U0001044F\U0001044F'.swapcase(), '\U00010427\U00010427') self.assertEqual('\U00010427\U0001044F'.swapcase(), '\U0001044F\U00010427') self.assertEqual('\U0001044F\U00010427'.swapcase(), '\U00010427\U0001044F') self.assertEqual('X\U00010427x\U0001044F'.swapcase(), 'x\U0001044FX\U00010427') self.assertEqual('fi'.swapcase(), 'FI') self.assertEqual('\u0130'.swapcase(), '\u0069\u0307') # Special case for GREEK CAPITAL LETTER SIGMA U+03A3 self.assertEqual('\u03a3'.swapcase(), '\u03c3') self.assertEqual('\u0345\u03a3'.swapcase(), '\u0399\u03c3') self.assertEqual('A\u0345\u03a3'.swapcase(), 'a\u0399\u03c2') self.assertEqual('A\u0345\u03a3a'.swapcase(), 'a\u0399\u03c3A') self.assertEqual('A\u0345\u03a3'.swapcase(), 'a\u0399\u03c2') self.assertEqual('A\u03a3\u0345'.swapcase(), 'a\u03c2\u0399') self.assertEqual('\u03a3\u0345 '.swapcase(), '\u03c3\u0399 ') self.assertEqual('\u03a3'.swapcase(), '\u03c3') self.assertEqual('ß'.swapcase(), 'SS') self.assertEqual('\u1fd2'.swapcase(), '\u0399\u0308\u0300') def test_center(self): string_tests.CommonTest.test_center(self) self.assertEqual('x'.center(2, '\U0010FFFF'), 'x\U0010FFFF') self.assertEqual('x'.center(3, '\U0010FFFF'), '\U0010FFFFx\U0010FFFF') self.assertEqual('x'.center(4, '\U0010FFFF'), '\U0010FFFFx\U0010FFFF\U0010FFFF') @unittest.skipUnless(sys.maxsize == 2**31 - 1, "requires 32-bit system") @support.cpython_only def test_case_operation_overflow(self): # Issue #22643 size = 2**32//12 + 1 try: s = "ü" * size except MemoryError: self.skipTest('no enough memory (%.0f MiB required)' % (size / 2**20)) try: self.assertRaises(OverflowError, s.upper) finally: del s def test_contains(self): # Testing Unicode contains method self.assertIn('a', 'abdb') self.assertIn('a', 'bdab') self.assertIn('a', 'bdaba') self.assertIn('a', 'bdba') self.assertNotIn('a', 'bdb') self.assertIn('a', 'bdba') self.assertIn('a', ('a',1,None)) self.assertIn('a', (1,None,'a')) self.assertIn('a', ('a',1,None)) self.assertIn('a', (1,None,'a')) self.assertNotIn('a', ('x',1,'y')) self.assertNotIn('a', ('x',1,None)) self.assertNotIn('abcd', 'abcxxxx') self.assertIn('ab', 'abcd') self.assertIn('ab', 'abc') self.assertIn('ab', (1,None,'ab')) self.assertIn('', 'abc') self.assertIn('', '') self.assertIn('', 'abc') self.assertNotIn('\0', 'abc') self.assertIn('\0', '\0abc') self.assertIn('\0', 'abc\0') self.assertIn('a', '\0abc') self.assertIn('asdf', 'asdf') self.assertNotIn('asdf', 'asd') self.assertNotIn('asdf', '') self.assertRaises(TypeError, "abc".__contains__) # test mixed kinds for fill in ('a', '\u0100', '\U00010300'): fill *= 9 for delim in ('c', '\u0102', '\U00010302'): self.assertNotIn(delim, fill) self.assertIn(delim, fill + delim) self.assertNotIn(delim * 2, fill) self.assertIn(delim * 2, fill + delim * 2) def test_issue18183(self): '\U00010000\U00100000'.lower() '\U00010000\U00100000'.casefold() '\U00010000\U00100000'.upper() '\U00010000\U00100000'.capitalize() '\U00010000\U00100000'.title() '\U00010000\U00100000'.swapcase() '\U00100000'.center(3, '\U00010000') '\U00100000'.ljust(3, '\U00010000') '\U00100000'.rjust(3, '\U00010000') def test_format(self): self.assertEqual(''.format(), '') self.assertEqual('a'.format(), 'a') self.assertEqual('ab'.format(), 'ab') self.assertEqual('a{{'.format(), 'a{') self.assertEqual('a}}'.format(), 'a}') self.assertEqual('{{b'.format(), '{b') self.assertEqual('}}b'.format(), '}b') self.assertEqual('a{{b'.format(), 'a{b') # examples from the PEP: import datetime self.assertEqual("My name is {0}".format('Fred'), "My name is Fred") self.assertEqual("My name is {0[name]}".format(dict(name='Fred')), "My name is Fred") self.assertEqual("My name is {0} :-{{}}".format('Fred'), "My name is Fred :-{}") d = datetime.date(2007, 8, 18) self.assertEqual("The year is {0.year}".format(d), "The year is 2007") # classes we'll use for testing class C: def __init__(self, x=100): self._x = x def __format__(self, spec): return spec class D: def __init__(self, x): self.x = x def __format__(self, spec): return str(self.x) # class with __str__, but no __format__ class E: def __init__(self, x): self.x = x def __str__(self): return 'E(' + self.x + ')' # class with __repr__, but no __format__ or __str__ class F: def __init__(self, x): self.x = x def __repr__(self): return 'F(' + self.x + ')' # class with __format__ that forwards to string, for some format_spec's class G: def __init__(self, x): self.x = x def __str__(self): return "string is " + self.x def __format__(self, format_spec): if format_spec == 'd': return 'G(' + self.x + ')' return object.__format__(self, format_spec) class I(datetime.date): def __format__(self, format_spec): return self.strftime(format_spec) class J(int): def __format__(self, format_spec): return int.__format__(self * 2, format_spec) class M: def __init__(self, x): self.x = x def __repr__(self): return 'M(' + self.x + ')' __str__ = None class N: def __init__(self, x): self.x = x def __repr__(self): return 'N(' + self.x + ')' __format__ = None self.assertEqual(''.format(), '') self.assertEqual('abc'.format(), 'abc') self.assertEqual('{0}'.format('abc'), 'abc') self.assertEqual('{0:}'.format('abc'), 'abc') # self.assertEqual('{ 0 }'.format('abc'), 'abc') self.assertEqual('X{0}'.format('abc'), 'Xabc') self.assertEqual('{0}X'.format('abc'), 'abcX') self.assertEqual('X{0}Y'.format('abc'), 'XabcY') self.assertEqual('{1}'.format(1, 'abc'), 'abc') self.assertEqual('X{1}'.format(1, 'abc'), 'Xabc') self.assertEqual('{1}X'.format(1, 'abc'), 'abcX') self.assertEqual('X{1}Y'.format(1, 'abc'), 'XabcY') self.assertEqual('{0}'.format(-15), '-15') self.assertEqual('{0}{1}'.format(-15, 'abc'), '-15abc') self.assertEqual('{0}X{1}'.format(-15, 'abc'), '-15Xabc') self.assertEqual('{{'.format(), '{') self.assertEqual('}}'.format(), '}') self.assertEqual('{{}}'.format(), '{}') self.assertEqual('{{x}}'.format(), '{x}') self.assertEqual('{{{0}}}'.format(123), '{123}') self.assertEqual('{{{{0}}}}'.format(), '{{0}}') self.assertEqual('}}{{'.format(), '}{') self.assertEqual('}}x{{'.format(), '}x{') # weird field names self.assertEqual("{0[foo-bar]}".format({'foo-bar':'baz'}), 'baz') self.assertEqual("{0[foo bar]}".format({'foo bar':'baz'}), 'baz') self.assertEqual("{0[ ]}".format({' ':3}), '3') self.assertEqual('{foo._x}'.format(foo=C(20)), '20') self.assertEqual('{1}{0}'.format(D(10), D(20)), '2010') self.assertEqual('{0._x.x}'.format(C(D('abc'))), 'abc') self.assertEqual('{0[0]}'.format(['abc', 'def']), 'abc') self.assertEqual('{0[1]}'.format(['abc', 'def']), 'def') self.assertEqual('{0[1][0]}'.format(['abc', ['def']]), 'def') self.assertEqual('{0[1][0].x}'.format(['abc', [D('def')]]), 'def') # strings self.assertEqual('{0:.3s}'.format('abc'), 'abc') self.assertEqual('{0:.3s}'.format('ab'), 'ab') self.assertEqual('{0:.3s}'.format('abcdef'), 'abc') self.assertEqual('{0:.0s}'.format('abcdef'), '') self.assertEqual('{0:3.3s}'.format('abc'), 'abc') self.assertEqual('{0:2.3s}'.format('abc'), 'abc') self.assertEqual('{0:2.2s}'.format('abc'), 'ab') self.assertEqual('{0:3.2s}'.format('abc'), 'ab ') self.assertEqual('{0:x<0s}'.format('result'), 'result') self.assertEqual('{0:x<5s}'.format('result'), 'result') self.assertEqual('{0:x<6s}'.format('result'), 'result') self.assertEqual('{0:x<7s}'.format('result'), 'resultx') self.assertEqual('{0:x<8s}'.format('result'), 'resultxx') self.assertEqual('{0: <7s}'.format('result'), 'result ') self.assertEqual('{0:<7s}'.format('result'), 'result ') self.assertEqual('{0:>7s}'.format('result'), ' result') self.assertEqual('{0:>8s}'.format('result'), ' result') self.assertEqual('{0:^8s}'.format('result'), ' result ') self.assertEqual('{0:^9s}'.format('result'), ' result ') self.assertEqual('{0:^10s}'.format('result'), ' result ') self.assertEqual('{0:10000}'.format('a'), 'a' + ' ' * 9999) self.assertEqual('{0:10000}'.format(''), ' ' * 10000) self.assertEqual('{0:10000000}'.format(''), ' ' * 10000000) # issue 12546: use \x00 as a fill character self.assertEqual('{0:\x00<6s}'.format('foo'), 'foo\x00\x00\x00') self.assertEqual('{0:\x01<6s}'.format('foo'), 'foo\x01\x01\x01') self.assertEqual('{0:\x00^6s}'.format('foo'), '\x00foo\x00\x00') self.assertEqual('{0:^6s}'.format('foo'), ' foo ') self.assertEqual('{0:\x00<6}'.format(3), '3\x00\x00\x00\x00\x00') self.assertEqual('{0:\x01<6}'.format(3), '3\x01\x01\x01\x01\x01') self.assertEqual('{0:\x00^6}'.format(3), '\x00\x003\x00\x00\x00') self.assertEqual('{0:<6}'.format(3), '3 ') self.assertEqual('{0:\x00<6}'.format(3.14), '3.14\x00\x00') self.assertEqual('{0:\x01<6}'.format(3.14), '3.14\x01\x01') self.assertEqual('{0:\x00^6}'.format(3.14), '\x003.14\x00') self.assertEqual('{0:^6}'.format(3.14), ' 3.14 ') self.assertEqual('{0:\x00<12}'.format(3+2.0j), '(3+2j)\x00\x00\x00\x00\x00\x00') self.assertEqual('{0:\x01<12}'.format(3+2.0j), '(3+2j)\x01\x01\x01\x01\x01\x01') self.assertEqual('{0:\x00^12}'.format(3+2.0j), '\x00\x00\x00(3+2j)\x00\x00\x00') self.assertEqual('{0:^12}'.format(3+2.0j), ' (3+2j) ') # format specifiers for user defined type self.assertEqual('{0:abc}'.format(C()), 'abc') # !r, !s and !a coercions self.assertEqual('{0!s}'.format('Hello'), 'Hello') self.assertEqual('{0!s:}'.format('Hello'), 'Hello') self.assertEqual('{0!s:15}'.format('Hello'), 'Hello ') self.assertEqual('{0!s:15s}'.format('Hello'), 'Hello ') self.assertEqual('{0!r}'.format('Hello'), "'Hello'") self.assertEqual('{0!r:}'.format('Hello'), "'Hello'") self.assertEqual('{0!r}'.format(F('Hello')), 'F(Hello)') self.assertEqual('{0!r}'.format('\u0378'), "'\\u0378'") # nonprintable self.assertEqual('{0!r}'.format('\u0374'), "'\u0374'") # printable self.assertEqual('{0!r}'.format(F('\u0374')), 'F(\u0374)') self.assertEqual('{0!a}'.format('Hello'), "'Hello'") self.assertEqual('{0!a}'.format('\u0378'), "'\\u0378'") # nonprintable self.assertEqual('{0!a}'.format('\u0374'), "'\\u0374'") # printable self.assertEqual('{0!a:}'.format('Hello'), "'Hello'") self.assertEqual('{0!a}'.format(F('Hello')), 'F(Hello)') self.assertEqual('{0!a}'.format(F('\u0374')), 'F(\\u0374)') # test fallback to object.__format__ self.assertEqual('{0}'.format({}), '{}') self.assertEqual('{0}'.format([]), '[]') self.assertEqual('{0}'.format([1]), '[1]') self.assertEqual('{0:d}'.format(G('data')), 'G(data)') self.assertEqual('{0!s}'.format(G('data')), 'string is data') self.assertRaises(TypeError, '{0:^10}'.format, E('data')) self.assertRaises(TypeError, '{0:^10s}'.format, E('data')) self.assertRaises(TypeError, '{0:>15s}'.format, G('data')) self.assertEqual("{0:date: %Y-%m-%d}".format(I(year=2007, month=8, day=27)), "date: 2007-08-27") # test deriving from a builtin type and overriding __format__ self.assertEqual("{0}".format(J(10)), "20") # string format specifiers self.assertEqual('{0:}'.format('a'), 'a') # computed format specifiers self.assertEqual("{0:.{1}}".format('hello world', 5), 'hello') self.assertEqual("{0:.{1}s}".format('hello world', 5), 'hello') self.assertEqual("{0:.{precision}s}".format('hello world', precision=5), 'hello') self.assertEqual("{0:{width}.{precision}s}".format('hello world', width=10, precision=5), 'hello ') self.assertEqual("{0:{width}.{precision}s}".format('hello world', width='10', precision='5'), 'hello ') # test various errors self.assertRaises(ValueError, '{'.format) self.assertRaises(ValueError, '}'.format) self.assertRaises(ValueError, 'a{'.format) self.assertRaises(ValueError, 'a}'.format) self.assertRaises(ValueError, '{a'.format) self.assertRaises(ValueError, '}a'.format) self.assertRaises(IndexError, '{0}'.format) self.assertRaises(IndexError, '{1}'.format, 'abc') self.assertRaises(KeyError, '{x}'.format) self.assertRaises(ValueError, "}{".format) self.assertRaises(ValueError, "abc{0:{}".format) self.assertRaises(ValueError, "{0".format) self.assertRaises(IndexError, "{0.}".format) self.assertRaises(ValueError, "{0.}".format, 0) self.assertRaises(ValueError, "{0[}".format) self.assertRaises(ValueError, "{0[}".format, []) self.assertRaises(KeyError, "{0]}".format) self.assertRaises(ValueError, "{0.[]}".format, 0) self.assertRaises(ValueError, "{0..foo}".format, 0) self.assertRaises(ValueError, "{0[0}".format, 0) self.assertRaises(ValueError, "{0[0:foo}".format, 0) self.assertRaises(KeyError, "{c]}".format) self.assertRaises(ValueError, "{{ {{{0}}".format, 0) self.assertRaises(ValueError, "{0}}".format, 0) self.assertRaises(KeyError, "{foo}".format, bar=3) self.assertRaises(ValueError, "{0!x}".format, 3) self.assertRaises(ValueError, "{0!}".format, 0) self.assertRaises(ValueError, "{0!rs}".format, 0) self.assertRaises(ValueError, "{!}".format) self.assertRaises(IndexError, "{:}".format) self.assertRaises(IndexError, "{:s}".format) self.assertRaises(IndexError, "{}".format) big = "23098475029384702983476098230754973209482573" self.assertRaises(ValueError, ("{" + big + "}").format) self.assertRaises(ValueError, ("{[" + big + "]}").format, [0]) # issue 6089 self.assertRaises(ValueError, "{0[0]x}".format, [None]) self.assertRaises(ValueError, "{0[0](10)}".format, [None]) # can't have a replacement on the field name portion self.assertRaises(TypeError, '{0[{1}]}'.format, 'abcdefg', 4) # exceed maximum recursion depth self.assertRaises(ValueError, "{0:{1:{2}}}".format, 'abc', 's', '') self.assertRaises(ValueError, "{0:{1:{2:{3:{4:{5:{6}}}}}}}".format, 0, 1, 2, 3, 4, 5, 6, 7) # string format spec errors self.assertRaises(ValueError, "{0:-s}".format, '') self.assertRaises(ValueError, format, "", "-") self.assertRaises(ValueError, "{0:=s}".format, '') # Alternate formatting is not supported self.assertRaises(ValueError, format, '', '#') self.assertRaises(ValueError, format, '', '#20') # Non-ASCII self.assertEqual("{0:s}{1:s}".format("ABC", "\u0410\u0411\u0412"), 'ABC\u0410\u0411\u0412') self.assertEqual("{0:.3s}".format("ABC\u0410\u0411\u0412"), 'ABC') self.assertEqual("{0:.0s}".format("ABC\u0410\u0411\u0412"), '') self.assertEqual("{[{}]}".format({"{}": 5}), "5") self.assertEqual("{[{}]}".format({"{}" : "a"}), "a") self.assertEqual("{[{]}".format({"{" : "a"}), "a") self.assertEqual("{[}]}".format({"}" : "a"}), "a") self.assertEqual("{[[]}".format({"[" : "a"}), "a") self.assertEqual("{[!]}".format({"!" : "a"}), "a") self.assertRaises(ValueError, "{a{}b}".format, 42) self.assertRaises(ValueError, "{a{b}".format, 42) self.assertRaises(ValueError, "{[}".format, 42) self.assertEqual("0x{:0{:d}X}".format(0x0,16), "0x0000000000000000") # Blocking fallback m = M('data') self.assertEqual("{!r}".format(m), 'M(data)') self.assertRaises(TypeError, "{!s}".format, m) self.assertRaises(TypeError, "{}".format, m) n = N('data') self.assertEqual("{!r}".format(n), 'N(data)') self.assertEqual("{!s}".format(n), 'N(data)') self.assertRaises(TypeError, "{}".format, n) def test_format_map(self): self.assertEqual(''.format_map({}), '') self.assertEqual('a'.format_map({}), 'a') self.assertEqual('ab'.format_map({}), 'ab') self.assertEqual('a{{'.format_map({}), 'a{') self.assertEqual('a}}'.format_map({}), 'a}') self.assertEqual('{{b'.format_map({}), '{b') self.assertEqual('}}b'.format_map({}), '}b') self.assertEqual('a{{b'.format_map({}), 'a{b') # using mappings class Mapping(dict): def __missing__(self, key): return key self.assertEqual('{hello}'.format_map(Mapping()), 'hello') self.assertEqual('{a} {world}'.format_map(Mapping(a='hello')), 'hello world') class InternalMapping: def __init__(self): self.mapping = {'a': 'hello'} def __getitem__(self, key): return self.mapping[key] self.assertEqual('{a}'.format_map(InternalMapping()), 'hello') class C: def __init__(self, x=100): self._x = x def __format__(self, spec): return spec self.assertEqual('{foo._x}'.format_map({'foo': C(20)}), '20') # test various errors self.assertRaises(TypeError, ''.format_map) self.assertRaises(TypeError, 'a'.format_map) self.assertRaises(ValueError, '{'.format_map, {}) self.assertRaises(ValueError, '}'.format_map, {}) self.assertRaises(ValueError, 'a{'.format_map, {}) self.assertRaises(ValueError, 'a}'.format_map, {}) self.assertRaises(ValueError, '{a'.format_map, {}) self.assertRaises(ValueError, '}a'.format_map, {}) # issue #12579: can't supply positional params to format_map self.assertRaises(ValueError, '{}'.format_map, {'a' : 2}) self.assertRaises(ValueError, '{}'.format_map, 'a') self.assertRaises(ValueError, '{a} {}'.format_map, {"a" : 2, "b" : 1}) def test_format_huge_precision(self): format_string = ".{}f".format(sys.maxsize + 1) with self.assertRaises(ValueError): result = format(2.34, format_string) def test_format_huge_width(self): format_string = "{}f".format(sys.maxsize + 1) with self.assertRaises(ValueError): result = format(2.34, format_string) def test_format_huge_item_number(self): format_string = "{{{}:.6f}}".format(sys.maxsize + 1) with self.assertRaises(ValueError): result = format_string.format(2.34) def test_format_auto_numbering(self): class C: def __init__(self, x=100): self._x = x def __format__(self, spec): return spec self.assertEqual('{}'.format(10), '10') self.assertEqual('{:5}'.format('s'), 's ') self.assertEqual('{!r}'.format('s'), "'s'") self.assertEqual('{._x}'.format(C(10)), '10') self.assertEqual('{[1]}'.format([1, 2]), '2') self.assertEqual('{[a]}'.format({'a':4, 'b':2}), '4') self.assertEqual('a{}b{}c'.format(0, 1), 'a0b1c') self.assertEqual('a{:{}}b'.format('x', '^10'), 'a x b') self.assertEqual('a{:{}x}b'.format(20, '#'), 'a0x14b') # can't mix and match numbering and auto-numbering self.assertRaises(ValueError, '{}{1}'.format, 1, 2) self.assertRaises(ValueError, '{1}{}'.format, 1, 2) self.assertRaises(ValueError, '{:{1}}'.format, 1, 2) self.assertRaises(ValueError, '{0:{}}'.format, 1, 2) # can mix and match auto-numbering and named self.assertEqual('{f}{}'.format(4, f='test'), 'test4') self.assertEqual('{}{f}'.format(4, f='test'), '4test') self.assertEqual('{:{f}}{g}{}'.format(1, 3, g='g', f=2), ' 1g3') self.assertEqual('{f:{}}{}{g}'.format(2, 4, f=1, g='g'), ' 14g') def test_formatting(self): string_tests.MixinStrUnicodeUserStringTest.test_formatting(self) # Testing Unicode formatting strings... self.assertEqual("%s, %s" % ("abc", "abc"), 'abc, abc') self.assertEqual("%s, %s, %i, %f, %5.2f" % ("abc", "abc", 1, 2, 3), 'abc, abc, 1, 2.000000, 3.00') self.assertEqual("%s, %s, %i, %f, %5.2f" % ("abc", "abc", 1, -2, 3), 'abc, abc, 1, -2.000000, 3.00') self.assertEqual("%s, %s, %i, %f, %5.2f" % ("abc", "abc", -1, -2, 3.5), 'abc, abc, -1, -2.000000, 3.50') self.assertEqual("%s, %s, %i, %f, %5.2f" % ("abc", "abc", -1, -2, 3.57), 'abc, abc, -1, -2.000000, 3.57') self.assertEqual("%s, %s, %i, %f, %5.2f" % ("abc", "abc", -1, -2, 1003.57), 'abc, abc, -1, -2.000000, 1003.57') if not sys.platform.startswith('java'): self.assertEqual("%r, %r" % (b"abc", "abc"), "b'abc', 'abc'") self.assertEqual("%r" % ("\u1234",), "'\u1234'") self.assertEqual("%a" % ("\u1234",), "'\\u1234'") self.assertEqual("%(x)s, %(y)s" % {'x':"abc", 'y':"def"}, 'abc, def') self.assertEqual("%(x)s, %(\xfc)s" % {'x':"abc", '\xfc':"def"}, 'abc, def') self.assertEqual('%c' % 0x1234, '\u1234') self.assertEqual('%c' % 0x21483, '\U00021483') self.assertRaises(OverflowError, "%c".__mod__, (0x110000,)) self.assertEqual('%c' % '\U00021483', '\U00021483') self.assertRaises(TypeError, "%c".__mod__, "aa") self.assertRaises(ValueError, "%.1\u1032f".__mod__, (1.0/3)) self.assertRaises(TypeError, "%i".__mod__, "aa") # formatting jobs delegated from the string implementation: self.assertEqual('...%(foo)s...' % {'foo':"abc"}, '...abc...') self.assertEqual('...%(foo)s...' % {'foo':"abc"}, '...abc...') self.assertEqual('...%(foo)s...' % {'foo':"abc"}, '...abc...') self.assertEqual('...%(foo)s...' % {'foo':"abc"}, '...abc...') self.assertEqual('...%(foo)s...' % {'foo':"abc",'def':123}, '...abc...') self.assertEqual('...%(foo)s...' % {'foo':"abc",'def':123}, '...abc...') self.assertEqual('...%s...%s...%s...%s...' % (1,2,3,"abc"), '...1...2...3...abc...') self.assertEqual('...%%...%%s...%s...%s...%s...%s...' % (1,2,3,"abc"), '...%...%s...1...2...3...abc...') self.assertEqual('...%s...' % "abc", '...abc...') self.assertEqual('%*s' % (5,'abc',), ' abc') self.assertEqual('%*s' % (-5,'abc',), 'abc ') self.assertEqual('%*.*s' % (5,2,'abc',), ' ab') self.assertEqual('%*.*s' % (5,3,'abc',), ' abc') self.assertEqual('%i %*.*s' % (10, 5,3,'abc',), '10 abc') self.assertEqual('%i%s %*.*s' % (10, 3, 5, 3, 'abc',), '103 abc') self.assertEqual('%c' % 'a', 'a') class Wrapper: def __str__(self): return '\u1234' self.assertEqual('%s' % Wrapper(), '\u1234') # issue 3382 NAN = float('nan') INF = float('inf') self.assertEqual('%f' % NAN, 'nan') self.assertEqual('%F' % NAN, 'NAN') self.assertEqual('%f' % INF, 'inf') self.assertEqual('%F' % INF, 'INF') # PEP 393 self.assertEqual('%.1s' % "a\xe9\u20ac", 'a') self.assertEqual('%.2s' % "a\xe9\u20ac", 'a\xe9') #issue 19995 class PseudoInt: def __init__(self, value): self.value = int(value) def __int__(self): return self.value def __index__(self): return self.value class PseudoFloat: def __init__(self, value): self.value = float(value) def __int__(self): return int(self.value) pi = PseudoFloat(3.1415) letter_m = PseudoInt(109) self.assertEqual('%x' % 42, '2a') self.assertEqual('%X' % 15, 'F') self.assertEqual('%o' % 9, '11') self.assertEqual('%c' % 109, 'm') self.assertEqual('%x' % letter_m, '6d') self.assertEqual('%X' % letter_m, '6D') self.assertEqual('%o' % letter_m, '155') self.assertEqual('%c' % letter_m, 'm') self.assertRaisesRegex(TypeError, '%x format: an integer is required, not float', operator.mod, '%x', 3.14), self.assertRaisesRegex(TypeError, '%X format: an integer is required, not float', operator.mod, '%X', 2.11), self.assertRaisesRegex(TypeError, '%o format: an integer is required, not float', operator.mod, '%o', 1.79), self.assertRaisesRegex(TypeError, '%x format: an integer is required, not PseudoFloat', operator.mod, '%x', pi), self.assertRaises(TypeError, operator.mod, '%c', pi), def test_formatting_with_enum(self): # issue18780 import enum class Float(float, enum.Enum): PI = 3.1415926 class Int(enum.IntEnum): IDES = 15 class Str(str, enum.Enum): ABC = 'abc' # Testing Unicode formatting strings... self.assertEqual("%s, %s" % (Str.ABC, Str.ABC), 'Str.ABC, Str.ABC') self.assertEqual("%s, %s, %d, %i, %u, %f, %5.2f" % (Str.ABC, Str.ABC, Int.IDES, Int.IDES, Int.IDES, Float.PI, Float.PI), 'Str.ABC, Str.ABC, 15, 15, 15, 3.141593, 3.14') # formatting jobs delegated from the string implementation: self.assertEqual('...%(foo)s...' % {'foo':Str.ABC}, '...Str.ABC...') self.assertEqual('...%(foo)s...' % {'foo':Int.IDES}, '...Int.IDES...') self.assertEqual('...%(foo)i...' % {'foo':Int.IDES}, '...15...') self.assertEqual('...%(foo)d...' % {'foo':Int.IDES}, '...15...') self.assertEqual('...%(foo)u...' % {'foo':Int.IDES, 'def':Float.PI}, '...15...') self.assertEqual('...%(foo)f...' % {'foo':Float.PI,'def':123}, '...3.141593...') def test_formatting_huge_precision(self): format_string = "%.{}f".format(sys.maxsize + 1) with self.assertRaises(ValueError): result = format_string % 2.34 def test_issue28598_strsubclass_rhs(self): # A subclass of str with an __rmod__ method should be able to hook # into the % operator class SubclassedStr(str): def __rmod__(self, other): return 'Success, self.__rmod__({!r}) was called'.format(other) self.assertEqual('lhs %% %r' % SubclassedStr('rhs'), "Success, self.__rmod__('lhs %% %r') was called") @support.cpython_only def test_formatting_huge_precision_c_limits(self): from _testcapi import INT_MAX format_string = "%.{}f".format(INT_MAX + 1) with self.assertRaises(ValueError): result = format_string % 2.34 def test_formatting_huge_width(self): format_string = "%{}f".format(sys.maxsize + 1) with self.assertRaises(ValueError): result = format_string % 2.34 def test_startswith_endswith_errors(self): for meth in ('foo'.startswith, 'foo'.endswith): with self.assertRaises(TypeError) as cm: meth(['f']) exc = str(cm.exception) self.assertIn('str', exc) self.assertIn('tuple', exc) @support.run_with_locale('LC_ALL', 'de_DE', 'fr_FR') def test_format_float(self): # should not format with a comma, but always with C locale self.assertEqual('1.0', '%.1f' % 1.0) def test_constructor(self): # unicode(obj) tests (this maps to PyObject_Unicode() at C level) self.assertEqual( str('unicode remains unicode'), 'unicode remains unicode' ) for text in ('ascii', '\xe9', '\u20ac', '\U0010FFFF'): subclass = StrSubclass(text) self.assertEqual(str(subclass), text) self.assertEqual(len(subclass), len(text)) if text == 'ascii': self.assertEqual(subclass.encode('ascii'), b'ascii') self.assertEqual(subclass.encode('utf-8'), b'ascii') self.assertEqual( str('strings are converted to unicode'), 'strings are converted to unicode' ) class StringCompat: def __init__(self, x): self.x = x def __str__(self): return self.x self.assertEqual( str(StringCompat('__str__ compatible objects are recognized')), '__str__ compatible objects are recognized' ) # unicode(obj) is compatible to str(): o = StringCompat('unicode(obj) is compatible to str()') self.assertEqual(str(o), 'unicode(obj) is compatible to str()') self.assertEqual(str(o), 'unicode(obj) is compatible to str()') for obj in (123, 123.45, 123): self.assertEqual(str(obj), str(str(obj))) # unicode(obj, encoding, error) tests (this maps to # PyUnicode_FromEncodedObject() at C level) if not sys.platform.startswith('java'): self.assertRaises( TypeError, str, 'decoding unicode is not supported', 'utf-8', 'strict' ) self.assertEqual( str(b'strings are decoded to unicode', 'utf-8', 'strict'), 'strings are decoded to unicode' ) if not sys.platform.startswith('java'): self.assertEqual( str( memoryview(b'character buffers are decoded to unicode'), 'utf-8', 'strict' ), 'character buffers are decoded to unicode' ) self.assertRaises(TypeError, str, 42, 42, 42) def test_constructor_keyword_args(self): """Pass various keyword argument combinations to the constructor.""" # The object argument can be passed as a keyword. self.assertEqual(str(object='foo'), 'foo') self.assertEqual(str(object=b'foo', encoding='utf-8'), 'foo') # The errors argument without encoding triggers "decode" mode. self.assertEqual(str(b'foo', errors='strict'), 'foo') # not "b'foo'" self.assertEqual(str(object=b'foo', errors='strict'), 'foo') def test_constructor_defaults(self): """Check the constructor argument defaults.""" # The object argument defaults to '' or b''. self.assertEqual(str(), '') self.assertEqual(str(errors='strict'), '') utf8_cent = '¢'.encode('utf-8') # The encoding argument defaults to utf-8. self.assertEqual(str(utf8_cent, errors='strict'), '¢') # The errors argument defaults to strict. self.assertRaises(UnicodeDecodeError, str, utf8_cent, encoding='ascii') def test_codecs_utf7(self): utfTests = [ ('A\u2262\u0391.', b'A+ImIDkQ.'), # RFC2152 example ('Hi Mom -\u263a-!', b'Hi Mom -+Jjo--!'), # RFC2152 example ('\u65E5\u672C\u8A9E', b'+ZeVnLIqe-'), # RFC2152 example ('Item 3 is \u00a31.', b'Item 3 is +AKM-1.'), # RFC2152 example ('+', b'+-'), ('+-', b'+--'), ('+?', b'+-?'), (r'\?', b'+AFw?'), ('+?', b'+-?'), (r'\\?', b'+AFwAXA?'), (r'\\\?', b'+AFwAXABc?'), (r'++--', b'+-+---'), ('\U000abcde', b'+2m/c3g-'), # surrogate pairs ('/', b'/'), ] for (x, y) in utfTests: self.assertEqual(x.encode('utf-7'), y) # Unpaired surrogates are passed through self.assertEqual('\uD801'.encode('utf-7'), b'+2AE-') self.assertEqual('\uD801x'.encode('utf-7'), b'+2AE-x') self.assertEqual('\uDC01'.encode('utf-7'), b'+3AE-') self.assertEqual('\uDC01x'.encode('utf-7'), b'+3AE-x') self.assertEqual(b'+2AE-'.decode('utf-7'), '\uD801') self.assertEqual(b'+2AE-x'.decode('utf-7'), '\uD801x') self.assertEqual(b'+3AE-'.decode('utf-7'), '\uDC01') self.assertEqual(b'+3AE-x'.decode('utf-7'), '\uDC01x') self.assertEqual('\uD801\U000abcde'.encode('utf-7'), b'+2AHab9ze-') self.assertEqual(b'+2AHab9ze-'.decode('utf-7'), '\uD801\U000abcde') # Issue #2242: crash on some Windows/MSVC versions self.assertEqual(b'+\xc1'.decode('utf-7', 'ignore'), '') # Direct encoded characters set_d = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'(),-./:?" # Optional direct characters set_o = '!"#$%&*;<=>@[]^_`{|}' for c in set_d: self.assertEqual(c.encode('utf7'), c.encode('ascii')) self.assertEqual(c.encode('ascii').decode('utf7'), c) for c in set_o: self.assertEqual(c.encode('ascii').decode('utf7'), c) def test_codecs_utf8(self): self.assertEqual(''.encode('utf-8'), b'') self.assertEqual('\u20ac'.encode('utf-8'), b'\xe2\x82\xac') self.assertEqual('\U00010002'.encode('utf-8'), b'\xf0\x90\x80\x82') self.assertEqual('\U00023456'.encode('utf-8'), b'\xf0\xa3\x91\x96') self.assertEqual('\ud800'.encode('utf-8', 'surrogatepass'), b'\xed\xa0\x80') self.assertEqual('\udc00'.encode('utf-8', 'surrogatepass'), b'\xed\xb0\x80') self.assertEqual(('\U00010002'*10).encode('utf-8'), b'\xf0\x90\x80\x82'*10) self.assertEqual( '\u6b63\u78ba\u306b\u8a00\u3046\u3068\u7ffb\u8a33\u306f' '\u3055\u308c\u3066\u3044\u307e\u305b\u3093\u3002\u4e00' '\u90e8\u306f\u30c9\u30a4\u30c4\u8a9e\u3067\u3059\u304c' '\u3001\u3042\u3068\u306f\u3067\u305f\u3089\u3081\u3067' '\u3059\u3002\u5b9f\u969b\u306b\u306f\u300cWenn ist das' ' Nunstuck git und'.encode('utf-8'), b'\xe6\xad\xa3\xe7\xa2\xba\xe3\x81\xab\xe8\xa8\x80\xe3\x81' b'\x86\xe3\x81\xa8\xe7\xbf\xbb\xe8\xa8\xb3\xe3\x81\xaf\xe3' b'\x81\x95\xe3\x82\x8c\xe3\x81\xa6\xe3\x81\x84\xe3\x81\xbe' b'\xe3\x81\x9b\xe3\x82\x93\xe3\x80\x82\xe4\xb8\x80\xe9\x83' b'\xa8\xe3\x81\xaf\xe3\x83\x89\xe3\x82\xa4\xe3\x83\x84\xe8' b'\xaa\x9e\xe3\x81\xa7\xe3\x81\x99\xe3\x81\x8c\xe3\x80\x81' b'\xe3\x81\x82\xe3\x81\xa8\xe3\x81\xaf\xe3\x81\xa7\xe3\x81' b'\x9f\xe3\x82\x89\xe3\x82\x81\xe3\x81\xa7\xe3\x81\x99\xe3' b'\x80\x82\xe5\xae\x9f\xe9\x9a\x9b\xe3\x81\xab\xe3\x81\xaf' b'\xe3\x80\x8cWenn ist das Nunstuck git und' ) # UTF-8 specific decoding tests self.assertEqual(str(b'\xf0\xa3\x91\x96', 'utf-8'), '\U00023456' ) self.assertEqual(str(b'\xf0\x90\x80\x82', 'utf-8'), '\U00010002' ) self.assertEqual(str(b'\xe2\x82\xac', 'utf-8'), '\u20ac' ) # Other possible utf-8 test cases: # * strict decoding testing for all of the # UTF8_ERROR cases in PyUnicode_DecodeUTF8 def test_utf8_decode_valid_sequences(self): sequences = [ # single byte (b'\x00', '\x00'), (b'a', 'a'), (b'\x7f', '\x7f'), # 2 bytes (b'\xc2\x80', '\x80'), (b'\xdf\xbf', '\u07ff'), # 3 bytes (b'\xe0\xa0\x80', '\u0800'), (b'\xed\x9f\xbf', '\ud7ff'), (b'\xee\x80\x80', '\uE000'), (b'\xef\xbf\xbf', '\uffff'), # 4 bytes (b'\xF0\x90\x80\x80', '\U00010000'), (b'\xf4\x8f\xbf\xbf', '\U0010FFFF') ] for seq, res in sequences: self.assertEqual(seq.decode('utf-8'), res) def test_utf8_decode_invalid_sequences(self): # continuation bytes in a sequence of 2, 3, or 4 bytes continuation_bytes = [bytes([x]) for x in range(0x80, 0xC0)] # start bytes of a 2-byte sequence equivalent to code points < 0x7F invalid_2B_seq_start_bytes = [bytes([x]) for x in range(0xC0, 0xC2)] # start bytes of a 4-byte sequence equivalent to code points > 0x10FFFF invalid_4B_seq_start_bytes = [bytes([x]) for x in range(0xF5, 0xF8)] invalid_start_bytes = ( continuation_bytes + invalid_2B_seq_start_bytes + invalid_4B_seq_start_bytes + [bytes([x]) for x in range(0xF7, 0x100)] ) for byte in invalid_start_bytes: self.assertRaises(UnicodeDecodeError, byte.decode, 'utf-8') for sb in invalid_2B_seq_start_bytes: for cb in continuation_bytes: self.assertRaises(UnicodeDecodeError, (sb+cb).decode, 'utf-8') for sb in invalid_4B_seq_start_bytes: for cb1 in continuation_bytes[:3]: for cb3 in continuation_bytes[:3]: self.assertRaises(UnicodeDecodeError, (sb+cb1+b'\x80'+cb3).decode, 'utf-8') for cb in [bytes([x]) for x in range(0x80, 0xA0)]: self.assertRaises(UnicodeDecodeError, (b'\xE0'+cb+b'\x80').decode, 'utf-8') self.assertRaises(UnicodeDecodeError, (b'\xE0'+cb+b'\xBF').decode, 'utf-8') # surrogates for cb in [bytes([x]) for x in range(0xA0, 0xC0)]: self.assertRaises(UnicodeDecodeError, (b'\xED'+cb+b'\x80').decode, 'utf-8') self.assertRaises(UnicodeDecodeError, (b'\xED'+cb+b'\xBF').decode, 'utf-8') for cb in [bytes([x]) for x in range(0x80, 0x90)]: self.assertRaises(UnicodeDecodeError, (b'\xF0'+cb+b'\x80\x80').decode, 'utf-8') self.assertRaises(UnicodeDecodeError, (b'\xF0'+cb+b'\xBF\xBF').decode, 'utf-8') for cb in [bytes([x]) for x in range(0x90, 0xC0)]: self.assertRaises(UnicodeDecodeError, (b'\xF4'+cb+b'\x80\x80').decode, 'utf-8') self.assertRaises(UnicodeDecodeError, (b'\xF4'+cb+b'\xBF\xBF').decode, 'utf-8') def test_issue8271(self): # Issue #8271: during the decoding of an invalid UTF-8 byte sequence, # only the start byte and the continuation byte(s) are now considered # invalid, instead of the number of bytes specified by the start byte. # See http://www.unicode.org/versions/Unicode5.2.0/ch03.pdf (page 95, # table 3-8, Row 2) for more information about the algorithm used. FFFD = '\ufffd' sequences = [ # invalid start bytes (b'\x80', FFFD), # continuation byte (b'\x80\x80', FFFD*2), # 2 continuation bytes (b'\xc0', FFFD), (b'\xc0\xc0', FFFD*2), (b'\xc1', FFFD), (b'\xc1\xc0', FFFD*2), (b'\xc0\xc1', FFFD*2), # with start byte of a 2-byte sequence (b'\xc2', FFFD), # only the start byte (b'\xc2\xc2', FFFD*2), # 2 start bytes (b'\xc2\xc2\xc2', FFFD*3), # 3 start bytes (b'\xc2\x41', FFFD+'A'), # invalid continuation byte # with start byte of a 3-byte sequence (b'\xe1', FFFD), # only the start byte (b'\xe1\xe1', FFFD*2), # 2 start bytes (b'\xe1\xe1\xe1', FFFD*3), # 3 start bytes (b'\xe1\xe1\xe1\xe1', FFFD*4), # 4 start bytes (b'\xe1\x80', FFFD), # only 1 continuation byte (b'\xe1\x41', FFFD+'A'), # invalid continuation byte (b'\xe1\x41\x80', FFFD+'A'+FFFD), # invalid cb followed by valid cb (b'\xe1\x41\x41', FFFD+'AA'), # 2 invalid continuation bytes (b'\xe1\x80\x41', FFFD+'A'), # only 1 valid continuation byte (b'\xe1\x80\xe1\x41', FFFD*2+'A'), # 1 valid and the other invalid (b'\xe1\x41\xe1\x80', FFFD+'A'+FFFD), # 1 invalid and the other valid # with start byte of a 4-byte sequence (b'\xf1', FFFD), # only the start byte (b'\xf1\xf1', FFFD*2), # 2 start bytes (b'\xf1\xf1\xf1', FFFD*3), # 3 start bytes (b'\xf1\xf1\xf1\xf1', FFFD*4), # 4 start bytes (b'\xf1\xf1\xf1\xf1\xf1', FFFD*5), # 5 start bytes (b'\xf1\x80', FFFD), # only 1 continuation bytes (b'\xf1\x80\x80', FFFD), # only 2 continuation bytes (b'\xf1\x80\x41', FFFD+'A'), # 1 valid cb and 1 invalid (b'\xf1\x80\x41\x41', FFFD+'AA'), # 1 valid cb and 1 invalid (b'\xf1\x80\x80\x41', FFFD+'A'), # 2 valid cb and 1 invalid (b'\xf1\x41\x80', FFFD+'A'+FFFD), # 1 invalid cv and 1 valid (b'\xf1\x41\x80\x80', FFFD+'A'+FFFD*2), # 1 invalid cb and 2 invalid (b'\xf1\x41\x80\x41', FFFD+'A'+FFFD+'A'), # 2 invalid cb and 1 invalid (b'\xf1\x41\x41\x80', FFFD+'AA'+FFFD), # 1 valid cb and 1 invalid (b'\xf1\x41\xf1\x80', FFFD+'A'+FFFD), (b'\xf1\x41\x80\xf1', FFFD+'A'+FFFD*2), (b'\xf1\xf1\x80\x41', FFFD*2+'A'), (b'\xf1\x41\xf1\xf1', FFFD+'A'+FFFD*2), # with invalid start byte of a 4-byte sequence (rfc2279) (b'\xf5', FFFD), # only the start byte (b'\xf5\xf5', FFFD*2), # 2 start bytes (b'\xf5\x80', FFFD*2), # only 1 continuation byte (b'\xf5\x80\x80', FFFD*3), # only 2 continuation byte (b'\xf5\x80\x80\x80', FFFD*4), # 3 continuation bytes (b'\xf5\x80\x41', FFFD*2+'A'), # 1 valid cb and 1 invalid (b'\xf5\x80\x41\xf5', FFFD*2+'A'+FFFD), (b'\xf5\x41\x80\x80\x41', FFFD+'A'+FFFD*2+'A'), # with invalid start byte of a 5-byte sequence (rfc2279) (b'\xf8', FFFD), # only the start byte (b'\xf8\xf8', FFFD*2), # 2 start bytes (b'\xf8\x80', FFFD*2), # only one continuation byte (b'\xf8\x80\x41', FFFD*2 + 'A'), # 1 valid cb and 1 invalid (b'\xf8\x80\x80\x80\x80', FFFD*5), # invalid 5 bytes seq with 5 bytes # with invalid start byte of a 6-byte sequence (rfc2279) (b'\xfc', FFFD), # only the start byte (b'\xfc\xfc', FFFD*2), # 2 start bytes (b'\xfc\x80\x80', FFFD*3), # only 2 continuation bytes (b'\xfc\x80\x80\x80\x80\x80', FFFD*6), # 6 continuation bytes # invalid start byte (b'\xfe', FFFD), (b'\xfe\x80\x80', FFFD*3), # other sequences (b'\xf1\x80\x41\x42\x43', '\ufffd\x41\x42\x43'), (b'\xf1\x80\xff\x42\x43', '\ufffd\ufffd\x42\x43'), (b'\xf1\x80\xc2\x81\x43', '\ufffd\x81\x43'), (b'\x61\xF1\x80\x80\xE1\x80\xC2\x62\x80\x63\x80\xBF\x64', '\x61\uFFFD\uFFFD\uFFFD\x62\uFFFD\x63\uFFFD\uFFFD\x64'), ] for n, (seq, res) in enumerate(sequences): self.assertRaises(UnicodeDecodeError, seq.decode, 'utf-8', 'strict') self.assertEqual(seq.decode('utf-8', 'replace'), res) self.assertEqual((seq+b'b').decode('utf-8', 'replace'), res+'b') self.assertEqual(seq.decode('utf-8', 'ignore'), res.replace('\uFFFD', '')) def assertCorrectUTF8Decoding(self, seq, res, err): """ Check that an invalid UTF-8 sequence raises a UnicodeDecodeError when 'strict' is used, returns res when 'replace' is used, and that doesn't return anything when 'ignore' is used. """ with self.assertRaises(UnicodeDecodeError) as cm: seq.decode('utf-8') exc = cm.exception self.assertIn(err, str(exc)) self.assertEqual(seq.decode('utf-8', 'replace'), res) self.assertEqual((b'aaaa' + seq + b'bbbb').decode('utf-8', 'replace'), 'aaaa' + res + 'bbbb') res = res.replace('\ufffd', '') self.assertEqual(seq.decode('utf-8', 'ignore'), res) self.assertEqual((b'aaaa' + seq + b'bbbb').decode('utf-8', 'ignore'), 'aaaa' + res + 'bbbb') def test_invalid_start_byte(self): """ Test that an 'invalid start byte' error is raised when the first byte is not in the ASCII range or is not a valid start byte of a 2-, 3-, or 4-bytes sequence. The invalid start byte is replaced with a single U+FFFD when errors='replace'. E.g. <80> is a continuation byte and can appear only after a start byte. """ FFFD = '\ufffd' for byte in b'\x80\xA0\x9F\xBF\xC0\xC1\xF5\xFF': self.assertCorrectUTF8Decoding(bytes([byte]), '\ufffd', 'invalid start byte') def test_unexpected_end_of_data(self): """ Test that an 'unexpected end of data' error is raised when the string ends after a start byte of a 2-, 3-, or 4-bytes sequence without having enough continuation bytes. The incomplete sequence is replaced with a single U+FFFD when errors='replace'. E.g. in the sequence <F3 80 80>, F3 is the start byte of a 4-bytes sequence, but it's followed by only 2 valid continuation bytes and the last continuation bytes is missing. Note: the continuation bytes must be all valid, if one of them is invalid another error will be raised. """ sequences = [ 'C2', 'DF', 'E0 A0', 'E0 BF', 'E1 80', 'E1 BF', 'EC 80', 'EC BF', 'ED 80', 'ED 9F', 'EE 80', 'EE BF', 'EF 80', 'EF BF', 'F0 90', 'F0 BF', 'F0 90 80', 'F0 90 BF', 'F0 BF 80', 'F0 BF BF', 'F1 80', 'F1 BF', 'F1 80 80', 'F1 80 BF', 'F1 BF 80', 'F1 BF BF', 'F3 80', 'F3 BF', 'F3 80 80', 'F3 80 BF', 'F3 BF 80', 'F3 BF BF', 'F4 80', 'F4 8F', 'F4 80 80', 'F4 80 BF', 'F4 8F 80', 'F4 8F BF' ] FFFD = '\ufffd' for seq in sequences: self.assertCorrectUTF8Decoding(bytes.fromhex(seq), '\ufffd', 'unexpected end of data') def test_invalid_cb_for_2bytes_seq(self): """ Test that an 'invalid continuation byte' error is raised when the continuation byte of a 2-bytes sequence is invalid. The start byte is replaced by a single U+FFFD and the second byte is handled separately when errors='replace'. E.g. in the sequence <C2 41>, C2 is the start byte of a 2-bytes sequence, but 41 is not a valid continuation byte because it's the ASCII letter 'A'. """ FFFD = '\ufffd' FFFDx2 = FFFD * 2 sequences = [ ('C2 00', FFFD+'\x00'), ('C2 7F', FFFD+'\x7f'), ('C2 C0', FFFDx2), ('C2 FF', FFFDx2), ('DF 00', FFFD+'\x00'), ('DF 7F', FFFD+'\x7f'), ('DF C0', FFFDx2), ('DF FF', FFFDx2), ] for seq, res in sequences: self.assertCorrectUTF8Decoding(bytes.fromhex(seq), res, 'invalid continuation byte') def test_invalid_cb_for_3bytes_seq(self): """ Test that an 'invalid continuation byte' error is raised when the continuation byte(s) of a 3-bytes sequence are invalid. When errors='replace', if the first continuation byte is valid, the first two bytes (start byte + 1st cb) are replaced by a single U+FFFD and the third byte is handled separately, otherwise only the start byte is replaced with a U+FFFD and the other continuation bytes are handled separately. E.g. in the sequence <E1 80 41>, E1 is the start byte of a 3-bytes sequence, 80 is a valid continuation byte, but 41 is not a valid cb because it's the ASCII letter 'A'. Note: when the start byte is E0 or ED, the valid ranges for the first continuation byte are limited to A0..BF and 80..9F respectively. Python 2 used to consider all the bytes in range 80..BF valid when the start byte was ED. This is fixed in Python 3. """ FFFD = '\ufffd' FFFDx2 = FFFD * 2 sequences = [ ('E0 00', FFFD+'\x00'), ('E0 7F', FFFD+'\x7f'), ('E0 80', FFFDx2), ('E0 9F', FFFDx2), ('E0 C0', FFFDx2), ('E0 FF', FFFDx2), ('E0 A0 00', FFFD+'\x00'), ('E0 A0 7F', FFFD+'\x7f'), ('E0 A0 C0', FFFDx2), ('E0 A0 FF', FFFDx2), ('E0 BF 00', FFFD+'\x00'), ('E0 BF 7F', FFFD+'\x7f'), ('E0 BF C0', FFFDx2), ('E0 BF FF', FFFDx2), ('E1 00', FFFD+'\x00'), ('E1 7F', FFFD+'\x7f'), ('E1 C0', FFFDx2), ('E1 FF', FFFDx2), ('E1 80 00', FFFD+'\x00'), ('E1 80 7F', FFFD+'\x7f'), ('E1 80 C0', FFFDx2), ('E1 80 FF', FFFDx2), ('E1 BF 00', FFFD+'\x00'), ('E1 BF 7F', FFFD+'\x7f'), ('E1 BF C0', FFFDx2), ('E1 BF FF', FFFDx2), ('EC 00', FFFD+'\x00'), ('EC 7F', FFFD+'\x7f'), ('EC C0', FFFDx2), ('EC FF', FFFDx2), ('EC 80 00', FFFD+'\x00'), ('EC 80 7F', FFFD+'\x7f'), ('EC 80 C0', FFFDx2), ('EC 80 FF', FFFDx2), ('EC BF 00', FFFD+'\x00'), ('EC BF 7F', FFFD+'\x7f'), ('EC BF C0', FFFDx2), ('EC BF FF', FFFDx2), ('ED 00', FFFD+'\x00'), ('ED 7F', FFFD+'\x7f'), ('ED A0', FFFDx2), ('ED BF', FFFDx2), # see note ^ ('ED C0', FFFDx2), ('ED FF', FFFDx2), ('ED 80 00', FFFD+'\x00'), ('ED 80 7F', FFFD+'\x7f'), ('ED 80 C0', FFFDx2), ('ED 80 FF', FFFDx2), ('ED 9F 00', FFFD+'\x00'), ('ED 9F 7F', FFFD+'\x7f'), ('ED 9F C0', FFFDx2), ('ED 9F FF', FFFDx2), ('EE 00', FFFD+'\x00'), ('EE 7F', FFFD+'\x7f'), ('EE C0', FFFDx2), ('EE FF', FFFDx2), ('EE 80 00', FFFD+'\x00'), ('EE 80 7F', FFFD+'\x7f'), ('EE 80 C0', FFFDx2), ('EE 80 FF', FFFDx2), ('EE BF 00', FFFD+'\x00'), ('EE BF 7F', FFFD+'\x7f'), ('EE BF C0', FFFDx2), ('EE BF FF', FFFDx2), ('EF 00', FFFD+'\x00'), ('EF 7F', FFFD+'\x7f'), ('EF C0', FFFDx2), ('EF FF', FFFDx2), ('EF 80 00', FFFD+'\x00'), ('EF 80 7F', FFFD+'\x7f'), ('EF 80 C0', FFFDx2), ('EF 80 FF', FFFDx2), ('EF BF 00', FFFD+'\x00'), ('EF BF 7F', FFFD+'\x7f'), ('EF BF C0', FFFDx2), ('EF BF FF', FFFDx2), ] for seq, res in sequences: self.assertCorrectUTF8Decoding(bytes.fromhex(seq), res, 'invalid continuation byte') def test_invalid_cb_for_4bytes_seq(self): """ Test that an 'invalid continuation byte' error is raised when the continuation byte(s) of a 4-bytes sequence are invalid. When errors='replace',the start byte and all the following valid continuation bytes are replaced with a single U+FFFD, and all the bytes starting from the first invalid continuation bytes (included) are handled separately. E.g. in the sequence <E1 80 41>, E1 is the start byte of a 3-bytes sequence, 80 is a valid continuation byte, but 41 is not a valid cb because it's the ASCII letter 'A'. Note: when the start byte is E0 or ED, the valid ranges for the first continuation byte are limited to A0..BF and 80..9F respectively. However, when the start byte is ED, Python 2 considers all the bytes in range 80..BF valid. This is fixed in Python 3. """ FFFD = '\ufffd' FFFDx2 = FFFD * 2 sequences = [ ('F0 00', FFFD+'\x00'), ('F0 7F', FFFD+'\x7f'), ('F0 80', FFFDx2), ('F0 8F', FFFDx2), ('F0 C0', FFFDx2), ('F0 FF', FFFDx2), ('F0 90 00', FFFD+'\x00'), ('F0 90 7F', FFFD+'\x7f'), ('F0 90 C0', FFFDx2), ('F0 90 FF', FFFDx2), ('F0 BF 00', FFFD+'\x00'), ('F0 BF 7F', FFFD+'\x7f'), ('F0 BF C0', FFFDx2), ('F0 BF FF', FFFDx2), ('F0 90 80 00', FFFD+'\x00'), ('F0 90 80 7F', FFFD+'\x7f'), ('F0 90 80 C0', FFFDx2), ('F0 90 80 FF', FFFDx2), ('F0 90 BF 00', FFFD+'\x00'), ('F0 90 BF 7F', FFFD+'\x7f'), ('F0 90 BF C0', FFFDx2), ('F0 90 BF FF', FFFDx2), ('F0 BF 80 00', FFFD+'\x00'), ('F0 BF 80 7F', FFFD+'\x7f'), ('F0 BF 80 C0', FFFDx2), ('F0 BF 80 FF', FFFDx2), ('F0 BF BF 00', FFFD+'\x00'), ('F0 BF BF 7F', FFFD+'\x7f'), ('F0 BF BF C0', FFFDx2), ('F0 BF BF FF', FFFDx2), ('F1 00', FFFD+'\x00'), ('F1 7F', FFFD+'\x7f'), ('F1 C0', FFFDx2), ('F1 FF', FFFDx2), ('F1 80 00', FFFD+'\x00'), ('F1 80 7F', FFFD+'\x7f'), ('F1 80 C0', FFFDx2), ('F1 80 FF', FFFDx2), ('F1 BF 00', FFFD+'\x00'), ('F1 BF 7F', FFFD+'\x7f'), ('F1 BF C0', FFFDx2), ('F1 BF FF', FFFDx2), ('F1 80 80 00', FFFD+'\x00'), ('F1 80 80 7F', FFFD+'\x7f'), ('F1 80 80 C0', FFFDx2), ('F1 80 80 FF', FFFDx2), ('F1 80 BF 00', FFFD+'\x00'), ('F1 80 BF 7F', FFFD+'\x7f'), ('F1 80 BF C0', FFFDx2), ('F1 80 BF FF', FFFDx2), ('F1 BF 80 00', FFFD+'\x00'), ('F1 BF 80 7F', FFFD+'\x7f'), ('F1 BF 80 C0', FFFDx2), ('F1 BF 80 FF', FFFDx2), ('F1 BF BF 00', FFFD+'\x00'), ('F1 BF BF 7F', FFFD+'\x7f'), ('F1 BF BF C0', FFFDx2), ('F1 BF BF FF', FFFDx2), ('F3 00', FFFD+'\x00'), ('F3 7F', FFFD+'\x7f'), ('F3 C0', FFFDx2), ('F3 FF', FFFDx2), ('F3 80 00', FFFD+'\x00'), ('F3 80 7F', FFFD+'\x7f'), ('F3 80 C0', FFFDx2), ('F3 80 FF', FFFDx2), ('F3 BF 00', FFFD+'\x00'), ('F3 BF 7F', FFFD+'\x7f'), ('F3 BF C0', FFFDx2), ('F3 BF FF', FFFDx2), ('F3 80 80 00', FFFD+'\x00'), ('F3 80 80 7F', FFFD+'\x7f'), ('F3 80 80 C0', FFFDx2), ('F3 80 80 FF', FFFDx2), ('F3 80 BF 00', FFFD+'\x00'), ('F3 80 BF 7F', FFFD+'\x7f'), ('F3 80 BF C0', FFFDx2), ('F3 80 BF FF', FFFDx2), ('F3 BF 80 00', FFFD+'\x00'), ('F3 BF 80 7F', FFFD+'\x7f'), ('F3 BF 80 C0', FFFDx2), ('F3 BF 80 FF', FFFDx2), ('F3 BF BF 00', FFFD+'\x00'), ('F3 BF BF 7F', FFFD+'\x7f'), ('F3 BF BF C0', FFFDx2), ('F3 BF BF FF', FFFDx2), ('F4 00', FFFD+'\x00'), ('F4 7F', FFFD+'\x7f'), ('F4 90', FFFDx2), ('F4 BF', FFFDx2), ('F4 C0', FFFDx2), ('F4 FF', FFFDx2), ('F4 80 00', FFFD+'\x00'), ('F4 80 7F', FFFD+'\x7f'), ('F4 80 C0', FFFDx2), ('F4 80 FF', FFFDx2), ('F4 8F 00', FFFD+'\x00'), ('F4 8F 7F', FFFD+'\x7f'), ('F4 8F C0', FFFDx2), ('F4 8F FF', FFFDx2), ('F4 80 80 00', FFFD+'\x00'), ('F4 80 80 7F', FFFD+'\x7f'), ('F4 80 80 C0', FFFDx2), ('F4 80 80 FF', FFFDx2), ('F4 80 BF 00', FFFD+'\x00'), ('F4 80 BF 7F', FFFD+'\x7f'), ('F4 80 BF C0', FFFDx2), ('F4 80 BF FF', FFFDx2), ('F4 8F 80 00', FFFD+'\x00'), ('F4 8F 80 7F', FFFD+'\x7f'), ('F4 8F 80 C0', FFFDx2), ('F4 8F 80 FF', FFFDx2), ('F4 8F BF 00', FFFD+'\x00'), ('F4 8F BF 7F', FFFD+'\x7f'), ('F4 8F BF C0', FFFDx2), ('F4 8F BF FF', FFFDx2) ] for seq, res in sequences: self.assertCorrectUTF8Decoding(bytes.fromhex(seq), res, 'invalid continuation byte') def test_codecs_idna(self): # Test whether trailing dot is preserved self.assertEqual("www.python.org.".encode("idna"), b"www.python.org.") def test_codecs_errors(self): # Error handling (encoding) self.assertRaises(UnicodeError, 'Andr\202 x'.encode, 'ascii') self.assertRaises(UnicodeError, 'Andr\202 x'.encode, 'ascii','strict') self.assertEqual('Andr\202 x'.encode('ascii','ignore'), b"Andr x") self.assertEqual('Andr\202 x'.encode('ascii','replace'), b"Andr? x") self.assertEqual('Andr\202 x'.encode('ascii', 'replace'), 'Andr\202 x'.encode('ascii', errors='replace')) self.assertEqual('Andr\202 x'.encode('ascii', 'ignore'), 'Andr\202 x'.encode(encoding='ascii', errors='ignore')) # Error handling (decoding) self.assertRaises(UnicodeError, str, b'Andr\202 x', 'ascii') self.assertRaises(UnicodeError, str, b'Andr\202 x', 'ascii', 'strict') self.assertEqual(str(b'Andr\202 x', 'ascii', 'ignore'), "Andr x") self.assertEqual(str(b'Andr\202 x', 'ascii', 'replace'), 'Andr\uFFFD x') self.assertEqual(str(b'\202 x', 'ascii', 'replace'), '\uFFFD x') # Error handling (unknown character names) self.assertEqual(b"\\N{foo}xx".decode("unicode-escape", "ignore"), "xx") # Error handling (truncated escape sequence) self.assertRaises(UnicodeError, b"\\".decode, "unicode-escape") self.assertRaises(TypeError, b"hello".decode, "test.unicode1") self.assertRaises(TypeError, str, b"hello", "test.unicode2") self.assertRaises(TypeError, "hello".encode, "test.unicode1") self.assertRaises(TypeError, "hello".encode, "test.unicode2") # Error handling (wrong arguments) self.assertRaises(TypeError, "hello".encode, 42, 42, 42) # Error handling (lone surrogate in PyUnicode_TransformDecimalToASCII()) self.assertRaises(UnicodeError, float, "\ud800") self.assertRaises(UnicodeError, float, "\udf00") self.assertRaises(UnicodeError, complex, "\ud800") self.assertRaises(UnicodeError, complex, "\udf00") def test_codecs(self): # Encoding self.assertEqual('hello'.encode('ascii'), b'hello') self.assertEqual('hello'.encode('utf-7'), b'hello') self.assertEqual('hello'.encode('utf-8'), b'hello') self.assertEqual('hello'.encode('utf-8'), b'hello') self.assertEqual('hello'.encode('utf-16-le'), b'h\000e\000l\000l\000o\000') self.assertEqual('hello'.encode('utf-16-be'), b'\000h\000e\000l\000l\000o') self.assertEqual('hello'.encode('latin-1'), b'hello') # Default encoding is utf-8 self.assertEqual('\u2603'.encode(), b'\xe2\x98\x83') # Roundtrip safety for BMP (just the first 1024 chars) for c in range(1024): u = chr(c) for encoding in ('utf-7', 'utf-8', 'utf-16', 'utf-16-le', 'utf-16-be', 'raw_unicode_escape', 'unicode_escape', 'unicode_internal'): with warnings.catch_warnings(): # unicode-internal has been deprecated warnings.simplefilter("ignore", DeprecationWarning) self.assertEqual(str(u.encode(encoding),encoding), u) # Roundtrip safety for BMP (just the first 256 chars) for c in range(256): u = chr(c) for encoding in ('latin-1',): self.assertEqual(str(u.encode(encoding),encoding), u) # Roundtrip safety for BMP (just the first 128 chars) for c in range(128): u = chr(c) for encoding in ('ascii',): self.assertEqual(str(u.encode(encoding),encoding), u) # Roundtrip safety for non-BMP (just a few chars) with warnings.catch_warnings(): # unicode-internal has been deprecated warnings.simplefilter("ignore", DeprecationWarning) u = '\U00010001\U00020002\U00030003\U00040004\U00050005' for encoding in ('utf-8', 'utf-16', 'utf-16-le', 'utf-16-be', 'raw_unicode_escape', 'unicode_escape', 'unicode_internal'): self.assertEqual(str(u.encode(encoding),encoding), u) # UTF-8 must be roundtrip safe for all code points # (except surrogates, which are forbidden). u = ''.join(map(chr, list(range(0, 0xd800)) + list(range(0xe000, 0x110000)))) for encoding in ('utf-8',): self.assertEqual(str(u.encode(encoding),encoding), u) def test_codecs_charmap(self): # 0-127 s = bytes(range(128)) for encoding in ( 'cp037', 'cp1026', 'cp273', 'cp437', 'cp500', 'cp720', 'cp737', 'cp775', 'cp850', 'cp852', 'cp855', 'cp858', 'cp860', 'cp861', 'cp862', 'cp863', 'cp865', 'cp866', 'cp1125', 'iso8859_10', 'iso8859_13', 'iso8859_14', 'iso8859_15', 'iso8859_2', 'iso8859_3', 'iso8859_4', 'iso8859_5', 'iso8859_6', 'iso8859_7', 'iso8859_9', 'koi8_r', 'koi8_t', 'koi8_u', 'kz1048', 'latin_1', 'mac_cyrillic', 'mac_latin2', 'cp1250', 'cp1251', 'cp1252', 'cp1253', 'cp1254', 'cp1255', 'cp1256', 'cp1257', 'cp1258', 'cp856', 'cp857', 'cp864', 'cp869', 'cp874', 'mac_greek', 'mac_iceland','mac_roman', 'mac_turkish', 'cp1006', 'iso8859_8', ### These have undefined mappings: #'cp424', ### These fail the round-trip: #'cp875' ): self.assertEqual(str(s, encoding).encode(encoding), s) # 128-255 s = bytes(range(128, 256)) for encoding in ( 'cp037', 'cp1026', 'cp273', 'cp437', 'cp500', 'cp720', 'cp737', 'cp775', 'cp850', 'cp852', 'cp855', 'cp858', 'cp860', 'cp861', 'cp862', 'cp863', 'cp865', 'cp866', 'cp1125', 'iso8859_10', 'iso8859_13', 'iso8859_14', 'iso8859_15', 'iso8859_2', 'iso8859_4', 'iso8859_5', 'iso8859_9', 'koi8_r', 'koi8_u', 'latin_1', 'mac_cyrillic', 'mac_latin2', ### These have undefined mappings: #'cp1250', 'cp1251', 'cp1252', 'cp1253', 'cp1254', 'cp1255', #'cp1256', 'cp1257', 'cp1258', #'cp424', 'cp856', 'cp857', 'cp864', 'cp869', 'cp874', #'iso8859_3', 'iso8859_6', 'iso8859_7', 'koi8_t', 'kz1048', #'mac_greek', 'mac_iceland','mac_roman', 'mac_turkish', ### These fail the round-trip: #'cp1006', 'cp875', 'iso8859_8', ): self.assertEqual(str(s, encoding).encode(encoding), s) def test_concatenation(self): self.assertEqual(("abc" "def"), "abcdef") self.assertEqual(("abc" "def"), "abcdef") self.assertEqual(("abc" "def"), "abcdef") self.assertEqual(("abc" "def" "ghi"), "abcdefghi") self.assertEqual(("abc" "def" "ghi"), "abcdefghi") def test_printing(self): class BitBucket: def write(self, text): pass out = BitBucket() print('abc', file=out) print('abc', 'def', file=out) print('abc', 'def', file=out) print('abc', 'def', file=out) print('abc\n', file=out) print('abc\n', end=' ', file=out) print('abc\n', end=' ', file=out) print('def\n', file=out) print('def\n', file=out) def test_ucs4(self): x = '\U00100000' y = x.encode("raw-unicode-escape").decode("raw-unicode-escape") self.assertEqual(x, y) y = br'\U00100000' x = y.decode("raw-unicode-escape").encode("raw-unicode-escape") self.assertEqual(x, y) y = br'\U00010000' x = y.decode("raw-unicode-escape").encode("raw-unicode-escape") self.assertEqual(x, y) try: br'\U11111111'.decode("raw-unicode-escape") except UnicodeDecodeError as e: self.assertEqual(e.start, 0) self.assertEqual(e.end, 10) else: self.fail("Should have raised UnicodeDecodeError") def test_conversion(self): # Make sure __str__() works properly class ObjectToStr: def __str__(self): return "foo" class StrSubclassToStr(str): def __str__(self): return "foo" class StrSubclassToStrSubclass(str): def __new__(cls, content=""): return str.__new__(cls, 2*content) def __str__(self): return self self.assertEqual(str(ObjectToStr()), "foo") self.assertEqual(str(StrSubclassToStr("bar")), "foo") s = str(StrSubclassToStrSubclass("foo")) self.assertEqual(s, "foofoo") self.assertIs(type(s), StrSubclassToStrSubclass) s = StrSubclass(StrSubclassToStrSubclass("foo")) self.assertEqual(s, "foofoo") self.assertIs(type(s), StrSubclass) def test_unicode_repr(self): class s1: def __repr__(self): return '\\n' class s2: def __repr__(self): return '\\n' self.assertEqual(repr(s1()), '\\n') self.assertEqual(repr(s2()), '\\n') def test_printable_repr(self): self.assertEqual(repr('\U00010000'), "'%c'" % (0x10000,)) # printable self.assertEqual(repr('\U00014000'), "'\\U00014000'") # nonprintable # This test only affects 32-bit platforms because expandtabs can only take # an int as the max value, not a 64-bit C long. If expandtabs is changed # to take a 64-bit long, this test should apply to all platforms. @unittest.skipIf(sys.maxsize > (1 << 32) or struct.calcsize('P') != 4, 'only applies to 32-bit platforms') def test_expandtabs_overflows_gracefully(self): self.assertRaises(OverflowError, 't\tt\t'.expandtabs, sys.maxsize) @support.cpython_only def test_expandtabs_optimization(self): s = 'abc' self.assertIs(s.expandtabs(), s) def test_raiseMemError(self): if struct.calcsize('P') == 8: # 64 bits pointers ascii_struct_size = 48 compact_struct_size = 72 else: # 32 bits pointers ascii_struct_size = 24 compact_struct_size = 36 for char in ('a', '\xe9', '\u20ac', '\U0010ffff'): code = ord(char) if code < 0x100: char_size = 1 # sizeof(Py_UCS1) struct_size = ascii_struct_size elif code < 0x10000: char_size = 2 # sizeof(Py_UCS2) struct_size = compact_struct_size else: char_size = 4 # sizeof(Py_UCS4) struct_size = compact_struct_size # Note: sys.maxsize is half of the actual max allocation because of # the signedness of Py_ssize_t. Strings of maxlen-1 should in principle # be allocatable, given enough memory. maxlen = ((sys.maxsize - struct_size) // char_size) alloc = lambda: char * maxlen self.assertRaises(MemoryError, alloc) self.assertRaises(MemoryError, alloc) def test_format_subclass(self): class S(str): def __str__(self): return '__str__ overridden' s = S('xxx') self.assertEqual("%s" % s, '__str__ overridden') self.assertEqual("{}".format(s), '__str__ overridden') def test_subclass_add(self): class S(str): def __add__(self, o): return "3" self.assertEqual(S("4") + S("5"), "3") class S(str): def __iadd__(self, o): return "3" s = S("1") s += "4" self.assertEqual(s, "3") def test_getnewargs(self): text = 'abc' args = text.__getnewargs__() self.assertIsNot(args[0], text) self.assertEqual(args[0], text) self.assertEqual(len(args), 1) def test_resize(self): for length in range(1, 100, 7): # generate a fresh string (refcount=1) text = 'a' * length + 'b' with support.check_warnings(('unicode_internal codec has been ' 'deprecated', DeprecationWarning)): # fill wstr internal field abc = text.encode('unicode_internal') self.assertEqual(abc.decode('unicode_internal'), text) # resize text: wstr field must be cleared and then recomputed text += 'c' abcdef = text.encode('unicode_internal') self.assertNotEqual(abc, abcdef) self.assertEqual(abcdef.decode('unicode_internal'), text) def test_compare(self): # Issue #17615 N = 10 ascii = 'a' * N ascii2 = 'z' * N latin = '\x80' * N latin2 = '\xff' * N bmp = '\u0100' * N bmp2 = '\uffff' * N astral = '\U00100000' * N astral2 = '\U0010ffff' * N strings = ( ascii, ascii2, latin, latin2, bmp, bmp2, astral, astral2) for text1, text2 in itertools.combinations(strings, 2): equal = (text1 is text2) self.assertEqual(text1 == text2, equal) self.assertEqual(text1 != text2, not equal) if equal: self.assertTrue(text1 <= text2) self.assertTrue(text1 >= text2) # text1 is text2: duplicate strings to skip the "str1 == str2" # optimization in unicode_compare_eq() and really compare # character per character copy1 = duplicate_string(text1) copy2 = duplicate_string(text2) self.assertIsNot(copy1, copy2) self.assertTrue(copy1 == copy2) self.assertFalse(copy1 != copy2) self.assertTrue(copy1 <= copy2) self.assertTrue(copy2 >= copy2) self.assertTrue(ascii < ascii2) self.assertTrue(ascii < latin) self.assertTrue(ascii < bmp) self.assertTrue(ascii < astral) self.assertFalse(ascii >= ascii2) self.assertFalse(ascii >= latin) self.assertFalse(ascii >= bmp) self.assertFalse(ascii >= astral) self.assertFalse(latin < ascii) self.assertTrue(latin < latin2) self.assertTrue(latin < bmp) self.assertTrue(latin < astral) self.assertTrue(latin >= ascii) self.assertFalse(latin >= latin2) self.assertFalse(latin >= bmp) self.assertFalse(latin >= astral) self.assertFalse(bmp < ascii) self.assertFalse(bmp < latin) self.assertTrue(bmp < bmp2) self.assertTrue(bmp < astral) self.assertTrue(bmp >= ascii) self.assertTrue(bmp >= latin) self.assertFalse(bmp >= bmp2) self.assertFalse(bmp >= astral) self.assertFalse(astral < ascii) self.assertFalse(astral < latin) self.assertFalse(astral < bmp2) self.assertTrue(astral < astral2) self.assertTrue(astral >= ascii) self.assertTrue(astral >= latin) self.assertTrue(astral >= bmp2) self.assertFalse(astral >= astral2) def test_free_after_iterating(self): support.check_free_after_iterating(self, iter, str) support.check_free_after_iterating(self, reversed, str) class CAPITest(unittest.TestCase): # Test PyUnicode_FromFormat() def test_from_format(self): support.import_module('ctypes') from ctypes import ( pythonapi, py_object, sizeof, c_int, c_long, c_longlong, c_ssize_t, c_uint, c_ulong, c_ulonglong, c_size_t, c_void_p) name = "PyUnicode_FromFormat" _PyUnicode_FromFormat = getattr(pythonapi, name) _PyUnicode_FromFormat.restype = py_object def PyUnicode_FromFormat(format, *args): cargs = tuple( py_object(arg) if isinstance(arg, str) else arg for arg in args) return _PyUnicode_FromFormat(format, *cargs) def check_format(expected, format, *args): text = PyUnicode_FromFormat(format, *args) self.assertEqual(expected, text) # ascii format, non-ascii argument check_format('ascii\x7f=unicode\xe9', b'ascii\x7f=%U', 'unicode\xe9') # non-ascii format, ascii argument: ensure that PyUnicode_FromFormatV() # raises an error self.assertRaisesRegex(ValueError, r'^PyUnicode_FromFormatV\(\) expects an ASCII-encoded format ' 'string, got a non-ASCII byte: 0xe9$', PyUnicode_FromFormat, b'unicode\xe9=%s', 'ascii') # test "%c" check_format('\uabcd', b'%c', c_int(0xabcd)) check_format('\U0010ffff', b'%c', c_int(0x10ffff)) with self.assertRaises(OverflowError): PyUnicode_FromFormat(b'%c', c_int(0x110000)) # Issue #18183 check_format('\U00010000\U00100000', b'%c%c', c_int(0x10000), c_int(0x100000)) # test "%" check_format('%', b'%') check_format('%', b'%%') check_format('%s', b'%%s') check_format('[%]', b'[%%]') check_format('%abc', b'%%%s', b'abc') # truncated string check_format('abc', b'%.3s', b'abcdef') check_format('abc[\ufffd', b'%.5s', 'abc[\u20ac]'.encode('utf8')) check_format("'\\u20acABC'", b'%A', '\u20acABC') check_format("'\\u20", b'%.5A', '\u20acABCDEF') check_format("'\u20acABC'", b'%R', '\u20acABC') check_format("'\u20acA", b'%.3R', '\u20acABCDEF') check_format('\u20acAB', b'%.3S', '\u20acABCDEF') check_format('\u20acAB', b'%.3U', '\u20acABCDEF') check_format('\u20acAB', b'%.3V', '\u20acABCDEF', None) check_format('abc[\ufffd', b'%.5V', None, 'abc[\u20ac]'.encode('utf8')) # following tests comes from #7330 # test width modifier and precision modifier with %S check_format("repr= abc", b'repr=%5S', 'abc') check_format("repr=ab", b'repr=%.2S', 'abc') check_format("repr= ab", b'repr=%5.2S', 'abc') # test width modifier and precision modifier with %R check_format("repr= 'abc'", b'repr=%8R', 'abc') check_format("repr='ab", b'repr=%.3R', 'abc') check_format("repr= 'ab", b'repr=%5.3R', 'abc') # test width modifier and precision modifier with %A check_format("repr= 'abc'", b'repr=%8A', 'abc') check_format("repr='ab", b'repr=%.3A', 'abc') check_format("repr= 'ab", b'repr=%5.3A', 'abc') # test width modifier and precision modifier with %s check_format("repr= abc", b'repr=%5s', b'abc') check_format("repr=ab", b'repr=%.2s', b'abc') check_format("repr= ab", b'repr=%5.2s', b'abc') # test width modifier and precision modifier with %U check_format("repr= abc", b'repr=%5U', 'abc') check_format("repr=ab", b'repr=%.2U', 'abc') check_format("repr= ab", b'repr=%5.2U', 'abc') # test width modifier and precision modifier with %V check_format("repr= abc", b'repr=%5V', 'abc', b'123') check_format("repr=ab", b'repr=%.2V', 'abc', b'123') check_format("repr= ab", b'repr=%5.2V', 'abc', b'123') check_format("repr= 123", b'repr=%5V', None, b'123') check_format("repr=12", b'repr=%.2V', None, b'123') check_format("repr= 12", b'repr=%5.2V', None, b'123') # test integer formats (%i, %d, %u) check_format('010', b'%03i', c_int(10)) check_format('0010', b'%0.4i', c_int(10)) check_format('-123', b'%i', c_int(-123)) check_format('-123', b'%li', c_long(-123)) check_format('-123', b'%lli', c_longlong(-123)) check_format('-123', b'%zi', c_ssize_t(-123)) check_format('-123', b'%d', c_int(-123)) check_format('-123', b'%ld', c_long(-123)) check_format('-123', b'%lld', c_longlong(-123)) check_format('-123', b'%zd', c_ssize_t(-123)) check_format('123', b'%u', c_uint(123)) check_format('123', b'%lu', c_ulong(123)) check_format('123', b'%llu', c_ulonglong(123)) check_format('123', b'%zu', c_size_t(123)) # test long output min_longlong = -(2 ** (8 * sizeof(c_longlong) - 1)) max_longlong = -min_longlong - 1 check_format(str(min_longlong), b'%lld', c_longlong(min_longlong)) check_format(str(max_longlong), b'%lld', c_longlong(max_longlong)) max_ulonglong = 2 ** (8 * sizeof(c_ulonglong)) - 1 check_format(str(max_ulonglong), b'%llu', c_ulonglong(max_ulonglong)) PyUnicode_FromFormat(b'%p', c_void_p(-1)) # test padding (width and/or precision) check_format('123'.rjust(10, '0'), b'%010i', c_int(123)) check_format('123'.rjust(100), b'%100i', c_int(123)) check_format('123'.rjust(100, '0'), b'%.100i', c_int(123)) check_format('123'.rjust(80, '0').rjust(100), b'%100.80i', c_int(123)) check_format('123'.rjust(10, '0'), b'%010u', c_uint(123)) check_format('123'.rjust(100), b'%100u', c_uint(123)) check_format('123'.rjust(100, '0'), b'%.100u', c_uint(123)) check_format('123'.rjust(80, '0').rjust(100), b'%100.80u', c_uint(123)) check_format('123'.rjust(10, '0'), b'%010x', c_int(0x123)) check_format('123'.rjust(100), b'%100x', c_int(0x123)) check_format('123'.rjust(100, '0'), b'%.100x', c_int(0x123)) check_format('123'.rjust(80, '0').rjust(100), b'%100.80x', c_int(0x123)) # test %A check_format(r"%A:'abc\xe9\uabcd\U0010ffff'", b'%%A:%A', 'abc\xe9\uabcd\U0010ffff') # test %V check_format('repr=abc', b'repr=%V', 'abc', b'xyz') # Test string decode from parameter of %s using utf-8. # b'\xe4\xba\xba\xe6\xb0\x91' is utf-8 encoded byte sequence of # '\u4eba\u6c11' check_format('repr=\u4eba\u6c11', b'repr=%V', None, b'\xe4\xba\xba\xe6\xb0\x91') #Test replace error handler. check_format('repr=abc\ufffd', b'repr=%V', None, b'abc\xff') # not supported: copy the raw format string. these tests are just here # to check for crashes and should not be considered as specifications check_format('%s', b'%1%s', b'abc') check_format('%1abc', b'%1abc') check_format('%+i', b'%+i', c_int(10)) check_format('%.%s', b'%.%s', b'abc') # Test PyUnicode_AsWideChar() @support.cpython_only def test_aswidechar(self): from _testcapi import unicode_aswidechar support.import_module('ctypes') from ctypes import c_wchar, sizeof wchar, size = unicode_aswidechar('abcdef', 2) self.assertEqual(size, 2) self.assertEqual(wchar, 'ab') wchar, size = unicode_aswidechar('abc', 3) self.assertEqual(size, 3) self.assertEqual(wchar, 'abc') wchar, size = unicode_aswidechar('abc', 4) self.assertEqual(size, 3) self.assertEqual(wchar, 'abc\0') wchar, size = unicode_aswidechar('abc', 10) self.assertEqual(size, 3) self.assertEqual(wchar, 'abc\0') wchar, size = unicode_aswidechar('abc\0def', 20) self.assertEqual(size, 7) self.assertEqual(wchar, 'abc\0def\0') nonbmp = chr(0x10ffff) if sizeof(c_wchar) == 2: buflen = 3 nchar = 2 else: # sizeof(c_wchar) == 4 buflen = 2 nchar = 1 wchar, size = unicode_aswidechar(nonbmp, buflen) self.assertEqual(size, nchar) self.assertEqual(wchar, nonbmp + '\0') # Test PyUnicode_AsWideCharString() @support.cpython_only def test_aswidecharstring(self): from _testcapi import unicode_aswidecharstring support.import_module('ctypes') from ctypes import c_wchar, sizeof wchar, size = unicode_aswidecharstring('abc') self.assertEqual(size, 3) self.assertEqual(wchar, 'abc\0') wchar, size = unicode_aswidecharstring('abc\0def') self.assertEqual(size, 7) self.assertEqual(wchar, 'abc\0def\0') nonbmp = chr(0x10ffff) if sizeof(c_wchar) == 2: nchar = 2 else: # sizeof(c_wchar) == 4 nchar = 1 wchar, size = unicode_aswidecharstring(nonbmp) self.assertEqual(size, nchar) self.assertEqual(wchar, nonbmp + '\0') # Test PyUnicode_AsUCS4() @support.cpython_only def test_asucs4(self): from _testcapi import unicode_asucs4 for s in ['abc', '\xa1\xa2', '\u4f60\u597d', 'a\U0001f600', 'a\ud800b\udfffc', '\ud834\udd1e']: l = len(s) self.assertEqual(unicode_asucs4(s, l, 1), s+'\0') self.assertEqual(unicode_asucs4(s, l, 0), s+'\uffff') self.assertEqual(unicode_asucs4(s, l+1, 1), s+'\0\uffff') self.assertEqual(unicode_asucs4(s, l+1, 0), s+'\0\uffff') self.assertRaises(SystemError, unicode_asucs4, s, l-1, 1) self.assertRaises(SystemError, unicode_asucs4, s, l-2, 0) s = '\0'.join([s, s]) self.assertEqual(unicode_asucs4(s, len(s), 1), s+'\0') self.assertEqual(unicode_asucs4(s, len(s), 0), s+'\uffff') # Test PyUnicode_FindChar() @support.cpython_only def test_findchar(self): from _testcapi import unicode_findchar for str in "\xa1", "\u8000\u8080", "\ud800\udc02", "\U0001f100\U0001f1f1": for i, ch in enumerate(str): self.assertEqual(unicode_findchar(str, ord(ch), 0, len(str), 1), i) self.assertEqual(unicode_findchar(str, ord(ch), 0, len(str), -1), i) str = "!>_<!" self.assertEqual(unicode_findchar(str, 0x110000, 0, len(str), 1), -1) self.assertEqual(unicode_findchar(str, 0x110000, 0, len(str), -1), -1) # start < end self.assertEqual(unicode_findchar(str, ord('!'), 1, len(str)+1, 1), 4) self.assertEqual(unicode_findchar(str, ord('!'), 1, len(str)+1, -1), 4) # start >= end self.assertEqual(unicode_findchar(str, ord('!'), 0, 0, 1), -1) self.assertEqual(unicode_findchar(str, ord('!'), len(str), 0, 1), -1) # negative self.assertEqual(unicode_findchar(str, ord('!'), -len(str), -1, 1), 0) self.assertEqual(unicode_findchar(str, ord('!'), -len(str), -1, -1), 0) # Test PyUnicode_CopyCharacters() @support.cpython_only def test_copycharacters(self): from _testcapi import unicode_copycharacters strings = [ 'abcde', '\xa1\xa2\xa3\xa4\xa5', '\u4f60\u597d\u4e16\u754c\uff01', '\U0001f600\U0001f601\U0001f602\U0001f603\U0001f604' ] for idx, from_ in enumerate(strings): # wide -> narrow: exceed maxchar limitation for to in strings[:idx]: self.assertRaises( SystemError, unicode_copycharacters, to, 0, from_, 0, 5 ) # same kind for from_start in range(5): self.assertEqual( unicode_copycharacters(from_, 0, from_, from_start, 5), (from_[from_start:from_start+5].ljust(5, '\0'), 5-from_start) ) for to_start in range(5): self.assertEqual( unicode_copycharacters(from_, to_start, from_, to_start, 5), (from_[to_start:to_start+5].rjust(5, '\0'), 5-to_start) ) # narrow -> wide # Tests omitted since this creates invalid strings. s = strings[0] self.assertRaises(IndexError, unicode_copycharacters, s, 6, s, 0, 5) self.assertRaises(IndexError, unicode_copycharacters, s, -1, s, 0, 5) self.assertRaises(IndexError, unicode_copycharacters, s, 0, s, 6, 5) self.assertRaises(IndexError, unicode_copycharacters, s, 0, s, -1, 5) self.assertRaises(SystemError, unicode_copycharacters, s, 1, s, 0, 5) self.assertRaises(SystemError, unicode_copycharacters, s, 0, s, 0, -1) self.assertRaises(SystemError, unicode_copycharacters, s, 0, b'', 0, 0) @support.cpython_only def test_encode_decimal(self): from _testcapi import unicode_encodedecimal self.assertEqual(unicode_encodedecimal('123'), b'123') self.assertEqual(unicode_encodedecimal('\u0663.\u0661\u0664'), b'3.14') self.assertEqual(unicode_encodedecimal("\N{EM SPACE}3.14\N{EN SPACE}"), b' 3.14 ') self.assertRaises(UnicodeEncodeError, unicode_encodedecimal, "123\u20ac", "strict") self.assertRaisesRegex( ValueError, "^'decimal' codec can't encode character", unicode_encodedecimal, "123\u20ac", "replace") @support.cpython_only def test_transform_decimal(self): from _testcapi import unicode_transformdecimaltoascii as transform_decimal self.assertEqual(transform_decimal('123'), '123') self.assertEqual(transform_decimal('\u0663.\u0661\u0664'), '3.14') self.assertEqual(transform_decimal("\N{EM SPACE}3.14\N{EN SPACE}"), "\N{EM SPACE}3.14\N{EN SPACE}") self.assertEqual(transform_decimal('123\u20ac'), '123\u20ac') @support.cpython_only def test_pep393_utf8_caching_bug(self): # Issue #25709: Problem with string concatenation and utf-8 cache from _testcapi import getargs_s_hash for k in 0x24, 0xa4, 0x20ac, 0x1f40d: s = '' for i in range(5): # Due to CPython specific optimization the 's' string can be # resized in-place. s += chr(k) # Parsing with the "s#" format code calls indirectly # PyUnicode_AsUTF8AndSize() which creates the UTF-8 # encoded string cached in the Unicode object. self.assertEqual(getargs_s_hash(s), chr(k).encode() * (i + 1)) # Check that the second call returns the same result self.assertEqual(getargs_s_hash(s), chr(k).encode() * (i + 1)) class StringModuleTest(unittest.TestCase): def test_formatter_parser(self): def parse(format): return list(_string.formatter_parser(format)) formatter = parse("prefix {2!s}xxx{0:^+10.3f}{obj.attr!s} {z[0]!s:10}") self.assertEqual(formatter, [ ('prefix ', '2', '', 's'), ('xxx', '0', '^+10.3f', None), ('', 'obj.attr', '', 's'), (' ', 'z[0]', '10', 's'), ]) formatter = parse("prefix {} suffix") self.assertEqual(formatter, [ ('prefix ', '', '', None), (' suffix', None, None, None), ]) formatter = parse("str") self.assertEqual(formatter, [ ('str', None, None, None), ]) formatter = parse("") self.assertEqual(formatter, []) formatter = parse("{0}") self.assertEqual(formatter, [ ('', '0', '', None), ]) self.assertRaises(TypeError, _string.formatter_parser, 1) def test_formatter_field_name_split(self): def split(name): items = list(_string.formatter_field_name_split(name)) items[1] = list(items[1]) return items self.assertEqual(split("obj"), ["obj", []]) self.assertEqual(split("obj.arg"), ["obj", [(True, 'arg')]]) self.assertEqual(split("obj[key]"), ["obj", [(False, 'key')]]) self.assertEqual(split("obj.arg[key1][key2]"), [ "obj", [(True, 'arg'), (False, 'key1'), (False, 'key2'), ]]) self.assertRaises(TypeError, _string.formatter_field_name_split, 1) if __name__ == "__main__": unittest.main()
[ [ [ 165, 172 ], [ 131486, 131493 ], [ 132127, 132134 ], [ 130638, 130645 ], [ 131613, 131620 ] ], [ [ 180, 186 ], [ 894, 900 ] ], [ [ 194, 203 ], [ 111512, 111521 ] ], [ [ 211, 219 ], [ 66775, 66783 ], [ 66892, 66900 ], [ 67009, 67017 ], [ 67132, 67140 ], [ 67194, 67202 ] ], [ [ 227, 233 ], [ 107977, 107983 ], [ 108364, 108370 ] ], [ [ 241, 247 ] ], [ [ 255, 258 ], [ 23861, 23864 ], [ 42053, 42056 ], [ 107950, 107953 ], [ 2633, 2636 ], [ 5138, 5141 ], [ 23989, 23992 ], [ 28508, 28511 ], [ 60668, 60671 ], [ 60854, 60857 ], [ 61053, 61056 ], [ 63302, 63305 ], [ 68693, 68696 ], [ 69576, 69579 ], [ 71726, 71729 ], [ 72124, 72127 ], [ 108175, 108178 ], [ 109313, 109316 ] ], [ [ 266, 274 ], [ 1399, 1407 ], [ 23845, 23853 ], [ 42033, 42041 ], [ 107934, 107942 ], [ 113807, 113815 ], [ 130530, 130538 ], [ 132199, 132207 ] ], [ [ 282, 290 ], [ 25548, 25556 ], [ 101182, 101190 ], [ 101288, 101296 ], [ 101939, 101947 ], [ 102029, 102037 ] ], [ [ 308, 315 ], [ 25298, 25305 ], [ 42110, 42117 ], [ 69243, 69250 ], [ 69984, 69991 ], [ 108194, 108201 ], [ 122571, 122578 ], [ 123780, 123787 ], [ 124568, 124575 ], [ 125424, 125431 ], [ 126570, 126577 ], [ 128388, 128395 ], [ 129099, 129106 ], [ 129658, 129665 ], [ 25510, 25517 ], [ 110472, 110479 ], [ 113674, 113681 ], [ 113734, 113741 ], [ 113902, 113909 ], [ 122680, 122687 ], [ 123901, 123908 ] ], [ [ 317, 329 ], [ 1272, 1284 ], [ 1305, 1317 ], [ 1357, 1369 ], [ 7847, 7859 ], [ 9286, 9298 ], [ 11096, 11108 ], [ 12802, 12814 ], [ 14308, 14320 ], [ 19504, 19516 ], [ 20250, 20262 ], [ 21003, 21015 ], [ 21907, 21919 ], [ 22811, 22823 ], [ 23225, 23237 ], [ 23530, 23542 ], [ 24138, 24150 ], [ 35858, 35870 ], [ 37463, 37475 ], [ 38300, 38312 ], [ 40208, 40220 ], [ 41673, 41685 ], [ 62543, 62555 ] ], [ [ 373, 388 ], [ 910, 925 ] ], [ [ 932, 948 ], [ 112032, 112048 ], [ 112080, 112096 ] ], [ [ 1226, 1237 ], [ 70495, 70506 ], [ 107097, 107108 ], [ 107211, 107222 ] ], [ [ 1260, 1271 ] ], [ [ 113798, 113806 ] ], [ [ 130513, 130529 ] ] ]
#!/usr/bin/env python # Copyright 2016 Tesora, Inc. # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import fnmatch import json from collections import OrderedDict import io import os import re import sys from pylint import lint from pylint.reporters import text DEFAULT_CONFIG_FILE = "tools/trove-pylint.config" DEFAULT_IGNORED_FILES = ['trove/tests'] DEFAULT_IGNORED_CODES = [] DEFAULT_IGNORED_MESSAGES = [] DEFAULT_ALWAYS_ERROR = [ "Undefined variable '_'", "Undefined variable '_LE'", "Undefined variable '_LI'", "Undefined variable '_LW'", "Undefined variable '_LC'"] MODE_CHECK = "check" MODE_REBUILD = "rebuild" class Config(object): def __init__(self, filename=DEFAULT_CONFIG_FILE): self.default_config = { "include": ["*.py"], "folder": "trove", "options": ["--rcfile=./pylintrc", "-E"], "ignored_files": DEFAULT_IGNORED_FILES, "ignored_codes": DEFAULT_IGNORED_CODES, "ignored_messages": DEFAULT_IGNORED_MESSAGES, "ignored_file_codes": [], "ignored_file_messages": [], "ignored_file_code_messages": [], "always_error_messages": DEFAULT_ALWAYS_ERROR } self.config = self.default_config def sort_config(self): sorted_config = OrderedDict() for key in sorted(self.config.keys()): value = self.get(key) if isinstance(value, list) and not isinstance(value,str): sorted_config[key] = sorted(value) else: sorted_config[key] = value return sorted_config def save(self, filename=DEFAULT_CONFIG_FILE): if os.path.isfile(filename): os.rename(filename, "%s~" % filename) with open(filename, 'w') as fp: json.dump(self.sort_config(), fp, encoding="utf-8", indent=2, separators=(',', ': ')) def load(self, filename=DEFAULT_CONFIG_FILE): with open(filename) as fp: self.config = json.load(fp, encoding="utf-8") def get(self, attribute): return self.config[attribute] def is_file_ignored(self, f): if any(f.startswith(i) for i in self.config['ignored_files']): return True return False def is_file_included(self, f): if any(fnmatch.fnmatch(f, wc) for wc in self.config['include']): return True return False def is_always_error(self, message): if message in self.config['always_error_messages']: return True return False def ignore(self, filename, code, codename, message): # the high priority checks if self.is_file_ignored(filename): return True # never ignore messages if self.is_always_error(message): return False if code in self.config['ignored_codes']: return True if codename in self.config['ignored_codes']: return True if message and any(message.startswith(ignore_message) for ignore_message in self.config['ignored_messages']): return True if filename and message and ( [filename, message] in self.config['ignored_file_messages']): return True if filename and code and ( [filename, code] in self.config['ignored_file_codes']): return True if filename and codename and ( [filename, codename] in self.config['ignored_file_codes']): return True for fcm in self.config['ignored_file_code_messages']: if filename != fcm[0]: # This ignore rule is for a different file. continue if fcm[1] not in (code, codename): # This ignore rule is for a different code or codename. continue if message.startswith(fcm[2]): return True return False def ignore_code(self, c): _c = set(self.config['ignored_codes']) _c.add(c) self.config['ignored_codes'] = list(_c) def ignore_files(self, f): _c = set(self.config['ignored_files']) _c.add(f) self.config['ignored_files'] = list(_c) def ignore_message(self, m): _c = set(self.config['ignored_messages']) _c.add(m) self.config['ignored_messages'] = list(_c) def ignore_file_code(self, f, c): _c = set(self.config['ignored_file_codes']) _c.add((f, c)) self.config['ignored_file_codes'] = list(_c) def ignore_file_message(self, f, m): _c = set(self.config['ignored_file_messages']) _c.add((f, m)) self.config['ignored_file_messages'] = list(_c) def ignore_file_code_message(self, f, c, m, fn): _c = set(self.config['ignored_file_code_messages']) _c.add((f, c, m, fn)) self.config['ignored_file_code_messages'] = list(_c) def main(): if len(sys.argv) == 1 or sys.argv[1] == "check": return check() elif sys.argv[1] == "rebuild": return rebuild() elif sys.argv[1] == "initialize": return initialize() else: return usage() def usage(): print("Usage: %s [check|rebuild]" % sys.argv[0]) print("\tUse this tool to perform a lint check of the trove project.") print("\t check: perform the lint check.") print("\t rebuild: rebuild the list of exceptions to ignore.") return 0 class ParseableTextReporter(text.TextReporter): name = 'parseable' line_format = '{path}:{line}: [{msg_id}({symbol}), {obj}] {msg}' # that's it folks class LintRunner(object): def __init__(self): self.config = Config() self.idline = re.compile("^[*]* Module .*") self.detail = re.compile(r"(\S+):(\d+): \[(\S+)\((\S+)\)," r" (\S+)?] (.*)") def dolint(self, filename): exceptions = set() buffer = io.StringIO() reporter = ParseableTextReporter(output=buffer) options = list(self.config.get('options')) options.append(filename) lint.Run(options, reporter=reporter, exit=False) output = buffer.getvalue() buffer.close() for line in output.splitlines(): if self.idline.match(line): continue if self.detail.match(line): mo = self.detail.search(line) tokens = mo.groups() fn = tokens[0] ln = tokens[1] code = tokens[2] codename = tokens[3] func = tokens[4] message = tokens[5] if not self.config.ignore(fn, code, codename, message): exceptions.add((fn, ln, code, codename, func, message)) return exceptions def process(self, mode=MODE_CHECK): files_processed = 0 files_with_errors = 0 errors_recorded = 0 exceptions_recorded = 0 all_exceptions = [] for (root, dirs, files) in os.walk(self.config.get('folder')): # if we shouldn't even bother about this part of the # directory structure, we can punt quietly if self.config.is_file_ignored(root): continue # since we are walking top down, let's clean up the dirs # that we will walk by eliminating any dirs that will # end up getting ignored for d in dirs: p = os.path.join(root, d) if self.config.is_file_ignored(p): dirs.remove(d) # check if we can ignore the file and process if not for f in files: p = os.path.join(root, f) if self.config.is_file_ignored(p): continue if not self.config.is_file_included(f): continue files_processed += 1 exceptions = self.dolint(p) file_had_errors = 0 for e in exceptions: # what we do with this exception depents on the # kind of exception, and the mode if self.config.is_always_error(e[5]): all_exceptions.append(e) errors_recorded += 1 file_had_errors += 1 elif mode == MODE_REBUILD: # parameters to ignore_file_code_message are # filename, code, message and function self.config.ignore_file_code_message(e[0], e[2], e[-1], e[4]) self.config.ignore_file_code_message(e[0], e[3], e[-1], e[4]) exceptions_recorded += 1 elif mode == MODE_CHECK: all_exceptions.append(e) errors_recorded += 1 file_had_errors += 1 if file_had_errors: files_with_errors += 1 for e in sorted(all_exceptions): print("ERROR: %s %s: %s %s, %s: %s" % (e[0], e[1], e[2], e[3], e[4], e[5])) return (files_processed, files_with_errors, errors_recorded, exceptions_recorded) def rebuild(self): self.initialize() (files_processed, files_with_errors, errors_recorded, exceptions_recorded) = self.process(mode=MODE_REBUILD) if files_with_errors > 0: print("Rebuild failed. %s files processed, %s had errors, " "%s errors recorded." % ( files_processed, files_with_errors, errors_recorded)) return 1 self.config.save() print("Rebuild completed. %s files processed, %s exceptions recorded." % (files_processed, exceptions_recorded)) return 0 def check(self): self.config.load() (files_processed, files_with_errors, errors_recorded, exceptions_recorded) = self.process(mode=MODE_CHECK) if files_with_errors > 0: print("Check failed. %s files processed, %s had errors, " "%s errors recorded." % ( files_processed, files_with_errors, errors_recorded)) return 1 print("Check succeeded. %s files processed" % files_processed) return 0 def initialize(self): self.config.save() return 0 def check(): exit(LintRunner().check()) def rebuild(): exit(LintRunner().rebuild()) def initialize(): exit(LintRunner().initialize()) if __name__ == "__main__": main()
[ [ [ 608, 615 ], [ 2854, 2861 ] ], [ [ 623, 627 ], [ 2318, 2322 ], [ 2538, 2542 ] ], [ [ 652, 663 ], [ 1820, 1831 ] ], [ [ 671, 673 ], [ 6553, 6555 ] ], [ [ 681, 683 ], [ 2189, 2191 ], [ 2227, 2229 ], [ 7654, 7656 ], [ 8105, 8107 ], [ 8327, 8329 ] ], [ [ 691, 693 ], [ 6327, 6329 ], [ 6379, 6381 ] ], [ [ 701, 704 ], [ 5561, 5564 ], [ 5579, 5582 ], [ 5635, 5638 ], [ 5695, 5698 ], [ 5839, 5842 ] ], [ [ 725, 729 ], [ 6715, 6719 ] ], [ [ 759, 763 ], [ 6087, 6091 ] ], [ [ 765, 784 ], [ 1197, 1216 ], [ 2156, 2175 ], [ 2455, 2474 ] ], [ [ 815, 836 ], [ 1399, 1420 ] ], [ [ 855, 876 ], [ 1451, 1472 ] ], [ [ 882, 906 ], [ 1506, 1530 ] ], [ [ 912, 932 ], [ 1694, 1714 ] ], [ [ 1096, 1106 ], [ 7459, 7469 ], [ 9423, 9433 ], [ 10711, 10721 ] ], [ [ 1117, 1129 ], [ 9023, 9035 ], [ 10089, 10101 ] ], [ [ 1149, 1155 ], [ 6296, 6302 ] ], [ [ 5542, 5546 ], [ 11310, 11314 ] ], [ [ 5790, 5795 ], [ 5777, 5782 ] ], [ [ 6065, 6086 ], [ 6586, 6607 ] ], [ [ 6230, 6240 ], [ 11152, 11162 ], [ 11199, 11209 ], [ 11251, 11261 ] ], [ [ 11134, 11139 ], [ 5618, 5623 ] ], [ [ 11179, 11186 ], [ 5676, 5683 ] ], [ [ 11228, 11238 ], [ 5739, 5749 ] ] ]
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Run masked LM/next sentence masked_lm pre-training for BERT.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from retrograph.modeling import modeling_adapter as modeling from retrograph.modeling import optimization_adapter as optimization import tensorflow as tf flags = tf.flags FLAGS = flags.FLAGS ## Required parameters flags.DEFINE_string( "bert_config_file", None, "The config json file corresponding to the pre-trained BERT model. " "This specifies the model architecture.") flags.DEFINE_string( "input_file", None, "Input TF example files (can be a glob or comma separated).") flags.DEFINE_string( "output_dir", None, "The output directory where the model checkpoints will be written.") ## Other parameters flags.DEFINE_string( "init_checkpoint", None, "Initial checkpoint (usually from a pre-trained BERT model).") flags.DEFINE_integer( "max_seq_length", 128, "The maximum total input sequence length after WordPiece tokenization. " "Sequences longer than this will be truncated, and sequences shorter " "than this will be padded. Must match data generation.") flags.DEFINE_integer( "max_predictions_per_seq", 20, "Maximum number of masked LM predictions per sequence. " "Must match data generation.") flags.DEFINE_bool("do_train", False, "Whether to run training.") flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.") flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.") flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.") flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.") flags.DEFINE_integer("num_train_steps", 100000, "Number of training steps.") flags.DEFINE_integer("num_warmup_steps", 10000, "Number of warmup steps.") flags.DEFINE_integer("save_checkpoints_steps", 1000, "How often to save the model checkpoint.") flags.DEFINE_integer("iterations_per_loop", 1000, "How many steps to make in each estimator call.") flags.DEFINE_integer("max_eval_steps", 100, "Maximum number of eval steps.") flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.") tf.flags.DEFINE_string( "tpu_name", None, "The Cloud TPU to use for training. This should be either the name " "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 " "url.") tf.flags.DEFINE_string( "tpu_zone", None, "[Optional] GCE zone where the Cloud TPU is located in. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string( "gcp_project", None, "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") flags.DEFINE_integer( "num_tpu_cores", 8, "Only used if `use_tpu` is True. Total number of TPU cores to use.") def model_fn_builder(bert_config, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] masked_lm_positions = features["masked_lm_positions"] masked_lm_ids = features["masked_lm_ids"] masked_lm_weights = features["masked_lm_weights"] next_sentence_labels = features["next_sentence_labels"] is_training = (mode == tf.estimator.ModeKeys.TRAIN) model = modeling.BertModel( config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) (masked_lm_loss, masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output( bert_config, model.get_sequence_output(), model.get_embedding_table(), masked_lm_positions, masked_lm_ids, masked_lm_weights) (next_sentence_loss, next_sentence_example_loss, next_sentence_log_probs) = get_next_sentence_output( bert_config, model.get_pooled_output(), next_sentence_labels) total_loss = masked_lm_loss + next_sentence_loss tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids, masked_lm_weights, next_sentence_example_loss, next_sentence_log_probs, next_sentence_labels): """Computes the loss and accuracy of the model.""" masked_lm_log_probs = tf.reshape(masked_lm_log_probs, [-1, masked_lm_log_probs.shape[-1]]) masked_lm_predictions = tf.argmax( masked_lm_log_probs, axis=-1, output_type=tf.int32) masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1]) masked_lm_ids = tf.reshape(masked_lm_ids, [-1]) masked_lm_weights = tf.reshape(masked_lm_weights, [-1]) masked_lm_accuracy = tf.metrics.accuracy( labels=masked_lm_ids, predictions=masked_lm_predictions, weights=masked_lm_weights) masked_lm_mean_loss = tf.metrics.mean( values=masked_lm_example_loss, weights=masked_lm_weights) next_sentence_log_probs = tf.reshape( next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]]) next_sentence_predictions = tf.argmax( next_sentence_log_probs, axis=-1, output_type=tf.int32) next_sentence_labels = tf.reshape(next_sentence_labels, [-1]) next_sentence_accuracy = tf.metrics.accuracy( labels=next_sentence_labels, predictions=next_sentence_predictions) next_sentence_mean_loss = tf.metrics.mean( values=next_sentence_example_loss) return { "masked_lm_accuracy": masked_lm_accuracy, "masked_lm_loss": masked_lm_mean_loss, "next_sentence_accuracy": next_sentence_accuracy, "next_sentence_loss": next_sentence_mean_loss, } eval_metrics = (metric_fn, [ masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids, masked_lm_weights, next_sentence_example_loss, next_sentence_log_probs, next_sentence_labels ]) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, eval_metrics=eval_metrics, scaffold_fn=scaffold_fn) else: raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode)) return output_spec return model_fn def get_masked_lm_output(bert_config, input_tensor, output_weights, positions, label_ids, label_weights): """Get loss and log probs for the masked LM.""" input_tensor = gather_indexes(input_tensor, positions) with tf.variable_scope("cls/predictions"): # We apply one more non-linear transformation before the output layer. # This matrix is not used after pre-training. with tf.variable_scope("transform"): input_tensor = tf.layers.dense( input_tensor, units=bert_config.hidden_size, activation=modeling.get_activation(bert_config.hidden_act), kernel_initializer=modeling.create_initializer( bert_config.initializer_range)) input_tensor = modeling.layer_norm(input_tensor) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. output_bias = tf.get_variable( "output_bias", shape=[bert_config.vocab_size], initializer=tf.zeros_initializer()) logits = tf.matmul(input_tensor, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) log_probs = tf.nn.log_softmax(logits, axis=-1) label_ids = tf.reshape(label_ids, [-1]) label_weights = tf.reshape(label_weights, [-1]) one_hot_labels = tf.one_hot( label_ids, depth=bert_config.vocab_size, dtype=tf.float32) # The `positions` tensor might be zero-padded (if the sequence is too # short to have the maximum number of predictions). The `label_weights` # tensor has a value of 1.0 for every real prediction and 0.0 for the # padding predictions. per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1]) numerator = tf.reduce_sum(label_weights * per_example_loss) denominator = tf.reduce_sum(label_weights) + 1e-5 loss = numerator / denominator return (loss, per_example_loss, log_probs) def get_next_sentence_output(bert_config, input_tensor, labels): """Get loss and log probs for the next sentence prediction.""" # Simple binary classification. Note that 0 is "next sentence" and 1 is # "random sentence". This weight matrix is not used after pre-training. with tf.variable_scope("cls/seq_relationship"): output_weights = tf.get_variable( "output_weights", shape=[2, bert_config.hidden_size], initializer=modeling.create_initializer(bert_config.initializer_range)) output_bias = tf.get_variable( "output_bias", shape=[2], initializer=tf.zeros_initializer()) logits = tf.matmul(input_tensor, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) log_probs = tf.nn.log_softmax(logits, axis=-1) labels = tf.reshape(labels, [-1]) one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, log_probs) def gather_indexes(sequence_tensor, positions): """Gathers the vectors at the specific positions over a minibatch.""" sequence_shape = modeling.get_shape_list(sequence_tensor, expected_rank=3) batch_size = sequence_shape[0] seq_length = sequence_shape[1] width = sequence_shape[2] flat_offsets = tf.reshape( tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1]) flat_positions = tf.reshape(positions + flat_offsets, [-1]) flat_sequence_tensor = tf.reshape(sequence_tensor, [batch_size * seq_length, width]) output_tensor = tf.gather(flat_sequence_tensor, flat_positions) return output_tensor def input_fn_builder(input_files, max_seq_length, max_predictions_per_seq, is_training, num_cpu_threads=4): """Creates an `input_fn` closure to be passed to TPUEstimator.""" def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] name_to_features = { "input_ids": tf.FixedLenFeature([max_seq_length], tf.int64), "input_mask": tf.FixedLenFeature([max_seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([max_seq_length], tf.int64), "masked_lm_positions": tf.FixedLenFeature([max_predictions_per_seq], tf.int64), "masked_lm_ids": tf.FixedLenFeature([max_predictions_per_seq], tf.int64), "masked_lm_weights": tf.FixedLenFeature([max_predictions_per_seq], tf.float32), "next_sentence_labels": tf.FixedLenFeature([1], tf.int64), } # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. if is_training: d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files)) d = d.repeat() d = d.shuffle(buffer_size=len(input_files)) # `cycle_length` is the number of parallel files that get read. cycle_length = min(num_cpu_threads, len(input_files)) # `sloppy` mode means that the interleaving is not exact. This adds # even more randomness to the training pipeline. d = d.apply( tf.contrib.data.parallel_interleave( tf.data.TFRecordDataset, sloppy=is_training, cycle_length=cycle_length)) d = d.shuffle(buffer_size=100) else: d = tf.data.TFRecordDataset(input_files) # Since we evaluate for a fixed number of steps we don't want to encounter # out-of-range exceptions. d = d.repeat() # We must `drop_remainder` on training because the TPU requires fixed # size dimensions. For eval, we assume we are evaluating on the CPU or GPU # and we *don't* want to drop the remainder, otherwise we wont cover # every sample. d = d.apply( tf.contrib.data.map_and_batch( lambda record: _decode_record(record, name_to_features), batch_size=batch_size, num_parallel_batches=num_cpu_threads, drop_remainder=True)) return d return input_fn def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example def main(_): tf.logging.set_verbosity(tf.logging.INFO) if not FLAGS.do_train and not FLAGS.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True.") bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) tf.gfile.MakeDirs(FLAGS.output_dir) input_files = [] for input_pattern in FLAGS.input_file.split(","): input_files.extend(tf.gfile.Glob(input_pattern)) tf.logging.info("*** Input Files ***") for input_file in input_files: tf.logging.info(" %s" % input_file) tpu_cluster_resolver = None if FLAGS.use_tpu and FLAGS.tpu_name: tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=tpu_cluster_resolver, master=FLAGS.master, model_dir=FLAGS.output_dir, save_checkpoints_steps=FLAGS.save_checkpoints_steps, keep_checkpoint_max=20, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host)) model_fn = model_fn_builder( bert_config=bert_config, init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate, num_train_steps=FLAGS.num_train_steps, num_warmup_steps=FLAGS.num_warmup_steps, use_tpu=FLAGS.use_tpu, use_one_hot_embeddings=FLAGS.use_tpu) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. estimator = tf.contrib.tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size) if FLAGS.do_train: tf.logging.info("***** Running training *****") tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) train_input_fn = input_fn_builder( input_files=input_files, max_seq_length=FLAGS.max_seq_length, max_predictions_per_seq=FLAGS.max_predictions_per_seq, is_training=True) estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps) if FLAGS.do_eval: tf.logging.info("***** Running evaluation *****") tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size) eval_input_fn = input_fn_builder( input_files=input_files, max_seq_length=FLAGS.max_seq_length, max_predictions_per_seq=FLAGS.max_predictions_per_seq, is_training=False) result = estimator.evaluate( input_fn=eval_input_fn, steps=FLAGS.max_eval_steps) output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") with tf.gfile.GFile(output_eval_file, "w") as writer: tf.logging.info("***** Eval results *****") for key in sorted(result.keys()): tf.logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if __name__ == "__main__": flags.mark_flag_as_required("input_file") flags.mark_flag_as_required("bert_config_file") flags.mark_flag_as_required("output_dir") tf.app.run()
[ [ [ 706, 721 ] ], [ [ 745, 753 ] ], [ [ 777, 791 ] ], [ [ 800, 802 ], [ 18290, 18292 ] ], [ [ 835, 863 ], [ 9512, 9520 ], [ 9590, 9598 ], [ 9686, 9694 ], [ 11337, 11345 ], [ 12086, 12094 ], [ 15745, 15753 ], [ 4663, 4671 ], [ 5554, 5562 ] ], [ [ 896, 932 ], [ 6281, 6293 ] ], [ [ 940, 956 ], [ 966, 968 ], [ 2898, 2900 ], [ 3106, 3108 ], [ 3318, 3320 ], [ 3537, 3539 ], [ 18778, 18780 ], [ 9184, 9186 ], [ 9356, 9358 ], [ 9409, 9411 ], [ 9857, 9859 ], [ 9957, 9959 ], [ 9994, 9996 ], [ 10065, 10067 ], [ 10117, 10119 ], [ 10169, 10171 ], [ 10217, 10219 ], [ 10271, 10273 ], [ 10338, 10340 ], [ 10626, 10628 ], [ 10695, 10697 ], [ 10761, 10763 ], [ 11166, 11168 ], [ 11230, 11232 ], [ 11415, 11417 ], [ 11478, 11480 ], [ 11516, 11518 ], [ 11587, 11589 ], [ 11639, 11641 ], [ 11687, 11689 ], [ 11733, 11735 ], [ 11767, 11769 ], [ 11803, 11805 ], [ 11865, 11867 ], [ 12256, 12258 ], [ 12274, 12276 ], [ 12304, 12306 ], [ 12356, 12358 ], [ 12424, 12426 ], [ 12540, 12542 ], [ 15234, 15236 ], [ 15468, 15470 ], [ 15488, 15490 ], [ 15560, 15562 ], [ 15585, 15587 ], [ 15807, 15809 ], [ 15938, 15940 ], [ 15971, 15973 ], [ 16047, 16049 ], [ 16181, 16183 ], [ 16318, 16320 ], [ 16380, 16382 ], [ 16609, 16611 ], [ 17203, 17205 ], [ 17429, 17431 ], [ 17481, 17483 ], [ 17851, 17853 ], [ 17905, 17907 ], [ 18350, 18352 ], [ 18405, 18407 ], [ 18497, 18499 ], [ 4097, 4099 ], [ 4180, 4182 ], [ 4621, 4623 ], [ 5385, 5387 ], [ 5835, 5837 ], [ 5903, 5905 ], [ 6095, 6097 ], [ 6235, 6237 ], [ 6414, 6416 ], [ 6576, 6578 ], [ 8651, 8653 ], [ 13032, 13034 ], [ 13069, 13071 ], [ 13114, 13116 ], [ 13151, 13153 ], [ 13197, 13199 ], [ 13234, 13236 ], [ 13288, 13290 ], [ 13334, 13336 ], [ 13382, 13384 ], [ 13428, 13430 ], [ 13480, 13482 ], [ 13526, 13528 ], [ 13583, 13585 ], [ 13607, 13609 ], [ 13798, 13800 ], [ 13833, 13835 ], [ 14220, 14222 ], [ 14271, 14273 ], [ 14429, 14431 ], [ 14873, 14875 ], [ 5679, 5681 ], [ 5759, 5761 ], [ 6909, 6911 ], [ 7051, 7053 ], [ 7116, 7118 ], [ 7159, 7161 ], [ 7224, 7226 ], [ 7284, 7286 ], [ 7349, 7351 ], [ 7520, 7522 ], [ 7642, 7644 ], [ 7768, 7770 ], [ 7837, 7839 ], [ 7878, 7880 ], [ 7950, 7952 ], [ 8085, 8087 ] ], [ [ 958, 963 ], [ 984, 989 ], [ 1020, 1025 ], [ 1191, 1196 ], [ 1303, 1308 ], [ 1442, 1447 ], [ 1560, 1565 ], [ 1823, 1828 ], [ 1977, 1982 ], [ 2043, 2048 ], [ 2119, 2124 ], [ 2199, 2204 ], [ 2273, 2278 ], [ 2355, 2360 ], [ 2433, 2438 ], [ 2509, 2514 ], [ 2627, 2632 ], [ 2749, 2754 ], [ 2827, 2832 ], [ 3614, 3619 ], [ 18640, 18645 ], [ 18684, 18689 ], [ 18734, 18739 ] ], [ [ 976, 981 ], [ 15612, 15617 ], [ 15635, 15640 ], [ 15780, 15785 ], [ 15825, 15830 ], [ 15886, 15891 ], [ 16120, 16125 ], [ 16138, 16143 ], [ 16237, 16242 ], [ 16258, 16263 ], [ 16282, 16287 ], [ 16455, 16460 ], [ 16485, 16490 ], [ 16532, 16537 ], [ 16665, 16670 ], [ 16713, 16718 ], [ 16871, 16876 ], [ 16914, 16919 ], [ 16957, 16962 ], [ 17003, 17008 ], [ 17041, 17046 ], [ 17085, 17090 ], [ 17246, 17251 ], [ 17334, 17339 ], [ 17380, 17385 ], [ 17409, 17414 ], [ 17518, 17523 ], [ 17637, 17642 ], [ 17691, 17696 ], [ 17803, 17808 ], [ 17832, 17837 ], [ 17942, 17947 ], [ 18060, 18065 ], [ 18114, 18119 ], [ 18244, 18249 ], [ 18303, 18308 ] ], [ [ 3739, 3755 ], [ 16800, 16816 ] ], [ [ 8942, 8962 ], [ 4969, 4989 ] ], [ [ 10884, 10908 ], [ 5221, 5245 ] ], [ [ 11951, 11965 ], [ 9136, 9150 ] ], [ [ 12617, 12633 ], [ 17563, 17579 ], [ 17986, 18002 ] ], [ [ 15130, 15144 ], [ 14931, 14945 ] ], [ [ 15549, 15553 ] ] ]
def lend_money(debts, person, amount): value = debts.get(person, 0) quantity = [amount] if value != 0: debts[person] = value + quantity else: debts[person] = quantity print(debts) def amount_owed_by(debts, person): value = debts.get(person, [0]) out = sum(value) return out def total_amount_owed(debts): my_money = 0 for values in debts.values(): for numbers in values: my_money += numbers return my_money
[ [ [ 4, 14 ] ], [ [ 236, 250 ] ], [ [ 348, 365 ] ] ]
from __future__ import print_function from sklearn import datasets import matplotlib.pyplot as plt import numpy as np from scratchML.supervised_learning import LDA from scratchML.utils import calculate_covariance_matrix, accuracy_score from scratchML.utils import normalize, standardize, train_test_split, Plot from scratchML.unsupervised_learning import PCA def main(): # Load the dataset data = datasets.load_iris() X = data.data y = data.target # Three -> two classes X = X[y != 2] y = y[y != 2] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33) # Fit and predict using LDA lda = LDA() lda.fit(X_train, y_train) y_pred = lda.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) Plot().plot_in_2d(X_test, y_pred, title="LDA", accuracy=accuracy) if __name__ == "__main__": main()
[ [ [ 23, 37 ] ], [ [ 58, 66 ], [ 408, 416 ] ], [ [ 74, 98 ] ], [ [ 106, 117 ] ], [ [ 161, 164 ], [ 653, 656 ] ], [ [ 193, 220 ] ], [ [ 222, 236 ], [ 738, 752 ] ], [ [ 265, 274 ] ], [ [ 276, 287 ] ], [ [ 289, 305 ], [ 571, 587 ] ], [ [ 307, 311 ], [ 808, 812 ] ], [ [ 356, 359 ] ], [ [ 366, 370 ], [ 907, 911 ] ] ]
from setuptools import find_packages, setup def get_version(): version = {} with open("dagster_papertrail/version.py") as fp: exec(fp.read(), version) # pylint: disable=W0122 return version["__version__"] if __name__ == "__main__": setup( name="dagster-papertrail", version=get_version(), author="Elementl", author_email="hello@elementl.com", license="Apache-2.0", description="Package for papertrail Dagster framework components.", url="https://github.com/dagster-io/dagster/tree/master/python_modules/libraries/dagster-papertrail", classifiers=[ "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ], packages=find_packages(exclude=["test"]), install_requires=["dagster"], zip_safe=False, )
[ [ [ 23, 36 ], [ 945, 958 ] ], [ [ 38, 43 ], [ 262, 267 ] ], [ [ 50, 61 ], [ 320, 331 ] ] ]
# -*- coding: utf-8 -*- # # Django Ratelimit documentation build configuration file, created by # sphinx-quickstart on Fri Jan 4 15:55:31 2013. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Django Ratelimit' copyright = u'2014, James Socol' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '1.0' # The full version, including alpha/beta/rc tags. release = '1.0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' highlight_language = 'python' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'DjangoRatelimitdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'DjangoRatelimit.tex', u'Django Ratelimit Documentation', u'James Socol', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'djangoratelimit', u'Django Ratelimit Documentation', [u'James Socol'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'DjangoRatelimit', u'Django Ratelimit Documentation', u'James Socol', 'DjangoRatelimit', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote'
[ [ [ 434, 437 ] ], [ [ 439, 441 ] ], [ [ 1046, 1056 ] ], [ [ 1136, 1150 ] ], [ [ 1203, 1216 ] ], [ [ 1322, 1332 ] ], [ [ 1385, 1392 ] ], [ [ 1415, 1424 ] ], [ [ 1650, 1657 ] ], [ [ 1716, 1723 ] ], [ [ 2203, 2219 ] ], [ [ 2777, 2791 ] ], [ [ 2803, 2821 ] ], [ [ 3106, 3116 ] ], [ [ 4190, 4206 ] ], [ [ 5616, 5633 ] ], [ [ 5741, 5755 ] ], [ [ 6110, 6125 ] ], [ [ 6975, 6984 ] ], [ [ 7401, 7418 ] ] ]
import sys, os, re from setuptools import setup, Command, find_packages from setuptools.command.test import test class CleanCommand(Command): """Custom clean command to tidy up the project root.""" user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): os.system('rm -vrf ./*.pyc ./*.egg-info') def run_tests(*args): from assessment.tests import run_tests errors = run_tests() if errors: sys.exit(1) else: sys.exit(0) test.run_tests = run_tests NAME = "django-assess" # get version without importing with open("assessment/__init__.py", "rb") as f: VERSION = str(re.search('__version__ = "(.+?)"', f.read().decode()).group(1)) # pull requirements with open('requirements.txt', "r") as f: INSTALL_REQUIREMENTS = f.read().splitlines() setup( name=NAME, version=VERSION, packages=find_packages(include=['assessment', 'assessment.*']), python_requires='>=3.5, <4', install_requires = INSTALL_REQUIREMENTS + [ 'setuptools-git', # apparently needed to handle include_package_data from git repo? ], license="MIT", include_package_data=True, # declarations in MANIFEST.in description=("Basic custom assessments as a reusable django app."), long_description=open("README.rst").read(), long_description_content_type="text/x-rst", author="powderflask", author_email="powderflask@gmail.com", maintainer="powderflask", maintainer_email="powderflask@gmail.com", url="https://github.com/powderflask/django_assess", download_url="https://github.com/powderflask/django_assess/archive/v{}.tar.gz".format(VERSION), classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3', 'Framework :: Django', ], cmdclass={ 'clean' : CleanCommand, }, test_suite="dummy", )
[ [ [ 7, 10 ], [ 502, 505 ], [ 532, 535 ] ], [ [ 12, 14 ], [ 345, 347 ] ], [ [ 16, 18 ], [ 696, 698 ] ], [ [ 43, 48 ], [ 872, 877 ] ], [ [ 50, 57 ], [ 134, 141 ] ], [ [ 59, 72 ], [ 928, 941 ] ], [ [ 109, 113 ], [ 546, 550 ] ], [ [ 121, 133 ], [ 2074, 2086 ] ], [ [ 393, 402 ], [ 563, 572 ] ], [ [ 574, 578 ], [ 888, 892 ] ], [ [ 675, 676 ], [ 731, 732 ] ], [ [ 682, 689 ], [ 906, 913 ], [ 1705, 1712 ] ], [ [ 819, 820 ], [ 849, 850 ] ], [ [ 826, 846 ], [ 1039, 1059 ] ] ]
import logging import re import pytest import yaml from tests.common.helpers.assertions import pytest_assert from tests.common.helpers.platform_api import chassis from platform_api_test_base import PlatformApiTestBase logger = logging.getLogger(__name__) pytestmark = [ pytest.mark.disable_loganalyzer, # disable automatic loganalyzer pytest.mark.topology('any') ] REGEX_MAC_ADDRESS = r'^([0-9A-Fa-f]{2}:){5}([0-9A-Fa-f]{2})$' REGEX_SERIAL_NUMBER = r'^[A-Za-z0-9]+$' # Valid OCP ONIE TlvInfo EEPROM type codes as defined here: # https://opencomputeproject.github.io/onie/design-spec/hw_requirements.html ONIE_TLVINFO_TYPE_CODE_PRODUCT_NAME = '0x21' # Product Name ONIE_TLVINFO_TYPE_CODE_PART_NUMBER = '0x22' # Part Number ONIE_TLVINFO_TYPE_CODE_SERIAL_NUMBER = '0x23' # Serial Number ONIE_TLVINFO_TYPE_CODE_BASE_MAC_ADDR = '0x24' # Base MAC Address ONIE_TLVINFO_TYPE_CODE_MFR_DATE = '0x25' # Manufacture Date ONIE_TLVINFO_TYPE_CODE_DEVICE_VERSION = '0x26' # Device Version ONIE_TLVINFO_TYPE_CODE_LABEL_REVISION = '0x27' # Label Revision ONIE_TLVINFO_TYPE_CODE_PLATFORM_NAME = '0x28' # Platform Name ONIE_TLVINFO_TYPE_CODE_ONIE_VERSION = '0x29' # ONIE Version ONIE_TLVINFO_TYPE_CODE_NUM_MACS = '0x2A' # Number of MAC Addresses ONIE_TLVINFO_TYPE_CODE_MANUFACTURER = '0x2B' # Manufacturer ONIE_TLVINFO_TYPE_CODE_COUNTRY_CODE = '0x2C' # Country Code ONIE_TLVINFO_TYPE_CODE_VENDOR = '0x2D' # Vendor ONIE_TLVINFO_TYPE_CODE_DIAG_VERSION = '0x2E' # Diag Version ONIE_TLVINFO_TYPE_CODE_SERVICE_TAG = '0x2F' # Service Tag ONIE_TLVINFO_TYPE_CODE_VENDOR_EXT = '0xFD' # Vendor Extension ONIE_TLVINFO_TYPE_CODE_CRC32 = '0xFE' # CRC-32 class TestChassisApi(PlatformApiTestBase): ''' Platform API test cases for the Chassis class''' # # Functions to test methods inherited from DeviceBase class # def test_get_name(self, duthost, localhost, platform_api_conn): name = chassis.get_name(platform_api_conn) pytest_assert(name is not None, "Unable to retrieve chassis name") pytest_assert(isinstance(name, str), "Chassis name appears incorrect") def test_get_presence(self, duthost, localhost, platform_api_conn): presence = chassis.get_presence(platform_api_conn) pytest_assert(presence is not None, "Unable to retrieve chassis presence") pytest_assert(isinstance(presence, bool), "Chassis presence appears incorrect") # Chassis should always be present pytest_assert(presence is True, "Chassis is not present") def test_get_model(self, duthost, localhost, platform_api_conn): model = chassis.get_model(platform_api_conn) pytest_assert(model is not None, "Unable to retrieve chassis model") pytest_assert(isinstance(model, str), "Chassis model appears incorrect") def test_get_serial(self, duthost, localhost, platform_api_conn): serial = chassis.get_serial(platform_api_conn) pytest_assert(serial is not None, "Unable to retrieve chassis serial number") pytest_assert(isinstance(serial, str), "Chassis serial number appears incorrect") def test_get_status(self, duthost, localhost, platform_api_conn): status = chassis.get_status(platform_api_conn) pytest_assert(status is not None, "Unable to retrieve chassis status") pytest_assert(isinstance(status, bool), "Chassis status appears incorrect") # # Functions to test methods defined in ChassisBase class # def test_get_base_mac(self, duthost, localhost, platform_api_conn): # Ensure the base MAC address is sane base_mac = chassis.get_base_mac(platform_api_conn) pytest_assert(base_mac is not None, "Failed to retrieve base MAC address") pytest_assert(re.match(REGEX_MAC_ADDRESS, base_mac), "Base MAC address appears to be incorrect") if 'base_mac' in duthost.host.options['inventory_manager'].get_host(duthost.hostname).vars: expected_base_mac = duthost.host.options['inventory_manager'].get_host(duthost.hostname).vars['base_mac'] pytest_assert(base_mac == expected_base_mac, "Base MAC address is incorrect") else: logger.warning('Inventory file does not contain base MAC address for {}'.format(duthost.hostname)) def test_get_serial_number(self, duthost, localhost, platform_api_conn): # Ensure the serial number is sane # Note: It appears that when retrieving some variable-length fields, # the value is padded with trailing '\x00' bytes because the field # length is longer than the actual value, so we strip those bytes # here before comparing. We may want to change the EEPROM parsing # logic to ensure that trailing '\x00' bytes are removed when retreiving # a variable-length value. serial = chassis.get_serial_number(platform_api_conn).rstrip('\x00') pytest_assert(serial is not None, "Failed to retrieve serial number") pytest_assert(re.match(REGEX_SERIAL_NUMBER, serial), "Serial number appears to be incorrect") if 'serial' in duthost.host.options['inventory_manager'].get_host(duthost.hostname).vars: expected_serial = duthost.host.options['inventory_manager'].get_host(duthost.hostname).vars['serial'] pytest_assert(serial == expected_serial, "Serial number is incorrect") else: logger.warning('Inventory file does not contain serial number for {}'.format(duthost.hostname)) def test_get_system_eeprom_info(self, duthost, localhost, platform_api_conn): ''' Test that we can retrieve sane system EEPROM info from the DUT via the platform API ''' # OCP ONIE TlvInfo EEPROM type codes defined here: https://opencomputeproject.github.io/onie/design-spec/hw_requirements.html VALID_ONIE_TLVINFO_TYPE_CODES_LIST = [ ONIE_TLVINFO_TYPE_CODE_PRODUCT_NAME, ONIE_TLVINFO_TYPE_CODE_PART_NUMBER, ONIE_TLVINFO_TYPE_CODE_SERIAL_NUMBER, ONIE_TLVINFO_TYPE_CODE_BASE_MAC_ADDR, ONIE_TLVINFO_TYPE_CODE_MFR_DATE, ONIE_TLVINFO_TYPE_CODE_DEVICE_VERSION, ONIE_TLVINFO_TYPE_CODE_LABEL_REVISION, ONIE_TLVINFO_TYPE_CODE_PLATFORM_NAME, ONIE_TLVINFO_TYPE_CODE_ONIE_VERSION, ONIE_TLVINFO_TYPE_CODE_NUM_MACS, ONIE_TLVINFO_TYPE_CODE_MANUFACTURER, ONIE_TLVINFO_TYPE_CODE_COUNTRY_CODE, ONIE_TLVINFO_TYPE_CODE_VENDOR, ONIE_TLVINFO_TYPE_CODE_DIAG_VERSION, ONIE_TLVINFO_TYPE_CODE_SERVICE_TAG, ONIE_TLVINFO_TYPE_CODE_VENDOR_EXT, ONIE_TLVINFO_TYPE_CODE_CRC32 ] MINIMUM_REQUIRED_TYPE_CODES_LIST = [ ONIE_TLVINFO_TYPE_CODE_SERIAL_NUMBER, ONIE_TLVINFO_TYPE_CODE_BASE_MAC_ADDR, ONIE_TLVINFO_TYPE_CODE_CRC32 ] syseeprom_info_dict = chassis.get_system_eeprom_info(platform_api_conn) pytest_assert(syseeprom_info_dict is not None, "Failed to retrieve system EEPROM data") pytest_assert(isinstance(syseeprom_info_dict, dict), "System EEPROM data is not in the expected format") syseeprom_type_codes_list = syseeprom_info_dict.keys() # Ensure that all keys in the resulting dictionary are valid ONIE TlvInfo type codes pytest_assert(set(syseeprom_type_codes_list) <= set(VALID_ONIE_TLVINFO_TYPE_CODES_LIST), "Invalid TlvInfo type code found") # Ensure that we were able to obtain the minimum required type codes pytest_assert(set(MINIMUM_REQUIRED_TYPE_CODES_LIST) <= set(syseeprom_type_codes_list), "Minimum required TlvInfo type codes not provided") # Ensure the base MAC address is sane base_mac = syseeprom_info_dict[ONIE_TLVINFO_TYPE_CODE_BASE_MAC_ADDR] pytest_assert(base_mac is not None, "Failed to retrieve base MAC address") pytest_assert(re.match(REGEX_MAC_ADDRESS, base_mac), "Base MAC address appears to be incorrect") # Ensure the serial number is sane serial = syseeprom_info_dict[ONIE_TLVINFO_TYPE_CODE_SERIAL_NUMBER] pytest_assert(serial is not None, "Failed to retrieve serial number") pytest_assert(re.match(REGEX_SERIAL_NUMBER, serial), "Serial number appears to be incorrect") if 'syseeprom_info' in duthost.host.options['inventory_manager'].get_host(duthost.hostname).vars: expected_syseeprom_info_dict = duthost.host.options['inventory_manager'].get_host(duthost.hostname).vars['syseeprom_info'] pytest_assert(syseeprom_info_dict == expected_syseeprom_info_dict, "System EEPROM info is incorrect") else: logger.warning('Inventory file does not contain system EEPROM info for {}'.format(duthost.hostname)) def test_get_reboot_cause(self, duthost, localhost, platform_api_conn): # TODO: Compare return values to potential combinations reboot_cause = chassis.get_reboot_cause(platform_api_conn) # Actual return value is a tuple, but since we're using the HTTP server # to make the call and it uses JSON, the tuple is changed to a list pytest_assert(reboot_cause is not None, "Failed to retrieve reboot cause") pytest_assert(isinstance(reboot_cause, list) and len(reboot_cause) == 2, "Reboot cause appears to be incorrect") def test_components(self, duthost, localhost, platform_api_conn): # TODO: Ensure the number of components and that the returned list is correct for this platform try: num_components = int(chassis.get_num_components(platform_api_conn)) except: pytest.fail("num_components is not an integer") component_list = chassis.get_all_components(platform_api_conn) pytest_assert(component_list is not None, "Failed to retrieve components") pytest_assert(isinstance(component_list, list) and len(component_list) == num_components, "Components appear to be incorrect") for i in range(num_components): component = chassis.get_component(platform_api_conn, i) self.expect(component and component == component_list[i], "Component {} is incorrect".format(i)) self.assert_expectations() def test_modules(self, duthost, localhost, platform_api_conn): # TODO: Ensure the number of modules and that the returned list is correct for this platform try: num_modules = int(chassis.get_num_modules(platform_api_conn)) except: pytest.fail("num_modules is not an integer") module_list = chassis.get_all_modules(platform_api_conn) pytest_assert(module_list is not None, "Failed to retrieve modules") pytest_assert(isinstance(module_list, list) and len(module_list) == num_modules, "Modules appear to be incorrect") for i in range(num_modules): module = chassis.get_module(platform_api_conn, i) self.expect(module and module == module_list[i], "Module {} is incorrect".format(i)) self.assert_expectations() def test_fans(self, duthost, localhost, platform_api_conn): # TODO: Ensure the number of fans and that the returned list is correct for this platform try: num_fans = int(chassis.get_num_fans(platform_api_conn)) except: pytest.fail("num_fans is not an integer") fan_list = chassis.get_all_fans(platform_api_conn) pytest_assert(fan_list is not None, "Failed to retrieve fans") pytest_assert(isinstance(fan_list, list) and len(fan_list) == num_fans, "Fans appear to be incorrect") for i in range(num_fans): fan = chassis.get_fan(platform_api_conn, i) self.expect(fan and fan == fan_list[i], "Fan {} is incorrect".format(i)) self.assert_expectations() def test_fan_drawers(self, duthost, localhost, platform_api_conn): # TODO: Ensure the number of fan drawers and that the returned list is correct for this platform try: num_fan_drawers = int(chassis.get_num_fan_drawers(platform_api_conn)) except: pytest.fail("num_fan_drawers is not an integer") fan_drawer_list = chassis.get_all_fan_drawers(platform_api_conn) pytest_assert(fan_drawer_list is not None, "Failed to retrieve fan drawers") pytest_assert(isinstance(fan_drawer_list, list) and len(fan_drawer_list) == num_fan_drawers, "Fan drawerss appear to be incorrect") for i in range(num_fan_drawers): fan_drawer = chassis.get_fan_drawer(platform_api_conn, i) self.expect(fan_drawer and fan_drawer == fan_drawer_list[i], "Fan drawer {} is incorrect".format(i)) self.assert_expectations() def test_psus(self, duthost, localhost, platform_api_conn): # TODO: Ensure the number of PSUs and that the returned list is correct for this platform try: num_psus = int(chassis.get_num_psus(platform_api_conn)) except: pytest.fail("num_psus is not an integer") psu_list = chassis.get_all_psus(platform_api_conn) pytest_assert(psu_list is not None, "Failed to retrieve PSUs") pytest_assert(isinstance(psu_list, list) and len(psu_list) == num_psus, "PSUs appear to be incorrect") for i in range(num_psus): psu = chassis.get_psu(platform_api_conn, i) self.expect(psu and psu == psu_list[i], "PSU {} is incorrect".format(i)) self.assert_expectations() def test_thermals(self, duthost, localhost, platform_api_conn): # TODO: Ensure the number of thermals and that the returned list is correct for this platform try: num_thermals = int(chassis.get_num_thermals(platform_api_conn)) except: pytest.fail("num_thermals is not an integer") thermal_list = chassis.get_all_thermals(platform_api_conn) pytest_assert(thermal_list is not None, "Failed to retrieve thermals") pytest_assert(isinstance(thermal_list, list) and len(thermal_list) == num_thermals, "Thermals appear to be incorrect") for i in range(num_thermals): thermal = chassis.get_thermal(platform_api_conn, i) self.expect(thermal and thermal == thermal_list[i], "Thermal {} is incorrect".format(i)) self.assert_expectations() def test_sfps(self, duthost, localhost, platform_api_conn): # TODO: Ensure the number of SFPs and that the returned list is correct for this platform try: num_sfps = int(chassis.get_num_sfps(platform_api_conn)) except: pytest.fail("num_sfps is not an integer") sfp_list = chassis.get_all_sfps(platform_api_conn) pytest_assert(sfp_list is not None, "Failed to retrieve SFPs") pytest_assert(isinstance(sfp_list, list) and len(sfp_list) == num_sfps, "SFPs appear to be incorrect") for i in range(num_sfps): sfp = chassis.get_sfp(platform_api_conn, i) self.expect(sfp and sfp == sfp_list[i], "SFP {} is incorrect".format(i)) self.assert_expectations() def test_status_led(self, duthost, localhost, platform_api_conn): # TODO: Get a platform-specific list of available colors for the status LED LED_COLOR_LIST = [ "off", "red", "amber", "green", ] for color in LED_COLOR_LIST: result = chassis.set_status_led(platform_api_conn, color) if self.expect(result is not None, "Failed to perform set_status_led"): self.expect(result is True, "Failed to set status_led to {}".format(color)) color_actual = chassis.get_status_led(platform_api_conn) if self.expect(color_actual is not None, "Failed to retrieve status_led"): if self.expect(isinstance(color_actual, str), "Status LED color appears incorrect"): self.expect(color == color_actual, "Status LED color incorrect (expected: {}, actual: {})".format(color, color_actual)) self.assert_expectations() def test_get_thermal_manager(self, duthost, localhost, platform_api_conn): thermal_mgr = chassis.get_thermal_manager(platform_api_conn) pytest_assert(thermal_mgr is not None, "Failed to retrieve thermal manager") def test_get_watchdog(self, duthost, localhost, platform_api_conn): watchdog = chassis.get_watchdog(platform_api_conn) pytest_assert(watchdog is not None, "Failed to retrieve watchdog") def test_get_eeprom(self, duthost, localhost, platform_api_conn): eeprom = chassis.get_eeprom(platform_api_conn) pytest_assert(eeprom is not None, "Failed to retrieve system EEPROM")
[ [ [ 7, 14 ], [ 231, 238 ] ], [ [ 22, 24 ], [ 3800, 3802 ], [ 5031, 5033 ], [ 7956, 7958 ], [ 8258, 8260 ] ], [ [ 33, 39 ], [ 279, 285 ], [ 349, 355 ], [ 9686, 9692 ], [ 10561, 10567 ], [ 11376, 11382 ], [ 12171, 12177 ], [ 13051, 13057 ], [ 13834, 13840 ], [ 14665, 14671 ] ], [ [ 47, 51 ] ], [ [ 97, 110 ], [ 2013, 2026 ], [ 2088, 2101 ], [ 2299, 2312 ], [ 2382, 2395 ], [ 2513, 2526 ], [ 2702, 2715 ], [ 2779, 2792 ], [ 2986, 2999 ], [ 3072, 3085 ], [ 3288, 3301 ], [ 3367, 3380 ], [ 3703, 3716 ], [ 3786, 3799 ], [ 4114, 4127 ], [ 4939, 4952 ], [ 5017, 5030 ], [ 5336, 5349 ], [ 7011, 7024 ], [ 7107, 7120 ], [ 7378, 7391 ], [ 7588, 7601 ], [ 7859, 7872 ], [ 7942, 7955 ], [ 8166, 8179 ], [ 8244, 8257 ], [ 8592, 8605 ], [ 9194, 9207 ], [ 9277, 9290 ], [ 9814, 9827 ], [ 9897, 9910 ], [ 10680, 10693 ], [ 10757, 10770 ], [ 11486, 11499 ], [ 11557, 11570 ], [ 12302, 12315 ], [ 12387, 12400 ], [ 13161, 13174 ], [ 13232, 13245 ], [ 13956, 13969 ], [ 14035, 14048 ], [ 14775, 14788 ], [ 14846, 14859 ], [ 16306, 16319 ], [ 16523, 16536 ], [ 16724, 16737 ] ], [ [ 157, 164 ], [ 1969, 1976 ], [ 2251, 2258 ], [ 2657, 2664 ], [ 2940, 2947 ], [ 3242, 3249 ], [ 3655, 3662 ], [ 4871, 4878 ], [ 6953, 6960 ], [ 8985, 8992 ], [ 9611, 9618 ], [ 9760, 9767 ], [ 10089, 10096 ], [ 10489, 10496 ], [ 10629, 10636 ], [ 10931, 10938 ], [ 11307, 11314 ], [ 11438, 11445 ], [ 11713, 11720 ], [ 12095, 12102 ], [ 12247, 12254 ], [ 12586, 12593 ], [ 12982, 12989 ], [ 13113, 13120 ], [ 13388, 13395 ], [ 13761, 13768 ], [ 13904, 13911 ], [ 14215, 14222 ], [ 14596, 14603 ], [ 14727, 14734 ], [ 15002, 15009 ], [ 15491, 15498 ], [ 15744, 15751 ], [ 16251, 16258 ], [ 16475, 16482 ], [ 16678, 16685 ] ], [ [ 201, 220 ], [ 1729, 1748 ] ], [ [ 222, 228 ], [ 4218, 4224 ], [ 5433, 5439 ], [ 8720, 8726 ] ], [ [ 260, 270 ] ], [ [ 380, 397 ], [ 3809, 3826 ], [ 7965, 7982 ] ], [ [ 442, 461 ], [ 5040, 5059 ], [ 8267, 8286 ] ], [ [ 620, 655 ], [ 5913, 5948 ] ], [ [ 683, 717 ], [ 5962, 5996 ] ], [ [ 745, 781 ], [ 6010, 6046 ], [ 6783, 6819 ], [ 8120, 8156 ] ], [ [ 809, 845 ], [ 6060, 6096 ], [ 6833, 6869 ], [ 7813, 7849 ] ], [ [ 876, 907 ], [ 6110, 6141 ] ], [ [ 943, 980 ], [ 6155, 6192 ] ], [ [ 1008, 1045 ], [ 6206, 6243 ] ], [ [ 1073, 1109 ], [ 6257, 6293 ] ], [ [ 1137, 1172 ], [ 6307, 6342 ] ], [ [ 1200, 1231 ], [ 6356, 6387 ] ], [ [ 1274, 1309 ], [ 6401, 6436 ] ], [ [ 1337, 1372 ], [ 6450, 6485 ] ], [ [ 1400, 1429 ], [ 6499, 6528 ] ], [ [ 1457, 1492 ], [ 6542, 6577 ] ], [ [ 1520, 1554 ], [ 6591, 6625 ] ], [ [ 1582, 1615 ], [ 6639, 6672 ] ], [ [ 1649, 1677 ], [ 6686, 6714 ], [ 6883, 6911 ] ], [ [ 1714, 1728 ] ] ]