body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
def __init__(self, identifier, name, date, dims, auth_token=auth_token, base_url=base_url): 'Initialize parameters of the experiment client object.' self.experiment_id = identifier self.name = name self.date = date self.dims = dims self.auth_token = auth_token self.base_url = base_url
-8,454,303,637,792,562,000
Initialize parameters of the experiment client object.
thor_client/experiment_client.py
__init__
JamesBrofos/Thor-Python-Client
python
def __init__(self, identifier, name, date, dims, auth_token=auth_token, base_url=base_url): self.experiment_id = identifier self.name = name self.date = date self.dims = dims self.auth_token = auth_token self.base_url = base_url
def submit_observation(self, config, target): 'Upload a pairing of a configuration alongside an observed target\n variable.\n\n Parameters:\n config (dictionary): A dictionary mapping dimension names to values\n indicating the configuration of parameters.\n target (float): A number indicating the performance of this\n configuration of model parameters.\n\n Examples:\n This utility is helpful in the event that a machine learning\n practitioner already has a few existing evaluations of the system at\n given inputs. For instance, the consumer may have already performed\n a grid search to obtain parameter values.\n\n Suppose that a particular experiment has two dimensions named "x"\n and "y". Then to upload a configuration to the Thor server, we\n proceed as follows:\n\n >>> d = {"x": 1.5, "y": 3.1}\n >>> v = f(d["x"], d["y"])\n >>> exp.submit_observation(d, v)\n ' post_data = {'auth_token': self.auth_token, 'experiment_id': self.experiment_id, 'configuration': json.dumps(config), 'target': target} result = requests.post(url=self.base_url.format('submit_observation'), json=post_data) return json_parser(result, self.auth_token)
2,216,162,767,312,073,200
Upload a pairing of a configuration alongside an observed target variable. Parameters: config (dictionary): A dictionary mapping dimension names to values indicating the configuration of parameters. target (float): A number indicating the performance of this configuration of model parameters. Examples: This utility is helpful in the event that a machine learning practitioner already has a few existing evaluations of the system at given inputs. For instance, the consumer may have already performed a grid search to obtain parameter values. Suppose that a particular experiment has two dimensions named "x" and "y". Then to upload a configuration to the Thor server, we proceed as follows: >>> d = {"x": 1.5, "y": 3.1} >>> v = f(d["x"], d["y"]) >>> exp.submit_observation(d, v)
thor_client/experiment_client.py
submit_observation
JamesBrofos/Thor-Python-Client
python
def submit_observation(self, config, target): 'Upload a pairing of a configuration alongside an observed target\n variable.\n\n Parameters:\n config (dictionary): A dictionary mapping dimension names to values\n indicating the configuration of parameters.\n target (float): A number indicating the performance of this\n configuration of model parameters.\n\n Examples:\n This utility is helpful in the event that a machine learning\n practitioner already has a few existing evaluations of the system at\n given inputs. For instance, the consumer may have already performed\n a grid search to obtain parameter values.\n\n Suppose that a particular experiment has two dimensions named "x"\n and "y". Then to upload a configuration to the Thor server, we\n proceed as follows:\n\n >>> d = {"x": 1.5, "y": 3.1}\n >>> v = f(d["x"], d["y"])\n >>> exp.submit_observation(d, v)\n ' post_data = {'auth_token': self.auth_token, 'experiment_id': self.experiment_id, 'configuration': json.dumps(config), 'target': target} result = requests.post(url=self.base_url.format('submit_observation'), json=post_data) return json_parser(result, self.auth_token)
def create_recommendation(self, rand_prob=0.0, n_models=5, description='', acq_func='expected_improvement', integrate_acq=True): 'Get a recommendation for a point to evaluate next.\n\n The create recommendation utility represents the core of the Thor\n Bayesian optimization software. This function will contact the Thor\n server and request a new configuration of machine learning parameters\n that serve the object of maximizing the metric of interest.\n\n Parameters:\n rand_prob (optional, float): This parameter represents that a random\n point in the input space is chosen instead of selecting a\n configuration of parameters using Bayesian optimization. As\n such, this parameter can be used to benchmark against random\n search and otherwise to perform pure exploration of the\n parameter space.\n n_models (optional, int): The number of Gaussian process models to\n sample using elliptical slice sampling. Setting this to a large\n number will produce a better characterization of uncertainty in\n the acquisition function.\n description (optional, str): An optional per-observation\n descriptor, potentially useful for identifying one observation\n among many others in a large experiment. Defaults to "".\n acq_func (optional, str): A string specifying which acquisition\n function should be used to construct the newest recommendation.\n It can be useful to sometimes vary the acquisition function to\n enable exploitation towards the end of an experiment.\n integrate_acq (optional, bool): An indicator for whether or not we\n should construct an integrated acquisition function using models\n sampled from the posterior. The alternative is to not integrate\n and to return a single recommendation for each of the sampled\n models, of which there are `n_models`.\n\n Returns:\n RecommendationClient: A recommendation client object\n corresponding to the recommended set of parameters. If the\n acquisition function is not integrated, a list of\n RecommendationClient objects may be returned instead, one for\n each sampled model.\n ' post_data = {'auth_token': self.auth_token, 'experiment_id': self.experiment_id, 'n_models': n_models, 'rand_prob': rand_prob, 'description': description, 'acq_func': acq_func, 'integrate_acq': integrate_acq} result = requests.post(url=self.base_url.format('create_recommendation'), json=post_data) recs = json_parser(result, self.auth_token, RecommendationClient) return (recs[0] if (len(recs) == 1) else recs)
-7,716,865,792,384,818,000
Get a recommendation for a point to evaluate next. The create recommendation utility represents the core of the Thor Bayesian optimization software. This function will contact the Thor server and request a new configuration of machine learning parameters that serve the object of maximizing the metric of interest. Parameters: rand_prob (optional, float): This parameter represents that a random point in the input space is chosen instead of selecting a configuration of parameters using Bayesian optimization. As such, this parameter can be used to benchmark against random search and otherwise to perform pure exploration of the parameter space. n_models (optional, int): The number of Gaussian process models to sample using elliptical slice sampling. Setting this to a large number will produce a better characterization of uncertainty in the acquisition function. description (optional, str): An optional per-observation descriptor, potentially useful for identifying one observation among many others in a large experiment. Defaults to "". acq_func (optional, str): A string specifying which acquisition function should be used to construct the newest recommendation. It can be useful to sometimes vary the acquisition function to enable exploitation towards the end of an experiment. integrate_acq (optional, bool): An indicator for whether or not we should construct an integrated acquisition function using models sampled from the posterior. The alternative is to not integrate and to return a single recommendation for each of the sampled models, of which there are `n_models`. Returns: RecommendationClient: A recommendation client object corresponding to the recommended set of parameters. If the acquisition function is not integrated, a list of RecommendationClient objects may be returned instead, one for each sampled model.
thor_client/experiment_client.py
create_recommendation
JamesBrofos/Thor-Python-Client
python
def create_recommendation(self, rand_prob=0.0, n_models=5, description=, acq_func='expected_improvement', integrate_acq=True): 'Get a recommendation for a point to evaluate next.\n\n The create recommendation utility represents the core of the Thor\n Bayesian optimization software. This function will contact the Thor\n server and request a new configuration of machine learning parameters\n that serve the object of maximizing the metric of interest.\n\n Parameters:\n rand_prob (optional, float): This parameter represents that a random\n point in the input space is chosen instead of selecting a\n configuration of parameters using Bayesian optimization. As\n such, this parameter can be used to benchmark against random\n search and otherwise to perform pure exploration of the\n parameter space.\n n_models (optional, int): The number of Gaussian process models to\n sample using elliptical slice sampling. Setting this to a large\n number will produce a better characterization of uncertainty in\n the acquisition function.\n description (optional, str): An optional per-observation\n descriptor, potentially useful for identifying one observation\n among many others in a large experiment. Defaults to .\n acq_func (optional, str): A string specifying which acquisition\n function should be used to construct the newest recommendation.\n It can be useful to sometimes vary the acquisition function to\n enable exploitation towards the end of an experiment.\n integrate_acq (optional, bool): An indicator for whether or not we\n should construct an integrated acquisition function using models\n sampled from the posterior. The alternative is to not integrate\n and to return a single recommendation for each of the sampled\n models, of which there are `n_models`.\n\n Returns:\n RecommendationClient: A recommendation client object\n corresponding to the recommended set of parameters. If the\n acquisition function is not integrated, a list of\n RecommendationClient objects may be returned instead, one for\n each sampled model.\n ' post_data = {'auth_token': self.auth_token, 'experiment_id': self.experiment_id, 'n_models': n_models, 'rand_prob': rand_prob, 'description': description, 'acq_func': acq_func, 'integrate_acq': integrate_acq} result = requests.post(url=self.base_url.format('create_recommendation'), json=post_data) recs = json_parser(result, self.auth_token, RecommendationClient) return (recs[0] if (len(recs) == 1) else recs)
def best_configuration(self): 'Get the configuration of parameters that produced the best value of\n the objective function.\n\n Returns:\n dictionary: A dictionary containing a detailed view of the\n configuration of model parameters that produced the maximal\n value of the metric. This includes the date the observation was\n created, the value of the metric, and the configuration itself.\n ' post_data = {'auth_token': self.auth_token, 'experiment_id': self.experiment_id} result = requests.post(url=self.base_url.format('best_configuration'), json=post_data) return json_parser(result, self.auth_token)
-2,313,999,916,199,557,600
Get the configuration of parameters that produced the best value of the objective function. Returns: dictionary: A dictionary containing a detailed view of the configuration of model parameters that produced the maximal value of the metric. This includes the date the observation was created, the value of the metric, and the configuration itself.
thor_client/experiment_client.py
best_configuration
JamesBrofos/Thor-Python-Client
python
def best_configuration(self): 'Get the configuration of parameters that produced the best value of\n the objective function.\n\n Returns:\n dictionary: A dictionary containing a detailed view of the\n configuration of model parameters that produced the maximal\n value of the metric. This includes the date the observation was\n created, the value of the metric, and the configuration itself.\n ' post_data = {'auth_token': self.auth_token, 'experiment_id': self.experiment_id} result = requests.post(url=self.base_url.format('best_configuration'), json=post_data) return json_parser(result, self.auth_token)
def pending_recommendations(self): 'Query for pending recommendations that have yet to be evaluated.\n\n Sometimes client-side computations may fail for a given input\n configuration of model parameters, leaving the recommendation in a kind\n of "limbo" state in which is not being evaluated but still exists. In\n this case, it can be advantageous for the client to query for such\n pending observations and to evaluate them. This function returns a list\n of pending recommendations which can then be evaluated by the client.\n\n Returns:\n list of RecommendationClient: A list of\n recommendation client objects, where each element in the list\n corresponds to a pending observation.\n ' post_data = {'auth_token': self.auth_token, 'experiment_id': self.experiment_id} result = requests.post(url=self.base_url.format('pending_recommendations'), json=post_data) return json_parser(result, self.auth_token, RecommendationClient)
8,343,984,657,662,928,000
Query for pending recommendations that have yet to be evaluated. Sometimes client-side computations may fail for a given input configuration of model parameters, leaving the recommendation in a kind of "limbo" state in which is not being evaluated but still exists. In this case, it can be advantageous for the client to query for such pending observations and to evaluate them. This function returns a list of pending recommendations which can then be evaluated by the client. Returns: list of RecommendationClient: A list of recommendation client objects, where each element in the list corresponds to a pending observation.
thor_client/experiment_client.py
pending_recommendations
JamesBrofos/Thor-Python-Client
python
def pending_recommendations(self): 'Query for pending recommendations that have yet to be evaluated.\n\n Sometimes client-side computations may fail for a given input\n configuration of model parameters, leaving the recommendation in a kind\n of "limbo" state in which is not being evaluated but still exists. In\n this case, it can be advantageous for the client to query for such\n pending observations and to evaluate them. This function returns a list\n of pending recommendations which can then be evaluated by the client.\n\n Returns:\n list of RecommendationClient: A list of\n recommendation client objects, where each element in the list\n corresponds to a pending observation.\n ' post_data = {'auth_token': self.auth_token, 'experiment_id': self.experiment_id} result = requests.post(url=self.base_url.format('pending_recommendations'), json=post_data) return json_parser(result, self.auth_token, RecommendationClient)
@classmethod def from_dict(cls, dictionary, auth_token): 'Create an experiment object from a dictionary representation. Pass\n the authentication token as an additional parameter.\n\n TODO:\n Can the authentication token be a return parameter?\n ' return cls(identifier=dictionary['id'], name=dictionary['name'], date=dictionary['date'], dims=dictionary['dimensions'], auth_token=auth_token)
-1,919,639,324,076,756,200
Create an experiment object from a dictionary representation. Pass the authentication token as an additional parameter. TODO: Can the authentication token be a return parameter?
thor_client/experiment_client.py
from_dict
JamesBrofos/Thor-Python-Client
python
@classmethod def from_dict(cls, dictionary, auth_token): 'Create an experiment object from a dictionary representation. Pass\n the authentication token as an additional parameter.\n\n TODO:\n Can the authentication token be a return parameter?\n ' return cls(identifier=dictionary['id'], name=dictionary['name'], date=dictionary['date'], dims=dictionary['dimensions'], auth_token=auth_token)
async def add_derivation_paths(self, records: List[DerivationRecord]) -> None: '\n Insert many derivation paths into the database.\n ' async with self.db_wrapper.lock: sql_records = [] for record in records: self.all_puzzle_hashes.add(record.puzzle_hash) sql_records.append((record.index, bytes(record.pubkey).hex(), record.puzzle_hash.hex(), record.wallet_type, record.wallet_id, 0)) cursor = (await self.db_connection.executemany('INSERT OR REPLACE INTO derivation_paths VALUES(?, ?, ?, ?, ?, ?)', sql_records)) (await cursor.close()) (await self.db_connection.commit())
-6,033,513,997,635,272,000
Insert many derivation paths into the database.
chia/wallet/wallet_puzzle_store.py
add_derivation_paths
1SecureANDROID/chia-blockchain
python
async def add_derivation_paths(self, records: List[DerivationRecord]) -> None: '\n \n ' async with self.db_wrapper.lock: sql_records = [] for record in records: self.all_puzzle_hashes.add(record.puzzle_hash) sql_records.append((record.index, bytes(record.pubkey).hex(), record.puzzle_hash.hex(), record.wallet_type, record.wallet_id, 0)) cursor = (await self.db_connection.executemany('INSERT OR REPLACE INTO derivation_paths VALUES(?, ?, ?, ?, ?, ?)', sql_records)) (await cursor.close()) (await self.db_connection.commit())
async def get_derivation_record(self, index: uint32, wallet_id: uint32) -> Optional[DerivationRecord]: '\n Returns the derivation record by index and wallet id.\n ' cursor = (await self.db_connection.execute('SELECT * FROM derivation_paths WHERE derivation_index=? and wallet_id=?;', (index, wallet_id))) row = (await cursor.fetchone()) (await cursor.close()) if ((row is not None) and (row[0] is not None)): return DerivationRecord(uint32(row[0]), bytes32.fromhex(row[2]), G1Element.from_bytes(bytes.fromhex(row[1])), WalletType(row[3]), uint32(row[4])) return None
-7,135,487,103,276,070,000
Returns the derivation record by index and wallet id.
chia/wallet/wallet_puzzle_store.py
get_derivation_record
1SecureANDROID/chia-blockchain
python
async def get_derivation_record(self, index: uint32, wallet_id: uint32) -> Optional[DerivationRecord]: '\n \n ' cursor = (await self.db_connection.execute('SELECT * FROM derivation_paths WHERE derivation_index=? and wallet_id=?;', (index, wallet_id))) row = (await cursor.fetchone()) (await cursor.close()) if ((row is not None) and (row[0] is not None)): return DerivationRecord(uint32(row[0]), bytes32.fromhex(row[2]), G1Element.from_bytes(bytes.fromhex(row[1])), WalletType(row[3]), uint32(row[4])) return None
async def get_derivation_record_for_puzzle_hash(self, puzzle_hash: str) -> Optional[DerivationRecord]: '\n Returns the derivation record by index and wallet id.\n ' cursor = (await self.db_connection.execute('SELECT * FROM derivation_paths WHERE puzzle_hash=?;', (puzzle_hash,))) row = (await cursor.fetchone()) (await cursor.close()) if ((row is not None) and (row[0] is not None)): return DerivationRecord(uint32(row[0]), bytes32.fromhex(row[2]), G1Element.from_bytes(bytes.fromhex(row[1])), WalletType(row[3]), uint32(row[4])) return None
3,878,319,438,836,965,400
Returns the derivation record by index and wallet id.
chia/wallet/wallet_puzzle_store.py
get_derivation_record_for_puzzle_hash
1SecureANDROID/chia-blockchain
python
async def get_derivation_record_for_puzzle_hash(self, puzzle_hash: str) -> Optional[DerivationRecord]: '\n \n ' cursor = (await self.db_connection.execute('SELECT * FROM derivation_paths WHERE puzzle_hash=?;', (puzzle_hash,))) row = (await cursor.fetchone()) (await cursor.close()) if ((row is not None) and (row[0] is not None)): return DerivationRecord(uint32(row[0]), bytes32.fromhex(row[2]), G1Element.from_bytes(bytes.fromhex(row[1])), WalletType(row[3]), uint32(row[4])) return None
async def set_used_up_to(self, index: uint32, in_transaction=False) -> None: "\n Sets a derivation path to used so we don't use it again.\n " if (not in_transaction): (await self.db_wrapper.lock.acquire()) try: cursor = (await self.db_connection.execute('UPDATE derivation_paths SET used=1 WHERE derivation_index<=?', (index,))) (await cursor.close()) finally: if (not in_transaction): (await self.db_connection.commit()) self.db_wrapper.lock.release()
8,223,308,533,676,820,000
Sets a derivation path to used so we don't use it again.
chia/wallet/wallet_puzzle_store.py
set_used_up_to
1SecureANDROID/chia-blockchain
python
async def set_used_up_to(self, index: uint32, in_transaction=False) -> None: "\n \n " if (not in_transaction): (await self.db_wrapper.lock.acquire()) try: cursor = (await self.db_connection.execute('UPDATE derivation_paths SET used=1 WHERE derivation_index<=?', (index,))) (await cursor.close()) finally: if (not in_transaction): (await self.db_connection.commit()) self.db_wrapper.lock.release()
async def puzzle_hash_exists(self, puzzle_hash: bytes32) -> bool: '\n Checks if passed puzzle_hash is present in the db.\n ' cursor = (await self.db_connection.execute('SELECT * from derivation_paths WHERE puzzle_hash=?', (puzzle_hash.hex(),))) row = (await cursor.fetchone()) (await cursor.close()) return (row is not None)
117,372,233,620,748,340
Checks if passed puzzle_hash is present in the db.
chia/wallet/wallet_puzzle_store.py
puzzle_hash_exists
1SecureANDROID/chia-blockchain
python
async def puzzle_hash_exists(self, puzzle_hash: bytes32) -> bool: '\n \n ' cursor = (await self.db_connection.execute('SELECT * from derivation_paths WHERE puzzle_hash=?', (puzzle_hash.hex(),))) row = (await cursor.fetchone()) (await cursor.close()) return (row is not None)
async def one_of_puzzle_hashes_exists(self, puzzle_hashes: List[bytes32]) -> bool: '\n Checks if one of the passed puzzle_hashes is present in the db.\n ' if (len(puzzle_hashes) < 1): return False for ph in puzzle_hashes: if (ph in self.all_puzzle_hashes): return True return False
-5,927,667,413,891,186,000
Checks if one of the passed puzzle_hashes is present in the db.
chia/wallet/wallet_puzzle_store.py
one_of_puzzle_hashes_exists
1SecureANDROID/chia-blockchain
python
async def one_of_puzzle_hashes_exists(self, puzzle_hashes: List[bytes32]) -> bool: '\n \n ' if (len(puzzle_hashes) < 1): return False for ph in puzzle_hashes: if (ph in self.all_puzzle_hashes): return True return False
async def index_for_pubkey(self, pubkey: G1Element) -> Optional[uint32]: '\n Returns derivation paths for the given pubkey.\n Returns None if not present.\n ' cursor = (await self.db_connection.execute('SELECT * from derivation_paths WHERE pubkey=?', (bytes(pubkey).hex(),))) row = (await cursor.fetchone()) (await cursor.close()) if (row is not None): return uint32(row[0]) return None
-3,788,613,676,239,940,600
Returns derivation paths for the given pubkey. Returns None if not present.
chia/wallet/wallet_puzzle_store.py
index_for_pubkey
1SecureANDROID/chia-blockchain
python
async def index_for_pubkey(self, pubkey: G1Element) -> Optional[uint32]: '\n Returns derivation paths for the given pubkey.\n Returns None if not present.\n ' cursor = (await self.db_connection.execute('SELECT * from derivation_paths WHERE pubkey=?', (bytes(pubkey).hex(),))) row = (await cursor.fetchone()) (await cursor.close()) if (row is not None): return uint32(row[0]) return None
async def index_for_puzzle_hash(self, puzzle_hash: bytes32) -> Optional[uint32]: '\n Returns the derivation path for the puzzle_hash.\n Returns None if not present.\n ' cursor = (await self.db_connection.execute('SELECT * from derivation_paths WHERE puzzle_hash=?', (puzzle_hash.hex(),))) row = (await cursor.fetchone()) (await cursor.close()) if (row is not None): return uint32(row[0]) return None
2,479,210,134,985,288,700
Returns the derivation path for the puzzle_hash. Returns None if not present.
chia/wallet/wallet_puzzle_store.py
index_for_puzzle_hash
1SecureANDROID/chia-blockchain
python
async def index_for_puzzle_hash(self, puzzle_hash: bytes32) -> Optional[uint32]: '\n Returns the derivation path for the puzzle_hash.\n Returns None if not present.\n ' cursor = (await self.db_connection.execute('SELECT * from derivation_paths WHERE puzzle_hash=?', (puzzle_hash.hex(),))) row = (await cursor.fetchone()) (await cursor.close()) if (row is not None): return uint32(row[0]) return None
async def index_for_puzzle_hash_and_wallet(self, puzzle_hash: bytes32, wallet_id: uint32) -> Optional[uint32]: '\n Returns the derivation path for the puzzle_hash.\n Returns None if not present.\n ' cursor = (await self.db_connection.execute('SELECT * from derivation_paths WHERE puzzle_hash=? and wallet_id=?;', (puzzle_hash.hex(), wallet_id))) row = (await cursor.fetchone()) (await cursor.close()) if (row is not None): return uint32(row[0]) return None
-465,883,259,975,356,740
Returns the derivation path for the puzzle_hash. Returns None if not present.
chia/wallet/wallet_puzzle_store.py
index_for_puzzle_hash_and_wallet
1SecureANDROID/chia-blockchain
python
async def index_for_puzzle_hash_and_wallet(self, puzzle_hash: bytes32, wallet_id: uint32) -> Optional[uint32]: '\n Returns the derivation path for the puzzle_hash.\n Returns None if not present.\n ' cursor = (await self.db_connection.execute('SELECT * from derivation_paths WHERE puzzle_hash=? and wallet_id=?;', (puzzle_hash.hex(), wallet_id))) row = (await cursor.fetchone()) (await cursor.close()) if (row is not None): return uint32(row[0]) return None
async def wallet_info_for_puzzle_hash(self, puzzle_hash: bytes32) -> Optional[Tuple[(uint32, WalletType)]]: '\n Returns the derivation path for the puzzle_hash.\n Returns None if not present.\n ' cursor = (await self.db_connection.execute('SELECT * from derivation_paths WHERE puzzle_hash=?', (puzzle_hash.hex(),))) row = (await cursor.fetchone()) (await cursor.close()) if (row is not None): return (row[4], WalletType(row[3])) return None
-2,138,887,991,481,001,000
Returns the derivation path for the puzzle_hash. Returns None if not present.
chia/wallet/wallet_puzzle_store.py
wallet_info_for_puzzle_hash
1SecureANDROID/chia-blockchain
python
async def wallet_info_for_puzzle_hash(self, puzzle_hash: bytes32) -> Optional[Tuple[(uint32, WalletType)]]: '\n Returns the derivation path for the puzzle_hash.\n Returns None if not present.\n ' cursor = (await self.db_connection.execute('SELECT * from derivation_paths WHERE puzzle_hash=?', (puzzle_hash.hex(),))) row = (await cursor.fetchone()) (await cursor.close()) if (row is not None): return (row[4], WalletType(row[3])) return None
async def get_all_puzzle_hashes(self) -> Set[bytes32]: '\n Return a set containing all puzzle_hashes we generated.\n ' cursor = (await self.db_connection.execute('SELECT * from derivation_paths')) rows = (await cursor.fetchall()) (await cursor.close()) result: Set[bytes32] = set() for row in rows: result.add(bytes32(bytes.fromhex(row[2]))) return result
-3,404,014,031,407,140,000
Return a set containing all puzzle_hashes we generated.
chia/wallet/wallet_puzzle_store.py
get_all_puzzle_hashes
1SecureANDROID/chia-blockchain
python
async def get_all_puzzle_hashes(self) -> Set[bytes32]: '\n \n ' cursor = (await self.db_connection.execute('SELECT * from derivation_paths')) rows = (await cursor.fetchall()) (await cursor.close()) result: Set[bytes32] = set() for row in rows: result.add(bytes32(bytes.fromhex(row[2]))) return result
async def get_last_derivation_path(self) -> Optional[uint32]: '\n Returns the last derivation path by derivation_index.\n ' cursor = (await self.db_connection.execute('SELECT MAX(derivation_index) FROM derivation_paths;')) row = (await cursor.fetchone()) (await cursor.close()) if ((row is not None) and (row[0] is not None)): return uint32(row[0]) return None
-1,486,977,598,627,375,600
Returns the last derivation path by derivation_index.
chia/wallet/wallet_puzzle_store.py
get_last_derivation_path
1SecureANDROID/chia-blockchain
python
async def get_last_derivation_path(self) -> Optional[uint32]: '\n \n ' cursor = (await self.db_connection.execute('SELECT MAX(derivation_index) FROM derivation_paths;')) row = (await cursor.fetchone()) (await cursor.close()) if ((row is not None) and (row[0] is not None)): return uint32(row[0]) return None
async def get_last_derivation_path_for_wallet(self, wallet_id: int) -> Optional[uint32]: '\n Returns the last derivation path by derivation_index.\n ' cursor = (await self.db_connection.execute(f'SELECT MAX(derivation_index) FROM derivation_paths WHERE wallet_id={wallet_id};')) row = (await cursor.fetchone()) (await cursor.close()) if ((row is not None) and (row[0] is not None)): return uint32(row[0]) return None
3,022,884,929,937,231,400
Returns the last derivation path by derivation_index.
chia/wallet/wallet_puzzle_store.py
get_last_derivation_path_for_wallet
1SecureANDROID/chia-blockchain
python
async def get_last_derivation_path_for_wallet(self, wallet_id: int) -> Optional[uint32]: '\n \n ' cursor = (await self.db_connection.execute(f'SELECT MAX(derivation_index) FROM derivation_paths WHERE wallet_id={wallet_id};')) row = (await cursor.fetchone()) (await cursor.close()) if ((row is not None) and (row[0] is not None)): return uint32(row[0]) return None
async def get_current_derivation_record_for_wallet(self, wallet_id: uint32) -> Optional[DerivationRecord]: '\n Returns the current derivation record by derivation_index.\n ' cursor = (await self.db_connection.execute(f'SELECT MAX(derivation_index) FROM derivation_paths WHERE wallet_id={wallet_id} and used=1;')) row = (await cursor.fetchone()) (await cursor.close()) if ((row is not None) and (row[0] is not None)): index = uint32(row[0]) return (await self.get_derivation_record(index, wallet_id)) return None
6,350,083,862,135,092,000
Returns the current derivation record by derivation_index.
chia/wallet/wallet_puzzle_store.py
get_current_derivation_record_for_wallet
1SecureANDROID/chia-blockchain
python
async def get_current_derivation_record_for_wallet(self, wallet_id: uint32) -> Optional[DerivationRecord]: '\n \n ' cursor = (await self.db_connection.execute(f'SELECT MAX(derivation_index) FROM derivation_paths WHERE wallet_id={wallet_id} and used=1;')) row = (await cursor.fetchone()) (await cursor.close()) if ((row is not None) and (row[0] is not None)): index = uint32(row[0]) return (await self.get_derivation_record(index, wallet_id)) return None
async def get_unused_derivation_path(self) -> Optional[uint32]: '\n Returns the first unused derivation path by derivation_index.\n ' cursor = (await self.db_connection.execute('SELECT MIN(derivation_index) FROM derivation_paths WHERE used=0;')) row = (await cursor.fetchone()) (await cursor.close()) if ((row is not None) and (row[0] is not None)): return uint32(row[0]) return None
-1,986,313,468,384,572,400
Returns the first unused derivation path by derivation_index.
chia/wallet/wallet_puzzle_store.py
get_unused_derivation_path
1SecureANDROID/chia-blockchain
python
async def get_unused_derivation_path(self) -> Optional[uint32]: '\n \n ' cursor = (await self.db_connection.execute('SELECT MIN(derivation_index) FROM derivation_paths WHERE used=0;')) row = (await cursor.fetchone()) (await cursor.close()) if ((row is not None) and (row[0] is not None)): return uint32(row[0]) return None
@property def channels(self) -> int: 'The number of channels the file has.' return self._channels
-4,151,978,912,950,002,000
The number of channels the file has.
lacaudiofiles/wave/wavefile.py
channels
landmarkacoustics/lac-audio-files
python
@property def channels(self) -> int: return self._channels
@property def sample_rate(self) -> int: 'The number of samples per second.' return self._sample_rate
-6,119,015,805,304,670,000
The number of samples per second.
lacaudiofiles/wave/wavefile.py
sample_rate
landmarkacoustics/lac-audio-files
python
@property def sample_rate(self) -> int: return self._sample_rate
@property def byte_rate(self) -> int: 'The number of bytes per sample.' return self._byte_rate
667,125,268,274,181,600
The number of bytes per sample.
lacaudiofiles/wave/wavefile.py
byte_rate
landmarkacoustics/lac-audio-files
python
@property def byte_rate(self) -> int: return self._byte_rate
@property def bit_rate(self) -> int: 'The number of bits per sample.' return (self.byte_rate * 8)
-767,199,106,598,475,400
The number of bits per sample.
lacaudiofiles/wave/wavefile.py
bit_rate
landmarkacoustics/lac-audio-files
python
@property def bit_rate(self) -> int: return (self.byte_rate * 8)
def write_frames(self, data) -> int: "Add some data to the file.\n\n Parameters\n ----------\n data : bytes-like object\n The user must ensure that the data's format matches the file's!\n\n Returns\n -------\n int : the number of frames written\n\n " pos = self._filehandle.tell() self._filehandle.writeframes(data) return (self._filehandle.tell() - pos)
-1,767,031,196,508,024,600
Add some data to the file. Parameters ---------- data : bytes-like object The user must ensure that the data's format matches the file's! Returns ------- int : the number of frames written
lacaudiofiles/wave/wavefile.py
write_frames
landmarkacoustics/lac-audio-files
python
def write_frames(self, data) -> int: "Add some data to the file.\n\n Parameters\n ----------\n data : bytes-like object\n The user must ensure that the data's format matches the file's!\n\n Returns\n -------\n int : the number of frames written\n\n " pos = self._filehandle.tell() self._filehandle.writeframes(data) return (self._filehandle.tell() - pos)
@property def frame_size(self) -> int: 'The number of bytes per frame.' return (self.byte_rate * self.channels)
-2,240,499,510,299,825,400
The number of bytes per frame.
lacaudiofiles/wave/wavefile.py
frame_size
landmarkacoustics/lac-audio-files
python
@property def frame_size(self) -> int: return (self.byte_rate * self.channels)
def main(): 'Run administrative tasks.' os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'goodshare.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError("Couldn't import Django. Are you sure it's installed and available on your PYTHONPATH environment variable? Did you forget to activate a virtual environment?") from exc execute_from_command_line(sys.argv)
8,687,208,097,773,623,000
Run administrative tasks.
manage.py
main
nikhilchaudhary0126/goodshare
python
def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'goodshare.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError("Couldn't import Django. Are you sure it's installed and available on your PYTHONPATH environment variable? Did you forget to activate a virtual environment?") from exc execute_from_command_line(sys.argv)
def crop_image_from_xy(image, crop_location, crop_size, scale=1.0): '\n Crops an image. When factor is not given does an central crop.\n\n Inputs:\n image: 4D tensor, [batch, height, width, channels] which will be cropped in height and width dimension\n crop_location: tensor, [batch, 2] which represent the height and width location of the crop\n crop_size: int, describes the extension of the crop\n Outputs:\n image_crop: 4D tensor, [batch, crop_size, crop_size, channels]\n ' with tf.name_scope('crop_image_from_xy'): s = image.get_shape().as_list() assert (len(s) == 4), 'Image needs to be of shape [batch, width, height, channel]' scale = tf.reshape(scale, [(- 1)]) crop_location = tf.cast(crop_location, tf.float32) crop_location = tf.reshape(crop_location, [s[0], 2]) crop_size = tf.cast(crop_size, tf.float32) crop_size_scaled = (crop_size / scale) y1 = (crop_location[:, 0] - (crop_size_scaled // 2)) y2 = (y1 + crop_size_scaled) x1 = (crop_location[:, 1] - (crop_size_scaled // 2)) x2 = (x1 + crop_size_scaled) y1 /= s[1] y2 /= s[1] x1 /= s[2] x2 /= s[2] boxes = tf.stack([y1, x1, y2, x2], (- 1)) crop_size = tf.cast(tf.stack([crop_size, crop_size]), tf.int32) box_ind = tf.range(s[0]) image_c = tf.image.crop_and_resize(tf.cast(image, tf.float32), boxes, box_ind, crop_size, name='crop') return image_c
8,955,644,050,935,177,000
Crops an image. When factor is not given does an central crop. Inputs: image: 4D tensor, [batch, height, width, channels] which will be cropped in height and width dimension crop_location: tensor, [batch, 2] which represent the height and width location of the crop crop_size: int, describes the extension of the crop Outputs: image_crop: 4D tensor, [batch, crop_size, crop_size, channels]
utils/general.py
crop_image_from_xy
vivekkhurana/handsign
python
def crop_image_from_xy(image, crop_location, crop_size, scale=1.0): '\n Crops an image. When factor is not given does an central crop.\n\n Inputs:\n image: 4D tensor, [batch, height, width, channels] which will be cropped in height and width dimension\n crop_location: tensor, [batch, 2] which represent the height and width location of the crop\n crop_size: int, describes the extension of the crop\n Outputs:\n image_crop: 4D tensor, [batch, crop_size, crop_size, channels]\n ' with tf.name_scope('crop_image_from_xy'): s = image.get_shape().as_list() assert (len(s) == 4), 'Image needs to be of shape [batch, width, height, channel]' scale = tf.reshape(scale, [(- 1)]) crop_location = tf.cast(crop_location, tf.float32) crop_location = tf.reshape(crop_location, [s[0], 2]) crop_size = tf.cast(crop_size, tf.float32) crop_size_scaled = (crop_size / scale) y1 = (crop_location[:, 0] - (crop_size_scaled // 2)) y2 = (y1 + crop_size_scaled) x1 = (crop_location[:, 1] - (crop_size_scaled // 2)) x2 = (x1 + crop_size_scaled) y1 /= s[1] y2 /= s[1] x1 /= s[2] x2 /= s[2] boxes = tf.stack([y1, x1, y2, x2], (- 1)) crop_size = tf.cast(tf.stack([crop_size, crop_size]), tf.int32) box_ind = tf.range(s[0]) image_c = tf.image.crop_and_resize(tf.cast(image, tf.float32), boxes, box_ind, crop_size, name='crop') return image_c
def find_max_location(scoremap): ' Returns the coordinates of the given scoremap with maximum value. ' with tf.variable_scope('find_max_location'): s = scoremap.get_shape().as_list() if (len(s) == 4): scoremap = tf.squeeze(scoremap, [3]) if (len(s) == 2): scoremap = tf.expand_dims(scoremap, 0) s = scoremap.get_shape().as_list() assert (len(s) == 3), 'Scoremap must be 3D.' assert ((s[0] < s[1]) and (s[0] < s[2])), 'Scoremap must be [Batch, Width, Height]' x_range = tf.expand_dims(tf.range(s[1]), 1) y_range = tf.expand_dims(tf.range(s[2]), 0) X = tf.tile(x_range, [1, s[2]]) Y = tf.tile(y_range, [s[1], 1]) x_vec = tf.reshape(X, [(- 1)]) y_vec = tf.reshape(Y, [(- 1)]) scoremap_vec = tf.reshape(scoremap, [s[0], (- 1)]) max_ind_vec = tf.cast(tf.argmax(scoremap_vec, dimension=1), tf.int32) xy_loc = list() for i in range(s[0]): x_loc = tf.reshape(x_vec[max_ind_vec[i]], [1]) y_loc = tf.reshape(y_vec[max_ind_vec[i]], [1]) xy_loc.append(tf.concat([x_loc, y_loc], 0)) xy_loc = tf.stack(xy_loc, 0) return xy_loc
1,839,514,264,288,827,100
Returns the coordinates of the given scoremap with maximum value.
utils/general.py
find_max_location
vivekkhurana/handsign
python
def find_max_location(scoremap): ' ' with tf.variable_scope('find_max_location'): s = scoremap.get_shape().as_list() if (len(s) == 4): scoremap = tf.squeeze(scoremap, [3]) if (len(s) == 2): scoremap = tf.expand_dims(scoremap, 0) s = scoremap.get_shape().as_list() assert (len(s) == 3), 'Scoremap must be 3D.' assert ((s[0] < s[1]) and (s[0] < s[2])), 'Scoremap must be [Batch, Width, Height]' x_range = tf.expand_dims(tf.range(s[1]), 1) y_range = tf.expand_dims(tf.range(s[2]), 0) X = tf.tile(x_range, [1, s[2]]) Y = tf.tile(y_range, [s[1], 1]) x_vec = tf.reshape(X, [(- 1)]) y_vec = tf.reshape(Y, [(- 1)]) scoremap_vec = tf.reshape(scoremap, [s[0], (- 1)]) max_ind_vec = tf.cast(tf.argmax(scoremap_vec, dimension=1), tf.int32) xy_loc = list() for i in range(s[0]): x_loc = tf.reshape(x_vec[max_ind_vec[i]], [1]) y_loc = tf.reshape(y_vec[max_ind_vec[i]], [1]) xy_loc.append(tf.concat([x_loc, y_loc], 0)) xy_loc = tf.stack(xy_loc, 0) return xy_loc
def single_obj_scoremap(scoremap): ' Applies my algorithm to figure out the most likely object from a given segmentation scoremap. ' with tf.variable_scope('single_obj_scoremap'): filter_size = 21 s = scoremap.get_shape().as_list() assert (len(s) == 4), 'Scoremap must be 4D.' scoremap_softmax = tf.nn.softmax(scoremap) scoremap_fg = tf.reduce_max(scoremap_softmax[:, :, :, 1:], 3) detmap_fg = tf.round(scoremap_fg) max_loc = find_max_location(scoremap_fg) objectmap_list = list() kernel_dil = (tf.ones((filter_size, filter_size, 1)) / float((filter_size * filter_size))) for i in range(s[0]): sparse_ind = tf.reshape(max_loc[i, :], [1, 2]) objectmap = tf.sparse_to_dense(sparse_ind, [s[1], s[2]], 1.0) num_passes = (max(s[1], s[2]) // (filter_size // 2)) for j in range(num_passes): objectmap = tf.reshape(objectmap, [1, s[1], s[2], 1]) objectmap_dil = tf.nn.dilation2d(objectmap, kernel_dil, [1, 1, 1, 1], [1, 1, 1, 1], 'SAME') objectmap_dil = tf.reshape(objectmap_dil, [s[1], s[2]]) objectmap = tf.round(tf.multiply(detmap_fg[i, :, :], objectmap_dil)) objectmap = tf.reshape(objectmap, [s[1], s[2], 1]) objectmap_list.append(objectmap) objectmap = tf.stack(objectmap_list) return objectmap
-8,797,348,347,964,816,000
Applies my algorithm to figure out the most likely object from a given segmentation scoremap.
utils/general.py
single_obj_scoremap
vivekkhurana/handsign
python
def single_obj_scoremap(scoremap): ' ' with tf.variable_scope('single_obj_scoremap'): filter_size = 21 s = scoremap.get_shape().as_list() assert (len(s) == 4), 'Scoremap must be 4D.' scoremap_softmax = tf.nn.softmax(scoremap) scoremap_fg = tf.reduce_max(scoremap_softmax[:, :, :, 1:], 3) detmap_fg = tf.round(scoremap_fg) max_loc = find_max_location(scoremap_fg) objectmap_list = list() kernel_dil = (tf.ones((filter_size, filter_size, 1)) / float((filter_size * filter_size))) for i in range(s[0]): sparse_ind = tf.reshape(max_loc[i, :], [1, 2]) objectmap = tf.sparse_to_dense(sparse_ind, [s[1], s[2]], 1.0) num_passes = (max(s[1], s[2]) // (filter_size // 2)) for j in range(num_passes): objectmap = tf.reshape(objectmap, [1, s[1], s[2], 1]) objectmap_dil = tf.nn.dilation2d(objectmap, kernel_dil, [1, 1, 1, 1], [1, 1, 1, 1], 'SAME') objectmap_dil = tf.reshape(objectmap_dil, [s[1], s[2]]) objectmap = tf.round(tf.multiply(detmap_fg[i, :, :], objectmap_dil)) objectmap = tf.reshape(objectmap, [s[1], s[2], 1]) objectmap_list.append(objectmap) objectmap = tf.stack(objectmap_list) return objectmap
def calc_center_bb(binary_class_mask): ' Returns the center of mass coordinates for the given binary_class_mask. ' with tf.variable_scope('calc_center_bb'): binary_class_mask = tf.cast(binary_class_mask, tf.int32) binary_class_mask = tf.equal(binary_class_mask, 1) s = binary_class_mask.get_shape().as_list() if (len(s) == 4): binary_class_mask = tf.squeeze(binary_class_mask, [3]) s = binary_class_mask.get_shape().as_list() assert (len(s) == 3), 'binary_class_mask must be 3D.' assert ((s[0] < s[1]) and (s[0] < s[2])), 'binary_class_mask must be [Batch, Width, Height]' x_range = tf.expand_dims(tf.range(s[1]), 1) y_range = tf.expand_dims(tf.range(s[2]), 0) X = tf.tile(x_range, [1, s[2]]) Y = tf.tile(y_range, [s[1], 1]) bb_list = list() center_list = list() crop_size_list = list() for i in range(s[0]): X_masked = tf.cast(tf.boolean_mask(X, binary_class_mask[i, :, :]), tf.float32) Y_masked = tf.cast(tf.boolean_mask(Y, binary_class_mask[i, :, :]), tf.float32) x_min = tf.reduce_min(X_masked) x_max = tf.reduce_max(X_masked) y_min = tf.reduce_min(Y_masked) y_max = tf.reduce_max(Y_masked) start = tf.stack([x_min, y_min]) end = tf.stack([x_max, y_max]) bb = tf.stack([start, end], 1) bb_list.append(bb) center_x = (0.5 * (x_max + x_min)) center_y = (0.5 * (y_max + y_min)) center = tf.stack([center_x, center_y], 0) center = tf.cond(tf.reduce_all(tf.is_finite(center)), (lambda : center), (lambda : tf.constant([160.0, 160.0]))) center.set_shape([2]) center_list.append(center) crop_size_x = (x_max - x_min) crop_size_y = (y_max - y_min) crop_size = tf.expand_dims(tf.maximum(crop_size_x, crop_size_y), 0) crop_size = tf.cond(tf.reduce_all(tf.is_finite(crop_size)), (lambda : crop_size), (lambda : tf.constant([100.0]))) crop_size.set_shape([1]) crop_size_list.append(crop_size) bb = tf.stack(bb_list) center = tf.stack(center_list) crop_size = tf.stack(crop_size_list) return (center, bb, crop_size)
495,273,454,323,574,600
Returns the center of mass coordinates for the given binary_class_mask.
utils/general.py
calc_center_bb
vivekkhurana/handsign
python
def calc_center_bb(binary_class_mask): ' ' with tf.variable_scope('calc_center_bb'): binary_class_mask = tf.cast(binary_class_mask, tf.int32) binary_class_mask = tf.equal(binary_class_mask, 1) s = binary_class_mask.get_shape().as_list() if (len(s) == 4): binary_class_mask = tf.squeeze(binary_class_mask, [3]) s = binary_class_mask.get_shape().as_list() assert (len(s) == 3), 'binary_class_mask must be 3D.' assert ((s[0] < s[1]) and (s[0] < s[2])), 'binary_class_mask must be [Batch, Width, Height]' x_range = tf.expand_dims(tf.range(s[1]), 1) y_range = tf.expand_dims(tf.range(s[2]), 0) X = tf.tile(x_range, [1, s[2]]) Y = tf.tile(y_range, [s[1], 1]) bb_list = list() center_list = list() crop_size_list = list() for i in range(s[0]): X_masked = tf.cast(tf.boolean_mask(X, binary_class_mask[i, :, :]), tf.float32) Y_masked = tf.cast(tf.boolean_mask(Y, binary_class_mask[i, :, :]), tf.float32) x_min = tf.reduce_min(X_masked) x_max = tf.reduce_max(X_masked) y_min = tf.reduce_min(Y_masked) y_max = tf.reduce_max(Y_masked) start = tf.stack([x_min, y_min]) end = tf.stack([x_max, y_max]) bb = tf.stack([start, end], 1) bb_list.append(bb) center_x = (0.5 * (x_max + x_min)) center_y = (0.5 * (y_max + y_min)) center = tf.stack([center_x, center_y], 0) center = tf.cond(tf.reduce_all(tf.is_finite(center)), (lambda : center), (lambda : tf.constant([160.0, 160.0]))) center.set_shape([2]) center_list.append(center) crop_size_x = (x_max - x_min) crop_size_y = (y_max - y_min) crop_size = tf.expand_dims(tf.maximum(crop_size_x, crop_size_y), 0) crop_size = tf.cond(tf.reduce_all(tf.is_finite(crop_size)), (lambda : crop_size), (lambda : tf.constant([100.0]))) crop_size.set_shape([1]) crop_size_list.append(crop_size) bb = tf.stack(bb_list) center = tf.stack(center_list) crop_size = tf.stack(crop_size_list) return (center, bb, crop_size)
def detect_keypoints(scoremaps): ' Performs detection per scoremap for the hands keypoints. ' if (len(scoremaps.shape) == 4): scoremaps = np.squeeze(scoremaps) s = scoremaps.shape assert (len(s) == 3), 'This function was only designed for 3D Scoremaps.' assert ((s[2] < s[1]) and (s[2] < s[0])), 'Probably the input is not correct, because [H, W, C] is expected.' keypoint_coords = np.zeros((s[2], 2)) for i in range(s[2]): (v, u) = np.unravel_index(np.argmax(scoremaps[:, :, i]), (s[0], s[1])) keypoint_coords[(i, 0)] = v keypoint_coords[(i, 1)] = u return keypoint_coords
4,990,219,028,124,282,000
Performs detection per scoremap for the hands keypoints.
utils/general.py
detect_keypoints
vivekkhurana/handsign
python
def detect_keypoints(scoremaps): ' ' if (len(scoremaps.shape) == 4): scoremaps = np.squeeze(scoremaps) s = scoremaps.shape assert (len(s) == 3), 'This function was only designed for 3D Scoremaps.' assert ((s[2] < s[1]) and (s[2] < s[0])), 'Probably the input is not correct, because [H, W, C] is expected.' keypoint_coords = np.zeros((s[2], 2)) for i in range(s[2]): (v, u) = np.unravel_index(np.argmax(scoremaps[:, :, i]), (s[0], s[1])) keypoint_coords[(i, 0)] = v keypoint_coords[(i, 1)] = u return keypoint_coords
def trafo_coords(keypoints_crop_coords, centers, scale, crop_size): ' Transforms coords into global image coordinates. ' keypoints_coords = np.copy(keypoints_crop_coords) keypoints_coords -= (crop_size // 2) keypoints_coords /= scale keypoints_coords += centers return keypoints_coords
-531,633,264,401,260,200
Transforms coords into global image coordinates.
utils/general.py
trafo_coords
vivekkhurana/handsign
python
def trafo_coords(keypoints_crop_coords, centers, scale, crop_size): ' ' keypoints_coords = np.copy(keypoints_crop_coords) keypoints_coords -= (crop_size // 2) keypoints_coords /= scale keypoints_coords += centers return keypoints_coords
def plot_hand(coords_hw, axis, color_fixed=None, linewidth='1'): ' Plots a hand stick figure into a matplotlib figure. ' colors = np.array([[0.0, 0.0, 0.5], [0.0, 0.0, 0.73172906], [0.0, 0.0, 0.96345811], [0.0, 0.12745098, 1.0], [0.0, 0.33137255, 1.0], [0.0, 0.55098039, 1.0], [0.0, 0.75490196, 1.0], [0.06008855, 0.9745098, 0.90765338], [0.22454143, 1.0, 0.74320051], [0.40164453, 1.0, 0.56609741], [0.56609741, 1.0, 0.40164453], [0.74320051, 1.0, 0.22454143], [0.90765338, 1.0, 0.06008855], [1.0, 0.82861293, 0.0], [1.0, 0.63979666, 0.0], [1.0, 0.43645606, 0.0], [1.0, 0.2476398, 0.0], [0.96345811, 0.0442992, 0.0], [0.73172906, 0.0, 0.0], [0.5, 0.0, 0.0]]) bones = [((0, 4), colors[0, :]), ((4, 3), colors[1, :]), ((3, 2), colors[2, :]), ((2, 1), colors[3, :]), ((0, 8), colors[4, :]), ((8, 7), colors[5, :]), ((7, 6), colors[6, :]), ((6, 5), colors[7, :]), ((0, 12), colors[8, :]), ((12, 11), colors[9, :]), ((11, 10), colors[10, :]), ((10, 9), colors[11, :]), ((0, 16), colors[12, :]), ((16, 15), colors[13, :]), ((15, 14), colors[14, :]), ((14, 13), colors[15, :]), ((0, 20), colors[16, :]), ((20, 19), colors[17, :]), ((19, 18), colors[18, :]), ((18, 17), colors[19, :])] for (connection, color) in bones: coord1 = coords_hw[connection[0], :] coord2 = coords_hw[connection[1], :] coords = np.stack([coord1, coord2]) if (color_fixed is None): axis.plot(coords[:, 1], coords[:, 0], color=color, linewidth=linewidth) else: axis.plot(coords[:, 1], coords[:, 0], color_fixed, linewidth=linewidth)
9,040,086,310,086,804,000
Plots a hand stick figure into a matplotlib figure.
utils/general.py
plot_hand
vivekkhurana/handsign
python
def plot_hand(coords_hw, axis, color_fixed=None, linewidth='1'): ' ' colors = np.array([[0.0, 0.0, 0.5], [0.0, 0.0, 0.73172906], [0.0, 0.0, 0.96345811], [0.0, 0.12745098, 1.0], [0.0, 0.33137255, 1.0], [0.0, 0.55098039, 1.0], [0.0, 0.75490196, 1.0], [0.06008855, 0.9745098, 0.90765338], [0.22454143, 1.0, 0.74320051], [0.40164453, 1.0, 0.56609741], [0.56609741, 1.0, 0.40164453], [0.74320051, 1.0, 0.22454143], [0.90765338, 1.0, 0.06008855], [1.0, 0.82861293, 0.0], [1.0, 0.63979666, 0.0], [1.0, 0.43645606, 0.0], [1.0, 0.2476398, 0.0], [0.96345811, 0.0442992, 0.0], [0.73172906, 0.0, 0.0], [0.5, 0.0, 0.0]]) bones = [((0, 4), colors[0, :]), ((4, 3), colors[1, :]), ((3, 2), colors[2, :]), ((2, 1), colors[3, :]), ((0, 8), colors[4, :]), ((8, 7), colors[5, :]), ((7, 6), colors[6, :]), ((6, 5), colors[7, :]), ((0, 12), colors[8, :]), ((12, 11), colors[9, :]), ((11, 10), colors[10, :]), ((10, 9), colors[11, :]), ((0, 16), colors[12, :]), ((16, 15), colors[13, :]), ((15, 14), colors[14, :]), ((14, 13), colors[15, :]), ((0, 20), colors[16, :]), ((20, 19), colors[17, :]), ((19, 18), colors[18, :]), ((18, 17), colors[19, :])] for (connection, color) in bones: coord1 = coords_hw[connection[0], :] coord2 = coords_hw[connection[1], :] coords = np.stack([coord1, coord2]) if (color_fixed is None): axis.plot(coords[:, 1], coords[:, 0], color=color, linewidth=linewidth) else: axis.plot(coords[:, 1], coords[:, 0], color_fixed, linewidth=linewidth)
def plot_hand_3d(coords_xyz, axis, color_fixed=None, linewidth='1'): ' Plots a hand stick figure into a matplotlib figure. ' colors = np.array([[0.0, 0.0, 0.5], [0.0, 0.0, 0.73172906], [0.0, 0.0, 0.96345811], [0.0, 0.12745098, 1.0], [0.0, 0.33137255, 1.0], [0.0, 0.55098039, 1.0], [0.0, 0.75490196, 1.0], [0.06008855, 0.9745098, 0.90765338], [0.22454143, 1.0, 0.74320051], [0.40164453, 1.0, 0.56609741], [0.56609741, 1.0, 0.40164453], [0.74320051, 1.0, 0.22454143], [0.90765338, 1.0, 0.06008855], [1.0, 0.82861293, 0.0], [1.0, 0.63979666, 0.0], [1.0, 0.43645606, 0.0], [1.0, 0.2476398, 0.0], [0.96345811, 0.0442992, 0.0], [0.73172906, 0.0, 0.0], [0.5, 0.0, 0.0]]) bones = [((0, 4), colors[0, :]), ((4, 3), colors[1, :]), ((3, 2), colors[2, :]), ((2, 1), colors[3, :]), ((0, 8), colors[4, :]), ((8, 7), colors[5, :]), ((7, 6), colors[6, :]), ((6, 5), colors[7, :]), ((0, 12), colors[8, :]), ((12, 11), colors[9, :]), ((11, 10), colors[10, :]), ((10, 9), colors[11, :]), ((0, 16), colors[12, :]), ((16, 15), colors[13, :]), ((15, 14), colors[14, :]), ((14, 13), colors[15, :]), ((0, 20), colors[16, :]), ((20, 19), colors[17, :]), ((19, 18), colors[18, :]), ((18, 17), colors[19, :])] for (connection, color) in bones: coord1 = coords_xyz[connection[0], :] coord2 = coords_xyz[connection[1], :] coords = np.stack([coord1, coord2]) if (color_fixed is None): axis.plot(coords[:, 0], coords[:, 1], coords[:, 2], color=color, linewidth=linewidth) else: axis.plot(coords[:, 0], coords[:, 1], coords[:, 2], color_fixed, linewidth=linewidth) axis.view_init(azim=(- 90.0), elev=90.0)
-1,052,739,098,623,866,900
Plots a hand stick figure into a matplotlib figure.
utils/general.py
plot_hand_3d
vivekkhurana/handsign
python
def plot_hand_3d(coords_xyz, axis, color_fixed=None, linewidth='1'): ' ' colors = np.array([[0.0, 0.0, 0.5], [0.0, 0.0, 0.73172906], [0.0, 0.0, 0.96345811], [0.0, 0.12745098, 1.0], [0.0, 0.33137255, 1.0], [0.0, 0.55098039, 1.0], [0.0, 0.75490196, 1.0], [0.06008855, 0.9745098, 0.90765338], [0.22454143, 1.0, 0.74320051], [0.40164453, 1.0, 0.56609741], [0.56609741, 1.0, 0.40164453], [0.74320051, 1.0, 0.22454143], [0.90765338, 1.0, 0.06008855], [1.0, 0.82861293, 0.0], [1.0, 0.63979666, 0.0], [1.0, 0.43645606, 0.0], [1.0, 0.2476398, 0.0], [0.96345811, 0.0442992, 0.0], [0.73172906, 0.0, 0.0], [0.5, 0.0, 0.0]]) bones = [((0, 4), colors[0, :]), ((4, 3), colors[1, :]), ((3, 2), colors[2, :]), ((2, 1), colors[3, :]), ((0, 8), colors[4, :]), ((8, 7), colors[5, :]), ((7, 6), colors[6, :]), ((6, 5), colors[7, :]), ((0, 12), colors[8, :]), ((12, 11), colors[9, :]), ((11, 10), colors[10, :]), ((10, 9), colors[11, :]), ((0, 16), colors[12, :]), ((16, 15), colors[13, :]), ((15, 14), colors[14, :]), ((14, 13), colors[15, :]), ((0, 20), colors[16, :]), ((20, 19), colors[17, :]), ((19, 18), colors[18, :]), ((18, 17), colors[19, :])] for (connection, color) in bones: coord1 = coords_xyz[connection[0], :] coord2 = coords_xyz[connection[1], :] coords = np.stack([coord1, coord2]) if (color_fixed is None): axis.plot(coords[:, 0], coords[:, 1], coords[:, 2], color=color, linewidth=linewidth) else: axis.plot(coords[:, 0], coords[:, 1], coords[:, 2], color_fixed, linewidth=linewidth) axis.view_init(azim=(- 90.0), elev=90.0)
def plot_hand_2d(coords_hw, image, color_fixed=None, linewidth=2): ' Plots a hand stick figure into a matplotlib figure. ' colors = [(0, 0, 127), (0, 0, 187), (0, 0, 246), (0, 32, 255), (0, 85, 255), (0, 140, 255), (0, 192, 255), (15, 248, 231), (57, 255, 190), (102, 1, 144), (144, 1, 102), (190, 1, 57), (231, 1, 15), (1, 211, 0), (1, 163, 0), (1, 111, 0), (1, 63, 0), (246, 11, 0), (187, 0, 0), (127, 0, 0)] bones = [((0, 4), colors[0]), ((4, 3), colors[1]), ((3, 2), colors[2]), ((2, 1), colors[3]), ((0, 8), colors[4]), ((8, 7), colors[5]), ((7, 6), colors[6]), ((6, 5), colors[7]), ((0, 12), colors[8]), ((12, 11), colors[9]), ((11, 10), colors[10]), ((10, 9), colors[11]), ((0, 16), colors[12]), ((16, 15), colors[13]), ((15, 14), colors[14]), ((14, 13), colors[15]), ((0, 20), colors[16]), ((20, 19), colors[17]), ((19, 18), colors[18]), ((18, 17), colors[19])] for (connection, color) in bones: coord1 = coords_hw[connection[0], :] coord2 = coords_hw[connection[1], :] coords = np.stack([coord1, coord2]) coord1_t = (int(coord1[1]), int(coord1[0])) coord2_t = (int(coord2[1]), int(coord2[0])) if (color_fixed is None): cv2.line(image, coord2_t, coord1_t, color, linewidth) else: cv2.line(image, coord1_t, coord2_t, color_fixed, linewidth)
6,905,083,832,229,474,000
Plots a hand stick figure into a matplotlib figure.
utils/general.py
plot_hand_2d
vivekkhurana/handsign
python
def plot_hand_2d(coords_hw, image, color_fixed=None, linewidth=2): ' ' colors = [(0, 0, 127), (0, 0, 187), (0, 0, 246), (0, 32, 255), (0, 85, 255), (0, 140, 255), (0, 192, 255), (15, 248, 231), (57, 255, 190), (102, 1, 144), (144, 1, 102), (190, 1, 57), (231, 1, 15), (1, 211, 0), (1, 163, 0), (1, 111, 0), (1, 63, 0), (246, 11, 0), (187, 0, 0), (127, 0, 0)] bones = [((0, 4), colors[0]), ((4, 3), colors[1]), ((3, 2), colors[2]), ((2, 1), colors[3]), ((0, 8), colors[4]), ((8, 7), colors[5]), ((7, 6), colors[6]), ((6, 5), colors[7]), ((0, 12), colors[8]), ((12, 11), colors[9]), ((11, 10), colors[10]), ((10, 9), colors[11]), ((0, 16), colors[12]), ((16, 15), colors[13]), ((15, 14), colors[14]), ((14, 13), colors[15]), ((0, 20), colors[16]), ((20, 19), colors[17]), ((19, 18), colors[18]), ((18, 17), colors[19])] for (connection, color) in bones: coord1 = coords_hw[connection[0], :] coord2 = coords_hw[connection[1], :] coords = np.stack([coord1, coord2]) coord1_t = (int(coord1[1]), int(coord1[0])) coord2_t = (int(coord2[1]), int(coord2[0])) if (color_fixed is None): cv2.line(image, coord2_t, coord1_t, color, linewidth) else: cv2.line(image, coord1_t, coord2_t, color_fixed, linewidth)
def load_weights_from_snapshot(session, checkpoint_path, discard_list=None, rename_dict=None): ' Loads weights from a snapshot except the ones indicated with discard_list. Others are possibly renamed. ' reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path) var_to_shape_map = reader.get_variable_to_shape_map() if (discard_list is not None): num_disc = 0 var_to_shape_map_new = dict() for (k, v) in var_to_shape_map.items(): good = True for dis_str in discard_list: if (dis_str in k): good = False if good: var_to_shape_map_new[k] = v else: num_disc += 1 var_to_shape_map = dict(var_to_shape_map_new) print(('Discarded %d items' % num_disc)) num_rename = 0 var_to_shape_map_new = dict() for name in var_to_shape_map.keys(): new_name = name if (rename_dict is not None): for rename_str in rename_dict.keys(): if (rename_str in name): new_name = new_name.replace(rename_str, rename_dict[rename_str]) num_rename += 1 var_to_shape_map_new[new_name] = reader.get_tensor(name) var_to_shape_map = dict(var_to_shape_map_new) (init_op, init_feed) = tf.contrib.framework.assign_from_values(var_to_shape_map) session.run(init_op, init_feed) print(('Initialized %d variables from %s.' % (len(var_to_shape_map), checkpoint_path)))
-5,373,056,543,232,178,000
Loads weights from a snapshot except the ones indicated with discard_list. Others are possibly renamed.
utils/general.py
load_weights_from_snapshot
vivekkhurana/handsign
python
def load_weights_from_snapshot(session, checkpoint_path, discard_list=None, rename_dict=None): ' ' reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path) var_to_shape_map = reader.get_variable_to_shape_map() if (discard_list is not None): num_disc = 0 var_to_shape_map_new = dict() for (k, v) in var_to_shape_map.items(): good = True for dis_str in discard_list: if (dis_str in k): good = False if good: var_to_shape_map_new[k] = v else: num_disc += 1 var_to_shape_map = dict(var_to_shape_map_new) print(('Discarded %d items' % num_disc)) num_rename = 0 var_to_shape_map_new = dict() for name in var_to_shape_map.keys(): new_name = name if (rename_dict is not None): for rename_str in rename_dict.keys(): if (rename_str in name): new_name = new_name.replace(rename_str, rename_dict[rename_str]) num_rename += 1 var_to_shape_map_new[new_name] = reader.get_tensor(name) var_to_shape_map = dict(var_to_shape_map_new) (init_op, init_feed) = tf.contrib.framework.assign_from_values(var_to_shape_map) session.run(init_op, init_feed) print(('Initialized %d variables from %s.' % (len(var_to_shape_map), checkpoint_path)))
def calc_auc(x, y): ' Given x and y values it calculates the approx. integral and normalizes it: area under curve' integral = np.trapz(y, x) norm = np.trapz(np.ones_like(y), x) return (integral / norm)
7,823,423,900,271,961,000
Given x and y values it calculates the approx. integral and normalizes it: area under curve
utils/general.py
calc_auc
vivekkhurana/handsign
python
def calc_auc(x, y): ' ' integral = np.trapz(y, x) norm = np.trapz(np.ones_like(y), x) return (integral / norm)
def get_stb_ref_curves(): '\n Returns results of various baseline methods on the Stereo Tracking Benchmark Dataset reported by:\n Zhang et al., ‘3d Hand Pose Tracking and Estimation Using Stereo Matching’, 2016\n ' curve_list = list() thresh_mm = np.array([20.0, 25, 30, 35, 40, 45, 50]) pso_b1 = np.array([0.32236842, 0.53947368, 0.67434211, 0.75657895, 0.80921053, 0.86513158, 0.89473684]) curve_list.append((thresh_mm, pso_b1, ('PSO (AUC=%.3f)' % calc_auc(thresh_mm, pso_b1)))) icppso_b1 = np.array([0.51973684, 0.64473684, 0.71710526, 0.77302632, 0.80921053, 0.84868421, 0.86842105]) curve_list.append((thresh_mm, icppso_b1, ('ICPPSO (AUC=%.3f)' % calc_auc(thresh_mm, icppso_b1)))) chpr_b1 = np.array([0.56578947, 0.71710526, 0.82236842, 0.88157895, 0.91447368, 0.9375, 0.96052632]) curve_list.append((thresh_mm, chpr_b1, ('CHPR (AUC=%.3f)' % calc_auc(thresh_mm, chpr_b1)))) return curve_list
974,777,666,031,250,600
Returns results of various baseline methods on the Stereo Tracking Benchmark Dataset reported by: Zhang et al., ‘3d Hand Pose Tracking and Estimation Using Stereo Matching’, 2016
utils/general.py
get_stb_ref_curves
vivekkhurana/handsign
python
def get_stb_ref_curves(): '\n Returns results of various baseline methods on the Stereo Tracking Benchmark Dataset reported by:\n Zhang et al., ‘3d Hand Pose Tracking and Estimation Using Stereo Matching’, 2016\n ' curve_list = list() thresh_mm = np.array([20.0, 25, 30, 35, 40, 45, 50]) pso_b1 = np.array([0.32236842, 0.53947368, 0.67434211, 0.75657895, 0.80921053, 0.86513158, 0.89473684]) curve_list.append((thresh_mm, pso_b1, ('PSO (AUC=%.3f)' % calc_auc(thresh_mm, pso_b1)))) icppso_b1 = np.array([0.51973684, 0.64473684, 0.71710526, 0.77302632, 0.80921053, 0.84868421, 0.86842105]) curve_list.append((thresh_mm, icppso_b1, ('ICPPSO (AUC=%.3f)' % calc_auc(thresh_mm, icppso_b1)))) chpr_b1 = np.array([0.56578947, 0.71710526, 0.82236842, 0.88157895, 0.91447368, 0.9375, 0.96052632]) curve_list.append((thresh_mm, chpr_b1, ('CHPR (AUC=%.3f)' % calc_auc(thresh_mm, chpr_b1)))) return curve_list
@staticmethod def dropout(in_tensor, keep_prob, evaluation): ' Dropout: Each neuron is dropped independently. ' with tf.variable_scope('dropout'): tensor_shape = in_tensor.get_shape().as_list() out_tensor = tf.cond(evaluation, (lambda : tf.nn.dropout(in_tensor, 1.0, noise_shape=tensor_shape)), (lambda : tf.nn.dropout(in_tensor, keep_prob, noise_shape=tensor_shape))) return out_tensor
4,951,999,580,329,712,000
Dropout: Each neuron is dropped independently.
utils/general.py
dropout
vivekkhurana/handsign
python
@staticmethod def dropout(in_tensor, keep_prob, evaluation): ' ' with tf.variable_scope('dropout'): tensor_shape = in_tensor.get_shape().as_list() out_tensor = tf.cond(evaluation, (lambda : tf.nn.dropout(in_tensor, 1.0, noise_shape=tensor_shape)), (lambda : tf.nn.dropout(in_tensor, keep_prob, noise_shape=tensor_shape))) return out_tensor
@staticmethod def spatial_dropout(in_tensor, keep_prob, evaluation): ' Spatial dropout: Not each neuron is dropped independently, but feature map wise. ' with tf.variable_scope('spatial_dropout'): tensor_shape = in_tensor.get_shape().as_list() out_tensor = tf.cond(evaluation, (lambda : tf.nn.dropout(in_tensor, 1.0, noise_shape=tensor_shape)), (lambda : tf.nn.dropout(in_tensor, keep_prob, noise_shape=[tensor_shape[0], 1, 1, tensor_shape[3]]))) return out_tensor
-1,824,907,717,556,814,800
Spatial dropout: Not each neuron is dropped independently, but feature map wise.
utils/general.py
spatial_dropout
vivekkhurana/handsign
python
@staticmethod def spatial_dropout(in_tensor, keep_prob, evaluation): ' ' with tf.variable_scope('spatial_dropout'): tensor_shape = in_tensor.get_shape().as_list() out_tensor = tf.cond(evaluation, (lambda : tf.nn.dropout(in_tensor, 1.0, noise_shape=tensor_shape)), (lambda : tf.nn.dropout(in_tensor, keep_prob, noise_shape=[tensor_shape[0], 1, 1, tensor_shape[3]]))) return out_tensor
def feed(self, keypoint_gt, keypoint_vis, keypoint_pred): ' Used to feed data to the class. Stores the euclidean distance between gt and pred, when it is visible. ' keypoint_gt = np.squeeze(keypoint_gt) keypoint_pred = np.squeeze(keypoint_pred) keypoint_vis = np.squeeze(keypoint_vis).astype('bool') assert (len(keypoint_gt.shape) == 2) assert (len(keypoint_pred.shape) == 2) assert (len(keypoint_vis.shape) == 1) diff = (keypoint_gt - keypoint_pred) euclidean_dist = np.sqrt(np.sum(np.square(diff), axis=1)) num_kp = keypoint_gt.shape[0] for i in range(num_kp): if keypoint_vis[i]: self.data[i].append(euclidean_dist[i])
-286,897,132,212,552,580
Used to feed data to the class. Stores the euclidean distance between gt and pred, when it is visible.
utils/general.py
feed
vivekkhurana/handsign
python
def feed(self, keypoint_gt, keypoint_vis, keypoint_pred): ' ' keypoint_gt = np.squeeze(keypoint_gt) keypoint_pred = np.squeeze(keypoint_pred) keypoint_vis = np.squeeze(keypoint_vis).astype('bool') assert (len(keypoint_gt.shape) == 2) assert (len(keypoint_pred.shape) == 2) assert (len(keypoint_vis.shape) == 1) diff = (keypoint_gt - keypoint_pred) euclidean_dist = np.sqrt(np.sum(np.square(diff), axis=1)) num_kp = keypoint_gt.shape[0] for i in range(num_kp): if keypoint_vis[i]: self.data[i].append(euclidean_dist[i])
def _get_pck(self, kp_id, threshold): ' Returns pck for one keypoint for the given threshold. ' if (len(self.data[kp_id]) == 0): return None data = np.array(self.data[kp_id]) pck = np.mean((data <= threshold).astype('float')) return pck
1,373,773,765,965,389,000
Returns pck for one keypoint for the given threshold.
utils/general.py
_get_pck
vivekkhurana/handsign
python
def _get_pck(self, kp_id, threshold): ' ' if (len(self.data[kp_id]) == 0): return None data = np.array(self.data[kp_id]) pck = np.mean((data <= threshold).astype('float')) return pck
def _get_epe(self, kp_id): ' Returns end point error for one keypoint. ' if (len(self.data[kp_id]) == 0): return (None, None) data = np.array(self.data[kp_id]) epe_mean = np.mean(data) epe_median = np.median(data) return (epe_mean, epe_median)
7,835,355,939,018,915,000
Returns end point error for one keypoint.
utils/general.py
_get_epe
vivekkhurana/handsign
python
def _get_epe(self, kp_id): ' ' if (len(self.data[kp_id]) == 0): return (None, None) data = np.array(self.data[kp_id]) epe_mean = np.mean(data) epe_median = np.median(data) return (epe_mean, epe_median)
def get_measures(self, val_min, val_max, steps): ' Outputs the average mean and median error as well as the pck score. ' thresholds = np.linspace(val_min, val_max, steps) thresholds = np.array(thresholds) norm_factor = np.trapz(np.ones_like(thresholds), thresholds) epe_mean_all = list() epe_median_all = list() auc_all = list() pck_curve_all = list() for part_id in range(self.num_kp): (mean, median) = self._get_epe(part_id) if (mean is None): continue epe_mean_all.append(mean) epe_median_all.append(median) pck_curve = list() for t in thresholds: pck = self._get_pck(part_id, t) pck_curve.append(pck) pck_curve = np.array(pck_curve) pck_curve_all.append(pck_curve) auc = np.trapz(pck_curve, thresholds) auc /= norm_factor auc_all.append(auc) epe_mean_all = np.mean(np.array(epe_mean_all)) epe_median_all = np.mean(np.array(epe_median_all)) auc_all = np.mean(np.array(auc_all)) pck_curve_all = np.mean(np.array(pck_curve_all), 0) return (epe_mean_all, epe_median_all, auc_all, pck_curve_all, thresholds)
-4,849,076,406,514,604,000
Outputs the average mean and median error as well as the pck score.
utils/general.py
get_measures
vivekkhurana/handsign
python
def get_measures(self, val_min, val_max, steps): ' ' thresholds = np.linspace(val_min, val_max, steps) thresholds = np.array(thresholds) norm_factor = np.trapz(np.ones_like(thresholds), thresholds) epe_mean_all = list() epe_median_all = list() auc_all = list() pck_curve_all = list() for part_id in range(self.num_kp): (mean, median) = self._get_epe(part_id) if (mean is None): continue epe_mean_all.append(mean) epe_median_all.append(median) pck_curve = list() for t in thresholds: pck = self._get_pck(part_id, t) pck_curve.append(pck) pck_curve = np.array(pck_curve) pck_curve_all.append(pck_curve) auc = np.trapz(pck_curve, thresholds) auc /= norm_factor auc_all.append(auc) epe_mean_all = np.mean(np.array(epe_mean_all)) epe_median_all = np.mean(np.array(epe_median_all)) auc_all = np.mean(np.array(auc_all)) pck_curve_all = np.mean(np.array(pck_curve_all), 0) return (epe_mean_all, epe_median_all, auc_all, pck_curve_all, thresholds)
def import_local_resources(args): 'Entrance of importing local resources' parser = argparse.ArgumentParser(prog='cotk import', description='Import local resources') parser.add_argument('file_id', type=str, help='Name of resource') parser.add_argument('file_path', type=str, help='Path to resource') cargs = parser.parse_args(args) file_utils.import_local_resources(cargs.file_id, cargs.file_path) main.LOGGER.info('Successfully import local resource {}.'.format(cargs.file_id))
575,454,734,934,522,400
Entrance of importing local resources
cotk/scripts/import_local_resources.py
import_local_resources
JianGuanTHU/cotk
python
def import_local_resources(args): parser = argparse.ArgumentParser(prog='cotk import', description='Import local resources') parser.add_argument('file_id', type=str, help='Name of resource') parser.add_argument('file_path', type=str, help='Path to resource') cargs = parser.parse_args(args) file_utils.import_local_resources(cargs.file_id, cargs.file_path) main.LOGGER.info('Successfully import local resource {}.'.format(cargs.file_id))
def one_row_rbf_kernel(X, i, gamma=None): '\n X : array of shape (n_samples_X, n_features)\n i : target sample in X (X[i])\n gamma : float, default None\n If None, defaults to 1.0 / n_samples_X\n K(x, y) = exp(-gamma ||x-xi||^2)\n Returns\n -------\n kernel_matrix : array of shape (n_samples_X, n_samples_Y)\n ' if (gamma is None): gamma = (1.0 / X.shape[0]) d = np.sum(np.power((X - X[i]), 2), axis=1) return np.array(np.exp(((- gamma) * d)))
3,638,076,951,810,041,000
X : array of shape (n_samples_X, n_features) i : target sample in X (X[i]) gamma : float, default None If None, defaults to 1.0 / n_samples_X K(x, y) = exp(-gamma ||x-xi||^2) Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y)
spectral_clustering_fd/laplacian_sketch.py
one_row_rbf_kernel
AtsushiHashimoto/SpectralClusteringFD
python
def one_row_rbf_kernel(X, i, gamma=None): '\n X : array of shape (n_samples_X, n_features)\n i : target sample in X (X[i])\n gamma : float, default None\n If None, defaults to 1.0 / n_samples_X\n K(x, y) = exp(-gamma ||x-xi||^2)\n Returns\n -------\n kernel_matrix : array of shape (n_samples_X, n_samples_Y)\n ' if (gamma is None): gamma = (1.0 / X.shape[0]) d = np.sum(np.power((X - X[i]), 2), axis=1) return np.array(np.exp(((- gamma) * d)))
def one_row_cosine_similarity(X, i): '\n X : normalized matrix\n i : target sample in X\n ' a = ((np.dot(X, X[i].T) + 1) / 2) a[(a < 0)] = 0 return a
4,555,324,856,876,778,500
X : normalized matrix i : target sample in X
spectral_clustering_fd/laplacian_sketch.py
one_row_cosine_similarity
AtsushiHashimoto/SpectralClusteringFD
python
def one_row_cosine_similarity(X, i): '\n X : normalized matrix\n i : target sample in X\n ' a = ((np.dot(X, X[i].T) + 1) / 2) a[(a < 0)] = 0 return a
def __init__(self, name: str, previous: str, description: str='', refTemp: float=None, maintainAttributes: Boolean=False): 'This method creates an AnnealStep object.\n\n Notes\n -----\n This function can be accessed by:\n\n .. code-block:: python\n\n mdb.models[name].AnnealStep\n \n Parameters\n ----------\n name\n A String specifying the repository key. \n previous\n A String specifying the name of the previous step. The new step appears after this step \n in the list of analysis steps. \n description\n A String specifying a description of the new step. The default value is an empty string. \n refTemp\n A Float specifying the post-anneal reference temperature. The default value is the \n current temperature at all nodes in the model after the annealing has completed. \n maintainAttributes\n A Boolean specifying whether to retain attributes from an existing step with the same \n name. The default value is False. \n\n Returns\n -------\n An AnnealStep object. \n\n Raises\n ------\n RangeError\n ' super().__init__() pass
-5,879,916,014,305,015,000
This method creates an AnnealStep object. Notes ----- This function can be accessed by: .. code-block:: python mdb.models[name].AnnealStep Parameters ---------- name A String specifying the repository key. previous A String specifying the name of the previous step. The new step appears after this step in the list of analysis steps. description A String specifying a description of the new step. The default value is an empty string. refTemp A Float specifying the post-anneal reference temperature. The default value is the current temperature at all nodes in the model after the annealing has completed. maintainAttributes A Boolean specifying whether to retain attributes from an existing step with the same name. The default value is False. Returns ------- An AnnealStep object. Raises ------ RangeError
src/abaqus/Step/AnnealStep.py
__init__
Haiiliin/PyAbaqus
python
def __init__(self, name: str, previous: str, description: str=, refTemp: float=None, maintainAttributes: Boolean=False): 'This method creates an AnnealStep object.\n\n Notes\n -----\n This function can be accessed by:\n\n .. code-block:: python\n\n mdb.models[name].AnnealStep\n \n Parameters\n ----------\n name\n A String specifying the repository key. \n previous\n A String specifying the name of the previous step. The new step appears after this step \n in the list of analysis steps. \n description\n A String specifying a description of the new step. The default value is an empty string. \n refTemp\n A Float specifying the post-anneal reference temperature. The default value is the \n current temperature at all nodes in the model after the annealing has completed. \n maintainAttributes\n A Boolean specifying whether to retain attributes from an existing step with the same \n name. The default value is False. \n\n Returns\n -------\n An AnnealStep object. \n\n Raises\n ------\n RangeError\n ' super().__init__() pass
def setValues(self, description: str='', refTemp: float=None): 'This method modifies the AnnealStep object.\n \n Parameters\n ----------\n description\n A String specifying a description of the new step. The default value is an empty string. \n refTemp\n A Float specifying the post-anneal reference temperature. The default value is the \n current temperature at all nodes in the model after the annealing has completed.\n\n Raises\n ------\n RangeError\n ' pass
2,165,322,819,001,568,300
This method modifies the AnnealStep object. Parameters ---------- description A String specifying a description of the new step. The default value is an empty string. refTemp A Float specifying the post-anneal reference temperature. The default value is the current temperature at all nodes in the model after the annealing has completed. Raises ------ RangeError
src/abaqus/Step/AnnealStep.py
setValues
Haiiliin/PyAbaqus
python
def setValues(self, description: str=, refTemp: float=None): 'This method modifies the AnnealStep object.\n \n Parameters\n ----------\n description\n A String specifying a description of the new step. The default value is an empty string. \n refTemp\n A Float specifying the post-anneal reference temperature. The default value is the \n current temperature at all nodes in the model after the annealing has completed.\n\n Raises\n ------\n RangeError\n ' pass
def sample_mask(idx, l): 'Create mask.' mask = np.zeros(l) mask[idx] = 1 return np.array(mask, dtype=np.bool)
2,110,093,059,590,823,700
Create mask.
utils.py
sample_mask
smtnkc/gcn4epi
python
def sample_mask(idx, l): mask = np.zeros(l) mask[idx] = 1 return np.array(mask, dtype=np.bool)
def load_data(cell_line, cross_cell_line, label_rate, k_mer): '\n Load input data from data/cell_line directory.\n\n | x_20.index | the indices (IDs) of labeled train instances as list object (for label_rate = 20%) |\n | ux_20.index | the indices (IDs) of unlabeled train instances as list object (for label_rate = 20%) |\n | vx_20.index | the indices (IDs) of validation instances as list object (for label_rate = 20%) |\n | tx_20.index | the indices (IDs) of test instances as list object (for label_rate = 20%) |\n | features_5mer | the feature vectors of all instances as scipy.sparse.csr.csr_matrix object (for k_mer = 5) |\n | nodes | a dict in the format {chromosome_name: ID} as collections.defaultdict object |\n | labels | the one-hot labels of all instances as numpy.ndarray object |\n | graph | a dict in the format {ID: [IDs_of_neighbor_nodes]} as collections.defaultdict object |\n\n All objects above must be saved using python pickle module.\n\n :param cell_line: Name of the cell line to which the datasets belong\n :return: All data input files loaded (as well the training/test data).\n ' if ((cross_cell_line != None) and (cross_cell_line != cell_line)): read_dir = 'data/{}_{}/'.format(cell_line, cross_cell_line) else: read_dir = 'data/{}/'.format(cell_line) features_file = open('{}/features_{}mer'.format(read_dir, k_mer), 'rb') features = pkl.load(features_file) features_file.close() labels_file = open('{}/labels'.format(read_dir), 'rb') labels = pkl.load(labels_file) labels_file.close() graph_file = open('{}/graph'.format(read_dir), 'rb') graph = pkl.load(graph_file) graph_file.close() adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) lr = txt = '{:.2f}'.format(label_rate).split('.')[1] idx_x_file = open('{}/x_{}.index'.format(read_dir, lr), 'rb') idx_x = pkl.load(idx_x_file) idx_x_file.close() idx_ux_file = open('{}/ux_{}.index'.format(read_dir, lr), 'rb') idx_ux = pkl.load(idx_ux_file) idx_ux_file.close() idx_vx_file = open('{}/vx_{}.index'.format(read_dir, lr), 'rb') idx_vx = pkl.load(idx_vx_file) idx_vx_file.close() idx_tx_file = open('{}/tx_{}.index'.format(read_dir, lr), 'rb') idx_tx = pkl.load(idx_tx_file) idx_tx_file.close() x = features[idx_x] y = labels[idx_x] ux = features[idx_ux] uy = labels[idx_ux] vx = features[idx_vx] vy = labels[idx_vx] tx = features[idx_tx] ty = labels[idx_tx] print('x={} ux={} vx={} tx={}'.format(x.shape[0], ux.shape[0], vx.shape[0], tx.shape[0])) train_mask = sample_mask(idx_x, labels.shape[0]) val_mask = sample_mask(idx_vx, labels.shape[0]) test_mask = sample_mask(idx_tx, labels.shape[0]) y_train = np.zeros(labels.shape) y_val = np.zeros(labels.shape) y_test = np.zeros(labels.shape) y_train[train_mask, :] = labels[train_mask, :] y_val[val_mask, :] = labels[val_mask, :] y_test[test_mask, :] = labels[test_mask, :] return (adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask)
-7,958,482,504,992,849,000
Load input data from data/cell_line directory. | x_20.index | the indices (IDs) of labeled train instances as list object (for label_rate = 20%) | | ux_20.index | the indices (IDs) of unlabeled train instances as list object (for label_rate = 20%) | | vx_20.index | the indices (IDs) of validation instances as list object (for label_rate = 20%) | | tx_20.index | the indices (IDs) of test instances as list object (for label_rate = 20%) | | features_5mer | the feature vectors of all instances as scipy.sparse.csr.csr_matrix object (for k_mer = 5) | | nodes | a dict in the format {chromosome_name: ID} as collections.defaultdict object | | labels | the one-hot labels of all instances as numpy.ndarray object | | graph | a dict in the format {ID: [IDs_of_neighbor_nodes]} as collections.defaultdict object | All objects above must be saved using python pickle module. :param cell_line: Name of the cell line to which the datasets belong :return: All data input files loaded (as well the training/test data).
utils.py
load_data
smtnkc/gcn4epi
python
def load_data(cell_line, cross_cell_line, label_rate, k_mer): '\n Load input data from data/cell_line directory.\n\n | x_20.index | the indices (IDs) of labeled train instances as list object (for label_rate = 20%) |\n | ux_20.index | the indices (IDs) of unlabeled train instances as list object (for label_rate = 20%) |\n | vx_20.index | the indices (IDs) of validation instances as list object (for label_rate = 20%) |\n | tx_20.index | the indices (IDs) of test instances as list object (for label_rate = 20%) |\n | features_5mer | the feature vectors of all instances as scipy.sparse.csr.csr_matrix object (for k_mer = 5) |\n | nodes | a dict in the format {chromosome_name: ID} as collections.defaultdict object |\n | labels | the one-hot labels of all instances as numpy.ndarray object |\n | graph | a dict in the format {ID: [IDs_of_neighbor_nodes]} as collections.defaultdict object |\n\n All objects above must be saved using python pickle module.\n\n :param cell_line: Name of the cell line to which the datasets belong\n :return: All data input files loaded (as well the training/test data).\n ' if ((cross_cell_line != None) and (cross_cell_line != cell_line)): read_dir = 'data/{}_{}/'.format(cell_line, cross_cell_line) else: read_dir = 'data/{}/'.format(cell_line) features_file = open('{}/features_{}mer'.format(read_dir, k_mer), 'rb') features = pkl.load(features_file) features_file.close() labels_file = open('{}/labels'.format(read_dir), 'rb') labels = pkl.load(labels_file) labels_file.close() graph_file = open('{}/graph'.format(read_dir), 'rb') graph = pkl.load(graph_file) graph_file.close() adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) lr = txt = '{:.2f}'.format(label_rate).split('.')[1] idx_x_file = open('{}/x_{}.index'.format(read_dir, lr), 'rb') idx_x = pkl.load(idx_x_file) idx_x_file.close() idx_ux_file = open('{}/ux_{}.index'.format(read_dir, lr), 'rb') idx_ux = pkl.load(idx_ux_file) idx_ux_file.close() idx_vx_file = open('{}/vx_{}.index'.format(read_dir, lr), 'rb') idx_vx = pkl.load(idx_vx_file) idx_vx_file.close() idx_tx_file = open('{}/tx_{}.index'.format(read_dir, lr), 'rb') idx_tx = pkl.load(idx_tx_file) idx_tx_file.close() x = features[idx_x] y = labels[idx_x] ux = features[idx_ux] uy = labels[idx_ux] vx = features[idx_vx] vy = labels[idx_vx] tx = features[idx_tx] ty = labels[idx_tx] print('x={} ux={} vx={} tx={}'.format(x.shape[0], ux.shape[0], vx.shape[0], tx.shape[0])) train_mask = sample_mask(idx_x, labels.shape[0]) val_mask = sample_mask(idx_vx, labels.shape[0]) test_mask = sample_mask(idx_tx, labels.shape[0]) y_train = np.zeros(labels.shape) y_val = np.zeros(labels.shape) y_test = np.zeros(labels.shape) y_train[train_mask, :] = labels[train_mask, :] y_val[val_mask, :] = labels[val_mask, :] y_test[test_mask, :] = labels[test_mask, :] return (adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask)
def sparse_to_tuple(sparse_mx): 'Convert sparse matrix to tuple representation.' def to_tuple(mx): if (not sp.isspmatrix_coo(mx)): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return (coords, values, shape) if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
-9,219,015,497,007,221,000
Convert sparse matrix to tuple representation.
utils.py
sparse_to_tuple
smtnkc/gcn4epi
python
def sparse_to_tuple(sparse_mx): def to_tuple(mx): if (not sp.isspmatrix_coo(mx)): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return (coords, values, shape) if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
def preprocess_features(features): 'Row-normalize feature matrix and convert to tuple representation' rowsum = np.array(features.sum(1)) r_inv = np.power(rowsum, (- 1)).flatten() r_inv[np.isinf(r_inv)] = 0.0 r_mat_inv = sp.diags(r_inv) features = r_mat_inv.dot(features) return sparse_to_tuple(features)
-7,883,522,908,479,923,000
Row-normalize feature matrix and convert to tuple representation
utils.py
preprocess_features
smtnkc/gcn4epi
python
def preprocess_features(features): rowsum = np.array(features.sum(1)) r_inv = np.power(rowsum, (- 1)).flatten() r_inv[np.isinf(r_inv)] = 0.0 r_mat_inv = sp.diags(r_inv) features = r_mat_inv.dot(features) return sparse_to_tuple(features)
def normalize_adj(adj): 'Symmetrically normalize adjacency matrix.' adj = sp.coo_matrix(adj) rowsum = np.array(adj.sum(1)) d_inv_sqrt = np.power(rowsum, (- 0.5)).flatten() d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.0 d_mat_inv_sqrt = sp.diags(d_inv_sqrt) return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
-2,276,161,129,782,893,300
Symmetrically normalize adjacency matrix.
utils.py
normalize_adj
smtnkc/gcn4epi
python
def normalize_adj(adj): adj = sp.coo_matrix(adj) rowsum = np.array(adj.sum(1)) d_inv_sqrt = np.power(rowsum, (- 0.5)).flatten() d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.0 d_mat_inv_sqrt = sp.diags(d_inv_sqrt) return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
def preprocess_adj(adj): 'Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation.' adj_normalized = normalize_adj((adj + sp.eye(adj.shape[0]))) return sparse_to_tuple(adj_normalized)
-7,887,896,939,135,372,000
Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation.
utils.py
preprocess_adj
smtnkc/gcn4epi
python
def preprocess_adj(adj): adj_normalized = normalize_adj((adj + sp.eye(adj.shape[0]))) return sparse_to_tuple(adj_normalized)
def construct_feed_dict(features, support, labels, labels_mask, placeholders): 'Construct feed dictionary.' feed_dict = dict() feed_dict.update({placeholders['labels']: labels}) feed_dict.update({placeholders['labels_mask']: labels_mask}) feed_dict.update({placeholders['features']: features}) feed_dict.update({placeholders['support'][i]: support[i] for i in range(len(support))}) feed_dict.update({placeholders['num_features_nonzero']: features[1].shape}) return feed_dict
-649,063,363,262,092,200
Construct feed dictionary.
utils.py
construct_feed_dict
smtnkc/gcn4epi
python
def construct_feed_dict(features, support, labels, labels_mask, placeholders): feed_dict = dict() feed_dict.update({placeholders['labels']: labels}) feed_dict.update({placeholders['labels_mask']: labels_mask}) feed_dict.update({placeholders['features']: features}) feed_dict.update({placeholders['support'][i]: support[i] for i in range(len(support))}) feed_dict.update({placeholders['num_features_nonzero']: features[1].shape}) return feed_dict
def chebyshev_polynomials(adj, k): 'Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices (tuple representation).' print('Calculating Chebyshev polynomials up to order {}...'.format(k)) adj_normalized = normalize_adj(adj) laplacian = (sp.eye(adj.shape[0]) - adj_normalized) (largest_eigval, _) = eigsh(laplacian, 1, which='LM') scaled_laplacian = (((2.0 / largest_eigval[0]) * laplacian) - sp.eye(adj.shape[0])) t_k = list() t_k.append(sp.eye(adj.shape[0])) t_k.append(scaled_laplacian) def chebyshev_recurrence(t_k_minus_one, t_k_minus_two, scaled_lap): s_lap = sp.csr_matrix(scaled_lap, copy=True) return ((2 * s_lap.dot(t_k_minus_one)) - t_k_minus_two) for i in range(2, (k + 1)): t_k.append(chebyshev_recurrence(t_k[(- 1)], t_k[(- 2)], scaled_laplacian)) return sparse_to_tuple(t_k)
3,459,099,397,867,827,700
Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices (tuple representation).
utils.py
chebyshev_polynomials
smtnkc/gcn4epi
python
def chebyshev_polynomials(adj, k): print('Calculating Chebyshev polynomials up to order {}...'.format(k)) adj_normalized = normalize_adj(adj) laplacian = (sp.eye(adj.shape[0]) - adj_normalized) (largest_eigval, _) = eigsh(laplacian, 1, which='LM') scaled_laplacian = (((2.0 / largest_eigval[0]) * laplacian) - sp.eye(adj.shape[0])) t_k = list() t_k.append(sp.eye(adj.shape[0])) t_k.append(scaled_laplacian) def chebyshev_recurrence(t_k_minus_one, t_k_minus_two, scaled_lap): s_lap = sp.csr_matrix(scaled_lap, copy=True) return ((2 * s_lap.dot(t_k_minus_one)) - t_k_minus_two) for i in range(2, (k + 1)): t_k.append(chebyshev_recurrence(t_k[(- 1)], t_k[(- 2)], scaled_laplacian)) return sparse_to_tuple(t_k)
def __eq__(self, *args): ' x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y ' pass
2,144,965,521,805,394,200
x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y
release/stubs.min/Autodesk/Revit/DB/__init___parts/FittingAngleUsage.py
__eq__
YKato521/ironpython-stubs
python
def __eq__(self, *args): ' ' pass
def __format__(self, *args): ' __format__(formattable: IFormattable,format: str) -> str ' pass
-4,894,195,495,142,889,000
__format__(formattable: IFormattable,format: str) -> str
release/stubs.min/Autodesk/Revit/DB/__init___parts/FittingAngleUsage.py
__format__
YKato521/ironpython-stubs
python
def __format__(self, *args): ' ' pass
def __init__(self, *args): ' x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature ' pass
-90,002,593,062,007,400
x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature
release/stubs.min/Autodesk/Revit/DB/__init___parts/FittingAngleUsage.py
__init__
YKato521/ironpython-stubs
python
def __init__(self, *args): ' ' pass
def begin(self): 'At the start of the run, we want to record the test\n execution information in the database.' exec_payload = ExecutionQueryPayload() exec_payload.execution_start_time = int((time.time() * 1000)) self.execution_start_time = exec_payload.execution_start_time exec_payload.guid = self.execution_guid exec_payload.username = getpass.getuser() self.testcase_manager.insert_execution_data(exec_payload)
-4,280,806,599,896,135,700
At the start of the run, we want to record the test execution information in the database.
seleniumbase/plugins/db_reporting_plugin.py
begin
Mu-L/SeleniumBase
python
def begin(self): 'At the start of the run, we want to record the test\n execution information in the database.' exec_payload = ExecutionQueryPayload() exec_payload.execution_start_time = int((time.time() * 1000)) self.execution_start_time = exec_payload.execution_start_time exec_payload.guid = self.execution_guid exec_payload.username = getpass.getuser() self.testcase_manager.insert_execution_data(exec_payload)
def startTest(self, test): 'At the start of the test, set the testcase details.' data_payload = TestcaseDataPayload() self.testcase_guid = str(uuid.uuid4()) data_payload.guid = self.testcase_guid data_payload.execution_guid = self.execution_guid if hasattr(test, 'browser'): data_payload.browser = test.browser else: data_payload.browser = 'N/A' data_payload.test_address = test.id() application = ApplicationManager.generate_application_string(test) data_payload.env = application.split('.')[0] data_payload.start_time = application.split('.')[1] data_payload.state = constants.State.UNTESTED self.testcase_manager.insert_testcase_data(data_payload) self.case_start_time = int((time.time() * 1000)) test.testcase_guid = self.testcase_guid self._test = test self._test._nose_skip_reason = None
-1,761,585,010,409,018,000
At the start of the test, set the testcase details.
seleniumbase/plugins/db_reporting_plugin.py
startTest
Mu-L/SeleniumBase
python
def startTest(self, test): data_payload = TestcaseDataPayload() self.testcase_guid = str(uuid.uuid4()) data_payload.guid = self.testcase_guid data_payload.execution_guid = self.execution_guid if hasattr(test, 'browser'): data_payload.browser = test.browser else: data_payload.browser = 'N/A' data_payload.test_address = test.id() application = ApplicationManager.generate_application_string(test) data_payload.env = application.split('.')[0] data_payload.start_time = application.split('.')[1] data_payload.state = constants.State.UNTESTED self.testcase_manager.insert_testcase_data(data_payload) self.case_start_time = int((time.time() * 1000)) test.testcase_guid = self.testcase_guid self._test = test self._test._nose_skip_reason = None
def finalize(self, result): 'At the end of the test run, we want to\n update the DB row with the total execution time.' runtime = (int((time.time() * 1000)) - self.execution_start_time) self.testcase_manager.update_execution_data(self.execution_guid, runtime)
-8,234,503,311,109,827,000
At the end of the test run, we want to update the DB row with the total execution time.
seleniumbase/plugins/db_reporting_plugin.py
finalize
Mu-L/SeleniumBase
python
def finalize(self, result): 'At the end of the test run, we want to\n update the DB row with the total execution time.' runtime = (int((time.time() * 1000)) - self.execution_start_time) self.testcase_manager.update_execution_data(self.execution_guid, runtime)
def addSuccess(self, test, capt): '\n After each test success, record testcase run information.\n ' self.__insert_test_result(constants.State.PASSED, test) self._result_set = True
1,633,553,923,361,758,200
After each test success, record testcase run information.
seleniumbase/plugins/db_reporting_plugin.py
addSuccess
Mu-L/SeleniumBase
python
def addSuccess(self, test, capt): '\n \n ' self.__insert_test_result(constants.State.PASSED, test) self._result_set = True
def addFailure(self, test, err, capt=None, tbinfo=None): '\n After each test failure, record testcase run information.\n ' self.__insert_test_result(constants.State.FAILED, test, err) self._result_set = True
-2,188,310,513,905,270,000
After each test failure, record testcase run information.
seleniumbase/plugins/db_reporting_plugin.py
addFailure
Mu-L/SeleniumBase
python
def addFailure(self, test, err, capt=None, tbinfo=None): '\n \n ' self.__insert_test_result(constants.State.FAILED, test, err) self._result_set = True
def addError(self, test, err, capt=None): '\n After each test error, record testcase run information.\n (Test errors should be treated the same as test failures.)\n ' self.__insert_test_result(constants.State.FAILED, test, err) self._result_set = True
1,358,458,308,906,235,600
After each test error, record testcase run information. (Test errors should be treated the same as test failures.)
seleniumbase/plugins/db_reporting_plugin.py
addError
Mu-L/SeleniumBase
python
def addError(self, test, err, capt=None): '\n After each test error, record testcase run information.\n (Test errors should be treated the same as test failures.)\n ' self.__insert_test_result(constants.State.FAILED, test, err) self._result_set = True
def handleError(self, test, err, capt=None): '\n After each test error, record testcase run information.\n "Error" also encompasses any states other than Pass or Fail, so we\n check for those first.\n ' if (err[0] == errors.BlockedTest): self.__insert_test_result(constants.State.BLOCKED, test, err) self._result_set = True raise SkipTest(err[1]) return True elif (err[0] == errors.DeprecatedTest): self.__insert_test_result(constants.State.DEPRECATED, test, err) self._result_set = True raise SkipTest(err[1]) return True elif (err[0] == errors.SkipTest): self.__insert_test_result(constants.State.SKIPPED, test, err) self._result_set = True raise SkipTest(err[1]) return True
-7,883,552,030,825,401,000
After each test error, record testcase run information. "Error" also encompasses any states other than Pass or Fail, so we check for those first.
seleniumbase/plugins/db_reporting_plugin.py
handleError
Mu-L/SeleniumBase
python
def handleError(self, test, err, capt=None): '\n After each test error, record testcase run information.\n "Error" also encompasses any states other than Pass or Fail, so we\n check for those first.\n ' if (err[0] == errors.BlockedTest): self.__insert_test_result(constants.State.BLOCKED, test, err) self._result_set = True raise SkipTest(err[1]) return True elif (err[0] == errors.DeprecatedTest): self.__insert_test_result(constants.State.DEPRECATED, test, err) self._result_set = True raise SkipTest(err[1]) return True elif (err[0] == errors.SkipTest): self.__insert_test_result(constants.State.SKIPPED, test, err) self._result_set = True raise SkipTest(err[1]) return True
def create_user_item_matrix(df): '\n INPUT:\n df - pandas dataframe with article_id, title, user_id columns\n \n OUTPUT:\n user_item - user item matrix \n \n Description:\n Return a matrix with user ids as rows and article ids on the columns with 1 values where a user interacted with \n an article and a 0 otherwise\n ' user_item = df.groupby('user_id')['article_id'].value_counts().unstack() user_item[(user_item.isna() == False)] = 1 return user_item
-7,589,969,097,151,251,000
INPUT: df - pandas dataframe with article_id, title, user_id columns OUTPUT: user_item - user item matrix Description: Return a matrix with user ids as rows and article ids on the columns with 1 values where a user interacted with an article and a 0 otherwise
model/recommendation_functions.py
create_user_item_matrix
dalpengholic/Udacity_Recommendations_with_IBM
python
def create_user_item_matrix(df): '\n INPUT:\n df - pandas dataframe with article_id, title, user_id columns\n \n OUTPUT:\n user_item - user item matrix \n \n Description:\n Return a matrix with user ids as rows and article ids on the columns with 1 values where a user interacted with \n an article and a 0 otherwise\n ' user_item = df.groupby('user_id')['article_id'].value_counts().unstack() user_item[(user_item.isna() == False)] = 1 return user_item
def get_top_articles(n, df): "\n INPUT:\n n - (int) the number of top articles to return\n df - (pandas dataframe) df as defined at the top of the notebook \n \n OUTPUT:\n top_articles - (list) A list of the top 'n' article titles \n \n " article_id_grouped_df = df.groupby(['title']) top_articles = article_id_grouped_df['user_id'].count().sort_values(ascending=False).iloc[:n].index.tolist() return top_articles
4,361,726,635,507,890,700
INPUT: n - (int) the number of top articles to return df - (pandas dataframe) df as defined at the top of the notebook OUTPUT: top_articles - (list) A list of the top 'n' article titles
model/recommendation_functions.py
get_top_articles
dalpengholic/Udacity_Recommendations_with_IBM
python
def get_top_articles(n, df): "\n INPUT:\n n - (int) the number of top articles to return\n df - (pandas dataframe) df as defined at the top of the notebook \n \n OUTPUT:\n top_articles - (list) A list of the top 'n' article titles \n \n " article_id_grouped_df = df.groupby(['title']) top_articles = article_id_grouped_df['user_id'].count().sort_values(ascending=False).iloc[:n].index.tolist() return top_articles
def get_top_article_ids(n, df): "\n INPUT:\n n - (int) the number of top articles to return\n df - (pandas dataframe) df as defined at the top of the notebook \n \n OUTPUT:\n top_articles - (list) A list of the top 'n' article titles \n \n " article_id_grouped_df = df.groupby(['article_id']) top_articles_ids = article_id_grouped_df['user_id'].count().sort_values(ascending=False).iloc[:n].index.tolist() return top_articles_ids
-5,730,097,972,124,829,000
INPUT: n - (int) the number of top articles to return df - (pandas dataframe) df as defined at the top of the notebook OUTPUT: top_articles - (list) A list of the top 'n' article titles
model/recommendation_functions.py
get_top_article_ids
dalpengholic/Udacity_Recommendations_with_IBM
python
def get_top_article_ids(n, df): "\n INPUT:\n n - (int) the number of top articles to return\n df - (pandas dataframe) df as defined at the top of the notebook \n \n OUTPUT:\n top_articles - (list) A list of the top 'n' article titles \n \n " article_id_grouped_df = df.groupby(['article_id']) top_articles_ids = article_id_grouped_df['user_id'].count().sort_values(ascending=False).iloc[:n].index.tolist() return top_articles_ids
def user_user_recs(user_id, user_item, df, m=10): "\n INPUT:\n user_id - (int) a user id\n m - (int) the number of recommendations you want for the user\n \n OUTPUT:\n recs - (list) a list of recommendations for the user by article id\n rec_names - (list) a list of recommendations for the user by article title\n \n Description:\n Loops through the users based on closeness to the input user_id\n For each user - finds articles the user hasn't seen before and provides them as recs\n Does this until m recommendations are found\n \n Notes:\n * Choose the users that have the most total article interactions \n before choosing those with fewer article interactions.\n\n * Choose articles with the articles with the most total interactions \n before choosing those with fewer total interactions. \n \n " def get_user_articles_names_ids(user_id): '\n INPUT:\n user_id\n\n\n OUTPUT:\n article_ids - (list) a list of the article ids seen by the user\n article_names - (list) a list of article names associated with the list of article ids \n (this is identified by the doc_full_name column in df_content)\n \n Description:\n Provides a list of the article_ids and article titles that have been seen by a user\n ' article_ids = user_item.loc[user_id][(user_item.loc[user_id] == 1)].index.tolist() article_names = [] for i in article_ids: try: title = df[(df['article_id'] == i)]['title'].unique()[0] except IndexError: title = 'None' article_names.append(title) article_ids = list(map(str, article_ids)) return (article_ids, article_names) def find_similar_users(): ' \n OUTPUT:\n similar_users - (list) an ordered list where the closest users (largest dot product users)\n are listed first\n \n Description:\n Computes the similarity of every pair of users based on the dot product\n Returns an ordered\n \n ' user_item_tmp = user_item.copy() user_item_tmp[(user_item_tmp.isna() == True)] = 0 row = user_item_tmp.loc[user_id] result_dot = (row @ user_item_tmp.T) result_dot.drop(labels=[user_id], inplace=True) most_similar_users = result_dot.sort_values(ascending=False).index.tolist() return most_similar_users def get_top_sorted_users(most_similar_users): '\n INPUT:\n most_similar_users - (list) an ordered list where the closest users (largest dot product users)\n are listed first \n \n OUTPUT:\n neighbors_df - (pandas dataframe) a dataframe with:\n neighbor_id - is a neighbor user_id\n similarity - measure of the similarity of each user to the provided user_id\n num_interactions - the number of articles viewed by the user - if a u\n \n Other Details - sort the neighbors_df by the similarity and then by number of interactions where \n highest of each is higher in the dataframe\n \n ' df_user_id_grouped = df.groupby('user_id') df_user_id_grouped['article_id'].count().sort_values(ascending=False) neighbors_df = pd.DataFrame() neighbors_df['neighbor_id'] = most_similar_users user_item_tmp = user_item.copy() user_item_tmp[(user_item_tmp.isna() == True)] = 0 row = user_item_tmp.loc[user_id] result_dot = (row @ user_item_tmp.T) result_dot.drop(labels=[user_id], inplace=True) similarity = result_dot.sort_values(ascending=False).values.tolist()[0:10] neighbors_df['similarity'] = similarity num_interactions = [] for i in neighbors_df['neighbor_id']: counted_interaction = df_user_id_grouped['article_id'].count().loc[i] num_interactions.append(counted_interaction) neighbors_df['num_interactions'] = num_interactions neighbors_df = neighbors_df.sort_values(by=['similarity', 'num_interactions'], ascending=False) return neighbors_df recs = [] rec_names = [] counter = 0 (article_ids, article_names) = get_user_articles_names_ids(user_id) seen_ids_set = set(article_ids) most_similar_users = find_similar_users()[0:10] neighbors_df = get_top_sorted_users(most_similar_users) similar_users_list = neighbors_df['neighbor_id'] for sim_user in similar_users_list: if (counter < m): (sim_article_ids, sim_article_names) = get_user_articles_names_ids(sim_user) sim_user_dict = dict(zip(sim_article_ids, sim_article_names)) sim_seen_ids_set = set(sim_article_ids) unseen_ids_set = sim_seen_ids_set.difference(seen_ids_set) for i in unseen_ids_set: if (counter < m): recs.append(i) rec_names.append(sim_user_dict[i]) counter += 1 return (recs, rec_names)
-5,629,144,764,730,280,000
INPUT: user_id - (int) a user id m - (int) the number of recommendations you want for the user OUTPUT: recs - (list) a list of recommendations for the user by article id rec_names - (list) a list of recommendations for the user by article title Description: Loops through the users based on closeness to the input user_id For each user - finds articles the user hasn't seen before and provides them as recs Does this until m recommendations are found Notes: * Choose the users that have the most total article interactions before choosing those with fewer article interactions. * Choose articles with the articles with the most total interactions before choosing those with fewer total interactions.
model/recommendation_functions.py
user_user_recs
dalpengholic/Udacity_Recommendations_with_IBM
python
def user_user_recs(user_id, user_item, df, m=10): "\n INPUT:\n user_id - (int) a user id\n m - (int) the number of recommendations you want for the user\n \n OUTPUT:\n recs - (list) a list of recommendations for the user by article id\n rec_names - (list) a list of recommendations for the user by article title\n \n Description:\n Loops through the users based on closeness to the input user_id\n For each user - finds articles the user hasn't seen before and provides them as recs\n Does this until m recommendations are found\n \n Notes:\n * Choose the users that have the most total article interactions \n before choosing those with fewer article interactions.\n\n * Choose articles with the articles with the most total interactions \n before choosing those with fewer total interactions. \n \n " def get_user_articles_names_ids(user_id): '\n INPUT:\n user_id\n\n\n OUTPUT:\n article_ids - (list) a list of the article ids seen by the user\n article_names - (list) a list of article names associated with the list of article ids \n (this is identified by the doc_full_name column in df_content)\n \n Description:\n Provides a list of the article_ids and article titles that have been seen by a user\n ' article_ids = user_item.loc[user_id][(user_item.loc[user_id] == 1)].index.tolist() article_names = [] for i in article_ids: try: title = df[(df['article_id'] == i)]['title'].unique()[0] except IndexError: title = 'None' article_names.append(title) article_ids = list(map(str, article_ids)) return (article_ids, article_names) def find_similar_users(): ' \n OUTPUT:\n similar_users - (list) an ordered list where the closest users (largest dot product users)\n are listed first\n \n Description:\n Computes the similarity of every pair of users based on the dot product\n Returns an ordered\n \n ' user_item_tmp = user_item.copy() user_item_tmp[(user_item_tmp.isna() == True)] = 0 row = user_item_tmp.loc[user_id] result_dot = (row @ user_item_tmp.T) result_dot.drop(labels=[user_id], inplace=True) most_similar_users = result_dot.sort_values(ascending=False).index.tolist() return most_similar_users def get_top_sorted_users(most_similar_users): '\n INPUT:\n most_similar_users - (list) an ordered list where the closest users (largest dot product users)\n are listed first \n \n OUTPUT:\n neighbors_df - (pandas dataframe) a dataframe with:\n neighbor_id - is a neighbor user_id\n similarity - measure of the similarity of each user to the provided user_id\n num_interactions - the number of articles viewed by the user - if a u\n \n Other Details - sort the neighbors_df by the similarity and then by number of interactions where \n highest of each is higher in the dataframe\n \n ' df_user_id_grouped = df.groupby('user_id') df_user_id_grouped['article_id'].count().sort_values(ascending=False) neighbors_df = pd.DataFrame() neighbors_df['neighbor_id'] = most_similar_users user_item_tmp = user_item.copy() user_item_tmp[(user_item_tmp.isna() == True)] = 0 row = user_item_tmp.loc[user_id] result_dot = (row @ user_item_tmp.T) result_dot.drop(labels=[user_id], inplace=True) similarity = result_dot.sort_values(ascending=False).values.tolist()[0:10] neighbors_df['similarity'] = similarity num_interactions = [] for i in neighbors_df['neighbor_id']: counted_interaction = df_user_id_grouped['article_id'].count().loc[i] num_interactions.append(counted_interaction) neighbors_df['num_interactions'] = num_interactions neighbors_df = neighbors_df.sort_values(by=['similarity', 'num_interactions'], ascending=False) return neighbors_df recs = [] rec_names = [] counter = 0 (article_ids, article_names) = get_user_articles_names_ids(user_id) seen_ids_set = set(article_ids) most_similar_users = find_similar_users()[0:10] neighbors_df = get_top_sorted_users(most_similar_users) similar_users_list = neighbors_df['neighbor_id'] for sim_user in similar_users_list: if (counter < m): (sim_article_ids, sim_article_names) = get_user_articles_names_ids(sim_user) sim_user_dict = dict(zip(sim_article_ids, sim_article_names)) sim_seen_ids_set = set(sim_article_ids) unseen_ids_set = sim_seen_ids_set.difference(seen_ids_set) for i in unseen_ids_set: if (counter < m): recs.append(i) rec_names.append(sim_user_dict[i]) counter += 1 return (recs, rec_names)
def make_content_recs(article_id, df_content, df, m=10): '\n INPUT:\n article_id = (int) a article id in df_content\n m - (int) the number of recommendations you want for the user\n df_content - (pandas dataframe) df_content as defined at the top of the notebook \n df - (pandas dataframe) df as defined at the top of the notebook \n\n OUTPUT:\n recs - (list) a list of recommendations for the user by article id\n rec_names - (list) a list of recommendations for the user by article title\n ' def tokenize(text): '\n Function splits text into separate words and gets a word lowercased and removes whitespaces at the ends of a word. \n The funtions also cleans irrelevant stopwords.\n Input:\n 1. text: text message\n Output:\n 1. Clean_tokens : list of tokenized clean words\n ' text = re.sub('[^a-zA-Z0-9]', ' ', text) tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok, pos='v').lower().strip() clean_tokens.append(clean_tok) stopwords = nltk.corpus.stopwords.words('english') clean_tokens = [token for token in clean_tokens if (token not in stopwords)] return clean_tokens (vect, X) = make_Tfidf_array(df_content) if (article_id in df_content.article_id): cosine_similarity = linear_kernel(X, X) df_similarity = pd.DataFrame(cosine_similarity[article_id], columns=['similarity']) df_similarity_modified = df_similarity.drop(article_id) recs = df_similarity_modified.similarity.sort_values(ascending=False).index[0:10].tolist() rec_names = [] for i in recs: name = df_content[(df_content['article_id'] == i)]['doc_full_name'].values[0] rec_names.append(name) else: tfidf_feature_name = vect.get_feature_names() booktitle = df[(df['article_id'] == article_id)]['title'].values[0] booktitle_tokenized = tokenize(booktitle) X_slice_list = [] for i in booktitle_tokenized: if (i in tfidf_feature_name): X_slice_list.append(tfidf_feature_name.index(i)) X_slice_list.sort() X_sliced = X[:, X_slice_list] check_df = pd.DataFrame(X_sliced, columns=X_slice_list) check_df['sum'] = check_df.sum(axis=1) recs = check_df.sort_values('sum', ascending=False)[0:10].index.tolist() rec_names = [] for i in recs: name = df_content[(df_content['article_id'] == i)]['doc_full_name'].values[0] rec_names.append(name) return (recs, rec_names)
-225,442,637,891,645,920
INPUT: article_id = (int) a article id in df_content m - (int) the number of recommendations you want for the user df_content - (pandas dataframe) df_content as defined at the top of the notebook df - (pandas dataframe) df as defined at the top of the notebook OUTPUT: recs - (list) a list of recommendations for the user by article id rec_names - (list) a list of recommendations for the user by article title
model/recommendation_functions.py
make_content_recs
dalpengholic/Udacity_Recommendations_with_IBM
python
def make_content_recs(article_id, df_content, df, m=10): '\n INPUT:\n article_id = (int) a article id in df_content\n m - (int) the number of recommendations you want for the user\n df_content - (pandas dataframe) df_content as defined at the top of the notebook \n df - (pandas dataframe) df as defined at the top of the notebook \n\n OUTPUT:\n recs - (list) a list of recommendations for the user by article id\n rec_names - (list) a list of recommendations for the user by article title\n ' def tokenize(text): '\n Function splits text into separate words and gets a word lowercased and removes whitespaces at the ends of a word. \n The funtions also cleans irrelevant stopwords.\n Input:\n 1. text: text message\n Output:\n 1. Clean_tokens : list of tokenized clean words\n ' text = re.sub('[^a-zA-Z0-9]', ' ', text) tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok, pos='v').lower().strip() clean_tokens.append(clean_tok) stopwords = nltk.corpus.stopwords.words('english') clean_tokens = [token for token in clean_tokens if (token not in stopwords)] return clean_tokens (vect, X) = make_Tfidf_array(df_content) if (article_id in df_content.article_id): cosine_similarity = linear_kernel(X, X) df_similarity = pd.DataFrame(cosine_similarity[article_id], columns=['similarity']) df_similarity_modified = df_similarity.drop(article_id) recs = df_similarity_modified.similarity.sort_values(ascending=False).index[0:10].tolist() rec_names = [] for i in recs: name = df_content[(df_content['article_id'] == i)]['doc_full_name'].values[0] rec_names.append(name) else: tfidf_feature_name = vect.get_feature_names() booktitle = df[(df['article_id'] == article_id)]['title'].values[0] booktitle_tokenized = tokenize(booktitle) X_slice_list = [] for i in booktitle_tokenized: if (i in tfidf_feature_name): X_slice_list.append(tfidf_feature_name.index(i)) X_slice_list.sort() X_sliced = X[:, X_slice_list] check_df = pd.DataFrame(X_sliced, columns=X_slice_list) check_df['sum'] = check_df.sum(axis=1) recs = check_df.sort_values('sum', ascending=False)[0:10].index.tolist() rec_names = [] for i in recs: name = df_content[(df_content['article_id'] == i)]['doc_full_name'].values[0] rec_names.append(name) return (recs, rec_names)
def get_user_articles_names_ids(user_id): '\n INPUT:\n user_id\n\n\n OUTPUT:\n article_ids - (list) a list of the article ids seen by the user\n article_names - (list) a list of article names associated with the list of article ids \n (this is identified by the doc_full_name column in df_content)\n \n Description:\n Provides a list of the article_ids and article titles that have been seen by a user\n ' article_ids = user_item.loc[user_id][(user_item.loc[user_id] == 1)].index.tolist() article_names = [] for i in article_ids: try: title = df[(df['article_id'] == i)]['title'].unique()[0] except IndexError: title = 'None' article_names.append(title) article_ids = list(map(str, article_ids)) return (article_ids, article_names)
-2,381,257,371,788,109,000
INPUT: user_id OUTPUT: article_ids - (list) a list of the article ids seen by the user article_names - (list) a list of article names associated with the list of article ids (this is identified by the doc_full_name column in df_content) Description: Provides a list of the article_ids and article titles that have been seen by a user
model/recommendation_functions.py
get_user_articles_names_ids
dalpengholic/Udacity_Recommendations_with_IBM
python
def get_user_articles_names_ids(user_id): '\n INPUT:\n user_id\n\n\n OUTPUT:\n article_ids - (list) a list of the article ids seen by the user\n article_names - (list) a list of article names associated with the list of article ids \n (this is identified by the doc_full_name column in df_content)\n \n Description:\n Provides a list of the article_ids and article titles that have been seen by a user\n ' article_ids = user_item.loc[user_id][(user_item.loc[user_id] == 1)].index.tolist() article_names = [] for i in article_ids: try: title = df[(df['article_id'] == i)]['title'].unique()[0] except IndexError: title = 'None' article_names.append(title) article_ids = list(map(str, article_ids)) return (article_ids, article_names)
def find_similar_users(): ' \n OUTPUT:\n similar_users - (list) an ordered list where the closest users (largest dot product users)\n are listed first\n \n Description:\n Computes the similarity of every pair of users based on the dot product\n Returns an ordered\n \n ' user_item_tmp = user_item.copy() user_item_tmp[(user_item_tmp.isna() == True)] = 0 row = user_item_tmp.loc[user_id] result_dot = (row @ user_item_tmp.T) result_dot.drop(labels=[user_id], inplace=True) most_similar_users = result_dot.sort_values(ascending=False).index.tolist() return most_similar_users
-6,149,135,974,720,328,000
OUTPUT: similar_users - (list) an ordered list where the closest users (largest dot product users) are listed first Description: Computes the similarity of every pair of users based on the dot product Returns an ordered
model/recommendation_functions.py
find_similar_users
dalpengholic/Udacity_Recommendations_with_IBM
python
def find_similar_users(): ' \n OUTPUT:\n similar_users - (list) an ordered list where the closest users (largest dot product users)\n are listed first\n \n Description:\n Computes the similarity of every pair of users based on the dot product\n Returns an ordered\n \n ' user_item_tmp = user_item.copy() user_item_tmp[(user_item_tmp.isna() == True)] = 0 row = user_item_tmp.loc[user_id] result_dot = (row @ user_item_tmp.T) result_dot.drop(labels=[user_id], inplace=True) most_similar_users = result_dot.sort_values(ascending=False).index.tolist() return most_similar_users
def get_top_sorted_users(most_similar_users): '\n INPUT:\n most_similar_users - (list) an ordered list where the closest users (largest dot product users)\n are listed first \n \n OUTPUT:\n neighbors_df - (pandas dataframe) a dataframe with:\n neighbor_id - is a neighbor user_id\n similarity - measure of the similarity of each user to the provided user_id\n num_interactions - the number of articles viewed by the user - if a u\n \n Other Details - sort the neighbors_df by the similarity and then by number of interactions where \n highest of each is higher in the dataframe\n \n ' df_user_id_grouped = df.groupby('user_id') df_user_id_grouped['article_id'].count().sort_values(ascending=False) neighbors_df = pd.DataFrame() neighbors_df['neighbor_id'] = most_similar_users user_item_tmp = user_item.copy() user_item_tmp[(user_item_tmp.isna() == True)] = 0 row = user_item_tmp.loc[user_id] result_dot = (row @ user_item_tmp.T) result_dot.drop(labels=[user_id], inplace=True) similarity = result_dot.sort_values(ascending=False).values.tolist()[0:10] neighbors_df['similarity'] = similarity num_interactions = [] for i in neighbors_df['neighbor_id']: counted_interaction = df_user_id_grouped['article_id'].count().loc[i] num_interactions.append(counted_interaction) neighbors_df['num_interactions'] = num_interactions neighbors_df = neighbors_df.sort_values(by=['similarity', 'num_interactions'], ascending=False) return neighbors_df
8,527,079,837,033,794,000
INPUT: most_similar_users - (list) an ordered list where the closest users (largest dot product users) are listed first OUTPUT: neighbors_df - (pandas dataframe) a dataframe with: neighbor_id - is a neighbor user_id similarity - measure of the similarity of each user to the provided user_id num_interactions - the number of articles viewed by the user - if a u Other Details - sort the neighbors_df by the similarity and then by number of interactions where highest of each is higher in the dataframe
model/recommendation_functions.py
get_top_sorted_users
dalpengholic/Udacity_Recommendations_with_IBM
python
def get_top_sorted_users(most_similar_users): '\n INPUT:\n most_similar_users - (list) an ordered list where the closest users (largest dot product users)\n are listed first \n \n OUTPUT:\n neighbors_df - (pandas dataframe) a dataframe with:\n neighbor_id - is a neighbor user_id\n similarity - measure of the similarity of each user to the provided user_id\n num_interactions - the number of articles viewed by the user - if a u\n \n Other Details - sort the neighbors_df by the similarity and then by number of interactions where \n highest of each is higher in the dataframe\n \n ' df_user_id_grouped = df.groupby('user_id') df_user_id_grouped['article_id'].count().sort_values(ascending=False) neighbors_df = pd.DataFrame() neighbors_df['neighbor_id'] = most_similar_users user_item_tmp = user_item.copy() user_item_tmp[(user_item_tmp.isna() == True)] = 0 row = user_item_tmp.loc[user_id] result_dot = (row @ user_item_tmp.T) result_dot.drop(labels=[user_id], inplace=True) similarity = result_dot.sort_values(ascending=False).values.tolist()[0:10] neighbors_df['similarity'] = similarity num_interactions = [] for i in neighbors_df['neighbor_id']: counted_interaction = df_user_id_grouped['article_id'].count().loc[i] num_interactions.append(counted_interaction) neighbors_df['num_interactions'] = num_interactions neighbors_df = neighbors_df.sort_values(by=['similarity', 'num_interactions'], ascending=False) return neighbors_df
def tokenize(text): '\n Function splits text into separate words and gets a word lowercased and removes whitespaces at the ends of a word. \n The funtions also cleans irrelevant stopwords.\n Input:\n 1. text: text message\n Output:\n 1. Clean_tokens : list of tokenized clean words\n ' text = re.sub('[^a-zA-Z0-9]', ' ', text) tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok, pos='v').lower().strip() clean_tokens.append(clean_tok) stopwords = nltk.corpus.stopwords.words('english') clean_tokens = [token for token in clean_tokens if (token not in stopwords)] return clean_tokens
-4,629,823,160,291,802,000
Function splits text into separate words and gets a word lowercased and removes whitespaces at the ends of a word. The funtions also cleans irrelevant stopwords. Input: 1. text: text message Output: 1. Clean_tokens : list of tokenized clean words
model/recommendation_functions.py
tokenize
dalpengholic/Udacity_Recommendations_with_IBM
python
def tokenize(text): '\n Function splits text into separate words and gets a word lowercased and removes whitespaces at the ends of a word. \n The funtions also cleans irrelevant stopwords.\n Input:\n 1. text: text message\n Output:\n 1. Clean_tokens : list of tokenized clean words\n ' text = re.sub('[^a-zA-Z0-9]', ' ', text) tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok, pos='v').lower().strip() clean_tokens.append(clean_tok) stopwords = nltk.corpus.stopwords.words('english') clean_tokens = [token for token in clean_tokens if (token not in stopwords)] return clean_tokens
def tokenize(text): '\n Function splits text into separate words and gets a word lowercased and removes whitespaces at the ends of a word. \n The funtions also cleans irrelevant stopwords.\n Input:\n 1. text: text message\n Output:\n 1. Clean_tokens : list of tokenized clean words\n ' text = re.sub('[^a-zA-Z0-9]', ' ', text) tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok, pos='v').lower().strip() clean_tokens.append(clean_tok) stopwords = nltk.corpus.stopwords.words('english') clean_tokens = [token for token in clean_tokens if (token not in stopwords)] return clean_tokens
-4,629,823,160,291,802,000
Function splits text into separate words and gets a word lowercased and removes whitespaces at the ends of a word. The funtions also cleans irrelevant stopwords. Input: 1. text: text message Output: 1. Clean_tokens : list of tokenized clean words
model/recommendation_functions.py
tokenize
dalpengholic/Udacity_Recommendations_with_IBM
python
def tokenize(text): '\n Function splits text into separate words and gets a word lowercased and removes whitespaces at the ends of a word. \n The funtions also cleans irrelevant stopwords.\n Input:\n 1. text: text message\n Output:\n 1. Clean_tokens : list of tokenized clean words\n ' text = re.sub('[^a-zA-Z0-9]', ' ', text) tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok, pos='v').lower().strip() clean_tokens.append(clean_tok) stopwords = nltk.corpus.stopwords.words('english') clean_tokens = [token for token in clean_tokens if (token not in stopwords)] return clean_tokens
def get_imdb(name): 'Get an imdb (image database) by name.' if (name not in __sets): raise KeyError('Unknown dataset: {}'.format(name)) return __sets[name]()
-3,263,413,934,054,098,000
Get an imdb (image database) by name.
lib/datasets/factory.py
get_imdb
hinthornw/faster_rcnn_symbols
python
def get_imdb(name): if (name not in __sets): raise KeyError('Unknown dataset: {}'.format(name)) return __sets[name]()
def list_imdbs(): 'List all registered imdbs.' return list(__sets.keys())
4,693,669,182,354,276,000
List all registered imdbs.
lib/datasets/factory.py
list_imdbs
hinthornw/faster_rcnn_symbols
python
def list_imdbs(): return list(__sets.keys())
def __init__(self, configuration=None): 'CreateConfigurationResponse - a model defined in huaweicloud sdk' super(CreateConfigurationResponse, self).__init__() self._configuration = None self.discriminator = None if (configuration is not None): self.configuration = configuration
-6,258,271,062,558,947,000
CreateConfigurationResponse - a model defined in huaweicloud sdk
huaweicloud-sdk-rds/huaweicloudsdkrds/v3/model/create_configuration_response.py
__init__
JeffreyDin/huaweicloud-sdk-python-v3
python
def __init__(self, configuration=None): super(CreateConfigurationResponse, self).__init__() self._configuration = None self.discriminator = None if (configuration is not None): self.configuration = configuration
@property def configuration(self): 'Gets the configuration of this CreateConfigurationResponse.\n\n\n :return: The configuration of this CreateConfigurationResponse.\n :rtype: ConfigurationSummaryForCreate\n ' return self._configuration
-8,497,689,340,689,618,000
Gets the configuration of this CreateConfigurationResponse. :return: The configuration of this CreateConfigurationResponse. :rtype: ConfigurationSummaryForCreate
huaweicloud-sdk-rds/huaweicloudsdkrds/v3/model/create_configuration_response.py
configuration
JeffreyDin/huaweicloud-sdk-python-v3
python
@property def configuration(self): 'Gets the configuration of this CreateConfigurationResponse.\n\n\n :return: The configuration of this CreateConfigurationResponse.\n :rtype: ConfigurationSummaryForCreate\n ' return self._configuration
@configuration.setter def configuration(self, configuration): 'Sets the configuration of this CreateConfigurationResponse.\n\n\n :param configuration: The configuration of this CreateConfigurationResponse.\n :type: ConfigurationSummaryForCreate\n ' self._configuration = configuration
-3,457,435,754,205,594,600
Sets the configuration of this CreateConfigurationResponse. :param configuration: The configuration of this CreateConfigurationResponse. :type: ConfigurationSummaryForCreate
huaweicloud-sdk-rds/huaweicloudsdkrds/v3/model/create_configuration_response.py
configuration
JeffreyDin/huaweicloud-sdk-python-v3
python
@configuration.setter def configuration(self, configuration): 'Sets the configuration of this CreateConfigurationResponse.\n\n\n :param configuration: The configuration of this CreateConfigurationResponse.\n :type: ConfigurationSummaryForCreate\n ' self._configuration = configuration
def to_dict(self): 'Returns the model properties as a dict' result = {} for (attr, _) in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) elif (attr in self.sensitive_list): result[attr] = '****' else: result[attr] = value return result
2,594,216,033,120,720,000
Returns the model properties as a dict
huaweicloud-sdk-rds/huaweicloudsdkrds/v3/model/create_configuration_response.py
to_dict
JeffreyDin/huaweicloud-sdk-python-v3
python
def to_dict(self): result = {} for (attr, _) in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) elif (attr in self.sensitive_list): result[attr] = '****' else: result[attr] = value return result
def to_str(self): 'Returns the string representation of the model' return pprint.pformat(self.to_dict())
5,849,158,643,760,736,000
Returns the string representation of the model
huaweicloud-sdk-rds/huaweicloudsdkrds/v3/model/create_configuration_response.py
to_str
JeffreyDin/huaweicloud-sdk-python-v3
python
def to_str(self): return pprint.pformat(self.to_dict())
def __repr__(self): 'For `print` and `pprint`' return self.to_str()
-8,960,031,694,814,905,000
For `print` and `pprint`
huaweicloud-sdk-rds/huaweicloudsdkrds/v3/model/create_configuration_response.py
__repr__
JeffreyDin/huaweicloud-sdk-python-v3
python
def __repr__(self): return self.to_str()
def __eq__(self, other): 'Returns true if both objects are equal' if (not isinstance(other, CreateConfigurationResponse)): return False return (self.__dict__ == other.__dict__)
5,950,562,783,730,043,000
Returns true if both objects are equal
huaweicloud-sdk-rds/huaweicloudsdkrds/v3/model/create_configuration_response.py
__eq__
JeffreyDin/huaweicloud-sdk-python-v3
python
def __eq__(self, other): if (not isinstance(other, CreateConfigurationResponse)): return False return (self.__dict__ == other.__dict__)
def __ne__(self, other): 'Returns true if both objects are not equal' return (not (self == other))
7,764,124,047,908,058,000
Returns true if both objects are not equal
huaweicloud-sdk-rds/huaweicloudsdkrds/v3/model/create_configuration_response.py
__ne__
JeffreyDin/huaweicloud-sdk-python-v3
python
def __ne__(self, other): return (not (self == other))
def __init__(self, parent=None, pagesize='A3', orientation='landscape', x=0.05, y=0.05, xl=None, xr=None, yt=None, yb=None, start=None, end=None, tracklines=0, track_size=0.75, circular=1): " __init__(self, parent, pagesize='A3', orientation='landscape',\n x=0.05, y=0.05, xl=None, xr=None, yt=None, yb=None,\n start=None, end=None, tracklines=0, track_size=0.75,\n circular=1)\n\n o parent Diagram object containing the data that the drawer\n draws\n\n o pagesize String describing the ISO size of the image, or a tuple\n of pixels\n\n o orientation String describing the required orientation of the\n final drawing ('landscape' or 'portrait')\n\n o x Float (0->1) describing the relative size of the X\n margins to the page\n\n o y Float (0->1) describing the relative size of the Y\n margins to the page\n\n o xl Float (0->1) describing the relative size of the left X\n margin to the page (overrides x)\n\n o xl Float (0->1) describing the relative size of the left X\n margin to the page (overrides x)\n\n o xr Float (0->1) describing the relative size of the right X\n margin to the page (overrides x)\n\n o yt Float (0->1) describing the relative size of the top Y\n margin to the page (overrides y)\n\n o yb Float (0->1) describing the relative size of the lower Y\n margin to the page (overrides y)\n\n o start Int, the position to begin drawing the diagram at\n\n o end Int, the position to stop drawing the diagram at\n\n o tracklines Boolean flag to show (or not) lines delineating tracks\n on the diagram \n \n o track_size The proportion of the available track height that\n should be taken up in drawing\n\n o circular Boolean flaw to show whether the passed sequence is\n circular or not\n " AbstractDrawer.__init__(self, parent, pagesize, orientation, x, y, xl, xr, yt, yb, start, end, tracklines) self.track_size = track_size if (circular == False): self.sweep = 0.9 else: self.sweep = 1
-5,975,716,011,951,879,000
__init__(self, parent, pagesize='A3', orientation='landscape', x=0.05, y=0.05, xl=None, xr=None, yt=None, yb=None, start=None, end=None, tracklines=0, track_size=0.75, circular=1) o parent Diagram object containing the data that the drawer draws o pagesize String describing the ISO size of the image, or a tuple of pixels o orientation String describing the required orientation of the final drawing ('landscape' or 'portrait') o x Float (0->1) describing the relative size of the X margins to the page o y Float (0->1) describing the relative size of the Y margins to the page o xl Float (0->1) describing the relative size of the left X margin to the page (overrides x) o xl Float (0->1) describing the relative size of the left X margin to the page (overrides x) o xr Float (0->1) describing the relative size of the right X margin to the page (overrides x) o yt Float (0->1) describing the relative size of the top Y margin to the page (overrides y) o yb Float (0->1) describing the relative size of the lower Y margin to the page (overrides y) o start Int, the position to begin drawing the diagram at o end Int, the position to stop drawing the diagram at o tracklines Boolean flag to show (or not) lines delineating tracks on the diagram o track_size The proportion of the available track height that should be taken up in drawing o circular Boolean flaw to show whether the passed sequence is circular or not
bin/last_wrapper/Bio/Graphics/GenomeDiagram/_CircularDrawer.py
__init__
LyonsLab/coge
python
def __init__(self, parent=None, pagesize='A3', orientation='landscape', x=0.05, y=0.05, xl=None, xr=None, yt=None, yb=None, start=None, end=None, tracklines=0, track_size=0.75, circular=1): " __init__(self, parent, pagesize='A3', orientation='landscape',\n x=0.05, y=0.05, xl=None, xr=None, yt=None, yb=None,\n start=None, end=None, tracklines=0, track_size=0.75,\n circular=1)\n\n o parent Diagram object containing the data that the drawer\n draws\n\n o pagesize String describing the ISO size of the image, or a tuple\n of pixels\n\n o orientation String describing the required orientation of the\n final drawing ('landscape' or 'portrait')\n\n o x Float (0->1) describing the relative size of the X\n margins to the page\n\n o y Float (0->1) describing the relative size of the Y\n margins to the page\n\n o xl Float (0->1) describing the relative size of the left X\n margin to the page (overrides x)\n\n o xl Float (0->1) describing the relative size of the left X\n margin to the page (overrides x)\n\n o xr Float (0->1) describing the relative size of the right X\n margin to the page (overrides x)\n\n o yt Float (0->1) describing the relative size of the top Y\n margin to the page (overrides y)\n\n o yb Float (0->1) describing the relative size of the lower Y\n margin to the page (overrides y)\n\n o start Int, the position to begin drawing the diagram at\n\n o end Int, the position to stop drawing the diagram at\n\n o tracklines Boolean flag to show (or not) lines delineating tracks\n on the diagram \n \n o track_size The proportion of the available track height that\n should be taken up in drawing\n\n o circular Boolean flaw to show whether the passed sequence is\n circular or not\n " AbstractDrawer.__init__(self, parent, pagesize, orientation, x, y, xl, xr, yt, yb, start, end, tracklines) self.track_size = track_size if (circular == False): self.sweep = 0.9 else: self.sweep = 1
def set_track_heights(self): ' set_track_heights(self)\n\n Since tracks may not be of identical heights, the bottom and top\n radius for each track is stored in a dictionary - self.track_radii,\n keyed by track number\n ' top_track = max(self.drawn_tracks) trackunit_sum = 0 trackunits = {} heightholder = 0 for track in range(1, (top_track + 1)): try: trackheight = self._parent[track].height except: trackheight = 1 trackunit_sum += trackheight trackunits[track] = (heightholder, (heightholder + trackheight)) heightholder += trackheight trackunit_height = ((0.5 * min(self.pagewidth, self.pageheight)) / trackunit_sum) self.track_radii = {} track_crop = ((trackunit_height * (1 - self.track_size)) / 2.0) for track in trackunits: top = ((trackunits[track][1] * trackunit_height) - track_crop) btm = ((trackunits[track][0] * trackunit_height) + track_crop) ctr = (btm + ((top - btm) / 2.0)) self.track_radii[track] = (btm, ctr, top)
-894,090,286,291,584,300
set_track_heights(self) Since tracks may not be of identical heights, the bottom and top radius for each track is stored in a dictionary - self.track_radii, keyed by track number
bin/last_wrapper/Bio/Graphics/GenomeDiagram/_CircularDrawer.py
set_track_heights
LyonsLab/coge
python
def set_track_heights(self): ' set_track_heights(self)\n\n Since tracks may not be of identical heights, the bottom and top\n radius for each track is stored in a dictionary - self.track_radii,\n keyed by track number\n ' top_track = max(self.drawn_tracks) trackunit_sum = 0 trackunits = {} heightholder = 0 for track in range(1, (top_track + 1)): try: trackheight = self._parent[track].height except: trackheight = 1 trackunit_sum += trackheight trackunits[track] = (heightholder, (heightholder + trackheight)) heightholder += trackheight trackunit_height = ((0.5 * min(self.pagewidth, self.pageheight)) / trackunit_sum) self.track_radii = {} track_crop = ((trackunit_height * (1 - self.track_size)) / 2.0) for track in trackunits: top = ((trackunits[track][1] * trackunit_height) - track_crop) btm = ((trackunits[track][0] * trackunit_height) + track_crop) ctr = (btm + ((top - btm) / 2.0)) self.track_radii[track] = (btm, ctr, top)
def draw(self): ' draw(self)\n\n Draw a circular diagram of the stored data\n ' self.drawing = Drawing(self.pagesize[0], self.pagesize[1]) feature_elements = [] feature_labels = [] greytrack_bgs = [] greytrack_labels = [] scale_axes = [] scale_labels = [] self.drawn_tracks = self._parent.get_drawn_levels() self.set_track_heights() for track_level in self._parent.get_drawn_levels(): self.current_track_level = track_level track = self._parent[track_level] (gbgs, glabels) = self.draw_greytrack(track) greytrack_bgs.append(gbgs) greytrack_labels.append(glabels) (features, flabels) = self.draw_track(track) feature_elements.append(features) feature_labels.append(flabels) if track.scale: (axes, slabels) = self.draw_scale(track) scale_axes.append(axes) scale_labels.append(slabels) element_groups = [greytrack_bgs, feature_elements, scale_axes, scale_labels, feature_labels, greytrack_labels] for element_group in element_groups: for element_list in element_group: [self.drawing.add(element) for element in element_list] if self.tracklines: self.draw_test_tracks()
-7,497,354,379,445,910,000
draw(self) Draw a circular diagram of the stored data
bin/last_wrapper/Bio/Graphics/GenomeDiagram/_CircularDrawer.py
draw
LyonsLab/coge
python
def draw(self): ' draw(self)\n\n Draw a circular diagram of the stored data\n ' self.drawing = Drawing(self.pagesize[0], self.pagesize[1]) feature_elements = [] feature_labels = [] greytrack_bgs = [] greytrack_labels = [] scale_axes = [] scale_labels = [] self.drawn_tracks = self._parent.get_drawn_levels() self.set_track_heights() for track_level in self._parent.get_drawn_levels(): self.current_track_level = track_level track = self._parent[track_level] (gbgs, glabels) = self.draw_greytrack(track) greytrack_bgs.append(gbgs) greytrack_labels.append(glabels) (features, flabels) = self.draw_track(track) feature_elements.append(features) feature_labels.append(flabels) if track.scale: (axes, slabels) = self.draw_scale(track) scale_axes.append(axes) scale_labels.append(slabels) element_groups = [greytrack_bgs, feature_elements, scale_axes, scale_labels, feature_labels, greytrack_labels] for element_group in element_groups: for element_list in element_group: [self.drawing.add(element) for element in element_list] if self.tracklines: self.draw_test_tracks()
def draw_track(self, track): ' draw_track(self, track) -> ([element, element,...], [element, element,...])\n\n o track Track object\n\n Return tuple of (list of track elements, list of track labels) \n ' track_elements = [] track_labels = [] set_methods = {FeatureSet: self.draw_feature_set, GraphSet: self.draw_graph_set} for set in track.get_sets(): (elements, labels) = set_methods[set.__class__](set) track_elements += elements track_labels += labels return (track_elements, track_labels)
4,402,995,958,333,717,500
draw_track(self, track) -> ([element, element,...], [element, element,...]) o track Track object Return tuple of (list of track elements, list of track labels)
bin/last_wrapper/Bio/Graphics/GenomeDiagram/_CircularDrawer.py
draw_track
LyonsLab/coge
python
def draw_track(self, track): ' draw_track(self, track) -> ([element, element,...], [element, element,...])\n\n o track Track object\n\n Return tuple of (list of track elements, list of track labels) \n ' track_elements = [] track_labels = [] set_methods = {FeatureSet: self.draw_feature_set, GraphSet: self.draw_graph_set} for set in track.get_sets(): (elements, labels) = set_methods[set.__class__](set) track_elements += elements track_labels += labels return (track_elements, track_labels)
def draw_feature_set(self, set): ' draw_feature_set(self, set) -> ([element, element,...], [element, element,...])\n\n o set FeatureSet object\n\n Returns a tuple (list of elements describing features, list of\n labels for elements)\n ' feature_elements = [] label_elements = [] for feature in set.get_features(): if (self.is_in_bounds(feature.start) or self.is_in_bounds(feature.end)): (features, labels) = self.draw_feature(feature) feature_elements += features label_elements += labels return (feature_elements, label_elements)
6,090,080,020,066,561,000
draw_feature_set(self, set) -> ([element, element,...], [element, element,...]) o set FeatureSet object Returns a tuple (list of elements describing features, list of labels for elements)
bin/last_wrapper/Bio/Graphics/GenomeDiagram/_CircularDrawer.py
draw_feature_set
LyonsLab/coge
python
def draw_feature_set(self, set): ' draw_feature_set(self, set) -> ([element, element,...], [element, element,...])\n\n o set FeatureSet object\n\n Returns a tuple (list of elements describing features, list of\n labels for elements)\n ' feature_elements = [] label_elements = [] for feature in set.get_features(): if (self.is_in_bounds(feature.start) or self.is_in_bounds(feature.end)): (features, labels) = self.draw_feature(feature) feature_elements += features label_elements += labels return (feature_elements, label_elements)
def draw_feature(self, feature): ' draw_feature(self, feature, parent_feature=None) -> ([element, element,...], [element, element,...])\n\n o feature Feature containing location info\n\n Returns tuple of (list of elements describing single feature, list\n of labels for those elements)\n ' feature_elements = [] label_elements = [] if feature.hide: return (feature_elements, label_elements) for (locstart, locend) in feature.locations: (feature_sigil, label) = self.get_feature_sigil(feature, locstart, locend) feature_elements.append(feature_sigil) if (label is not None): label_elements.append(label) return (feature_elements, label_elements)
2,990,649,715,615,632,000
draw_feature(self, feature, parent_feature=None) -> ([element, element,...], [element, element,...]) o feature Feature containing location info Returns tuple of (list of elements describing single feature, list of labels for those elements)
bin/last_wrapper/Bio/Graphics/GenomeDiagram/_CircularDrawer.py
draw_feature
LyonsLab/coge
python
def draw_feature(self, feature): ' draw_feature(self, feature, parent_feature=None) -> ([element, element,...], [element, element,...])\n\n o feature Feature containing location info\n\n Returns tuple of (list of elements describing single feature, list\n of labels for those elements)\n ' feature_elements = [] label_elements = [] if feature.hide: return (feature_elements, label_elements) for (locstart, locend) in feature.locations: (feature_sigil, label) = self.get_feature_sigil(feature, locstart, locend) feature_elements.append(feature_sigil) if (label is not None): label_elements.append(label) return (feature_elements, label_elements)
def get_feature_sigil(self, feature, locstart, locend, **kwargs): ' get_feature_sigil(self, feature, x0, x1, fragment) -> (element, element)\n\n o feature Feature object\n\n o locstart The start position of the feature\n\n o locend The end position of the feature\n\n Returns a drawable indicator of the feature, and any required label\n for it\n ' (btm, ctr, top) = self.track_radii[self.current_track_level] (startangle, startcos, startsin) = self.canvas_angle(locstart) (endangle, endcos, endsin) = self.canvas_angle(locend) (midangle, midcos, midsin) = self.canvas_angle((float((locend + locstart)) / 2)) draw_methods = {'BOX': self._draw_arc, 'ARROW': self._draw_arc_arrow} method = draw_methods[feature.sigil] kwargs['head_length_ratio'] = feature.arrowhead_length kwargs['shaft_height_ratio'] = feature.arrowshaft_height if hasattr(feature, 'url'): kwargs['hrefURL'] = feature.url kwargs['hrefTitle'] = feature.name if (feature.color == colors.white): border = colors.black else: border = feature.color if (feature.strand == 1): sigil = method(ctr, top, startangle, endangle, feature.color, border, orientation='right', **kwargs) elif (feature.strand == (- 1)): sigil = method(btm, ctr, startangle, endangle, feature.color, border, orientation='left', **kwargs) else: sigil = method(btm, top, startangle, endangle, feature.color, border, **kwargs) if feature.label: label = String(0, 0, feature.name.strip(), fontName=feature.label_font, fontSize=feature.label_size, fillColor=feature.label_color) labelgroup = Group(label) label_angle = (startangle + (0.5 * pi)) (sinval, cosval) = (startsin, startcos) if (feature.strand != (- 1)): if (startangle < pi): (sinval, cosval) = (endsin, endcos) label_angle = (endangle - (0.5 * pi)) labelgroup.contents[0].textAnchor = 'end' pos = (self.xcenter + (top * sinval)) coslabel = cos(label_angle) sinlabel = sin(label_angle) labelgroup.transform = (coslabel, (- sinlabel), sinlabel, coslabel, pos, (self.ycenter + (top * cosval))) else: if (startangle < pi): (sinval, cosval) = (endsin, endcos) label_angle = (endangle - (0.5 * pi)) else: labelgroup.contents[0].textAnchor = 'end' pos = (self.xcenter + (btm * sinval)) coslabel = cos(label_angle) sinlabel = sin(label_angle) labelgroup.transform = (coslabel, (- sinlabel), sinlabel, coslabel, pos, (self.ycenter + (btm * cosval))) else: labelgroup = None return (sigil, labelgroup)
-4,611,603,714,295,767,600
get_feature_sigil(self, feature, x0, x1, fragment) -> (element, element) o feature Feature object o locstart The start position of the feature o locend The end position of the feature Returns a drawable indicator of the feature, and any required label for it
bin/last_wrapper/Bio/Graphics/GenomeDiagram/_CircularDrawer.py
get_feature_sigil
LyonsLab/coge
python
def get_feature_sigil(self, feature, locstart, locend, **kwargs): ' get_feature_sigil(self, feature, x0, x1, fragment) -> (element, element)\n\n o feature Feature object\n\n o locstart The start position of the feature\n\n o locend The end position of the feature\n\n Returns a drawable indicator of the feature, and any required label\n for it\n ' (btm, ctr, top) = self.track_radii[self.current_track_level] (startangle, startcos, startsin) = self.canvas_angle(locstart) (endangle, endcos, endsin) = self.canvas_angle(locend) (midangle, midcos, midsin) = self.canvas_angle((float((locend + locstart)) / 2)) draw_methods = {'BOX': self._draw_arc, 'ARROW': self._draw_arc_arrow} method = draw_methods[feature.sigil] kwargs['head_length_ratio'] = feature.arrowhead_length kwargs['shaft_height_ratio'] = feature.arrowshaft_height if hasattr(feature, 'url'): kwargs['hrefURL'] = feature.url kwargs['hrefTitle'] = feature.name if (feature.color == colors.white): border = colors.black else: border = feature.color if (feature.strand == 1): sigil = method(ctr, top, startangle, endangle, feature.color, border, orientation='right', **kwargs) elif (feature.strand == (- 1)): sigil = method(btm, ctr, startangle, endangle, feature.color, border, orientation='left', **kwargs) else: sigil = method(btm, top, startangle, endangle, feature.color, border, **kwargs) if feature.label: label = String(0, 0, feature.name.strip(), fontName=feature.label_font, fontSize=feature.label_size, fillColor=feature.label_color) labelgroup = Group(label) label_angle = (startangle + (0.5 * pi)) (sinval, cosval) = (startsin, startcos) if (feature.strand != (- 1)): if (startangle < pi): (sinval, cosval) = (endsin, endcos) label_angle = (endangle - (0.5 * pi)) labelgroup.contents[0].textAnchor = 'end' pos = (self.xcenter + (top * sinval)) coslabel = cos(label_angle) sinlabel = sin(label_angle) labelgroup.transform = (coslabel, (- sinlabel), sinlabel, coslabel, pos, (self.ycenter + (top * cosval))) else: if (startangle < pi): (sinval, cosval) = (endsin, endcos) label_angle = (endangle - (0.5 * pi)) else: labelgroup.contents[0].textAnchor = 'end' pos = (self.xcenter + (btm * sinval)) coslabel = cos(label_angle) sinlabel = sin(label_angle) labelgroup.transform = (coslabel, (- sinlabel), sinlabel, coslabel, pos, (self.ycenter + (btm * cosval))) else: labelgroup = None return (sigil, labelgroup)
def draw_graph_set(self, set): ' draw_graph_set(self, set) -> ([element, element,...], [element, element,...])\n \n o set GraphSet object\n\n Returns tuple (list of graph elements, list of graph labels)\n ' elements = [] style_methods = {'line': self.draw_line_graph, 'heat': self.draw_heat_graph, 'bar': self.draw_bar_graph} for graph in set.get_graphs(): elements += style_methods[graph.style](graph) return (elements, [])
4,303,515,553,062,250,000
draw_graph_set(self, set) -> ([element, element,...], [element, element,...]) o set GraphSet object Returns tuple (list of graph elements, list of graph labels)
bin/last_wrapper/Bio/Graphics/GenomeDiagram/_CircularDrawer.py
draw_graph_set
LyonsLab/coge
python
def draw_graph_set(self, set): ' draw_graph_set(self, set) -> ([element, element,...], [element, element,...])\n \n o set GraphSet object\n\n Returns tuple (list of graph elements, list of graph labels)\n ' elements = [] style_methods = {'line': self.draw_line_graph, 'heat': self.draw_heat_graph, 'bar': self.draw_bar_graph} for graph in set.get_graphs(): elements += style_methods[graph.style](graph) return (elements, [])
def draw_line_graph(self, graph): ' draw_line_graph(self, graph, center) -> [element, element,...]\n\n o graph GraphData object\n\n Returns a line graph as a list of drawable elements\n ' line_elements = [] data_quartiles = graph.quartiles() (minval, maxval) = (data_quartiles[0], data_quartiles[4]) (btm, ctr, top) = self.track_radii[self.current_track_level] trackheight = (0.5 * (top - btm)) datarange = (maxval - minval) if (datarange == 0): datarange = trackheight data = graph[self.start:self.end] if (graph.center is None): midval = ((maxval + minval) / 2.0) else: midval = graph.center resolution = max((midval - minval), (maxval - midval)) (pos, val) = data[0] (lastangle, lastcos, lastsin) = self.canvas_angle(pos) posheight = (((trackheight * (val - midval)) / resolution) + ctr) lastx = (self.xcenter + (posheight * lastsin)) lasty = (self.ycenter + (posheight * lastcos)) for (pos, val) in data: (posangle, poscos, possin) = self.canvas_angle(pos) posheight = (((trackheight * (val - midval)) / resolution) + ctr) x = (self.xcenter + (posheight * possin)) y = (self.ycenter + (posheight * poscos)) line_elements.append(Line(lastx, lasty, x, y, strokeColor=graph.poscolor, strokeWidth=graph.linewidth)) (lastx, lasty) = (x, y) return line_elements
-6,926,512,762,448,647,000
draw_line_graph(self, graph, center) -> [element, element,...] o graph GraphData object Returns a line graph as a list of drawable elements
bin/last_wrapper/Bio/Graphics/GenomeDiagram/_CircularDrawer.py
draw_line_graph
LyonsLab/coge
python
def draw_line_graph(self, graph): ' draw_line_graph(self, graph, center) -> [element, element,...]\n\n o graph GraphData object\n\n Returns a line graph as a list of drawable elements\n ' line_elements = [] data_quartiles = graph.quartiles() (minval, maxval) = (data_quartiles[0], data_quartiles[4]) (btm, ctr, top) = self.track_radii[self.current_track_level] trackheight = (0.5 * (top - btm)) datarange = (maxval - minval) if (datarange == 0): datarange = trackheight data = graph[self.start:self.end] if (graph.center is None): midval = ((maxval + minval) / 2.0) else: midval = graph.center resolution = max((midval - minval), (maxval - midval)) (pos, val) = data[0] (lastangle, lastcos, lastsin) = self.canvas_angle(pos) posheight = (((trackheight * (val - midval)) / resolution) + ctr) lastx = (self.xcenter + (posheight * lastsin)) lasty = (self.ycenter + (posheight * lastcos)) for (pos, val) in data: (posangle, poscos, possin) = self.canvas_angle(pos) posheight = (((trackheight * (val - midval)) / resolution) + ctr) x = (self.xcenter + (posheight * possin)) y = (self.ycenter + (posheight * poscos)) line_elements.append(Line(lastx, lasty, x, y, strokeColor=graph.poscolor, strokeWidth=graph.linewidth)) (lastx, lasty) = (x, y) return line_elements
def draw_bar_graph(self, graph): ' draw_bar_graph(self, graph) -> [element, element,...]\n\n o graph Graph object\n\n Returns a list of drawable elements for a bar graph of the passed\n Graph object\n ' bar_elements = [] data_quartiles = graph.quartiles() (minval, maxval) = (data_quartiles[0], data_quartiles[4]) (btm, ctr, top) = self.track_radii[self.current_track_level] trackheight = (0.5 * (top - btm)) datarange = (maxval - minval) if (datarange == 0): datarange = trackheight data = graph[self.start:self.end] if (graph.center is None): midval = ((maxval + minval) / 2.0) else: midval = graph.center newdata = intermediate_points(self.start, self.end, graph[self.start:self.end]) resolution = max((midval - minval), (maxval - midval)) if (resolution == 0): resolution = trackheight for (pos0, pos1, val) in newdata: (pos0angle, pos0cos, pos0sin) = self.canvas_angle(pos0) (pos1angle, pos1cos, pos1sin) = self.canvas_angle(pos1) barval = ((trackheight * (val - midval)) / resolution) if (barval >= 0): barcolor = graph.poscolor else: barcolor = graph.negcolor bar_elements.append(self._draw_arc(ctr, (ctr + barval), pos0angle, pos1angle, barcolor)) return bar_elements
3,926,647,248,423,015,400
draw_bar_graph(self, graph) -> [element, element,...] o graph Graph object Returns a list of drawable elements for a bar graph of the passed Graph object
bin/last_wrapper/Bio/Graphics/GenomeDiagram/_CircularDrawer.py
draw_bar_graph
LyonsLab/coge
python
def draw_bar_graph(self, graph): ' draw_bar_graph(self, graph) -> [element, element,...]\n\n o graph Graph object\n\n Returns a list of drawable elements for a bar graph of the passed\n Graph object\n ' bar_elements = [] data_quartiles = graph.quartiles() (minval, maxval) = (data_quartiles[0], data_quartiles[4]) (btm, ctr, top) = self.track_radii[self.current_track_level] trackheight = (0.5 * (top - btm)) datarange = (maxval - minval) if (datarange == 0): datarange = trackheight data = graph[self.start:self.end] if (graph.center is None): midval = ((maxval + minval) / 2.0) else: midval = graph.center newdata = intermediate_points(self.start, self.end, graph[self.start:self.end]) resolution = max((midval - minval), (maxval - midval)) if (resolution == 0): resolution = trackheight for (pos0, pos1, val) in newdata: (pos0angle, pos0cos, pos0sin) = self.canvas_angle(pos0) (pos1angle, pos1cos, pos1sin) = self.canvas_angle(pos1) barval = ((trackheight * (val - midval)) / resolution) if (barval >= 0): barcolor = graph.poscolor else: barcolor = graph.negcolor bar_elements.append(self._draw_arc(ctr, (ctr + barval), pos0angle, pos1angle, barcolor)) return bar_elements
def draw_heat_graph(self, graph): ' draw_heat_graph(self, graph) -> [element, element,...]\n\n o graph Graph object\n\n Returns a list of drawable elements for the heat graph\n ' heat_elements = [] data_quartiles = graph.quartiles() (minval, maxval) = (data_quartiles[0], data_quartiles[4]) midval = ((maxval + minval) / 2.0) (btm, ctr, top) = self.track_radii[self.current_track_level] trackheight = (top - btm) newdata = intermediate_points(self.start, self.end, graph[self.start:self.end]) for (pos0, pos1, val) in newdata: (pos0angle, pos0cos, pos0sin) = self.canvas_angle(pos0) (pos1angle, pos1cos, pos1sin) = self.canvas_angle(pos1) heat = colors.linearlyInterpolatedColor(graph.poscolor, graph.negcolor, maxval, minval, val) heat_elements.append(self._draw_arc(btm, top, pos0angle, pos1angle, heat, border=heat)) return heat_elements
-4,502,195,446,420,181,500
draw_heat_graph(self, graph) -> [element, element,...] o graph Graph object Returns a list of drawable elements for the heat graph
bin/last_wrapper/Bio/Graphics/GenomeDiagram/_CircularDrawer.py
draw_heat_graph
LyonsLab/coge
python
def draw_heat_graph(self, graph): ' draw_heat_graph(self, graph) -> [element, element,...]\n\n o graph Graph object\n\n Returns a list of drawable elements for the heat graph\n ' heat_elements = [] data_quartiles = graph.quartiles() (minval, maxval) = (data_quartiles[0], data_quartiles[4]) midval = ((maxval + minval) / 2.0) (btm, ctr, top) = self.track_radii[self.current_track_level] trackheight = (top - btm) newdata = intermediate_points(self.start, self.end, graph[self.start:self.end]) for (pos0, pos1, val) in newdata: (pos0angle, pos0cos, pos0sin) = self.canvas_angle(pos0) (pos1angle, pos1cos, pos1sin) = self.canvas_angle(pos1) heat = colors.linearlyInterpolatedColor(graph.poscolor, graph.negcolor, maxval, minval, val) heat_elements.append(self._draw_arc(btm, top, pos0angle, pos1angle, heat, border=heat)) return heat_elements