body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
def apply_transform(x, transform_matrix, channel_axis=0, fill_mode='nearest', cval=0.0): "Applies the image transformation specified by a matrix.\n\n # Arguments\n x: 2D numpy array, single image.\n transform_matrix: Numpy array specifying the geometric transformation.\n channel_axis: Index of axis for channels in the input tensor.\n fill_mode: Points outside the boundaries of the input\n are filled according to the given mode\n (one of `{'constant', 'nearest', 'reflect', 'wrap'}`).\n cval: Value used for points outside the boundaries\n of the input if `mode='constant'`.\n\n # Returns\n The transformed version of the input.\n " x = np.rollaxis(x, channel_axis, 0) final_affine_matrix = transform_matrix[:2, :2] final_offset = transform_matrix[:2, 2] channel_images = [ndi.interpolation.affine_transform(x_channel, final_affine_matrix, final_offset, order=1, mode=fill_mode, cval=cval) for x_channel in x] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, (channel_axis + 1)) return x
-4,162,282,333,979,550,000
Applies the image transformation specified by a matrix. # Arguments x: 2D numpy array, single image. transform_matrix: Numpy array specifying the geometric transformation. channel_axis: Index of axis for channels in the input tensor. fill_mode: Points outside the boundaries of the input are filled according to the given mode (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). cval: Value used for points outside the boundaries of the input if `mode='constant'`. # Returns The transformed version of the input.
keras/preprocessing/image.py
apply_transform
HangJie720/keras
python
def apply_transform(x, transform_matrix, channel_axis=0, fill_mode='nearest', cval=0.0): "Applies the image transformation specified by a matrix.\n\n # Arguments\n x: 2D numpy array, single image.\n transform_matrix: Numpy array specifying the geometric transformation.\n channel_axis: Index of axis for channels in the input tensor.\n fill_mode: Points outside the boundaries of the input\n are filled according to the given mode\n (one of `{'constant', 'nearest', 'reflect', 'wrap'}`).\n cval: Value used for points outside the boundaries\n of the input if `mode='constant'`.\n\n # Returns\n The transformed version of the input.\n " x = np.rollaxis(x, channel_axis, 0) final_affine_matrix = transform_matrix[:2, :2] final_offset = transform_matrix[:2, 2] channel_images = [ndi.interpolation.affine_transform(x_channel, final_affine_matrix, final_offset, order=1, mode=fill_mode, cval=cval) for x_channel in x] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, (channel_axis + 1)) return x
def array_to_img(x, data_format=None, scale=True): 'Converts a 3D Numpy array to a PIL Image instance.\n\n # Arguments\n x: Input Numpy array.\n data_format: Image data format.\n either "channels_first" or "channels_last".\n scale: Whether to rescale image values\n to be within `[0, 255]`.\n\n # Returns\n A PIL Image instance.\n\n # Raises\n ImportError: if PIL is not available.\n ValueError: if invalid `x` or `data_format` is passed.\n ' if (pil_image is None): raise ImportError('Could not import PIL.Image. The use of `array_to_img` requires PIL.') x = np.asarray(x, dtype=K.floatx()) if (x.ndim != 3): raise ValueError('Expected image array to have rank 3 (single image). Got array with shape:', x.shape) if (data_format is None): data_format = K.image_data_format() if (data_format not in {'channels_first', 'channels_last'}): raise ValueError('Invalid data_format:', data_format) if (data_format == 'channels_first'): x = x.transpose(1, 2, 0) if scale: x = (x + max((- np.min(x)), 0)) x_max = np.max(x) if (x_max != 0): x /= x_max x *= 255 if (x.shape[2] == 3): return pil_image.fromarray(x.astype('uint8'), 'RGB') elif (x.shape[2] == 1): return pil_image.fromarray(x[:, :, 0].astype('uint8'), 'L') else: raise ValueError('Unsupported channel number: ', x.shape[2])
3,415,023,904,854,424,000
Converts a 3D Numpy array to a PIL Image instance. # Arguments x: Input Numpy array. data_format: Image data format. either "channels_first" or "channels_last". scale: Whether to rescale image values to be within `[0, 255]`. # Returns A PIL Image instance. # Raises ImportError: if PIL is not available. ValueError: if invalid `x` or `data_format` is passed.
keras/preprocessing/image.py
array_to_img
HangJie720/keras
python
def array_to_img(x, data_format=None, scale=True): 'Converts a 3D Numpy array to a PIL Image instance.\n\n # Arguments\n x: Input Numpy array.\n data_format: Image data format.\n either "channels_first" or "channels_last".\n scale: Whether to rescale image values\n to be within `[0, 255]`.\n\n # Returns\n A PIL Image instance.\n\n # Raises\n ImportError: if PIL is not available.\n ValueError: if invalid `x` or `data_format` is passed.\n ' if (pil_image is None): raise ImportError('Could not import PIL.Image. The use of `array_to_img` requires PIL.') x = np.asarray(x, dtype=K.floatx()) if (x.ndim != 3): raise ValueError('Expected image array to have rank 3 (single image). Got array with shape:', x.shape) if (data_format is None): data_format = K.image_data_format() if (data_format not in {'channels_first', 'channels_last'}): raise ValueError('Invalid data_format:', data_format) if (data_format == 'channels_first'): x = x.transpose(1, 2, 0) if scale: x = (x + max((- np.min(x)), 0)) x_max = np.max(x) if (x_max != 0): x /= x_max x *= 255 if (x.shape[2] == 3): return pil_image.fromarray(x.astype('uint8'), 'RGB') elif (x.shape[2] == 1): return pil_image.fromarray(x[:, :, 0].astype('uint8'), 'L') else: raise ValueError('Unsupported channel number: ', x.shape[2])
def img_to_array(img, data_format=None): 'Converts a PIL Image instance to a Numpy array.\n\n # Arguments\n img: PIL Image instance.\n data_format: Image data format,\n either "channels_first" or "channels_last".\n\n # Returns\n A 3D Numpy array.\n\n # Raises\n ValueError: if invalid `img` or `data_format` is passed.\n ' if (data_format is None): data_format = K.image_data_format() if (data_format not in {'channels_first', 'channels_last'}): raise ValueError('Unknown data_format: ', data_format) x = np.asarray(img, dtype=K.floatx()) if (len(x.shape) == 3): if (data_format == 'channels_first'): x = x.transpose(2, 0, 1) elif (len(x.shape) == 2): if (data_format == 'channels_first'): x = x.reshape((1, x.shape[0], x.shape[1])) else: x = x.reshape((x.shape[0], x.shape[1], 1)) else: raise ValueError('Unsupported image shape: ', x.shape) return x
553,028,858,712,164,860
Converts a PIL Image instance to a Numpy array. # Arguments img: PIL Image instance. data_format: Image data format, either "channels_first" or "channels_last". # Returns A 3D Numpy array. # Raises ValueError: if invalid `img` or `data_format` is passed.
keras/preprocessing/image.py
img_to_array
HangJie720/keras
python
def img_to_array(img, data_format=None): 'Converts a PIL Image instance to a Numpy array.\n\n # Arguments\n img: PIL Image instance.\n data_format: Image data format,\n either "channels_first" or "channels_last".\n\n # Returns\n A 3D Numpy array.\n\n # Raises\n ValueError: if invalid `img` or `data_format` is passed.\n ' if (data_format is None): data_format = K.image_data_format() if (data_format not in {'channels_first', 'channels_last'}): raise ValueError('Unknown data_format: ', data_format) x = np.asarray(img, dtype=K.floatx()) if (len(x.shape) == 3): if (data_format == 'channels_first'): x = x.transpose(2, 0, 1) elif (len(x.shape) == 2): if (data_format == 'channels_first'): x = x.reshape((1, x.shape[0], x.shape[1])) else: x = x.reshape((x.shape[0], x.shape[1], 1)) else: raise ValueError('Unsupported image shape: ', x.shape) return x
def save_img(path, x, data_format=None, file_format=None, scale=True, **kwargs): 'Saves an image stored as a Numpy array to a path or file object.\n\n # Arguments\n path: Path or file object.\n x: Numpy array.\n data_format: Image data format,\n either "channels_first" or "channels_last".\n file_format: Optional file format override. If omitted, the\n format to use is determined from the filename extension.\n If a file object was used instead of a filename, this\n parameter should always be used.\n scale: Whether to rescale image values to be within `[0, 255]`.\n **kwargs: Additional keyword arguments passed to `PIL.Image.save()`.\n ' img = array_to_img(x, data_format=data_format, scale=scale) img.save(path, format=file_format, **kwargs)
-4,915,116,415,993,890,000
Saves an image stored as a Numpy array to a path or file object. # Arguments path: Path or file object. x: Numpy array. data_format: Image data format, either "channels_first" or "channels_last". file_format: Optional file format override. If omitted, the format to use is determined from the filename extension. If a file object was used instead of a filename, this parameter should always be used. scale: Whether to rescale image values to be within `[0, 255]`. **kwargs: Additional keyword arguments passed to `PIL.Image.save()`.
keras/preprocessing/image.py
save_img
HangJie720/keras
python
def save_img(path, x, data_format=None, file_format=None, scale=True, **kwargs): 'Saves an image stored as a Numpy array to a path or file object.\n\n # Arguments\n path: Path or file object.\n x: Numpy array.\n data_format: Image data format,\n either "channels_first" or "channels_last".\n file_format: Optional file format override. If omitted, the\n format to use is determined from the filename extension.\n If a file object was used instead of a filename, this\n parameter should always be used.\n scale: Whether to rescale image values to be within `[0, 255]`.\n **kwargs: Additional keyword arguments passed to `PIL.Image.save()`.\n ' img = array_to_img(x, data_format=data_format, scale=scale) img.save(path, format=file_format, **kwargs)
def load_img(path, grayscale=False, target_size=None, interpolation='nearest'): 'Loads an image into PIL format.\n\n # Arguments\n path: Path to image file.\n grayscale: Boolean, whether to load the image as grayscale.\n target_size: Either `None` (default to original size)\n or tuple of ints `(img_height, img_width)`.\n interpolation: Interpolation method used to resample the image if the\n target size is different from that of the loaded image.\n Supported methods are "nearest", "bilinear", and "bicubic".\n If PIL version 1.1.3 or newer is installed, "lanczos" is also\n supported. If PIL version 3.4.0 or newer is installed, "box" and\n "hamming" are also supported. By default, "nearest" is used.\n\n # Returns\n A PIL Image instance.\n\n # Raises\n ImportError: if PIL is not available.\n ValueError: if interpolation method is not supported.\n ' if (pil_image is None): raise ImportError('Could not import PIL.Image. The use of `array_to_img` requires PIL.') img = pil_image.open(path) if grayscale: if (img.mode != 'L'): img = img.convert('L') elif (img.mode != 'RGB'): img = img.convert('RGB') if (target_size is not None): width_height_tuple = (target_size[1], target_size[0]) if (img.size != width_height_tuple): if (interpolation not in _PIL_INTERPOLATION_METHODS): raise ValueError('Invalid interpolation method {} specified. Supported methods are {}'.format(interpolation, ', '.join(_PIL_INTERPOLATION_METHODS.keys()))) resample = _PIL_INTERPOLATION_METHODS[interpolation] img = img.resize(width_height_tuple, resample) return img
-3,354,841,818,060,038,700
Loads an image into PIL format. # Arguments path: Path to image file. grayscale: Boolean, whether to load the image as grayscale. target_size: Either `None` (default to original size) or tuple of ints `(img_height, img_width)`. interpolation: Interpolation method used to resample the image if the target size is different from that of the loaded image. Supported methods are "nearest", "bilinear", and "bicubic". If PIL version 1.1.3 or newer is installed, "lanczos" is also supported. If PIL version 3.4.0 or newer is installed, "box" and "hamming" are also supported. By default, "nearest" is used. # Returns A PIL Image instance. # Raises ImportError: if PIL is not available. ValueError: if interpolation method is not supported.
keras/preprocessing/image.py
load_img
HangJie720/keras
python
def load_img(path, grayscale=False, target_size=None, interpolation='nearest'): 'Loads an image into PIL format.\n\n # Arguments\n path: Path to image file.\n grayscale: Boolean, whether to load the image as grayscale.\n target_size: Either `None` (default to original size)\n or tuple of ints `(img_height, img_width)`.\n interpolation: Interpolation method used to resample the image if the\n target size is different from that of the loaded image.\n Supported methods are "nearest", "bilinear", and "bicubic".\n If PIL version 1.1.3 or newer is installed, "lanczos" is also\n supported. If PIL version 3.4.0 or newer is installed, "box" and\n "hamming" are also supported. By default, "nearest" is used.\n\n # Returns\n A PIL Image instance.\n\n # Raises\n ImportError: if PIL is not available.\n ValueError: if interpolation method is not supported.\n ' if (pil_image is None): raise ImportError('Could not import PIL.Image. The use of `array_to_img` requires PIL.') img = pil_image.open(path) if grayscale: if (img.mode != 'L'): img = img.convert('L') elif (img.mode != 'RGB'): img = img.convert('RGB') if (target_size is not None): width_height_tuple = (target_size[1], target_size[0]) if (img.size != width_height_tuple): if (interpolation not in _PIL_INTERPOLATION_METHODS): raise ValueError('Invalid interpolation method {} specified. Supported methods are {}'.format(interpolation, ', '.join(_PIL_INTERPOLATION_METHODS.keys()))) resample = _PIL_INTERPOLATION_METHODS[interpolation] img = img.resize(width_height_tuple, resample) return img
def _iter_valid_files(directory, white_list_formats, follow_links): 'Iterates on files with extension in `white_list_formats` contained in `directory`.\n\n # Arguments\n directory: Absolute path to the directory\n containing files to be counted\n white_list_formats: Set of strings containing allowed extensions for\n the files to be counted.\n follow_links: Boolean.\n\n # Yields\n Tuple of (root, filename) with extension in `white_list_formats`.\n ' def _recursive_list(subpath): return sorted(os.walk(subpath, followlinks=follow_links), key=(lambda x: x[0])) for (root, _, files) in _recursive_list(directory): for fname in sorted(files): for extension in white_list_formats: if fname.lower().endswith('.tiff'): warnings.warn("Using '.tiff' files with multiple bands will cause distortion. Please verify your output.") if fname.lower().endswith(('.' + extension)): (yield (root, fname))
2,464,239,369,516,098,000
Iterates on files with extension in `white_list_formats` contained in `directory`. # Arguments directory: Absolute path to the directory containing files to be counted white_list_formats: Set of strings containing allowed extensions for the files to be counted. follow_links: Boolean. # Yields Tuple of (root, filename) with extension in `white_list_formats`.
keras/preprocessing/image.py
_iter_valid_files
HangJie720/keras
python
def _iter_valid_files(directory, white_list_formats, follow_links): 'Iterates on files with extension in `white_list_formats` contained in `directory`.\n\n # Arguments\n directory: Absolute path to the directory\n containing files to be counted\n white_list_formats: Set of strings containing allowed extensions for\n the files to be counted.\n follow_links: Boolean.\n\n # Yields\n Tuple of (root, filename) with extension in `white_list_formats`.\n ' def _recursive_list(subpath): return sorted(os.walk(subpath, followlinks=follow_links), key=(lambda x: x[0])) for (root, _, files) in _recursive_list(directory): for fname in sorted(files): for extension in white_list_formats: if fname.lower().endswith('.tiff'): warnings.warn("Using '.tiff' files with multiple bands will cause distortion. Please verify your output.") if fname.lower().endswith(('.' + extension)): (yield (root, fname))
def _count_valid_files_in_directory(directory, white_list_formats, split, follow_links): 'Counts files with extension in `white_list_formats` contained in `directory`.\n\n # Arguments\n directory: absolute path to the directory\n containing files to be counted\n white_list_formats: set of strings containing allowed extensions for\n the files to be counted.\n split: tuple of floats (e.g. `(0.2, 0.6)`) to only take into\n account a certain fraction of files in each directory.\n E.g.: `segment=(0.6, 1.0)` would only account for last 40 percent\n of images in each directory.\n follow_links: boolean.\n\n # Returns\n the count of files with extension in `white_list_formats` contained in\n the directory.\n ' num_files = len(list(_iter_valid_files(directory, white_list_formats, follow_links))) if split: (start, stop) = (int((split[0] * num_files)), int((split[1] * num_files))) else: (start, stop) = (0, num_files) return (stop - start)
6,417,385,685,608,633,000
Counts files with extension in `white_list_formats` contained in `directory`. # Arguments directory: absolute path to the directory containing files to be counted white_list_formats: set of strings containing allowed extensions for the files to be counted. split: tuple of floats (e.g. `(0.2, 0.6)`) to only take into account a certain fraction of files in each directory. E.g.: `segment=(0.6, 1.0)` would only account for last 40 percent of images in each directory. follow_links: boolean. # Returns the count of files with extension in `white_list_formats` contained in the directory.
keras/preprocessing/image.py
_count_valid_files_in_directory
HangJie720/keras
python
def _count_valid_files_in_directory(directory, white_list_formats, split, follow_links): 'Counts files with extension in `white_list_formats` contained in `directory`.\n\n # Arguments\n directory: absolute path to the directory\n containing files to be counted\n white_list_formats: set of strings containing allowed extensions for\n the files to be counted.\n split: tuple of floats (e.g. `(0.2, 0.6)`) to only take into\n account a certain fraction of files in each directory.\n E.g.: `segment=(0.6, 1.0)` would only account for last 40 percent\n of images in each directory.\n follow_links: boolean.\n\n # Returns\n the count of files with extension in `white_list_formats` contained in\n the directory.\n ' num_files = len(list(_iter_valid_files(directory, white_list_formats, follow_links))) if split: (start, stop) = (int((split[0] * num_files)), int((split[1] * num_files))) else: (start, stop) = (0, num_files) return (stop - start)
def _list_valid_filenames_in_directory(directory, white_list_formats, split, class_indices, follow_links): 'Lists paths of files in `subdir` with extensions in `white_list_formats`.\n\n # Arguments\n directory: absolute path to a directory containing the files to list.\n The directory name is used as class label\n and must be a key of `class_indices`.\n white_list_formats: set of strings containing allowed extensions for\n the files to be counted.\n split: tuple of floats (e.g. `(0.2, 0.6)`) to only take into\n account a certain fraction of files in each directory.\n E.g.: `segment=(0.6, 1.0)` would only account for last 40 percent\n of images in each directory.\n class_indices: dictionary mapping a class name to its index.\n follow_links: boolean.\n\n # Returns\n classes: a list of class indices\n filenames: the path of valid files in `directory`, relative from\n `directory`\'s parent (e.g., if `directory` is "dataset/class1",\n the filenames will be\n `["class1/file1.jpg", "class1/file2.jpg", ...]`).\n ' dirname = os.path.basename(directory) if split: num_files = len(list(_iter_valid_files(directory, white_list_formats, follow_links))) (start, stop) = (int((split[0] * num_files)), int((split[1] * num_files))) valid_files = list(_iter_valid_files(directory, white_list_formats, follow_links))[start:stop] else: valid_files = _iter_valid_files(directory, white_list_formats, follow_links) classes = [] filenames = [] for (root, fname) in valid_files: classes.append(class_indices[dirname]) absolute_path = os.path.join(root, fname) relative_path = os.path.join(dirname, os.path.relpath(absolute_path, directory)) filenames.append(relative_path) return (classes, filenames)
-1,473,300,423,495,430,400
Lists paths of files in `subdir` with extensions in `white_list_formats`. # Arguments directory: absolute path to a directory containing the files to list. The directory name is used as class label and must be a key of `class_indices`. white_list_formats: set of strings containing allowed extensions for the files to be counted. split: tuple of floats (e.g. `(0.2, 0.6)`) to only take into account a certain fraction of files in each directory. E.g.: `segment=(0.6, 1.0)` would only account for last 40 percent of images in each directory. class_indices: dictionary mapping a class name to its index. follow_links: boolean. # Returns classes: a list of class indices filenames: the path of valid files in `directory`, relative from `directory`'s parent (e.g., if `directory` is "dataset/class1", the filenames will be `["class1/file1.jpg", "class1/file2.jpg", ...]`).
keras/preprocessing/image.py
_list_valid_filenames_in_directory
HangJie720/keras
python
def _list_valid_filenames_in_directory(directory, white_list_formats, split, class_indices, follow_links): 'Lists paths of files in `subdir` with extensions in `white_list_formats`.\n\n # Arguments\n directory: absolute path to a directory containing the files to list.\n The directory name is used as class label\n and must be a key of `class_indices`.\n white_list_formats: set of strings containing allowed extensions for\n the files to be counted.\n split: tuple of floats (e.g. `(0.2, 0.6)`) to only take into\n account a certain fraction of files in each directory.\n E.g.: `segment=(0.6, 1.0)` would only account for last 40 percent\n of images in each directory.\n class_indices: dictionary mapping a class name to its index.\n follow_links: boolean.\n\n # Returns\n classes: a list of class indices\n filenames: the path of valid files in `directory`, relative from\n `directory`\'s parent (e.g., if `directory` is "dataset/class1",\n the filenames will be\n `["class1/file1.jpg", "class1/file2.jpg", ...]`).\n ' dirname = os.path.basename(directory) if split: num_files = len(list(_iter_valid_files(directory, white_list_formats, follow_links))) (start, stop) = (int((split[0] * num_files)), int((split[1] * num_files))) valid_files = list(_iter_valid_files(directory, white_list_formats, follow_links))[start:stop] else: valid_files = _iter_valid_files(directory, white_list_formats, follow_links) classes = [] filenames = [] for (root, fname) in valid_files: classes.append(class_indices[dirname]) absolute_path = os.path.join(root, fname) relative_path = os.path.join(dirname, os.path.relpath(absolute_path, directory)) filenames.append(relative_path) return (classes, filenames)
def flow(self, x, y=None, batch_size=32, shuffle=True, sample_weight=None, seed=None, save_to_dir=None, save_prefix='', save_format='png', subset=None): 'Takes numpy data & label arrays, and generates batches of augmented data.\n\n # Arguments\n x: Input data. Numpy array of rank 4 or a tuple.\n If tuple, the first element\n should contain the images and the second element\n another numpy array or a list of numpy arrays\n that gets passed to the output\n without any modifications.\n Can be used to feed the model miscellaneous data\n along with the images.\n In case of grayscale data, the channels axis of the image array\n should have value 1, and in case\n of RGB data, it should have value 3.\n y: Labels.\n batch_size: Int (default: 32).\n shuffle: Boolean (default: True).\n sample_weight: Sample weights.\n seed: Int (default: None).\n save_to_dir: None or str (default: None).\n This allows you to optionally specify a directory\n to which to save the augmented pictures being generated\n (useful for visualizing what you are doing).\n save_prefix: Str (default: `\'\'`).\n Prefix to use for filenames of saved pictures\n (only relevant if `save_to_dir` is set).\n save_format: one of "png", "jpeg"\n (only relevant if `save_to_dir` is set). Default: "png".\n subset: Subset of data (`"training"` or `"validation"`) if\n `validation_split` is set in `ImageDataGenerator`.\n\n # Returns\n An `Iterator` yielding tuples of `(x, y)`\n where `x` is a numpy array of image data\n (in the case of a single image input) or a list\n of numpy arrays (in the case with\n additional inputs) and `y` is a numpy array\n of corresponding labels. If \'sample_weight\' is not None,\n the yielded tuples are of the form `(x, y, sample_weight)`.\n If `y` is None, only the numpy array `x` is returned.\n ' return NumpyArrayIterator(x, y, self, batch_size=batch_size, shuffle=shuffle, sample_weight=sample_weight, seed=seed, data_format=self.data_format, save_to_dir=save_to_dir, save_prefix=save_prefix, save_format=save_format, subset=subset)
-2,937,696,480,903,132,700
Takes numpy data & label arrays, and generates batches of augmented data. # Arguments x: Input data. Numpy array of rank 4 or a tuple. If tuple, the first element should contain the images and the second element another numpy array or a list of numpy arrays that gets passed to the output without any modifications. Can be used to feed the model miscellaneous data along with the images. In case of grayscale data, the channels axis of the image array should have value 1, and in case of RGB data, it should have value 3. y: Labels. batch_size: Int (default: 32). shuffle: Boolean (default: True). sample_weight: Sample weights. seed: Int (default: None). save_to_dir: None or str (default: None). This allows you to optionally specify a directory to which to save the augmented pictures being generated (useful for visualizing what you are doing). save_prefix: Str (default: `''`). Prefix to use for filenames of saved pictures (only relevant if `save_to_dir` is set). save_format: one of "png", "jpeg" (only relevant if `save_to_dir` is set). Default: "png". subset: Subset of data (`"training"` or `"validation"`) if `validation_split` is set in `ImageDataGenerator`. # Returns An `Iterator` yielding tuples of `(x, y)` where `x` is a numpy array of image data (in the case of a single image input) or a list of numpy arrays (in the case with additional inputs) and `y` is a numpy array of corresponding labels. If 'sample_weight' is not None, the yielded tuples are of the form `(x, y, sample_weight)`. If `y` is None, only the numpy array `x` is returned.
keras/preprocessing/image.py
flow
HangJie720/keras
python
def flow(self, x, y=None, batch_size=32, shuffle=True, sample_weight=None, seed=None, save_to_dir=None, save_prefix=, save_format='png', subset=None): 'Takes numpy data & label arrays, and generates batches of augmented data.\n\n # Arguments\n x: Input data. Numpy array of rank 4 or a tuple.\n If tuple, the first element\n should contain the images and the second element\n another numpy array or a list of numpy arrays\n that gets passed to the output\n without any modifications.\n Can be used to feed the model miscellaneous data\n along with the images.\n In case of grayscale data, the channels axis of the image array\n should have value 1, and in case\n of RGB data, it should have value 3.\n y: Labels.\n batch_size: Int (default: 32).\n shuffle: Boolean (default: True).\n sample_weight: Sample weights.\n seed: Int (default: None).\n save_to_dir: None or str (default: None).\n This allows you to optionally specify a directory\n to which to save the augmented pictures being generated\n (useful for visualizing what you are doing).\n save_prefix: Str (default: `\'\'`).\n Prefix to use for filenames of saved pictures\n (only relevant if `save_to_dir` is set).\n save_format: one of "png", "jpeg"\n (only relevant if `save_to_dir` is set). Default: "png".\n subset: Subset of data (`"training"` or `"validation"`) if\n `validation_split` is set in `ImageDataGenerator`.\n\n # Returns\n An `Iterator` yielding tuples of `(x, y)`\n where `x` is a numpy array of image data\n (in the case of a single image input) or a list\n of numpy arrays (in the case with\n additional inputs) and `y` is a numpy array\n of corresponding labels. If \'sample_weight\' is not None,\n the yielded tuples are of the form `(x, y, sample_weight)`.\n If `y` is None, only the numpy array `x` is returned.\n ' return NumpyArrayIterator(x, y, self, batch_size=batch_size, shuffle=shuffle, sample_weight=sample_weight, seed=seed, data_format=self.data_format, save_to_dir=save_to_dir, save_prefix=save_prefix, save_format=save_format, subset=subset)
def flow_from_directory(self, directory, target_size=(256, 256), color_mode='rgb', classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_format='png', follow_links=False, subset=None, interpolation='nearest'): 'Takes the path to a directory & generates batches of augmented data.\n\n # Arguments\n directory: Path to the target directory.\n It should contain one subdirectory per class.\n Any PNG, JPG, BMP, PPM or TIF images\n inside each of the subdirectories directory tree\n will be included in the generator.\n See [this script](https://gist.github.com/fchollet/0830affa1f7f19fd47b06d4cf89ed44d)\n for more details.\n target_size: Tuple of integers `(height, width)`,\n default: `(256, 256)`.\n The dimensions to which all images found will be resized.\n color_mode: One of "grayscale", "rbg". Default: "rgb".\n Whether the images will be converted to\n have 1 or 3 color channels.\n classes: Optional list of class subdirectories\n (e.g. `[\'dogs\', \'cats\']`). Default: None.\n If not provided, the list of classes will be automatically\n inferred from the subdirectory names/structure\n under `directory`, where each subdirectory will\n be treated as a different class\n (and the order of the classes, which will map to the label\n indices, will be alphanumeric).\n The dictionary containing the mapping from class names to class\n indices can be obtained via the attribute `class_indices`.\n class_mode: One of "categorical", "binary", "sparse",\n "input", or None. Default: "categorical".\n Determines the type of label arrays that are returned:\n - "categorical" will be 2D one-hot encoded labels,\n - "binary" will be 1D binary labels,\n "sparse" will be 1D integer labels,\n - "input" will be images identical\n to input images (mainly used to work with autoencoders).\n - If None, no labels are returned\n (the generator will only yield batches of image data,\n which is useful to use with `model.predict_generator()`,\n `model.evaluate_generator()`, etc.).\n Please note that in case of class_mode None,\n the data still needs to reside in a subdirectory\n of `directory` for it to work correctly.\n batch_size: Size of the batches of data (default: 32).\n shuffle: Whether to shuffle the data (default: True)\n seed: Optional random seed for shuffling and transformations.\n save_to_dir: None or str (default: None).\n This allows you to optionally specify\n a directory to which to save\n the augmented pictures being generated\n (useful for visualizing what you are doing).\n save_prefix: Str. Prefix to use for filenames of saved pictures\n (only relevant if `save_to_dir` is set).\n save_format: One of "png", "jpeg"\n (only relevant if `save_to_dir` is set). Default: "png".\n follow_links: Whether to follow symlinks inside\n class subdirectories (default: False).\n subset: Subset of data (`"training"` or `"validation"`) if\n `validation_split` is set in `ImageDataGenerator`.\n interpolation: Interpolation method used to\n resample the image if the\n target size is different from that of the loaded image.\n Supported methods are `"nearest"`, `"bilinear"`,\n and `"bicubic"`.\n If PIL version 1.1.3 or newer is installed, `"lanczos"` is also\n supported. If PIL version 3.4.0 or newer is installed,\n `"box"` and `"hamming"` are also supported.\n By default, `"nearest"` is used.\n\n # Returns\n A `DirectoryIterator` yielding tuples of `(x, y)`\n where `x` is a numpy array containing a batch\n of images with shape `(batch_size, *target_size, channels)`\n and `y` is a numpy array of corresponding labels.\n ' return DirectoryIterator(directory, self, target_size=target_size, color_mode=color_mode, classes=classes, class_mode=class_mode, data_format=self.data_format, batch_size=batch_size, shuffle=shuffle, seed=seed, save_to_dir=save_to_dir, save_prefix=save_prefix, save_format=save_format, follow_links=follow_links, subset=subset, interpolation=interpolation)
-610,350,686,517,741,700
Takes the path to a directory & generates batches of augmented data. # Arguments directory: Path to the target directory. It should contain one subdirectory per class. Any PNG, JPG, BMP, PPM or TIF images inside each of the subdirectories directory tree will be included in the generator. See [this script](https://gist.github.com/fchollet/0830affa1f7f19fd47b06d4cf89ed44d) for more details. target_size: Tuple of integers `(height, width)`, default: `(256, 256)`. The dimensions to which all images found will be resized. color_mode: One of "grayscale", "rbg". Default: "rgb". Whether the images will be converted to have 1 or 3 color channels. classes: Optional list of class subdirectories (e.g. `['dogs', 'cats']`). Default: None. If not provided, the list of classes will be automatically inferred from the subdirectory names/structure under `directory`, where each subdirectory will be treated as a different class (and the order of the classes, which will map to the label indices, will be alphanumeric). The dictionary containing the mapping from class names to class indices can be obtained via the attribute `class_indices`. class_mode: One of "categorical", "binary", "sparse", "input", or None. Default: "categorical". Determines the type of label arrays that are returned: - "categorical" will be 2D one-hot encoded labels, - "binary" will be 1D binary labels, "sparse" will be 1D integer labels, - "input" will be images identical to input images (mainly used to work with autoencoders). - If None, no labels are returned (the generator will only yield batches of image data, which is useful to use with `model.predict_generator()`, `model.evaluate_generator()`, etc.). Please note that in case of class_mode None, the data still needs to reside in a subdirectory of `directory` for it to work correctly. batch_size: Size of the batches of data (default: 32). shuffle: Whether to shuffle the data (default: True) seed: Optional random seed for shuffling and transformations. save_to_dir: None or str (default: None). This allows you to optionally specify a directory to which to save the augmented pictures being generated (useful for visualizing what you are doing). save_prefix: Str. Prefix to use for filenames of saved pictures (only relevant if `save_to_dir` is set). save_format: One of "png", "jpeg" (only relevant if `save_to_dir` is set). Default: "png". follow_links: Whether to follow symlinks inside class subdirectories (default: False). subset: Subset of data (`"training"` or `"validation"`) if `validation_split` is set in `ImageDataGenerator`. interpolation: Interpolation method used to resample the image if the target size is different from that of the loaded image. Supported methods are `"nearest"`, `"bilinear"`, and `"bicubic"`. If PIL version 1.1.3 or newer is installed, `"lanczos"` is also supported. If PIL version 3.4.0 or newer is installed, `"box"` and `"hamming"` are also supported. By default, `"nearest"` is used. # Returns A `DirectoryIterator` yielding tuples of `(x, y)` where `x` is a numpy array containing a batch of images with shape `(batch_size, *target_size, channels)` and `y` is a numpy array of corresponding labels.
keras/preprocessing/image.py
flow_from_directory
HangJie720/keras
python
def flow_from_directory(self, directory, target_size=(256, 256), color_mode='rgb', classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix=, save_format='png', follow_links=False, subset=None, interpolation='nearest'): 'Takes the path to a directory & generates batches of augmented data.\n\n # Arguments\n directory: Path to the target directory.\n It should contain one subdirectory per class.\n Any PNG, JPG, BMP, PPM or TIF images\n inside each of the subdirectories directory tree\n will be included in the generator.\n See [this script](https://gist.github.com/fchollet/0830affa1f7f19fd47b06d4cf89ed44d)\n for more details.\n target_size: Tuple of integers `(height, width)`,\n default: `(256, 256)`.\n The dimensions to which all images found will be resized.\n color_mode: One of "grayscale", "rbg". Default: "rgb".\n Whether the images will be converted to\n have 1 or 3 color channels.\n classes: Optional list of class subdirectories\n (e.g. `[\'dogs\', \'cats\']`). Default: None.\n If not provided, the list of classes will be automatically\n inferred from the subdirectory names/structure\n under `directory`, where each subdirectory will\n be treated as a different class\n (and the order of the classes, which will map to the label\n indices, will be alphanumeric).\n The dictionary containing the mapping from class names to class\n indices can be obtained via the attribute `class_indices`.\n class_mode: One of "categorical", "binary", "sparse",\n "input", or None. Default: "categorical".\n Determines the type of label arrays that are returned:\n - "categorical" will be 2D one-hot encoded labels,\n - "binary" will be 1D binary labels,\n "sparse" will be 1D integer labels,\n - "input" will be images identical\n to input images (mainly used to work with autoencoders).\n - If None, no labels are returned\n (the generator will only yield batches of image data,\n which is useful to use with `model.predict_generator()`,\n `model.evaluate_generator()`, etc.).\n Please note that in case of class_mode None,\n the data still needs to reside in a subdirectory\n of `directory` for it to work correctly.\n batch_size: Size of the batches of data (default: 32).\n shuffle: Whether to shuffle the data (default: True)\n seed: Optional random seed for shuffling and transformations.\n save_to_dir: None or str (default: None).\n This allows you to optionally specify\n a directory to which to save\n the augmented pictures being generated\n (useful for visualizing what you are doing).\n save_prefix: Str. Prefix to use for filenames of saved pictures\n (only relevant if `save_to_dir` is set).\n save_format: One of "png", "jpeg"\n (only relevant if `save_to_dir` is set). Default: "png".\n follow_links: Whether to follow symlinks inside\n class subdirectories (default: False).\n subset: Subset of data (`"training"` or `"validation"`) if\n `validation_split` is set in `ImageDataGenerator`.\n interpolation: Interpolation method used to\n resample the image if the\n target size is different from that of the loaded image.\n Supported methods are `"nearest"`, `"bilinear"`,\n and `"bicubic"`.\n If PIL version 1.1.3 or newer is installed, `"lanczos"` is also\n supported. If PIL version 3.4.0 or newer is installed,\n `"box"` and `"hamming"` are also supported.\n By default, `"nearest"` is used.\n\n # Returns\n A `DirectoryIterator` yielding tuples of `(x, y)`\n where `x` is a numpy array containing a batch\n of images with shape `(batch_size, *target_size, channels)`\n and `y` is a numpy array of corresponding labels.\n ' return DirectoryIterator(directory, self, target_size=target_size, color_mode=color_mode, classes=classes, class_mode=class_mode, data_format=self.data_format, batch_size=batch_size, shuffle=shuffle, seed=seed, save_to_dir=save_to_dir, save_prefix=save_prefix, save_format=save_format, follow_links=follow_links, subset=subset, interpolation=interpolation)
def standardize(self, x): 'Applies the normalization configuration to a batch of inputs.\n\n # Arguments\n x: Batch of inputs to be normalized.\n\n # Returns\n The inputs, normalized.\n ' if self.preprocessing_function: x = self.preprocessing_function(x) if self.rescale: x *= self.rescale if self.samplewise_center: x -= np.mean(x, keepdims=True) if self.samplewise_std_normalization: x /= (np.std(x, keepdims=True) + K.epsilon()) if self.featurewise_center: if (self.mean is not None): x -= self.mean else: warnings.warn("This ImageDataGenerator specifies `featurewise_center`, but it hasn't been fit on any training data. Fit it first by calling `.fit(numpy_data)`.") if self.featurewise_std_normalization: if (self.std is not None): x /= (self.std + K.epsilon()) else: warnings.warn("This ImageDataGenerator specifies `featurewise_std_normalization`, but it hasn't been fit on any training data. Fit it first by calling `.fit(numpy_data)`.") if self.zca_whitening: if (self.principal_components is not None): flatx = np.reshape(x, ((- 1), np.prod(x.shape[(- 3):]))) whitex = np.dot(flatx, self.principal_components) x = np.reshape(whitex, x.shape) else: warnings.warn("This ImageDataGenerator specifies `zca_whitening`, but it hasn't been fit on any training data. Fit it first by calling `.fit(numpy_data)`.") return x
3,214,915,977,443,593,700
Applies the normalization configuration to a batch of inputs. # Arguments x: Batch of inputs to be normalized. # Returns The inputs, normalized.
keras/preprocessing/image.py
standardize
HangJie720/keras
python
def standardize(self, x): 'Applies the normalization configuration to a batch of inputs.\n\n # Arguments\n x: Batch of inputs to be normalized.\n\n # Returns\n The inputs, normalized.\n ' if self.preprocessing_function: x = self.preprocessing_function(x) if self.rescale: x *= self.rescale if self.samplewise_center: x -= np.mean(x, keepdims=True) if self.samplewise_std_normalization: x /= (np.std(x, keepdims=True) + K.epsilon()) if self.featurewise_center: if (self.mean is not None): x -= self.mean else: warnings.warn("This ImageDataGenerator specifies `featurewise_center`, but it hasn't been fit on any training data. Fit it first by calling `.fit(numpy_data)`.") if self.featurewise_std_normalization: if (self.std is not None): x /= (self.std + K.epsilon()) else: warnings.warn("This ImageDataGenerator specifies `featurewise_std_normalization`, but it hasn't been fit on any training data. Fit it first by calling `.fit(numpy_data)`.") if self.zca_whitening: if (self.principal_components is not None): flatx = np.reshape(x, ((- 1), np.prod(x.shape[(- 3):]))) whitex = np.dot(flatx, self.principal_components) x = np.reshape(whitex, x.shape) else: warnings.warn("This ImageDataGenerator specifies `zca_whitening`, but it hasn't been fit on any training data. Fit it first by calling `.fit(numpy_data)`.") return x
def random_transform(self, x, seed=None): 'Randomly augments a single image tensor.\n\n # Arguments\n x: 3D tensor, single image.\n seed: Random seed.\n\n # Returns\n A randomly transformed version of the input (same shape).\n ' img_row_axis = (self.row_axis - 1) img_col_axis = (self.col_axis - 1) img_channel_axis = (self.channel_axis - 1) if (seed is not None): np.random.seed(seed) if self.rotation_range: theta = np.deg2rad(np.random.uniform((- self.rotation_range), self.rotation_range)) else: theta = 0 if self.height_shift_range: try: tx = np.random.choice(self.height_shift_range) tx *= np.random.choice([(- 1), 1]) except ValueError: tx = np.random.uniform((- self.height_shift_range), self.height_shift_range) if (np.max(self.height_shift_range) < 1): tx *= x.shape[img_row_axis] else: tx = 0 if self.width_shift_range: try: ty = np.random.choice(self.width_shift_range) ty *= np.random.choice([(- 1), 1]) except ValueError: ty = np.random.uniform((- self.width_shift_range), self.width_shift_range) if (np.max(self.width_shift_range) < 1): ty *= x.shape[img_col_axis] else: ty = 0 if self.shear_range: shear = np.deg2rad(np.random.uniform((- self.shear_range), self.shear_range)) else: shear = 0 if ((self.zoom_range[0] == 1) and (self.zoom_range[1] == 1)): (zx, zy) = (1, 1) else: (zx, zy) = np.random.uniform(self.zoom_range[0], self.zoom_range[1], 2) transform_matrix = None if (theta != 0): rotation_matrix = np.array([[np.cos(theta), (- np.sin(theta)), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) transform_matrix = rotation_matrix if ((tx != 0) or (ty != 0)): shift_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = (shift_matrix if (transform_matrix is None) else np.dot(transform_matrix, shift_matrix)) if (shear != 0): shear_matrix = np.array([[1, (- np.sin(shear)), 0], [0, np.cos(shear), 0], [0, 0, 1]]) transform_matrix = (shear_matrix if (transform_matrix is None) else np.dot(transform_matrix, shear_matrix)) if ((zx != 1) or (zy != 1)): zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) transform_matrix = (zoom_matrix if (transform_matrix is None) else np.dot(transform_matrix, zoom_matrix)) if (transform_matrix is not None): (h, w) = (x.shape[img_row_axis], x.shape[img_col_axis]) transform_matrix = transform_matrix_offset_center(transform_matrix, h, w) x = apply_transform(x, transform_matrix, img_channel_axis, fill_mode=self.fill_mode, cval=self.cval) if (self.channel_shift_range != 0): x = random_channel_shift(x, self.channel_shift_range, img_channel_axis) if self.horizontal_flip: if (np.random.random() < 0.5): x = flip_axis(x, img_col_axis) if self.vertical_flip: if (np.random.random() < 0.5): x = flip_axis(x, img_row_axis) if (self.brightness_range is not None): x = random_brightness(x, self.brightness_range) return x
6,704,900,902,420,396,000
Randomly augments a single image tensor. # Arguments x: 3D tensor, single image. seed: Random seed. # Returns A randomly transformed version of the input (same shape).
keras/preprocessing/image.py
random_transform
HangJie720/keras
python
def random_transform(self, x, seed=None): 'Randomly augments a single image tensor.\n\n # Arguments\n x: 3D tensor, single image.\n seed: Random seed.\n\n # Returns\n A randomly transformed version of the input (same shape).\n ' img_row_axis = (self.row_axis - 1) img_col_axis = (self.col_axis - 1) img_channel_axis = (self.channel_axis - 1) if (seed is not None): np.random.seed(seed) if self.rotation_range: theta = np.deg2rad(np.random.uniform((- self.rotation_range), self.rotation_range)) else: theta = 0 if self.height_shift_range: try: tx = np.random.choice(self.height_shift_range) tx *= np.random.choice([(- 1), 1]) except ValueError: tx = np.random.uniform((- self.height_shift_range), self.height_shift_range) if (np.max(self.height_shift_range) < 1): tx *= x.shape[img_row_axis] else: tx = 0 if self.width_shift_range: try: ty = np.random.choice(self.width_shift_range) ty *= np.random.choice([(- 1), 1]) except ValueError: ty = np.random.uniform((- self.width_shift_range), self.width_shift_range) if (np.max(self.width_shift_range) < 1): ty *= x.shape[img_col_axis] else: ty = 0 if self.shear_range: shear = np.deg2rad(np.random.uniform((- self.shear_range), self.shear_range)) else: shear = 0 if ((self.zoom_range[0] == 1) and (self.zoom_range[1] == 1)): (zx, zy) = (1, 1) else: (zx, zy) = np.random.uniform(self.zoom_range[0], self.zoom_range[1], 2) transform_matrix = None if (theta != 0): rotation_matrix = np.array([[np.cos(theta), (- np.sin(theta)), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) transform_matrix = rotation_matrix if ((tx != 0) or (ty != 0)): shift_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = (shift_matrix if (transform_matrix is None) else np.dot(transform_matrix, shift_matrix)) if (shear != 0): shear_matrix = np.array([[1, (- np.sin(shear)), 0], [0, np.cos(shear), 0], [0, 0, 1]]) transform_matrix = (shear_matrix if (transform_matrix is None) else np.dot(transform_matrix, shear_matrix)) if ((zx != 1) or (zy != 1)): zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) transform_matrix = (zoom_matrix if (transform_matrix is None) else np.dot(transform_matrix, zoom_matrix)) if (transform_matrix is not None): (h, w) = (x.shape[img_row_axis], x.shape[img_col_axis]) transform_matrix = transform_matrix_offset_center(transform_matrix, h, w) x = apply_transform(x, transform_matrix, img_channel_axis, fill_mode=self.fill_mode, cval=self.cval) if (self.channel_shift_range != 0): x = random_channel_shift(x, self.channel_shift_range, img_channel_axis) if self.horizontal_flip: if (np.random.random() < 0.5): x = flip_axis(x, img_col_axis) if self.vertical_flip: if (np.random.random() < 0.5): x = flip_axis(x, img_row_axis) if (self.brightness_range is not None): x = random_brightness(x, self.brightness_range) return x
def fit(self, x, augment=False, rounds=1, seed=None): 'Computes the internal data stats related to the data-dependent transformations, based on an array of sample data.\n\n Only required if `featurewise_center` or\n `featurewise_std_normalization` or `zca_whitening` are set to True.\n\n # Arguments\n x: Sample data. Should have rank 4.\n In case of grayscale data,\n the channels axis should have value 1, and in case\n of RGB data, it should have value 3.\n augment: Boolean (default: False).\n Whether to fit on randomly augmented samples.\n rounds: Int (default: 1).\n If using data augmentation (`augment=True`),\n this is how many augmentation passes over the data to use.\n seed: Int (default: None). Random seed.\n ' x = np.asarray(x, dtype=K.floatx()) if (x.ndim != 4): raise ValueError(('Input to `.fit()` should have rank 4. Got array with shape: ' + str(x.shape))) if (x.shape[self.channel_axis] not in {1, 3, 4}): warnings.warn((((((((((('Expected input to be images (as Numpy array) following the data format convention "' + self.data_format) + '" (channels on axis ') + str(self.channel_axis)) + '), i.e. expected either 1, 3 or 4 channels on axis ') + str(self.channel_axis)) + '. However, it was passed an array with shape ') + str(x.shape)) + ' (') + str(x.shape[self.channel_axis])) + ' channels).')) if (seed is not None): np.random.seed(seed) x = np.copy(x) if augment: ax = np.zeros(tuple(([(rounds * x.shape[0])] + list(x.shape)[1:])), dtype=K.floatx()) for r in range(rounds): for i in range(x.shape[0]): ax[(i + (r * x.shape[0]))] = self.random_transform(x[i]) x = ax if self.featurewise_center: self.mean = np.mean(x, axis=(0, self.row_axis, self.col_axis)) broadcast_shape = [1, 1, 1] broadcast_shape[(self.channel_axis - 1)] = x.shape[self.channel_axis] self.mean = np.reshape(self.mean, broadcast_shape) x -= self.mean if self.featurewise_std_normalization: self.std = np.std(x, axis=(0, self.row_axis, self.col_axis)) broadcast_shape = [1, 1, 1] broadcast_shape[(self.channel_axis - 1)] = x.shape[self.channel_axis] self.std = np.reshape(self.std, broadcast_shape) x /= (self.std + K.epsilon()) if self.zca_whitening: flat_x = np.reshape(x, (x.shape[0], ((x.shape[1] * x.shape[2]) * x.shape[3]))) sigma = (np.dot(flat_x.T, flat_x) / flat_x.shape[0]) (u, s, _) = linalg.svd(sigma) s_inv = (1.0 / np.sqrt((s[np.newaxis] + self.zca_epsilon))) self.principal_components = (u * s_inv).dot(u.T)
9,041,075,605,165,846,000
Computes the internal data stats related to the data-dependent transformations, based on an array of sample data. Only required if `featurewise_center` or `featurewise_std_normalization` or `zca_whitening` are set to True. # Arguments x: Sample data. Should have rank 4. In case of grayscale data, the channels axis should have value 1, and in case of RGB data, it should have value 3. augment: Boolean (default: False). Whether to fit on randomly augmented samples. rounds: Int (default: 1). If using data augmentation (`augment=True`), this is how many augmentation passes over the data to use. seed: Int (default: None). Random seed.
keras/preprocessing/image.py
fit
HangJie720/keras
python
def fit(self, x, augment=False, rounds=1, seed=None): 'Computes the internal data stats related to the data-dependent transformations, based on an array of sample data.\n\n Only required if `featurewise_center` or\n `featurewise_std_normalization` or `zca_whitening` are set to True.\n\n # Arguments\n x: Sample data. Should have rank 4.\n In case of grayscale data,\n the channels axis should have value 1, and in case\n of RGB data, it should have value 3.\n augment: Boolean (default: False).\n Whether to fit on randomly augmented samples.\n rounds: Int (default: 1).\n If using data augmentation (`augment=True`),\n this is how many augmentation passes over the data to use.\n seed: Int (default: None). Random seed.\n ' x = np.asarray(x, dtype=K.floatx()) if (x.ndim != 4): raise ValueError(('Input to `.fit()` should have rank 4. Got array with shape: ' + str(x.shape))) if (x.shape[self.channel_axis] not in {1, 3, 4}): warnings.warn((((((((((('Expected input to be images (as Numpy array) following the data format convention "' + self.data_format) + '" (channels on axis ') + str(self.channel_axis)) + '), i.e. expected either 1, 3 or 4 channels on axis ') + str(self.channel_axis)) + '. However, it was passed an array with shape ') + str(x.shape)) + ' (') + str(x.shape[self.channel_axis])) + ' channels).')) if (seed is not None): np.random.seed(seed) x = np.copy(x) if augment: ax = np.zeros(tuple(([(rounds * x.shape[0])] + list(x.shape)[1:])), dtype=K.floatx()) for r in range(rounds): for i in range(x.shape[0]): ax[(i + (r * x.shape[0]))] = self.random_transform(x[i]) x = ax if self.featurewise_center: self.mean = np.mean(x, axis=(0, self.row_axis, self.col_axis)) broadcast_shape = [1, 1, 1] broadcast_shape[(self.channel_axis - 1)] = x.shape[self.channel_axis] self.mean = np.reshape(self.mean, broadcast_shape) x -= self.mean if self.featurewise_std_normalization: self.std = np.std(x, axis=(0, self.row_axis, self.col_axis)) broadcast_shape = [1, 1, 1] broadcast_shape[(self.channel_axis - 1)] = x.shape[self.channel_axis] self.std = np.reshape(self.std, broadcast_shape) x /= (self.std + K.epsilon()) if self.zca_whitening: flat_x = np.reshape(x, (x.shape[0], ((x.shape[1] * x.shape[2]) * x.shape[3]))) sigma = (np.dot(flat_x.T, flat_x) / flat_x.shape[0]) (u, s, _) = linalg.svd(sigma) s_inv = (1.0 / np.sqrt((s[np.newaxis] + self.zca_epsilon))) self.principal_components = (u * s_inv).dot(u.T)
def _get_batches_of_transformed_samples(self, index_array): 'Gets a batch of transformed samples.\n\n # Arguments\n index_array: Array of sample indices to include in batch.\n\n # Returns\n A batch of transformed samples.\n ' raise NotImplementedError
1,617,728,283,657,301,500
Gets a batch of transformed samples. # Arguments index_array: Array of sample indices to include in batch. # Returns A batch of transformed samples.
keras/preprocessing/image.py
_get_batches_of_transformed_samples
HangJie720/keras
python
def _get_batches_of_transformed_samples(self, index_array): 'Gets a batch of transformed samples.\n\n # Arguments\n index_array: Array of sample indices to include in batch.\n\n # Returns\n A batch of transformed samples.\n ' raise NotImplementedError
def next(self): 'For python 2.x.\n\n # Returns\n The next batch.\n ' with self.lock: index_array = next(self.index_generator) return self._get_batches_of_transformed_samples(index_array)
-782,806,053,129,658,100
For python 2.x. # Returns The next batch.
keras/preprocessing/image.py
next
HangJie720/keras
python
def next(self): 'For python 2.x.\n\n # Returns\n The next batch.\n ' with self.lock: index_array = next(self.index_generator) return self._get_batches_of_transformed_samples(index_array)
def next(self): 'For python 2.x.\n\n # Returns\n The next batch.\n ' with self.lock: index_array = next(self.index_generator) return self._get_batches_of_transformed_samples(index_array)
-782,806,053,129,658,100
For python 2.x. # Returns The next batch.
keras/preprocessing/image.py
next
HangJie720/keras
python
def next(self): 'For python 2.x.\n\n # Returns\n The next batch.\n ' with self.lock: index_array = next(self.index_generator) return self._get_batches_of_transformed_samples(index_array)
def reroot(root: expression.Expression, source_path: path.Path) -> expression.Expression: 'Reroot to a new path, maintaining a input proto index.\n\n Similar to root.get_descendant_or_error(source_path): however, this\n method retains the ability to get a map to the original index.\n\n Args:\n root: the original root.\n source_path: the path to the new root.\n\n Returns:\n the new root.\n ' new_root = root for step in source_path.field_list: new_root = _RerootExpression(new_root, step) return new_root
7,610,696,560,224,901,000
Reroot to a new path, maintaining a input proto index. Similar to root.get_descendant_or_error(source_path): however, this method retains the ability to get a map to the original index. Args: root: the original root. source_path: the path to the new root. Returns: the new root.
struct2tensor/expression_impl/reroot.py
reroot
anukaal/struct2tensor
python
def reroot(root: expression.Expression, source_path: path.Path) -> expression.Expression: 'Reroot to a new path, maintaining a input proto index.\n\n Similar to root.get_descendant_or_error(source_path): however, this\n method retains the ability to get a map to the original index.\n\n Args:\n root: the original root.\n source_path: the path to the new root.\n\n Returns:\n the new root.\n ' new_root = root for step in source_path.field_list: new_root = _RerootExpression(new_root, step) return new_root
def __init__(self, root: expression.Expression): 'Constructor for proto index expression.\n\n Args:\n root: an expression that must return a RootNodeTensor.\n ' super().__init__(is_repeated=False, my_type=tf.int64) self._root = root
2,506,666,732,620,582,000
Constructor for proto index expression. Args: root: an expression that must return a RootNodeTensor.
struct2tensor/expression_impl/reroot.py
__init__
anukaal/struct2tensor
python
def __init__(self, root: expression.Expression): 'Constructor for proto index expression.\n\n Args:\n root: an expression that must return a RootNodeTensor.\n ' super().__init__(is_repeated=False, my_type=tf.int64) self._root = root
@classmethod def ensure_user(cls, email, password, is_internal=False, is_admin=False, is_staff=False, is_researcher=False, is_contributor=True, is_user_manager=False, is_exporter=False, is_active=True, in_beta=False, in_alpha=False, update=False, **kwargs): '\n Create a new user.\n ' from app.extensions import db user = User.find(email=email) if (user is None): user = User(password=password, email=email, is_internal=is_internal, is_admin=is_admin, is_staff=is_staff, is_active=is_active, is_researcher=is_researcher, is_contributor=is_contributor, is_user_manager=is_user_manager, is_exporter=is_exporter, in_beta=in_beta, in_alpha=in_alpha, **kwargs) with db.session.begin(): db.session.add(user) log.info(('New user created: %r' % (user,))) elif update: user.password = password user.is_internal = is_internal user.is_admin = is_admin user.is_staff = is_staff user.is_researcher = is_researcher user.is_contributor = is_contributor user.is_user_manager = is_user_manager user.is_exporter = is_exporter user.is_active = is_active user.in_beta = in_beta user.in_alpha = in_alpha with db.session.begin(): db.session.merge(user) log.info(('Updated user: %r' % (user,))) db.session.refresh(user) return user
4,482,907,887,963,877,000
Create a new user.
app/modules/users/models.py
ensure_user
karenc/houston
python
@classmethod def ensure_user(cls, email, password, is_internal=False, is_admin=False, is_staff=False, is_researcher=False, is_contributor=True, is_user_manager=False, is_exporter=False, is_active=True, in_beta=False, in_alpha=False, update=False, **kwargs): '\n \n ' from app.extensions import db user = User.find(email=email) if (user is None): user = User(password=password, email=email, is_internal=is_internal, is_admin=is_admin, is_staff=is_staff, is_active=is_active, is_researcher=is_researcher, is_contributor=is_contributor, is_user_manager=is_user_manager, is_exporter=is_exporter, in_beta=in_beta, in_alpha=in_alpha, **kwargs) with db.session.begin(): db.session.add(user) log.info(('New user created: %r' % (user,))) elif update: user.password = password user.is_internal = is_internal user.is_admin = is_admin user.is_staff = is_staff user.is_researcher = is_researcher user.is_contributor = is_contributor user.is_user_manager = is_user_manager user.is_exporter = is_exporter user.is_active = is_active user.in_beta = in_beta user.in_alpha = in_alpha with db.session.begin(): db.session.merge(user) log.info(('Updated user: %r' % (user,))) db.session.refresh(user) return user
def test_pcap_input(): 'test_pcap_input\n ' print('Testing PcapDataset') pcap_filename = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'test_pcap', 'http.pcap') file_url = ('file://' + pcap_filename) url_filenames = [file_url] dataset = pcap_io.PcapDataset(url_filenames, batch=1) packets_total = 0 for v in dataset: (packet_timestamp, packet_data) = v if (packets_total == 0): assert (packet_timestamp.numpy()[0] == 1084443427.311224) assert (len(packet_data.numpy()[0]) == 62) packets_total += 1 assert (packets_total == 43)
5,723,679,461,885,828,000
test_pcap_input
tests/test_pcap_eager.py
test_pcap_input
HubBucket-Team/io
python
def (): '\n ' print('Testing PcapDataset') pcap_filename = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'test_pcap', 'http.pcap') file_url = ('file://' + pcap_filename) url_filenames = [file_url] dataset = pcap_io.PcapDataset(url_filenames, batch=1) packets_total = 0 for v in dataset: (packet_timestamp, packet_data) = v if (packets_total == 0): assert (packet_timestamp.numpy()[0] == 1084443427.311224) assert (len(packet_data.numpy()[0]) == 62) packets_total += 1 assert (packets_total == 43)
def requests_error_handler(func): "Re-raise ConnectionError with help message.\n Continue on HTTP 404 error (server is on but workflow doesn't exist).\n Otherwise, re-raise from None to hide nested tracebacks.\n " def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except HTTPError as err: if (err.response.status_code == 404): logger.error("Workflow doesn't seem to exist.") return message = '{err}\n\nCromwell server is on but got an HTTP error other than 404. '.format(err=err) raise HTTPError(message) from None except ConnectionError as err: message = '{err}\n\nFailed to connect to Cromwell server. Check if Caper server is running. Also check if hostname and port are correct. method={method}, url={url}'.format(err=err, method=err.request.method, url=err.request.url) raise ConnectionError(message) from None return wrapper
-771,253,056,658,749,200
Re-raise ConnectionError with help message. Continue on HTTP 404 error (server is on but workflow doesn't exist). Otherwise, re-raise from None to hide nested tracebacks.
caper/cromwell_rest_api.py
requests_error_handler
ENCODE-DCC/caper
python
def requests_error_handler(func): "Re-raise ConnectionError with help message.\n Continue on HTTP 404 error (server is on but workflow doesn't exist).\n Otherwise, re-raise from None to hide nested tracebacks.\n " def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except HTTPError as err: if (err.response.status_code == 404): logger.error("Workflow doesn't seem to exist.") return message = '{err}\n\nCromwell server is on but got an HTTP error other than 404. '.format(err=err) raise HTTPError(message) from None except ConnectionError as err: message = '{err}\n\nFailed to connect to Cromwell server. Check if Caper server is running. Also check if hostname and port are correct. method={method}, url={url}'.format(err=err, method=err.request.method, url=err.request.url) raise ConnectionError(message) from None return wrapper
def is_valid_uuid(workflow_id, version=4): "To validate Cromwell's UUID (lowercase only).\n This does not allow uppercase UUIDs.\n " if (not isinstance(workflow_id, str)): return False if (not workflow_id.islower()): return False try: UUID(workflow_id, version=version) except ValueError: return False return True
3,885,909,614,512,867,000
To validate Cromwell's UUID (lowercase only). This does not allow uppercase UUIDs.
caper/cromwell_rest_api.py
is_valid_uuid
ENCODE-DCC/caper
python
def is_valid_uuid(workflow_id, version=4): "To validate Cromwell's UUID (lowercase only).\n This does not allow uppercase UUIDs.\n " if (not isinstance(workflow_id, str)): return False if (not workflow_id.islower()): return False try: UUID(workflow_id, version=version) except ValueError: return False return True
def has_wildcard(workflow_id_or_label): 'Check if string or any element in list/tuple has\n a wildcard (? or *).\n\n Args:\n workflow_id_or_label:\n Workflow ID (str) or label (str).\n Or array (list, tuple) of them.\n ' if (workflow_id_or_label is None): return False if isinstance(workflow_id_or_label, (list, tuple)): for val in workflow_id_or_label: if has_wildcard(val): return True return False else: return (('?' in workflow_id_or_label) or ('*' in workflow_id_or_label))
-6,452,021,859,195,065,000
Check if string or any element in list/tuple has a wildcard (? or *). Args: workflow_id_or_label: Workflow ID (str) or label (str). Or array (list, tuple) of them.
caper/cromwell_rest_api.py
has_wildcard
ENCODE-DCC/caper
python
def has_wildcard(workflow_id_or_label): 'Check if string or any element in list/tuple has\n a wildcard (? or *).\n\n Args:\n workflow_id_or_label:\n Workflow ID (str) or label (str).\n Or array (list, tuple) of them.\n ' if (workflow_id_or_label is None): return False if isinstance(workflow_id_or_label, (list, tuple)): for val in workflow_id_or_label: if has_wildcard(val): return True return False else: return (('?' in workflow_id_or_label) or ('*' in workflow_id_or_label))
def submit(self, source, dependencies=None, inputs=None, options=None, labels=None, on_hold=False): 'Submit a workflow.\n\n Returns:\n JSON Response from POST request submit a workflow\n ' manifest = {} with open(source) as fp: manifest['workflowSource'] = io.StringIO(fp.read()) if dependencies: with open(dependencies, 'rb') as fp: manifest['workflowDependencies'] = io.BytesIO(fp.read()) if inputs: with open(inputs) as fp: manifest['workflowInputs'] = io.StringIO(fp.read()) else: manifest['workflowInputs'] = io.StringIO('{}') if options: with open(options) as fp: manifest['workflowOptions'] = io.StringIO(fp.read()) if labels: with open(labels) as fp: manifest['labels'] = io.StringIO(fp.read()) if on_hold: manifest['workflowOnHold'] = True r = self.__request_post(CromwellRestAPI.ENDPOINT_SUBMIT, manifest) logger.debug('submit: {r}'.format(r=r)) return r
-423,739,342,744,370,100
Submit a workflow. Returns: JSON Response from POST request submit a workflow
caper/cromwell_rest_api.py
submit
ENCODE-DCC/caper
python
def submit(self, source, dependencies=None, inputs=None, options=None, labels=None, on_hold=False): 'Submit a workflow.\n\n Returns:\n JSON Response from POST request submit a workflow\n ' manifest = {} with open(source) as fp: manifest['workflowSource'] = io.StringIO(fp.read()) if dependencies: with open(dependencies, 'rb') as fp: manifest['workflowDependencies'] = io.BytesIO(fp.read()) if inputs: with open(inputs) as fp: manifest['workflowInputs'] = io.StringIO(fp.read()) else: manifest['workflowInputs'] = io.StringIO('{}') if options: with open(options) as fp: manifest['workflowOptions'] = io.StringIO(fp.read()) if labels: with open(labels) as fp: manifest['labels'] = io.StringIO(fp.read()) if on_hold: manifest['workflowOnHold'] = True r = self.__request_post(CromwellRestAPI.ENDPOINT_SUBMIT, manifest) logger.debug('submit: {r}'.format(r=r)) return r
def abort(self, workflow_ids=None, labels=None): 'Abort workflows matching workflow IDs or labels\n\n Returns:\n List of JSON responses from POST request\n for aborting workflows\n ' valid_workflow_ids = self.find_valid_workflow_ids(workflow_ids=workflow_ids, labels=labels) if (valid_workflow_ids is None): return result = [] for workflow_id in valid_workflow_ids: r = self.__request_post(CromwellRestAPI.ENDPOINT_ABORT.format(wf_id=workflow_id)) result.append(r) logger.debug('abort: {r}'.format(r=result)) return result
2,118,086,710,568,472,300
Abort workflows matching workflow IDs or labels Returns: List of JSON responses from POST request for aborting workflows
caper/cromwell_rest_api.py
abort
ENCODE-DCC/caper
python
def abort(self, workflow_ids=None, labels=None): 'Abort workflows matching workflow IDs or labels\n\n Returns:\n List of JSON responses from POST request\n for aborting workflows\n ' valid_workflow_ids = self.find_valid_workflow_ids(workflow_ids=workflow_ids, labels=labels) if (valid_workflow_ids is None): return result = [] for workflow_id in valid_workflow_ids: r = self.__request_post(CromwellRestAPI.ENDPOINT_ABORT.format(wf_id=workflow_id)) result.append(r) logger.debug('abort: {r}'.format(r=result)) return result
def release_hold(self, workflow_ids=None, labels=None): 'Release hold of workflows matching workflow IDs or labels\n\n Returns:\n List of JSON responses from POST request\n for releasing hold of workflows\n ' valid_workflow_ids = self.find_valid_workflow_ids(workflow_ids=workflow_ids, labels=labels) if (valid_workflow_ids is None): return result = [] for workflow_id in valid_workflow_ids: r = self.__request_post(CromwellRestAPI.ENDPOINT_RELEASE_HOLD.format(wf_id=workflow_id)) result.append(r) logger.debug('release_hold: {r}'.format(r=result)) return result
-4,205,324,820,267,993,600
Release hold of workflows matching workflow IDs or labels Returns: List of JSON responses from POST request for releasing hold of workflows
caper/cromwell_rest_api.py
release_hold
ENCODE-DCC/caper
python
def release_hold(self, workflow_ids=None, labels=None): 'Release hold of workflows matching workflow IDs or labels\n\n Returns:\n List of JSON responses from POST request\n for releasing hold of workflows\n ' valid_workflow_ids = self.find_valid_workflow_ids(workflow_ids=workflow_ids, labels=labels) if (valid_workflow_ids is None): return result = [] for workflow_id in valid_workflow_ids: r = self.__request_post(CromwellRestAPI.ENDPOINT_RELEASE_HOLD.format(wf_id=workflow_id)) result.append(r) logger.debug('release_hold: {r}'.format(r=result)) return result
def get_default_backend(self): 'Retrieve default backend name\n\n Returns:\n Default backend name\n ' return self.get_backends()['defaultBackend']
2,825,734,983,184,767,500
Retrieve default backend name Returns: Default backend name
caper/cromwell_rest_api.py
get_default_backend
ENCODE-DCC/caper
python
def get_default_backend(self): 'Retrieve default backend name\n\n Returns:\n Default backend name\n ' return self.get_backends()['defaultBackend']
def get_backends(self): 'Retrieve available backend names and default backend name\n\n Returns:\n JSON response with keys "defaultBackend" and "supportedBackends"\n Example: {"defaultBackend":"Local","supportedBackends":\n ["Local","aws","gcp","pbs","sge","slurm"]}\n ' return self.__request_get(CromwellRestAPI.ENDPOINT_BACKEND)
6,374,964,352,086,033,000
Retrieve available backend names and default backend name Returns: JSON response with keys "defaultBackend" and "supportedBackends" Example: {"defaultBackend":"Local","supportedBackends": ["Local","aws","gcp","pbs","sge","slurm"]}
caper/cromwell_rest_api.py
get_backends
ENCODE-DCC/caper
python
def get_backends(self): 'Retrieve available backend names and default backend name\n\n Returns:\n JSON response with keys "defaultBackend" and "supportedBackends"\n Example: {"defaultBackend":"Local","supportedBackends":\n ["Local","aws","gcp","pbs","sge","slurm"]}\n ' return self.__request_get(CromwellRestAPI.ENDPOINT_BACKEND)
def find_valid_workflow_ids(self, workflow_ids=None, labels=None, exclude_subworkflow=True): "Checks if workflow ID in `workflow_ids` are already valid UUIDs (without wildcards).\n If so then we don't have to send the server a query to get matching workflow IDs.\n " if ((not labels) and workflow_ids and all((is_valid_uuid(i) for i in workflow_ids))): return workflow_ids else: workflows = self.find(workflow_ids=workflow_ids, labels=labels, exclude_subworkflow=exclude_subworkflow) if (not workflows): return return [w['id'] for w in workflows]
-8,487,964,851,941,723,000
Checks if workflow ID in `workflow_ids` are already valid UUIDs (without wildcards). If so then we don't have to send the server a query to get matching workflow IDs.
caper/cromwell_rest_api.py
find_valid_workflow_ids
ENCODE-DCC/caper
python
def find_valid_workflow_ids(self, workflow_ids=None, labels=None, exclude_subworkflow=True): "Checks if workflow ID in `workflow_ids` are already valid UUIDs (without wildcards).\n If so then we don't have to send the server a query to get matching workflow IDs.\n " if ((not labels) and workflow_ids and all((is_valid_uuid(i) for i in workflow_ids))): return workflow_ids else: workflows = self.find(workflow_ids=workflow_ids, labels=labels, exclude_subworkflow=exclude_subworkflow) if (not workflows): return return [w['id'] for w in workflows]
def get_metadata(self, workflow_ids=None, labels=None, embed_subworkflow=False): "Retrieve metadata for workflows matching workflow IDs or labels\n\n Args:\n workflow_ids:\n List of workflows IDs to find workflows matched.\n labels:\n List of Caper's string labels to find workflows matched.\n embed_subworkflow:\n Recursively embed subworkflow's metadata in main\n workflow's metadata.\n This flag is to mimic behavior of Cromwell run mode with -m.\n Metadata JSON generated with Cromwell run mode\n includes all subworkflows embedded in main workflow's JSON file.\n " valid_workflow_ids = self.find_valid_workflow_ids(workflow_ids=workflow_ids, labels=labels) if (valid_workflow_ids is None): return result = [] for workflow_id in valid_workflow_ids: params = {} if embed_subworkflow: params['expandSubWorkflows'] = True m = self.__request_get(CromwellRestAPI.ENDPOINT_METADATA.format(wf_id=workflow_id), params=params) if m: cm = CromwellMetadata(m) result.append(cm.metadata) return result
-703,684,439,540,065,200
Retrieve metadata for workflows matching workflow IDs or labels Args: workflow_ids: List of workflows IDs to find workflows matched. labels: List of Caper's string labels to find workflows matched. embed_subworkflow: Recursively embed subworkflow's metadata in main workflow's metadata. This flag is to mimic behavior of Cromwell run mode with -m. Metadata JSON generated with Cromwell run mode includes all subworkflows embedded in main workflow's JSON file.
caper/cromwell_rest_api.py
get_metadata
ENCODE-DCC/caper
python
def get_metadata(self, workflow_ids=None, labels=None, embed_subworkflow=False): "Retrieve metadata for workflows matching workflow IDs or labels\n\n Args:\n workflow_ids:\n List of workflows IDs to find workflows matched.\n labels:\n List of Caper's string labels to find workflows matched.\n embed_subworkflow:\n Recursively embed subworkflow's metadata in main\n workflow's metadata.\n This flag is to mimic behavior of Cromwell run mode with -m.\n Metadata JSON generated with Cromwell run mode\n includes all subworkflows embedded in main workflow's JSON file.\n " valid_workflow_ids = self.find_valid_workflow_ids(workflow_ids=workflow_ids, labels=labels) if (valid_workflow_ids is None): return result = [] for workflow_id in valid_workflow_ids: params = {} if embed_subworkflow: params['expandSubWorkflows'] = True m = self.__request_get(CromwellRestAPI.ENDPOINT_METADATA.format(wf_id=workflow_id), params=params) if m: cm = CromwellMetadata(m) result.append(cm.metadata) return result
def get_labels(self, workflow_id): 'Get labels JSON for a specified workflow\n\n Returns:\n Labels JSON for a workflow\n ' if ((workflow_id is None) or (not is_valid_uuid(workflow_id))): return r = self.__request_get(CromwellRestAPI.ENDPOINT_LABELS.format(wf_id=workflow_id)) if (r is None): return return r['labels']
-300,777,881,764,296,450
Get labels JSON for a specified workflow Returns: Labels JSON for a workflow
caper/cromwell_rest_api.py
get_labels
ENCODE-DCC/caper
python
def get_labels(self, workflow_id): 'Get labels JSON for a specified workflow\n\n Returns:\n Labels JSON for a workflow\n ' if ((workflow_id is None) or (not is_valid_uuid(workflow_id))): return r = self.__request_get(CromwellRestAPI.ENDPOINT_LABELS.format(wf_id=workflow_id)) if (r is None): return return r['labels']
def get_label(self, workflow_id, key): 'Get a label for a key in a specified workflow\n\n Returns:\n Value for a specified key in labels JSON for a workflow\n ' labels = self.get_labels(workflow_id) if (labels is None): return if (key in labels): return labels[key]
8,523,240,131,071,194,000
Get a label for a key in a specified workflow Returns: Value for a specified key in labels JSON for a workflow
caper/cromwell_rest_api.py
get_label
ENCODE-DCC/caper
python
def get_label(self, workflow_id, key): 'Get a label for a key in a specified workflow\n\n Returns:\n Value for a specified key in labels JSON for a workflow\n ' labels = self.get_labels(workflow_id) if (labels is None): return if (key in labels): return labels[key]
def update_labels(self, workflow_id, labels): 'Update labels for a specified workflow with\n a list of (key, val) tuples\n ' if ((workflow_id is None) or (labels is None)): return r = self.__request_patch(CromwellRestAPI.ENDPOINT_LABELS.format(wf_id=workflow_id), labels) logger.debug('update_labels: {r}'.format(r=r)) return r
6,315,808,637,045,976,000
Update labels for a specified workflow with a list of (key, val) tuples
caper/cromwell_rest_api.py
update_labels
ENCODE-DCC/caper
python
def update_labels(self, workflow_id, labels): 'Update labels for a specified workflow with\n a list of (key, val) tuples\n ' if ((workflow_id is None) or (labels is None)): return r = self.__request_patch(CromwellRestAPI.ENDPOINT_LABELS.format(wf_id=workflow_id), labels) logger.debug('update_labels: {r}'.format(r=r)) return r
def find_with_wildcard(self, workflow_ids=None, labels=None, exclude_subworkflow=True): 'Retrieves all workflows from Cromwell server.\n And then find matching workflows by ID or labels.\n Wildcards (? and *) are allowed for both parameters.\n ' result = [] if ((not workflow_ids) and (not labels)): return result resp = self.__request_get(CromwellRestAPI.ENDPOINT_WORKFLOWS, params={'additionalQueryResultFields': 'labels', 'includeSubworkflows': (not exclude_subworkflow)}) if (resp and resp['results']): for workflow in resp['results']: matched = False if ('id' not in workflow): continue if workflow_ids: for wf_id in workflow_ids: if fnmatch.fnmatchcase(workflow['id'], wf_id): result.append(workflow) matched = True break if matched: continue if (labels and ('labels' in workflow)): for (k, v) in labels: v_ = workflow['labels'].get(k) if (not v_): continue if (isinstance(v_, str) and isinstance(v, str)): if fnmatch.fnmatchcase(v_, v): result.append(workflow) break elif (v_ == v): result.append(workflow) break logger.debug('find_with_wildcard: workflow_ids={workflow_ids}, labels={labels}, result={result}'.format(workflow_ids=workflow_ids, labels=labels, result=result)) return result
-267,213,617,896,036,400
Retrieves all workflows from Cromwell server. And then find matching workflows by ID or labels. Wildcards (? and *) are allowed for both parameters.
caper/cromwell_rest_api.py
find_with_wildcard
ENCODE-DCC/caper
python
def find_with_wildcard(self, workflow_ids=None, labels=None, exclude_subworkflow=True): 'Retrieves all workflows from Cromwell server.\n And then find matching workflows by ID or labels.\n Wildcards (? and *) are allowed for both parameters.\n ' result = [] if ((not workflow_ids) and (not labels)): return result resp = self.__request_get(CromwellRestAPI.ENDPOINT_WORKFLOWS, params={'additionalQueryResultFields': 'labels', 'includeSubworkflows': (not exclude_subworkflow)}) if (resp and resp['results']): for workflow in resp['results']: matched = False if ('id' not in workflow): continue if workflow_ids: for wf_id in workflow_ids: if fnmatch.fnmatchcase(workflow['id'], wf_id): result.append(workflow) matched = True break if matched: continue if (labels and ('labels' in workflow)): for (k, v) in labels: v_ = workflow['labels'].get(k) if (not v_): continue if (isinstance(v_, str) and isinstance(v, str)): if fnmatch.fnmatchcase(v_, v): result.append(workflow) break elif (v_ == v): result.append(workflow) break logger.debug('find_with_wildcard: workflow_ids={workflow_ids}, labels={labels}, result={result}'.format(workflow_ids=workflow_ids, labels=labels, result=result)) return result
def find_by_workflow_ids(self, workflow_ids=None, exclude_subworkflow=True): 'Finds workflows by exactly matching workflow IDs (UUIDs).\n Does OR search for a list of workflow IDs.\n Invalid UUID in `workflows_ids` will be ignored without warning.\n Wildcards (? and *) are not allowed.\n\n Args:\n workflow_ids:\n List of workflow ID (UUID) strings.\n Lower-case only (Cromwell uses lower-case UUIDs).\n Returns:\n List of matched workflow JSONs.\n ' if has_wildcard(workflow_ids): raise ValueError('Wildcards are not allowed in workflow_ids. ids={ids}'.format(ids=workflow_ids)) result = [] if workflow_ids: workflow_ids = [wf_id for wf_id in workflow_ids if is_valid_uuid(wf_id)] resp = self.__request_get(CromwellRestAPI.ENDPOINT_WORKFLOWS, params={'additionalQueryResultFields': 'labels', 'includeSubworkflows': (not exclude_subworkflow), 'id': workflow_ids}) if (resp and resp['results']): result.extend(resp['results']) logger.debug('find_by_workflow_ids: workflow_ids={workflow_ids}, result={result}'.format(workflow_ids=workflow_ids, result=result)) return result
-2,741,076,046,262,680,600
Finds workflows by exactly matching workflow IDs (UUIDs). Does OR search for a list of workflow IDs. Invalid UUID in `workflows_ids` will be ignored without warning. Wildcards (? and *) are not allowed. Args: workflow_ids: List of workflow ID (UUID) strings. Lower-case only (Cromwell uses lower-case UUIDs). Returns: List of matched workflow JSONs.
caper/cromwell_rest_api.py
find_by_workflow_ids
ENCODE-DCC/caper
python
def find_by_workflow_ids(self, workflow_ids=None, exclude_subworkflow=True): 'Finds workflows by exactly matching workflow IDs (UUIDs).\n Does OR search for a list of workflow IDs.\n Invalid UUID in `workflows_ids` will be ignored without warning.\n Wildcards (? and *) are not allowed.\n\n Args:\n workflow_ids:\n List of workflow ID (UUID) strings.\n Lower-case only (Cromwell uses lower-case UUIDs).\n Returns:\n List of matched workflow JSONs.\n ' if has_wildcard(workflow_ids): raise ValueError('Wildcards are not allowed in workflow_ids. ids={ids}'.format(ids=workflow_ids)) result = [] if workflow_ids: workflow_ids = [wf_id for wf_id in workflow_ids if is_valid_uuid(wf_id)] resp = self.__request_get(CromwellRestAPI.ENDPOINT_WORKFLOWS, params={'additionalQueryResultFields': 'labels', 'includeSubworkflows': (not exclude_subworkflow), 'id': workflow_ids}) if (resp and resp['results']): result.extend(resp['results']) logger.debug('find_by_workflow_ids: workflow_ids={workflow_ids}, result={result}'.format(workflow_ids=workflow_ids, result=result)) return result
def find_by_labels(self, labels=None, exclude_subworkflow=True): 'Finds workflows by exactly matching labels (key, value) tuples.\n Does OR search for a list of label key/value pairs.\n Wildcards (? and *) are not allowed.\n\n Args:\n labels:\n List of labels (key/value pairs).\n Returns:\n List of matched workflow JSONs.\n ' if has_wildcard(labels): raise ValueError('Wildcards are not allowed in labels. labels={labels}'.format(labels=labels)) result = [] if labels: labels = ['{key}:{val}'.format(key=key, val=val) for (key, val) in labels if val] resp = self.__request_get(CromwellRestAPI.ENDPOINT_WORKFLOWS, params={'additionalQueryResultFields': 'labels', 'includeSubworkflows': (not exclude_subworkflow), 'labelor': labels}) if (resp and resp['results']): result.extend(resp['results']) logger.debug('find_by_labels: labels={labels}, result={result}'.format(labels=labels, result=result)) return result
2,556,947,127,859,812,400
Finds workflows by exactly matching labels (key, value) tuples. Does OR search for a list of label key/value pairs. Wildcards (? and *) are not allowed. Args: labels: List of labels (key/value pairs). Returns: List of matched workflow JSONs.
caper/cromwell_rest_api.py
find_by_labels
ENCODE-DCC/caper
python
def find_by_labels(self, labels=None, exclude_subworkflow=True): 'Finds workflows by exactly matching labels (key, value) tuples.\n Does OR search for a list of label key/value pairs.\n Wildcards (? and *) are not allowed.\n\n Args:\n labels:\n List of labels (key/value pairs).\n Returns:\n List of matched workflow JSONs.\n ' if has_wildcard(labels): raise ValueError('Wildcards are not allowed in labels. labels={labels}'.format(labels=labels)) result = [] if labels: labels = ['{key}:{val}'.format(key=key, val=val) for (key, val) in labels if val] resp = self.__request_get(CromwellRestAPI.ENDPOINT_WORKFLOWS, params={'additionalQueryResultFields': 'labels', 'includeSubworkflows': (not exclude_subworkflow), 'labelor': labels}) if (resp and resp['results']): result.extend(resp['results']) logger.debug('find_by_labels: labels={labels}, result={result}'.format(labels=labels, result=result)) return result
def find(self, workflow_ids=None, labels=None, exclude_subworkflow=True): 'Wrapper for the following three find functions.\n - find_with_wildcard\n - find_by_workflow_ids\n - find_by_labels\n\n Find workflows by matching workflow IDs or label (key, value) tuples.\n Does OR search for both parameters.\n Wildcards (? and *) in both parameters are allowed but Caper will\n retrieve a list of all workflows, which can lead to HTTP 503 of\n Cromwell server if there are many subworkflows and not `exclude_subworkflow`.\n\n Args:\n workflow_ids:\n List of workflow ID (UUID) strings.\n Lower-case only.\n labels:\n List of labels (key/value pairs).\n exclude_subworkflow:\n Exclude subworkflows.\n Returns:\n List of matched workflow JSONs.\n ' wildcard_found_in_workflow_ids = has_wildcard(workflow_ids) wildcard_found_in_labels = has_wildcard(([val for (key, val) in labels] if labels else None)) if (wildcard_found_in_workflow_ids or wildcard_found_in_labels): return self.find_with_wildcard(workflow_ids=workflow_ids, labels=labels, exclude_subworkflow=exclude_subworkflow) result = [] result_by_labels = self.find_by_labels(labels=labels, exclude_subworkflow=exclude_subworkflow) result.extend(result_by_labels) workflow_ids_found_by_labels = [workflow['id'] for workflow in result_by_labels] result.extend([workflow for workflow in self.find_by_workflow_ids(workflow_ids=workflow_ids, exclude_subworkflow=exclude_subworkflow) if (workflow['id'] not in workflow_ids_found_by_labels)]) return result
-1,235,322,776,911,959,000
Wrapper for the following three find functions. - find_with_wildcard - find_by_workflow_ids - find_by_labels Find workflows by matching workflow IDs or label (key, value) tuples. Does OR search for both parameters. Wildcards (? and *) in both parameters are allowed but Caper will retrieve a list of all workflows, which can lead to HTTP 503 of Cromwell server if there are many subworkflows and not `exclude_subworkflow`. Args: workflow_ids: List of workflow ID (UUID) strings. Lower-case only. labels: List of labels (key/value pairs). exclude_subworkflow: Exclude subworkflows. Returns: List of matched workflow JSONs.
caper/cromwell_rest_api.py
find
ENCODE-DCC/caper
python
def find(self, workflow_ids=None, labels=None, exclude_subworkflow=True): 'Wrapper for the following three find functions.\n - find_with_wildcard\n - find_by_workflow_ids\n - find_by_labels\n\n Find workflows by matching workflow IDs or label (key, value) tuples.\n Does OR search for both parameters.\n Wildcards (? and *) in both parameters are allowed but Caper will\n retrieve a list of all workflows, which can lead to HTTP 503 of\n Cromwell server if there are many subworkflows and not `exclude_subworkflow`.\n\n Args:\n workflow_ids:\n List of workflow ID (UUID) strings.\n Lower-case only.\n labels:\n List of labels (key/value pairs).\n exclude_subworkflow:\n Exclude subworkflows.\n Returns:\n List of matched workflow JSONs.\n ' wildcard_found_in_workflow_ids = has_wildcard(workflow_ids) wildcard_found_in_labels = has_wildcard(([val for (key, val) in labels] if labels else None)) if (wildcard_found_in_workflow_ids or wildcard_found_in_labels): return self.find_with_wildcard(workflow_ids=workflow_ids, labels=labels, exclude_subworkflow=exclude_subworkflow) result = [] result_by_labels = self.find_by_labels(labels=labels, exclude_subworkflow=exclude_subworkflow) result.extend(result_by_labels) workflow_ids_found_by_labels = [workflow['id'] for workflow in result_by_labels] result.extend([workflow for workflow in self.find_by_workflow_ids(workflow_ids=workflow_ids, exclude_subworkflow=exclude_subworkflow) if (workflow['id'] not in workflow_ids_found_by_labels)]) return result
def __init_auth(self): 'Init auth object\n ' if ((self._user is not None) and (self._password is not None)): self._auth = (self._user, self._password) else: self._auth = None
4,628,404,205,856,784,000
Init auth object
caper/cromwell_rest_api.py
__init_auth
ENCODE-DCC/caper
python
def __init_auth(self): '\n ' if ((self._user is not None) and (self._password is not None)): self._auth = (self._user, self._password) else: self._auth = None
@requests_error_handler def __request_get(self, endpoint, params=None): 'GET request\n\n Returns:\n JSON response\n ' url = (CromwellRestAPI.QUERY_URL.format(hostname=self._hostname, port=self._port) + endpoint) resp = requests.get(url, auth=self._auth, params=params, headers={'accept': 'application/json'}) resp.raise_for_status() return resp.json()
-7,574,936,274,253,186,000
GET request Returns: JSON response
caper/cromwell_rest_api.py
__request_get
ENCODE-DCC/caper
python
@requests_error_handler def __request_get(self, endpoint, params=None): 'GET request\n\n Returns:\n JSON response\n ' url = (CromwellRestAPI.QUERY_URL.format(hostname=self._hostname, port=self._port) + endpoint) resp = requests.get(url, auth=self._auth, params=params, headers={'accept': 'application/json'}) resp.raise_for_status() return resp.json()
@requests_error_handler def __request_post(self, endpoint, manifest=None): 'POST request\n\n Returns:\n JSON response\n ' url = (CromwellRestAPI.QUERY_URL.format(hostname=self._hostname, port=self._port) + endpoint) resp = requests.post(url, files=manifest, auth=self._auth, headers={'accept': 'application/json'}) resp.raise_for_status() return resp.json()
8,571,179,937,235,917,000
POST request Returns: JSON response
caper/cromwell_rest_api.py
__request_post
ENCODE-DCC/caper
python
@requests_error_handler def __request_post(self, endpoint, manifest=None): 'POST request\n\n Returns:\n JSON response\n ' url = (CromwellRestAPI.QUERY_URL.format(hostname=self._hostname, port=self._port) + endpoint) resp = requests.post(url, files=manifest, auth=self._auth, headers={'accept': 'application/json'}) resp.raise_for_status() return resp.json()
@requests_error_handler def __request_patch(self, endpoint, data): 'POST request\n\n Returns:\n JSON response\n ' url = (CromwellRestAPI.QUERY_URL.format(hostname=self._hostname, port=self._port) + endpoint) resp = requests.patch(url, data=data, auth=self._auth, headers={'accept': 'application/json', 'content-type': 'application/json'}) resp.raise_for_status() return resp.json()
-8,638,686,449,579,552,000
POST request Returns: JSON response
caper/cromwell_rest_api.py
__request_patch
ENCODE-DCC/caper
python
@requests_error_handler def __request_patch(self, endpoint, data): 'POST request\n\n Returns:\n JSON response\n ' url = (CromwellRestAPI.QUERY_URL.format(hostname=self._hostname, port=self._port) + endpoint) resp = requests.patch(url, data=data, auth=self._auth, headers={'accept': 'application/json', 'content-type': 'application/json'}) resp.raise_for_status() return resp.json()
def _print_job_folders(self, file_list, show_plaster_json=True): '\n file_list is a list of munches [Munch(folder="folder", name="foo.txt", size=123, mtime=123456789)]\n ' if (len(file_list) == 0): print('No files found') return folders = {file.folder: Munch(folder=file.folder, size_gb=0, file_count=0) for file in file_list} gb = (1024 ** 3) total_gb = 0 for file in file_list: folder = file.folder total_gb += (file.size / gb) folders[folder].size_gb += (file.size / gb) folders[folder].file_count += 1 df = pd.DataFrame.from_dict(folders, orient='index') formatters = dict(size_gb='{:10.2f}'.format, folder='{:<40.40s}'.format, file_count='{:.0f}'.format) columns = ['folder', 'size_gb', 'file_count'] df = df.append(dict(folder='TOTAL', size_gb=total_gb), ignore_index=True) print(df.to_string(columns=columns, formatters=formatters))
6,601,777,888,008,007,000
file_list is a list of munches [Munch(folder="folder", name="foo.txt", size=123, mtime=123456789)]
plaster/main.py
_print_job_folders
erisyon/plaster
python
def _print_job_folders(self, file_list, show_plaster_json=True): '\n \n ' if (len(file_list) == 0): print('No files found') return folders = {file.folder: Munch(folder=file.folder, size_gb=0, file_count=0) for file in file_list} gb = (1024 ** 3) total_gb = 0 for file in file_list: folder = file.folder total_gb += (file.size / gb) folders[folder].size_gb += (file.size / gb) folders[folder].file_count += 1 df = pd.DataFrame.from_dict(folders, orient='index') formatters = dict(size_gb='{:10.2f}'.format, folder='{:<40.40s}'.format, file_count='{:.0f}'.format) columns = ['folder', 'size_gb', 'file_count'] df = df.append(dict(folder='TOTAL', size_gb=total_gb), ignore_index=True) print(df.to_string(columns=columns, formatters=formatters))
def run_nbstripout(self): 'Strip all notebooks of output to save space in commits' important('Stripping Notebooks...') result = ((local['find'][('.', '-type', 'f', '-not', '-path', '*/\\.*', '-name', '*.ipynb', '-print')] | local['xargs']['nbstripout']) & TF(FG=True)) if (not result): raise CommandError
-8,431,873,764,699,112,000
Strip all notebooks of output to save space in commits
plaster/main.py
run_nbstripout
erisyon/plaster
python
def run_nbstripout(self): important('Stripping Notebooks...') result = ((local['find'][('.', '-type', 'f', '-not', '-path', '*/\\.*', '-name', '*.ipynb', '-print')] | local['xargs']['nbstripout']) & TF(FG=True)) if (not result): raise CommandError
def sigproc_test(self, jobs_folder): '\n This is adapted from zest_sigproc_v2_integration\n ' profile_folder = (jobs_folder / '_profile') profile_folder.delete() job_folder = (profile_folder / 'sigproc_test') source_folder = (profile_folder / '_synth_field') job_folder.mkdir() source_folder.mkdir() dim = (1024, 1024) n_channels = 1 n_cycles = 10 n_peaks = 500 psf_width = 1.5 bg_mean = 100.0 bg_std = 30.0 gain = 5000.0 def _synth_field(fl_i): with synth.Synth(n_channels=n_channels, n_cycles=n_cycles, dim=dim) as s: peaks = synth.PeaksModelGaussianCircular(n_peaks=n_peaks).locs_randomize().widths_uniform(psf_width).amps_constant(gain) synth.CameraModel(bg_mean=bg_mean, bg_std=bg_std) synth.HaloModel() synth.IlluminationQuadraticFalloffModel() chcy_ims = s.render_chcy(0) for ch_i in range(chcy_ims.shape[0]): for cy_i in range(chcy_ims.shape[1]): np.save(str((source_folder / f'area_{fl_i:03d}_cell_000_{ch_i:03d}nm_{cy_i:03d}.npy')), chcy_ims[(ch_i, cy_i)]) n_fields = 2 for fl_i in range(n_fields): _synth_field(fl_i) run_p([f'gen', f'sigproc_v2', f'--job={job_folder}', f'--sigproc_source={source_folder}', f'--force', f'--self_calib']) log_file = (local.path(local.env['PLASTER_ROOT']) / 'plaster.log') log_file.delete() run_p(['run', job_folder, '--no_progress', '--skip_reports']) profile_lines = profile_from_file(log_file) with colors.fg.DeepSkyBlue3: print() print(h_line('--')) print('PROFILE RESULTS') print(h_line('--')) profile_dump(profile_lines)
5,582,201,818,341,143,000
This is adapted from zest_sigproc_v2_integration
plaster/main.py
sigproc_test
erisyon/plaster
python
def sigproc_test(self, jobs_folder): '\n \n ' profile_folder = (jobs_folder / '_profile') profile_folder.delete() job_folder = (profile_folder / 'sigproc_test') source_folder = (profile_folder / '_synth_field') job_folder.mkdir() source_folder.mkdir() dim = (1024, 1024) n_channels = 1 n_cycles = 10 n_peaks = 500 psf_width = 1.5 bg_mean = 100.0 bg_std = 30.0 gain = 5000.0 def _synth_field(fl_i): with synth.Synth(n_channels=n_channels, n_cycles=n_cycles, dim=dim) as s: peaks = synth.PeaksModelGaussianCircular(n_peaks=n_peaks).locs_randomize().widths_uniform(psf_width).amps_constant(gain) synth.CameraModel(bg_mean=bg_mean, bg_std=bg_std) synth.HaloModel() synth.IlluminationQuadraticFalloffModel() chcy_ims = s.render_chcy(0) for ch_i in range(chcy_ims.shape[0]): for cy_i in range(chcy_ims.shape[1]): np.save(str((source_folder / f'area_{fl_i:03d}_cell_000_{ch_i:03d}nm_{cy_i:03d}.npy')), chcy_ims[(ch_i, cy_i)]) n_fields = 2 for fl_i in range(n_fields): _synth_field(fl_i) run_p([f'gen', f'sigproc_v2', f'--job={job_folder}', f'--sigproc_source={source_folder}', f'--force', f'--self_calib']) log_file = (local.path(local.env['PLASTER_ROOT']) / 'plaster.log') log_file.delete() run_p(['run', job_folder, '--no_progress', '--skip_reports']) profile_lines = profile_from_file(log_file) with colors.fg.DeepSkyBlue3: print() print(h_line('--')) print('PROFILE RESULTS') print(h_line('--')) profile_dump(profile_lines)
def main(self, run_path, symbol): '\n run_path: path to the run folder\n symbol: Eg: "sigproc_v2.sig"\n ' run = RunResult(run_path) parts = symbol.split('.') result = run[parts[0]] sym = getattr(result, parts[1]) if callable(sym): val = sym() else: val = sym if (self.save_npy is not None): assert isinstance(val, np.ndarray) np.save(self.save_npy, val) if (self.save_csv is not None): assert isinstance(val, pd.DataFrame) val.to_csv(self.save_csv) if (self.save_pkl is not None): assert isinstance(val, pd.DataFrame) val.to_pickle(self.save_pkl)
6,500,575,292,112,177,000
run_path: path to the run folder symbol: Eg: "sigproc_v2.sig"
plaster/main.py
main
erisyon/plaster
python
def main(self, run_path, symbol): '\n run_path: path to the run folder\n symbol: Eg: "sigproc_v2.sig"\n ' run = RunResult(run_path) parts = symbol.split('.') result = run[parts[0]] sym = getattr(result, parts[1]) if callable(sym): val = sym() else: val = sym if (self.save_npy is not None): assert isinstance(val, np.ndarray) np.save(self.save_npy, val) if (self.save_csv is not None): assert isinstance(val, pd.DataFrame) val.to_csv(self.save_csv) if (self.save_pkl is not None): assert isinstance(val, pd.DataFrame) val.to_pickle(self.save_pkl)
def main(self, run_path): "\n run_path: path to the run folder (don't forget this is a subfolder of job)\n " run = RunResult(run_path) name = run.run_folder.parent.name prefix = f'{name}__' tell(f'Prefixing saved files with {prefix}') tell('Saving sig.npy') np.save(f'{prefix}sig.npy', run.sigproc_v2.sig()) tell('Saving noi.npy') np.save(f'{prefix}noi.npy', run.sigproc_v2.noi()) tell('Saving df.csv') run.sigproc_v2.fields__n_peaks__peaks__radmat().to_csv(f'{prefix}df.csv') ims = [] for fl_i in range(run.sigproc_v2.n_fields): tell(f'Loading align field {fl_i} of {run.sigproc_v2.n_fields}') ims += [run.sigproc_v2.aln_unfilt_chcy_ims(fl_i)] tell('Saving aln_ims.npy') np.save(f'{prefix}aln_ims.npy', np.stack(ims)) tell('Saving example.py') utils.save(f'{prefix}example.py', (((f'''import numpy as np ''' + f'''import pandas as pd ''') + f'prefix = "{prefix}"') + utils.smart_wrap('\n sig = np.load(f"{prefix}sig.npy")\n noi = np.load(f"{prefix}noi.npy")\n df = pd.read_csv(f"{prefix}df.csv")\n ims = np.load(f"{prefix}aln_ims.npy", mmap_mode="r")\n n_peaks = sig.shape[0]\n n_fields, n_channels, n_cycles, im_mea, _ = ims.shape\n\n # Examine some peak\n peak_i = 123 # 0 <= peak_i < n_peaks\n ch_i = 0 # 0 <= ch_i < n_channels\n cy_i = 0 # 0 <= cy_i < n_cycles\n y, x, fl_i = df[df.peak_i == peak_i][["aln_y", "aln_x", "field_i"]].drop_duplicates().values.flatten().astype(int)\n peak_radius = 10\n peak_im = ims[fl_i, ch_i, cy_i, y-peak_radius:y+peak_radius, x-peak_radius:x+peak_radius]\n # Now peak_im is a centered sub-image of that peak with shape=(peak_radius, peak_radius)\n ', width=200, assert_if_exceeds_width=True))) tell('\n\nThe following commands may be useful:') tell(f' aws s3 cp {prefix}sig.npy s3://erisyon-public') tell(f' aws s3 cp {prefix}noi.npy s3://erisyon-public') tell(f' aws s3 cp {prefix}df.csv s3://erisyon-public') tell(f' aws s3 cp {prefix}aln_ims.npy s3://erisyon-public') tell(f' aws s3 cp {prefix}example.py s3://erisyon-public')
1,042,366,781,578,320,500
run_path: path to the run folder (don't forget this is a subfolder of job)
plaster/main.py
main
erisyon/plaster
python
def main(self, run_path): "\n \n " run = RunResult(run_path) name = run.run_folder.parent.name prefix = f'{name}__' tell(f'Prefixing saved files with {prefix}') tell('Saving sig.npy') np.save(f'{prefix}sig.npy', run.sigproc_v2.sig()) tell('Saving noi.npy') np.save(f'{prefix}noi.npy', run.sigproc_v2.noi()) tell('Saving df.csv') run.sigproc_v2.fields__n_peaks__peaks__radmat().to_csv(f'{prefix}df.csv') ims = [] for fl_i in range(run.sigproc_v2.n_fields): tell(f'Loading align field {fl_i} of {run.sigproc_v2.n_fields}') ims += [run.sigproc_v2.aln_unfilt_chcy_ims(fl_i)] tell('Saving aln_ims.npy') np.save(f'{prefix}aln_ims.npy', np.stack(ims)) tell('Saving example.py') utils.save(f'{prefix}example.py', (((f'import numpy as np ' + f'import pandas as pd ') + f'prefix = "{prefix}"') + utils.smart_wrap('\n sig = np.load(f"{prefix}sig.npy")\n noi = np.load(f"{prefix}noi.npy")\n df = pd.read_csv(f"{prefix}df.csv")\n ims = np.load(f"{prefix}aln_ims.npy", mmap_mode="r")\n n_peaks = sig.shape[0]\n n_fields, n_channels, n_cycles, im_mea, _ = ims.shape\n\n # Examine some peak\n peak_i = 123 # 0 <= peak_i < n_peaks\n ch_i = 0 # 0 <= ch_i < n_channels\n cy_i = 0 # 0 <= cy_i < n_cycles\n y, x, fl_i = df[df.peak_i == peak_i][["aln_y", "aln_x", "field_i"]].drop_duplicates().values.flatten().astype(int)\n peak_radius = 10\n peak_im = ims[fl_i, ch_i, cy_i, y-peak_radius:y+peak_radius, x-peak_radius:x+peak_radius]\n # Now peak_im is a centered sub-image of that peak with shape=(peak_radius, peak_radius)\n ', width=200, assert_if_exceeds_width=True))) tell('\n\nThe following commands may be useful:') tell(f' aws s3 cp {prefix}sig.npy s3://erisyon-public') tell(f' aws s3 cp {prefix}noi.npy s3://erisyon-public') tell(f' aws s3 cp {prefix}df.csv s3://erisyon-public') tell(f' aws s3 cp {prefix}aln_ims.npy s3://erisyon-public') tell(f' aws s3 cp {prefix}example.py s3://erisyon-public')
def solve_polynomial_join(left, right, reverse=0): "\n Solves for a parametric cubic polynomial curve joining the right side of left\n to the left side of right. The curve matches slope and position at it's\n boundaries and is parameterized from 0 to 1; 0 being the left boundary and 1\n being the right.\n\n method: parametric cubic matching position and slope of endpoints.\n This ends up being cheap to compute, since the matrix is\n known (interval of parameter is always 0 to 1) and so the \n inverse can be precomputed. \n minv is inverse of m, where:\n m = array( [ [ a**3, a**2, a, 1 ],\n [ b**3, b**2, b, 1 ], \n [ 3*a**2, 2*a , 1, 0 ],\n [ 3*b**2, 2*b , 1, 0 ] ] )\n is the matrix for the linear system:\n m * coeff = v,\n with v = [ x(0) x(1) dx/dt(0) dx/dt(1) ].\n Here a = 0 and b = 1 so m and it's inverse is always the same.\n \n " minv = matrix([[2.0, (- 2.0), 1.0, 1.0], [(- 3.0), 3.0, (- 2.0), (- 1.0)], [0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 0.0, 0.0]]) lr = len(right) ll = len(left) nl = (ll / 4) nr = (lr / 4) slope = (lambda v: (v[0] - v[(- 1)])) length = (lambda x, y: hypot(diff(x), diff(y)).sum()) if ((nr < 2) and (nl < 2)): lnorm = length(left.x, left.y) rnorm = length(right.x, right.y) dly = (diff(left.y).mean() / lnorm) dlx = (diff(left.x).mean() / lnorm) dry = (diff(right.y).mean() / rnorm) drx = (diff(right.x).mean() / rnorm) nl = 0 nr = (lr - 1) elif (nr < 2): lnorm = length(left.x[:nl], left.y[:nl]) rnorm = length(right.x, right.y) dly = ((- slope(left.y[(- nl):])) / lnorm) dlx = ((- slope(left.x[(- nl):])) / lnorm) dry = (diff(right.y).mean() / rnorm) drx = (diff(right.x).mean() / rnorm) nr = (lr - 1) elif (nl < 2): rnorm = length(right.x[:nr], right.y[:nr]) lnorm = length(left.x, left.y) dry = ((- slope(right.y[:nr])) / rnorm) drx = ((- slope(right.x[:nr])) / rnorm) dly = (diff(left.y).mean() / lnorm) dlx = (diff(left.x).mean() / lnorm) nl = 0 else: rnorm = length(right.x[:nr], right.y[:nr]) lnorm = length(left.x[(- nl):], left.y[(- nl):]) dry = ((- slope(right.y[:nr])) / rnorm) drx = ((- slope(right.x[:nr])) / rnorm) dly = ((- slope(left.y[(- nl):])) / lnorm) dlx = ((- slope(left.x[(- nl):])) / lnorm) rnorm = hypot((left.x[0] - right.x[0]), (left.y[0] - right.y[0])) lnorm = hypot((left.x[(- 1)] - right.x[0]), (left.y[(- 1)] - right.y[0])) if (not isfinite(dlx)): dlx = ((left.x[0] - right.x[0]) / lnorm) if (not isfinite(dly)): dly = ((left.y[0] - right.y[0]) / lnorm) if (not isfinite(drx)): drx = ((left.x[(- 1)] - right.x[0]) / rnorm) if (not isfinite(dry)): dry = ((left.y[(- 1)] - right.y[0]) / rnorm) if reverse: dlx = (- dlx) dly = (- dly) drx = (- drx) dry = (- dry) ry = right.y[0] ly = left.y[(- 1)] rx = right.x[0] lx = left.x[(- 1)] L = hypot((rx - lx), (ry - ly)) print(('L:%g' % L)) yv = matrix([[ly], [ry], [(dly * L)], [(dry * L)]]) xv = matrix([[lx], [rx], [(dlx * L)], [(drx * L)]]) cx = (minv * xv) cy = (minv * yv) if (not (isfinite(cx).any() and isfinite(cy).any())): pdb.set_trace() return [array(t).squeeze() for t in (cx, cy)]
4,725,810,013,788,473,000
Solves for a parametric cubic polynomial curve joining the right side of left to the left side of right. The curve matches slope and position at it's boundaries and is parameterized from 0 to 1; 0 being the left boundary and 1 being the right. method: parametric cubic matching position and slope of endpoints. This ends up being cheap to compute, since the matrix is known (interval of parameter is always 0 to 1) and so the inverse can be precomputed. minv is inverse of m, where: m = array( [ [ a**3, a**2, a, 1 ], [ b**3, b**2, b, 1 ], [ 3*a**2, 2*a , 1, 0 ], [ 3*b**2, 2*b , 1, 0 ] ] ) is the matrix for the linear system: m * coeff = v, with v = [ x(0) x(1) dx/dt(0) dx/dt(1) ]. Here a = 0 and b = 1 so m and it's inverse is always the same.
whisk/test_merge3.py
solve_polynomial_join
aiporre/whisk
python
def solve_polynomial_join(left, right, reverse=0): "\n Solves for a parametric cubic polynomial curve joining the right side of left\n to the left side of right. The curve matches slope and position at it's\n boundaries and is parameterized from 0 to 1; 0 being the left boundary and 1\n being the right.\n\n method: parametric cubic matching position and slope of endpoints.\n This ends up being cheap to compute, since the matrix is\n known (interval of parameter is always 0 to 1) and so the \n inverse can be precomputed. \n minv is inverse of m, where:\n m = array( [ [ a**3, a**2, a, 1 ],\n [ b**3, b**2, b, 1 ], \n [ 3*a**2, 2*a , 1, 0 ],\n [ 3*b**2, 2*b , 1, 0 ] ] )\n is the matrix for the linear system:\n m * coeff = v,\n with v = [ x(0) x(1) dx/dt(0) dx/dt(1) ].\n Here a = 0 and b = 1 so m and it's inverse is always the same.\n \n " minv = matrix([[2.0, (- 2.0), 1.0, 1.0], [(- 3.0), 3.0, (- 2.0), (- 1.0)], [0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 0.0, 0.0]]) lr = len(right) ll = len(left) nl = (ll / 4) nr = (lr / 4) slope = (lambda v: (v[0] - v[(- 1)])) length = (lambda x, y: hypot(diff(x), diff(y)).sum()) if ((nr < 2) and (nl < 2)): lnorm = length(left.x, left.y) rnorm = length(right.x, right.y) dly = (diff(left.y).mean() / lnorm) dlx = (diff(left.x).mean() / lnorm) dry = (diff(right.y).mean() / rnorm) drx = (diff(right.x).mean() / rnorm) nl = 0 nr = (lr - 1) elif (nr < 2): lnorm = length(left.x[:nl], left.y[:nl]) rnorm = length(right.x, right.y) dly = ((- slope(left.y[(- nl):])) / lnorm) dlx = ((- slope(left.x[(- nl):])) / lnorm) dry = (diff(right.y).mean() / rnorm) drx = (diff(right.x).mean() / rnorm) nr = (lr - 1) elif (nl < 2): rnorm = length(right.x[:nr], right.y[:nr]) lnorm = length(left.x, left.y) dry = ((- slope(right.y[:nr])) / rnorm) drx = ((- slope(right.x[:nr])) / rnorm) dly = (diff(left.y).mean() / lnorm) dlx = (diff(left.x).mean() / lnorm) nl = 0 else: rnorm = length(right.x[:nr], right.y[:nr]) lnorm = length(left.x[(- nl):], left.y[(- nl):]) dry = ((- slope(right.y[:nr])) / rnorm) drx = ((- slope(right.x[:nr])) / rnorm) dly = ((- slope(left.y[(- nl):])) / lnorm) dlx = ((- slope(left.x[(- nl):])) / lnorm) rnorm = hypot((left.x[0] - right.x[0]), (left.y[0] - right.y[0])) lnorm = hypot((left.x[(- 1)] - right.x[0]), (left.y[(- 1)] - right.y[0])) if (not isfinite(dlx)): dlx = ((left.x[0] - right.x[0]) / lnorm) if (not isfinite(dly)): dly = ((left.y[0] - right.y[0]) / lnorm) if (not isfinite(drx)): drx = ((left.x[(- 1)] - right.x[0]) / rnorm) if (not isfinite(dry)): dry = ((left.y[(- 1)] - right.y[0]) / rnorm) if reverse: dlx = (- dlx) dly = (- dly) drx = (- drx) dry = (- dry) ry = right.y[0] ly = left.y[(- 1)] rx = right.x[0] lx = left.x[(- 1)] L = hypot((rx - lx), (ry - ly)) print(('L:%g' % L)) yv = matrix([[ly], [ry], [(dly * L)], [(dry * L)]]) xv = matrix([[lx], [rx], [(dlx * L)], [(drx * L)]]) cx = (minv * xv) cy = (minv * yv) if (not (isfinite(cx).any() and isfinite(cy).any())): pdb.set_trace() return [array(t).squeeze() for t in (cx, cy)]
def filter_ends(wv, min_score, shape, border=10): '\n Return candidate ends for joining.\n\n Returns an iterator yielding (Whisker_Seg, side).\n ' (maxy, maxx) = [(x - border) for x in shape] (minx, miny) = (border, border) test_point = (lambda x, y: ((x > minx) and (x < maxx) and (y > miny) and (y < maxy))) bordertest = (lambda e, side: test_point(e.x[side], e.y[side])) scoretest = (lambda e, side: (e.scores[side] > min_score)) sides = [0, (- 1)] for e in wv: for s in sides: if (bordertest(e, s) and scoretest(e, s)): (yield (e, s))
246,672,456,328,021,300
Return candidate ends for joining. Returns an iterator yielding (Whisker_Seg, side).
whisk/test_merge3.py
filter_ends
aiporre/whisk
python
def filter_ends(wv, min_score, shape, border=10): '\n Return candidate ends for joining.\n\n Returns an iterator yielding (Whisker_Seg, side).\n ' (maxy, maxx) = [(x - border) for x in shape] (minx, miny) = (border, border) test_point = (lambda x, y: ((x > minx) and (x < maxx) and (y > miny) and (y < maxy))) bordertest = (lambda e, side: test_point(e.x[side], e.y[side])) scoretest = (lambda e, side: (e.scores[side] > min_score)) sides = [0, (- 1)] for e in wv: for s in sides: if (bordertest(e, s) and scoretest(e, s)): (yield (e, s))
def __init__(self, wvd, shape, scale): ' `wvd` may be either a dict or list of whiskers ' object.__init__(self) self._map = {} self._shape = shape self._scale = scale self._stride = stride = (shape[1] / scale) self.topx = (lambda p: (int((p[0] / scale)) + (stride * int((p[1] / scale))))) self._build_inverse_table(wvd)
-3,386,438,633,474,830,000
`wvd` may be either a dict or list of whiskers
whisk/test_merge3.py
__init__
aiporre/whisk
python
def __init__(self, wvd, shape, scale): ' ' object.__init__(self) self._map = {} self._shape = shape self._scale = scale self._stride = stride = (shape[1] / scale) self.topx = (lambda p: (int((p[0] / scale)) + (stride * int((p[1] / scale))))) self._build_inverse_table(wvd)
def update(self, changes): ' Changes is a dict mapping old whisker segments to new segments ' last = None for (w, p) in changes.items(): self.remove(w) if p: self.add(p[0]) self.add(p[(- 1)]) last = p[1] if last: self.add(last)
-137,687,085,251,495,400
Changes is a dict mapping old whisker segments to new segments
whisk/test_merge3.py
update
aiporre/whisk
python
def update(self, changes): ' ' last = None for (w, p) in changes.items(): self.remove(w) if p: self.add(p[0]) self.add(p[(- 1)]) last = p[1] if last: self.add(last)
def __next__(self): ' This changes the inverse table by removing hits.\n\n Returns a (Whisker_Seg, index),(Whisker_Seg, index)... tuple\n or None, if done.\n ' todelete = [] retval = None for (px, s) in self._map.items(): todelete.append(px) if (len(s) > 1): retval = s break for k in todelete: del self._map[k] return retval
5,829,238,777,711,661,000
This changes the inverse table by removing hits. Returns a (Whisker_Seg, index),(Whisker_Seg, index)... tuple or None, if done.
whisk/test_merge3.py
__next__
aiporre/whisk
python
def __next__(self): ' This changes the inverse table by removing hits.\n\n Returns a (Whisker_Seg, index),(Whisker_Seg, index)... tuple\n or None, if done.\n ' todelete = [] retval = None for (px, s) in self._map.items(): todelete.append(px) if (len(s) > 1): retval = s break for k in todelete: del self._map[k] return retval
@patch('businesslogic.placeholders.Placeholder._initialize_global_placeholders') @patch('instructionparsers.xmlparser.XmlParser._init_instructions') @patch('instructionparsers.xmlparser.path.isfile') @patch('instructionparsers.xmlparser.XmlParser._validate_schema') @patch('instructionparsers.xmlparser.XmlParser._initializemetadata') def test_instructionspath(self, placeholder_mock, xmlparser_mock, isfile_mock, schema_mock, initmetadata_mock): '\n Will return the instructions file path set in __init__\n ' from instructionparsers.xmlparser import XmlParser expected_file = 'test_instructions.xml' isfile_mock.return_value = True xml_parser = XmlParser(instructionspath=expected_file, protocol=None) actual_file = xml_parser.instructionspath self.assertEqual(expected_file, actual_file)
-4,977,607,476,640,469,000
Will return the instructions file path set in __init__
tests/test_xmlparser.py
test_instructionspath
3Peso/mosk
python
@patch('businesslogic.placeholders.Placeholder._initialize_global_placeholders') @patch('instructionparsers.xmlparser.XmlParser._init_instructions') @patch('instructionparsers.xmlparser.path.isfile') @patch('instructionparsers.xmlparser.XmlParser._validate_schema') @patch('instructionparsers.xmlparser.XmlParser._initializemetadata') def test_instructionspath(self, placeholder_mock, xmlparser_mock, isfile_mock, schema_mock, initmetadata_mock): '\n \n ' from instructionparsers.xmlparser import XmlParser expected_file = 'test_instructions.xml' isfile_mock.return_value = True xml_parser = XmlParser(instructionspath=expected_file, protocol=None) actual_file = xml_parser.instructionspath self.assertEqual(expected_file, actual_file)
@patch('businesslogic.placeholders.Placeholder._initialize_global_placeholders') @patch('instructionparsers.xmlparser.XmlParser._init_instructions') @patch('instructionparsers.xmlparser.path.isfile') @patch('instructionparsers.xmlparser.XmlParser._validate_schema') @patch('instructionparsers.xmlparser.XmlParser._initializemetadata') def test_instructionspath_instruction_file_not_there(self, placeholder_mock, xmlparser_mock, isfile_mock, schema_mock, initmetadata_mock): '\n Will raise FileNotFound exeption.\n ' from instructionparsers.xmlparser import XmlParser expected_file = 'test_instructions.xml' isfile_mock.return_value = True xml_parser = XmlParser(instructionspath=expected_file, protocol=None) isfile_mock.return_value = False with self.assertRaises(FileNotFoundError): xml_parser.instructionspath = expected_file
8,851,255,329,636,294,000
Will raise FileNotFound exeption.
tests/test_xmlparser.py
test_instructionspath_instruction_file_not_there
3Peso/mosk
python
@patch('businesslogic.placeholders.Placeholder._initialize_global_placeholders') @patch('instructionparsers.xmlparser.XmlParser._init_instructions') @patch('instructionparsers.xmlparser.path.isfile') @patch('instructionparsers.xmlparser.XmlParser._validate_schema') @patch('instructionparsers.xmlparser.XmlParser._initializemetadata') def test_instructionspath_instruction_file_not_there(self, placeholder_mock, xmlparser_mock, isfile_mock, schema_mock, initmetadata_mock): '\n \n ' from instructionparsers.xmlparser import XmlParser expected_file = 'test_instructions.xml' isfile_mock.return_value = True xml_parser = XmlParser(instructionspath=expected_file, protocol=None) isfile_mock.return_value = False with self.assertRaises(FileNotFoundError): xml_parser.instructionspath = expected_file
def test__validate_schema_valid_instructions(self): '\n Should do nothing.\n ' from instructionparsers.xmlparser import XmlParser try: XmlParser.XMLSCHEMA_PATH = '../instructionparsers/xmlparser.xsd' XmlParser._validate_schema(xmlfilepath='./instructions/valid_instructions.xml') except XMLSchemaException: self.fail('_validate_schema should not raise exception with valid xml instructions.')
15,335,525,377,500,458
Should do nothing.
tests/test_xmlparser.py
test__validate_schema_valid_instructions
3Peso/mosk
python
def test__validate_schema_valid_instructions(self): '\n \n ' from instructionparsers.xmlparser import XmlParser try: XmlParser.XMLSCHEMA_PATH = '../instructionparsers/xmlparser.xsd' XmlParser._validate_schema(xmlfilepath='./instructions/valid_instructions.xml') except XMLSchemaException: self.fail('_validate_schema should not raise exception with valid xml instructions.')
def test__validate_schema_invalid_instructions(self): '\n Should raise exception.\n ' from instructionparsers.xmlparser import XmlParser XmlParser.XMLSCHEMA_PATH = '../instructionparsers/xmlparser.xsd' self.assertRaises(XMLSchemaException, XmlParser._validate_schema, './instructions/invalid_instructions.xml')
-6,052,100,148,682,693,000
Should raise exception.
tests/test_xmlparser.py
test__validate_schema_invalid_instructions
3Peso/mosk
python
def test__validate_schema_invalid_instructions(self): '\n \n ' from instructionparsers.xmlparser import XmlParser XmlParser.XMLSCHEMA_PATH = '../instructionparsers/xmlparser.xsd' self.assertRaises(XMLSchemaException, XmlParser._validate_schema, './instructions/invalid_instructions.xml')
def test__validate_schema_minimal_valid_instructions(self): '\n Should do nothing.\n ' from instructionparsers.xmlparser import XmlParser try: XmlParser.XMLSCHEMA_PATH = '../instructionparsers/xmlparser.xsd' XmlParser._validate_schema(xmlfilepath='./instructions/minimal_valid_instructions.xml') except XMLSchemaException: self.fail('_validate_schema should not raise exception with valid xml instructions.')
2,742,942,849,900,286,500
Should do nothing.
tests/test_xmlparser.py
test__validate_schema_minimal_valid_instructions
3Peso/mosk
python
def test__validate_schema_minimal_valid_instructions(self): '\n \n ' from instructionparsers.xmlparser import XmlParser try: XmlParser.XMLSCHEMA_PATH = '../instructionparsers/xmlparser.xsd' XmlParser._validate_schema(xmlfilepath='./instructions/minimal_valid_instructions.xml') except XMLSchemaException: self.fail('_validate_schema should not raise exception with valid xml instructions.')
@patch('instructionparsers.xmlparser.XmlParser.instructionspath') def test__initializemetadata_valid_instructions(self, path_mock): '\n Should initialize member \'metadata\' with all elements which have the attribute "title".\n ' metadata = ('Examiner', 'Assignment', 'Client', 'Description of Artefact', 'Task Description') from instructionparsers.xmlparser import XmlParser instructions = './instructions/valid_instructions.xml' xml_parser = XmlParser(instructionspath=instructions, protocol=None) xml_parser._instructionspath = instructions xml_parser._initializemetadata() for data in metadata: with self.subTest(data): self.assertIsNotNone(xml_parser.metadata[data])
3,682,683,099,307,162,000
Should initialize member 'metadata' with all elements which have the attribute "title".
tests/test_xmlparser.py
test__initializemetadata_valid_instructions
3Peso/mosk
python
@patch('instructionparsers.xmlparser.XmlParser.instructionspath') def test__initializemetadata_valid_instructions(self, path_mock): '\n Should initialize member \'metadata\' with all elements which have the attribute "title".\n ' metadata = ('Examiner', 'Assignment', 'Client', 'Description of Artefact', 'Task Description') from instructionparsers.xmlparser import XmlParser instructions = './instructions/valid_instructions.xml' xml_parser = XmlParser(instructionspath=instructions, protocol=None) xml_parser._instructionspath = instructions xml_parser._initializemetadata() for data in metadata: with self.subTest(data): self.assertIsNotNone(xml_parser.metadata[data])
@patch('instructionparsers.xmlparser.XmlParser.instructionspath') def test__init_instructions_valid_instructions(self, path_mock): '\n Should initialize collectors for all XML elements which have the attribute "module".\n ' from instructionparsers.xmlparser import XmlParser from instructionparsers.wrapper import InstructionWrapper instructions = './instructions/valid_instructions.xml' xml_parser = XmlParser(instructionspath=instructions, protocol=None) xml_parser._instructionspath = instructions instructionstree = xml_parser._init_instructions() self.assertIsInstance(instructionstree, InstructionWrapper)
-2,930,029,731,182,761,500
Should initialize collectors for all XML elements which have the attribute "module".
tests/test_xmlparser.py
test__init_instructions_valid_instructions
3Peso/mosk
python
@patch('instructionparsers.xmlparser.XmlParser.instructionspath') def test__init_instructions_valid_instructions(self, path_mock): '\n \n ' from instructionparsers.xmlparser import XmlParser from instructionparsers.wrapper import InstructionWrapper instructions = './instructions/valid_instructions.xml' xml_parser = XmlParser(instructionspath=instructions, protocol=None) xml_parser._instructionspath = instructions instructionstree = xml_parser._init_instructions() self.assertIsInstance(instructionstree, InstructionWrapper)
@patch('instructionparsers.xmlparser.XmlParser.instructionspath') def test__init_instructions_valid_instructions(self, path_mock): '\n Should return the instruction tree starting with "Root" node.\n ' from instructionparsers.xmlparser import XmlParser instructions = './instructions/valid_instructions.xml' xml_parser = XmlParser(instructionspath=instructions, protocol=None) xml_parser._instructionspath = instructions instructionstree = xml_parser._init_instructions() self.assertEqual(instructionstree.instructionname, 'Root') self.assertEqual(instructionstree.instructionchildren[0].instructionname, 'LocalHost') self.assertEqual(instructionstree.instructionchildren[0].instructionchildren[0].instructionname, 'MachineName') self.assertEqual(instructionstree.instructionchildren[1].instructionname, 'LocalHost') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[0].instructionname, 'OSName') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[1].instructionname, 'OSVersion') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[2].instructionname, 'OSTimezone') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[3].instructionname, 'AllUsernames') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[4].instructionname, 'CurrentUser') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[5].instructionname, 'SudoVersion') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[6].instructionname, 'FileExistence') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[7].instructionname, 'FileExistence') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[8].instructionname, 'FileExistence') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[9].instructionname, 'FileExistence') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[10].instructionname, 'FileExistence') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[11].instructionname, 'ShellHistoryOfAllUsers') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[12].instructionname, 'NVRAMCollector') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[13].instructionname, 'TimeFromNTPServer') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[14].instructionname, 'LocalTime')
-8,174,262,218,797,025,000
Should return the instruction tree starting with "Root" node.
tests/test_xmlparser.py
test__init_instructions_valid_instructions
3Peso/mosk
python
@patch('instructionparsers.xmlparser.XmlParser.instructionspath') def test__init_instructions_valid_instructions(self, path_mock): '\n \n ' from instructionparsers.xmlparser import XmlParser instructions = './instructions/valid_instructions.xml' xml_parser = XmlParser(instructionspath=instructions, protocol=None) xml_parser._instructionspath = instructions instructionstree = xml_parser._init_instructions() self.assertEqual(instructionstree.instructionname, 'Root') self.assertEqual(instructionstree.instructionchildren[0].instructionname, 'LocalHost') self.assertEqual(instructionstree.instructionchildren[0].instructionchildren[0].instructionname, 'MachineName') self.assertEqual(instructionstree.instructionchildren[1].instructionname, 'LocalHost') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[0].instructionname, 'OSName') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[1].instructionname, 'OSVersion') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[2].instructionname, 'OSTimezone') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[3].instructionname, 'AllUsernames') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[4].instructionname, 'CurrentUser') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[5].instructionname, 'SudoVersion') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[6].instructionname, 'FileExistence') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[7].instructionname, 'FileExistence') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[8].instructionname, 'FileExistence') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[9].instructionname, 'FileExistence') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[10].instructionname, 'FileExistence') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[11].instructionname, 'ShellHistoryOfAllUsers') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[12].instructionname, 'NVRAMCollector') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[13].instructionname, 'TimeFromNTPServer') self.assertEqual(instructionstree.instructionchildren[1].instructionchildren[14].instructionname, 'LocalTime')
@patch('instructionparsers.xmlparser.XmlParser.instructionspath') def test__get_first_instruction_element(self, path_mock): '\n Should return the xml element with the title "Root".\n ' from instructionparsers.xmlparser import XmlParser instructions = './instructions/valid_instructions.xml' xml_parser = XmlParser(instructionspath=instructions, protocol=None) xml_parser._instructionspath = instructions element = xml_parser._get_first_instruction_element() self.assertIsInstance(element, Element) self.assertEqual(element.localName, 'Root')
-8,376,315,482,908,859,000
Should return the xml element with the title "Root".
tests/test_xmlparser.py
test__get_first_instruction_element
3Peso/mosk
python
@patch('instructionparsers.xmlparser.XmlParser.instructionspath') def test__get_first_instruction_element(self, path_mock): '\n \n ' from instructionparsers.xmlparser import XmlParser instructions = './instructions/valid_instructions.xml' xml_parser = XmlParser(instructionspath=instructions, protocol=None) xml_parser._instructionspath = instructions element = xml_parser._get_first_instruction_element() self.assertIsInstance(element, Element) self.assertEqual(element.localName, 'Root')
def test__get_placeholder_name(self): '\n If XmlElement contains attribute "placeholder" method should return value of this attribute.\n ' from instructionparsers.xmlparser import XmlParser document = Document() element = document.createElement('Demo') element.setAttribute(XmlParser.PLACEHOLDERNAME_ATTRIBUTE, 'test') result = XmlParser._get_placeholder_name(element) self.assertEqual(result, 'test')
4,556,195,059,788,626,000
If XmlElement contains attribute "placeholder" method should return value of this attribute.
tests/test_xmlparser.py
test__get_placeholder_name
3Peso/mosk
python
def test__get_placeholder_name(self): '\n \n ' from instructionparsers.xmlparser import XmlParser document = Document() element = document.createElement('Demo') element.setAttribute(XmlParser.PLACEHOLDERNAME_ATTRIBUTE, 'test') result = XmlParser._get_placeholder_name(element) self.assertEqual(result, 'test')
def test__get_placeholder_name_no_placeholder(self): '\n If XmlElement does not contain attribute "placeholder" method should return an empty string.\n ' from instructionparsers.xmlparser import XmlParser element = Element('Demo') result = XmlParser._get_placeholder_name(element) self.assertEqual(result, '')
1,274,365,093,746,357,800
If XmlElement does not contain attribute "placeholder" method should return an empty string.
tests/test_xmlparser.py
test__get_placeholder_name_no_placeholder
3Peso/mosk
python
def test__get_placeholder_name_no_placeholder(self): '\n \n ' from instructionparsers.xmlparser import XmlParser element = Element('Demo') result = XmlParser._get_placeholder_name(element) self.assertEqual(result, )
@patch('instructionparsers.xmlparser.XmlParser.instructionspath') def test__get_parameter_attributes_return_userdict(self, path_mock): '\n Should return UserDict\n ' from instructionparsers.xmlparser import XmlParser from collections import UserDict elem = parse('./instructions/instructions_stub.xml').documentElement.childNodes[1] actual = XmlParser._get_parameter_attributes(attributes=elem.attributes) self.assertIsInstance(actual, UserDict)
8,628,808,085,382,813,000
Should return UserDict
tests/test_xmlparser.py
test__get_parameter_attributes_return_userdict
3Peso/mosk
python
@patch('instructionparsers.xmlparser.XmlParser.instructionspath') def test__get_parameter_attributes_return_userdict(self, path_mock): '\n \n ' from instructionparsers.xmlparser import XmlParser from collections import UserDict elem = parse('./instructions/instructions_stub.xml').documentElement.childNodes[1] actual = XmlParser._get_parameter_attributes(attributes=elem.attributes) self.assertIsInstance(actual, UserDict)
@patch('instructionparsers.xmlparser.XmlParser.instructionspath') def test__get_parameter_attributes_return_userdict_with_2_entries(self, path_mock): '\n Should return dict with two entries\n ' from instructionparsers.xmlparser import XmlParser from collections import UserDict elem = parse('./instructions/instructions_stub.xml').documentElement.childNodes[1] actual = XmlParser._get_parameter_attributes(attributes=elem.attributes) self.assertEqual(len(actual), 2)
4,547,153,624,282,183,700
Should return dict with two entries
tests/test_xmlparser.py
test__get_parameter_attributes_return_userdict_with_2_entries
3Peso/mosk
python
@patch('instructionparsers.xmlparser.XmlParser.instructionspath') def test__get_parameter_attributes_return_userdict_with_2_entries(self, path_mock): '\n \n ' from instructionparsers.xmlparser import XmlParser from collections import UserDict elem = parse('./instructions/instructions_stub.xml').documentElement.childNodes[1] actual = XmlParser._get_parameter_attributes(attributes=elem.attributes) self.assertEqual(len(actual), 2)
@patch('instructionparsers.xmlparser.XmlParser.instructionspath') def test__get_parameter_attributes_should_return_none_special_attributes(self, path_mock): '\n Should return dicitionry with "users_with_homedir" key and with "properties" key.\n ' from instructionparsers.xmlparser import XmlParser from collections import UserDict elem = parse('./instructions/instructions_stub.xml').documentElement.childNodes[1] actual = XmlParser._get_parameter_attributes(attributes=elem.attributes) self.assertIsNotNone(actual.get('properties')) self.assertIsNotNone(actual.get('users_with_homedir'))
-7,049,063,655,947,019,000
Should return dicitionry with "users_with_homedir" key and with "properties" key.
tests/test_xmlparser.py
test__get_parameter_attributes_should_return_none_special_attributes
3Peso/mosk
python
@patch('instructionparsers.xmlparser.XmlParser.instructionspath') def test__get_parameter_attributes_should_return_none_special_attributes(self, path_mock): '\n \n ' from instructionparsers.xmlparser import XmlParser from collections import UserDict elem = parse('./instructions/instructions_stub.xml').documentElement.childNodes[1] actual = XmlParser._get_parameter_attributes(attributes=elem.attributes) self.assertIsNotNone(actual.get('properties')) self.assertIsNotNone(actual.get('users_with_homedir'))
def LessOptionsStart(builder): 'This method is deprecated. Please switch to Start.' return Start(builder)
-7,271,987,008,384,153,000
This method is deprecated. Please switch to Start.
tf2onnx/tflite/LessOptions.py
LessOptionsStart
LoicDagnas/tensorflow-onnx
python
def LessOptionsStart(builder): return Start(builder)
def LessOptionsEnd(builder): 'This method is deprecated. Please switch to End.' return End(builder)
7,464,512,795,446,503,000
This method is deprecated. Please switch to End.
tf2onnx/tflite/LessOptions.py
LessOptionsEnd
LoicDagnas/tensorflow-onnx
python
def LessOptionsEnd(builder): return End(builder)
@classmethod def GetRootAsLessOptions(cls, buf, offset=0): 'This method is deprecated. Please switch to GetRootAs.' return cls.GetRootAs(buf, offset)
7,481,250,055,416,234,000
This method is deprecated. Please switch to GetRootAs.
tf2onnx/tflite/LessOptions.py
GetRootAsLessOptions
LoicDagnas/tensorflow-onnx
python
@classmethod def GetRootAsLessOptions(cls, buf, offset=0): return cls.GetRootAs(buf, offset)
@contextlib.contextmanager def db_role_setter(conn, *, role_name): 'Since we catch exceptions here and log, temporarily install a customised hook.' with conn.cursor() as cursor: cursor.execute('SHOW ROLE') old_role = cursor.fetchone()[0] cursor.execute('SET ROLE %s', [role_name]) (yield role_name) cursor.execute('SET ROLE %s', [old_role])
586,806,249,027,235,700
Since we catch exceptions here and log, temporarily install a customised hook.
src/dirbs/utils.py
db_role_setter
nealmadhu/DIRBS-Core
python
@contextlib.contextmanager def db_role_setter(conn, *, role_name): with conn.cursor() as cursor: cursor.execute('SHOW ROLE') old_role = cursor.fetchone()[0] cursor.execute('SET ROLE %s', [role_name]) (yield role_name) cursor.execute('SET ROLE %s', [old_role])
def compute_md5_hash(file, buf_size=65536): 'Utility method to generate a md5 hash of file.' md5_hash = hashlib.md5() while True: data = file.read(buf_size) if (not data): break md5_hash.update(data) return md5_hash.hexdigest()
6,161,984,623,669,644,000
Utility method to generate a md5 hash of file.
src/dirbs/utils.py
compute_md5_hash
nealmadhu/DIRBS-Core
python
def compute_md5_hash(file, buf_size=65536): md5_hash = hashlib.md5() while True: data = file.read(buf_size) if (not data): break md5_hash.update(data) return md5_hash.hexdigest()
def cachebusted_filename_from_contents(byte_array): 'Utility method to generate a unique filename based on the hash of a given content array (of bytes).' return compute_md5_hash(io.BytesIO(byte_array))[:8]
-1,696,663,648,842,604,000
Utility method to generate a unique filename based on the hash of a given content array (of bytes).
src/dirbs/utils.py
cachebusted_filename_from_contents
nealmadhu/DIRBS-Core
python
def cachebusted_filename_from_contents(byte_array): return compute_md5_hash(io.BytesIO(byte_array))[:8]
def cli_db_params_from_dsn(dsn, user=None, database=None, port=None, host=None): 'Convert DB-related command-line arguments from a DSN into a format appropriate for DIRBS CLI commands.' db_args = [] db_args.append('--db-user={0}'.format((user if (user is not None) else dsn.get('user')))) db_args.append('--db-name={0}'.format((database if (database is not None) else dsn.get('database')))) db_args.append('--db-port={0}'.format((port if (port is not None) else dsn.get('port')))) db_args.append('--db-host={0}'.format((host if (host is not None) else dsn.get('host')))) return db_args
-2,480,064,948,385,259,500
Convert DB-related command-line arguments from a DSN into a format appropriate for DIRBS CLI commands.
src/dirbs/utils.py
cli_db_params_from_dsn
nealmadhu/DIRBS-Core
python
def cli_db_params_from_dsn(dsn, user=None, database=None, port=None, host=None): db_args = [] db_args.append('--db-user={0}'.format((user if (user is not None) else dsn.get('user')))) db_args.append('--db-name={0}'.format((database if (database is not None) else dsn.get('database')))) db_args.append('--db-port={0}'.format((port if (port is not None) else dsn.get('port')))) db_args.append('--db-host={0}'.format((host if (host is not None) else dsn.get('host')))) return db_args
def create_db_connection(db_config, readonly=False, autocommit=False): 'Creates a DB connection to the database.\n\n Imports the config module, which results in the config being read from disk.\n Changes to the config file made after this method has been called will not be read.\n\n Calling entity should handle connection errors as appropriate.\n ' logger = logging.getLogger('dirbs.sql') logger.debug('Attempting to connect to the database {0} on host {1}'.format(db_config.database, db_config.host)) conn = psycopg2.connect('{0} keepalives=1 keepalives_idle=240'.format(db_config.connection_string), cursor_factory=LoggingNamedTupleCursor) conn.set_session(readonly=readonly, autocommit=autocommit) logger.debug('Connection to database successful.') return conn
-6,769,060,532,684,972,000
Creates a DB connection to the database. Imports the config module, which results in the config being read from disk. Changes to the config file made after this method has been called will not be read. Calling entity should handle connection errors as appropriate.
src/dirbs/utils.py
create_db_connection
nealmadhu/DIRBS-Core
python
def create_db_connection(db_config, readonly=False, autocommit=False): 'Creates a DB connection to the database.\n\n Imports the config module, which results in the config being read from disk.\n Changes to the config file made after this method has been called will not be read.\n\n Calling entity should handle connection errors as appropriate.\n ' logger = logging.getLogger('dirbs.sql') logger.debug('Attempting to connect to the database {0} on host {1}'.format(db_config.database, db_config.host)) conn = psycopg2.connect('{0} keepalives=1 keepalives_idle=240'.format(db_config.connection_string), cursor_factory=LoggingNamedTupleCursor) conn.set_session(readonly=readonly, autocommit=autocommit) logger.debug('Connection to database successful.') return conn
def verify_db_schema(conn, required_role): 'Function that runs all DB verification checks.' warn_if_db_superuser(conn) verify_db_roles_installed(conn) verify_db_role_for_job(conn, required_role) verify_db_schema_version(conn) verify_db_ownership(conn) verify_hll_schema(conn) verify_core_schema(conn) verify_db_search_path(conn)
887,756,644,857,539,100
Function that runs all DB verification checks.
src/dirbs/utils.py
verify_db_schema
nealmadhu/DIRBS-Core
python
def verify_db_schema(conn, required_role): warn_if_db_superuser(conn) verify_db_roles_installed(conn) verify_db_role_for_job(conn, required_role) verify_db_schema_version(conn) verify_db_ownership(conn) verify_hll_schema(conn) verify_core_schema(conn) verify_db_search_path(conn)
def warn_if_db_superuser(conn): 'Warn if the current DB user is a PostgreSQL superuser.' logger = logging.getLogger('dirbs.db') if is_db_user_superuser(conn): logger.warn('Running as PostgreSQL superuser -- for security reasons, we recommend running all DIRBS tasks as a normal user')
4,244,715,382,031,265,300
Warn if the current DB user is a PostgreSQL superuser.
src/dirbs/utils.py
warn_if_db_superuser
nealmadhu/DIRBS-Core
python
def warn_if_db_superuser(conn): logger = logging.getLogger('dirbs.db') if is_db_user_superuser(conn): logger.warn('Running as PostgreSQL superuser -- for security reasons, we recommend running all DIRBS tasks as a normal user')
def verify_db_roles_installed(conn): 'Function used to verify whether roles have been installed in the DB.' logger = logging.getLogger('dirbs.db') with conn.cursor() as cursor: cursor.execute("SELECT 1 AS res FROM pg_roles WHERE rolname = 'dirbs_core_power_user'") if (cursor.fetchone() is None): logger.error("DIRBS Core roles have not been installed - run 'dirbs-db install_roles' before running 'dirbs-db install'") raise DatabaseSchemaException('DIRBS Core database roles have not been installed')
-1,286,691,893,464,138,200
Function used to verify whether roles have been installed in the DB.
src/dirbs/utils.py
verify_db_roles_installed
nealmadhu/DIRBS-Core
python
def verify_db_roles_installed(conn): logger = logging.getLogger('dirbs.db') with conn.cursor() as cursor: cursor.execute("SELECT 1 AS res FROM pg_roles WHERE rolname = 'dirbs_core_power_user'") if (cursor.fetchone() is None): logger.error("DIRBS Core roles have not been installed - run 'dirbs-db install_roles' before running 'dirbs-db install'") raise DatabaseSchemaException('DIRBS Core database roles have not been installed')
def verify_db_role_for_job(conn, expected_role): 'Function used to verify that the current DB user is in the role expected for this job.' if (not is_db_user_dirbs_role(conn, expected_role)): role = conn.get_dsn_parameters().get('user') raise DatabaseRoleCheckException('Current DB user {0} does not have required role: {1}. To fix this:\n\t1. GRANT {1} TO {0};'.format(role, expected_role))
866,532,192,136,172,500
Function used to verify that the current DB user is in the role expected for this job.
src/dirbs/utils.py
verify_db_role_for_job
nealmadhu/DIRBS-Core
python
def verify_db_role_for_job(conn, expected_role): if (not is_db_user_dirbs_role(conn, expected_role)): role = conn.get_dsn_parameters().get('user') raise DatabaseRoleCheckException('Current DB user {0} does not have required role: {1}. To fix this:\n\t1. GRANT {1} TO {0};'.format(role, expected_role))
def verify_db_schema_version(conn): 'Function used to check whether the DB schema version matches the code schema version.' logger = logging.getLogger('dirbs.db') version = query_db_schema_version(conn) if (version != code_db_schema_version): if (version is None): logger.error('DB schema has not been installed via dirbs-db install!') raise DatabaseSchemaException('No DB schema installed - perform a dirbs-db install first!') else: logger.error('DB schema version does not match code!') logger.error('Code schema version: %d', code_db_schema_version) logger.error('DB schema version: %d', version) raise DatabaseSchemaException('Mismatch between code and DB schema versions - perform a dirbs-db upgrade!')
5,007,492,157,737,945,000
Function used to check whether the DB schema version matches the code schema version.
src/dirbs/utils.py
verify_db_schema_version
nealmadhu/DIRBS-Core
python
def verify_db_schema_version(conn): logger = logging.getLogger('dirbs.db') version = query_db_schema_version(conn) if (version != code_db_schema_version): if (version is None): logger.error('DB schema has not been installed via dirbs-db install!') raise DatabaseSchemaException('No DB schema installed - perform a dirbs-db install first!') else: logger.error('DB schema version does not match code!') logger.error('Code schema version: %d', code_db_schema_version) logger.error('DB schema version: %d', version) raise DatabaseSchemaException('Mismatch between code and DB schema versions - perform a dirbs-db upgrade!')
def verify_db_ownership(conn): 'Function used to check whether DB ownership matches what we expect.' logger = logging.getLogger('dirbs.db') if (query_db_ownership(conn) != 'dirbs_core_power_user'): logger.error('Database is not owned by the dirbs_core_power_user group! Please the following as the current DB owner (whilst logged into the database):\n\tALTER DATABASE <database> OWNER TO dirbs_core_power_user;') raise DatabaseSchemaException('Incorrect database ownership!')
5,671,161,847,534,446,000
Function used to check whether DB ownership matches what we expect.
src/dirbs/utils.py
verify_db_ownership
nealmadhu/DIRBS-Core
python
def verify_db_ownership(conn): logger = logging.getLogger('dirbs.db') if (query_db_ownership(conn) != 'dirbs_core_power_user'): logger.error('Database is not owned by the dirbs_core_power_user group! Please the following as the current DB owner (whilst logged into the database):\n\tALTER DATABASE <database> OWNER TO dirbs_core_power_user;') raise DatabaseSchemaException('Incorrect database ownership!')
def verify_core_schema(conn): 'Function used to check whether Core schema exists and has correct ownership.' if (not query_schema_existence(conn, 'core')): raise DatabaseSchemaException("Missing schema 'core' in DB. Was dirbs-db install run successfully?") if (query_schema_ownership(conn, 'core') != 'dirbs_core_power_user'): raise DatabaseSchemaException("Schema 'core' is not owned by dirbs_core_power_user!")
5,272,892,874,875,728,000
Function used to check whether Core schema exists and has correct ownership.
src/dirbs/utils.py
verify_core_schema
nealmadhu/DIRBS-Core
python
def verify_core_schema(conn): if (not query_schema_existence(conn, 'core')): raise DatabaseSchemaException("Missing schema 'core' in DB. Was dirbs-db install run successfully?") if (query_schema_ownership(conn, 'core') != 'dirbs_core_power_user'): raise DatabaseSchemaException("Schema 'core' is not owned by dirbs_core_power_user!")
def verify_hll_schema(conn): 'Function used to check whether HLL schema exists and that extension is installed correctly.' logger = logging.getLogger('dirbs.db') if (not query_schema_existence(conn, 'hll')): logger.error("Schema 'hll' does not exist. Please ensure the hll extension is installed and run the following as a superuser whilst connected to this DB: \n\t1. CREATE SCHEMA hll;\n\t2. GRANT USAGE ON SCHEMA hll TO dirbs_core_base;\n\t3. CREATE EXTENSION hll SCHEMA hll;") raise DatabaseSchemaException('HLL schema not created!') with conn.cursor() as cursor: try: cursor.execute("SELECT pg_get_functiondef('hll.hll_print(hll.hll)'::regprocedure)") except psycopg2.ProgrammingError: logger.error('The HLL extension is not installed correctly. Please issue the following as a superuser whilst connected to this DB: \n\tCREATE EXTENSION hll SCHEMA hll;') raise DatabaseSchemaException('DB search_path does not include hll or extension not installed!')
2,937,410,098,723,305,500
Function used to check whether HLL schema exists and that extension is installed correctly.
src/dirbs/utils.py
verify_hll_schema
nealmadhu/DIRBS-Core
python
def verify_hll_schema(conn): logger = logging.getLogger('dirbs.db') if (not query_schema_existence(conn, 'hll')): logger.error("Schema 'hll' does not exist. Please ensure the hll extension is installed and run the following as a superuser whilst connected to this DB: \n\t1. CREATE SCHEMA hll;\n\t2. GRANT USAGE ON SCHEMA hll TO dirbs_core_base;\n\t3. CREATE EXTENSION hll SCHEMA hll;") raise DatabaseSchemaException('HLL schema not created!') with conn.cursor() as cursor: try: cursor.execute("SELECT pg_get_functiondef('hll.hll_print(hll.hll)'::regprocedure)") except psycopg2.ProgrammingError: logger.error('The HLL extension is not installed correctly. Please issue the following as a superuser whilst connected to this DB: \n\tCREATE EXTENSION hll SCHEMA hll;') raise DatabaseSchemaException('DB search_path does not include hll or extension not installed!')
def verify_db_search_path(conn): 'Function used to check whether db_search_path is correct by looking for objects.' logger = logging.getLogger('dirbs.db') is_search_path_valid = True with conn.cursor() as cursor: cursor.execute("SELECT to_regclass('schema_version')") res = cursor.fetchone()[0] if (res is None): is_search_path_valid = False try: cursor.execute("SELECT pg_get_functiondef('hll_print(hll)'::regprocedure)") except psycopg2.ProgrammingError: is_search_path_valid = False if (not is_search_path_valid): logger.error('The search_path for the database is not set correctly. Please issue the following whilst connected to this DB: \n\tALTER DATABASE <database> SET search_path TO core, hll;') raise DatabaseSchemaException('DB search_path not set correctly!')
-4,710,171,244,612,890,000
Function used to check whether db_search_path is correct by looking for objects.
src/dirbs/utils.py
verify_db_search_path
nealmadhu/DIRBS-Core
python
def verify_db_search_path(conn): logger = logging.getLogger('dirbs.db') is_search_path_valid = True with conn.cursor() as cursor: cursor.execute("SELECT to_regclass('schema_version')") res = cursor.fetchone()[0] if (res is None): is_search_path_valid = False try: cursor.execute("SELECT pg_get_functiondef('hll_print(hll)'::regprocedure)") except psycopg2.ProgrammingError: is_search_path_valid = False if (not is_search_path_valid): logger.error('The search_path for the database is not set correctly. Please issue the following whilst connected to this DB: \n\tALTER DATABASE <database> SET search_path TO core, hll;') raise DatabaseSchemaException('DB search_path not set correctly!')
def query_db_schema_version(conn): 'Function to fetch the DB version number from the database.' logger = logging.getLogger('dirbs.db') with conn.cursor() as cur: try: cur.execute('SELECT MAX(version) FROM schema_version') return cur.fetchone()[0] except psycopg2.ProgrammingError as ex: logger.error(str(ex).strip()) return None
7,737,910,117,503,055,000
Function to fetch the DB version number from the database.
src/dirbs/utils.py
query_db_schema_version
nealmadhu/DIRBS-Core
python
def query_db_schema_version(conn): logger = logging.getLogger('dirbs.db') with conn.cursor() as cur: try: cur.execute('SELECT MAX(version) FROM schema_version') return cur.fetchone()[0] except psycopg2.ProgrammingError as ex: logger.error(str(ex).strip()) return None
def set_db_schema_version(conn, new_version): 'Function to set the DB version number in the database.' with conn.cursor() as cur: cur.execute('SELECT COUNT(*) FROM schema_version') num_rows = cur.fetchone()[0] assert (num_rows <= 1) if (num_rows > 0): cur.execute('UPDATE schema_version SET version = %s', [new_version]) else: cur.execute('INSERT INTO schema_version(version) VALUES(%s)', [new_version])
-7,654,731,514,572,616,000
Function to set the DB version number in the database.
src/dirbs/utils.py
set_db_schema_version
nealmadhu/DIRBS-Core
python
def set_db_schema_version(conn, new_version): with conn.cursor() as cur: cur.execute('SELECT COUNT(*) FROM schema_version') num_rows = cur.fetchone()[0] assert (num_rows <= 1) if (num_rows > 0): cur.execute('UPDATE schema_version SET version = %s', [new_version]) else: cur.execute('INSERT INTO schema_version(version) VALUES(%s)', [new_version])
def is_db_user_superuser(conn): 'Function to test whether the current DB user is a PostgreSQL superuser.' logger = logging.getLogger('dirbs.db') with conn.cursor() as cur: cur.execute('SELECT rolsuper\n FROM pg_roles\n WHERE rolname = CURRENT_USER') res = cur.fetchone() if (res is None): logger.warn('Failed to find CURRENT_USER in pg_roles table') return False return res[0]
-2,014,946,659,195,252,500
Function to test whether the current DB user is a PostgreSQL superuser.
src/dirbs/utils.py
is_db_user_superuser
nealmadhu/DIRBS-Core
python
def is_db_user_superuser(conn): logger = logging.getLogger('dirbs.db') with conn.cursor() as cur: cur.execute('SELECT rolsuper\n FROM pg_roles\n WHERE rolname = CURRENT_USER') res = cur.fetchone() if (res is None): logger.warn('Failed to find CURRENT_USER in pg_roles table') return False return res[0]
def is_db_user_dirbs_role(conn, role_name): 'Function to test whether the current DB user is in a DIRBS role.' with conn.cursor() as cur: cur.execute("SELECT pg_has_role(%s, 'MEMBER')", [role_name]) return cur.fetchone()[0]
7,042,693,565,980,279,000
Function to test whether the current DB user is in a DIRBS role.
src/dirbs/utils.py
is_db_user_dirbs_role
nealmadhu/DIRBS-Core
python
def is_db_user_dirbs_role(conn, role_name): with conn.cursor() as cur: cur.execute("SELECT pg_has_role(%s, 'MEMBER')", [role_name]) return cur.fetchone()[0]
def is_db_user_dirbs_poweruser(conn): 'Function to test whether the current DB user is a DIRBS power user.' return is_db_user_dirbs_role(conn, 'dirbs_core_power_user')
-2,488,561,900,685,019,000
Function to test whether the current DB user is a DIRBS power user.
src/dirbs/utils.py
is_db_user_dirbs_poweruser
nealmadhu/DIRBS-Core
python
def is_db_user_dirbs_poweruser(conn): return is_db_user_dirbs_role(conn, 'dirbs_core_power_user')
def can_db_user_create_roles(conn): 'Function to test whether the current DB user has the CREATEROLE privilege.' logger = logging.getLogger('dirbs.db') with conn.cursor() as cur: cur.execute('SELECT rolcreaterole\n FROM pg_roles\n WHERE rolname = CURRENT_USER') res = cur.fetchone() if (res is None): logger.warn('Failed to find CURRENT_USER in pg_roles table') return False return res[0]
-1,844,158,055,052,842,200
Function to test whether the current DB user has the CREATEROLE privilege.
src/dirbs/utils.py
can_db_user_create_roles
nealmadhu/DIRBS-Core
python
def can_db_user_create_roles(conn): logger = logging.getLogger('dirbs.db') with conn.cursor() as cur: cur.execute('SELECT rolcreaterole\n FROM pg_roles\n WHERE rolname = CURRENT_USER') res = cur.fetchone() if (res is None): logger.warn('Failed to find CURRENT_USER in pg_roles table') return False return res[0]
def query_db_ownership(conn): 'Function to verify whether the current database ownership is correct.' logger = logging.getLogger('dirbs.db') with conn.cursor() as cur: cur.execute('SELECT rolname\n FROM pg_roles\n JOIN pg_database\n ON (pg_database.datdba = pg_roles.oid)\n WHERE datname = current_database()') res = cur.fetchone() if (res is None): logger.warn('Failed to determing DB owner for current_database') return None return res[0]
6,090,212,680,849,892,000
Function to verify whether the current database ownership is correct.
src/dirbs/utils.py
query_db_ownership
nealmadhu/DIRBS-Core
python
def query_db_ownership(conn): logger = logging.getLogger('dirbs.db') with conn.cursor() as cur: cur.execute('SELECT rolname\n FROM pg_roles\n JOIN pg_database\n ON (pg_database.datdba = pg_roles.oid)\n WHERE datname = current_database()') res = cur.fetchone() if (res is None): logger.warn('Failed to determing DB owner for current_database') return None return res[0]
def query_schema_existence(conn, schema_name): 'Function to verify whether the current database schema ownership is correct.' with conn.cursor() as cur: cur.execute('SELECT EXISTS(SELECT 1 FROM information_schema.schemata WHERE SCHEMA_NAME = %s)', [schema_name]) return cur.fetchone().exists
-1,074,036,478,143,411,000
Function to verify whether the current database schema ownership is correct.
src/dirbs/utils.py
query_schema_existence
nealmadhu/DIRBS-Core
python
def query_schema_existence(conn, schema_name): with conn.cursor() as cur: cur.execute('SELECT EXISTS(SELECT 1 FROM information_schema.schemata WHERE SCHEMA_NAME = %s)', [schema_name]) return cur.fetchone().exists
def query_schema_ownership(conn, schema_name): 'Function to verify whether the current database schema ownership is correct.' logger = logging.getLogger('dirbs.db') with conn.cursor() as cur: cur.execute('SELECT rolname\n FROM pg_roles\n JOIN pg_namespace\n ON (pg_namespace.nspowner = pg_roles.oid)\n WHERE nspname = %s', [schema_name]) res = cur.fetchone() if (res is None): logger.warn('Failed to determing owner for current_schema') return None return res[0]
8,221,048,068,172,430,000
Function to verify whether the current database schema ownership is correct.
src/dirbs/utils.py
query_schema_ownership
nealmadhu/DIRBS-Core
python
def query_schema_ownership(conn, schema_name): logger = logging.getLogger('dirbs.db') with conn.cursor() as cur: cur.execute('SELECT rolname\n FROM pg_roles\n JOIN pg_namespace\n ON (pg_namespace.nspowner = pg_roles.oid)\n WHERE nspname = %s', [schema_name]) res = cur.fetchone() if (res is None): logger.warn('Failed to determing owner for current_schema') return None return res[0]
def compute_analysis_end_date(conn, curr_date): 'Function to get the end of the analysis window based on current operator data.' end_date = curr_date if (end_date is None): with conn.cursor() as cursor: monthly_country_child_tbl_list = child_table_names(conn, 'monthly_network_triplets_country') year_month_list_in_child_tbls_records = table_invariants_list(conn, monthly_country_child_tbl_list, ['triplet_year', 'triplet_month']) year_month_tuple_list = [(x.triplet_year, x.triplet_month) for x in year_month_list_in_child_tbls_records] if (len(year_month_tuple_list) > 0): year_month_tuple_list.sort(key=(lambda x: (x[0], x[1])), reverse=True) (latest_year, latest_month) = year_month_tuple_list[0] cursor.execute(sql.SQL('SELECT MAX(last_seen)\n FROM monthly_network_triplets_country\n WHERE triplet_year = %s\n AND triplet_month = %s'), [latest_year, latest_month]) end_date = cursor.fetchone()[0] if (end_date is None): end_date = datetime.date.today() return (end_date + datetime.timedelta(days=1))
4,949,691,341,178,486,000
Function to get the end of the analysis window based on current operator data.
src/dirbs/utils.py
compute_analysis_end_date
nealmadhu/DIRBS-Core
python
def compute_analysis_end_date(conn, curr_date): end_date = curr_date if (end_date is None): with conn.cursor() as cursor: monthly_country_child_tbl_list = child_table_names(conn, 'monthly_network_triplets_country') year_month_list_in_child_tbls_records = table_invariants_list(conn, monthly_country_child_tbl_list, ['triplet_year', 'triplet_month']) year_month_tuple_list = [(x.triplet_year, x.triplet_month) for x in year_month_list_in_child_tbls_records] if (len(year_month_tuple_list) > 0): year_month_tuple_list.sort(key=(lambda x: (x[0], x[1])), reverse=True) (latest_year, latest_month) = year_month_tuple_list[0] cursor.execute(sql.SQL('SELECT MAX(last_seen)\n FROM monthly_network_triplets_country\n WHERE triplet_year = %s\n AND triplet_month = %s'), [latest_year, latest_month]) end_date = cursor.fetchone()[0] if (end_date is None): end_date = datetime.date.today() return (end_date + datetime.timedelta(days=1))
def hash_string_64bit(s): 'Basic string hash based on taking an initial prime number and multiplying it by another prime numnber.' string_hash = 7 string_bytes = bytearray(s, 'utf-8') for b in string_bytes: string_hash = ((string_hash * 31) + b) return (string_hash % (pow(2, 63) - 1))
6,294,782,927,157,870,000
Basic string hash based on taking an initial prime number and multiplying it by another prime numnber.
src/dirbs/utils.py
hash_string_64bit
nealmadhu/DIRBS-Core
python
def hash_string_64bit(s): string_hash = 7 string_bytes = bytearray(s, 'utf-8') for b in string_bytes: string_hash = ((string_hash * 31) + b) return (string_hash % (pow(2, 63) - 1))
def child_table_names(conn, parent_name): 'Return a list of table names for a parent table name.' with conn.cursor() as cursor: cursor.execute('SELECT c.relname AS child_tblname\n FROM pg_inherits\n JOIN pg_class AS c\n ON (c.oid = inhrelid)\n JOIN pg_class AS p\n ON (p.oid = inhparent)\n JOIN pg_catalog.pg_namespace nc\n ON nc.oid = c.relnamespace\n JOIN pg_catalog.pg_namespace np\n ON np.oid = p.relnamespace\n WHERE p.relname = %s\n AND np.nspname = current_schema()\n AND nc.nspname = current_schema()', [parent_name]) return [res.child_tblname for res in cursor]
-5,567,330,417,522,711,000
Return a list of table names for a parent table name.
src/dirbs/utils.py
child_table_names
nealmadhu/DIRBS-Core
python
def child_table_names(conn, parent_name): with conn.cursor() as cursor: cursor.execute('SELECT c.relname AS child_tblname\n FROM pg_inherits\n JOIN pg_class AS c\n ON (c.oid = inhrelid)\n JOIN pg_class AS p\n ON (p.oid = inhparent)\n JOIN pg_catalog.pg_namespace nc\n ON nc.oid = c.relnamespace\n JOIN pg_catalog.pg_namespace np\n ON np.oid = p.relnamespace\n WHERE p.relname = %s\n AND np.nspname = current_schema()\n AND nc.nspname = current_schema()', [parent_name]) return [res.child_tblname for res in cursor]
def table_invariants_list(conn, table_names, invariant_col_names): 'Gets a list of tuples containing the values for common table invariant columns across a list table names.' if (len(table_names) == 0): return [] with conn.cursor() as cursor: table_queries = [] for tblname in table_names: table_queries.append(sql.SQL('SELECT * FROM (SELECT {0} FROM {1} LIMIT 1) {2}').format(sql.SQL(', ').join(map(sql.Identifier, invariant_col_names)), sql.Identifier(tblname), sql.Identifier('tmp_{0}'.format(tblname)))) cursor.execute(sql.SQL(' UNION ALL ').join(table_queries)) return cursor.fetchall()
-7,955,107,562,763,765,000
Gets a list of tuples containing the values for common table invariant columns across a list table names.
src/dirbs/utils.py
table_invariants_list
nealmadhu/DIRBS-Core
python
def table_invariants_list(conn, table_names, invariant_col_names): if (len(table_names) == 0): return [] with conn.cursor() as cursor: table_queries = [] for tblname in table_names: table_queries.append(sql.SQL('SELECT * FROM (SELECT {0} FROM {1} LIMIT 1) {2}').format(sql.SQL(', ').join(map(sql.Identifier, invariant_col_names)), sql.Identifier(tblname), sql.Identifier('tmp_{0}'.format(tblname)))) cursor.execute(sql.SQL(' UNION ALL ').join(table_queries)) return cursor.fetchall()
def most_recently_run_condition_info(conn, cond_names, successful_only=False): 'For a list of condition names, return a dict of cond_name -> (run_id, cond_config) for the most recent results.\n\n If a particular condition has never completed successfully, the value of the dict will be None, unless the\n successful_only parameter is set to True, in which case the key will not exist in the returned dict.\n ' conditions_to_find = copy.copy(cond_names) rv = {} job_metadata_list = metadata.query_for_command_runs(conn, 'dirbs-classify') for job_metadata in job_metadata_list: extra_metadata = job_metadata.extra_metadata metadata_conditions = extra_metadata.get('conditions', {}) matched_imei_counts = extra_metadata.get('matched_imei_counts', {}) conditions_lookup = {c['label']: c for c in metadata_conditions} for req_cond_name in copy.copy(conditions_to_find): if (req_cond_name in matched_imei_counts): rv[req_cond_name] = {'run_id': job_metadata.run_id, 'config': conditions_lookup[req_cond_name], 'last_successful_run': job_metadata.start_time} conditions_to_find.remove(req_cond_name) if (not successful_only): for missing_cond_name in conditions_to_find: rv[missing_cond_name] = None return rv
6,417,752,044,326,887,000
For a list of condition names, return a dict of cond_name -> (run_id, cond_config) for the most recent results. If a particular condition has never completed successfully, the value of the dict will be None, unless the successful_only parameter is set to True, in which case the key will not exist in the returned dict.
src/dirbs/utils.py
most_recently_run_condition_info
nealmadhu/DIRBS-Core
python
def most_recently_run_condition_info(conn, cond_names, successful_only=False): 'For a list of condition names, return a dict of cond_name -> (run_id, cond_config) for the most recent results.\n\n If a particular condition has never completed successfully, the value of the dict will be None, unless the\n successful_only parameter is set to True, in which case the key will not exist in the returned dict.\n ' conditions_to_find = copy.copy(cond_names) rv = {} job_metadata_list = metadata.query_for_command_runs(conn, 'dirbs-classify') for job_metadata in job_metadata_list: extra_metadata = job_metadata.extra_metadata metadata_conditions = extra_metadata.get('conditions', {}) matched_imei_counts = extra_metadata.get('matched_imei_counts', {}) conditions_lookup = {c['label']: c for c in metadata_conditions} for req_cond_name in copy.copy(conditions_to_find): if (req_cond_name in matched_imei_counts): rv[req_cond_name] = {'run_id': job_metadata.run_id, 'config': conditions_lookup[req_cond_name], 'last_successful_run': job_metadata.start_time} conditions_to_find.remove(req_cond_name) if (not successful_only): for missing_cond_name in conditions_to_find: rv[missing_cond_name] = None return rv
def filter_imei_list_sql_by_device_type(conn, exempted_device_types, imei_list_sql): 'Function to return SQL filtering out exempted device types.' return sql.SQL('SELECT imei_norm\n FROM (SELECT imei_norm,\n SUBSTRING(imei_norm, 1, 8) AS tac\n FROM ({0}) imeis) imeis_with_tac\n JOIN gsma_data\n USING (tac)\n WHERE device_type NOT IN {1}\n ').format(sql.SQL(imei_list_sql), sql.Literal(tuple(exempted_device_types))).as_string(conn)
-3,477,251,885,230,759,000
Function to return SQL filtering out exempted device types.
src/dirbs/utils.py
filter_imei_list_sql_by_device_type
nealmadhu/DIRBS-Core
python
def filter_imei_list_sql_by_device_type(conn, exempted_device_types, imei_list_sql): return sql.SQL('SELECT imei_norm\n FROM (SELECT imei_norm,\n SUBSTRING(imei_norm, 1, 8) AS tac\n FROM ({0}) imeis) imeis_with_tac\n JOIN gsma_data\n USING (tac)\n WHERE device_type NOT IN {1}\n ').format(sql.SQL(imei_list_sql), sql.Literal(tuple(exempted_device_types))).as_string(conn)
def format_datetime_for_report(timestamp_with_tz): "Format the datetime into a string for reporting.\n\n Replace this function with datetime.isoformat(sep=' ', timespec='seconds') after we update python version to 3.6\n " if (timestamp_with_tz is not None): return timestamp_with_tz.strftime('%Y-%m-%d %X') else: return None
-4,662,658,461,025,122,000
Format the datetime into a string for reporting. Replace this function with datetime.isoformat(sep=' ', timespec='seconds') after we update python version to 3.6
src/dirbs/utils.py
format_datetime_for_report
nealmadhu/DIRBS-Core
python
def format_datetime_for_report(timestamp_with_tz): "Format the datetime into a string for reporting.\n\n Replace this function with datetime.isoformat(sep=' ', timespec='seconds') after we update python version to 3.6\n " if (timestamp_with_tz is not None): return timestamp_with_tz.strftime('%Y-%m-%d %X') else: return None
def validate_exempted_device_types(conn, config): 'Method to validate exempted device types specified in config.' with conn.cursor() as cursor: logger = logging.getLogger('dirbs.config') exempted_device_types = config.region_config.exempted_device_types if (len(exempted_device_types) > 0): cursor.execute('SELECT DISTINCT device_type FROM gsma_data') all_device_types = [x.device_type for x in cursor] if (len(all_device_types) == 0): logger.warning('RegionConfig: Ignoring setting exempted_device_types={0} as GSMA TAC database not imported or no device types found.'.format(exempted_device_types)) else: invalid_device_types = (set(exempted_device_types) - set(all_device_types)) if (len(invalid_device_types) > 0): msg = "RegionConfig: exempted_device_types '{0}' is/are not valid device type(s). The valid GSMA device types are: '{1}'".format(invalid_device_types, all_device_types) logger.error(msg) raise ConfigParseException(msg)
-8,926,925,077,652,810,000
Method to validate exempted device types specified in config.
src/dirbs/utils.py
validate_exempted_device_types
nealmadhu/DIRBS-Core
python
def validate_exempted_device_types(conn, config): with conn.cursor() as cursor: logger = logging.getLogger('dirbs.config') exempted_device_types = config.region_config.exempted_device_types if (len(exempted_device_types) > 0): cursor.execute('SELECT DISTINCT device_type FROM gsma_data') all_device_types = [x.device_type for x in cursor] if (len(all_device_types) == 0): logger.warning('RegionConfig: Ignoring setting exempted_device_types={0} as GSMA TAC database not imported or no device types found.'.format(exempted_device_types)) else: invalid_device_types = (set(exempted_device_types) - set(all_device_types)) if (len(invalid_device_types) > 0): msg = "RegionConfig: exempted_device_types '{0}' is/are not valid device type(s). The valid GSMA device types are: '{1}'".format(invalid_device_types, all_device_types) logger.error(msg) raise ConfigParseException(msg)
def log_analysis_window(logger, analysis_start_date, analysis_end_date, start_message='', start_date_inclusive=True, end_date_inclusive=False): 'Helper function to print out window on used for analysis and list generation using interval notation.' start_date_interval_notation = ('[' if start_date_inclusive else '(') end_date_interval_notation = (']' if end_date_inclusive else ')') logger.debug('{0} {sd_interval_notation}{start_date}, {end_date}{ed_interval_notation}'.format(start_message, sd_interval_notation=start_date_interval_notation, start_date=analysis_start_date, end_date=analysis_end_date, ed_interval_notation=end_date_interval_notation))
1,355,111,144,782,573,000
Helper function to print out window on used for analysis and list generation using interval notation.
src/dirbs/utils.py
log_analysis_window
nealmadhu/DIRBS-Core
python
def log_analysis_window(logger, analysis_start_date, analysis_end_date, start_message=, start_date_inclusive=True, end_date_inclusive=False): start_date_interval_notation = ('[' if start_date_inclusive else '(') end_date_interval_notation = (']' if end_date_inclusive else ')') logger.debug('{0} {sd_interval_notation}{start_date}, {end_date}{ed_interval_notation}'.format(start_message, sd_interval_notation=start_date_interval_notation, start_date=analysis_start_date, end_date=analysis_end_date, ed_interval_notation=end_date_interval_notation))