text
stringlengths
323
3.81k
label
stringclasses
2 values
Text : MicroRNAs (miRNAs/miRs) are involved in the metastasis of hepatocellular carcinoma (HCC). In the present study, it was demonstrated that miR‑552 was upregulated in HCC tissues. High miR‑552 expression was associated with malignant clinicopathological features and decreased survival rates. The in vitro results indicated that miR‑552 overexpression promoted migration, invasion and epithelial‑mesenchymal transition in Hep3B cells. However, the knockdown of miR‑552 inhibited its oncogenic roles in Huh‑7 cells. Additionally, Wnt inhibitory factor 1 (WIF1) was demonstrated to be a direct target of miR‑552 in Hep3B and Huh‑7 cells. Additional experiments identified that miR‑552 promotes β‑catenin expression by increasing the phosphorylation of GSK3β at Ser9. In conclusion, the results suggested that miR‑552 may promote HCC progression by blocking WIF1‑mediated GSK3β dephosphorylation. miR‑552 may be a biomarker for predicting the outcomes of patients with HCC.
Authentic
Text : This study investigates whether the circulating miR-155, let-7c, miR-21, and PTEN levels to be used in the differential diagnosis of patients with idiopathic granulomatous mastitis (IGM) and breast cancer (BC). Forty-five patients with BC, 50 patients with IGM, and 48 healthy volunteers were included in the study. Serum miR-21 expression was significantly higher in BC (fold change = 2.42) and IGM group (fold change = 1.33) compared to control (p < .001). Serum miR-155 and let-7c expression levels were significantly lower in both groups compared to the control group (p < .001). miR-21 expression in BC was significantly higher than IGM (fold change = 1.976; p < .001). PTEN levels in BC were significantly higher than IGM (p < .001) and significantly lower than the control group (p < .001); the IGM group was significantly lower than the control group (p < .001). In addition to radiological data, serum miR-21 and PTEN levels may be noninvasive biomarkers that can help differentiate IGM from BC. The results of the study will lead to future studies in the differential diagnosis of IGM and BC.
Authentic
Text : Thrombospondin 1 is a glycoprotein that regulates cellular phenotype through interactions with its cellular receptors and extracellular matrix-binding partners. Thrombospondin 1 locally regulates angiogenesis and inflammatory responses that contribute to colorectal carcinogenesis in Apc(Min/+) mice. The ability of thrombospondin 1 to regulate responses of cells and tissues to a variety of stresses suggested that loss of thrombospondin 1 may also have broader systemic effects on metabolism to modulate carcinogenesis. Apc(Min/+):Thbs1(-/-) mice exhibited decreased survival and higher tumor multiplicities in the small and large intestine relative to Apc(Min/+) mice when fed a low (5%) fat western diet. However, the protective effect of endogenous thrombospondin 1 was lost when the mice were fed a western diet containing 21% fat. Biochemical profiles of liver tissue identified systemic metabolic changes accompanying the effects of thrombospondin 1 and dietary lipid intake on tumorigenesis. A high-fat western diet differentially regulated elements of amino acid, energy and lipid metabolism in Apc(Min/+):Thbs1(-/-) mice relative to Apc(Min/+):Thbs1(+/+)mice. Metabolic changes in ketone body and tricarboxylic acid cycle intermediates indicate functional interactions between Apc and thrombospondin 1 signaling that control mitochondrial function. The cumulative diet-dependent differential changes observed in Apc(Min/+):Thbs1(-/-) versus Apc(Min/+) mice include altered amino acid and lipid metabolism, mitochondrial dysfunction, eicosanoids and ketone body formation. This metabolic profile suggests that the protective role of thrombospondin 1 to decrease adenoma formation in Apc(Min/+) mice results in part from improved mitochondrial function.
Authentic
Text : The incidence of colon adenocarcinoma (COAD) has been increasing over time. Although ferroptosis and long noncoding RNAs (lncRNAs) have been extensively reported to participate in the tumorigenesis and development of COAD, few studies have investigated the role of ferroptosis-related lncRNAs in the prognosis of COAD. Gene-sequencing and clinical data for COAD were obtained from The Cancer Genome Atlas database. The coexpression network was constructed using known ferroptosis-related genes. Cox and least absolute shrinkage and selection operator regression were used to screen ferroptosis-related lncRNAs with prognostic value and to identify a predictive model of COAD. Patients with COAD were divided into low- and high-risk groups according to their risk score. Cases of COAD in the International Cancer Genome Consortium database were included as the testing cohort. In total, nine lncRNAs (LINC02381, AC105219.1, AC009283.1, LINC01011, ELFN1-AS1, EIF3J-DT, NKILA, LINC01063, and SNHG16) were considered prognostic factors for COAD. Then, a risk score model was established. The overall survival rate of COAD patients was negatively associated with the risk score. Kaplan-Meier analyses in the original and testing cohorts showed similar results. The expression of the lncRNAs in tissue was consistent with the risk score, and the relationship with tumor mutation burden, immunity, and drug sensitivity presented a marked link between the signature and COAD. A nomogram was established for clinical applications. Nine ferroptosis-related lncRNAs and the established signature have a certain predictive value for prognosis of COAD patients and can be used as potential research targets for exploring treatment of COAD.
Authentic
Text : Breast cancer is one of the main causes of cancer death among South African women. Although several risk factors can be attributed to the observed high mortality rate, the biology of the tumors is not extensively investigated. Copy number gain of the DLX4 homeobox gene has been observed in breast cancer in association with poor prognosis and specific racial groups. Therefore, we aimed to assess the copy number and prognostic role of DLX4 in breast cancer from South African patients. Due to the co-location of ERBB2 and DLX4 in the 17q21 region, its copy number was also evaluated. Our results in the analysis of 66 cases demonstrated copy number gains of DLX4 and ERBB2 in 24.1 and 29.7% of the cases, respectively. Linear regression analysis showed no dependency between the copy number alterations in these genes. Although not significant, patients with DLX4 and ERBB2 gains presented a higher frequency of advanced-grade tumors. In addition, copy number alterations of these genes were not significantly differently observed in the 3 main racial groups of the Western Cape population: Colored, White, and Black. These findings indicate that gains of DLX4 and ERBB2 occur in South African breast cancer patients irrespectively of their race and factors known to influence prognosis.
Authentic
Text : Epidermal growth factor receptor pathway substrate 8 (Eps8) has been identified as a novel substrate for epidermal growth factor receptor (EGFR) kinase and is involved in EGFR‑mediated signaling pathways correlated with tumorigenesis, proliferation and metastasis in various cancer types. However, the precise role of Eps8 in cervical cancer metastasis remains to be elucidated. Immunohistochemistry revealed that Eps8 was significantly increased in cervical cancer specimens compared with squamous intraepithelial lesion and normal cervical tissues. Additionally, it was revealed that Eps8 expression not only correlated with cervical cancer progression, but also exhibited a close correlation with the epithelial‑mesenchymal transition (EMT) markers, E‑cadherin and vimentin. Furthermore, the present study focused predominantly on the EMT‑associated role of Eps8 in the EMT, migration and invasion of cervical cancer cells. Eps8‑short hairpin (sh)RNA was transfected into HeLa and SiHa cells to deplete its expression, and reverse transcription-quantitative polymerase chain reaction and western blot analyses were performed to confirm Eps8‑knockdown and to investigate the influence of Eps8 on EMT markers. The present findings have revealed that Eps8 silencing led to the upregulation of the epithelial marker E‑cadherin, while expression of the mesenchymal marker vimentin and the transcription factor snail was decreased at both mRNA and protein expression levels. Transwell cell migration and Matrigel invasion assays showed that downregulation of Eps8 significantly inhibited cell migration and invasion of HeLa and SiHa cells. Taken together, these results suggested that Eps8 promotes cervical cancer metastasis by orchestrating the EMT.
Authentic
Text : Recent reports have indicated the role of highly expressed methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) enzyme in cancers, showing poor survival; however, detailed mechanistic insight of metabolic functions of MTHFD2 have not been well-defined. Therefore, we aimed to examine the metabolic functions and cellular reprograming potential of MTHFD2 in lung cancer (LCa). In this study, we initially confirmed the expression levels of MTHFD2 in LCa not only in tissue and OncomineTM database, but also at molecular levels. Further, we reprogrammed metabolic activities in these cells through MTHFD2 gene knockdown via lentiviral transduction, and assessed their viability, transformation and self-renewal ability. In vivo tumorigenicity was also evaluated in NOD/SCID mice. Results showed that MTHFD2 was highly expressed in stage-dependent LCa tissues as well in cell lines, A549, H1299 and H441. Cellular viability, transformation and self-renewal abilities were significantly inhibited in MTHFD2-knockdown LCa cell lines. These cells also showed suppressed tumor-initiating ability and reduced tumor size compared to vector controls. Under low oxygen tension, MTHFD2-knockdown groups showed no significant increase in sphere formation, and hence the stemness. Conclusively, the suppressed levels of MTHFD2 is essential for cellular metabolic reprogramming leading to inhibited LCa growth and tumor aggressiveness.
Authentic
Text : To evaluate the anticancer effects of lupeol in retinoblastoma cells. WERI-Rb-1 and Y-79 cell lines were used to evaluate the anticancer effect of lupeol. After lupeol treatment, the viability, proliferation, apoptosis, cancer stem-like properties, autophagy and in vivo tumour xenograft formation were detected. In this study, lupeol decreased cell viability in both WERI-Rb-1 and Y-79 cell lines. Lupeol could also inhibit proliferation and induce apoptosis of RB cells, with increased Bax level and decreased Ki67, survivin and Bcl-2 levels. Furthermore, lupeol could suppress the spheroid formation and stem-like properties of RB cells. Moreover, LC3 II/LC3 I ratio and the levels of Beclin1 and ATG7 were increased after lupeol treatment, indicating that lupeol could induce autophagy in RB cells. Next, the inhibitory effect of lupeol on the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway was observed. In tumour-bearing mice, lupeol suppressed tumour growth, and this might relate to its role in cell apoptosis, autophagy and stem-like properties. Lupeol suppressed proliferation and cancer stem-like properties, and promoted autophagy and apoptosis of RB cells by restraining the PI3K/AKT/mTOR pathway.
Authentic
Text : Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Aberrant expression of miRNAs contributes to HCC development. Here, we observed elevated miR-520g expression in tumor samples from HCC patients with relapse and metastasis, and this high miR-520g expression was correlated with poor survival. Through gain- and loss-of-function studies, miR-520g was demonstrated to facilitate HCC cell migration, invasion and epithelial-mesenchymal transition (EMT). SMAD7 was identified as a direct target of miR-520g. Accordingly, we conclude that high miR-520g expression promotes HCC cell mobility and EMT by targeting SMAD7, and this is correlated with reduced survival in HCC patients.
Counterfeit
Text : The function of kinesin family member 18A (KIF18A) in human renal cell carcinoma (RCC) is unclear. The purpose of the current study was to determine the expression and prognostic significance of KIF18A in RCC. Specimens from 273 RCC patients undergoing nephrectomies were studied. Expression of KIF18A mRNA was examined by reverse transcription-polymerase chain reaction (RT-PCR) or quantitative PCR, and the expression of KIF18A protein was examined by immunohistochemistry and western blotting. The expression of KIF18A in clear-cell RCC cell lines was decreased using small interfering RNA targeting KIF18A, and increased by transfection with KIF18A cDNA. The proliferative ability of RCC cells in vitro and in vivo was detected by WST-1 assay and an animal xenograft model with BALB/c nude mice, respectively. The association between KIF18A expression and overall survival was calculated using Kaplan-Meier analysis. The results showed that KIF18A expression was significantly increased in RCC tissues compared with normal kidney tissues. The level of KIF18A expression was significantly associated with tumor stage, histological grade, metastasis and tumor size. Moreover, KIF18A increased the proliferation of RCC cells in vitro and in vivo. KIF18A expression was upregulated in RCC and enhanced the proliferation of RCC cells. Therefore, it appears that KIF18A plays a key role in the carcinogenesis and progression of RCC, and is a novel candidate prognostic marker for RCC patients. Furthermore, silencing KIF18A expression may serve as a new therapeutic strategy against RCC.
Authentic
Text : Liposomes are essentially a subtype of nanoparticles comprising a hydrophobic tail and a hydrophilic head constituting a phospholipid membrane. The spherical or multilayered spherical structures of liposomes are highly rich in lipid contents with numerous criteria for their classification, including structural features, structural parameters, and size, synthesis methods, preparation, and drug loading. Despite various liposomal applications, such as drug, vaccine/gene delivery, biosensors fabrication, diagnosis, and food products applications, their use encounters many limitations due to physico-chemical instability as their stability is vigorously affected by the constituting ingredients wherein cholesterol performs a vital role in the stability of the liposomal membrane. It has well established that cholesterol exerts its impact by controlling fluidity, permeability, membrane strength, elasticity and stiffness, transition temperature (Tm), drug retention, phospholipid packing, and plasma stability. Although the undetermined optimum amount of cholesterol for preparing a stable and controlled release vehicle has been the downside, but researchers are still focused on cholesterol as a promising material for the stability of liposomes necessitating explanation for the stability promotion of liposomes. Herein, the prior art pertaining to the liposomal appliances, especially for drug delivery in cancer therapy, and their stability emphasizing the roles of cholesterol.
Counterfeit
Text : The aim of the study is to investigate the effect of modified nonpneumatic transaxillary approach in the treatment of thyroid cancer and its effect on immune function and parathyroid function. A total of 96 patients with thyroid cancer who were diagnosed and treated in our hospital from January 2018 to December 2020 were selected and randomly divided into the control group of 48 cases and the observation group of 48 cases. The control group was given open surgery, and for the observation group, modified nonpneumatic transaxillary approach was used for treatment. The perioperative related indicators, the incidence of complications, as well as the changes of immune function indicators, parathyroid hormone (PTH), and calcium before and after surgery were compared between the two groups. The time of flap separation and cavity construction, operation time, and hospital stay in the observation group were significantly longer than those in the control group (P < 0.05). After operation, CD3+, CD4+, and CD4+/CD8+ in the two groups were lower than those before operation (P < 0.05), but the observation group was significantly higher than that in the control group (P < 0.05). The serum PTH and calcium at 1 h, 1 d, 3 d and 7 d after operation were lower than those before operation in this group (P < 0.05), but the observation group was significantly higher than that in the control group (P < 0.05). Compared with the control group, the incidence of complications in the observation group (4.17% vs. 6.25%) was not statistically significant (P > 0.05). Compared with open surgery, the modified nonpneumatic transaxillary approach in the treatment of thyroid cancer is more effective in reducing immune function decline, hypoparathyroidism, and hypocalcemia; although the operation time and recovery time are longer, and it is safe. Sex is also high.
Counterfeit
Text : To provide a comprehensive description of the quantitative and qualitative characteristics of pleomorphic adenomas, adenolymphomas, and malignant tumors of the salivary glands on color doppler ultrasonography and contrast-enhanced ultrasonography (CEUS). 64 patients with 35 pleomorphic adenomas, 24 adenolymphomas, and 12 malignant tumors were enrolled in this study. All patients were examined by color doppler ultrasonography and CEUS before operation. In color Doppler ultrasonography, degree of vascularity, peak systolic velocity (PSV) and the vascular resistance index (RI) were obtained. In CEUS, type of enhancement, rim enhancement and area of enhancement were assessed. After the time-intensity curves (TIC) were drawn, the time to peak enhancement (TTP), peak intensity (PI) and the time from peak to one half (TFP) were calculated for the tumors and surrounding salivary parenchyma. Postoperatively, histopathologic examination of surgical specimens was used as the gold standard. Color Doppler ultrasonography showed no significant differences in PSV between tumors, significantly less adenolymphomas had Grade 0-1 vascularity compared to pleomorphic adenomas, and the RI was significantly lower in adenolymphomas compared to pleomorphic adenomas and malignant tumors. CEUS had acceptable diagnostic sensitivity, specificity, and accuracy for differential diagnosis of pleomorphic adenomas and adenolymphomas based on the diagnostic criteria of rim enhancement and slow wash-out rate, respectively. The sensitivity, specificity, and accuracy for differential diagnosis of malignant tumors based on the diagnostic criteria of an ill-defined enhancement margin, an enlarged enhancement area or a fast wash-in rate were also satisfactory. Accurate diagnosis of salivary gland tumors in clinical practice can be increased using color Doppler ultrasound and CEUS in combination with a case history and other imaging.
Authentic
Text : To investigate the clinicopathological features of 166 cases of invasive ductal carcinoma (IDC) of the breast and to analyze the effect of the location of the primary tumor on the prognosis of modified radical mastectomy. The clinical data of 166 patients with IDC who underwent modified radical mastectomy in our hospital from May 2015 to May 2017 were retrospectively analyzed. The clinicopathological features of IDC patients were recorded. Univariate analysis and the multivariate logistic regression model were used to analyze the relationship between the location of the primary tumor and the prognosis of IDC patients after modified radical surgery. The effect of primary tumor location on the prognosis of modified radical resection was used with Survival curve analysis. Among the patients in the central region, 13.33% had tumors >5 cm in diameter, which was higher than those in the other four groups. Among the patients in the upper inner quadrant, 59.38% received hormone therapy after operation, which was higher than those in the other four groups (P < 0.05). There were no significant differences in age, menopause, histological grading, molecular typing, lymph node metastasis, vascular invasion, radiation therapy, and chemotherapy among different groups (P > 0.05). Univariate analysis showed that molecular typing, lymph node metastasis, vascular invasion, and location of the primary tumor were all related to the prognosis of IDC patients after modified radical surgery, and the differences were statistically significant (P < 0.05). Logistic regression analysis showed that molecular typing, lymph node metastasis, vascular invasion, and primary tumor location were all independent influencing factors for prognosis of IDC patients after modified radical surgery (P < 0.05). As of 31 May 2021, there were 11 patients with recurrence and metastasis and 20 patients with death. The median survival time in the outer upper quadrant group was 80 months, which was higher than that in the outer lower quadrant group by 72 months, the median survival time in the central region group by 71 months, the median survival time in the inner upper quadrant group by 67 months, and the median survival time in the inner lower quadrant group by 61 months. The log-rank test showed all P < 0.001. Patients with primary tumors located in the central area have larger tumor diameters. Patients located in the central area, upper inner quadrant, and lower inner quadrant are more likely to have lymphatic metastasis, have a more serious condition, and have a shorter prognosis survival time. Unluminal type, multiple lymph node metastases, vascular invasion, and the location of the primary tumor in the inner quadrant are all independent risk factors for prognosis in patients after modified radical surgery for IDC.
Authentic
Text : Arsenic sulfide (As4S4), the main component of realgar, a traditional Chinese medicine, has shown antitumor efficacy in several tumor types, especially for acute promyelocytic leukemia. In this study, we aimed to explore the efficacy and mechanism of As4S4 in gastric cancer. The effect of As4S4 on cell proliferation and apoptosis of gastric cancer cells was investigated by MTT assay, 4',6-diamidino-2-phenylindole (DAPI) staining, and annexin V-fluorescein isothiocyanate/propidium iodide staining using gastric cancer cell lines AGS (harboring wild-type p53) and MGC803 (harboring mutant p53) in vitro. The expression of apoptosis-related proteins was measured by Western blotting, real-time polymerase chain reaction, and immunohistochemistry analysis. Mouse xenograft models were established by inoculation with MGC803 cells, and the morphology and the proportion of apoptotic cells in tumor tissues were detected by hematoxylin and eosin staining and TdT-mediated dUTP nick end labeling (TUNEL) assay, respectively. As4S4 inhibited the proliferation and induced apoptosis of AGS and MGC803 cells in a time- and dose-dependent manner. As4S4 upregulated the expression of Bax and MDM2 while downregulated the expression of Bcl-2. The expression of p53 increased significantly in the AGS cells but did not readily increase in the MGC803 cells, which harbored mutant p53. Pifithrin-α, a p53 inhibitor, blocked the modulation of As4S4 on AGS cells, but not on MGC803 cells. Using xenograft as a model, we showed that As4S4 suppressed tumor growth and induced apoptosis in vivo and that the expression of p53 increased accordingly. As4S4 is a potent cytotoxic agent for gastric cancer cells, as it induced apoptosis both in vitro and in vivo through a p53-dependent pathway. Our data indicate that As4S4 may have therapeutic potential in gastric cancer.
Authentic
Text : The malignant biological behavior of gastric cancer(GC) is not only determined by cancer cells alone, but also closely regulated by the microenvironment. Fibroblasts represent a large proportion of the components in the tumor microenvironment, and they promote the development of disease. Currently, accumulating evidence suggests that exosomes can function as intercellular transport systems to relay their contents, especially microRNAs(miRNAs). First, we detected the highly-expressed level of miR-27a in exosomes isolated from gastric cancer cells by qRT-PCR. MiR-27a -over-expressed models in vitro and in vivo were established to investigate the transformation of cancer-associated fibroblasts observed by Western blotting, and the malignant behavior of gastric cancer cells using the methods CCK8 and Transwell. Moreover, the downregulation of CSRP2 in fibroblasts was used to evaluate the promotion of malignancy of gastric cancer using the methods CCK8 and Transwell. In this study, we found a marked high level of miR-27a in exosomes derived from GC cells. miR-27a was found to function an oncogene that not only induced the reprogramming of fibroblasts into cancer-associated fibroblasts(CAFs), but also promoted the proliferation, motility and metastasis of cancer cells in vitro and in vivo. Conversely, CAFs with over-expression of miR-27a could pleiotropically increase the malignant behavior of the GC cells. For the first time, we revealed that CSRP2 is a downstream target of miR-27a. CSRP2 downregulation could increase the proliferation and motility of GC cells. Thus, this report indicates that miR-27a in exosomes derived from GC cells has a crucial impact on the microenvironment and may be used as a potential therapeutic target in the treatment of GC.
Authentic
Text : Ovarian cancer is one of the deadliest gynecological cancer, with a low overall 5-year survival rate. RDM1, RAD52 motif-containing protein 1, is sensitive to cisplatin, a common chemotherapy drug and it has an important role inDNA damage repair pathway. Until now, the effect of RDM1 in ovarian cancer is undiscovered. Here, clinical data shows that the tumour tissues of ovarian carcinoma patients with higher mRNA and protein expression of RDM1. Knockdown of RDM1 in ovarian carcinoma cells reduces cell proliferation and promotes apoptosis, consistent with the role RDM1 in the overexpression experiments. The research of xenograft mouse model shows stable knockdown of RDM1 significantly inhibits ovarian cancer tumour growth. These in vitro and in vivo results conclude that RDM1 plays an oncogenic role in human ovarian carcinoma. Interestingly, p53/RAD51/RAD52 signalling pathway can be regulated by RDM1, and the negative regulation of p53 by RDM1 may be one of major mechanisms for RDM1 to accomplish its oncogenic functions in ovarian carcinoma. Therefore, RDM1 may be a new target for the treatment of ovarian carcinoma.
Authentic
Text : BCR-ABL1-positive acute lymphoblastic leukemia (ALL) cell survival is dependent on the inositol-requiring enzyme 1 alpha (IRE1α) branch of the unfolded protein response. In the current study, we have focused on exploring the efficacy of a simultaneous pharmacological inhibition of BCR-ABL1 and IRE1α in Philadelphia-positive (Ph+) ALL using tyrosine kinase inhibitor (TKI) nilotinib and the IRE1α inhibitor MKC-8866. The combination of 0.5 µM nilotinib and 30 µM MKC-8866 in Ph+ ALL cell lines led to a synergistic effect on cell viability. To mimic this dual inhibition on a genetic level, pre-B-cells from conditional Xbp1+/fl mice were transduced with a BCR-ABL1 construct and with either tamoxifen-inducible cre or empty vector. Cells showed a significant sensitization to the effect of TKIs after the induction of the heterozygous deletion. Finally, we performed a phosphoproteomic analysis on Ph+ ALL cell lines treated with the combination of nilotinib and MKC-8866 to identify potential targets involved in their synergistic effect. An enhanced activation of p38 mitogen-activated protein kinase α (p38α MAPK) was identified. In line with this findings, p38 MAPK and, another important endoplasmic reticulum-stress-related kinase, c-Jun N-terminal kinase (JNK) were found to mediate the potentiated cytotoxic effect induced by the combination of MKC-8866 and nilotinib since the targeting of p38 MAPK with its specific inhibitor BIRB-796 or JNK with JNK-in-8 hindered the synergistic effect observed upon treatment with nilotinib and MKC-8866. In conclusion, the identified combined action of nilotinib and MKC-8866 might represent a successful therapeutic strategy in high-risk Ph+ ALL.
Authentic
Text : Mutations of the p53 gene are the most common genomic alterations associated with triple-negative breast cancer (TNBC) and are reported in 60-88% cases. Despite the high incidence of such mutations, there is no consensus about the clinical application of p53 detection in breast cancer management. This study investigates the prognostic value of immunohistochemically detected p53 in TNBC patients who received adjuvant chemotherapy. We reviewed the clinicopathologic features of 1088 TNBC patients who received curative surgery and adjuvant chemotherapy. Immunohistochemically, nuclear staining of >10% was defined as p53 "positive." Of the total 1088 TNBC patients, 709 (65.2%) had no lymph node metastasis (N0). Among the N0 patients, 408 (57.5%) were p53- positive (p53+), and 301 (42.5%) were p53- negative (p53-). p53 + tumors showed a tendency for better breast cancer-specific survival (BCSS, p = 0.052) and overall survival (OS, p = 0.079) compared to p53- tumors. In multivariate analysis, p53 + tumors showed significantly better BCSS (p53 + vs. p53-; HR 2.8, 95% confidence interval: 1.1-7.3, p = 0.034); however, in TNBC patients with lymph node metastasis, there was no correlation between p53 status, clinicopathologic characteristics, and survival. Consequently, in TNBC patients who received adjuvant chemotherapy, immunohistochemical p53 expression was associated with better BCSS in N0 patients.
Authentic
Text : Neokestose has superior prebiotic effects compared with the commercial fructooligosaccharides (FOS). In addition, the branched structure of neokestose, a type of neo‑FOS, confers improved chemical stability compared with conventional FOS; therefore, the investigation of the branched structure by the present study may be of high biomedical value. The present study aimed to determine whether neokestose may suppress growth of the A2058 melanoma cell line. The cells were initially treated with neokestose; subsequently, in vitro cytotoxicity was assessed using MTT, and cell cycle progression and apoptosis were detected using flow cytometry. The protein expression levels of cyclin D1, phosphorylated (p)‑inhibitor of κB (IκB) and nuclear factor‑κB (NF‑κB) were determined using western blotting. Treatment with neokestose led to a dose‑dependent inhibition of cell viability. Flow cytometry data indicated that neokestose increased the sub‑G1 cell population, and induced early and late apoptosis. Western blot analysis revealed that neokestose treatment reduced the expression levels of p‑IκB and cyclin D1. These findings suggest that neokestose treatment may induce suppression of A2058 melanoma cell viability via inhibition of the NF‑κB pathway. The present findings support the requirement for further investigation into the potential use of neokestose as an additional or chemopreventive therapeutic agent for the treatment of melanoma.
Authentic
Text : Alectinib is a second-generation anaplastic lymphoma kinase (ALK) inhibitor approved by the US Food and Drug Administration to treat crizotinib-refractory non-small cell lung cancer. We performed this meta-analysis to synthesize the results of different clinical trials to evaluate the efficacy and safety of alectinib. A search of 3 databases, including PubMed, Web of Science, and the Cochrane Library, was performed from the inception of each database through September 5, 2017. We have pooled the overall response rate (ORR), disease control rate, progression-free survival, and intracranial ORR to evaluate the efficacy of alectinib. Discontinuation rate, rate of dose reduction or interruption due to adverse events as well as the incidence of several adverse events were aggregated to evaluate its safety. A total of 8 studies with 626 patients have been included in our study. The pooled efficacy parameters are as follows: ORR 70% (95% CI: 57% to 82%), disease control rate 88% (95% CI: 82% to 94%), progression-free survival 9.36 months (95% CI: 7.38% to 11.34%), and intracranial ORR 52% (95% CI: 45% to 59%). ALK inhibitor-naïve patients tend to have better responses than crizotinib-pretreated patients. The aggregate discontinuation rate is 7% (95% CI: 4% to 10%), and the pooled rate of dose reduction or interruption is 33% (95% CI: 24% to 42%). The incidences of most adverse events were relatively low, while the incidences of 2 frequently reported adverse events, myalgia (18%) and anemia (25%), were even higher than with the first-generation ALK inhibitor crizotinib. Generally, alectinib is a drug with preferable efficacy and tolerable adverse effects, and it is suitable for the treatment of intracranial metastases.
Authentic
Text : In the last century, natural compounds have achieved remarkable achievements in the treatment of tumors through chemotherapy. This inspired scientists to continuously explore anticancer agents from natural compounds. Kaempferol is an ordinary natural compound, the most common flavonoid, which is widely existed in vegetables and fruits. It has been reported to have various anticancer activities, including breast cancer, prostate cancer, bladder cancer, cervical cancer, colon cancer, liver cancer, lung cancer, ovarian cancer, leukemia, etc. Meanwhile, we found that there were more reports on breast cancer among these cancers although there are limited clinical studies that have addressed the benefits of kaempferol as an anti-cancer agent for breast cancer treatment. Then we realize that although kaempferol has been reported to have anti-breast cancer effect many times, it is still far from becoming a real anti-breast cancer agent. Therefore, in this review, we talk about the options for improving the anti-breast cancer effect of kaempferol, including various techniques and methods to improve the bioavailability of kaempferol, the idea of combining other compounds to produce synergistic effects, and the possibility of developing kaempferol into a targeted drug delivery system.
Authentic
Text : The ecological restoration and civilization construction is one of the key tasks in China. The economic development of different regions has different effects on the resource protection and utilization. In the face of complex natural conditions and resource-rich areas, how to carry out the ecological environment promotion work is put forward. The urbanization level of the Yangtze River region increases from 17.9% to 60.6%, showing the characteristics of rapid expansion. In the face of urban diseases such as unreasonable industrial layout, it is urgent to improve regional economy and promote green urban development from the perspective of big data. Adhering to the concept of ecological priority, the development of digital technology drove the development of local economy in 2019, accounting for 43% of the national population. While promoting the economic development, it is of great significance to ensure the efficiency of resource utilization and promote the high-quality development of common economy.
Counterfeit
Text : The present study used RNA interference (RNAi) to study how the expression of annexin A2 was affected by ubiquitin protein ligase E3A (UBE3A). In addition, the proliferation, apoptosis and invasiveness of BT-549 breast cancer cells was studied following knockdown of UBE3A. Three pairs of small interfering RNA (siRNA) fragments targeting UBE3A were designed and transfected into the BT-549 cells. The effects of silencing UBE3A were detected by reverse transcription-polymerase chain reaction and western blotting, and the same methods were used to detect the expression levels of annexin A2. Cell proliferation was determined using the Cell Counting kit-8, and flow cytometry and a Transwell chamber assay were used to assess the rate of cell apoptosis and invasion, respectively. Following transfection with the three siRNAs targeting UBE3A for 72 h, the mRNA expression levels of UBE3A were downregulated, as compared with those in the untreated groups, and siRNA1 was the shown to be the most effective siRNA for silencing UBE3A expression. The protein expression levels were concordant with the mRNA expression levels of UBE3A. In addition, the mRNA and protein expression levels of annexin A2 were downregulated. Cellular proliferation and invasion of the siRNA1 group was inhibited as compared with those in the untreated groups, and apoptosis of UBE3A-siRNA1 cells was increased as compared with that in the untreated groups. The results of the present study indicated that UBE3A may regulate the expression of annexin A2, resulting in promotion of proliferation and invasion and suppression of apoptosis in BT-549 cells.
Authentic
Text : Cancer metastasis is responsible for 90% of cancer-related deaths. Recently, circular RNA (circRNA) is deemed to be an important regulator of cancer progression. However, little is known about the role of circRNA in the metastasis of lung adenocarcinoma (LUAD). Herein, we investigated the clinical implication and regulatory effect of circ-TSPAN4 (hsa_circ_0020732) in LUAD. Gene Expression Omnibus (GEO) database (GSE104854) was used to identify the aberrantly expressed circRNAs in LUAD. The expression levels of circ-TSPAN4, miR-4731-5p, miR-665, and ZEB1 were determined by quantitative reverse transcription PCR (qRT-PCR). The functional experiments were carried out with wound healing and transwell assays. And, the luciferase reporter and RNA pull-down assays were employed to examine the crosstalk between circ-TSPAN4, miR-665, and ZEB1. In vivo metastasis experiment was tested by the lung metastasis model. Circ-TSPAN4 was significantly upregulated in LUAD tissues and cell lines. The increased circ-TSPAN4 was linked to advanced tumor-node-metastasis stage, lymph node and distant metastasis, and poor outcome. Lentivirus-mediated stably circ-TSPAN4 knockdown dramatically attenuated the metastatic ability of LUAD cells both in vitro and in vivo. Mechanistically, circ-TSPAN4 directly interacted with miR-665, but not miR-4731-5p, to increase the expression of ZEB1, which is a well-known metastasis trigger. Importantly, the reduced metastatic capacity caused by circ-TSPAN4 depletion was partially rescued by miR-665 silencing or ZEB1 overexpression. Circ-TSPAN4 plays a pivotal metastasis-promoting role in LUAD through acting as a sponge for miR-665 and upregulating ZEB1.
Counterfeit
Text : Due to biological heterogeneity, lung adenocarcinoma (LUAD) patients with the same stage may exhibit variable responses to immunotherapy and a wide range of outcomes. It is urgent to seek a biomarker that can predict the prognosis and response to immunotherapy in these patients. In this study, we identified two genes (ANLN and ARNTL2) from multiple gene expression data sets, and developed a two-mRNA-based signature that can effectively distinguish high- and low-risk patients and predict patients' response to immunotherapy. Furthermore, taking full advantage of the complementary value of clinical and molecular features, we combined the immune prognostic signature with clinical features to construct and validate a nomogram that can predict the probability of high tumor mutational burden (>10 mutations per megabyte). This may improve the estimation of immunotherapy response in LUAD patients, and provide a new perspective for clinical screening of immunotherapy beneficiaries.
Authentic
Text : Postmenopausal women often suffer from vaginal symptoms associated with atrophic vaginitis. Additionally, gynecologic cancer survivors may live for decades with additional, clinically significant, persistent vaginal toxicities caused by cancer therapies, including pain, dyspareunia, and sexual dysfunction. The vaginal microbiome (VM) has been previously linked with vaginal symptoms related to menopause (i.e. dryness). Our previous work showed that gynecologic cancer patients exhibit distinct VM profiles from healthy women, with low abundance of lactobacilli and prevalence of multiple opportunistic pathogenic bacteria. Here we explore the association between the dynamics and structure of the vaginal microbiome with the manifestation and persistence of vaginal symptoms, during one year after completion of cancer therapies, while controlling for clinical and sociodemographic factors. We compared cross-sectionally the vaginal microbiome in 134 women, 64 gynecologic patients treated with radiotherapy and 68 healthy controls, and we longitudinally followed a subset of 52 women quarterly (4 times in a year: pre-radiation therapy, 2, 6 and 12 months post-therapy). Differences among the VM profiles of cancer and healthy women were more pronounced with the progression of time. Cancer patients had higher diversity VMs and a variety of vaginal community types (CTs) that are not dominated by Lactobacilli, with extensive VM variation between individuals. Additionally, cancer patients exhibit highly unstable VMs (based on Bray-Curtis distances) compared to healthy controls. Vaginal symptoms prevalent in cancer patients included vaginal pain (40%), hemorrhage (35%), vaginismus (28%) and inflammation (20%), while symptoms such as dryness (45%), lack of lubrication (33%) and dyspareunia (32%) were equally or more prominent in healthy women at baseline. However, 24% of cancer patients experienced persistent symptoms at all time points, as opposed to 12% of healthy women. Symptom persistence was strongly inversely correlated with VM stability; for example, patients with persistent dryness or abnormally high pH have the most unstable microbiomes. Associations were identified between vaginal symptoms and individual bacterial taxa, including: Prevotella with vaginal dryness, Delftia with pain following vaginal intercourse, and Gemillaceaea with low levels of lubrication during intercourse. Taken together our results indicate that gynecologic cancer therapy is associated with reduced vaginal microbiome stability and vaginal symptom persistence.
Authentic
Text : Colon cancer is one of the most common digestive tumors. The present study aimed to explore the functional role, as well as the underlying mechanism of long non-coding RNA LINC00261 in colon cancer. Expression of LINC00261 was analyzed in colon cancer cell lines and human normal cell lines. Acquired resistance cell lines were then built and the acquired resistance efficiency was detected by evaluating cell viability. Thereafter, the effects of LINC00261 overexpression on cisplatin-resistant colon cancer cells were measured, as well as cell apoptosis, viability, migration, and invasion. Subsequently, we investigated the interaction of LINC00261 and β-catenin. The results showed that the LINC00261 gene was down-regulated in colon cancer cell lines and tissues, and in cisplatin-resistant cells. LINC00261 overexpression might relieve cisplatin resistance of colon cancer cells via promoting cell apoptosis, and inhibiting cell viability, migration, and invasion. Moreover, LINC00261 might down-regulate nuclear β-catenin through restraining β-catenin from cytoplasm into nuclei or it could also promote β-catenin degradation and inhibit activation of Wnt pathway. Finally, LINC00261 reduced cisplatin resistance of colon cancer in vivo and enhanced the anti-colon cancer effect of cisplatin through reducing tumor volume and weight.
Authentic
Text : Impaired quality of life (QOL) is common in hepatocellular carcinoma (HCC) patients. In this study, we used a large hospital-based multiethnic HCC patient cohort to systematically identify factors associated with QOL and investigate the prognostic value of QOL.The Short Form-12 questionnaire was used to assess QOL. The Physical Component Summary (PCS) and Mental Component Summary (MCS) scores were categorized into three groups (low, medium, and high) and ordered logistic regression analysis was used to analyze the association of PCS and MCS scores with patient characteristics. The association of PCS and MCS scores with mortality was assessed by Cox regression analysis.Notably, a panel of elevated systemic inflammatory response markers was associated with poor QOL. Other significant factors associated with QOL included age, liver function, sex, smoking, HCC etiology, and major clinical features. Patients with low (hazard ratio [95% CI], 1.72 [1.36-2.17]) and medium (1.52 [1.23-1.89]) PCS scores exhibited higher risks of death compared to patients with high PCS score. The association of MCS with the risk of death was not significant. These observations were consistent across all the different ethnicities.The identified factors associated with QOL may help clinicians formulate interventions to improve QOL and outcomes in HCC patients.
Authentic
Text : Impaired quality of life (QOL) is common in hepatocellular carcinoma (HCC) patients. In this study, we used a large hospital-based multiethnic HCC patient cohort to systematically identify factors associated with QOL and investigate the prognostic value of QOL.The Short Form-12 questionnaire was used to assess QOL. The Physical Component Summary (PCS) and Mental Component Summary (MCS) scores were categorized into three groups (low, medium, and high) and ordered logistic regression analysis was used to analyze the association of PCS and MCS scores with patient characteristics. The association of PCS and MCS scores with mortality was assessed by Cox regression analysis.Notably, a panel of elevated systemic inflammatory response markers was associated with poor QOL. Other significant factors associated with QOL included age, liver function, sex, smoking, HCC etiology, and major clinical features. Patients with low (hazard ratio [95% CI], 1.72 [1.36-2.17]) and medium (1.52 [1.23-1.89]) PCS scores exhibited higher risks of death compared to patients with high PCS score. The association of MCS with the risk of death was not significant. These observations were consistent across all the different ethnicities.The identified factors associated with QOL may help clinicians formulate interventions to improve QOL and outcomes in HCC patients.
Authentic
Text : Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third most common cause of cancer‑related mortality worldwide. An increasing number of studies have demonstrated that microRNAs may be used as diagnostic, therapeutic and prognostic targets for human cancers, including HCC. The present study aimed to evaluate microRNA (miR)‑302a expression and function in HCC, and its underlying mechanisms. The results revealed that miR‑302a was expressed at low levels in HCC tissues and cell lines. Reduced miR‑302a expression was correlated with tumor‑node‑metastasis stage and lymph node metastasis in patients with HCC. Additionally, overexpression of miR‑302a reduced cell proliferation and invasion, and induced apoptosis in HCC cells. Vascular endothelial growth factor A (VEGFA) was demonstrated to be a direct target gene of miR‑302a. VEGFA was highly expressed in HCC tissues and inversely correlated with miR‑302a expression. Knockdown of VEGFA expression led to reduced HCC cell proliferation and invasion, and increased apoptosis rates, similar to miR‑302a overexpression, which suggested that VEGFA may be a functional downstream target of miR‑302a in HCC. These data suggested that this newly identified miR‑302a/VEGFA axis may be involved in HCC formation and progression. The present results also provide novel potential targets for the treatments of patients with HCC.
Authentic
Text : Recently, miR-367 is reported to exert either oncogenic or tumor suppressive effects in human malignancies. Recent study reports that miR-367 is up-regulated in OS tissues and cell lines, and abrogates adriamycin-induced apoptosis. The clinical significance of miR-367 and its function in OS need further investigation. In our study, miR-367 expression in OS was markedly elevated compared with corresponding non-tumor tissues. High miR-367 expression was associated with malignant clinical features and poor prognosis of OS patients. In accordance, the levels of miR-367 were dramatically up-regulated in OS cells. Loss of miR-367 expression in Saos-2 cells obviously inhibited the proliferation, migration and invasion of cancer cells in vitro. Meanwhile, miR-367 restoration promoted these malignant behaviors of MG-63 cells. Mechanistically, miR-367 negatively regulated DOC-2/DAB2 interactive protein (DAB2IP) abundance in OS cells. Hereby, DAB2IP was recognized as a direct target gene of miR-367 in OS. DAB2IP mRNA level was down-regulated and inversely correlated with miR-367 expression in OS specimens. DAB2IP overexpression prohibited proliferation, migration and invasion in Saos-2 cells, while DAB2IP knockdown showed promoting effects on proliferation, migration and invasion of MG-63 cells. Furthermore, the role of miR-367 might be mediated by DAB2IP-regulated phosphorylation of ERK and AKT in OS cells. To conclude, miR-367 may function as a biomarker for prediction of prognosis and a target for OS therapy.
Counterfeit
Text : This study aims to explore the role of fractalkine/CX3C chemokine receptor 1 (CX3CR1) signaling pathway in the recovery of neurological functioning after an early ischemic stroke in rats. After establishment of permanent middle cerebral artery occlusion (pMCAO) models, 50 rats were divided into blank, sham, model, positive control and CX3CR1 inhibitor groups. Neurological impairment, walking and grip abilities, and cortical and hippocampal infarctions were evaluated by Zea Longa scoring criterion, beam-walking assay and grip strength test, and diffusion-weighted magnetic resonance imaging. qRT-PCR and Western blotting were performed to detect mRNA and protein expressions. ELISA was conducted to measure concentration of sFractalkine (sFkn), interleukin-1β (IL-1β) and TNF-α. The recovery rate of neurological functioning impairment and reduced walking and grip abilities was faster in the positive control and CX3CR1 inhibitor groups than the model group. The model, positive control and CX3CR1 inhibitor groups showed increased mRNA and protein expression of chemokine C-X3-C motif ligand 1 (CX3CL1) and CX3CR1, concentration of sFkn, IL-1β and TNF-α, and size of cortical and cerebral infarctions while decreased expression of NGF and BDNF compared with the blank and sham groups. Compared with the model group, the mRNA and protein expression of CX3CL1 and CX3CR1, concentration of sFkn, IL-1β and TNF-α, and size of cortical and cerebral infarctions decreased while expression of NGF and BDNF increased in the positive control and CX3CR1 inhibitor groups. Thus, the study suggests that inhibition of fractalkine/CX3CR1 signaling pathway promotes the recovery of neurological functioning after the occurrence of an early ischemic stroke.
Counterfeit
Text : Breast cancer must be addressed by a multidisciplinary team aiming at the patient's comprehensive treatment. Recent advances in science make it possible to evaluate tumor staging and point out the specific treatment. However, these advances must be combined with the availability of resources and the easy operability of the technique. This study is aimed at distinguishing and classifying benign and malignant cells, which are tumor types, from the data on the Wisconsin Diagnostic Breast Cancer (WDBC) dataset by applying data mining classification and clustering techniques with the help of the Weka tool. In addition, various algorithms and techniques used in data mining were measured with success percentages, and the most successful ones on the dataset were determined and compared with each other.
Authentic
Text : The prime issue derived from prostate cancer (PCa) is its high prevalence to metastasize to bone. MicroRNA-204-5p (miR-204-5p) has been reported to be involved in the development and metastasis in a variety of cancers. However, the clinical significance and biological functions of miR-204-5p in bone metastasis of PCa are still not reported yet. In this study, we find that miR-204-5p expression is reduced in PCa tissues and serum sample with bone metastasis compared with that in PCa tissues and serum sample without bone metastasis, which is associated with advanced clinicopathological characteristics and poor bone metastasis-free survival in PCa patients. Moreover, upregulation of miR-204-5p inhibits the migration and invasion of PCa cells in vitro, and importantly, upregulating miR-204-5p represses bone metastasis of PCa cells in vivo. Our results further demonstrated that miR-204-5p suppresses invasion, migration, and bone metastasis of PCa cells via inactivating nuclear factor κB (NF-κB) signaling by simultaneously targeting TRAF1, TAB3, and MAP3K3. In clinical PCa samples, miR-204-5p expression negatively correlates with TRAF1, TAB3, and MAP3K3 expression and NF-κB signaling activity. Therefore, our findings reveal a new mechanism underpinning the bone metastasis of PCa, as well as provide evidence that miR-204-5p might serve as a novel serum biomarker in bone metastasis of PCa. This study identifies a novel functional role of miR-204-5p in bone metastasis of prostate cancer and supports the potential clinical value of miR-204-5p as a serum biomarker in bone metastasis of PCa.
Authentic
Text : Breast cancer is the most common cancer in women worldwide, and within this cancer type, triple-negative breast cancers have the worst prognosis. The identification of new genes associated with triple-negative breast cancer progression is crucial for developing more specific anti-cancer targeted therapies, which could lead to a better management of these patients. In this context, we have recently demonstrated that SMARCAD1, a DEAD/H box-containing helicase, is involved in breast cancer cell migration, invasion, and metastasis. The aim of this study was to investigate the impact of the stable knockdown of SMARCAD1 on human breast cancer cell progression. Using two different designs of shRNA targeting SMARCAD1, we investigated the impact of the stable knockdown of SMARCAD1 on human breast cancer cell proliferation and colony growth in vitro and on tumour growth in chick embryo and nude mouse xenograft models in vivo using MDA-MB-231 (ER-/PR-/ HER2-) and T47D (ER+/PR+/-/HER2-) human breast cancer cell lines. We found that SMARCAD1 knockdown resulted in a significant decrease in breast cancer cell proliferation and colony formation, leading to the significant inhibition of tumour growth in both the chick embryo and nude mouse xenograft models. This inhibition was due, at least in part, to a decrease in IKKβ expression. These results indicate that SMARCAD1 is involved in breast cancer progression and can be a promising target for breast cancer therapy.
Authentic
Text : To clarify the role of microRNA-621 (miRNA-621)/SIX4 axis in regulating the malignant progression of non-small cell lung cancer (NSCLC) and the potential mechanism. MiRNA-621 expression in NSCLC tissues and paracancerous tissues (n=50) was examined by quantitative Real-time polymerase chain reaction (qRT-PCR). We further analyzed the correlation between miRNA-621 expression and pathological indexes of NSCLC patients. By transfection of miRNA-621 mimics, its expression was upregulated. Regulatory effects of miRNA-621 on proliferation and apoptosis of H1299 and SPC-A1 cells were evaluated by cell counting kit-8 (CCK-8), 5-Ethynyl-2'- deoxyuridine (EdU) assay and flow cytometry, respectively. Finally, the potential mechanism of miRNA-621 in regulating target gene SIX4 was explored by Western blot and rescue experiments. MiRNA-621 was lowly expressed in NSCLC tissues relative to paracancerous tissues. NSCLC patients with low-level miRNA-621 were expected to have a worse clinical grade and shorter overall survival compared with those with a high level. Transfection of miRNA-621 mimics in H1299 and SPC-A1 cells markedly suppressed proliferation, but induced apoptosis. SIX4 was found to be highly expressed in NSCLC and negatively regulated by miRNA-621. MiRNA-621 overexpression could downregulate protein levels of SIX4, CD31, Ki-67, c-Myc, MMP-2 and MMP-9 in H1299 and SPC-A1 cells. Overexpression of SIX4 partially reversed the role of miRNA-621 in the malignant progression of NSCLC. MiRNA-621 is closely related to pathological grade and poor prognosis of NSCLC. Besides, miRNA-621 can inhibit the malignant progression of NSCLC by regulating SIX4 expression.
Authentic
Text : The incidence of oral cancer is still increasing. It has become very common in patients with malignant tumors, which has forced medical personnel to continuously explore its treatment methods. What kind of method can effectively and correctly diagnose the disease in the early stage and improve the survival rate has become one of the research topics that have attracted much attention. Aiming at this problem, it has great research significance for the field of oral precancerous lesions diagnosis. With the in-depth research on oral precancerous diagnosis, the research on artificial neural network (ANN) in medical diagnosis is gradually carried out. Its performance advantage is of great significance to solve the problem of early and correct disease diagnosis. This paper aimed to investigate the application of ANN-assisted cancer risk prediction method in risk prediction of oral precancerous lesions. Through the analysis and research of ANN and oral cancer, the construction of oral cancer risk prediction model was applied to solve the problem of improving the survival rate of oral cancer patients. In this paper, ANN and oral precancerous lesions were analyzed, the performance of the algorithm was experimentally analyzed, and the relevant theoretical formulas were used to explain. The results showed that the method had higher accuracy than traditional forecasting methods. When N = 2, the output accuracy was above 90%. It can be seen that the algorithm can meet the needs of the diagnosis of high-risk groups of oral cancer lesions, and the diagnosis efficiency and patient survival rate has been greatly improved.
Authentic
Text : TMEFF2 is a type I transmembrane protein with two follistatin (FS) and one EGF-like domain over-expressed in prostate cancer; however its biological role in prostate cancer development and progression remains unclear, which may, at least in part, be explained by its proteolytic processing. The extracellular part of TMEFF2 (TMEFF2-ECD) is cleaved by ADAM17 and the membrane-retained fragment is further processed by the gamma-secretase complex. TMEFF2 shedding is increased with cell crowding, a condition associated with the tumour microenvironment, which was mediated by oxidative stress signalling, requiring jun-kinase (JNK) activation. Moreover, we have identified that TMEFF2 is also a novel substrate for other proteases implicated in prostate cancer, including two ADAMs (ADAM9 and ADAM12) and the type II transmembrane serine proteinases (TTSPs) matriptase-1 and hepsin. Whereas cleavage by ADAM9 and ADAM12 generates previously identified TMEFF2-ECD, proteolytic processing by matriptase-1 and hepsin produced TMEFF2 fragments, composed of TMEFF2-ECD or FS and/or EGF-like domains as well as novel membrane retained fragments. Differential TMEFF2 processing from a single transmembrane protein may be a general mechanism to modulate transmembrane protein levels and domains, dependent on the repertoire of ADAMs or TTSPs expressed by the target cell.
Authentic
Text : We aimed to study the involvement of circZMYM2 (hsa_circ_0099999) in pancreatic cancer (PC) cell proliferation, apoptosis and invasion and to figured out the underlying mechanism of circZMYM2 regulating miR-335-5p and JMJD2C. CircRNA differential expressions in twenty PC samples and paired normal tissue samples were analyzed using Arraystar Human CircRNA microarray V1. CircZMYM2 expression level was determined via qRT-PCR. The effects of circZMYM2 inhibition and overexpression on cell proliferation, cell apoptosis and cell invasion were investigated by CCK-8 assays, Flow cytometry assays and Transwell assays. An animal experiment on nude mice was put forward to test the influence of circZMYM2 knockdown on tumor growth. The relationship between circZMYM2, miR-335 and JMJD2C was verified by RNA pull down, dual-luciferase reporter assays and rescue experiment. The effect of circZMYM2 and miR-335-5p on the expression of JMJD2C protein was detected by western blot. CircZMYM2 overexpression was observed in both PC tissues and cells. Knockdown of circZMYM2 inhibited proliferation, induced apoptosis, and weakened invasion ability of cancer cells. Tumor growth was restrained in vivo. CircZMYM2 repressed the expression of its target miR-335-5p. MiR-335-5p attenuated pancreatic cancer development via inhibition of JMJD2C. Our study demonstrated that circZMYM2 promoted PC progression. CircZMYM2 had a sponge effect on miR-335-5p and modulated the downstream oncogene JMJD2C.
Counterfeit
Text : Recent evidence has demonstrated that circular RNAs (circRNAs) played crucial roles in fine-tuning the levels of gene expression by sequestering the corresponding microRNA (miRNAs). Their interaction with disease-associated miRNAs indicates that circRNAs are important for the development of disease, and miR-145 has been previously shown to have antitumor effect in prostate cancer. In the current study, we successfully established the miR-145-overexpressed prostate cancer LNCaP cells (LNCaP-miR-145) using lentiviral vectors. LNCaP cells expressing the empty vector (LNCaP-NC) were used as the negative control. The circRNA expression in LNCaP-miR-145 cells was detected by microarray analysis, and the miRNA targets of circRNAs were predicted using the bioinformatics software TargetScan and miRanda. Quantitative reverse transcription polymerase chain reaction was used to detect the expression levels of circRNAs in the prostate cancer tissue, nonmalignant tissue, LNCaP-miR-145 cells, and LNCaP-NC cells. The interaction of miRNA and circRNA was further confirmed by the dual-luciferase reporter assay. A total of 267 and 149 circRNAs were significantly up- and downregulated in LNCaP-miR-145 cells, respectively. hsa_circRNA_101981, hsa_circRNA_101996 and hsa_circRNA_09142 were the 3 circRNAs that interacted with hsa-miR-145-5p; hsa_circRNA_008068 and hsa_circRNA_406557 were the 2 circRNAs that interacted with hsa-miR-145-3p. Most of the circRNAs corresponded to the protein-coding exons. The expression levels of hsa_circRNA_101981, hsa_circRNA_00806, and hsa_circRNA_406557 were upregulated in the LNCaP-miR-145 cells, but downregulated in the prostate cancer tissue. In contrast, the expression levels of hsa_circRNA_101996 and hsa_circRNA_091420 were downregulated in the LNCaP-miR-145 cells, but upregulated in the prostate cancer tissue. Moreover, miR-145-5P might regulate the expression of hsa_circRNA_101981, hsa_circRNA_101996, and hsa_circRNA_09142, while miR-145-3P might regulate the expression of hsa_circRNA_008068 and hsa_circRNA_406557. Overexpression of miR-145 promoted the expression of hsa_circRNA_101981, hsa_circRNA_008068, and hsa_circRNA_406557 but suppressed the expressions of hsa_circRNA_101996 and hsa_circRNA_091420 in LNCaP cells. The results from the current study should give us a clue to clarify the tumor suppressive effect of miR-145.
Authentic
Text : The tumor microenvironment (TME) is greatly multifaceted and immune escape is an imperative attribute of tumors fostering tumor progression and metastasis. Based on reports, the restricted achievement attained by T cell immunotherapy reflects the prominence of emerging other innovative immunotherapeutics, in particular, natural killer (NK) cells-based treatments. Human NK cells act as the foremost innate immune effector cells against tumors and are vastly heterogeneous in the TME. Currently, there exists a rapidly evolving interest in the progress of chimeric antigen receptor (CAR)-engineered NK cells for tumor immunotherapy. CAR-NK cells superiorities over CAR-T cells in terms of better safety (e.g., absence or minimal cytokine release syndrome (CRS) and graft-versus-host disease (GVHD), engaging various mechanisms for stimulating cytotoxic function, and high feasibility for 'off-the-shelf' manufacturing. These effector cells could be modified to target various antigens, improve proliferation and persistence in vivo, upturn infiltration into tumors, and defeat resistant TME, which in turn, result in a desired anti-tumor response. More importantly, CAR-NK cells represent antigen receptors against tumor-associated antigens (TAAs), thereby redirecting the effector NK cells and supporting tumor-related immunosurveillance. In the current review, we focus on recent progress in the therapeutic competence of CAR-NK cells in solid tumors and offer a concise summary of the present hurdles affecting therapeutic outcomes of CAR-NK cell-based tumor immunotherapies.
Counterfeit
Text : Recently, microRNA (miR)-33b has been demonstrated to act as a tumor suppressor in osteosarcoma. However, the regulatory mechanism of miR-33b in osteosarcoma cell proliferation and migration remains largely unknown. In this study, real-time PCR showed that miR-33b was significantly downregulated in osteosarcoma tissues compared to their matched adjacent nontumor tissues. Its expression was also decreased in several common osteosarcoma cell lines, including Saos-2, MG63, U2OS, and SW1353, when compared to normal osteoblast cell line hFOB. Overexpression of miR-33b suppressed U2OS cell proliferation and migration. HIF-1α was further identified as a target of miR-33b, and its protein levels were reduced after overexpression of miR-33b in U2OS cells. Moreover, overexpression of HIF-1α significantly reversed the suppressive effect of miR-33b on U2OS cell proliferation and migration. In addition, HIF-1α was found to be significantly upregulated in osteosarcoma tissues compared to adjacent nontumor tissues, and their expression levels were inversely correlated to the miR-33b levels in osteosarcoma tissues. According to these findings, miR-33b plays a suppressive role in the regulation of osteosarcoma cell proliferation and migration via directly targeting HIF-1α. Therefore, we suggest that the miR-33b/HIF-1α axis may become a promising therapeutic target for osteosarcoma.
Authentic
Text : Tropomyosin-2 (TPM2) plays important roles in functions of the cytoskeleton, such as cytokinesis, vesicle transport, cell proliferation, migration and apoptosis,and these functions imply that TPM2 also plays a role in cancer development. Indeed, it has been shown that TPM2 plays a critical role in some cancers. However, the role of TPM2 in breast cancer is still poorly characterized. Thus, we explored the role of TPM2 in breast cancer. We analysed TPM2 expression and its correlation with the clinicopathological features in breast cancer. Then, we examined the influence of hypoxia on TPM2 expression and methylation status using bisulfite sequencing PCR. Furthermore, we performed TPM2-mediated migration and invasion assays in the context of hypoxia and examined changes in matrix metalloproteinase-2 (MMP2) expression. Finally, we detected the influence of TPM2 on survival and chemotherapy drug sensitivity. We found that TPM2 expression is down-regulated in breast cancer cells compared to that in normal breast cells. The data from TCGA supported these results. Promoter methylation of TPM2, which could be induced by hypoxia, was responsible for its low expression. Hypoxia might regulate cell invasiveness partly by TPM2 down-regulation-mediated changes of MMP2 expression. Importantly, low TPM2 expression was correlated with lymph node metastasis (P=0.031), tumour node metastasis stage (P=0.01), histological grade (P=0.037), and shorter overall survival (P=0.028). Univariate and multivariate analyses indicated that TPM2 was an independent predictor in breast cancer patients. Paclitaxel chemotherapy did not benefit patients with low TPM2 expression (P<0.0001). TPM2 knockdown significantly reduced cell sensitivity to paclitaxel. TPM2 is a potential novel tumour suppressor gene in breast cancer. TPM2 is associated with poor survival and chemoresistance to paclitaxel in breast cancer, and TPM2 may represent a promising therapeutic gene target for breast cancer patients with chemoresistance.
Authentic
Text : Human mesenchymal stem cell (MSC)-based tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene delivery is regarded as an effective treatment for glioblastoma (GBM). However, adverse-free target site homing of the delivery vehicles to the tumor microsatellite nests is challenging, leading to erroneously sustained released of this suicide protein into the normal brain parenchyma; therefore, limiting off-target cytotoxicity and controlled expression of the suicide inductor is a prerequisite for the safe use of therapeutic stem cells. Utilizing the intrinsic expression profile of GBM and its elevated expression of TGF-β relative to normal brain tissue, we sought to engineer human adipose-derived MSCs (hAMSC-SBE4-TRAIL) which augment the expression of TRAIL under the trigger of TGF-β signaling. We validated our therapeutic technology in a series of functional in vitro and in vivo assays using primary patient-derived GBM models. Our current findings show that these biologic delivery vehicles have high tumor tropism efficacy and expression TRAIL gene under the trigger of TGF-β-secreting GBMs, as well as avoid unspecific TRAIL secretion into normal brain tissue. hAMSC-SBE4-TRAIL inhibited the proliferation and induced apoptosis in experimental GBMs both in vitro and in vivo. In addition, our improved platform of engineered MSCs significantly decreased the tumor volume and prolonged survival time in a murine model of GBM. Our results on the controlled release of suicide inductor TRAIL by exploiting an endogenous tumor signaling pathway demonstrate a significant improvement for the clinical utility of stem cell-mediated gene delivery to treat brain cancers. Harvesting immune-compatible MSCs from patients' fat by minimally invasive procedures further highlights the clinical potential of this approach in the vision of applicability in a personalized manner. The hAMSC-SBE4-TRAIL exhibit great curative efficacy and are a promising cell-based treatment option for GBM to be validated in clinical exploration.
Authentic
Text : Antrodia salmonea (AS) is a genus of Antrodia, an epiphyte of Cunninghamia konishii in Taiwan. AS has been reported to have potential therapeutic effects on different diseases, including diarrhea, abdominal pain, and hypertension. AS has been reported to have anticancer effects on numerous cancer types, such as ovarian carcinoma and triple-negative breast cancer. Our previous studies demonstrated that antrocins and triterpenoids are possibly bioactive compositions. However, the effects of AS on prostate cancer remain unknown. Therefore, we investigated the role of AS in prostate cancer growth, apoptosis, and cell cycle regulation. The results showed that AS extracts significantly inhibited the proliferation of prostate cancer LNCaP cells in a dose-dependent manner and increased the levels of apoptotic markers (cleaved PARP and cleaved caspase 3/8/9). In addition, the cell cycle-related proteins CDK1, CDK2, CDK4, and their respective specific regulators Cyclin B1, Cyclin A, and Cyclin D were also affected. Besides, AS treatment increased p53 protein levels and slowed its degradation in LNCaP cells. Interestingly, we found that AS treatment reduced both total protein and Ser-81 phosphorylation levels of the androgen receptor (AR). Notably, the increase of nuclear p53 was accompanied by the down-regulation of AR, suggesting a reverse regulation between p53 and AR in LNCaP cells was triggered by AS treatment. These findings suggest that AS extracts trigger the apoptosis of prostate cancer cells through the reverse regulation of p53 and AR and elucidate that AS extracts might be a potential treatment for androgen-dependent prostate cancer in the near future.
Authentic
Text : RING finger protein 38 (RNF38) has been reported to be involved in the tumorigenesis of several tumors, but its role in colorectal cancer (CRC) is still not investigated. In the present study, we aimed to investigate the effect of RNF38 in CRC cells. The public tumor databases GEPIA and Kaplan-Meier Plotter were used to analyze RNF38 expression and patients' overall survival in CRC. The qRT-PCR was carried out to assess the mRNA levels of RNF38 and LDB1. Western blot and co-immunoprecipitation were used to detect protein expression and ubiquitination. CCK-8 assay was performed to analyze CRC cell growth and viability. RNF38 was found downregulated in CRC tumor tissues and cell lines, and CRC patients with high RNF38 expression had a longer overall survival than patients with low RNF38 expression. Our further investigations showed that RNF38 interacted with LDB1, and downregulated LDB1 expression by inducing its polyubiquitination. Moreover, overexpression of RNF38 inhibited CRC cell growth but enforced LDB1 could significantly antagonize RNF38-induced cell growth inhibition in CRC cells. Additionally, RNF38/LDB1 axis was involved in the drug sensitivity of 5-FU to CRC cells. Our studies suggested that RNF38 was functional in CRC cells, and downregulated CRC cell growth by inducing LDB1 polyubiquitination, which indicated that RNF38 could be as a novel target for CRC therapy.
Authentic
Text : Since this article has been suspected of research misconduct and the corresponding authors did not respond to our request to prove originality of data and figures, "Effects of microRNA-21 targeting PITX2 on proliferation and apoptosis of pituitary tumor cells, by M. Cui, M. Zhang, H.-F. Liu, J.-P. Wang, published in Eur Rev Med Pharmacol Sci 2017; 21 (13): 2995-3004-PMID: 28742208" has been withdrawn. The Publisher apologizes for any inconvenience this may cause. https://www.europeanreview.org/article/13066.
Authentic
Text : Introduction: Crohn's disease (CD) is characterized by chronic and relapsing inflammation of the gastro-intestinal tract. It is assumed that oxidative stress contributes to CD pathogenesis, but systemic biomarkers for oxidative stress in CD are not yet identified. A reduction in free thiol groups in plasma proteins ("plasma free thiols") reflects systemic oxidative stress since they are prime substrates for reactive oxygen species. Here, we determined the concentrations of plasma free thiols in CD patients and healthy controls and studied the putative correlation with disease parameters. Methods: Free thiols were quantified in plasma of patients with CD in clinical remission [according to the Harvey Bradshaw Index (HBI)] and healthy controls and adjusted for plasma albumin. Albumin-adjusted free thiol concentrations were analyzed for associations with clinical and biochemical disease markers. Results: Mean plasma free thiol concentrations were significantly lower in patients with CD (n = 51) compared to healthy controls (n = 27) (14.7 ± 2.4 vs. 17.9 ± 1.8 μmol/g albumin; P < 0.001). Patients with CD with above-average free thiols had significantly lower CRP levels (median 1.4 [interquartile range] [0.4; 2.6] vs. 3.6 [0.6; 7.0] mg/L; P < 0.05) and BMI (23.6 ± 4.8 vs. 27.1 ± 5.2 kg/m2; P < 0.05). Patients with CD having solely colonic disease demonstrated markedly reduced plasma free thiol concentrations compared to patients with ileocolonic involvement (13.2 ± 1.8 vs. 15.2 ± 2.2 μmol/g; P < 0.05). Finally, plasma free thiol concentrations negatively correlated with biomarkers of inflammation, including hsCRP, SAA, IL-17A (all P < 0.05), and VEGF. Conclusion: Plasma free thiols are reduced in patients with CD in clinical remission compared to healthy controls. Thus, subclinical CD disease activity is reflected by systemic oxidative stress and plasma free thiols may be a relevant therapeutic target and biomarker to monitor disease activity in CD.
Authentic
Text : To investigate the expression of Long non-coding RNA ADIPOQ and its facilitating effects on proliferation and invasion of colorectal cancer by modulating the expression of TP53 via sponging with miR-219c-3p. qRT-PCR was performed to detect the expressions of ADIPOQ and TP53 in human colorectal cancer tissues and cells. CCK-8 assay was performed to evaluate the Caco-2 cells proliferation and transwell assay was performed to evaluate the Caco-2 cells migration. The relationship between ADIPOQ and miR-219c-3p was detected by statistical analysis. Target prediction and Luciferase activity assay were conducted to investigate the binding site and interaction between ADIPOQ and miR-219c-3p. Further, we cloned the mice TP53 3'-UTR into the Luciferase reporter vector and constructed miR-219c-3p binding mutants to verify the inhibited regulation of miR-219c-3p to the TP53 expression. The results suggested that the expression of ADIPOQ and TP53 was downregulated in human colorectal cancer tissues and Caco-2 cells. qRT-PCR and CCK-8 assay showed that ADIPOQ expression is correlated with the proliferation of colorectal cancer cells. Transwell assay showed that ADIPOQ regulated the migration ability of colorectal cancer cells. The bioinformatics prediction and Luciferase assay demonstrated that ADIPOQ serves as ceRNA for miR-219c-3p to further regulate the expression of TP53. For the first time, we found that lncRNA-ADIPOQ was downregulated in human colorectal cancer cells, which could facilitate tumor proliferation, migration and invasion as a ceRNA by sponging with miR-219c-3p.
Authentic
Text : Heart failure (HF) is a clinical syndrome characterized by left ventricular dysfunction or elevated intracardiac pressures. Research supports that microRNAs (miRs) participate in HF by regulating  targeted genes. Hence, the current study set out to study the role of HDAC3-medaited miR-18a in HF by targeting ADRB3. Firstly, HF mouse models were established by ligation of the left coronary artery at the lower edge of the left atrial appendage, and HF cell models were generated in the cardiomyocytes, followed by ectopic expression and silencing experiments. Numerous parameters including left ventricular posterior wall dimension (LVPWD), interventricular septal dimension (IVSD), left ventricular end diastolic diameter (LVEDD), left ventricular end systolic diameter (LVESD), left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LEVDP), heart rate (HR), left ventricular pressure rise rate (+ dp/dt) and left ventricular pressure drop rate (-dp/dt) were measured in the mice. In addition, apoptosis in the mice was detected by means of TUNEL staining, while RT-qPCR and Western blot analysis were performed to detect miR-18a, HDAC3, ADRB3, cMyb, MMP-9, Collagen 1 and TGF-β1 expression patterns. Dual luciferase reporter assay validated the targeting relationship between ADRB3 and miR-18a. Cardiomyocyte apoptosis was determined by means of flow cytometry. HDAC3 and ADRB3 were up-regulated and miR-18a was down-regulated in HF mice and cardiomyocytes. In addition, HDAC3 could reduce the miR-18a expression, and ADRB3 was negatively-targeted by miR-18a. After down-regulation of HDAC3 or ADRB3 or over-expression of miR-18a, IVSD, LVEDD, LVESD and LEVDP were found to be decreased but LVPWD, LVEF, LVFS, LVSP, + dp/dt, and -dp/dt were all increased in the HF mice, whereas fibrosis, hypertrophy and apoptosis of HF cardiomyocytes were declined. Collectively, our findings indicate that HDAC3 silencing confers protection against HF by inhibiting miR-18a-targeted ADRB3.
Counterfeit
Text : Paediatric glioneuronal tumour with neuropil-like islands (GTNI) is a rare neoplasm of neuronal differentiation and diffusely infiltrating astroglial and oligodendrocyte-like components. The 2007 World Health Organization classification of central nervous system tumours considered it as a pattern variation of anaplastic astrocytoma. There are few data on paediatric GTNI probably both for their rarity and variable clinical aggressiveness. We studied by SNP/CGH array four tumour samples of GTNI from two males and two females (one new-born and three children aged from 4 to 8 years), in order to identify any possible common genomic alteration. All patients received chemo- and radiotherapy after their surgical treatment. No genomic instability nor recurrent alterations have been demonstrated in two of our GTNI cases. In the remaining two, we detected a mosaic trisomy 8 (15-20%) in one case, and an amplification at 5q14.1 involving DMGDH (partially), BHMT2 and BHMT genes, with the distal breakpoint falling at 23 Kbp from the 5'UTR of JMY, a p53 cofactor. Although the smallness of the sample impairs any clinical-histological correlation, GTNI appear different at the molecular level, with genomic imbalances playing a possible role in at least part of them. Our work gives an important contribution in knowledge and classification of this family of tumours.
Authentic
Text : Background: OIP5-AS1 has been reported to be aberrantly expressed in multiple cancers and associated with clinical outcomes. We conducted this study to assess the generalized prognostic value of OIP5-AS1 in cancers.Methods: PubMed, Web of science, and Cochrane Library were searched for eligible studies. Hazards ratios (HRs) or odd ratios (ORs) with 95% confidence intervals (CIs) were pooled to estimate the prognostic value of OIP5-AS1 in cancers, including overall survival (OS), age, gender, tumor size, clinical stage, and lymph node metastasis (LNM). Publication bias was measured by Begg's test and funnel plot. Sensitivity analysis were used to detect the stability of pooled results.Results: Overall, eleven studies containing 713 patients were eventually enrolled. The pooled results showed that high OIP5-AS1 expression was correlated with shorter OS (HR = 0.48, 95%CI: 0.35-0.64), regardless of the sample size, tumor type and follow-up time. Furthermore, elevated expression of OIP5-AS1 indicated advanced clinical stage (OR = 2.12, 95% CI: 1.06-4.23), but not associated with age, gender, tumor size and LNM. No publication bias was detected.Conclusion: High expression of lncRNA OIP5-AS1 may predict a poor OS and advanced clinical stage, implicating that OIP5-AS1 may be a possible prognostic factor in cancers.
Authentic
Text : As one of the most fatal malignancies, pancreatic ductal adenocarcinoma (PDAC) has significant resistance to the currently available treatment approaches. Gemcitabine, the standard chemotherapeutic agent for locally advanced and metastatic PDAC, has limited efficacy, which is attributed to innate/acquired resistance and the activation of prosurvival pathways. Here, we investigated the in vitro efficacy of I-BET762, an inhibitor of the bromodomain and extraterminal (BET) family of proteins, in treating PDAC cell lines alone and in combination with gemcitabine (GEM). The effect of these two agents was also examined in xenograft PDAC tumors in mice. We found that I-BET762 induced cell cycle arrest in the G0/G1 phase and cell death and suppressed cell proliferation and metastatic stem cell factors in PDAC cells. In addition, the BH3-only protein Bim, which is related to chemotherapy resistance, was upregulated by I-BET762, which increased the cell death triggered by GEM in PDAC cells. Moreover, GEM and I-BET762 exerted a synergistic effect on cytotoxicity both in vitro and in vivo. Furthermore, Bim is necessary for I-BET762 activity and modulates the synergistic effect of GEM and I-BET762 in PDAC. In conclusion, we investigated the effect of I-BET762 on PDAC and suggest an innovative strategy for PDAC treatment.
Counterfeit
Text : We identified phosphatidylinositol glycan anchor biosynthesis, class X (PIGX), which plays a critical role in the biosynthetic pathway of glycosylphosphatidylinositol (GPI)-anchor motif, to be upregulated highly and frequently in breast cancer cells. Knockdown of PIGX as well as reticulocalbin 1 (RCN1) and reticulocalbin 2 (RCN2), which we found to interact with PIGX and was indicated to regulate calcium-dependent activities, significantly suppressed the growth of breast cancer cells. We also identified PIGX to be a core protein in an RCN1/PIGX/RCN2 complex. Microarray analysis revealed that the expression of two putative tumor suppressor genes, Zic family member 1 (ZIC1) and EH-domain containing 2 (EHD2), were upregulated commonly in cells in which PIGX, RCN1, or RCN2 was knocked down, suggesting that this RCN1/PIGX/RCN2 complex could negatively regulate the expression of these two genes and thereby contribute to human breast carcinogenesis. Our results imply that PIGX may be a good candidate molecule for development of novel anticancer drugs for breast cancer.
Authentic
Text : Emerging evidence suggests that long non-coding RNAs (lncRNAs) may be involved in modulating various aspects of tumor biology and serve as potential therapeutic targets as well as novel biomarkers in the treatment of glioma. The present study investigated the role of lncRNA, Prader Willi/Angelman region RNA 5 (PAR5; also known as PWAR5), in glioma and its clinical significance in glioma cases. The expression levels of PAR5 were determined in clinical samples and U87, U251 cells using real-time reverse transcription quantitative polymerase chain reaction (qRT-PCR) analysis. The effects of PAR5 on cell proliferation, migration and invasion were determined using in vitro assays. RNA immunoprecipitation (RIP) and RNA pull-down assays, as well as the evauation of the expression of various oncogenes were carried out to reveal the underlying mechanisms. We found that PAR5 was significantly downregulated in glioma tissues and cell lines. Furthermore, PAR5 expression was negatively correlated with tumor size, World Health Organization (WHO) grade and Karnofsky performance score (KPS). Patients with low PAR5 expression in tumors had a worse overall survival compared to those with higher expression. Finally, in vitro restoration of PAR5 expression inhibited human glioma cell proliferation, invasion and migration by binding to EZH2 and regulating oncogene expression. This finding may provide a therapeutic approach for the future treatment of glioma.
Authentic
Text : Experiments were conducted to determine if the follicle-stimulating hormone (FSH) receptor binding inhibitor (FRBI) impacts the expression levels of AT-rich interactive domain-containing protein 1A (ARID1A) and phosphatase and tensin homolog (PTEN) in ovaries and blood, as well as expressions of follicle-stimulating hormone cognate receptor (FSHR) gene and proteins. Mice in FRBI-10, FRBI-20, FRBI-30, and FRBI-40 groups were intramuscularly injected with 10, 20, 30, and 40 mg FRBI/kg, respectively, for five consecutive days. Western blotting and qRT-PCR were utilized to determine expression levels of ARID1A and PTEN proteins and mRNAs. Serum ARID1A and PTEN concentrations of the FRBI-40 group were higher than the control group (CG) and FSH group (P<0.05). FSHR mRNA levels of FRBI-20, FRBI-30, and FRBI-40 groups were lower than that of CG and FSH groups on day 15 (P<0.05 or P<0.01). Expression levels of FSHR proteins of FRBI-30 and FRBI-40 groups were lower than those of CG and FSH groups (P<0.05). Levels of ARID1A and PTEN proteins of the FRBI-30 group were greater than CG on days 20 and 30 (P<0.05). FRBI doses had significant positive correlations to levels of ARID1A and PTEN proteins. Additionally, ARID1A and PTEN had negative correlations to FSHR mRNAs and proteins. A high dose of FRBI could promote the expression levels of ARID1A and PTEN proteins in ovarian tissues. FRBI increased serum concentrations of ARID1A and PTEN. However, FRBI depressed expression levels of FSHR mRNAs and proteins in mouse ovaries.
Authentic
Text : Acquired resistance to standard chemotherapy is the common and critical limitation for cancer therapy. Hematopoietic cell-specific protein 1-associated protein X-1 (HAX-1) has been reported to be upregulated in numerous cancers. However, the role of HAX-1 in oncotherapy remains unclear. In this study, we established MDA-MB-231 cell lines which were resistant to cisplatin (MDA-MB-231/CR) or doxorubicin (MDA-MB-231/DR) to study the chemoresistance in breast cancer. As a result, the HAX-1 which is an apoptosis-associated protein was observed to be overexpressed in both MDA-MB-231/CR and MDA-MB-231/DR compared with the routine MDA-MB-231 cells. Moreover, knockdown of HAX-1 via RNA interference decreased IC50 level of cisplatin by 70.91% in MDA-MB-231/CR cells, and the IC50 level of doxorubicin was decreased by 76.46% in MDA-MB-231/DR cells when the HAX-1 was downregulated. Additionally, we found that the knockdown of HAX-1 induced the release of cytochrome C from mitochondria, resulting in the activation of caspases. Taken together, our study indicates that the overexpression of HAX-1 is essential in the development of chemoresistance in breast cancer. Furthermore, we identify that HAX-1 may become the target for cancer therapy.
Authentic
Text : This study aimed to investigate the role and regulatory mechanism of small nucleolar RNA host gene 6 (SNHG6), a long noncoding RNA, in the formation of ventricular septal defect (VSD). The expression of SNHG6 in fetal cardiac tissues with VSD, mouse heart embryo development and the differentiation of P19 cells into cardiomyocytes were determined. Moreover, the effect of aberrant expression of SNHG6 on P19 cell proliferation, cell cycle, apoptosis and differentiation was further analyzed to explore the role of SNHG6 in affecting myocardial development. Furthermore, the regulatory mechanism between SNHG6 and miR-101 as well as between SNHG6 and activation of Wnt/β-catenin pathway was investigated. SNHG6 was upregulated in fetal cardiac tissues with VSD, and decreased in the embryonic development of mice and differentiation of P19 cells into cardiomyocytes. Overexpression of SNHG6 inhibited P19 cell proliferation and induced apoptosis, as well as promoted cell differentiation into cardiomyocytes. Furthermore, SNHG6 could negative regulate the expression of miR-101, and the effects of SNHG6 on the modulation of P19 cell function were through negative regulation of miR-101. In addition, overexpression of SNHG6 activated Wnt/β-catenin pathway, which was reversed after overexpression of SNHG6 and miR-101 synchronously. Our study reveals that SNHG6 may contribute to VSD formation via negative regulation of miR-101 and activation of Wnt/β-catenin pathway. SNHG6 may constitute a potential therapeutic target in this disease.
Counterfeit
Text : This paper aims to explore the use of computer-based simulation teaching combined with PBL in colorectal tumor bleeding. The outpatient department organized 21 nursing staffs to conduct computer simulation combined with PBL teaching, compared emergency theory and skill scores, and investigated the recognition of computer simulation teaching combined with PBL. The scores of theoretical knowledge examination before training were (84.31 ± 6.39) and (92.59 ± 2.93) after training; the scores of treatment skills examination were (85.69 ± 6.15) and (95.43 ± 2.88) after training; the scores of comprehensive treatment skills before training were (76.6 ± 6.31) and (91.43 ± 2.3) after training. The results of the questionnaires showed that the nurses were more agreeable to the new teaching methods and were able to complete the tasks in strict accordance with the requirements, ultimately achieving a level of satisfaction with their progress. Computer simulation teaching combined with PBL can deepen general practitioners' understanding of knowledge, improve practical ability, and provide a clinical basis for improving patient resuscitation in specialized oncology hospitals.
Authentic
Text : Approximately 70% of advanced breast cancer patients will develop bone metastases, which accounts for ∼90% of cancer-related mortality. Breast cancer circulating tumor cells (CTCs) establish metastatic tumors in the bone after a close interaction with local bone marrow cells including pericytes and osteoblasts, both related to resident mesenchymal stem/stromal cells (BM-MSCs) progenitors. In vitro recapitulation of the critical cellular players of the bone microenvironment and infiltrating CTCs could provide new insights into their cross-talk during the metastatic cascade, helping in the development of novel therapeutic strategies. Human BM-MSCs were isolated and fractionated according to CD146 presence. CD146+ cells were utilized as pericyte-like cells (PLCs) given the high expression of the marker in perivascular cells, while CD146- cells were induced into an osteogenic phenotype generating osteoblast-like cells (OLCs). Transwell migration assays were performed to establish whether primary breast cancer cells (3384T) were attracted to OLC. Furthermore, proliferation of 3384T breast cancer cells was assessed in the presence of PLC- and OLC-derived conditioned media. Additionally, conditioned media cultures as well as transwell co-cultures of each OLCs and PLCs were performed with 3384T breast cancer cells for gene expression interrogation assessing their induced transcriptional changes with an emphasis on metastatic potential. PLC as well as their conditioned media increased motility and invasion potential of 3384T breast cancer cells, while OLC induced a dormant phenotype, downregulating invasiveness markers related with migration and proliferation. Altogether, these results indicate that PLC distinctively drive 3384T cancer cells to an invasive and migratory phenotype, while OLC induce a quiescence state, thus recapitulating the different phases of the in vivo bone metastatic process. These data show that phenotypic responses from metastasizing cancer cells are influenced by neighboring cells at the bone metastatic niche during the establishment of secondary metastatic tumors.
Authentic
Text : Neoadjuvant chemoradiotherapy has been established as the standard treatment for patients with locally advanced rectal cancer. However, the role of radiotherapy (RT) has not been fully confirmed in advanced colon cancer (LACC). We postulated that patients with pathological T4N2 locally advanced colon cancer would benefit more from RT. 6715 pT4N2M0 colon cancer patients were included in the Surveillance, Epidemiology, and End Results (SEER) database. The primary endpoints were 5-year overall survival (OS) and cancer-specific survival (CSS). Propensity score matching (PSM) with Kaplan-Meier and Cox proportional hazards' models was performed to estimate prognosis. Before PSM, patients underwent RT had better OS and CSS as compared to patients did not receive RT (OS: 40.1% vs 27.6%, p < .001; CSS: 49.6% vs 41.1%, p = .002). After PSM, 239 matched pairs were formed for further analysis. RT group also presented significantly improved prognosis (OS: 40.1% vs 25.7%, p = .008; CSS: 49.6% vs 38.2%, p = .042). Multivariable Cox regression analysis showed that RT was a protective factor [OS:Hazard ratio (HR) =0.677, 95% Confidence interval (CI): 0.532-0.862, p = .002; CSS: HR = 0.708, 95% CI: 0.533-0.941, p = .018]. For pT4N2M0 colon cancer patients, the addition of RT seems to confer survival benefit as compared to patients who did not receive RT.
Authentic
Text : Esophageal cancer (EC) is among the severest cancers causing most fatalities around the world with an increasing incidence. Oleuropein exhibits anti-tumor properties in several human cancers. We aimed to investigate the effect of oleuropein in human EC, and to reveal the molecular target involved in EC tumorigenesis. Cell proliferation, migration and invasion assays were performed to assess the effect of oleuropein on EC cells. A xenograft tumor mouse model was utilized to assess the in vivo effect of oleuropein. Hypoxia-inducible factor-1α (HIF1α) and B-cell translocation gene 3 (BTG3) expressions were examined in oleuropein-treated EC cells. The regulatory effect of HIF1α on BTG3 mRNA was evaluated by chromatin immunoprecipitation and luciferase reporter assays. Oleuropein inhibited the growth of EC cells and xenograft EC tumor, as well as inhibiting HIF1α and upregulating BTG3 expressions. BTG3 mRNA expression was under hypoxia inhibition through the HRE in its promoter region. BTG3 knockdown abolished the inhibitory effect of oleuropein on EC cells in vitro, as well as on EC xenograft tumor in vivo. Oleuropein inhibits EC tumorigenesis through hypoxic suppression of BTG3 mRNA, supporting the clinical application of oleuropein, and HIF1α and BTG3 mRNA as potential molecular targets in treatment against EC.
Counterfeit
Text : EGFR tyrosine kinase inhibitors (TKIs) have been developed for the treatment of EGFR mutated NSCLC. Parthenolide, a natural product of parthenolide, which belongs to the sesquiterpene lactone family and has a variety of biological and therapeutic activities, including anti-cancer effects. However, its effect on non-small cell lung cancer is little known. The CCK8 assay and colony formation assays were used to assess cell viability. Flow cytometry was used to measure the cell apoptosis. In silico molecular docking was used to evaluate the binding of parthenolide to EGFR. Network pharmacology analysis was was used to evaluate the key gene of parthenolide target NSCLC. Western blotting was used to evaluate the key proteins involved apoptosis and EGFR signalling. The effect of parthenolide treatment in vivo was determined by using a xenograft mouse model. In this study, parthenolide could induce apoptosis and growth inhibition in the EGFR mutated lung cancer cells. Parthenolide also reduces the phosphorylation of EGFR as well as its downstream signaling pathways MAPK/ERK and PI3K/Akt. Molecular docking analysis of EGFR binding site with parthenolide show that the anti-cancer effect of parthenolide against NSCLC is mediated by a strong binding to EGFR. Network pharmacology analysis show parthenolide suppresses NSCLC via inhibition of EGFR expression. In addition, parthenolide inhibits the growth of H1975 xenografts in nude mice, which is associated with the inhibition of the EGFR signaling pathway. Taken together, these results demonstrate effective inhibition of parthenolide in NSCLC cell growth by targeting EGFR through downregulation of ERK and AKT expression, which could be promisingly used for patients carrying the EGFR mutation.
Authentic
Text : Lung cancer is a worldwide disease and highly heterogeneous at a molecular level. In this study, we both performed the pathway enrichment analysis and the transcriptome-based weighted gene coexpression network analysis (WGCNA) so as to find the critical pathways involved in lung cancer. Our analysis results indicated that genes in viability modules (0 < Z-summary < 2) selected by WGCNA were more reliable for identifying crucial pathways, while gene enrichment analysis provided a wide range of pathways with a little emphasis on target pathways for lung cancer. On the basis of genes, which were classified into various modules by WGCNA, we found a significant aberration of glucose metabolism in lung cancer cells, demonstrating that the glucose metabolism has been perturbed, especially the glycolysis pathway. Our study revealed that disordered glucose metabolism might be closely associated with the carcinogenesis of lung cancer based on the integrated analysis of WGCNA and metabolomics, which could be a potential therapeutic target for lung cancer.
Authentic
Text : How lncRNA SNHG1 influences the aggressiveness of nasopharyngeal carcinoma cells as well as the underlying mechanism was studied. The lncRNA differences were analysed by GSE12452 gene microarray. The expression of SNHG1, MiR-145-5p and NUAK1 was identified by qRT-PCR and western blot. Transfection was conducted to construct nasopharyngeal carcinoma cells with different expressions of SNHG1, miR-145-5p and NUAK1. Dual-luciferase reporter assay was performed to explore the relationship between SNHG1, miR-145-5p and NUAK1. Wound-healing assay and transwell invasion experiments were employed to study changes in cell migration capacity and cell invasion, respectively. Tumour xenografts were performed to observe lung metastasis of nude mice inoculated with transfected CNE cells. SNHG1 is highly expressed in nasopharyngeal carcinoma tissues and in cell lines. Down-regulation of SNHG1 facilitated the expression of miR-145-5p and further suppressed the level of NAUK1 in CNE and HNE-1 cells. Silencing of SNHG1, up-regulation of miR-145-5p and inhibition of NAUK1 by relative transfection all attenuated the aggressiveness of CNE and HNE-1 cells both in vivo and in vitro. Moreover, the impaired cell migration and invasion by SNHG1 siRNA could be rescued by cotransfection of miR-145-5p in CNE and HNE-1 cells. LncRNA SNHG1 promoted the expression of NUAK1 by down-regulating miR-145-5p and thus promoted the aggressiveness of nasopharyngeal carcinoma cells through AKT signalling pathway and induced epithelial-mesenchymal transition (EMT).
Authentic
Text : Currently, studies have shown that microRNA-93 (miR-93) can be an oncogene or a tumor suppressor in different kinds of cancers. The role of miR-93 in human cancers is inconsistent and the underlying mechanism on the aberrant expression of miR-93 is complicated. We first conducted gene enrichment analysis to give insight into the prospective mechanism of miR-93. Second, we performed a meta-analysis to evaluate the clinical value of miR-93. Finally, a validation test based on quantitative polymerase chain reaction (qPCR) was performed to further investigate the role of miR-93 in pan-cancer. Gene Ontology (GO) enrichment analysis results showed that the target genes of miR-93 were closely related to transcription, and MAPK1, RBBP7 and Smad7 became the hub genes. In the diagnostic meta-analysis, the overall sensitivity, specificity, and area under the curve were 0.76 (0.64-0.85), 0.82 (0.64-0.92), and 0.85 (0.82-0.88), respectively, which suggested that miR-93 had excellent performance on the diagnosis for human cancers. In the prognostic meta-analysis, dysregulated miR-93 was found to be associated with poor OS in cancer patients. In the qPCR validation test, the serum levels of miR-93 were upregulated in breast cancer, breast hyperplasia, lung cancer, chronic obstructive pulmonary disease, nasopharyngeal cancer, hepatocellular cancer, gastric ulcer, endometrial cancer, esophageal cancer, laryngeal cancer, and prostate cancer compared with healthy controls. miR-93 could act as an effective diagnostic and prognostic factor for cancer patients. Its clinical value for cancer early diagnosis and survival prediction is promising.
Authentic
Text : Increasing studies have demonstrated that microRNAs (miRNAs) are associated with the metastasis of gallbladder carcinoma (GBC). Recently, miR-324-5p has been reported to be a tumour-suppressive miRNA in many types of malignant cancer. However, the biological function and molecular mechanism of miR-324-5p in GBC still remain largely unknown. Here, we found that miR-324-5p expression was notably down-regulated in both GBC tissues and cells compared with that in normal controls. Downregulated miR-324-5p expression was negatively associated with the status of local invasion and lymph node metastasis and predicted a poor prognosis in GBC patients. Further functional assays revealed that restoration of miR-324-5p significantly suppressed GBC cell migration, invasion and epithelial-mesenchymal transition (EMT) in vitro and impeded the metastasis of GBC cells in vivo. Moreover, RNA immunoprecipitation (RIP) and dual-luciferase reporter assay confirmed that the transforming growth factor beta 2 (TGFB2) was a direct target gene of miR-324-5p in GBC cells. Mechanically, small interfering RNA (siRNA)-mediated knockdown of TGFB2 partially phenocopied the inhibitory effects of miR-324-5p overexpression on GBC cell metastatic phenotypes. In summary, our findings demonstrated that miR-324-5p targets TGFB2 expression to inhibit GBC cell metastatic behaviors, and implying miR-324-5p as a potential biomarker for diagnostic and therapeutic strategies in GBC.
Authentic
Text : Breast cancer is the leading cancer in women, which accounts for millions of deaths worldwide. Early and accurate detection, prognosis, cure, and prevention of breast cancer is a major challenge to society. Hence, a precise and reliable system is vital for the classification of cancerous sequences. Machine learning classifiers contribute much to the process of early prediction and diagnosis of cancer. In this paper, a comparative study of four machine learning classifiers such as random forest, decision tree, AdaBoost, and gradient boosting is implemented for the classification of a benign and malignant tumor. To derive the most efficient machine learning model, NCBI datasets are utilized. Performance evaluation is conducted, and all four classifiers are compared based on the results. The aim of the work is to derive the most efficient machine-learning model for the diagnosis of breast cancer. It was observed that gradient boosting outperformed all other models and achieved a classification accuracy of 95.82%.
Authentic
Text : Increasing evidence shows that dysfunction of noncoding RNAs is implicated in cancer. Neuroblastoma associated transcript 1 (NBAT-1) has been identified as a tumor suppressive lncRNA that is aberrantly expressed in cancers. However, the function and the underlying mechanisms of the NBAT-1 in colorectal carcinoma (CRC) remain unknown. Gene expression was detected by RT-qPCR. The influence of NBAT-1 on CRC was evaluated by the cell counting kit-8 (CCK-8) assay and an in vivo xenograft mouse model. The possible binding of NBAT-1 to miRNAs was predicted via the miRDB online tool and confirmed by a dual-luciferase reporter assay. Protein expression was detected by western blot. NBAT-1 expression was significantly decreased in CRC tissues, especially in patients with oxaliplatin (OXA) resistance. NBAT-1 inhibited OXA-resistant CRC cell proliferation in vitro and tumor growth in vivo. The mechanism study revealed that NBAT-1 functioned as a competing endogenous RNA (ceRNA) of miR-4504. NBAT-1 bound miR-4504 and decreased miR-4504 expression in CRC cells. Furthermore, WW-and-C2-domain-containing protein family member 3 (WWC3) was identified as a target of miR-4504. Downregulation of NBAT-1 promoted miR-4504 expression and reduced the level of WWC3. Inhibition of WWC3 by NBAT-1 depletion inactivated Hippo signalling by inhibiting the phosphorylation of large tumor suppressor kinase 1 (LATS1) and yes-associated protein (YAP). Consistently, knockdown of NBAT-1 suppressed the expression of YAP transcriptional targets. These findings demonstrated that lncRNA NBAT-1 suppresses OXA-resistant CRC cell growth via inhibition of miR-4504 to regulate the WWC3/LATS1/YAP axis.
Authentic
Text : The objective of this study was to investigate the expression, proliferation, and apoptosis function of long-chain non-coding RNA maternally expressed gene 3 (MEG3) and antisense non-coding RNA at the INK4 locus (ANRIL) in gallbladder cancer (GBC) tissues. GBC tissues and adjacent normal samples were collected from 84 patients from January 2008 to June 2010. Empty vector, pcDNA-MEG3, and pcDNA-ANRIL vectors were transfected into GBC-SD and QBC939 cells. An MTT assay, real-time quantitative polymerase chain reaction (RT-qPCR), flow cytometry, Western blotting, and immunohistochemistry were applied. The effects of MEG3 and ANRIL were also verified in mice. Compared with normal tissues, the expression of MEG3 was significantly lower in GBC tissues, whereas the expression of ANRIL was significantly higher (both P < 0.05). The overexpression of MEG3 and underexpression of ANRIL were significantly associated with GBC prognosis (both P < 0.05). The expressions of MEG3 and ANRIL were higher in pcDNA-MEG3 and pcDNA-ANRIL-transfected cells than in empty vector-transfected cells in vitro (both P < 0.05). Most of the pcDNA-MEG3-transfected cells were in the G0-G1 phase, which showed reduced cell activity and clone counts and increased p53 and decreased cyclin D1, whereas the pcDNA-ANRIL-transfected cells were mostly in the S phase and showed contrasting behavior. Mice injected with pcDNA-MEG3-transfected cells had smaller and lighter tumors, decreased ki-67 levels, and increased caspase 3 levels, whereas those injected with pcDNA-ANRIL showed contrasting results (all P < 0.05). MEG3 can inhibit the proliferation of GBC cells and promote apoptosis, whereas ANRIL can improve the proliferation of gallbladder cells and inhibit apoptosis. Collectively, our results suggest that therapeutic strategies directed toward upregulating MEG3 and downregulating ANRIL may be clinically relevant for the inhibition of GBC deterioration.
Authentic
Text : Hepatitis B virus (HBV) DNA is prone to mutations due to proofreading deficiencies of HBV polymerase. We have previously identified hepatocellular carcinoma (HCC) survival-associated HBV mutations in the X, precore, and core regions. In the present study, we extended our research to assess HCC survival-associated HBV mutations in the small S gene of HBV genome in 115 HCC patients including 60 patients with HBV B genotype, 52 patients with HBV C genotype, and 3 patients with other genotypes. The overfrequencies of mutations at nucleotides 529 and 735 are 8.5% and 91.5%, respectively, but the distribution frequencies of these mutations are not different between HBV genotypes B and C. Mutational sites 529 (relative risk: 3.611, 95% confidence interval [CI]: 1.414-9.221, P=0.007) and 735 (relative risk: 1.905, 95% CI: 1.101-3.297, P=0.021) were identified as statistically significant independent predictors for HCC survival by multivariate survival analysis using a Cox proportional hazards model. Moreover, the mutated 529A and 735T were associated with both short survival time and high HBV DNA load score in HCC patients. The analysis of DNA mutations in the HBV S gene may help identify HCC subgroups with poor prognosis and may provide reference for therapeutic decisions.
Authentic
Text : Gastric cancer is characterized by the presence of high invasion ability, hypoxia and chemoresistance. Previous studies reported that liver X receptor α (LXRα) was involved in epithelial-mesenchymal transition (EMT) of gastric cancer cells. However, hypoxia-mediated EMT and the role of LXRα in gastric cancer remained elusive. In this study, we demonstrated that LXRa mRNA and protein levels were up-regulated by hypoxia treatment and LXRα played an important role in HIF-1 dimer induced-EMT. The putative HIF-1α binding site was identified in the LXRa promoter. Expression of LXRα and HIF-1α was significantly up-regulated in gastric cancer tissues compared to that in normal tissues. More importantly, we noticed that the expression of LXRα and HIF-1α was significantly correlated. Taken together, these data suggested that LXRα is regulated by the activity and accumulation of HIF-1α and contributes to EMT of gastric cancer cells. This suggests that targeting LXRα might be a potential approach for improving survival of gastric cancer patients.
Authentic
Text : Aberrant activation of (Wingless and mouse homolog Int-1) Wnt/β-catenin signaling pathways closely involved in the occurrence and progression of several types of human malignancies. This research was undertaken to elucidate the important role of (Wingless and mouse homolog Int-1) in lung cancer. Wnt3 expression in lung cancers and their respective normal tissues were examined by immunoblotting and immunohistochemistry. Then, Wnt3 was regulated with RNA interference (RNAi) technology in human lung cancer A549 cells, and the cell proliferation, cell cycle, cell invasion/metastasis, and apoptosis were evaluated. In all cases, Wnt3 expression was significantly elevated in lung cancers compared with normal tissues. Knocking down Wnt3 in A549 lung cancer cells by small interfering RNAs transfection led to a distinct reduction of Wnt3 in both transcript and protein levels. Knockdown of Wnt3 expression in lung cancer cells inhibited the expression of β-catenin and cyclin D1 genes in Wnt/β-catenin pathway. It also significantly blocked cellular proliferation, delayed cell cycle and suppressed cell invasion/metastasis, accompanied by a higher apoptosis rate. We conclude that the upregulation of Wnt3 plays a crucial role in lung tumorigenesis by inducing proliferation, migration, and invasion and inhibiting apoptosis of cancer cells. Wnt3 might be a potential target for the treatment of lung cancer.
Authentic
Text : Purpose: Recent studies have identified microRNA-944 (miR-944) as a cancer-related miRNA, but its expression and precise functions in hepatocellular carcinoma (HCC) remain unknown. Patients and methods: miR-944 expression in HCC tissues and cell lines were detected by RT-qPCR. A series of functional assays were utilized to examine the influence of miR-944 on the malignant phenotypes of HCC cells in vitro and in vivo. More importantly, the associated mechanisms underlying the activity of miR-944 in HCC cells were investigated using bioinformatics, luciferase reporter assays, RT-qPCR, and western blot analysis. Results: In this study, we report for the first time, a significant downregulation of miR-944 in HCC tissues and cell lines and the correlation between its downregulation and malignant clinical parameters, including Edmondson-Steiner grade, TNM stage, and venous infiltration. Low miR-944 expression predicted poorer overall survival rate and disease-free survival rate in patients with HCC. Functionally, exogenous miR-944 expression attenuated cell proliferation, clone formation, metastasis, and epithelial-mesenchymal transition and increased apoptosis in HCC, whereas miR-944 knockdown produced the opposite results. In addition, ectopic miR-944 expression hindered HCC tumor growth in vivo. Mechanistically, insulin-like growth factor 1 receptor (IGF-1R) was demonstrated to be the direct target gene of miR-944 in HCC cells. Furthermore, the expression level of miR-944 was inversely correlated with IGF-1R expression in HCC tissues. Rescue experiments showed that IGF-1R was at least partially responsible for the effects of miR-944 on the malignant phenotypes of HCC cells. In addition, the PI3K/Akt pathway was notably deactivated, both in vitro and in vivo, upon miR-944 upregulation. Conclusion: This study provides the first evidence that miR-944 directly targets IGF-1R and inhibits the aggressiveness of HCC, in vitro and in vivo, by decreasing PI3K/Akt signaling. Hence, targeting miR-944 may open a new avenue for the treatment of patients with HCC.
Counterfeit
Text : It is widely accepted that immunoglobulin (Ig), the classical immune molecule, is extensively expressed in many cell types other than B-cells (non-B-IgG), including some malignant cells. The expression of Ig in malignant cells has been associated with a poor prognosis. In the present study, immunohistochemical analysis detected strong positive staining of IgG in three bladder cancer cell lines, the cancer cells in 77 bladder cancer patient samples and the cells in 3 cystitis glandularis tissue samples, while negative staining was observed in 4 specimens of normal transitional epithelial tissues. Importantly, functional transcripts of IgG with unique VHDJH rearrangement patterns were also found in bladder cancer cells. The knockdown of IgG in bladder cancer cell lines using small interfering RNA significantly inhibited the proliferation, migration and invasion of the cells. Notably, high IgG expression, as determined by immunostaining, was significantly correlated with a high histological grade and recurrence. The results of the present study suggested that IgG expression is involved in the malignant biological behavior and poor prognosis of bladder cancer. Therefore, IgG may serve as a novel target for bladder cancer therapy.
Authentic
Text : Bladder cancer (BC) is the most common of those affecting the urinary tract, and a significant proportion of the cases are attributable to tobacco use as well as occupational and environmental factors. The aim of this study is to estimate the current incidence of BC in an industrialized area in northeastern Spain and to analyze its time trends over three decades from an ecological perspective. Patients diagnosed with histologically confirmed primary BC, during 2018-2019, in an area in northeastern Spain (430,883 inhabitants) were included. Crude and age-standardized incidence rates were estimated per 100,000 person-years based on the number of individuals getting their first diagnosis. An exploratory time trend analysis was carried out to describe the evolution in tobacco use and occupational or environmental risk factors and the incidence of BC in the same area from the 1990s. 295 patients were included (age 72.5 ± 10.3 years; 89.8% men). The crude rate was 62.6 (95% CI: 51.9-73.2) for men and 6.8 (95% CI: 3.4-10.3) for women. The annual rate adjusted to the European Standard Population was 85.3 (95% CI:75.0-95.5) for men and 7.0 (95% CI:4.5-9.5) for women. From 1994 to 2018, the prevalence of smokers decreased in men (42.3% to 30.9%) as well as in the active population working in the industry (44.36% to 22.59%). Nevertheless, the car fleet, especially diesel, has increased considerably. The annual mean concentrations of air (PM10, PM2.5, O3, and NO2) and water (nitrates, arsenic, trihalomethanes) pollutants were within the regulatory limit values, but not the maximum levels. The incidence of BC is one of the highest in men but not in women, despite the decrease in tobacco use and industrial activity (perhaps related to high latency after carcinogen exposure cessation) and despite the control of environmental pollution (the maximum regulatory limit probably needs to be lowered). Finally, a similar exposure to the carcinogen would result in a gender-specific differential incidence.
Authentic
Text : Liver cancer metastasis is known to be a poor prognosis and a leading cause of mortality. To overcome low therapeutic efficacy, understanding the physiological properties of liver cancer metastasis is required. However, the metastatic lesion is heterogeneous and complex. We investigate the distribution of lipids using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) in an experimental metastasis model. We obtained the differentially expressed mass peaks in comparison between normal sites and metastatic lesions. The relationship of mass to charge ratio (m/z) and intensity were measured, m/z-indicated species were analyzed by MALDI-MS/MS analysis, and identification of these mass species was confirmed using the METASPACEannotation platform and Lipid Maps®. MALDI-MSI at m/z 725.6, 734.6, 735.6, 741.6, 742.6, 744.6, 756.6, and 772.6 showed significantly higher intensity, consistent with the metastatic lesions in hematoxylin-stained tissues. Sphingomyelin SM [d18:0/16:1], phosphatidylcholine (PC) [32:0], PC [31:0], PC [31:1], and PE [36:2] were highly expressed in metastatic lesions. Our results could provide information for understanding metastatic lesions. It suggests that the found lipids could be a biomarker for the diagnosis of metastatic lesions.
Authentic
Text : It is well established that many non-trophoblastic tumors secrete HCG (human chorionic gonadotropin) and that such secretion is correlated with the poor prognosis of tumor patients. This study aims to analyze the correlation between β-HCG expression and outcome of colorectal cancer (CRC) and understand its role in CRC pathology Methods: We detected the mRNA and protein expression of β-HCG in human CRC tissues with RT-qPCR and immunohistochemistry, and we compared the clinical-pathological characteristics, prognosis and progression between the β-HCG positive and negative groups. We also generated CRC cell lines with β-HCG over-expression as well as β-HCG stable knockout, and evaluated cell function and mechanism in vitro and in vivo. Fifty out of 136 CRC patients (37%) expressed β-HCG at the invasive front. Clinical-pathological data showed that β-HCG was positively correlated with Dukes staging (P=0.031) and lymph node metastasis (P=0.012). Survival analysis suggested that the patients with high expression of β-HCG had poorer prognosis than those with low β-HCG expression (P=0.0289). β-HCG expression level was also positively correlated with tumor invasion in early-stage CRC patient tissues (P=0.0227). Additionally β-HCG promoted the migration and invasion of CRC in vitro and in vivo but had no effect on the proliferation of tumor cells. Our study demonstrated that β-HCG was ectopically expressed in the CRC patients and its high expression correlated with poor prognosis of early-stage CRC. Additionally it worked as an oncogene that promotes the migration and invasion of CRC by epithelial-mesenchymal transition (EMT).
Authentic
Text : Angiotensin II type 1 receptor (AT1R) was reported to express in many types of tumors, promoting tumor growth and angiogenesis. We herein examined AT1R expression in liver cancer and the potential antitumor effects of AT1R antagonist Candesartan in liver cancer. We found that AT1R expression was positively correlated with VEGF-A expression and microvascular density (MVD) in 40 HCC patients. Angiotensin II and Candesartan neither had effects on the proliferation of liver cancer cells in vitro. However, Angiotensin II upregulated AT1R protein expression and promoted production of VEGF-A in liver cancer cells in a dose-dependent manner. Candesartan was able to reverse this process in a dose-dependent manner. Moreover, Candesartan downregulated the expression of VEGF-A in SMMC-7721 bearing xenografts in mice and inhibited tumor growth and angiogenesis in vivo. Our data suggested that AT1R antagonist Candesartan might be useful to suppress liver cancer by inhibiting angiogenesis.
Authentic
Text : Increased circulating levels of tumor necrosis factor (TNF) are associated with greater risk of impaired neurodevelopment after preterm birth. In this study, we tested the hypothesis that systemic TNF inhibition, using the soluble TNF receptor Etanercept, would attenuate neuroinflammation in preterm fetal sheep exposed to lipopolysaccharide (LPS). Chronically instrumented preterm fetal sheep at 0.7 of gestation were randomly assigned to receive saline (control; n = 7), LPS infusion (100 ng/kg i.v. over 24 h then 250 ng/kg/24 h for 96 h plus 1 μg LPS boluses at 48, 72, and 96 h, to induce inflammation; n = 8) or LPS plus two i.v. infusions of Etanercept (2 doses, 5 mg/kg infused over 30 min, 48 h apart) started immediately before LPS-exposure (n = 8). Sheep were killed 10 days after starting infusions, for histology. LPS boluses were associated with increased circulating TNF, interleukin (IL)-6 and IL-10, electroencephalogram (EEG) suppression, hypotension, tachycardia, and increased carotid artery perfusion (P < 0.05 vs. control). In the periventricular and intragyral white matter, LPS exposure increased gliosis, TNF-positive cells, total oligodendrocytes, and cell proliferation (P < 0.05 vs control), but did not affect myelin expression or numbers of neurons in the cortex and subcortical regions. Etanercept delayed the rise in circulating IL-6, prolonged the increase in IL-10 (P < 0.05 vs. LPS), and attenuated EEG suppression, hypotension, and tachycardia after LPS boluses. Histologically, Etanercept normalized LPS-induced gliosis, and increase in TNF-positive cells, proliferation, and total oligodendrocytes. TNF inhibition markedly attenuated white matter gliosis but did not affect mature oligodendrocytes after prolonged systemic inflammation in preterm fetal sheep. Further studies of long-term brain maturation are now needed.
Authentic
Text : Reverse transcription quantitative polymerase chain reaction (RT‑qPCR) has become a frequently used strategy in gene expression studies. The relative quantification method is an important and commonly used method for the evaluation of RT‑qPCR data. The key aim of this method is to identify an applicable internal reference gene, however, there are currently no suitable reference genes for gene analysis in gallbladder carcinoma. In the present study, screening was performed using 12 common reference genes, which were selected in order to provide an experimental basis for the investigation of gene expression in gallbladder carcinoma. A total of 16 tissue samples of gallbladder carcinoma and their matched normal gallbladder tissues were used. The gene expression stability and applicability of the 12 reference gene candidates were determined using the geNorm, NormFinder and BestKeeper software programs. Following comparison of the results of the three software programs, HPRT1 was identified as the most stably expressed reference gene. In the normal gallbladder group, the relative stably expressed reference gene was PPIA and in the entire sample group, the relatively stably expressed reference gene was PPIA. The present study also demonstrated that the combination of the three reference genes was the most appropriate. The recommended combinations were PPIA + PUM1 + ACTB for the total sample group, GAPDH + PBGD + ALAS1 for the gallbladder carcinoma group and PPIA + PUM1 + TBP for the paired normal gallbladder group.
Authentic
Text : Zinc is a transition metal and catalytic cofactor involved in many biological processes including proliferation, development, differentiation, and metabolism. Zinc transporters (ZnTs) play a fundamental role in cellular zinc homeostasis. ZnTs are responsible of zinc efflux and are encoded by 10 genes belonging to solute carrier family 30A (SLC30A1-10), while zinc-regulated transporter (ZRT)/iron-regulated transporter (IRT)-like protein (ZIP) transporters are responsible for the influx of zinc into the cytoplasm and are encoded by 14 genes belonging to solute carrier family 39A (SLC39A1-14). In this study, we analyzed, by transcriptome analysis, the microRNA levels of ZnT-encoding and ZIP-encoding genes in colorectal cancer (CRC) samples matched to normal colon tissues and in CRC cell lines. Results revealed an upregulation of specific ZnT and ZIP transcripts in CRC. Upregulation of SLC30A5, SLC30A6, SLC30A7 transcripts, encoding zinc efflux transporters ZnT5, ZnT6, ZnT7, localized on endoplasmic reticulum membranes, might be part of a coordinated transcriptional program associated to the increased activity of the early secretory pathway, while transcriptional upregulation of several specific ZIP transporters (SLC39A6, SLC39A7, SLC39A9, SLC39A10, and SLC39A11) could contribute in meeting the increased demand of zinc in cancer cells. Moreover, exon-level analysis of SLC30A9, a nuclear receptor coactivator involved in the transcriptional regulation of Wnt-responsive genes, revealed the differential expression of alternative transcripts in CRC and normal colonic mucosa.
Authentic
Text : Tumor-initiating cells possess the capacity for self-renewal and to create heterogeneous cell lineages within a tumor. Therefore, the identification and isolation of cancer stem cells is an essential step in the analysis of their biology. The aim of the present study was to determine whether the cell surface protein neuropilin 1 (NRP1) can be used as a biomarker of stem-like cells in lung cancer tumors. For this purpose, NRP1-negative (NRP1-) and NRP1-positive (NRP1+) cell subpopulations from two lung cancer cell lines were sorted by flow cytometry. The NRP1+ cell subpopulation showed an increased expression of pluripotency markers OCT-4, Bmi-1 and NANOG, as well as higher cell migration, clonogenic and self-renewal capacities. NRP1 gene knockdown resulted not only in a decreased expression of stemness markers but also in a decrease in the clonogenic, cell migration and self-renewal potential. In addition, the NRP1+ cell subpopulation exhibited dysregulated expression of epithelial-to-mesenchymal transition-associated genes, including the ΔNp63 isoform protein, a previously reported characteristic of cancer stem cells. Notably, a genome-wide expression analysis of NRP1-knockdown cells revealed a potential new NRP1 pathway involving OLFML3 and genes associated with mitochondrial function. In conclusion, we demonstrated that NRP1+ lung cancer cells have tumor-initiating properties. NRP1 could be a useful biomarker for tumor-initiating cells in lung cancer tumors.
Authentic
Text : AT-rich interactive domain-containing protein 1A (ARID1A) is a subunit of the mammary SWI/SNF chromatin remodeling complex and a tumor suppressor protein. The loss of ARID1A been observed in several types of human cancers and associated with poor patient prognosis. Previously, we have reported that ARID1A protein was rapidly ubiquitinated and destructed in gastric cancer cells during DNA damage response. However, the ubiquitin e3 ligase that mediated this process remains unclear. The interaction between ARID1A and β-TRCP was verified by co-immunoprecipitation (Co-IP) assay. The degron site of ARID1A protein was analyzed by bioinformatics assay. Short hairpin RNAs (shRNAs) were used to knockdown (KD) gene expression. Here we show that DNA damage promotes ARID1A ubiquitination and subsequent destruction via the ubiquitin E3 ligase complex SCFβ-TRCP. β-TRCP recognizes ARID1A through a canonical degron site (DSGXXS) after its phosphorylation in response to DNA damage. Notably, genetic inactivation of the Ataxia Telangiectasia Mutated (ATM) kinase impaired DNA damage-induced ARID1A destruction. Our studies provide a novel molecular mechanism for the negative regulation of ARID1A by β-TRCP and ATM in DNA damaged gastric cancer cells.
Authentic
Text : MicroRNAs (miRs) are a type of small non-coding RNA molecule that are involved in gene silencing and the regulation of cancer progression; miR-133a in particular has been implicated in colorectal cancer, although its specific role and underlying mechanism have yet to be determined. In the present study, the expression level of miR-133a was significantly downregulated in a number of colorectal cancer cell lines, as well as in colorectal cancer tissues compared with the normal adjacent tissues. Furthermore, the Fascin1 (FSCN1) gene was identified as a direct target of miR-133a, and the protein expression level of FSCN1 was negatively regulated by miR-133a in colorectal cancer cells. Additionally, restoration of miR-133a expression and downregulation of FSCN1 protein expression suppressed colorectal cancer cell invasion, while overexpression of FSCN1 reversed the inhibitory effect of miR-133a upregulation on colorectal cancer cell invasion. Thus, the present data indicates that miR-133a may at least partially suppress colorectal cancer cell invasion, possibly via the inhibition of FSCN1 expression. The present study highlights the important role of miR-133a in the progression of colorectal cancer.
Counterfeit
Text : Gastrointestinal stromal tumors (GISTs) are the most common type of mesenchymal tumor of the digestive tract. MicroRNAs (miRNAs) are short non-coding RNAs, which control gene expression at a post-transcriptional level. Dysregulated miRNAs are involved in various types of human disease, including cancer. In the present study, it was revealed that miRNA-182 (miR-182) expression was significantly upregulated in human GISTs compared with adjacent normal tissues. Overexpression of miR-182 enhanced GIST-T1 cell growth, with increased proliferation and decreased apoptosis. miR-182 upregulation also promoted colony formation and migration of GIST-T1 cells. In addition, cylindromatosis (CYLD) was identified as a direct target of miR-182. Overexpression of miR-182 suppressed CYLD expression and enhanced downstream nuclear factor (NF)-κB activation. It was also determined that the expression of CYLD was downregulated in association with upregulated miR-182 in human GISTs. In conclusion, these results demonstrated that miR-182 promoted GIST cell growth by negatively regulating CYLD expression. These findings indicated that miR-182 antagonist may be a promising therapeutic strategy for the treatment of human GIST.
Authentic
Text : Skeletal metastases are a common problem in breast cancer patients. Identifying new prognostic factors can improve survival estimations and guide healthcare professionals in therapeutic decision-making. Our study aimed to determine the prognostic value of inflammatory biomarkers such as neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), and C-reactive protein/albumin ratio (CAR) in patients with breast cancer skeletal metastases. Clinical data from 212 patients with breast cancer skeletal metastases were retrospectively analyzed. The optimal cut-off values of each inflammatory biomarker were extracted from the receiver operating characteristic (ROC) curves. Patients were divided into high-value and low-value groups according to the cut-off values of NLR, LMR, and CAR. We investigated the relationship between inflammatory biomarkers and clinicopathological characteristics. The Kaplan-Meier method was used to measure progression-free survival (PFS) and overall survival (OS). The survival difference was compared by the univariate analysis. Cox multivariate regression analysis was performed to identify independent prognostic factors. The median age of the patients was 55 years, and the median follow-up was 45 months. LMR<3.43 (P<0.0001), NLR≥2.48 (P<0.0001), and CAR≥0.34 (P=0.035) were found to be associated with worse PFS in the univariate analysis. Meanwhile, LMR<3.43 (P<0.0001), NLR≥2.48 (P<0.0001), and CAR≥0.34 (P=0.025) were linked to the poor OS. The multivariate analysis revealed that NLR≥2.48 (HR 2.044, P=0.007) and LMR<3.43 (HR 0.532, P=0.012) were independent prognostic factors for OS; LMR<3.43 (HR 0.501; P=0.006) and NLR≥2.48 (HR 1.971, P=0.011) were similarly prognosticating worse PFS. Radiotherapy to the affected bone and ER (+) was favorable for the prognosis of breast cancer skeletal metastases. The number of involved sites of bone metastases>3 was adverse for PFS. LMR<3.43 and NLR≥2.48 were independently associated with worse prognosis of patients of breast cancer skeletal metastases.
Authentic
Text : There is increasing evidence that circular RNAs (circRNAs) play an important role in human cancers. As a newly identified human circular RNA, circ_0006282 is abnormally expressed in several types of cancers and promotes the development of cancers. However, the expression and function of circ_0006282 in gastric cancer (GC) remain unclear. The expression of circ_0006282 in cancer tissues and adjacent non-cancer tissues was detected by quantitative real-time polymerase chain reaction (qRT-PCR) method, and the relationship between circ_0006282 expression and clinicopathological parameters was analyzed. After knockdown of circ_0006282 by RNA interference in GC cells, CCK-8 assay, colony formation and transwell assays were conducted to examine the effects of circ_0006282 on GC cells. The influence of circ_0006282 on tumor growth in vivo was assessed in a xenograft model. Furthermore, regulatory relationship between circ_0006282, miR-155 and FBXO22 was detected by luciferase assay, qRT-PCR and Western blot. The expression of circ_0006282 in GC tissues was significantly higher than its adjacent non-cancer tissues and over-expression of circ_0006282 was associated with tumor size, lymph nodes metastasis and TNM stage, but no obvious links with other pathological parameters. Knockdown of circ_0006282 inhibited the proliferation and metastasis ability of GC cells in vitro and suppressed the tumor growth in vivo. Furthermore, mechanistic investigations suggested that circ_0006282 served as a competing endogenous RNA (ceRNA) of miR-155. Moreover, FBXO22 was identified as the functional target of miR-155 and down-expression of circ_0006282 inhibited FBXO22 expression. Rescue assays also demonstrated that the oncogenic function of circ_0006282 is partly attributed to its regulation on miR-155/FBXO22 axis. Our findings indicated that over-expression of circ_0006282 down‑regulated miR-155 to activate the expression of FBXO22, thus promoting proliferation and metastasis of GC cells, which provides a promising therapeutic target for GC treatment.
Authentic
Text : The epithelial-mesenchymal transition (EMT) process is believed to play a crucial role in nasopharyngeal carcinoma (NPC) progression, a squamous cell carcinoma of the head and neck with the tendency to metastasize early. At present, much attention has been given to the inducer of EMT involved in NPC progression, while antagonists have been less intensively characterized. In this study, unbiased analysis of EMT-associated gene expression patterns was performed using data mining of global gene expression profiles derived from NPC samples, leading to the successful identification of NOR1, FOXA1, and Slug, all of which showed aberrant expression during NPC progression. The effect of tumor suppressor NOR1 on Slug-induced NPC cells during the EMT process was investigated by use of ectopic expression and RNA interference methods. The molecular mechanisms underlying the tumor-suppressing effect of NOR1 on Slug-induced EMT were thought to be dependent on the cooperation of NOR1 with the FOXA1-HDAC2 complex. We also showed that FOXA1 and HDAC2 bind the slug promoter and directly repress its transcription. Our data revealed a previously unrecognized role of the NOR1-FOXA1/HDAC2-Slug network in the regulation of the EMT process and aggressiveness of NPC.
Authentic
Text : In this study, we performed single-cell transcriptome data analysis of fifty primary and metastatic lung adenocarcinoma (LUAD) samples from the GSE123902 and GSE131907 datasets to determine the landscape of inter-patient and intra-tumoral heterogeneity. The gene expression profiles and copy number variations (CNV) showed significant heterogeneity in the primary and metastatic LUAD samples. We observed upregulation of pathways related to translational initiation, endoplasmic reticulum stress, exosomes, and unfolded protein response in the brain metastasis samples as compared to the primary tumor samples. Pathways related to exosomes, cell adhesion and metabolism were upregulated and the epithelial-to-mesenchymal-transition (EMT) pathway was downregulated in brain metastasis samples from chemotherapy-treated LUAD patients as compared to those from the untreated LUAD patients. Tumor cell subgroups in the brain metastasis samples showed differential expression of genes related to type II alveolar cells, chemoresistance, glycolysis and oxidative phosphorylation (metabolic reprogramming), and EMT. Thus, single-cell transcriptome analysis demonstrated intra-patient and intra-tumor heterogeneity in the regulation of pathways related to tumor progression, chemoresistance and metabolism in the primary and metastatic LUAD tissues. Moreover, our study demonstrates that single cell transcriptome analysis is a potentially useful tool for accurate diagnosis and personalized targeted treatment of LUAD patients.
Authentic
Text : A novel multifunctional nanoplatform constructed from methoxy-PEGylated poly(amidoamine) (PAMAM) generation 3 dendrimers with superparamagnetic iron oxide nanoparticles (SPIONs) entrapped in their core, containing curcumin as the payload drug and folic acid (folate) as the targeting ligand (abbreviated as FA-mPEG-PAMAM G3-CUR@SPIONs), is presented in this study. SPIONs entrapped in the core of the nanocomplex may act as a hyperthermia agent and generate localized heat upon excitation with an alternating magnetic field (AMF), thus enabling a thermo-chemotherapy strategy for cancer treatment. Accordingly, the cytotoxic effect and the mode of cell death triggered by the nanocomplex in combination with AMF were evaluated on two different cancer cell lines with various folate receptor (FR) expression levels, including KB nasopharyngeal cancer cells overexpressing FRs as the model and MCF-7 breast cancer cells with low level of FRs as the blank sample. The obtained results showed that KB cell death was greater than the cell death observed in MCF-7 cells. Moreover, a majority of cell death in both cell lines were related to apoptosis when the folate-modified nanocomplex was used instated of the non-folate-modified nanocomplex. Therefore, functionalizing the nanocomplex with folate modulated the response to thermo-chemotherapy by shifting the cell death pathways toward apoptosis.
Authentic
Text : With the emergence of the Internet of Things, technology and Internet thinking have entered traditional communities, and combined with traditional technologies, many new and better management methods and solutions have been born. Among them, the concept of intelligent buildings is also known to people. Based on big data technology, cloud computing technology, and Internet of Things technology, smart buildings provide smart and convenient devices and services for smart device users. The Internet of Things technology is entering our lives at an unimaginable speed. It has been applied in many fields. Smart home, smart transportation, smart medical, smart agriculture, and smart grid are widely used in the Internet of Things technology. The application of Internet of Things technology to the construction of folk sports characteristic towns is of great significance. The construction of folk sports characteristic towns and the protection of intangible cultural heritage have the same purpose and interoperability of elements as the development of traditional cities. From the perspective of protecting folk culture and intangible cultural heritage, it is effective to promote the development of small towns with folk custom characteristics. Based on the research on the construction of folk-custom sports towns, this paper proposes a series of data model analysis and analyzes the proportion of sports preferences in the survey of volunteers in the folk-custom sports towns. The final result of the research shows that the ball games sports personnel accounted for the largest proportion, with 156 people accounting for 48.15%. This shows that about half of the people like ball sports, which proves that ball sports should be the mainstay of folk sports towns, and other sports should be supplemented by other sports.
Counterfeit
Text : To explore the role of long-noncoding ribonucleic acid HOXA transcript at the distal tip (lncRNA HOTTIP) in the proliferation and apoptosis of gastric carcinoma cells. The expressions of lncRNA HOTTIP in gastric carcinoma cell lines MGC-803, HGC-27, SNU-1, and SGC-7901 and normal gastric mucosa cell line RGM-1 were detected by real-time fluorescence quantitative polymerase chain reaction (PCR) and compared. The effects of lncRNA HOTTIP on proliferation and apoptosis of gastric carcinoma cells were detected by cell counting kit-8 (CCK-8), colony formation assay, and flow cytometry, respectively. StarBase v2.0 website was adopted to predict the relationship between lncRNA HOTTIP and target miRNAs. Dual-Luciferase reporter assay was performed to verify the sponge effect of lncRNA HOTTIP on miR-615-3p. CCK-8 experiment was conducted to detect its effect on proliferation of gastric carcinoma cells after co-silencing lncRNA HOTTIP and miR-615-3p. LncRNA HOTTIP was highly expressed in gastric carcinoma cell lines MGC-803, HGC-27, SNU-1, and SGC-7901 than in normal gastric mucosa cell line RGM-1. After knockdown of lncRNA HOTTIP, the proliferation function of gastric carcinoma cells was markedly weakened, and the proportion of apoptotic cells increased. LncRNA HOTTIP was able to adsorb miR-615-3p via a sponge effect. Notably, knockdown of miR-615-3p restored the effect of silenced lncRNA HOTTIP on the proliferation function of gastric carcinoma cells. LncRNA HOTTIP is highly expressed in gastric carcinoma cells. It affects cell proliferation and apoptosis in gastric carcinoma by adsorbing miR-615-3p via a sponge effect.
Authentic
Text : Oral tumors are one of important tumors which could be associated with serious problems in infant and children. It has been showed that a variety of cellular and molecular pathways including genetics and epigenetics mechanisms (eg, chromosomal alterations, and microRNA) involved in pathogenesis events present in oral tumors. Identification of these pathways could contribute to better treatment of oral tumor patients. Early detection is one of key steps in management of oral tumors which could contribute to improve clinical outcomes and better treatment of infant with oral tumors. Despite of easy accession of the oral cavity, oral tumors (malign/benign) are diagnosed in advance stages. Therefore, these tumors indicate a poor survival rate. It has been showed that various approaches including imaging techniques, chemical, genetics, and epigenetic biomarkers could have critical roles in early detection of oral tumors. Treatment of oral tumors is associated with employing of various therapeutic approaches including surgery, chemotherapy, and radiation. Data on effective diagnostic platforms and therapeutic approaches for oral tumors in children and infant are rare. We offer that a variety of biomarkers such as microRNAs which could be used for oral tumors in adults may be good candidates for early detection of oral tumors in children. Here, we summarized various aspects of oral tumors in children such as molecular pathways, diagnosis, and management of them.
Authentic
Text : Zinc finger protein 36 (ZFP36) is an AU‑rich element protein that binds to 3'‑untranslated regions and promotes the decay of target mRNAs. Downregulation of ZFP36 expression in turn results in stabilization of target mRNAs. A recent study indicated that downregulation of ZFP36 expression in human liver cancer is caused by epigenetic mechanisms. The purpose of the present study was to investigate the potential of resveratrol (Res) to induce ZFP36 expression. Promoter methylation was analyzed using methylation‑sensitive restriction analysis. It was determined that Res treatment increased ZFP36 expression and decreased the mRNA levels of ZFP36 target genes in A549 lung cancer cells. Additionally, Res suppressed the expression of DNA (cytosine‑5)‑methyltransferase 1 and induced demethylation of the ZFP36 promoter. Collectively, the present results demonstrated that Res has anticancer activity through its epigenetic regulation of ZFP36 in non‑small cell lung cancer.
Authentic
Text : This study aims to investigate the functional role of long noncoding RNA SNHG15 in epithelial ovarian cancer (EOC). The expression of SNHG15 was measured in EOC cells and tissues using qRT-PCR. The correlation of SNHG15 expression and the clinicopathological characters was statistically analyzed. The prognosis of patients with different clinical features in the high/low SNHG15 expression groups were calculated. Moreover, univariate and multivariate Cox regression analyses were performed to identify the risk factors for poor overall survival (OS) and progression-free survival (PFS). The effect of SNHG15 on the migration and invasion was evaluated using Transwell and Matrigel, respectively. The proliferation ability of EOC cells was tested using colony formation and MTT assay. The influence of SNHG15 on the cisplatin resistance was detected by measuring cell inhibition rate and cell viability. SNHG15 was upegulated in EOC cells and tissues. High SNHG15 expression was correlated with EOC progression and predicted poor OS and PFS in different subgroups of EOC patients. Moreover, multivariate Cox regression analysis defined high SNHG15 expression as an independent risk factor for poor OS and PFS. Furthermore, functional assays showed that the overexpression of SNHG15 promoted migration and invasion, while the loss of SNHG15 suppressed migration and invasion. Furthermore, the proliferation of EOC cells was improved after the ectopic expression of SNHG15, which was suppressed with SNHG15 deficiency. In addition, cisplatin-resistant EOC cells were established for detecting the effect of SNHG15 on EOC chemoresistance. The results showed that cisplatin-resistant EOC cells exhibited much higher levels of SNHG15 expression than controls, and SNHG15 contributed to the chemoresistance of EOC cells. This study confirms that SNHG15 contributes to the migration, invasion, proliferation, and chemoresistance of EOC. SNHG15 may serve as a potential therapeutic target and prognostic biomarker of EOC patients.
Authentic
Text : UTX and JMJD3 are recently identified histone H3 lysine 27 (H3K27) demethylases. Many studies have shown aberrant H3K27 trimethylation (H3K27me3) levels widely exist in multiple cancers, and that altered H3K27me3 levels are correlated with tumorigenesis and tumor progression. To investigate expression patterns of UTX and JMJD3 genes in renal cell carcinoma (RCC) and bladder cancer and the relationship between gene expression and tumor development. Samples were collected from 35 patients with RCC and 21 patients with bladder cancer and qRT-PCR was performed. By comparing with adjacent normal tissues, the expression of JMJD3 (10/21 = 47.62%) and UTX (10/21 = 47.62%) were significantly upregulated in bladder cancer tissues and the expression of JMJD3 (15/35 = 42.86%) was significantly downregulated in RCC tissues. Stratified analyses revealed that upregulated expression of JMJD3 was significantly associated with poorly differentiated tumor nuclear grade (p= 0.005) and advanced clinical stage (p= 0.043) in the bladder cancer group, while downregulated expression of JMJD3 was significantly associated with advanced clinical stage (p= 0.045) and poorly differentiated tumor nuclear grade (p= 0.011) in the RCC group. These results suggest JMJD3 could be a hallmark and is involved in the development of RCC and bladder cancers. The potential role of H3K27 demethylases as biomarkers needs further investigations.
Authentic
Text : Lemur tyrosine kinase-3 (LMTK3) is a member of the serine/threonine tyrosine kinase family, which is thought to be involved in tumor progression and prognosis. The purpose of the present study was to determine the diagnostic significance and therapeutic targets in thyroid cancer. ELISA assay was used to detect the protein expression of serum LMTK3. Immunohistochemistry and reverse transcription‑quantitative polymerase chain reaction were employed to measure the expression of LMTK3. Flow cytometry was used to determine the cell cycle. Transwell assay was used to measure the invasion and migration of SW579 cells and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay to detect cell apoptosis. The LMTK3 level was positively associated with disease stage and pathological type, whereas there was no correlation between LMTK3 level and gender, age, tumor size or lymph node metastasis. The serum LMTK3 level was significantly increased in 102 thyroid carcinoma patients compared with 52 benign thyroid tumor patients and 50 healthy volunteers (P=0.001). The protein and mRNA expression of LMTK3 was markedly higher in thyroid cancer patients compared with patients with benign thyroid tumors. Notably, LMTK3 knockdown retarded proliferation, invasion and migration in SW579 cells. In addition, downregulation of LMTK3 promoted apoptosis in SW579 cells. These findings indicated that LMTK3 knockdown retards the growth of thyroid cancer cells partly through inhibiting proliferation, invasion, migration and inducing apoptosis in SW579 cells. It may serve as a useful diagnostic biomarker and a novel therapeutic target for patients with thyroid cancer.
Authentic
Text : The aim of the study is to investigate the effect of modified nonpneumatic transaxillary approach in the treatment of thyroid cancer and its effect on immune function and parathyroid function. A total of 96 patients with thyroid cancer who were diagnosed and treated in our hospital from January 2018 to December 2020 were selected and randomly divided into the control group of 48 cases and the observation group of 48 cases. The control group was given open surgery, and for the observation group, modified nonpneumatic transaxillary approach was used for treatment. The perioperative related indicators, the incidence of complications, as well as the changes of immune function indicators, parathyroid hormone (PTH), and calcium before and after surgery were compared between the two groups. The time of flap separation and cavity construction, operation time, and hospital stay in the observation group were significantly longer than those in the control group (P < 0.05). After operation, CD3+, CD4+, and CD4+/CD8+ in the two groups were lower than those before operation (P < 0.05), but the observation group was significantly higher than that in the control group (P < 0.05). The serum PTH and calcium at 1 h, 1 d, 3 d and 7 d after operation were lower than those before operation in this group (P < 0.05), but the observation group was significantly higher than that in the control group (P < 0.05). Compared with the control group, the incidence of complications in the observation group (4.17% vs. 6.25%) was not statistically significant (P > 0.05). Compared with open surgery, the modified nonpneumatic transaxillary approach in the treatment of thyroid cancer is more effective in reducing immune function decline, hypoparathyroidism, and hypocalcemia; although the operation time and recovery time are longer, and it is safe. Sex is also high.
Authentic