text
stringlengths
323
3.81k
label
stringclasses
2 values
Text : Invasion and metastasis are responsible for the majority of deaths in gastric cancer (GC). microRNA-33a (miR-33a) might function as a tumor suppressor in multiple cancers. Here, we describe the regulation and function of miR-33a in GC and mechanisms involved in epithelial-mesenchymal transition (EMT) and metastasis. First, GC tissues and adjacent normal tissues were collected. miR-33a upregulation or SNAI2 depletion on GC cells were introduced to assess the detailed regulatory mechanism of them. We assessed the expression of miR-33a, SNAI2, Snail/Slug signaling pathway-related genes, and EMT-related markers in GC tissues and cells. miR-33a distribution in GC tissues and adjacent normal tissues was measured. Cell proliferation, migration and invasion, and cell cycle distribution were assessed. In nude mice, GC tumor growth and lymph node metastasis were observed. Furthermore, the predicative value of miR-33a in the prognosis of GC patients was evaluated. The obtained results indicated that lowly expressed miR-33a, highly expressed SNAI2, activated Snail/Slug, and increased EMT were identified in GC tissues. miR-33a was located mainly in the cytoplasm. miR-33a targeted and negatively regulated SNAI2. MKN-45 and MKN-28 cell lines were selected for in vitro experiments. Upregulated miR-33a expression or siRNA-mediated silencing of SNAI2 suppressed the activation of Snail/Slug, whereby GC cell proliferation, invasion and migration, EMT, tumor growth, and lymph node metastasis were inhibited. High expression of miR-33a was a protective factor influencing the prognosis of GC. This study suggests that miR-33a inhibited EMT, invasion, and metastasis of GC through the Snail/Slug signaling pathway by modulating SNAI2 expression.NEW & NOTEWORTHY miR-33a targets and inhibits the expression of SNAI2, overexpression of SNAI2 activates the Snail/Slug signaling pathway, the Snail/Slug signaling pathway promotes GC cell proliferation, invasion, and metastasis, and overexpression of miR-33a inhibits cell proliferation, invasion, and metastasis. This study provides a new therapeutic target for the treatment of GC.
Counterfeit
Text : Alternative splicing (AS), an important post-transcriptional regulatory mechanism that regulates the translation of mRNA isoforms and generates protein diversity, has been widely demonstrated to be associated with oncogenic processes. In this study, we systematically analyzed genome-wide AS patterns to explore the prognostic implications of AS in endometrial cancer (EC). A total of 2,324 AS events were identified as being associated with the overall survival of EC patients, and eleven of these events were further selected using a random forest algorithm. With the implementation of a generalized, boosted regression model, a prognostic AS model that aggregated these eleven markers was ultimately established with high performance for risk stratification in EC patients. Functional analysis of these eleven AS markers revealed various potential signaling pathways implicated in the progression of EC. Splicing network analysis demonstrated the notable correlation between the expression of splicing factors and AS markers in EC and further determined eight candidate splicing factors that could be therapeutic targets for EC. Taken together, the results of this study present the utility of AS profiling in identifying biomarkers for the prognosis of EC and provide comprehensive insight into the molecular mechanisms involved in EC processes.
Authentic
Text : MicroRNAs (miRs) were involved in numerous cardiovascular diseases, especially ischemic heart diseases, but the miR changes during cardiac ischemia-reperfusion (I/R) injury following sevoflurane (SEV) preconditioning are still unknown. This study aims to investigate the effect of miR-874 on cardiac I/R injury in mouse models pretreated with SEV. Following establishment of mouse models with myocardial I/R injury, mice were pretreated with SEV. The functional mechanism of miR-874 in I/R injury was explored when miR-874 and the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway were inhibited. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP biotin nick-end labeling (TUNEL) staining was used to detect cardiomyocyte apoptosis and dual luciferase reporter gene assay to identify the targeting relationship between miR-874 and STAT3. Expression of the JAK2/STAT3 signaling pathway and apoptosis-related genes was determined. Initially, upregulated miR-874 was observed in I/R mice. Then, miR-874 inhibition improved cardiac function of I/R mice, inhibited cardiomyocyte apoptosis (also shown as decreased Bcl-2 associated X protein B [Bax] and increased B-cell lymphoma-2 [Bcl-2]), and activated the JAK2/STAT3 signaling pathway. STAT3, a target gene of miR-874, was upregulated following miR-874 inhibition. Finally, we also observed that the effect of miR-874 was lost when the JAK2/STAT3 signaling pathway was blocked. The findings indicate miR-874 as a contributory role in cardiac I/R injury, with miR-874 inhibition alleviating cardiac I/R injury in mice following SEV pretreatment by targeting STAT3 through the JAK2/STAT3 signaling pathway.
Counterfeit
Text : Breast cancer is the leading cancer in women, which accounts for millions of deaths worldwide. Early and accurate detection, prognosis, cure, and prevention of breast cancer is a major challenge to society. Hence, a precise and reliable system is vital for the classification of cancerous sequences. Machine learning classifiers contribute much to the process of early prediction and diagnosis of cancer. In this paper, a comparative study of four machine learning classifiers such as random forest, decision tree, AdaBoost, and gradient boosting is implemented for the classification of a benign and malignant tumor. To derive the most efficient machine learning model, NCBI datasets are utilized. Performance evaluation is conducted, and all four classifiers are compared based on the results. The aim of the work is to derive the most efficient machine-learning model for the diagnosis of breast cancer. It was observed that gradient boosting outperformed all other models and achieved a classification accuracy of 95.82%.
Authentic
Text : Colon cancer is one of the most lethal varieties of cancer. Chemotherapy remains as one of the principal treatment approaches for colon cancer. The anticancer activity of procaine (PCA), which is a local anesthetic drug, has been explored in different studies. In our study, we aimed to explore the anticancer effect of PCA on colon cancer and its underlying mechanism. The results showed that PCA significantly inhibited cell viability, increased the percentage of apoptotic cells, and decreased the expression level of RhoA in HCT116 cells in a dose-dependent manner (p < 0.05 or p < 0.01). Moreover, PCA increased the proportion of HCT116 cells in the G1 phase as well as downregulated cyclin D1 and cyclin E expressions (p < 0.05). In addition, we found that PCA remarkably inhibited cell migration in HCT116 cells (p < 0.01). However, all these effects of PCA on cell proliferation, apoptosis, and migration were significantly reversed by PCA + pc-RhoA (p < 0.05 or p < 0.01). PCA also significantly decreased the levels of p-ERK, p-p38MAPK, and p-FAK, but PCA + pc-RhoA rescued these effects. Furthermore, the ERK inhibitor (PD098059), p38MAPK inhibitor (SB203580), and FAK inhibitor (Y15) reversed these results. These data indicate that PCA inhibited cell proliferation and migration but promoted apoptosis as well as inactivated the ERK/MAPK/FAK pathways by regulation of RhoA in HCT116 cells.
Counterfeit
Text : Keratinocytes are routinely subjected to both internal and external stimulation. This study investigates the effects of interferon gamma, interleukin-4, tumor necrosis factor alpha, and the synthetic immunomodulator muramyl dipeptide on the human keratinocyte cell line, HaCaT. Following HaCaT stimulation with cytokines or muramyl dipeptide for different time periods, changes in the expression of different cell surface receptors, cell proliferation, and cell apoptosis were evaluated by flow cytometry, tritiated thymidine uptake, and annexin-V staining, respectively. A significant decrease in the expression of CD49d was found upon treatment with interleukin-4. Interferon gamma and tumor necrosis factor alpha increased the expression of intercellular adhesion molecule 1 and major histocompatibility complex class I, whereas major histocompatibility complex class II and CD1b were only upregulated by interferon gamma. Interferon gamma and tumor necrosis factor alpha had opposite effects regarding CD119 expression, with the former downregulating, while the latter upregulating its expression. Of the stimuli tested, only interferon gamma and tumor necrosis factor alpha significantly inhibited proliferation of HaCaT cells, yet only interferon gamma played a significant role in inducing HaCaT cell apoptosis. Our data demonstrate differential effects of the three tested cytokines on keratinocytes and reveal that the absence of HaCaT cell responses to muramyl dipeptide is associated with undetectable levels of its cytoplasmic receptor, nucleotide-binding oligomerization domain-containing protein 2.
Authentic
Text : This study aims to investigate whether small nucleolar RNA host gene 14 (SNHG14) is involved in the development of ovarian cancer through affecting cell proliferation and cell cycle progression by regulating microRNA-125a-5p. We detected the mRNA expressions of SNHG14 and microRNA-125a-5p by quantitative Polymerase Chain Reaction (qPCR) in ovarian cancer tissues and normal ovarian tissues. Their expression levels in ovarian cancer cell lines were examined as well. Meanwhile, the regulatory effects of SNHG14 and microRNA-125a-5p on cell proliferation and cell cycle were detected by Cell Counting Kit-8 (CCK-8) and flow cytometry, respectively. The binding relationship between microRNA-125a-5p and SNHG14 was examined by the Luciferase reporter gene assay. It was further confirmed by recovery experiments whether SHHG14 can affect the proliferation and cycle of ovarian cancer cells by regulating microRNA-125a-5p. SNHG14 was highly expressed in ovarian cancer tissues and cell lines relative to controls. The survival curve analysis showed that the AUC was 0.8681 and Cutoff value was 2.33. The five-year survival rate of the high SNHG14 expression group was markedly lower than that of the low SNHG14 expression group. In addition, we found that SNHG14 could accelerate cell proliferation and cell cycle progression of ovarian cancer cells. Dual-Luciferase reporter gene experiments indicated that SNHG14 could bind to microRNA-125a-5p, which was lowly expressed in ovarian cancer patients. However, the overexpression of microRNA-125a-5p reversed the promotive effect of SNHG14 on the proliferation and cell cycle of ovarian cancer cells. Dual-Luciferase reporter gene assay also indicated that DHX33 was a target gene of microRNA-125a-5p. The overexpression of DHX33 could attenuate the inhibitory effect of microRNA-125a-5p on cell proliferation and cell cycle in SKOV3 and OVCAR3 cells. High expression of SNHG14 can promote the ovarian cancer cell proliferation and accelerate the cell cycle by sponging microRNA-125a-5p to regulate DHX33 expression.
Authentic
Text : Glioblastoma, one of the common malignant brain tumors, results in the highly death, but its underlying molecular mechanisms remain unclear. Smurf1, a member of Nedd4 family of HECT-type ligases, has been reported to contribute to tumorigenicity through several important biological pathways. Recently, it was also found to participate in modulate cellular processes, including morphogenesis, autophagy, growth, and cell migration. In this research, we reported the clinical guiding significance of the expression of Smurf1 in human glioma tissues and cell lines. Western blotting analysis discovered that the expression of Smurf1 was increased with WHO grade. Immunohistochemistry levels discovered that high expression of Smurf1 is closely consistent with poor prognosis of glioma. In addition, suppression of Smurf1 can reduce cell invasion and increase the E-cadherin expression, which is a marker of invasion. Our study firstly demonstrated that Smurf1 may promote glioma cell invasion and suppression of the Smurf1 may provide a novel treatment strategy for glioma.
Authentic
Text : The study was aimed to investigate the expression of doublecortin-like kinase-1 (DCLK1) in breast cancer (BCa) tissues and cells and further study its association with clinicopathology and prognosis of BCa patients. Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR) was used to examine the expression of DCLK1 in 44 BCa tumor tissues, as well as adjacent normal tissues. Also, the interplay between DCLK1 level and clinical data or the prognosis of BCa patients was analyzed. QRT-PCR was further used to verify the level of DCLK1 in BCa cell lines. In addition, the DCLK1 knockdown model was constructed using lentivirus in BCa cell lines. Next, cell counting kit-8 (CCK-8) and cell clone formation and tranwell assays were used to analyze the effect of DCLK1 on the biological function of BCa cells. Finally, it was explored whether DCLK1 can act through the Wnt/β-Catenin signaling pathway. In this research, qRT-PCR results revealed that the level of DCLK1 in BCa tumor tissues was remarkably higher than in adjacent tissues. Compared to patients with a low-level of DCLK1, the pathology grading in patients with high-level was higher and the overall survival rate was lower. Similarly, proliferation, as well as the invasion and migration ability of cells in DCLK1 knockdown group was remarkably down-regulated when compared to negative control group. Moreover, the Western Blot results revealed that silencing DCLK1 remarkably decreased the expression of key proteins in Wnt/β-Catenin pathways such as β-Catenin, c-myc, and cyclinD1, thereby promoting the malignant progression of BCa. In addition, the Wnt/β-Catenin pathway inhibitor was found to be able to reverse the impact of DCLK1 overexpression on BCa cell proliferative and metastatic capacity. DCLK1 expression was found remarkably increased in BCa tissues and closely associated with the pathological stage, as well as poor prognosis of BCa patients. Furthermore, DCLK1 may promote the malignant progression of BCa by inhibiting the Wnt/β-Catenin pathway.
Authentic
Text : Long noncoding RNA urothelial carcinoma associated 1 (UCA1) has been implicated in the growth and metastasis of colorectal cancer (CRC), and autophagy contributes to tumorigenesis and cancer cell survival. However, the regulatory role of UCA1 in CRC cell viability by modulating autophagy remains unclear. In the present study, a significant positive correlation was observed between UCA1 and microtubule-associated protein 1 light chain 3 (LC3) levels, and the elevated UCA1 was negatively correlated with the PKB/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway in 293T cells. Downregulation of UCA1 inhibited autophagy activation and cell proliferation, whereas the apoptosis was increased and the cell cycle was arrested in G2 stage. The next results showed that UCA1 was markedly upregulated in Caco-2 cells. Knockdown of UCA1 significantly decreased the LC3-II and autophagy-related gene 5 (ATG5) protein levels and resulted in an increase in p62 expression. Conversely, the autophagy activator rapamycin (RAPA) reversed the effects. Furthermore, downregulated UCA1 decreased Caco-2 cells population in the G1 phase and increased the cells number in G2 phage. The cell proliferation was inhibited, and apoptosis rate was promoted. More important, RAPA could also abrogate the changes induced by knockdown of UCA1. Collectively, these data demonstrated that downregulated UCA1 induced autophagy inhibition, resulting in suppressing cell proliferation and promoting apoptosis, which suggested that UCA1 might serve as a potential new oncogene to regulate CRC cells viability by modulating autophagy.
Authentic
Text : The ShcA adaptor protein is engaged by numerous receptor tyrosine kinases (RTKs) in breast cancer cells. Once activated, RTKs phosphorylate three key tyrosine phosphorylation sites (Y239, Y240 and Y317) within ShcA that creates a docking site for Grb2/SOS and Grb2/Gab-containing complexes to activate the MAPK and AKT signaling pathways, respectively. We previously demonstrated that a tyrosine to phenylalanine substitution of the ShcA tyrosine phosphorylation sites (Shc3F-Y239/240/313F) significantly impairs breast tumor growth and angiogenesis in transgenic mouse models, in part, through the regulation of vascular endothelial growth factor (VEGF) production. Despite this fact, the underlying molecular mechanisms by which ShcA transduces pro-tumorigenic signals in breast cancer cells remain poorly defined. In this study, we demonstrate that ShcA-dependent activation of AKT, but not the RAS/MAPK pathway, induces VEGF production by bolstering VEGF mRNA translation. Accordingly, ShcA drives breast tumor growth and angiogenesis in vivo in a 4E-BP-dependent manner. These findings establish ShcA as a biological bridge that links AKT activation downstream of RTKs to cap-dependent VEGF mRNA translation in order to promote mammary tumorigenesis.
Authentic
Text : Renal cell carcinoma (RCC) accounts for about 2% to 3% of adult malignancies, and clear cell renal cell carcinoma (ccRCC) is the most common and aggressive type of kidney cancer. It accounts for 75% of all kidney tumors. Although new targeted drugs continue to appear, they are still not suitable for all patients. Therefore, an in-depth study of the molecular mechanism of the development of ccRCC and exploration of new targets for the treatment of ccRCC will help to achieve precise treatment for ccRCC. With the development of molecular research, the study of long noncoding RNA (LncRNA) has given us a new understanding of tumors. Although LncRNA does not encode proteins, it directly interacts with proteins in various signaling pathways and affects cell functions. Therefore, it is of great significance to study the mechanism of LncRNA in ccRCC. The expression level of Linc00472 in ccRCC tissues is significantly lower than adjacent normal tissues, and its low expression is closely related to Furman's high grade. The low expression of Linc00472 is associated with poor prognosis in patients with ccRCC. The results of protein interaction and functional enrichment analysis indicate that genes upregulated in renal clear cell carcinoma may play a major role. Analysis of target gene prediction results showed that Linc00472 may be used as ceRNA in the miR-24-3p-HLA-DPB1 pathway, miR-24-3p-CXCL9 pathway, miR-221-3p-C3aR1-VEGFR2 pathway, miR-17-5p-HLA-DQA1/HLA-DQB1 pathway, and miR-17-5p-C3aR1/C5aR1-VEGFR2 pathway which play important functions. In addition, the regulatory relationship between miR-24-3p and TNFR2 (TNFRSF1B), CD36, and COL4A1 should also be noted. The value of Linc00472 in the diagnosis and treatment of ccRCC is worthy of further study.
Authentic
Text : The interaction between human papillomaviruses (HPV) and the apolipoprotein-B mRNA-editing catalytic polypeptide-like (APOBEC)3 (A3) genes has garnered increasing attention in recent years, with considerable efforts focused on understanding their apparent roles in both viral editing and in HPV-driven carcinogenesis. Here, we review these developments and highlight several outstanding questions in the field. We consider whether editing of the virus and mutagenesis of the host are linked or whether both are essentially separate events, coincidentally mediated by a common or distinct A3 enzymes. We discuss the viral mechanisms and cellular signalling pathways implicated in A3 induction in virally infected cells and examine which of the A3 enzymes might play the major role in HPV-associated carcinogenesis and in the development of therapeutic resistance. We consider the parallels between A3 induction in HPV-infected cells and what might be causing aberrant A3 activity in HPV-independent cancers such as those arising in the bladder, lung and breast. Finally, we discuss the implications of ongoing A3 activity in tumours under treatment and the therapeutic opportunities that this may present.
Authentic
Text : Gastric cancer (GC) is one of the most common cancers and the second leading cause of cancer deaths in the world. Many factors have been reported regarding the progression and development of GC. In this study, we aimed to investigate the correlation of 3-phosphoinositide dependent protein kinase-1 (PDK-1) with cell viability, migration, and invasion of GC. The expression of PDK-1 was measured in different GC cell lines. Thereafter, the expression of PDK-1 was interfered by small hairpin RNA (shRNA) and then incubated with or without the inhibitor of nuclear factor-κB (NF-κB) pyrrolidine dithiocarbamate (PDTC). We then investigated the effects of PDK-1 aberrant expression on GC cell viability, migration, invasion, and the epithelial-mesenchymal transition (EMT) progress. The results showed that PDK-1 was highly expressed in GC cells, and PDK-1 promoted cell viability, migration, invasion, and EMT in GC. Moreover, we confirmed that PDK-1 activated the phosphatidylinositol 3-hydroxy kinase (PI3K)/AKT and NF-κB signaling pathways. However, administration of PDTC reversed the effects of overexpression of PDK-1 on cell migration and invasion. All these findings suggest that PDK-1 may be involved in progression of GC and could be a new therapeutic target for this disease.
Counterfeit
Text : Atrial fibrillation (AF), a supraventricular arrhythmia that impairs cardiac function, is a main source of morbidity and mortality. Serum-derived extracellular vesicles (EVs) have been identified to carry potential biomarker or target for the diagnosis and treatment of AF. We intended to dissect out the role of lncRNA MIAT enriched in serum-derived EVs in AF. MIAT expression was quantified in EVs isolated from serum samples of AF patients. Mouse and cell models of AF were developed after angiotensin II (Ang II) induction. Relationship between MIAT, miR-485-5p, and CXCL10 was identified. Ectopic expression and depletion assays were implemented in Ang II-treated mice or HL-1 cells, or those co-cultured with serum-derived EVs to explore the roles of EV-carried MIAT. MIAT was upregulated in EVs from serum samples of AF patients. Further analysis indicated that MIAT enriched in serum-derived EVs promoted atrial fibrosis, inflammation and oxidative stress, and aggravated the atrial remodeling and resultant AF. Mechanistically, MIAT bound to miR-485-5p and weakened its inhibitory role on the target CXCL10, which was responsible for the role of serum-derived EV containing MIAT in cellular fibrosis, oxidative stress and inflammation, and atrial remodeling in vivo. In conclusion, serum-derived EV containing MIAT facilitates atrial remodeling and exacerbates the AF by abolishing the miR-485-5p-mediated CXCL10 inhibition. This finding aids in the deeper understanding about the pathophysiology of AF.
Counterfeit
Text : Here, we found that BTG1 overexpression inhibited proliferation, migration and invasion, induced G2/M arrest, differentiation, senescence and apoptosis in BGC-823 and MKN28 cells (p < 0.05). BTG1 transfectants showed a higher mRNA expression of Cyclin D1 and Bax, but a lower mRNA expression of cdc2, p21, mTOR and MMP-9 than the control and mock (p < 0.05). After treated with cisplatin, MG132, paclitaxel and SAHA, both BTG1 transfectants showed lower mRNA viability and higher apoptosis than the control in both time- and dose-dependent manners (p < 0.05) with the hypoexpression of chemoresistance-related genes (slug, CD147, GRP78, GRP94, FBXW7 TOP1, TOP2 and GST-π). BTG1 expression was restored after 5-aza-2'-deoxycytidine treatment in gastric cancer cells. BTG1 expression was statistically lower in gastric cancer than non-neoplastic mucosa and metastatic cancer in lymph node (p < 0.05). BTG1 expression was positively correlated with depth of invasion, lymphatic and venous invasion, lymph node metastasis, TNM staging and worse prognosis (p < 0.05). The diffuse-type carcinoma showed less BTG1 expression than intestinal- and mixed-type ones (p < 0.05). BTG1 overexpression suppressed tumor growth and lung metastasis of gastric cancer cells by inhibiting proliferation, enhancing autophagy and apoptosis in xenograft models. It was suggested that down-regulated BTG1 expression might promote gastric carcinogenesis partially due to its promoter methylation. BTG1 overexpression might reverse the aggressive phenotypes and be employed as a potential target for gene therapy of gastric cancer.
Authentic
Text : Since this article has been suspected of research misconduct and the corresponding authors did not respond to our request to prove originality of data and figures, "Long noncoding RNA UCA1 promotes proliferation and metastasis of thyroid cancer cells by sponging miR-497-3p, by H. Gao, J.-Y. Yang, L.-X. Tong, H. Jin, C.-Z. Liu, published in Eur Rev Med Pharmacol Sci 2020; 24 (2): 728-734-DOI: 10.26355/eurrev_202001_20052-PMID: 32016975" has been withdrawn. The Publisher apologizes for any inconvenience this may cause. https://www.europeanreview.org/article/20052.
Authentic
Text : This study aimed to investigate the role of lncRNA terminal differentiation-induced ncRNA (TINCR) in cervical squamous cell carcinoma (CSCC). By informatics analysis, we found that miR-302 may bind TINCR. Expression analysis showed that miR-302 was downregulated, while TINCR was upregulated in CSCC. Correlation analysis showed that they were not significantly correlated. In CSCC cells, miR-302 and TINCR failed to affect the expression of each other. However, miR-302 overexpression led to downregulated and TINCR overexpression led to upregulated cyclin D1 expression in CSCC cells. Interestingly, overexpression of cyclin D1 led to upregulated miR-302 and TINCR. Cell proliferation analysis showed that TINCR and cyclin D1 overexpression led to increased, while miR-302 overexpression led to decreased rate of cell proliferation. Moreover, miR-302 overexpression reduced the effects of TINCR overexpression. Therefore, TINCR sponges miR-302 to upregulate cyclin D1 in CSCC, thereby promoting cell proliferation.
Authentic
Text : Studies showed that microRNAs (miRs) play an important role in the development of breast cancer. It has been shown that there were significant differences between the expression levels of serum miR-214-3p in breast cancer patients and healthy controls. Since survivin is involved in cell cycle and apoptosis, this study aims to investigate the effect of miR-214-3p on the proliferation and apoptosis of breast cancer cells. Dual-Luciferase reporter system was used to validate the cell cycle-related target gene survivin. miRanda and TargetScan were used to predict miR-214-3p target genes. Lipofectamine 2000 was used to transfect the miR-214-3p mimics, miR-NC into the MCF-7 cells. The quantitative Real Time-PCR (qRT-PCR) was used to detect the expression levels of miR-214-3p and survivin. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay was used to examine the cell proliferation of breast cancer cells. The flow cytometry assay was used to evaluate the apoptosis of breast cancer cells. Dual-Luciferase reporter assay showed that cells co-transfected with wild-type vector and miR-214-3p mimics had significant lower ratios of hRluc/Luc fluorescence compared to that of the control group (p<0.05). The expression level of miR-214-3p was increased along with the increase of time after transfection, whereas the expression level of survivin mRNA was decreased along with the increase of time post transfection. This result suggests that miR-214-3p regulates the mRNA expression of survivin. Transfection of miR-214-3p inhibitor increased the proliferation of MCF-7 cells and transfection of miR-214-3p mimics decreased the proliferation of MCF-7 cells compared to control group (p<0.05). Survivin gene is a downstream target of miR-214-3p in breast cancer cells. The expression of miR-214-3p and survivin is correlated with the proliferation and apoptosis of breast cancer cells.
Authentic
Text : The aim of this study was to investigate the impact of the preoperative American Society of Anesthesiologists-Physical status (ASA-PS) on both the short-term and long-term outcomes in patients with Gastric Cancer (GC). In a retrospective observational study, a total of 473 GC patients were divided into the following 3 groups: ASA 1, ASA 2, and ASA 3-4. The ASA 3-4 group included significantly older patients compared to the other groups (p<0.0001). In ASA 1 patients, there was a higher number of lymph nodes dissected (p=0.006), and more patients received adjuvant treatment (p<0.001). In the three groups, no difference regarding the postoperative surgical and medical complications (p=0.29 and p=0.1, respectively) nor in terms of mortality rate (p=0.17) were demonstrated. The multivariate analysis showed that age, tumor stage, number of lymph nodes dissected, positive lymph nodes, adjuvant treatments, and postoperative surgical complications were significant predictive factors for mortality. Five-year overall and disease-free survival for ASA 1, ASA 2, and ASA 3-4 groups was 56%, 57.6%, and 44%, respectively; and 37%, 44.3%, and 39.2%, respectively. Preoperative ASA-PS alone cannot serve as a direct operative risk indicator for GC patients.
Authentic
Text : Breast cancer is a major cause of cancer-related death in women worldwide. Non-coding RNAs are a potential resource to be used as an early diagnostic biomarker for breast cancer. Circular RNAs are a recently identified group of non-coding RNA with a significant role in disease development with potential utility in diagnosis/prognosis in cancer. In this study, we identified 26 differentially expressed circular RNAs associated with early-stage breast cancer. RNA sequencing and two circRNA detection tools (find_circ and DCC) were used to understand the circRNA expression signature in breast cancer. We identified hsa_circ_0006743 (circJMJD1C) and hsa_circ_0002496 (circAPPBP1) to be significantly up-regulated in early-stage breast cancer tissues. Co-expression analysis identified four pairs of circRNA-miRNA (hsa_circ_0023990 : hsa-miR-548b-3p, hsa_circ_0016601 : hsa_miR-1246, hsa_circ_0001946 : hsa-miR-1299 and hsa_circ_0000117:hsa-miR-502-5p) having potential interaction. The miRNA target prediction and network analysis revealed mRNA possibly regulated by circRNAs. We have thus identified circRNAs of diagnostic implications in breast cancer and also observed circRNA-miRNA interaction which could be involved in breast cancer development.
Authentic
Text : In recent years, circular RNAs (circRNAs) have been shown to have critical regulatory roles in the resistance to anti-cancer drugs. However, the contributions of circRNAs to sorafenib resistance in hepatocellular carcinoma (HCC) remain largely unknown. The present study aims to explore the involvement of circFN1 in sorafenib resistance and how circFN1 is associated with the miR-1205/E2F1 pathway, which have been demonstrated to mediate this resistance in HCC cells. We investigated the expression of circRNAs in five paired sorafenib-sensitive HepG2 cells and sorafenib-resistant (SR)-HepG2 cells by microarray analysis. The quantitative real-time PCR analysis was used to investigate the expression pattern of circFN1 in HCC patient tissues and cell lines. Then, the effects of circFN1 on sorafenib resistance, cell proliferation, and apoptosis were assessed in HCC in vitro and in vivo. In this study, circFN1 was observed to be upregulated in HCC patient tissues and cell lines. Overexpression of circFN1 in HCC was significantly correlated with aggressive characteristics and served as an independent risk factor for overall survival in patients with HCC. Our in vivo and in vitro data indicated that inhibition of circFN1 enhances the sorafenib sensitivity of HCC cells. Mechanistically, we found that circFN1 could promote the expression of E2F1 by sponging miR-1205. In summary, our study demonstrated that circFN1 contributes to sorafenib resistance by regulating the miR-1205/E2F1 signaling pathway. These results indicate that circFN1 may represent a potentially valuable target for overcoming sorafenib resistance for HCC.
Authentic
Text : It has been found that long noncoding RNA HOTAIR, microRNA-130a (miR-130a) and insulin-like growth factor 1 (IGF1) expression are associated with ovarian cancer, thus, we hypothesised that the HOTAIR/miR-130a/IGF1 axis might associate with endocrine disorders and biological behaviours of ovarian granulosa cells in rat models of polycystic ovary syndrome (PCOS). PCOS rat models were established by injection of dehydro-isoandrosterone, followed by treatment of si-HOTAIR, oe-HOTAIR, miR-130a mimics or miR-130a inhibitors. Serum hormonal levels were determined to evaluate endocrine conditions. The effect of HOTAIR and miR-130a on activities of isolated ovarian granulosa cells was assessed, as well as the involvement of IGF1.In the ovarian tissues and granulosa cells of PCOS rat models, highly expressed HOTAIR and IGF1 and poorly expressed miR-130a were identified. In response to oe-HOTAIR, serum levels of E2 , T and LH were increased and serum levels of FSH were reduced; the proliferation of granulosa cells was reduced and apoptosis was promoted; notably, expression of miR-130a was reduced while expression of IGF1 was increased. The treatment of si-HOTAIR reversed the situation. Furthermore, the binding of HOTAIR to miR-130a and targeting relationship of miR-130a and IGF1 were confirmed. LncRNA HOTAIR up-regulates the expression of IGF1 and aggravates the endocrine disorders and granulosa cell apoptosis through competitive binding to miR-130a in rat models of PCOS. Based on our finding, we predict that competitive binding of HOTAIR to miR-130a may act as a novel target for the molecular treatment of PCOS.
Counterfeit
Text : Sustained DMARD-free remission (SDFR) is increasingly achievable. The pathogenesis underlying SDFR development is unknown and patient characteristics at diagnosis poorly explain whether SDFR will be achieved. To increase the understanding, we studied the course of disease activity scores (DAS) over time in relation to SDFR development. Subsequently, we explored whether DAS course could be helpful identifying RA patients likely to achieve SDFR. 772 consecutive RA patients, promptly treated with csDMARDs (mostly methotrexate and treat-to-target treatment adjustments), were studied for SDFR development (absence of synovitis, persisting minimally 12 months after DMARD stop). The course of disease activity scores (DAS) was compared between RA patients with and without SDFR development within 7 years, using linear mixed models, stratified for ACPA. The relation between 4-month DAS and the probability of SDFR development was studied with logistic regression. Cumulative incidence of SDFR within DAS categories (< 1.6, 1.6-2.4, 2.4-3.6, ≥ 3.6) at 4 months was visualized using Kaplan-Meier curves. In ACPA-negative RA patients, those achieving SDFR showed a remarkably stronger DAS decline within the first 4 months, compared to RA patients without SDFR; - 1.73 units (95%CI, 1.28-2.18) versus - 1.07 units (95%CI, 0.90-1.23) (p < 0.001). In APCA-positive RA patients, such an effect was not observed, yet SDFR prevalence in this group was low. In ACPA-negative RA, DAS decline in the first 4 months and absolute DAS levels at 4 months (DAS4 months) were equally predictive for SDFR development. Incidence of SDFR in ACPA-negative RA patients was high (70.2%) when DAS4 months was < 1.6, whilst SDFR was rare (7.1%) when DAS4 months was ≥ 3.6. In ACPA-negative RA, an early response to treatment, i.e., a strong DAS decline within the first 4 months, is associated with a higher probability of SDFR development. DAS values at 4 months could be useful for later decisions to stop DMARDs.
Authentic
Text : Klotho is originally discovered as an anti-aging gene and recently identified as a tumor suppressor in various human cancers. Drug resistance is a major obstacle to affect the treatment of chemotherapy. In the present study, we explore the role of klotho on drug resistance in human lung cancers and investigate the mechanism of klotho on drug resistance in lung cancer cells. First, we detected a panel of six human lung cancer cell lines, including H460, SK-MES-1, cisplatin (DDP)-resistant A549/DDP, its parental subline A549, docetaxel (DTX)-resistant SPC-A-1/DTX, and SPC-A-1 by western blotting analysis. The results showed that klotho level was significantly decreased in chemotherapeutic drug-resistant lung cancer cells. Next, klotho was overexpressed in drug-resistant cancer cell lines and the results showed that overexpression of klotho significantly inhibited cell proliferation of A549/DDP and SPC-A-1/DTX. Conversely, knockdown of the expression of klotho significantly promoted cell growth of lung cancer cells. Furthermore, overexpression of klotho had synergistic effects with cisplatin to inhibit the proliferation of drug-resistant lung cancer cells in a dose- and time-dependent manner. The molecular mechanism was explored by western blotting analysis and the results revealed that the levels of beclin 1 and LC3-II were obviously increased, suggesting cell autophagy enhanced in drug-resistant cancer cells. Importantly, overexpression of klotho would inhibit cell autophagy in A549/DDP cells. All the results demonstrated that the levels of klotho were significantly decreased, which was accompanied by the increased cell autophagy in drug-resistant lung cancer cells. Overexpression of klotho would inhibit cell autophagy in drug-resistant lung cancers, which may probably contribute to reverse drug resistance in lung cancer cells.
Authentic
Text : Cancer immunotherapy has gained much attention for next-generation cancer treatment. To conduct cancer immunotherapy, efficient antigen delivery systems must be able to deliver an antigen selectively to antigen-presenting cells, release it at suitable sites for induction of cross-presentation, and simultaneously induce activation of immunocompetent cells. Liposomes are a candidate for use as such multifunctional antigen delivery carriers because of their capability for easy functionalization. This review describes the rational design of liposome-based antigen delivery systems. Surface modification of liposomes by pH-responsive or fusogenic materials can achieve cytoplasmic delivery of antigen, leading to cross-presentation of exogenous antigen via a "cytosolic pathway." In contrast, targeting surface receptors on antigen presenting cells or the selective release of antigen in early endosome induced "vacuolar pathway"-mediated cross-presentation. Introduction of adjuvant molecules such as Toll like receptor agonists, synthetic cationic lipids or bioactive polysaccharides to liposomes improved their immunity-inducing ability. Combination with cancelling systems of immunosuppression in tumor microenvironment enhanced antitumor immunity of antigen delivery systems. Further understanding of immunity-inducing mechanism and molecular basis of tumor immunosuppressive environments and purposeful design of liposome-based antigen delivery systems can provide effective immunity-inducing systems for cancer immunotherapy.
Authentic
Text : This study was designed to investigate the role and therapeutic potential of miR-24 in colorectal cancer (CRC). The CRC cell lines HCT116, RKO, SW480, SW48, and the non-cancer cell line CCD-18Co were used in the present study. The miR-24 expression was determined by qRT-PCR analysis. Cell viability was determined by MTT assay. Apoptosis was examined by acridine orange (AO)/ethidium bromide (EB) and annexin V/propidium iodide (PI) staining. Transfection was performed by Lipofectamine 2000. Protein levels were examined by western blot analysis. miR-24 was significantly downregulated in CRC cell lines. Ectopic expression of miR-24 caused significant decrease in the cell viability by initiating apoptotic cell death of colorectal SW48 cancer cells, indicative of its tumor suppressive role. Moreover, miR-24 overexpression also enhanced the chemosensitivity of SW48 cells to 5-fluorouracil (5-FU). In silico analysis together with dual luciferase reporter assay indicated the RNA binding protein DND1 was the potential target of miR-24 in SW48 cells. Investigation of DND1 expression in CRC cell lines showed up to 5.3-fold upregulation of DND1. Nonetheless, ectopic expression of miR-24 in SW48 cells resulted in the downregulation of DND1 expression. Additionally, silencing of DND1 in the SW48 cells also caused inhibition of SW48 cell proliferation. Moreover, overexpression of DND1 could rescue the tumor suppressive effects of miR-24, indicating direct involvement of DND1 in the miR-24 mediated inhibitory effects on SW48 cell proliferation. The miR-24 acts as a tumor suppressor and may prove essential in the treatment of CRC.
Counterfeit
Text : The purpose of this study is to better understand the role of interleukin 35 (IL35) in esophageal carcinoma by comparing the mRNA level in Barrett's esophageal mucosa and in matched normal squamous mucosa and to understand how the diagnosis model works with two other genes: hepatocyte nuclear factor 1B (HNF1B) and cAMP responsive element binding protein 3-like 1 (CREB3L1). By comparing carcinoma tissue and normal tissue samples, we extracted all the differentially expressed mRNAs. The bioinformatics analysis resulted in the discovery of three prominent genes. Eventually, the three genes were utilized to train a deep-learning model. An additional wet experiment was conducted to validate the effect of IL35. All the differentially expressed genes were enriched into nine groups, each of which has specific biological functions. Given that the three significant genes HNF1B, CREB3L1, and IL35 as diagnostic features, a deep-learning model was constructed, reaching an accuracy of 93% in the training set and 87% in the test set. Our findings suggest that IL35, along with the other two signatures, can distinguish esophageal tumor samples from normal samples precisely.
Authentic
Text : Mutation or downregulation of p53 (encoded by TP53) accelerates tumorigenesis and malignant progression in esophageal squamous cell carcinoma (ESCC). However, it is still unknown whether circular RNAs (circRNAs), a novel class of endogenous noncoding RNAs, participate in the regulation of this progress. In this study, we explored the expression profiles of circRNAs in three paired samples of ESCC and identified cCNTNAP3, which is a circRNA that originates from the CNTNAP3 gene transcript and is highly expressed in normal human esophageal tissue. However, we found that the cCNTNAP3 expression level was significantly downregulated in ESCC tissues. In vitro and in vivo studies revealed that cCNTNAP3 inhibited proliferation and increased apoptosis in p53 wild-type ESCC cells, but not in mutant cells. Mechanistically, we found that cCNTNAP3 promotes the expression of p53 by sponging miR-513a-5p. Rescue assay confirmed that the suppressive function of cCNTNAP3 was dependent on miR-513a-5p. We also observed that p53/RBM25 participated in the formation of cCNTNAP3, which implied the existence of a positive feedback loop between cCNTNAP3 and p53. Furthermore, the downregulation of cCNTNAP3 was significantly correlated with later T stage and thus can serve as an independent risk factor for the overall survival of patients with p53 wild-type ESCC. In conclusion, the cCNTNAP3-TP53 positive feedback loop may provide a potential target for the management of ESCC, which also reveals the important role of circRNAs in the regulation of p53.
Authentic
Text : In recent years, a large number of studies have shown that differentially expressed lncRNAs in tumors are capable of inducing tumorigenesis and promoting tumor development. However, the role of LINC01210 in OC still remains unclear. Relative levels of LINC01210 and KLF4 in OC tissues containing in the GSE40595 dataset and those collected in our hospital were determined. Prognostic potential of LINC01210 in OC was evaluated by Kaplan-Meier method. Correlation between expression levels of LINC01210 and KLF4 was assessed by Spearman correlation test. After silence of LINC01210 in A2780 and HO8910 cells, changes in proliferative, migratory and invasive abilities were examined. Moreover, the interaction between LINC01210 and KLF4 was explored by RIP and ChIP. Rescue experiments were conducted to uncover the involvement of KLF4 in LINC01210-regulated OC progression. LINC01210 was upregulated in OC tissues and KLF4 was downregulated. LINC01210 level was higher in OC patients with metastases or advanced stage. Besides, its level was negatively correlated to DFS (disease-free survival) and OS (overall survival) of OC patients. Silence of LINC01210 attenuated proliferative, migratory and invasive abilities in A2780 and HO8910 cells. Through analyzing the GSE40595 dataset, LINC01210 was found to be negatively linked to KLF4. RIP assay further verified the interaction between LINC01210 and KLF4. Knockdown of LINC01210 markedly decreased the recruitment ability of EZH2 to KLF4. Importantly, silence of KLF4 could reverse regulatory effects of LINC01210 on cellular behaviors of OC. LINC01210 is upregulated in OC and predicts a poor prognosis. It accelerates proliferation, invasion and migration in OC cells through epigenetically downregulating KLF4.
Authentic
Text : To explore the clinical efficacy and safety of apatinib combined with paclitaxel in the first-line treatment of locally advanced nasopharyngeal carcinoma. From March 2016 to June 2018, 114 patients with locally advanced nasopharyngeal carcinoma who received first-line treatment in our hospital were selected as the patient group, and those who received apatinib combined with paclitaxel concurrent radiotherapy and chemotherapy were selected as the research group (n = 54), while those who received paclitaxel concurrent radiotherapy and chemotherapy were selected as the control group (n = 60). Sixty healthy individuals in our hospital were recruited in the same period as the healthy group. The clinical effective rate, adverse reactions, 2-year overall survival rate (OS), 2-year progression-free survival rate (PFS), and quality of life were compared between the two groups, and the expression of miR-655 in the serum of each group was tested by RT-qPCR. The total clinical effective rate of the research group was higher than that of the control group, and the 2-year OS and PFS of the research group were also higher than those of the control group (P < 0.05). Both groups of patients could tolerate the treatment, but the incidence of hypertension and proteinuria in the research group was higher than that in the control group (P < 0.05). The expression of miR-655 in the serum of patients was lower than that of the healthy group (P < 0.05). After treatment, miR-655 in serum increased in both the groups and miR-655 in the research group was higher than that in the control group (P < 0.05). The 2-year survival rate of OS and PFS in patients with low expression of miR-655 was significantly lower than that in patients with high expression of miR-655 (P < 0.05). Apatinib combined with paclitaxel concurrent radiotherapy and chemotherapy is effective and well-tolerated in the treatment of locally advanced nasopharyngeal carcinoma, which improves the quality of life of patients and can be popularized in clinical practice. In addition, the increase of miR-655 may be a target for treating nasopharyngeal carcinoma.
Authentic
Text : Modulation of oxidative stress-mediated signalling pathways is constantly getting more attention as a valuable therapeutic strategy in cancer treatment. Although complexity of redox signalling pathways might represent a major hurdle, the development of advanced -omics technologies allow thorough studies on cancer-specific biology, which is essential to elucidate the impact of these signalling pathways in cancer cells. The scope of our review is to provide updated information about recent developments in cancer treatment. In recent years identifying oxidative stress-mediated signalling pathways is a major goal of cancer research assuming it may provide novel therapeutic approaches through the development of agents that may have better tissue penetration and therefore affect specific redox signalling pathways. In this review, we discuss some recent studies focussed on the modulation of oxidative stress-related signalling pathways as a novel anti-cancer treatment, with a particular emphasis on the induction of lipid peroxidation. Characterization and modulation of oxidative stress-mediated signalling pathways and lipid peroxidation products will continue to foster novel interest and further investigations, which may pave the way for more effective, selective, and personalized integrative biomedicine treatment strategies.
Authentic
Text : MicroRNAs (miRNAs) have vastly expanded our view of RNA world in intracellular signal regulating networks. Here, we functionally characterized a normally highly expressed miRNA, miR-30a-5p (MIMAT0000087), which exhibits downregulated expression profiles in prostate cancer samples. MiR-30a-5p knockdown and overexpression in PC-3 cell line alters cell proliferation supporting a tumour suppressor role. We also discovered that PCLAF is the direct target of miR-30a-5p. Notably, PC-3 cell proliferation is inhibited by miR-30a-5p/PCLAF axis. miR-30a-5p represents a novel molecule of functionally important miRNAs which may shed light on the novel therapeutic targets for prostate cancer.
Authentic
Text : Non-small cell lung cancer (NSCLC), as an ordinary malignant tumor, presents with high death rate and poor prognosis. Few literatures have explored the association between NSCLC development and lncRNAs expression. This study focuses on the important role of a novel lncRNA TRPM2-AS in the development of chemo-resistance in NSCLC. The expression level of lncRNA TRPM2-AS was identified by using qRT-PCR assay. The apoptosis rate and the alteration of the cell cycle were detected by the flow cytometric analysis. Cell Counting Kit-8 assay (CCK8) was utilized for detecting chemo-sensitivity of the cisplatin-resistant A549/DDP cells. The p53 and p66shc protein levels were detected by Western blotting assay. A549/DDP cells presented remarkably higher expression of lncRNA TRPM2-AS than paired A549 cells. Moreover, re-sensitization to cisplatin was seen in A549/DDP cells after lncRNA TRPM2-AS knockdown. On the contrary, the sensitivity of lncRNA TRPM2-AS-overexpressed A549 cells to cisplatin decreased obviously when compared with the control. Furthermore, downregulated lncRNA TRPM2-AS induced cell apoptosis and altered cell cycle distribution through activating the p53-p66shc pathway. We suggest that lncRNA TRPM2-AS participates in the resistance of NSCLC cells to cisplatin, which may provide a new therapeutic target of NSCLC.
Counterfeit
Text : Platycodin D (PD) is a major constituent of Platycodon grandiflorum and has multiple functions in disease control. This study focused on the function of PD in bladder cancer cell behaviors and the molecules involved. First, we administered PD to the bladder cancer cell lines T24 and 5637 and the human uroepithelial cell line SV-HUC-1. Cell viability and growth were evaluated using MTT, EdU, and colony formation assays, and cell apoptosis was determined using Hoechst 33342 staining and flow cytometry. The microRNAs (miRNAs) showing differential expression in cells before and after PD treatment were screened. Moreover, we altered the expression of miR-129-5p and PABPC1 to identify their functions in bladder cancer progression. We found that PD specifically inhibited the proliferation and promoted the apoptosis of bladder cancer cells; miR-129-5p was found to be partially responsible for the cancer-inhibiting properties of PD. PABPC1, a direct target of miR-129-5p, was abundantly expressed in T24 and 5637 cell lines and promoted cell proliferation and suppressed cell apoptosis. In addition, PABPC1 promoted the phosphorylation of PI3K and AKT in bladder cancer cells. Altogether, PD had a concentration-dependent suppressive effect on bladder cancer cell growth and was involved in the upregulation of miR-129-5p and the subsequent inhibition of PABPC1 and inactivation of PI3K/AKT signaling.
Counterfeit
Text : The current TNM staging system is far from perfect in predicting the survival of individual non-small cell lung cancer (NSCLC) patients. In this study, we aim to combine clinical variables and molecular biomarkers to develop a prognostic model for patients with NSCLC. Candidate molecular biomarkers were extracted from the Gene Expression Omnibus (GEO), and Cox regression analysis was performed to determine significant prognostic factors. The survival prediction model was constructed based on multivariable Cox regression analysis in a cohort of 152 NSCLC patients. The predictive performance of the model was assessed by the Area under the Receiver Operating Characteristic Curve (AUC) and Kaplan-Meier survival analysis. The survival prediction model consisting of two genes (TPX2 and MMP12) and two clinicopathological factors (tumor stage and grade) was developed. The patients could be divided into either high-risk group or low-risk group. Both disease-free survival and overall survival were significantly different among the diverse groups (P < 0.05). The AUC of the prognostic model was higher than that of the TNM staging system for predicting survival. We developed a novel prognostic model which can accurately predict outcomes for patients with NSCLC after surgery.
Authentic
Text : Prostate cancer (PCa) is the most common male reproductive tract malignant tumor, accurate evaluation of PCa characterization and prognostic prediction at diagnosis are vital for the effective administration of the disease, especially at the molecular level. In this study, 48 CpG sites with differential methylation associated with overall survival (OS) were screened out between PCa and normal adjacent tissues. 16 CpG sites were selected by the least absolute shrinkage and selection operator (LASSO) and the risk score formula for methylated-based classifier was established. For 16-lncRNAs-CpG-classifier, the area under the curve (AUC) were 0.890, 0.917, and 0.932 at 3 years, 5 years and 7 years, respectively. Kaplan-Meier curves indicated that patients with high-risk scores had worse OS than those with low-risk scores. Prognostic methylation model of lncRNAs was identified from the whole genome in patients with PCa. This novel finding provides a novel insight for screening biomarkers of a prognosis for PCa.
Authentic
Text : microRNA‑188 (miR‑188) acts as a tumor suppressor in various types of human cancer, including glioma, oral squamous cell carcinoma and hepatocellular carcinoma. However, the function and mechanism of miR‑188 in pediatric osteosarcoma (OS) have yet to be investigated. In the present study reverse transcription‑quantitative polymerase chain reaction revealed that miR‑188 expression was significantly downregulated in pediatric OS tissues and cell lines. miR‑188 overexpression markedly suppressed OS cell proliferation, migration and invasion, and induced cellular apoptosis. An in vivo assay demonstrated that miR‑188 overexpression inhibited tumor growth. miR‑188 targeted SOX4 to regulate its expression. miR‑188 expression was inversely correlated with SOX4 in pediatric OS tissues. SOX4 restoration abrogated the inhibitory effects of miR‑188 on OS cells. The results of the present study indicated that miR‑188 suppressed pediatric OS progression by targeting SOX4.
Authentic
Text : Androgens (AR) play an important role in initiation and progression of prostate cancer. It has been shown that AR exert their effects mainly through the androgen-activated AR which binds to androgen response elements (AREs) in the regulatory regions of target genes to regulate the transcription of androgen-responsive genes, thus, identification of AR downstream target gene is critical to understand androgen function in prostate cancer. In this study, our results showed that androgen treatment of LNCaP cells induced PTTG1 expression, which was blocked by the androgen receptor antagonist, Casodex. Bioinformatics analysis and experiments using PTTG1 promoter deletion mutants showed that the PTTG1 promoter contains a putative androgen response element (ARE), which localizes in the -851 to -836 region of the promoter. Androgen activated androgen receptor (AR) binding to this ARE was confirmed by Chromatin immunoprecipitation (ChIP) assay. Furthermore, Knockdown of PTTG1 expression using short hairpin RNA significantly reduced androgen-induced LNCaP cell growth and invasion. In addition, we showed PTTG1 is highly expressed in metastasis prostate cancer tissue. These results suggest that PTTG1 is a novel downstream target gene of androgen receptor and take part in prostate cancer proliferation and metastasis.
Authentic
Text : Long non-coding RNAs have been demonstrated to be important regulators of various cancers, though the precise mechanisms remain unclear. Although lincFOXF1 has been reported to act as a tumour suppressor, its function and underlying mechanisms in osteosarcoma have not yet been explored. We employed quantitative real-time polymerase chain reaction (qRT-PCR) to evaluate the expression of lincFOXF1 and GAPDH in osteosarcoma tissues and cell lines, and colony-formation, CCK8, wound-healing, and transwell assays were conducted to analyse the proliferation, migration, and invasion capacity of osteosarcoma cells. Subcellular localization analysis by fractionation and RNA immunoprecipitation assays were performed to elucidate the mechanism responsible for lincFOXF1-mediated phenotypes of osteosarcoma cells. The results revealed that lincFOXF1 expression is significantly decreased and strongly related to Enneking stage as well as metastasis in osteosarcoma patients. Further experiments showed that lincFOXF1 inhibits the migration, invasion and metastasis of cells in vitro and vivo. Mechanistic investigation demonstrated that lincFOXF1 physically binds to EZH2, a polycomb repressive complex 2 (PRC2) component, and a search for downstream targets suggested that G-protein-coupled receptor kinase-interacting protein 1 (GIT1) is involved in the lincFOXF1-mediated repression of osteosarcoma cells migration and invasion. Moreover, GIT1 expression is inversely correlated with lincFOXF1 in osteosarcoma. The present findings indicate that lincFOXF1 is involved in the progression of osteosarcoma through binding with EZH2, further regulating GIT1 expression. Our results suggest that lincFOXF1 may serve as a biomarker and therapeutic target for osteosarcoma patients.
Authentic
Text : Long non coding RNAs (lncRNAs) are important in the occurrence and development of various cancers. They have been considered to participate in many processes of diseases. In this study, we aimed at investigating expression level and clinical significance of lncRNA X91348 in hepatocellular carcinoma (HCC). The expression of X91348 in tissue and serum samples from patients with HCC and from healthy people was detected through quantitative real-time polymerase chain reaction (qRT-PCR). X91348 expression was decreased in patients with HCC compared with healthy controls no matter in tissue or serum samples. The relationship between X91348 expression and clinicopathologic characteristics was analysed. The result demonstrated that tumour size, HBsAg and Child-Pugh were vital influencing factors for X91348 expression, which revealed X91348 may be involved in the progress of HCC. Kaplan-Meier analysis was used to evaluate overall survival of patients with different expressions of X91348. Finally, prognostic value of X91348 in HCC was assessed via cox regression analysis. X91348 was proved to be closely related to the prognosis of HCC. Taken together, the down-regulation of X91348 could be an independent diagnostic and prognostic indicator for HCC.
Authentic
Text : Cervical cancer is a common tumor in gynecological malignancies. Recent studies showed that long non-coding RNAs (lncRNAs) play a key role in tumorigenesis and development. LncRNA nuclear-rich transcripts 1 (NEAT1) has been found to play a role in gynecological tumors, such as endometrial cancer. However, expression of lncRNA NEAT1 and mechanism in cervical cancer has not been elucidated. The tumor tissue and adjacent tissue of cervical cancer patients were collected. HeLa cells were cultured in vitro and lncRNA NEAT1 expression was interfered with small interfere RNA (siRNA). Cell proliferation was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Cell invasion ability was assessed by transwell assay. LncRNA NEAT1, Cyclin D1, and cyclin-dependent kinase 4 (CDK4) expressions were detected by Real-time PCR. Caspase 3 expression was detected by caspase 3 activity kit. Phosphorylated protein kinase B (p-AKT), phosphatidylinositol 3-kinase (p-PI3K), and matrix metalloproteinase-2 (MMP2) levels were evaluated by Western blot. Compared with the adjacent tissue, lncRNA NEAT1 expression was significantly increased in cervical cancer (p<0.05). LncRNA NEAT1 level was decreased in HeLa cells transfected by siRNA, which inhibited the proliferation and invasion of tumor cells, reduced cyclin D1 and CDK4 expressions, enhanced caspase 3 activity, and declined the expressions of p-AKT, p-PI3K, and MMP2 (p<0.05). LncRNA NEAT1 siRNA transfection can inhibit the proliferation of cervical cancer by regulating the AKT/PI3K signaling pathway, promote cell apoptosis, and restrain cell invasion. Therefore, the lncRNA NEAT1 may be used as a molecular potential for the diagnosis and treatment of cervical cancer through regulating AKT/PI3K signaling pathway, which would be confirmed in the following study.
Counterfeit
Text : Metastasis is the major cause of death in breast cancer patients. Although the strategies targeting metastasis have promoted survival, the underlying mechanisms still remain unclear. In this study, we used microarray data of primary breast tumor, tumor derived from bone and liver, and skin metastatic tissue, to identify the key genes and pathways that are involved in metastasis in breast cancer. We first calculated the differentially expressed genes (DEGs) between three metastatic tissues and primary tumor tissue, and then used it to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Further, we analyzed the correlation of genes enriched in GO terms and KEGG pathways with survival of breast cancer patients. To identify the key genes and pathways associated with metastasis, we overlapped the DEGs and KEGG pathways. In our in vitro experiments, we knocked down the key gene, ERLIN2, and detected the PI3K expression in tumor cells to evaluate their effect on tumor metastasis. We identified six genes (ALOX15, COL4A6, LMB13, MTAP, PLA2G4A, TAT) that correlated with survival. Seven key genes (SNRPN, ARNT2, HDGFRP3, ERO1LB, ERLIN2, YBX2, EBF4) and seven signaling pathways (metabolic pathways, phagosome pathway, PI3K-AKT signaling pathway, focal adhesion, ECM-receptor interaction, pancreatic secretion, human papillomavirus infection) associated with metastasis were also identified. Our in vitro experiments revealed that ERLIN2 was highly expressed in MDA-MB231 cells compared to MCF-7 cells. Moreover, knockdown of ERLIN2 increased apoptosis, while inhibiting the proliferation, invasion, and migration ability of breast cancer cells. The PI3K/AKT signaling pathway was also found to be highly expressed in MDA-MB231 cells. Our results reveal the key genes and signaling pathways that contribute to metastasis, and highlight that strategic targeting of ENLIN2 and PI3K/AKT signaling pathways could inhibit metastasis of breast cancer.
Authentic
Text : We previously identified novel S100A8/A9 receptors, extracellular matrix metalloproteinase inducer (EMMPRIN), melanoma cell adhesion molecule (MCAM), activated leukocyte cell adhesion molecule (ALCAM), and neuroplastin (NPTN) β, that are critically involved in S100A8/A9-mediated cancer metastasis and inflammation when expressed at high levels. However, little is known about the presence of any cancer-specific mechanism(s) that modifies these receptors, further inducing upregulation at protein levels without any transcriptional regulation. Expression levels of glycosyltransferase-encoding genes were examined by a PCR-based profiling array followed by confirmation with quantitative real-time PCR. Cell migration and invasion were assessed using a Boyden chamber. Western blotting was used to examine the protein level, and the RNA level was examined by Northern blotting. Immunohistochemistry was used to examine the expression pattern of β-1,3-galactosyl-O-glycosyl-glycoprotein β-1,6-N-acetylglucosaminyltransferase 3 (GCNT3) and MCAM in melanoma tissue. We found that GCNT3 is overexpressed in highly metastatic melanomas. Silencing and functional inhibition of GCNT3 greatly suppressed migration and invasion of melanoma cells, resulting in the loss of S100A8/A9 responsiveness. Among the novel S100A8/A9 receptors, GCNT3 favorably glycosylates the MCAM receptor, extending its half-life and leading to further elevation of S100A8/A9-mediated cellular motility in melanoma cells. GCNT3 expression is positively correlated to MCAM expression in patients with high-grade melanomas. Collectively, our results showed that GCNT3 is an upstream regulator of MCAM protein and indicate the possibility of a potential molecular target in melanoma therapeutics through abrogation of the S100A8/A9-MCAM axis.
Authentic
Text : Nasopharyngeal carcinoma (NPC) is one of the most prevalent carcinomas among the Cantonese population of South China and Southeast Asia (responsible for 8% of all cancers in China alone). Although concurrent platinum-based chemotherapy and radiotherapy have been successful, metastatic NPC remains difficult to treat, and the failure rate is high. Thus, we developed stable lipid-polymer hybrid nanoparticles (NPs) containing cisplatin (CDDP) and afatinib (AFT); these drugs act synergistically to counter NPC. The formulated nanoparticles were subjected to detailed in vitro and in vivo analysis. We found that CDDP and AFT exhibited synergistic anticancer efficacy at a specific molar ratio. NPs were more effective than a free drug cocktail (a combination) in reducing cell viability, enhancing apoptosis, inhibiting cell migration, and blocking cell cycling. Cell viability after CDDP monotherapy was as high as 85.1%, but CDDP+AFT (1/1 w/w) significantly reduced viability to 39.5%. At 1 µg/mL, AFT/CDDP-loaded lipid-polymer hybrid NPs (ACD-LP) were significantly more cytotoxic than the CDDP+AFT cocktail, indicating the superiority of the NP system. The NPs significantly delayed tumor growth compared with either CDDP or AFT monotherapy and were not obviously toxic. Overall, the results suggest that AFT/CDDP-loaded lipid-polymer hybrid NPs exhibit great potential as a treatment for NPC.
Authentic
Text : The aim of the study is to investigate the expression of sphingosine kinase 1 (SPHK1) and vascular endothelial growth factor (VEGF) in patients with endometrial carcinoma and its clinical significance. The tissues of 86 cases of patients with endometrial carcinoma and 54 cases of patients with endometrial atypical hyperplasia were collected. The expression of SPHK1 and VEGF in the tissue was detected by immunohistochemistry. The expression of SPHK1 in patients with endometrial carcinoma was compared with the clinicopathological data. Results. 69 cases (82.1%) of endometrial carcinoma were positive for SPHK1, which was higher than 2 cases (3.7%) of endometrial atypical hyperplasia (P < 0.05). The VEGF expression in 54 patients (62.8%) with endometrial carcinoma was higher than that in 12 patients with endometrial atypical hyperplasia (22.2%) (P < 0.05). There was a positive correlation between SPHK1 and VEGF expressions in endometrial carcinoma (c = 0.595). The expression of SPHK1 in endometrial cancer patients was different in different pathological types, FIGO stages, lymph node metastasis, ER, and PR positive or not, and the difference between the two groups was significant (P < 0.05). There was no difference in age, degree of differentiation, and depth of myometrial infiltration (P < 0.05). The expression of SPHK1 in patients with endometrial carcinoma is increased, which is helpful for early detection of patients with endometrial carcinoma, and may play a synergistic role with VEGF in the pathogenesis and development of endometrial carcinoma.
Authentic
Text : GSK-3β negatively regulates Wnt/β-catenin signaling pathway. The abnormal miR-155 expression is associated with bladder cancer. Bioinformatics analysis revealed a complementary binding site between miR-155 and GSK-3β mRNA. This study investigated the role of miR-155 in the proliferation and apoptosis of bladder cancer cells. The dual luciferase reporter gene assay validated the targeted regulation between miR-155 and GSK-3β. Tumor tissues and adjacent tissues were collected from bladder cancer patients and the expression of miR-155 and GSK-3β mRNA was detected by RT-PCR. Bladder cancer cell line BIU-87 cells were cultured in vitro and divided into miR-NC group and miR-155 inhibitor group. The expressions of miR-155, GSK-3β and β-catenin were compared, cell apoptosis was detected by flow cytometry, and cell proliferation was detected by EdU staining. Compared with adjacent tissues, miR-155 expression was significantly increased in bladder cancer tissues, and GSK-3β mRNA expression was significantly decreased. There was a targeted regulatory relationship between miR-155 and GSK-3β. Compared with SV-HUC-1 cells, miR-155 expression in bladder cancer BIU-87 and 5637 cells was significantly increased, and GSK-3β expression was significantly decreased. Transfection of miR-155 inhibitor significantly increased GSK-3β expression in BIU-87 and 5637 cells, decreased β-catenin expression, increased cell apoptosis, and decreased cell proliferation. The increased expression of miR-155 plays a role in reducing the expression of GSK-3β and in promoting the pathogenesis of bladder cancer. Inhibition of miR-155 can up-regulate the expression of GSK-3β, inhibit the activity of Wnt/β-catenin pathway, attenuate proliferation and promote apoptosis of bladder cancer cells.
Counterfeit
Text : Chronic Lymphocytic Leukemia (CLL) represents the most common leukemia in the western world and remains incurable. Leukemic cells organize and interact in the lymphoid tissues, however what actually occurs in these sites has not been fully elucidated yet. Studying primary CLL cells in vitro is very challenging due to their short survival in culture and also to the fact that traditional two-dimensional in vitro models lack cellular and spatial complexity present in vivo. Based on these considerations, we exploited for the first time three-dimensional (3D) bioprinting to advance in vitro models for CLL. This technology allowed us to print CLL cells (both primary cells and cell lines) mixed with the appropriate, deeply characterized, hydrogel to generate a scaffold containing the cells, thus avoiding the direct cell seeding onto a precast 3D scaffold and paving the way to more complex models. Using this system, we were able to efficiently 3D bioprint leukemic cells and improve their viability in vitro that could be maintained up to 28 days. We monitored over time CLL cells viability, phenotype and gene expression, thus establishing a reproducible long-term 3D culture model for leukemia. Through RNA sequencing (RNAseq) analysis, we observed a consistent difference in gene expression profile between 2D and 3D samples, indicating a different behavior of the cells in the two different culture settings. In particular, we identified pathways upregulated in 3D, at both day 7 and 14, associated with immunoglobulins production, pro-inflammatory molecules expression, activation of cytokines/chemokines and cell-cell adhesion pathways, paralleled by a decreased production of proteins involved in DNA replication and cell division, suggesting a strong adaptation of the cells in the 3D culture. Thanks to this innovative approach, we developed a new tool that may help to better mimic the physiological 3D in vivo settings of leukemic cells as well as of immune cells in broader terms. This will allow for a more reliable study of the molecular and cellular interactions occurring in normal and neoplastic conditions in vivo, and could also be exploited for clinical purposes to test individual responses to different drugs.
Authentic
Text : Background: Diabetic nephropathy (DN) is a major cause of chronic kidney disease around the world. Endoplasmic reticulum (ER) stress plays an important role in DN progression. Ligustrazine (Lig) is derived from the Chinese herb Ligusticum wallichii and is reported to exert anti-oxidant, anti-inflammation and anti-fibrosis effects. The aim of our study was to investigate the influence of Lig on the treatment of DN. Methods: Streptozotocin (STZ) was used to induce diabetes in Sprague-Dawley (SD) rats. Then, STZ-induced rats were treated with different concentrations of Lig (50 or 150 mg kg-1 day-1) for 8 weeks of treatment. Urinary albumin concentrations, blood urea nitrogen (BUN), serum creatinine (Scr) and creatinine clearance (Ccr) were determined. The levels of proinflammatory cytokines (IL-8, IL-6, IL-1β and TNF-α) were estimated by ELISA. TUNEL assay was used for apoptosis index measurement. Western blot was used for the detection of GRP78, CHOP, p-eIF2α, eIF2α, p-p38, p-38, p-ERK1/2 and ERK1/2. Results: Lig treatment significantly reduced urinary albumin excretion, BUN and Scr and increased Ccr in STZ-induced rats. Lig also suppressed the levels of IL-8, IL-6, IL-1β and TNF-α and inhibited apoptosis dose-dependently. In addition, Lig inhibited GRP78 and CHOP expression and prevented the phosphorylation of eIF2α, p-38 and ERK1/2. Conclusion: Our study indicated that Lig attenuated renal damage by inhibiting ER stress in DN by inactivating MAPK pathways.
Counterfeit
Text : Several microRNAs (miRNAs) have been reported as oncogenes or tumor suppressors in many cancers, including gastric cancer (GC). However, the role and molecular mechanism of miR-3129 in GC is largely unknown. We aimed to explore the function and the underlying molecular mechanism of miR-3129 in GC. Cancer tissues and corresponding adjacent tissues were collected from 50 patients with GC, and the expression of miR-3129 was detected by RT-qPCR. The expression of miR-3129 and pRb in human GC cell line SCG7091 was altered by transient transfection. Thereafter, MTT and flow cytometry assays were used to analyze cell viability and cell cycle. The expression of cyclin E, CDK2, CDK2 inhibitors (p16 and 21), and pRb were detected by RT-qPCR and western blot. A significant up-regulation of miR-3129 was observed in GC tissues compared to adjacent tissues. Overexpression of miR-3129 significantly improved cell viability after 4 days of post-transfection. Flow cytometry assay results showed that the miR-3129 overexpression arrested more SGC7901 cells at S phase. Moreover, overexpression of miR-3129 down-regulated the expression of CDK2 inhibitors while it up-regulated the expression levels of cyclin E, CDK2, and pRb. Interestingly, we found that pRb inhibition reversed the effect of miR-3129 inhibitor on cell proliferation in SGC7901 cells, increased cell viability, reduced cells at G0/1 phase, and modulated the expression of proliferation-related factors. Our results revealed that miR-3129 functioned as an oncogene through positive regulation of pRb and may prove to be a promising option for molecular therapy of GC.
Authentic
Text : The dysregulated expression of microRNAs (miRs) has been associated with pathological and physiological processes of atherosclerosis (AS). In addition, PR domain-containing 16 (PRDM16), a transcriptional mediator of brown fat cell identity and smooth muscle cell activities, may be involved in the hypercholesterolemia during development of AS. The bioinformatic analysis identified a regulatory miR-448 of PRDM16. Hence, the current study aimed to explore whether miR-448 influenced the activities of aortic smooth muscle cell (ASMCs) in AS. We validated that miR-448 was highly expressed in peripheral blood of patients with AS and aortic smooth muscle of AS model mice. Whereas, PRDM16 was downregulated in the aortic smooth muscle of AS model mice. PRDM16 overexpression was observed to inhibit oxidative stress injury and cell proliferation, and promote apoptosis of ASMCs. Mechanistic studies revealed that miR-448 targeted PRDM16 and negatively regulated the PRDM16 expression, while PRDM16 blocked the TGF-β signaling pathway. Furthermore, Downregulated miR-448 alleviated oxidative stress injury, and attenuated ASMC cell proliferation, migration and enhanced cell apoptosis through upregulation of PRDM16. Taken together, silencing of miR-448 upregulates PRDM16 and inactivates the TGF-β signaling pathway, thereby impeding development of AS by repressing the proliferation, migration and invasion of ASMCs.
Counterfeit
Text : Cervical cancer is a deadly gynecological malignancy in need of innovative treatment strategies. Emerging preclinical data has suggested the benefits of nanocarriers over the traditional chemotherapy for cancer treatment. In particular, gold nanoparticles are gaining popularity due to gold's inert nature, limited side effects, good cytocompatibility, and flexibility in preparation/modification. We conjugated polyethylene glycol (PEG) with hollow gold nanospheres (HGNs) and loaded the pegylated HGNs with an anticancer drug, cisplatin to target cervical cancer. HGNs were irradiated with noninfrared laser to increase the penetration of drug into tumor tissue and improve the delivery of cisplatin. We investigated the comparative characterization studies of prepared cisplatin loaded pegylated HGNs (cis PEG-HGNs), free cisplatin, cisplatin loaded HGNs (cis-HGNs), cis PEG-HGNs without laser, and cis PEG-HGNs with laser and its effects over cervical cancer cells. Transmission electron microscopy photomicrographs confirmed the integrity of prepared HGNs. While no significant difference was observed between encapsulation efficiency and drug loading of cis-HGNs (84.6%) and cis PEG-HGNs (86.7%), the encapsulation efficiency increased almost twice in HGNs, compared with control gold nanoparticles (GNs) because of the hollow cavity in HGNs. In-vitro cytotoxicity was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay using HeLa cells. With irradiation, HGNs induced much elevated cytotoxicity. Not only HGNs were internalized by HeLa cells, they were retained in the cellular compartment. We also tested formulations in vivo and observed that the irradiated cis-HGNs and cis PEG-HGNs were most effective in regressing tumors in mice.
Authentic
Text : Exosomes, especially the tumor-derived exosomes (TDEs), are extracellular vesicles released by many kinds of cells, which are involved in several biological and pathological processes. Their contents mainly include DNA, RNA and proteins. The message could be transmitted in neighboring or distant cells by secreting extracellular vesicles (EVs). Exosomes are a main intercellular communication regulator because they are involved and interact with intracellular signaling pathways. Exosomes can be detected in the tumor microenvironment, and there is growing evidence that TDEs are active in tumor growth, angiogenesis, invasion and metastasis, as well as immune responses and drug resistance. All of the functions mentioned above make it clear that exosomes have an important role in tumors. This review focuses on the origin and structure of TDEs and their important biological functions in the environment due to cell-to-cell intercellular communication.
Authentic
Text : This study investigated the phenotypic stability and biological properties of two human tongue cancer cell lines after transduction of fluorescent proteins. The human tongue cancer cell lines UM1 and UM2 were cultured with GFP and RFP lentiviral particles stock for 72h. Cells with successful transduction of fluorescent proteins were selected in a medium containing G418 antibiotics for two weeks. The proliferation rates of parental and transduced cell lines were evaluated by their population doubling time (PDT). Transduction efficiency was assessed by fluorescence microscope and flow cytometry. The transduced cells in passage 1, 2, 10, 20 and 30 were collected to check the stability of fluorescent protein expression. Phenotypic stability of the transduced cells was detected by means of cell morphology, cell surface markers and cell function evaluating essay. The proliferation rates of the transduced cell lines showed no significant difference compared to their parental cells. Successful transduction with high efficiency (99% up) was demonstrated. High fluorescence expression on both transduced cells was detected until the thirtieth generation. UM1 and UM1-GFP displayed mesenchymal cell characteristics, while UM2 and UM2-RFP cell lines showed properties characteristic of epithelial. Two human tongue cancer cell lines of epithelial and mesenchymal phenotype respectively, have been successfully labelled with green and red fluorescent proteins. The fluorescence maintained a high expression rate over thirty generations without influencing the original morphological phenotype and cadherin expression.
Authentic
Text : Hepatocellular carcinoma is one of the most common gastrointestinal malignancies. Anti-angiogenesis therapies have recently demonstrated promise in the treatment of malignancies, although early treatment benefits may be accompanied by metastasis over time. Additional and more effective anti-angiogenic treatment modalities are therefore needed. We previously found that Yes-associated protein 1 (YAP1) expression is increased in hepatocellular carcinoma (HCC), particularly around tumor-associated blood vessels, suggesting a role in angiogenesis. The YAP1 inhibitor verteporfin is presently in anti-angiogenic clinical trials for the treatment of various cancers. Depleted YAP1 from vascular endothelial cells effectively reduced proliferation and tube formation, validating its utility as an anti-angiogenesis target. We also showed that YAP1 depletion or inhibition in vascular endothelial cells leads to increased release of exosomes containing the long non-coding RNA (lncRNA) MALAT1 into the tumor microenvironment. Direct exosomal transfer of MALAT1 to hepatic cells leads to increased hepatic cell invasion and migration via activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. These observations may explain the occurrence of distant tumor metastasis with YAP1-associated anti-angiogenic therapy over time. It provides insight into new pathways and treatment paradigms that may be targeted to increase the long-term success of anti-angiogenic therapies.
Authentic
Text : Molecular categorization of lung cancer in medical care is becoming increasingly important on a regular basis. One of the molecular classifications of NSCLC (early-stage NSCLC) supports that tumors of different biological varieties differ in terms of their genomes and clinical characteristics. Based on published immune cell signatures and early-stage NSCLC gene expression data including cancer genome maps, we used consensus cluster analysis to identify immune molecular subtypes associated with early-stage NSCLC expression subtypes. These subtypes were correlated with early-stage NSCLC expression subtypes. Next, applying a wide range of statistical techniques, we evaluated the link between molecular subtypes and clinical features, immunological microenvironment, and immunotherapy reactivity. Molecular subtypes were defined as a classification of cancerous cells. Multiple RNAseq cross-platform datasets of immune genes were used to identify two molecular subtypes (C1 and C2) of NSCLC, with C1 showing a more favorable prognosis than C2. The results were validated on the CSE datasets. In terms of clinical characteristics, C2 subtype samples with a worse prognosis showed a more advanced tumor stage and higher mortality. C2 showed immuno-infiltrative characteristics but had depletion of T-cells. Biological functions such as EMT were enriched on C2. A low TIDE score in C1 indicated that C1 samples could benefit from taking immunotherapy. C2 were more susceptible to standard chemotherapeutic treatments such paclitaxel, cisplatin, sorafenib, crizotinib, and erlotinib. According to our findings, early-stage NSCLC patients may benefit from receiving treatment with immune checkpoint blockade therapy.
Authentic
Text : The purpose of this study was to elucidate the role of microRNA-130a (miR-130a) in obstructive sleep apnea hypopnea syndrome (OSAHS)-associated pulmonary hypertension (PHT) by targeting the growth arrest-specific homeobox (GAX) gene. A total of 108 patients with OSAHS-associated PHT were recruited as the OSAHS-associated PHT group and 110 healthy individuals were randomly selected as the normal control group. Human umbilical vein endothelial cells (HUVECs) were selected and divided into the control, miR-130a mimic, mimic negative control (NC), miR-130a inhibitor, and inhibitor-NC groups. The dual luciferase reporter gene assay was used to identify the relationship between miR-130a and the GAX gene. The quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were applied for the relative expressions of miR-130a and the mRNA and protein expressions of GAX. Serum levels of endothelin-1 (ET-1), vascular endothelial growth factor (VEGF), nitric oxide (NO), and super oxide dismutase (SOD) were detected. Cell apoptosis and angiogenic activity were analyzed by flow cytometry and cell tube formation assay. GAX was a target gene of miR-130a. Compared with the normal control group, the relative expression of miR-130a and the serum levels of ET-1 and VEGF were increased, whereas the mRNA expression of GAX and the serum levels of NO and SOD were decreased in the OSAHS-associated PHT group. Compared with the control, mimic-NC, and inhibitor-NC groups, the relative expressions of miR-130a in the miR-130a mimic group were enhanced, whereas the expression of miR-130a in the miR-130a inhibitor group was reduced. However, the mRNA and protein expressions of GAX showed an opposite trend in the miR-130a mimic and miR-130a inhibitor groups. In comparison to the control, mimic-NC, and inhibitor-NC groups, the miR-130a mimic group had an increase of ET-1 and VEGF expressions, whereas the expressions of NO and SOD were reduced. However, the miR-130a inhibitor group exhibited an opposite trend. The apoptosis rate and tube formation number in the miR-130a mimic group were obviously increased, whereas the miR-130a inhibitor group showed an obvious decrease. These data provided strong evidence that miR-130a may be involved in the progression of OSAHS-associated PHT by down-regulating GAX gene.
Counterfeit
Text : Following the publication of the above article, the authors have realized that one of the data panels featured in Fig. 5D was selected incorrectly. Specifically, the wrong image was selected for the A1 (28‑30), HCT116 experiment. The authors have revisited their original sources to identify the correct data panel, and can confirm that the error arose unintentionally during the process of compiling the figure. The correct version of Fig. 5, featuring corrected data panel for Fig. 5D, is shown on the next page. The authors confirm that this error did not affect the conclusions reported in this study, and are grateful to the Editor of International Journal of Oncology for allowing them the opportunity to publish this corrigendum. Furthermore, the authors apologize to the readership of the Journal for any inconvenience caused. [the original article was published in International Journal of Oncology 57: 1203‑1213, 2020; DOI: 10.3892/ijo.2020.5119].
Authentic
Text : MicroRNA-576-5p (miR-576-5p) plays an important role in different human cancers. However, the biological function of miR-576-5p in papillary thyroid carcinoma (PTC) is still unclear. In this study, we explored the function and specific role of miR-576-5p in PTC. Expression levels of miR-576-5p in PTC patient tissues and cell lines were determined by reverse transcription-quantitative polymerase chain reaction (qRT‒PCR). Cell counting using cell counting kit-8 (CCK-8), wound healing, and Transwell assays were performed to evaluate the effect of miR-576-5p on the proliferation, migration, and invasion of TPC-1 cells. Expression levels of mitogen-activated protein kinase 4 (MAPK4) and phosphorylation levels of protein kinase B (AKT), extracellular regulated protein kinase (ERK), and P38 mitogen-activated protein kinase (P38) were detected by western blotting or immunohistochemistry (IHC). The expression level of miR-576-5p in PTC tissues and TPC-1 cells was significantly increased. In vitro, overexpression of miR-576-5p promoted the proliferation, migration, and invasion of TPC-1 cells. In addition, MAPK4 was highly expressed in PTC tissues, and miR-576-5p could upregulate the expression of MAPK4. Interestingly, MAPK4 knockdown reversed cell proliferation but not migration and invasion in TPC-1 cells after miR-576-5p was overexpressed. Moreover, overexpression of miR-576-5p induced activation of the AKT pathway in TPC-1 cells, and MAPK4 gene knockout reversed this AKT pathway activation. In this study, we found that miR-576-5p was significantly overexpressed in PTC tissues and TPC-1 cells. In addition, miR-576-5p promoted the proliferation of TPC-1 cells by enhancing expression of MAPK4 and activating the AKT pathway.
Authentic
Text : Tumor metastasis is considered the main cause of mortality in cancer patients, thus it is important to investigate the differences between high- and low-metastatic cancer cells. Our previous study showed that the highly metastatic breast cancer cell line MDA-MB-231 released higher levels of ATP and exhibited higher P2Y2R activity compared with the low-metastatic breast cancer cell line MCF-7. In addition, P2Y2R activation by ATP released from MDA-MB-231 cells induced hypoxia-inducible factor-1α expression, lysyl oxidase secretion and collagen crosslinking, generating a receptive microenvironment for pre-metastatic niche formation. Thus, in the present study, we investigated which P2Y2R-related signaling pathways are involved in the invasion of breast cancer cells. The highly metastatic breast cancer cells MDA-MB-231 and SK-BR-3 showed higher invasion than MCF-7 and T47D cells at a basal level, which was abolished through P2Y2R knockdown or in the presence of apyrase, an enzyme that hydrolyzes extracellular nucleotides. MDA-MB-231 cells also showed high levels of mesenchymal markers, such as Snail, Vimentin and N-cadherin, but not the epithelial marker E-cadherin and this expression was inhibited through ATP degradation or P2Y2R knockdown. Moreover, SK-BR-3 and MDA-MB231 cells exhibited higher ERK and PKC phosphorylation levels than T47D and MCF-7 cells and upregulated phospho-ERK and -PKC levels in MDA-MB-231 cells were significantly downregulated by apyrase or P2Y2R knockdown. Specific inhibitors of ERK, PKC and PLC markedly reduced the invasion and levels of mesenchymal marker expression in MDA-MB-231 cells. These results suggest that over-activated ERK and PKC pathways are involved in the P2Y2R-mediated invasion of breast cancer cells.
Authentic
Text : Abnormal methylation of Grainyhead-like 2 (GRHL2) is associated with a substantial role in the malignant phenotype of tumor patients. Our present research is aimed at studying the abnormal expression of GRHL2 and the association of methylation in patients with acute leukemia and its relationship with prognosis. We used quantitative real-time polymerase chain reaction (qRT-PCR) for detecting the aberrant expression level of GRHL2 in 60 patients with acute leukemia and 60 normal controls. We analyzed the significant correlation between the expression level of GRHL2 with clinicopathological features and patients' prognosis in acute leukemia using the corresponding statistical methods. Secondly, we employed qRT-PCR and Western blotting to detect the mRNA and protein levels of GRHL2 in leukemia cell lines. Next, we used methylation-specific polymerase chain reaction (MSP) technology for detecting the methylation of GRHL2 in clinical samples with acute leukemia and cell lines. Then we investigated the demethylating effect of arsenic trioxide and 5-azacitidine on the mRNA and protein expression levels of GRHL2 in cell lines of acute leukemia. Finally, we studied the effects of arsenide trioxide and 5-azacitidine on the proliferation of leukemia cells and the TGF-β signaling pathway. We found a lower level of GRHL2 expression not only in acute leukemia patients but also in cell lines when compared with normal controls. At the same time, the expression level of GRHL2 in patients with acute leukemia was significantly correlated with leukocyte count, platelet count, and cytogenetic risk grouping. In addition, the lower GRHL2 expression group showed a significantly lower overall survival rate in acute leukemia patients than that of patients with a higher GRHL2 expression group. Univariate and multivariate analyses revealed that the expression of GRHL2 is an independent risk factor in acute leukemia patients. The methylation level of the GRHL2 promoter region in acute leukemia patients and cell lines was significantly higher than the normal control group, and we found the elevated mRNA and protein levels of GRHL2 in acute leukemia cell lines after the use of the demethylation drug arsenic trioxide and 5-azacitidine. At the same time, arsenide trioxide and 5-azacitidine are associated with the inhibition of cellular proliferation of acute leukemia cells and also promote the elevated expression of TGF-β signaling pathway-linked proteins, including TGF-β, Smad2, Smad3, and Smad4. Increased expression and methylation level of GRHL2 are closely associated with the prognosis and malignant phenotype of acute leukemia patients and play an irreplaceable role in the occurrence and development of patients with acute leukemia.
Authentic
Text : Immune checkpoint inhibitors have achieved breakthrough efficacy in treating lung adenocarcinoma (LUAD) with wild-type epidermal growth factor receptor (EGFR), leading to the revision of the treatment guidelines. However, most patients with EGFR mutation are resistant to immunotherapy. It is particularly important to study the differences in tumor microenvironment (TME) between patients with and without EGFR mutation. However, relevant research has not been reported. Our previous study showed that secreted phosphoprotein 1 (SPP1) promotes macrophage M2 polarization and PD-L1 expression in LUAD, which may influence response to immunotherapy. Here, we assessed the role of SPP1 in different populations and its effects on the TME. We compared the expression of SPP1 in LUAD tumor and normal tissues, and in samples with wild-type and mutant EGFR. We also evaluated the influence of SPP1 on survival. The LUAD data sets were downloaded from TCGA and CPTAC databases. Clinicopathologic characteristics associated with overall survival in TCGA were assessed using Cox regression analysis. GSEA revealed that several fundamental signaling pathways were enriched in the high SPP1 expression group. We applied CIBERSORT and xCell to calculate the proportion and abundance of tumor-infiltrating immune cells (TICs) in LUAD, and compared the differences in patients with high or low SPP1 expression and wild-type or mutant EGFR. In addition, we explored the correlation between SPP1 and CD276 for different groups. SPP1 expression was higher in LUAD tumor tissues and in people with EGFR mutation. High SPP1 expression was associated with poor prognosis. Univariate and multivariate cox analysis revealed that up-regulated SPP1 expression was independent indicator of poor prognosis. GSEA showed that the SPP1 high expression group was mainly enriched in immunosuppressed pathways. In the SPP1 high expression group, the infiltration of CD8+ T cells was lower and M2-type macrophages was higher. These results were also observed in patients with EGFR mutation. Furthermore, we found that the SPP1 expression was positively correlated with CD276, especially in patients with EGFR mutation. SPP1 levels might be a useful marker of immunosuppression in patients with EGFR mutation, and could offer insight for therapeutics.
Authentic
Text : Melanoma-associated antigens (MAGEs) are a group of well-characterized members of the cancer/testis antigen family, which are expressed in a variety of malignant tumors. MAGE-A9, a subfamily of MAGE-As, has been studied in a number of types of cancer and have been associated with unfavorable survival outcome. However, the expression of MAGE-A9 in human esophageal squamous cell carcinoma (ESCC) and association of MAGE-A9 with the clinicopathological characteristics of ESCC, particularly prognostic characteristics, remains unknown. The present study aimed at determining the expression level of MAGE-A9 and at evaluating its clinical significance in human ESCC. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC) analyses were performed to characterize the expression of MAGE-A9 in ESCC tissues. Kaplan-Meier estimator survival and Coxs regression analyses were used to evaluate the prognosis of 103 patients with ESCC. The results of qPCR and IHC analysis revealed that the expression of MAGE-A9 was significantly increased in ESCC tissues, compared with that in healthy tissues. Furthermore, the expression level of MAGE-A9 protein in ESCC was significantly associated with the pathological grade (P=0.008), tumor size (P=0.027) and lymph node metastasis (P=0.009). Multivariate analysis using Coxs regression model identified that the expression level of MAGE-A9 and lymph node metastasis were independent prognostic factors for the overall survival rate of patients with ESCC (P=0.006 and P=0.001, respectively). The results of the present study are, to the best of our knowledge, the first to indicate that MAGE-A9 expression is a valuable prognostic biomarker for ESCC and that it may serve as a targeted therapy in the treatment of ESCC. Increased expression of MAGE-A9 indicated an unfavorable survival outcome in patients with ESCC.
Authentic
Text : Prostate cancer (PCa) is one of the major cancers affecting males with high mortality around the world. Recent studies have found that some long noncoding RNAs play a critical part in the cellular processes of PCa. In our study, aberrant expressed lymphoid enhancer-binding factor-1 antisense RNA 1 (LEF1-AS1), microRNA-330-5p (miR-330-5p), and lymphoid enhancer-binding factor-1 (LEF1) were screened out from a microarray database, the role of the novel noncoding RNA regulatory circuitry in the initiation and development of PCa was investigated. LEF1-AS1 and LEF1 were highly expressed while miR-330-5p was poorly expressed in PCa. Following that, the PCa PC-3 cell line was adopted for subsequently experiments, in which the expression of LEF1-AS1 and miR-330-5p was subsequently altered by means of exogenous transfection. After that, the effects of up- or downregulation of LEF1-AS1 and miR-330-5p on epithelial-mesenchymal transition (EMT) and the cell ability for proliferation, invasion, migration in vitro, and tumorigenesis and lymph node metastasis (LNM) in vivo were evaluated. RNA crosstalk revealed that LEF1-AS1 bound to miR-330-5p and LEF1 was the target gene of miR-330-5p. Silenced LEF1-AS1 or elevated miR-330-5p exhibited inhibited EMT processes, reduced ability of proliferation, invasion and migration, coupling with decreased tumorigenesis and LNM in nude mice. The key findings of this study collectively propose downregulation of LEF1-AS1 competing with miR-330-5p to inhibit EMT, invasion and migration of PCa by LEF1 repression.
Counterfeit
Text : The treatment of metastatic gastric cancer is not uniform, and the prognostic factors and indications for surgery are currently unclear. This retrospective study aimed to identify the prognostic factors and clinical indications for surgery in patients with metastatic gastric cancer. A total of 123 consecutive patients with gastric cancer and synchronous distant metastasis treated between January 1999 and December 2011 were reviewed. Patient, tumor, laboratory, surgical, and chemotherapy factors were analyzed, with overall survival as the endpoint. Univariate analyses were performed using the log-rank test, multivariate analyses were performed using the Cox proportional hazards model, and Kaplan-Meier curves were used to estimate survival. Significance was set at p<0.05. The median overall survival time was 13.1 months. Ninety-eight patients received chemotherapy. Twenty-eight patients underwent gastrectomy with metastasectomy and 55 underwent gastrectomy without metastasectomy. The median overall survival time for patients who underwent gastrectomy with metastasectomy, gastrectomy without metastasectomy, and no surgical intervention was 21.9 months, 12.5 months, and 7.2 months, respectively (p<0.001). Multivariate analysis identified gastrectomy with or without metastasectomy, performance status (PS) ≥ 3, neutrophil-to-lymphocyte ratio (NLR) >3.1, and carbohydrate antigen 19-9 (CA19-9) level >37 U/mL as predictors of poor survival. NLR and CA19-9 level were also independent prognostic factors in the group of patients who underwent surgery. High pretreatment NLR, CA19-9 level, and PS are predictors of poor prognosis in patients with metastatic gastric cancer. In selected patients, gastrectomy can be performed safely, and may be associated with longer survival.
Authentic
Text : Lab on a Chip (LOC) farming systems have emerged as a powerful tool for single cell studies combined with a non-adherent cell culture substrate and single cell capture chips for the study of single cell derived tumor spheres. Cancer is characterized by its cellular heterogeneity where only a small population of cancer stem cells (CSCs) are responsible for tumor metastases and recurrences. Thus, the in vitro strategy to the formation of a single cell-derived sphere is an attractive alternative to identify CSCs. In this study, we test the effectiveness of microdevices for analysis of heterogeneity within CSC populations and its interaction with different components of the extracellular matrix. CSC could be identify using specific markers related to its pluripotency and self-renewal characteristics such as the transcription factor Oct-4 or the surface protein CD44. The results confirm the usefulness of LOC as an effective method for quantification of CSC, through the formation of spheres under conditions of low adhesion or growing on components of the extracellular matrix. The device used is also a good alternative for evaluating the individual growth of each sphere and further identification of these CSC markers by immunofluorescence. In conclusion, LOC devices have not only the already known advantages, but they are also a promising tool since they use small amounts of reagents and are under specific culture parameters. LOC devices could be considered as a novel technology to be used as a complement or replacement of traditional studies on culture plates.
Authentic
Text : The effect of dendritic cell (DC) immunotherapy on non-small cell lung cancer (NSCLC) and its influence on the distribution of DC subsets were studied. Peripheral blood was drawn from 55 patients, and DCs were cultured in vitro and injected into the patients three times. The changes in DC subsets in NSCLC patients before treatment and after three treatments were observed using a flow cytometer, and the difference in DC subsets between patients and healthy controls was compared. DC subsets in lung cancer tissues, para-carcinoma tissues and normal tissues were analyzed by indirect immunofluorescence and laser scanning confocal microscope (LSCM). The BDCA-1+ DC1 and BDCA-3+ DC2 in lung cancer tissues were significantly increased compared with those in para-carcinoma tissues and normal tissues (P<0.05). The number of DC1 and DC2 in para-carcinoma tissues were increased compared with those in normal tissues (P<0.05). The ratio of DC1 in peripheral blood in the normal control group was obviously higher than that in NSCLC patients (P<0.01). There were significant differences in DC1 and DC1/DC2 ratio in NSCLC patients with different tumor staging, and there were also obvious differences in patients with a different Karnofsky performance status (KPS) score. Moreover, compared with those before treatment, DC1 and DC1/DC2 ratio were significantly increased after three treatments, and there was a significant difference in the comparison of DC1/DC2 ratio between the NSCLC patients with survival time greater than and less than one year. The immune function of NSCLC patients was improved after DC immunotherapy. The survival time of NSCLC patients was closely associated with the DC1/DC2 ratio in peripheral blood. The detection of DC subsets in peripheral blood can help clinicians understand the immune function of NSCLC patients and provide a basis for the clinical judgment of prognosis of NSCLC patients.
Authentic
Text : Ring finger protein 180 (RNF180) is an important member of the E3 ubiquitin ligase family. As a tumor suppressor gene, RNF180 is significantly associated with the prognosis of patients with gastric cancer (GC) and can inhibit the proliferation, invasion, and migration of GC cells. Signal transducer and activator of transcription 3 (STAT3) are considered one of the most common oncogenes in human cancers with a key role in GC progression. In this study, we explored the molecular signaling pathways by which RNF180 could potentially regulate STAT3 through transcriptomics and proteomics experiments. Here, we found RNF180 overexpression could suppress STAT3 phosphorylation in GC cells. Ubiquitin label-free experiments showed that the ubiquitination level of Ras homolog gene family member C (RhoC) is significantly increased in GC cells transfected with an RNF180 expression vector (RNF180-GFP vector) compared with cells transfected with an empty vector (vehicle vector). We subsequently demonstrated that RNF180 could directly combine with RhoC and promote the ubiquitination and degradation of RhoC protein in GC cells. The phosphorylation level of STAT3 significantly decreased in GC cells after RhoC knockdown using small hairpin RNA (shRNA). Together, these results reveal RNF180 could inhibit GC progression by reducing the phosphorylation of STAT3 via the ubiquitination and degradation of RhoC protein in GC cells. Thus, the protein may be considered a novel therapeutic target for patients with GC.
Counterfeit
Text : Class I phosphoinositide 3-kinase (PI3K) generates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) at the plasma membrane in response to growth factors, activating a signalling cascade that regulates many cellular functions including cell growth, proliferation, survival, migration and metabolism. The PI3K pathway is commonly dysregulated in human cancer, and drives tumorigenesis by promoting aberrant cell growth and transformation. PtdIns(3,4,5)P3 facilitates the activation of many pleckstrin homology (PH) domain-containing proteins including the serine/threonine kinase AKT. There are three AKT isoforms that are frequently hyperactivated in cancer through mutation, amplification or dysregulation of upstream regulatory proteins. AKT isoforms have converging and opposing functions in tumorigenesis. PtdIns(3,4,5)P3 signalling is degraded and terminated by phosphoinositide phosphatases such as phosphatase and tensin homologue (PTEN), proline-rich inositol polyphosphate 5-phosphatase (PIPP) (INPP5J) and inositol polyphosphate 4-phosphatase type II (INPP4B). PtdIns(3,4,5)P3 is rapidly hydrolysed by PIPP to generate phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), which is further hydrolysed by INPP4B to form phosphatidylinositol 3-phosphate (PtdIns3P). PtdIns(3,4)P2 and PtdIns3P are also important signalling molecules; PtdIns(3,4)P2 together with PtdIns(3,4,5)P3 are required for maximal AKT activation and PtdIns3P activates PI3K-dependent serum and glucocorticoid-regulated kinase (SGK3) signalling. Loss of Pten, Pipp or Inpp4b expression or function promotes tumour growth in murine cancer models through enhanced AKT isoform-specific signalling. INPP4B inhibits PtdIns(3,4)P2-mediated AKT activation in breast and prostate cancer; however, INPP4B expression is increased in acute myeloid leukaemia (AML), melanoma and colon cancer where it paradoxically promotes cell proliferation, transformation and/or drug resistance. This review will discuss how PTEN, PIPP and INPP4B distinctly regulate PtdIns(3,4,5)P3 signalling downstream of PI3K and how dysregulation of these phosphatases affects cancer outcomes.
Authentic
Text : The important role of insulin-like growth factor-1 receptor (IGF-1R) in tumorigenesis has been well established. The classical model involves IGF-1R binding to IGF-1/2, the following activation of PI3K-Akt-signaling cascades, driving cell proliferation and apoptosis inhibition. Here we report a new signal transduction pathway of IGF-1R in the intestinal epithelium. Using heterozygous knockout mice (Igf1r+/-), we analyzed the expressions of viral RNA sensors MDA5 and RIG-I in the intestinal epithelium. Igf1r+/- mice exhibited higher MDA5 and RIG-I than wild-type (WT) mice, indicating that knockdown of IGF-1R could trigger MDA5 and RIG-I. IGF-1R knockdown-triggered MDA5 and RIG-I were further investigated in human colonic cancer cells. Increased MDA5 and RIG-I were clearly seen in the cytoplasm in cancer cells as well as normal human colonic cells with silenced IGF-1R. Notably, the upregulations of MDA5 and RIG-I was not affected by blockage of the PI3K-Akt pathway with LY294002. These results suggested a new signal transduction pathway of IGF-1R. Importantly, IGF-1R knockdown-triggered MDA5 and RIG-I resulted in colorectal cancer apoptosis through activation of the mitochondrial pathway. These in vitro observations were evidenced in the azoxymethane (AOM)-dextran sulfate sodium (DSS) colorectal cancer model of mice. In conclusion, knockdown of IGF-1R triggers viral RNA sensor MDA5- and RIG-I-mediated mitochondrial apoptosis in cancer cells.
Authentic
Text : Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, has significant potential for application in the treatment of urothelial carcinoma (URCa) of the bladder. Previous studies have shown that regulation of the AMP-activated serine/threonine protein kinase (AMPK)-mTOR signaling pathway enhances apoptosis by inducing autophagy or mitophagy in bladder cancer. Alteration of liver kinase B1 (LKB1)-AMPK signaling leads to mitochondrial dysfunction and the accumulation of autophagy-related proteins as a result of mitophagy, resulting in enhanced cell sensitivity to drug treatments. Therefore, we hypothesized that LKB1 deficiency in URCa cells could lead to increased sensitivity to rapamycin by inducing mitochondrial defect-mediated mitophagy. To test this, we established stable LKBI-knockdown URCa cells and analyzed the effects of rapamycin on their growth. Rapamycin enhanced growth inhibition and apoptosis in stable LKB1-knockdown URCa cells and in a xenograft mouse model. In spite of the stable downregulation of LKB1 expression, rapamycin induced AMPK activation in URCa cells, causing loss of the mitochondrial membrane potential, ATP depletion, and ROS accumulation, indicating an alteration of mitochondrial biogenesis. Our findings suggest that the absence of LKB1 can be targeted to induce dysregulated mitochondrial biogenesis by rapamycin treatment in the design of novel therapeutic strategies for bladder cancer.
Authentic
Text : Casitas B-lineage lymphoma (CBL) is a ubiquitin ligase (E3) that becomes activated upon Tyr371-phosphorylation and targets receptor protein tyrosine kinases for ubiquitin-mediated degradation. Deregulation of CBL and its E3 activity is observed in myeloproliferative neoplasms and other cancers, including breast, colon, and prostate cancer. Here, we explore the oncogenic mechanism of E3-inactive CBL mutants identified in myeloproliferative neoplasms. We show that these mutants bind strongly to CIN85 under normal growth conditions and alter the CBL interactome. Lack of E3 activity deregulates CIN85 endosomal trafficking, leading to an altered transcriptome that amplifies signaling events to promote oncogenesis. Disruption of CBL mutant interactions with EGFR or CIN85 reduces oncogenic transformation. Given the importance of the CBL-CIN85 interaction in breast cancers, we examined the expression levels of CIN85, CBL, and the status of Tyr371-phosphorylated CBL (pCBL) in human breast cancer tissue microarrays. Interestingly, pCBL shows an inverse correlation with both CIN85 and CBL, suggesting that high expression of inactivated CBL could coordinate with CIN85 for breast cancer progression. Inhibition of the CBL-CIN85 interaction with a proline-rich peptide of CBL that binds CIN85 reduced the proliferation of MDA-MB-231 cells. Together, these results provide a rationale for exploring the potential of targeting the EGFR-CBL-CIN85 axis in CBL-inactivated mutant cancers.
Authentic
Text : Long non-coding RNAs (lncRNAs) have been suggested to serve vital roles in tumor initiation and progression. However, the expression and underlying mechanisms of lncRNA FBXL19-AS1 in breast cancer (BC) remain unclear. In the present study, we found that FBXL19-AS1 expression was significantly up-regulated and correlated with advanced clinical features and poor overall survival of BC patients. Functionally, FBXL19-AS1 inhibition suppressed BC cells proliferation, invasion, and epithelial-mesenchymal transition (EMT) processes in vitro and reduced tumor growth in vivo In addition, we found that FBXL19-AS1 might function as a ceRNA to sponge miR-718, and miR-718 could rescue the effects of FBXL19-AS1 on BC cells progression. Therefore, these findings suggested that FBXL19-AS1 might serve as an oncogenic lncRNA and promoted BC progression by sponging miR-718, indicating FBXL19-AS1 could serve as a potential therapeutic target for BC treatment.
Authentic
Text : To evaluate the reliability and accuracy of Cytokeratin-19-fragment (CYFRA21-1) in the diagnosis of intrahepatic cholangiocarcinoma (ICC) based on literature meta-analysis and the diagnostic efficacy and clinical application of CYFRA21-1 in ICC. MEDLINE, China National Knowledge Infrastructure Library and other databases were used to base the inclusion and exclusion criteria. In addition, relevant data from studies on CYFRA21-1 were used to diagnose ICC individually or in combination was retrieved for meta-analysis. Research papers were manually screened by two independent researchers. The selected papers were evaluated by QUADAS-2 standard. The SROC was plotted according to the extracted data combined with the results of diagnosis to evaluate the diagnostic efficiency of CYFRA21-1 in ICC. Six articles with an overall sample size of 731 cases, including 217 cases in the positive group and 514 cases in the control group, met the inclusion criteria and were included for the systematic review. When CYFRA21-1 was used for ICC diagnosis, the pooled diagnostic indices were as follows: sensitivity 0.81 (95%CI: 0.75-0.86); specificity, 0.86 (95%CI: 0.82-0.89); positive likelihood rate, 4.72 (95%CI: 2.02-11.02); negative likelihood ratio, 0.25 (95%CI: 0.19-0.33); diagnostic odds ratio, 27.43 (95%CI: 13.20-57.00); and area under the ROC curve, 0.904 (SE = 0.0171). CYFRA21-1 is of certain value in the diagnosis of intrahepatic cholangiocarcinoma.
Authentic
Text : Alternative RNA splicing plays a key role in regulating gene function and influencing protein expression diversity. In the present study, an AC-33 transcript variant (NCBI Reference Sequence: NM_001308229.1), splice variant (sv)AC3-33, was successfully cloned from the MCF-7 breast cancer cell line by reverse transcription PCR using primers based on expressed sequence tags. The aim of the present study was to investigate the structure and function of svAC3-33. svAC3-33 has an open reading frame of 1,825 base pairs, lacks AC3-33 exon 2 and is encoded by 294 amino acids. svAC3-33 is localized within the cytoplasm. The Cell Counting Kit-8 and EdU detection of cell proliferation assays showed that svAC3-33 inhibited MCF-7 cell proliferation. Similarly, svAC3-33 knockdown by RNA interference was shown to have the opposite effect by repressing the cell cycle progression of breast cancer cells. Furthermore, the data indicated that svAC3-33 may upregulate the expression of p21. The present study provides evidence that the increased expression of svAC3-33 may inhibit the activity of the transcription factor AP-1. The luciferase reporter gene assay detected a downregulation of the expression of c-Jun, but not c-Fos, which in turn affected cell proliferation. In conclusion, these results indicated a function for svAC3-33 in inhibiting the cell proliferation of MCF-7 cells by regulating the AP-1 signaling pathway.
Authentic
Text : Increasing evidence suggests that circular RNAs (circRNAs) play a major role in tumorigenesis and cancer progression. This study aimed to identify aberrant expression of hsa_circ_0003829 in oral squamous cell carcinoma (OSCC) and to explore its clinical significance. We conducted a prospective clinical study to examine the expression pattern of hsa_circ_0003829 in 60 paired OSCC and normal clinical samples and in cell lines using real-time quantitative polymerase chain reaction. We also evaluated the diagnostic value of hsa_circ_0003829 in OSCC based on receiver operating characteristic (ROC) curve analysis, and examined the relationships between hsa_circ_0003829 expression and clinicopathological features in patients with OSCC. We further used bioinformatics software CircInteractome (https: //Circinteractome.nia.nih.gov/) to predict circRNA-microRNA interactions. Hsa_circ_0003829 was significantly downregulated in OSCC compared with adjacent normal tissues. The area under the ROC curve was 0.81. Low expression levels of hsa_circ_0003829 in OSCC tissues were negatively correlated with lymph node metastasis status and TNM stage. Downregulated expression of has_circ_0003829 suggests that this may be a key circRNA in OSCC, and may serve as a prospective biomarker for the diagnosis of OSCC.
Authentic
Text : Tumor angiogenesis, an essential process for cancer proliferation and metastasis, has a critical role in prognostic of kidney renal clear cell carcinoma (KIRC), as well as a target in guiding treatment with antiangiogenic agents. However, tumor angiogenesis subtypes and potential epigenetic regulation mechanisms in KIRC patient remains poorly characterized. System evaluation of angiogenesis subtypes in KIRC patient might help to reveal the mechanisms of KIRC and develop more target treatments for patients. Ten independent tumor angiogenesis signatures were obtained from molecular signatures database (MSigDB) and gene set variation analysis was performed to calculate the angiogenesis score in silico using the Cancer Genome Atlas (TCGA) KIRC dataset. Tumor angiogenesis subtypes in 539 TCGA-KIRC patients were identified using consensus clustering analysis. The potential regulation mechanisms was studied using gene mutation, copy number variation, and differential methylation analysis (DMA). The master transcription factors (MTF) that cause the difference in tumor angiogenesis signals were completed by transcription factor enrichment analysis. The angiogenesis score of a prognosis related angiogenesis signature including 189 genes was significantly correlated with immune score, stroma score, hypoxia score, and vascular endothelial growth factor (VEGF) signal score in 539 TCGA KIRC patients. MMRN2, CLEC14A, ACVRL1, EFNB2, and TEK in candidate gene set showed highest correlation coefficient with angiogenesis score in TCGA-KIRC patients. In addition, all of them were associated with overall survival in both TCGA-KIRC and E-MTAB-1980 KIRC data. Clustering analysis based on 183 genes in angiogenesis signature identified two prognosis related angiogenesis subtypes in TCGA KIRC patients. Two clusters also showed different angiogenesis score, immune score, stroma score, hypoxia score, VEGF signal score, and microenvironment score. DMA identified 59,654 differential methylation sites between two clusters and part of these sites were correlated with tumor angiogenesis genes including CDH13, COL4A3, and RHOB. In addition, RFX2, SOX13, and THRA were identified as top three MTF in regulating angiogenesis signature in KIRC patients. Our study indicate that evaluation the angiogenesis subtypes of KIRC based on angiogenesis signature with 183 genes and potential epigenetic mechanisms may help to develop more target treatments for KIRC patients. Video Abstract.
Authentic
Text : Phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway plays an important role in regulating cell survival, apoptosis and oxidative stress (OS). Phosphatase and tensin homolog deleted on chromosome ten (PTEN) can negatively regulate PI3K/AKT signaling pathway. DJ-1 is also a key negative regulator of PTEN. DJ-1-PTEN/PI3K/AKT signaling pathway regulates ischemia reperfusion (I-R). This study investigated the role of DJ-1 in affecting myocardial I-R injury. The rat myocardial I-R injury model was established. Expression of DJ-1 and PTEN in myocardial tissue was detected. The reactive oxidative species (ROS) content was detected using flow cytometry. Caspase-3 activity, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activities were determined by ultraviolet spectrophotometry. Rat cardiomyocytes H9C2 were cultured in vitro and divided into control group, I-R group, I-R+pIRES2-NC group, and I-R+pIRES2-DJ-1 group. Levels of DJ-1, PTEN and phosphorylated AKT (p-AKT) were detected. Cell apoptosis and ROS content were evaluated using flow cytometry. Compared with sham group, caspase-3 activity, MDA content, and PTEN expression were significantly increased, while SOD activity and DJ-1 levels were significantly reduced in myocardial tissue of I-R group (p<0.05). Compared with the control, I-R treatment markedly induced H9C2 cell apoptosis, decreased DJ-1 and p-AKT expression, and enhanced ROS production and PTEN expression. DJ-1 overexpression apparently down-regulated PTEN expression, elevated p-AKT level, and attenuated apoptosis and ROS production in H9C2 cells (p<0.05). Abnormal expression of DJ-1 plays a regulatory role in the process of myocardial I-R injury. Over-expression of DJ-1 can reduce myocardial cell I-R damage sensitivity by inhibiting PTEN expression, enhancing the activity of PI3K/AKT signaling pathway, reducing ROS production, and alleviating apoptosis.
Counterfeit
Text : Endocrine disruptors have become a global social and public health problem since the late 1980s. Bisphenol A (BPA) has a steroid-like skeleton similar to estrogen and progesterone, and is an endocrine disruptor that disturbs the physiological hormone balance. The potential involvement of BPA in malignancy of endometrial cancer cells caused by overexposure of steroid hormones remains incompletely understood. The present study aimed at understanding the regulatory mechanism underlying BPA-induced cell proliferation in hormone-sensitive endometrial cancer cells. BPA selectively and significantly induced cell proliferation of Grade I endometrial cancer cells such as HEC265 and Ishikawa cells. In HEC265 and Ishikawa cells, BPA induced nuclear translocation of estrogen-related receptor γ (ERRγ) in a time-dependent manner and increased expression of BPA/ERRγ-target genes. In Ishikawa cells, BPA promoted the influx of Ca2+ followed by epidermal growth factor (EGF) secretion to the extracellular space. Furthermore, EGF secreted from Ishikawa had an autocrine effect, leading to activation of the EGFR/ERK pathway. Contrastingly, in HEC265 cells, BPA increased the expression of BPA/ERRγ-target genes but did not affect Ca2+ mobilization EGF secretion. In conclusion, BPA induced cell proliferation via the BPA/ERRγ/EGF/EGFR/ERK signaling pathway in Ishikawa cells and contrastingly, in HEC265 cells, induced cell proliferation through the BPA/ERRγ signaling pathway.
Authentic
Text : Chemotherapy remains a major clinical option for the successful treatment of cancer by eliminating fast-growing populations of cancer cells. However, drug resistance causes the failure of antitumor treatment. Increasing evidence suggests that a small subpopulation of cancer cells will enter a "persister state" under drug pressure. The persister cell pool constitutes a reservoir from which drug resistance may emerge. Therefore, targeting persister cells presents a therapeutic opportunity to prevent drug resistance and impede tumor relapse. RT-qPCR, Western blot, Seahorse, apoptosis assay, clonogenic assay, and xenografted mouse model were used for this study. We showed that a similar therapy-resistant cell state underlies the behavior of persister cells derived from sorafenib treatments with reversible, nonmutational mechanisms. Then, we demonstrated that persister cells showed upregulated glycolysis, as evidenced by higher ECAR, as well as increased glucose consumption and lactate production. A database analysis showed that sorafenib-tolerant persister cells exhibited the increased expression of the glycolytic enzyme hexokinase 2, which is closely related to the poor prognosis in liver cancer. We found that the combined treatment with the glycolytic inhibitor 2-DG and sorafenib increased persister cell apoptosis and inhibited colony formation. Consequently, we demonstrated that when persister cells were exposed to a low concentration of sorafenib, they suffered mitochondrial dysfunction but showed compensatory increases in glycolysis, which contributes to cell growth and proliferation. Finally, we showed that the combination of 2-DG and sorafenib reduced persister tumor growth in mice. These findings suggest that such a combination can effectively hamper persister cell growth and may represent a promising therapeutic strategy to prevent persister cell resistance.
Authentic
Text : Baicalein (BAI) is an acknowledged flavonoids compound, which is regarded as a useful therapeutic pharmaceutical for numerous cancers. However, its involvement in melanoma is largely unknown. This study aimed to examine the anti-melanoma function of BAI and unraveled the regulatory mechanism involved. A375 and SK-MEL-28 were treated with BAI for 24 h. Then, CCK-8 assay, flow cytometry, and transwell assay were carried out to investigate cell growth, migration, and invasion. RT-qPCR was applied to detect the expression of colon cancer associated transcript-1 (CCAT1) in melanoma tissues and cells. The functions of CCAT1 in melanoma cells were also evaluated. Western blot was utilized to appraise Wnt/β-catenin or MEK/ERK pathways. BAI restrained cell proliferation and stimulated cell apoptotic capability of melanoma by suppressing cleaved-caspase-3 and cleaved-PARP. Cell migratory and invasive abilities were restrained by BAI via inhibiting MMP-2 and vimentin. CCAT1 was over-expressed in melanoma tissues and down-regulated by BAI in melanoma cells. Overexpressed CCAT1 reversed the BAI-induced anti-growth, anti-migratory, and anti-invasive effects. Furthermore, BAI inhibited Wnt/β-catenin and MEK/ERK pathways-axis via regulating CCAT1. Our study indicated that BAI blocked Wnt/β-catenin and MEK/ERK pathways via regulating CCAT1, thereby inhibiting melanoma cell proliferation, migration, and invasion.
Counterfeit
Text : Saliva diagnostics utilizing nanotechnology and molecular technologies to detect oral squamous cell carcinoma (OSCC) has become an attractive field of study. However, no specific methods have been established. To refine the diagnostic power of saliva peptide fingerprints for the early detection of OSCC, we screened the expression spectrum of salivary peptides in 40 T1 stage OSCC patients (and healthy controls) using MALDI-TOF-MS combined with magnetic beads. Fifty proteins showed significantly different expression levels in the OSCC samples (P<0.05). Potential biomarkers were also predicted. The novel diagnostic proteomic model with m/z peaks of 1285.6 Da and 1432.2 Da are of certain value for early diagnosis of OSCC.
Authentic
Text : MicroRNAs (miRNAs) are implicated in the progression of ischemic stroke (IS) and bone marrow-derived mesenchymal stem cells (BMSCs)-derived exosomes play a role in IS therapy. Herein we hypothesized that the BMSCs-derived exosomes containing overexpressed miR-138-5p could protect the astrocytes following IS involved with lipocalin 2 (LCN2). The differentially expressed gene related to IS was initially identified by bioinformatics analysis. miR-138-5p was predicted to regulate LCN2. The expression of miR-138-5p and LCN2 was altered in the oxygen-glucose deprivation (OGD)-induced astrocytes. Furthermore, the cell behaviors and inflammatory responses were evaluated both in astrocytes alone and astrocytes co-cultured with exosomes derived from BMSCs overexpressing miR-138-5p to explore the involvement of miR-138-5p and LCN2 in IS. Besides, middle cerebral artery occlusion (MCAO) mouse model was established to explore the effect of BMSCs-derived exosomal miR-138-5p in IS in vivo. LCN2 was highly expressed in IS. Besides, LCN2 was a target gene of miR-138-5p. BMSCs-derived exosomes could be endocytosed by astrocytes via co-culture. Overexpression of miR-138-5p promoted the proliferation and inhibited apoptosis of astrocytes injured by OGD, accompanied by the reduced expression of inflammatory factors, which was achieved by down-regulating LCN2. More importantly, BMSCs delivered miR-138-5p to the astrocytes via exosomes and BMSCs-derived exosomal miR-138-5p alleviated neuron injury in IS mice. BMSCs-derived exosomal miR-138-5p reduces neurological impairment by promoting proliferation and inhibiting inflammatory responses of astrocytes following IS by targeting LCN2, which may provide a novel target for IS treatment.
Counterfeit
Text : Anemia has been identified as a significant negative prognosticator in head and neck squamous cell carcinoma (HNSCC) concurrent chemoradiotherapy (CCRT). Irrespective of the causes, anemia in HNSCC is believed to contribute to intratumoral hypoxia, which reduces the effectiveness of radiotherapy and oxygen-dependent chemotherapy. Correction of anemia with recombinant human erythropoietin (rHu-EPO) has been performed as a surrogate for hypoxia compensation to improve tumor control and survival outcomes. However, the results of the most important EPO clinical trials have been disappointing. Following the recent finding that EPO and its receptor (EPOR) are both expressed in HNSCC specimens, a new hypothesis has been advanced. This postulates that hypoxic signaling might activate EPOR through the hypoxia-inducible factor (HIF) signaling pathway and its downstream effectors, including carbonic anhydrase 9 (CA-9), glucose transporter 1 (GLUT-1), and vascular endothelial growth factor (VEGF), leading to the failure of rHu-EPO treatment, as assessed from the results of the best-known EPO trials. This review addresses the relationship among anemia, hypoxia, and tumoral EPO/EPOR expression in HNSCC treatment in an attempt to elucidate the main mechanisms involved in the resistance to rHu-EPO therapy, as in a carousel.
Authentic
Text : Platelet-derived growth factor receptor alpha (PDGFRα) is suggested as a prognosis marker for hepatocellular carcinoma (HCC). Since PDGFRα is also known as a marker for activated hepatic stellate cells (HSCs), this study aimed to investigate whether PDGFRα expression in HCC was dependent on the background liver fibrous condition. Strong PDGFRα expression in the tumor lesions was associated with decreased survival after curative HCC resection. Expression of PDGFRα in the tumor correlated with increased collagen α1(I), lecithin retinol acyltransferase, and smooth muscle α-actin suggesting increased HSCs in tumor sites. The expression of PDGFRα in the tumor sites was associated neither with underlying liver fibrosis/cirrhosis nor with the expression of PDGFRα in adjacent non-tumor sites of the liver. Patients with HCC who underwent liver resection as curative treatment were included in this study. Using liver samples of 95 patients, tissue microarray was constructed and immunohistochemical study of PDGFRα was conducted in both tumor and non-tumor sites. PDGFRα expression in tumor and matching non-tumor sites was compared. Freshly frozen liver tissue specimens of 16 HCC patients were used for gene expression analysis of PDGFRα and fibrosis related genes. Our results suggest that PDGFRα overexpression in HCC is a prognostic marker independent of adjacent non-tumor site liver fibrosis status.
Authentic
Text : Metastasis and recurrence, wherein circulating tumour cells (CTCs) play an important role, are the leading causes of death in colorectal cancer (CRC). Metastasis-initiating CTCs manage to maintain intravascular survival under anoikis, immune attack, and importantly shear stress; however, the underlying mechanisms remain poorly understood. In view of the scarcity of CTCs in the bloodstream, suspended colorectal cancer cells were flowed into the cyclic laminar shear stress (LSS) according to previous studies. Then, we detected these suspended cells with a CK8+/CD45-/DAPI+ phenotype and named them mimic circulating tumour cells (m-CTCs) for subsequent CTCs related researches. Quantitative polymerase chain reaction, western blotting, and immunofluorescence were utilised to analyse gene expression change of m-CTCs sensitive to LSS stimulation. Additionally, we examined atonal bHLH transcription factor 8 (ATOH8) expressions in CTCs among 156 CRC patients and mice by fluorescence in situ hybridisation and flow cytometry. The pro-metabolic and pro-survival functions of ATOH8 were determined by glycolysis assay, live/dead cell vitality assay, anoikis assay, and immunohistochemistry. Further, the concrete up-and-down mechanisms of m-CTC survival promotion by ATOH8 were explored. The m-CTCs actively responded to LSS by triggering the expression of ATOH8, a fluid mechanosensor, with executive roles in intravascular survival and metabolism plasticity. Specifically, ATOH8 was upregulated via activation of VEGFR2/AKT signalling pathway mediated by LSS induced VEGF release. ATOH8 then transcriptionally activated HK2-mediated glycolysis, thus promoting the intravascular survival of colorectal cancer cells in the circulation. This study elucidates a novel mechanism that an LSS triggered VEGF-VEGFR2-AKT-ATOH8 signal axis mediates m-CTCs survival, thus providing a potential target for the prevention and treatment of hematogenous metastasis in CRC.
Authentic
Text : Tumour drug delivery using nanocarriers is attracting ample attentions due to their high drug-loading capacity. Regarding specific tumour microenvironment properties as acidic pH, smart nanocarriers with the ability of responding to the microenvironment, can have a profound effect on the level of drug release and subsequent tumour treatment. In this study, by combining the advantages of multiwall carbon nanotube and pH-sensitive nanogels, multifunctional magneto/pH-responsive nano-hybrid system is developed to deliver the doxorubicin as a general cancer chemotherapeutic drug. The chemical and physical properties of the nanocarrier, as well as drug-loading efficiency and drug releasing characteristics were analysed. It was showed functionalized CNT has low pH-responsiveness in acidic environment, whereas chitosan-coated magnetic nanocomposite can result in greater pH-responsiveness and subsequently higher drug release over a week compared to nanocomposite system without chitosan. This behaviour was proved in Live/Dead assay of the U-87 glioblastoma cell lines exposed to DOX release supernatant at different time intervals so that significant effect of DOX supernatant on cancer cell proliferation suppression was showed.
Authentic
Text : Bladder cancer (BC) is the most common of those affecting the urinary tract, and a significant proportion of the cases are attributable to tobacco use as well as occupational and environmental factors. The aim of this study is to estimate the current incidence of BC in an industrialized area in northeastern Spain and to analyze its time trends over three decades from an ecological perspective. Patients diagnosed with histologically confirmed primary BC, during 2018-2019, in an area in northeastern Spain (430,883 inhabitants) were included. Crude and age-standardized incidence rates were estimated per 100,000 person-years based on the number of individuals getting their first diagnosis. An exploratory time trend analysis was carried out to describe the evolution in tobacco use and occupational or environmental risk factors and the incidence of BC in the same area from the 1990s. 295 patients were included (age 72.5 ± 10.3 years; 89.8% men). The crude rate was 62.6 (95% CI: 51.9-73.2) for men and 6.8 (95% CI: 3.4-10.3) for women. The annual rate adjusted to the European Standard Population was 85.3 (95% CI:75.0-95.5) for men and 7.0 (95% CI:4.5-9.5) for women. From 1994 to 2018, the prevalence of smokers decreased in men (42.3% to 30.9%) as well as in the active population working in the industry (44.36% to 22.59%). Nevertheless, the car fleet, especially diesel, has increased considerably. The annual mean concentrations of air (PM10, PM2.5, O3, and NO2) and water (nitrates, arsenic, trihalomethanes) pollutants were within the regulatory limit values, but not the maximum levels. The incidence of BC is one of the highest in men but not in women, despite the decrease in tobacco use and industrial activity (perhaps related to high latency after carcinogen exposure cessation) and despite the control of environmental pollution (the maximum regulatory limit probably needs to be lowered). Finally, a similar exposure to the carcinogen would result in a gender-specific differential incidence.
Authentic
Text : Hepatocellular carcinoma (HCC) is one of the primary causes of cancer‑associated deaths worldwide. Current treatment methods include surgical resection, chemotherapy and radiotherapy; however the curative rate remains low, thus novel treatments are required. The aim of the present study was to investigate the role of targeting protein for Xenopus kinesin‑like protein 2 (TPX2) in the growth of HCC and its underlying molecular mechanism. Immunohistochemistry staining, reverse transcription‑quantitative (RT‑q)PCR and western blotting were used to detect the expression of TPX2 mRNA and protein in liver cancer tissue samples, adjacent normal liver tissue samples, and the HCC cell lines Huh7, Hep3B, PLC/PRF/5 and MHCC97‑H. The recombinant plasmid pMagic4.1‑shRNA‑TPX2 was constructed and transfected into Huh7 and Hep3B HCC cells to silence TPX2 expression. The proliferation, apoptosis, migration and invasion of Huh7 cells and Hep3B cells were evaluated before and after TPX2 silencing. The mRNA and protein expression levels of multiple signaling pathway‑associated genes were detected by RT‑qPCR and western blotting. The expression levels of TPX2 mRNA and protein were significantly higher in HCC tissue samples compared with adjacent normal liver tissue sample. TPX2 mRNA and protein expression levels were detected in the different HCC cell lines. The recombinant plasmid pMagic4.1‑shRNA‑TPX2 was successfully transfected into Huh7 and Hep3B cells, resulting in TPX2 silencing. TPX2 knockdown significantly reduced cell proliferation, cell migration and cell invasion of Huh7 and Hep3B cells, whilst also increasing the rate of apoptosis in these cells. Following TPX2 silencing, the expression levels of PI3K, phospho‑AKT, Bcl‑2, c‑Myc and Cyclin D1 were significantly decreased, whereas the expression levels of P21 and P27 were significantly increased. In conclusion, TPX2 may suppress the growth of HCC by regulating the PI3K/AKT signaling pathway and thus, TPX2 may be a potential target for the treatment of liver cancer.
Authentic
Text : Cancer is a heterogeneous disease with high morbidity and mortality rate involving changes in redox balance and deregulation of redox signalling. For decades, studies have involved developing an effective cancer treatment to combat treatment resistance. As natural products such as thymoquinone have numerous health benefits, studies are also focusing on using them as a viable method for cancer treatment, as they have minimal toxic effects compared with standard cancer treatments. Thymoquinone studies have shown numerous mechanisms of action, such as regulation of reactive species interfering with DNA structure, modulating various potential targets and their signalling pathways as well as immunomodulatory effects in vitro and in vivo. Thymoquinone's anti-cancer effect is mainly due to the induction of apoptotic mechanisms, such as activation of caspases, downregulation of precancerous genes, inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), anti-tumour cell proliferation, ROS regulation, hypoxia and anti-metastasis. Insight into thymoquinone's potential as an alternative treatment for chemoprevention and inflammation can be accomplished via compiling these studies, to provide a better understanding on how and why it works, as well as its interactions with common chemotherapeutic treatments.
Authentic
Text : Previous research suggested that ETS1 (ETS proto-oncogene 1, transcription factor) could be useful for cancer immunotherapy. The processes underlying its therapeutic potential, on the other hand, have yet to be thoroughly investigated. The purpose of this study was to look into the relationship between ETS1 expression and immunity. TCGA and GEO provide raw data on 33 different cancers as well as GSE67501, GSE78220, and IMvigor210. In addition, we looked at ETS1's genetic changes, expression patterns, and survival studies. The linkages between ETS1 and TME, as well as its association with immunological processes/elements and the major histocompatibility complex, were explored to effectively understand the role of ETS1 in cancer immunotherapy. Three distinct immunotherapeutic cohorts were employed to examine the relationship between ETS1 and immunotherapeutic response. ETS1 expression was shown to be high in tumor tissue. ETS1 overexpression is linked to a worse clinical outcome in individuals with overall survival. Immune cell infiltration, immunological modulators, and immunotherapeutic signs are all linked to ETS1. Overexpression of ETS1 is linked to immune-related pathways. However, no statistically significant link was found between ETS1 and immunotherapeutic response. ETS1 may be a reliable biomarker for tumor prognosis and a viable prospective therapeutic target for human cancer immunotherapy (e.g., KIRP, MESO, BLCA, KIRC, and THYM).
Authentic
Text : Bladder cancer (BC) is the most common of those affecting the urinary tract, and a significant proportion of the cases are attributable to tobacco use as well as occupational and environmental factors. The aim of this study is to estimate the current incidence of BC in an industrialized area in northeastern Spain and to analyze its time trends over three decades from an ecological perspective. Patients diagnosed with histologically confirmed primary BC, during 2018-2019, in an area in northeastern Spain (430,883 inhabitants) were included. Crude and age-standardized incidence rates were estimated per 100,000 person-years based on the number of individuals getting their first diagnosis. An exploratory time trend analysis was carried out to describe the evolution in tobacco use and occupational or environmental risk factors and the incidence of BC in the same area from the 1990s. 295 patients were included (age 72.5 ± 10.3 years; 89.8% men). The crude rate was 62.6 (95% CI: 51.9-73.2) for men and 6.8 (95% CI: 3.4-10.3) for women. The annual rate adjusted to the European Standard Population was 85.3 (95% CI:75.0-95.5) for men and 7.0 (95% CI:4.5-9.5) for women. From 1994 to 2018, the prevalence of smokers decreased in men (42.3% to 30.9%) as well as in the active population working in the industry (44.36% to 22.59%). Nevertheless, the car fleet, especially diesel, has increased considerably. The annual mean concentrations of air (PM10, PM2.5, O3, and NO2) and water (nitrates, arsenic, trihalomethanes) pollutants were within the regulatory limit values, but not the maximum levels. The incidence of BC is one of the highest in men but not in women, despite the decrease in tobacco use and industrial activity (perhaps related to high latency after carcinogen exposure cessation) and despite the control of environmental pollution (the maximum regulatory limit probably needs to be lowered). Finally, a similar exposure to the carcinogen would result in a gender-specific differential incidence.
Authentic
Text : Alzheimer's disease (AD) is an ultimately fatal, degenerative brain disease in the elderly people. In the current work, we assessed the defensive capability of isovitexin (IVX) through an intracerebroventricular injection of streptozotocin (STZ)-induced AD mouse model. Mice were separated into four cohorts: sham-operated control mice; STZ-intoxicated Alzheimer's mice; IVX cohort, IVX + STZ; and Ant-107 cohort, antagomiR-107 + IVX/STZ as in the IVX cohort. The outcomes indicated that IVX administration ameliorated spatial memory loss and blunted a cascade of neuro-noxious episodes - including increased amyloid-beta (Aβ) and degraded myelin basic protein burden, neuroinflammation (represented by elevated caspase-1, TNF-α and IL-6 levels) and autophagic dysfunction (represented by altered LC3-II, Atg7 and beclin-1 expressions) - via the inhibition of PI3K/Akt/mTOR signalling axis. We considered the question of whether the epigenetic role of microRNA-107 (miR-107) has any impact on these events, by using antagomiR-107. This probing underscored that miR-107 could be a pivotal regulatory button in the activation of molecular signals linked with the beneficial autophagic process and anti-inflammatory activities in relation to IVX treatment. Hence, this report exemplifies that IVX could guard against Aβ toxicity and serve as an effectual treatment for patients afflicted with AD.
Counterfeit
Text : Long non-coding RNAs (lncRNAs) have been reported to be involved in the pathogenesis of a variety of malignancies, including oesophageal cancer. Alterations of the lncRNA focally amplified lncRNA on chromosome 1 (FAL1) are present in epithelial tumours. However, its expression pattern and function in oesophageal cancer are poorly addressed. In the current study, we reported that FAL1 is upregulated in oesophageal cancer tissues and is positively correlated with outcomes in oesophageal squamous cell carcinoma (OSCC). Consecutive experiments revealed that the expression level of FAL1 is higher in OSCC cell lines than in human normal oesophageal epithelium cell line HEEpiCs. Importantly, Knockdown of FAL1 suppressed cell proliferation, increased cell cycle arrest, inhibited cell invasion and epithelial-mesenchymal transition (EMT) by affected related genes. In contrast, overexpression of FAL1 has the opposite effects. Our findings underline a novel biological mechanism in which FAL1 acts as a regulator of oesophageal cancer cells and may provide insights into novel therapeutic strategies for oesophageal cancer.
Authentic
Text : Circular RNAs (circRNAs), a new class of non-coding RNAs, have emerged as important regulators during tumorigenesis. However, the functions of circRNAs have not been completely clarified in the progression of cancers. In our study, a novel circRNA hsa_circ_0109291 was investigated in oral squamous cell carcinoma (OSCC) tissues and cell lines. The expression profile of circRNAs in OSCC tumor tissues was performed by high-throughput sequencing. The CCK-8 wound healing and apoptosis assay were measured in OSCC cell lines after transfection with si-0109291 or si-NC. We discovered that hsa_circ_0109291 was significantly increased in OSCC tissues and cell lines compared with their corresponding control group. Knockdown of hsa_circ_0109291 inhibited proliferation and migration of OSCC cell lines in vitro. In addition, inhibition of hsa_circ_0109291 dramatically induced apoptosis of OSCC cells. We further found that high hsa_circ_0109291 levels in OSCC patients resulted in a poorer prognosis than in patients with low hsa_circ_0109291 levels. These findings indicated that hsa_circ_0109291 correlated with the progression of OSCC and might be a new therapeutic target for the treatment of OSCC.
Authentic
Text : Gastric cancer (GC) is the fourth most common malignancy and the second leading cause of cancer mortality around the world. However, the regulatory mechanisms of GC tumorigenesis and cancer cell motility are completely unknown. We investigated the role of a RAS-related protein (Rap1b) in the progression of GC. Our results showed that the expression of Rap1b is aberrantly upregulated in GC tissue samples and human GC cell lines, and the high expression of Rap1b indicated a positive correlation with poor prognosis in patients with GC. Inhibition of endogenous Rap1b dramatically reduced the cell cycle progression but strongly enhanced the apoptosis capacity of human GC cell lines MKN-28 and SGC-7901 cells compared with the control group. Western blotting assay showed that Rap1b inhibition resulted in a significant increase in the ratio of LC3-II to LC3-I, and the levels of p62 protein were decreased in both MKN-28 and SGC-7901 cells. Furthermore, PI3K/Akt/mTOR activation was found to be maintained in a low level in the normal gastric mucosal epithelial cells, while it was significantly upregulated in GC cells, which could be decreased by Rap1b inhibition. The PI3K inhibitor LY294002 was enhanced but activator insulin-like growth factor 1 (IGF-1) blocked the Rap1b silencing-induced enhancement of apoptosis and autophagy in MKN-28 and SGC-7901 cells. In conclusion, we demonstrate that Rap1b expression is aberrantly increased in GC, resulting in the inhibition of autophagy and apoptosis of GC cells by the PI3K/Akt/mTOR pathway. This might provide a new understanding and represent a novel therapeutic target for human GC.
Counterfeit
Text : Accumulating evidence demonstrates that lncRNAs play important roles in regulating gene expression and are involved in various pathological processes. In our present study, we firstly evaluated lncRNA LINC00152 and EGFR expressions by ISH or IHC methods, and analyzed the correlation between LINC00152 and EGFR with RT-PCR. lncRNA LINC00152 of NSCLC tissues were significantly up-regulation compared with adjacent normal tissues and positively correlated with EGPR. The further cell experiments demonstrated that Linc00152 knockdown had effects of suppression cell proliferation, invasion and migration abilities and improving cell apoptosis and G1 phase rates in both A549 and H1299 cell lines. In the mechanism study, the results were shown that EGFR, PI3K, AKT, Fibronectin and Vimentin proteins expressions were significantly reduced and P21 protein expression was significantly increased in Linc00152 knockdown groups. Our results suggested lncRNA LINC00152 knock-down had anti-tumor effects via EGFR/PI3K/AKT pathway.
Authentic
Text : Acute myeloid leukemia (AML) remains difficult to cure due to its drug tolerance and refractoriness. Immunotherapy is a growing area of cancer research, which has been applied for the treatment of numerous types of cancer, including leukemia. The present study generated AML cell-specific cytotoxic T lymphocytes (CTLs) in vitro and investigated the effect of combining CTL treatment with one of the most commonly used drugs for the treatment of hematological malignancies, cytarabine, on AML cell apoptosis. Firstly, it was observed that monocyte-depleted peripheral blood lymphocytes from healthy donors could be used to generate large numbers of CD3+CD8+ CTLs through immune stimulation. These CD3+CD8+ CTLs could effectively recognize and induce the apoptosis of human Kasumi-3 AML cells. In addition, cytarabine-induced AML cell apoptosis was enhanced by CTL treatment. Western blotting revealed that Bcl-2 expression was downregulated in AML cells following cytarabine and CTL treatment, indicating that the synergistic effect of this treatment on AML cell apoptosis is due to the downregulation of Bcl-2. These results highlight the potential application of CTL immunotherapy for the treatment of AML. Further studies optimizing the specificity and potency of CTLs, and identifying favorable combinations with other chemotherapeutic drug are required.
Authentic
Text : Dyslipidemia is common in women with polycystic ovary syndrome (PCOS) irrespective of age. Our aim was to investigate soluble tumor necrosis factor like weak inducer of apoptosis (sTWEAK), a cardiovascular risk marker in PCOS, and to determine if it is associated with dyslipidemia in youth. A prospective-observational study was carried out including 35 PCOS patients and 35 healthy controls. Serum sTWEAK levels were measured using commercially available kits. Multiple logistic regression analysis was then performed to verify the statistically significant differences in the possible predictors of dyslipidemia. Serum sTWEAK levels and the percentage of women with dyslipidemia were significantly higher in the PCOS group (p = 0.024 and p < 0.001, respectively). Participants were further divided into 2 subgroups based on the presence of dyslipidemia. The percentage of women with PCOS was significantly higher in the dyslipidemic group when compared with controls; 70.7 vs. 20.7%, respectively (p < 0.001). Multiple logistic regression analysis revealed that both the presence of PCOS (OR 7.924, 95% CI 2.117-29.657, p = 0.002) and increased levels of sTWEAK (>693 pg/ml; OR 3.810, 95% CI 1.075-13.501, p = 0.038) were independently associated with dyslipidemia. Increased levels of both sTWEAK and PCOS were found to be independently associated with dyslipidemia in youth.
Authentic
Text : Downregulated DSC2 involved in the metastasis of cancers. Unfortunately, its role on the development of gastric cancer (GC) and the potential mechanisms remain unclear. Bioinformatics analysis, Western blot, qRT-PCR, and immunohistochemistry were performed to detect the DSC2 levels of human GC and normal stomach tissues. The role of DSC2 and the downstream signaling in gastric carcinogenesis were explored by using GC specimens, GC cells with different DSC2 expression, inhibitors, and mouse metastasis models. We found that the level of DSC2 decreased significantly in GC tissues and cells. Recovered DSC2 inhibited the invasion and migration of GC cells both in culture and in xenografts. Mechanistically, DSC2 could not only decrease Snail level and nuclear BRD4 level by forming DSC2/BRD4, but also inhibit nuclear translocation of β-catenin. We concluded that DSC2 inhibited the metastasis of GC, and the underlying mechanisms were closely related to the regulation on nuclear translocation of BRD4 and β-catenin. Our results suggest that DSC2 may serve as a novel therapeutic target for GC.
Counterfeit