text_prompt
stringlengths
168
30.3k
code_prompt
stringlengths
67
124k
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Getting the data Step2: Plotting the data
<ASSISTANT_TASK:> Python Code: from datetime import datetime, timedelta import cartopy.crs as ccrs import pandas as pd from metpy.cbook import get_test_data import metpy.plots as mpplots data = pd.read_csv(get_test_data('SFC_obs.csv', as_file_obj=False), infer_datetime_format=True, parse_dates=['valid']) # Plotting the Observations using a 15 minute time window for surface observations obs = mpplots.PlotObs() obs.data = data obs.time = datetime(1993, 3, 12, 13) obs.time_window = timedelta(minutes=15) obs.level = None obs.fields = ['tmpf', 'dwpf', 'emsl', 'cloud_cover', 'wxsym'] obs.locations = ['NW', 'SW', 'NE', 'C', 'W'] obs.colors = ['red', 'green', 'black', 'black', 'blue'] obs.formats = [None, None, lambda v: format(10 * v, '.0f')[-3:], 'sky_cover', 'current_weather'] obs.vector_field = ('uwind', 'vwind') obs.reduce_points = 1 # Add map features for the particular panel panel = mpplots.MapPanel() panel.layout = (1, 1, 1) panel.area = 'ga' panel.projection = ccrs.PlateCarree() panel.layers = ['coastline', 'borders', 'states'] panel.plots = [obs] # Collecting panels for complete figure pc = mpplots.PanelContainer() pc.size = (10, 10) pc.panels = [panel] # Showing the results pc.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: It's also possible to specify additional regressors. For this you need to additionally specify Step2: So, the only things that we need to specify our model are the onset and the stimuli type, i.e. column 0 and column 5 or 7. Those we can get with the command Step3: Before we can use the onsets, we first need to split them into the two conditions Step4: The last thing we now need to to is to put this into a Bunch object and we're done
<ASSISTANT_TASK:> Python Code: from nipype.interfaces.base import Bunch conditions = ['faces', 'houses', 'scrambled pix'] onsets = [[0, 30, 60, 90], [10, 40, 70, 100], [20, 50, 80, 110]] durations = [[3], [3], [3]] subject_info = Bunch(conditions=conditions, onsets=onsets, durations=durations) !cat /data/ds102/sub-01/func/sub-01_task-flanker_run-1_events.tsv import numpy as np filename = '/data/ds102/sub-01/func/sub-01_task-flanker_run-1_events.tsv' trailinfo = np.genfromtxt(filename, delimiter='\t', dtype=None, skip_header=1) trailinfo = [[t[0], t[7]] for t in trailinfo] trailinfo onset1 = [] onset2 = [] for t in trailinfo: if 'incongruent' in t[1]: onset2.append(t[0]) else: onset1.append(t[0]) print onset1 print onset2 from nipype.interfaces.base import Bunch conditions = ['congruent', 'incongruent'] onsets = [onset1, onset2] durations = [[2], [2]] subject_info = Bunch(conditions=conditions, onsets=onsets, durations=durations) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: List Comprehensions Step2: You can do the same thing with Step3: You can include if statements Step4: You can do the same thing with Step5: Now to observations Step6: Observing Night Step7: But, you get to observe in Hawaii Step8: Plot the objects Step9: Observing Constraints Step10: Let us add another constraint Step11: Additional Constraints
<ASSISTANT_TASK:> Python Code: import numpy as np from astropy.table import QTable import astropy.units as u from astropy.time import Time from astropy.coordinates import SkyCoord, EarthLocation import pytz from astroplan import Observer, FixedTarget import warnings warnings.filterwarnings('ignore', category=Warning) squares = [] # create a blank list for x in range(10): # foor loop 0 -> 9 squares.append(x**2) # calculate x**2 for each x, add to end of list squares squares = [x**2 for x in range(10)] squares even_squares = [] for x in range(10): if (x % 2 == 0): even_squares.append(x**2) even_squares even_squares = [x**2 for x in range(10) if (x % 2 == 0)] even_squares target_table = QTable.read('ObjectList.csv', format='ascii.csv') target_table targets = [FixedTarget(coord=SkyCoord(ra = RA*u.hourangle, dec = DEC*u.deg), name=Name) for Name, RA, DEC in target_table] targets observe_date = Time("2018-01-01", format='iso') my_timezone = pytz.timezone('US/Hawaii') my_location = Observer.at_site('gemini_north') observe_start = my_location.sun_set_time(observe_date, which='nearest') observe_end = my_location.sun_rise_time(observe_date, which='next') print("Observing starts at {0.iso} UTC".format(observe_start)) print("Observing ends at {0.iso} UTC".format(observe_end)) print("Observing starts at {0} local".format(observe_start.to_datetime(my_timezone))) print("Observing ends at {0} local".format(observe_end.to_datetime(my_timezone))) # A complete list of built-in observatories can be found by: #EarthLocation.get_site_names() observing_length = (observe_end - observe_start).to(u.h) print("You can observe for {0:.1f} tonight".format(observing_length)) observing_range = [observe_start, observe_end] %matplotlib inline import matplotlib.pyplot as plt from astroplan import time_grid_from_range from astroplan.plots import plot_sky, plot_airmass time_grid = time_grid_from_range(observing_range) fig,ax = plt.subplots(1,1) fig.set_size_inches(10,10) fig.tight_layout() for my_object in targets: ax = plot_sky(my_object, my_location, time_grid) ax.legend(loc=0,shadow=True); fig,ax = plt.subplots(1,1) fig.set_size_inches(10,5) fig.tight_layout() for my_object in targets: ax = plot_airmass(my_object, my_location, time_grid) ax.legend(loc=0,shadow=True); from astroplan import AltitudeConstraint, AirmassConstraint from astroplan import observability_table constraints = [AltitudeConstraint(20*u.deg, 80*u.deg)] observing_table = observability_table(constraints, my_location, targets, time_range=observing_range) print(observing_table) constraints.append(AirmassConstraint(2)) observing_table = observability_table(constraints, my_location, targets, time_range=observing_range) print(observing_table) from astroplan import moon_illumination moon_illumination(observe_start) from astroplan import MoonSeparationConstraint constraints.append(MoonSeparationConstraint(45*u.deg)) observing_table = observability_table(constraints, my_location, targets, time_range=observing_range) print(observing_table) fig,ax = plt.subplots(1,1) fig.set_size_inches(10,5) fig.tight_layout() for i, my_object in enumerate(targets): if observing_table['ever observable'][i]: ax = plot_airmass(my_object, my_location, time_grid) ax.legend(loc=0,shadow=True); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Aggregation Operators Step2: For $match we use the same syntax that we use for read operations Step3: group operators
<ASSISTANT_TASK:> Python Code: import pprint def get_client(): from pymongo import MongoClient return MongoClient('mongodb://localhost:27017/') def get_collection(): return get_client().examples.twitter collection = get_collection() def aggregate_and_show(collection, query, limit = True): _query = query[:] if limit: _query.append({"$limit": 5}) result = collection.aggregate(_query) pprint.pprint(list(r for r in result)) query = [ {"$group": {"_id": "$user.screen_name", "count": {"$sum": 1}}}, {"$sort": {"count": -1}} ] aggregate_and_show(collection, query) query = [ {"$match": {"user.friends_count": {"$gt": 0}, "user.followers_count": {"$gt": 0}}}, {"$project": {"ratio": {"$divide": ["$user.followers_count", "$user.friends_count"]}, "screen_name": "$user.screen_name"}}, {"$sort": {"ratio": -1}} ] aggregate_and_show(collection, query) query = [ {"$unwind": "$entities.user_mentions"}, {"$group": {"_id": "$user.screen_name", "count": {"$sum": 1}}}, {"$sort": {"count": -1}} ] aggregate_and_show(collection, query) #get unique hashtags by user query = [ {"$unwind": "$entities.hashtags"}, {"$group": {"_id": "$user.screen_name", "unique_hashtags": { "$addToSet": "$entities.hashtags.text" }}}, {"$sort": {"_id": -1}} ] aggregate_and_show(collection, query) # find number of unique user mentions query = [ {"$unwind": "$entities.user_mentions"}, {"$group": { "_id": "$user.screen_name", "mset": { "$addToSet": "$entities.user_mentions.screen_name" } }}, {"$unwind": "$mset"}, {"$group": {"_id": "$_id", "count": {"$sum": 1}}}, {"$sort": {"count": -1}} ] aggregate_and_show(collection, query) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2.1) Dealing with Missing Values – Imputation Step2: A couple of imputation methods were tried in the original Notebook Step3: 2.2) Dealing with Confidence Labels Step4: The original Notebook tried a couple of methods of incorporating the confidence labels into the model Step5: 2.3) Dealing with Class Imbalance Step6: 3. Pre-Processing Step7: 3.2) Principal Component Analysis (PCA) Step8: The cell below will plot how much more of the variance in the data set is explained as the number of principal components included is increased. Step9: The graph above suggests that the maximum number of principal components should not exceed 300, as less and less variance is explained as the number of principal components included increases beyond 300. For the optimisation, the optimal number of principal components was initially assumed to be 230. Step10: 4. Model Selection Step11: The cell below will plot two heat-maps side by side Step12: The cells below will plot a Validation Curves for Gamma. Step13: The cells below will plot the Learning Curve. Step14: Finding Best Number of Principal Components Step15: Making Predictions Step16: The following cell will apply the same pre-processing applied to the training data to the test data. Step17: The following cells will produce predictions on the test data using the final model.
<ASSISTANT_TASK:> Python Code: #Import Relevant Modules and Packages import pandas as pd import numpy as np from sklearn.svm import SVC from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn import preprocessing from sklearn.model_selection import GridSearchCV from sklearn.decomposition import PCA from scipy import stats from sklearn.feature_selection import VarianceThreshold #see all rows of dataframe #pd.set_option('display.max_rows', 500) #Load the complete training data set training_data = pd.read_csv("/Users/Max/Desktop/Max's Folder/Uni Work/Data Science MSc/Machine Learning/ML Kaggle Competition /Data Sets/Training Data Set.csv", header=0, index_col=0) #Observe the original training data training_data.head() #quantify class counts of original training data training_data.prediction.value_counts() #Load additional training data add_training_data = pd.read_csv("/Users/Max/Desktop/Max's Folder/Uni Work/Data Science MSc/Machine Learning/ML Kaggle Competition /Data Sets/Additional Training Data Set .csv", header=0, index_col=0) #observe additional training data add_training_data #quantify class counts of additional training data add_training_data.prediction.value_counts() #find number of NAs for each column for additional training data add_training_data.isnull().sum() #concatenate original training data with additional training data full_training_data_inc = pd.concat([training_data, add_training_data]) #observe concatenated training data full_training_data_inc #imputation via KNN from fancyimpute import KNN knn_trial = full_training_data_inc knn_trial complete_knn = KNN(k=3).complete(knn_trial) #convert imputed matrix back to dataframe for visualisation and convert 'prediction' dtype to int complete_knn_df = pd.DataFrame(complete_knn, index=full_training_data_inc.index, columns=full_training_data_inc.columns) full_training_data = complete_knn_df full_training_data.prediction = full_training_data.prediction.astype('int') full_training_data #quantify class counts for full training data full_training_data.prediction.value_counts() #Load confidence annotations confidence_labels = pd.read_csv("/Users/Max/Desktop/Max's Folder/Uni Work/Data Science MSc/Machine Learning/ML Kaggle Competition /Data Sets/Annotation Confidence .csv", header=0, index_col=0) #quantify confidence labels (how many are 1, how many are 0.66) print(confidence_labels.confidence.value_counts()) #observe confidence annotations confidence_labels #adding confidence of label column to imputed full training data set full_train_wcl = pd.merge(full_training_data, confidence_labels, left_index=True, right_index=True) full_train_wcl #only keep data instance with confidence label = 1 conf_full_train = full_train_wcl.loc[full_train_wcl['confidence'] == 1] conf_full_train #quantify class counts conf_full_train.prediction.value_counts() #convert full training data dataframe with confidence instances only to matrix conf_ft_matrix = conf_full_train.as_matrix(columns=None) conf_ft_matrix conf_ft_matrix.shape #splitting full training data with confidence into inputs and outputs conf_ft_inputs = conf_ft_matrix[:,0:4608] print(conf_ft_inputs.shape) conf_ft_outputs = conf_ft_matrix[:,4608] print(conf_ft_outputs.shape) from imblearn.over_sampling import SMOTE from collections import Counter #fit over-sampling to training data inputs and putputs over_sampler = SMOTE(ratio='auto', k_neighbors=5, kind='regular', random_state=0) over_sampler.fit(conf_ft_inputs, conf_ft_outputs) #create new inputs and outputs with correct class proportions resampled_x, resampled_y = over_sampler.fit_sample(conf_ft_inputs, conf_ft_outputs) #quantify original class proportions prior to over-sampling Counter(conf_ft_outputs) #quantify class proportions after over-sampling Counter(resampled_y) #assign newly sampled input and outputs to old variable name used for inputs and outputs before #over-sampling conf_ft_inputs = resampled_x conf_ft_outputs = resampled_y print(Counter(conf_ft_outputs)) #standardise the full training data with confidence labels 1 only scaler_2 = preprocessing.StandardScaler().fit(conf_ft_inputs) std_conf_ft_in = scaler_2.transform(conf_ft_inputs) std_conf_ft_in import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline #preprocessing: PCA (feature construction). High number of pcs chosen to plot a graph #showing how much more variance is explained as pc number increases pca_2 = PCA(n_components=700, random_state=0) std_conf_ft_in_pca = pca_2.fit_transform(std_conf_ft_in) #quantify amount of variance explained by principal components print("Total Variance Explained by PCs (%): ", np.sum(pca_2.explained_variance_ratio_)) #calculate a list of cumulative sums for amount of variance explained cumulative_variance = np.cumsum(pca_2.explained_variance_ratio_) len(cumulative_variance) #add 0 to the beginning of the list, otherwise list starts with variance explained by 1 pc cumulative_variance = np.insert(cumulative_variance, 0, 0) #define range of pcs pcs_4_var_exp = np.arange(0,701,1) len(pcs_4_var_exp) fig_1 = plt.figure(figsize=(7,4)) plt.title('Number of PCs and Change In Variance Explained') plt.xlabel('Number of PCs') plt.ylabel('Variance Explained (%)') plt.plot(pcs_4_var_exp, cumulative_variance, 'x-', color="r") plt.show() #preprocessing: PCA (feature construction) pca_2 = PCA(n_components=230, random_state=0) std_conf_ft_in_pca = pca_2.fit_transform(std_conf_ft_in) #quantify ratio of variance explain by principal components print("Total Variance Explained by PCs (%): ", np.sum(pca_2.explained_variance_ratio_)) #this cell takes around 7 minutes to run #parameter optimisation with Exhaustive Grid Search, with class weight original_c_range = np.arange(0.85, 1.01, 0.01) gamma_range = np.arange(0.00001, 0.00023, 0.00002) #define parameter ranges to test param_grid = [{'C': original_c_range, 'gamma': gamma_range, 'kernel': ['rbf'], 'class_weight':[{0:1.33, 1:1}]}] #define model to do parameter search on svr = SVC() clf = GridSearchCV(svr, param_grid, scoring='accuracy', cv=5,) clf.fit(std_conf_ft_in_pca, conf_ft_outputs) #create dictionary of results results_dict = clf.cv_results_ #convert the results into a dataframe df_results = pd.DataFrame.from_dict(results_dict) df_results #Draw heatmap of the validation accuracy as a function of gamma and C fig = plt.figure(figsize=(10, 10)) ix=fig.add_subplot(1,2,1) val_scores = clf.cv_results_['mean_test_score'].reshape(len(original_c_range),len(gamma_range)) val_scores ax = sns.heatmap(val_scores, linewidths=0.5, square=True, cmap='PuBuGn', xticklabels=gamma_range, yticklabels=original_c_range, cbar_kws={'shrink':0.5}) ax.invert_yaxis() plt.yticks(rotation=0, fontsize=10) plt.xticks(rotation= 70,fontsize=10) plt.xlabel('Gamma', fontsize=15) plt.ylabel('C', fontsize=15) plt.title('Validation Accuracy', fontsize=15) #Draw heatmap of the validation accuracy as a function of gamma and C ix=fig.add_subplot(1,2,2) train_scores = clf.cv_results_['mean_train_score'].reshape(len(original_c_range),len(gamma_range)) train_scores #plt.figure(figsize=(6, 6)) ax_1 = sns.heatmap(train_scores, linewidths=0.5, square=True, cmap='PuBuGn', xticklabels=gamma_range, yticklabels=original_c_range, cbar_kws={'shrink':0.5}) ax_1.invert_yaxis() plt.yticks(rotation=0, fontsize=10) plt.xticks(rotation= 70,fontsize=10) plt.xlabel('Gamma', fontsize=15) plt.ylabel('C', fontsize=15) plt.title('Training Accuracy', fontsize=15) plt.show() #import module/library from sklearn.model_selection import validation_curve import matplotlib.pyplot as plt %matplotlib inline #specifying gamma parameter range to plot for validation curve param_range = gamma_range param_range #calculating train and validation scores train_scores, valid_scores = validation_curve(SVC(C=0.92, kernel='rbf', class_weight={0:1.33, 1:1}), std_conf_ft_in_pca, conf_ft_outputs, param_name='gamma',param_range=param_range,scoring='accuracy') train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) valid_scores_mean = np.mean(valid_scores, axis=1) valid_scores_std = np.std(valid_scores, axis=1) #plotting validation curve plt.title('Gamma Validation Curve for SVM With RBF Kernel | C=0.92') plt.xlabel('Gamma') plt.ylabel('Score') plt.xticks(rotation=70) plt.ylim(0.8,1.0) plt.xlim(0.0001,0.00021) plt.xticks(param_range) lw=2 plt.plot(param_range, train_scores_mean, 'o-',label="Training Score", color='darkorange', lw=lw) plt.fill_between(param_range, train_scores_mean-train_scores_std, train_scores_mean+train_scores_std, alpha=0.2, color='darkorange', lw=lw) plt.plot(param_range, valid_scores_mean, 'o-',label="Testing Score", color='navy', lw=lw) plt.fill_between(param_range, valid_scores_mean-valid_scores_std, valid_scores_mean+valid_scores_std, alpha=0.2, color='navy', lw=lw) plt.legend(loc='best') plt.show() #import module/library from sklearn.model_selection import learning_curve #define training data size increments td_size = np.arange(0.1, 1.1, 0.1) #calculating train and validation scores train_sizes, train_scores, valid_scores = learning_curve(SVC(C=0.92, kernel='rbf', gamma=0.00011, class_weight={0:1.33, 1:1}), std_conf_ft_in_pca, conf_ft_outputs, train_sizes=td_size ,scoring='accuracy') train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) valid_scores_mean = np.mean(valid_scores, axis=1) valid_scores_std = np.std(valid_scores, axis=1) #plotting learning curve fig = plt.figure(figsize=(5,5)) plt.title('Learning Curve with SVM with RBF Kernel| C=0.92 & Gamma = 0.00011', fontsize=9) plt.xlabel('Train Data Size') plt.ylabel('Score') plt.ylim(0.8,1) lw=2 plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training Score") plt.fill_between(train_sizes, train_scores_mean-train_scores_std, train_scores_mean+train_scores_std, alpha=0.2, color='red', lw=lw) plt.plot(train_sizes, valid_scores_mean, 'o-', color="g",label="Testing Score") plt.fill_between(train_sizes, valid_scores_mean-valid_scores_std, valid_scores_mean+valid_scores_std, alpha=0.2, color='green', lw=lw) plt.legend(loc='best') plt.show() #this cell may take several minutes to run #plot how the number of PC's changes the test accuracy no_pcs = np.arange(20, 310, 10) compute_average_of_5 = [] for t in range(0,5): pcs_accuracy_change = [] for i in no_pcs: dummy_inputs = std_conf_ft_in dummy_outputs = conf_ft_outputs pca_dummy = PCA(n_components=i,) pca_dummy.fit(dummy_inputs) dummy_inputs_pca = pca_dummy.transform(dummy_inputs) dummy_model = SVC(C=0.92, kernel='rbf', gamma=0.00011, class_weight={0:1.33, 1:1}) dummy_model.fit(dummy_inputs_pca, dummy_outputs,) dummy_scores = cross_val_score(dummy_model, dummy_inputs_pca, dummy_outputs, cv=3, scoring='accuracy') mean_cv = dummy_scores.mean() pcs_accuracy_change.append(mean_cv) print (len(pcs_accuracy_change)) compute_average_of_5.append(pcs_accuracy_change) #calculate position specific average for the five trials from __future__ import division average_acc_4_pcs = [sum(e)/len(e) for e in zip(*compute_average_of_5)] plt.title('Number of PCs and Change In Accuracy') plt.xlabel('Number of PCs') plt.ylabel('Accuracy (%)') plt.plot(no_pcs, average_acc_4_pcs, 'o-', color="r") plt.show() #Load the complete training data set test_data = pd.read_csv("/Users/Max/Desktop/Max's Folder/Uni Work/Data Science MSc/Machine Learning/ML Kaggle Competition /Data Sets/Testing Data Set.csv", header=0, index_col=0) ##Observe the test data test_data #turn test dataframe into matrix test_data_matrix = test_data.as_matrix(columns=None) test_data_matrix.shape #pre-process test data in same way as train data scaled_test = scaler_2.transform(test_data_matrix) transformed_test = pca_2.transform(scaled_test) transformed_test.shape #define and fit final model with best parameters from grid search final_model = SVC(C=0.92, cache_size=1000, kernel='rbf', gamma=0.00011, class_weight={0:1.33, 1:1}) final_model.fit(std_conf_ft_in_pca, conf_ft_outputs) #make test data predictions predictions = final_model.predict(transformed_test) #create dictionary for outputs matched with ID to_export = {'ID': np.arange(1, 4201, 1), 'prediction': predictions} to_export #convert to dataframe final_predictions = pd.DataFrame.from_dict(to_export) final_predictions #convert prediction column float type entries to integers final_predictions = final_predictions.astype('int') final_predictions #check properties of predictions: class balance should be 42.86(1):57.14(0) #i.e. should predict 2400 Class 0 instances, and 1800 Class 1 instances final_predictions.prediction.value_counts() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We need to create metabolites as well. If we were using an existing model, we could use get_by_id to get the apporpriate Metabolite objects instead. Step2: Adding metabolites to a reaction requires using a dictionary of the metabolites and their stoichiometric coefficients. A group of metabolites can be added all at once, or they can be added one at a time. Step3: The gene_reaction_rule is a boolean representation of the gene requirements for this reaction to be active as described in Schellenberger et al 2011 Nature Protocols 6(9) Step4: At this point in time, the model is still empty Step5: We will add the reaction to the model, which will also add all associated metabolites and genes Step6: We can iterate through the model objects to observe the contents
<ASSISTANT_TASK:> Python Code: from cobra import Model, Reaction, Metabolite # Best practise: SBML compliant IDs cobra_model = Model('example_cobra_model') reaction = Reaction('3OAS140') reaction.name = '3 oxoacyl acyl carrier protein synthase n C140 ' reaction.subsystem = 'Cell Envelope Biosynthesis' reaction.lower_bound = 0. # This is the default reaction.upper_bound = 1000. # This is the default reaction.objective_coefficient = 0. # this is the default ACP_c = Metabolite('ACP_c', formula='C11H21N2O7PRS', name='acyl-carrier-protein', compartment='c') omrsACP_c = Metabolite('3omrsACP_c', formula='C25H45N2O9PRS', name='3-Oxotetradecanoyl-acyl-carrier-protein', compartment='c') co2_c = Metabolite('co2_c', formula='CO2', name='CO2', compartment='c') malACP_c = Metabolite('malACP_c', formula='C14H22N2O10PRS', name='Malonyl-acyl-carrier-protein', compartment='c') h_c = Metabolite('h_c', formula='H', name='H', compartment='c') ddcaACP_c = Metabolite('ddcaACP_c', formula='C23H43N2O8PRS', name='Dodecanoyl-ACP-n-C120ACP', compartment='c') reaction.add_metabolites({malACP_c: -1.0, h_c: -1.0, ddcaACP_c: -1.0, co2_c: 1.0, ACP_c: 1.0, omrsACP_c: 1.0}) reaction.reaction # This gives a string representation of the reaction reaction.gene_reaction_rule = '( STM2378 or STM1197 )' reaction.genes print('%i reactions in initial model' % len(cobra_model.reactions)) print('%i metabolites in initial model' % len(cobra_model.metabolites)) print('%i genes in initial model' % len(cobra_model.genes)) cobra_model.add_reaction(reaction) # Now there are things in the model print('%i reaction in model' % len(cobra_model.reactions)) print('%i metabolites in model' % len(cobra_model.metabolites)) print('%i genes in model' % len(cobra_model.genes)) # Iterate through the the objects in the model print("Reactions") print("---------") for x in cobra_model.reactions: print("%s : %s" % (x.id, x.reaction)) print("Metabolites") print("-----------") for x in cobra_model.metabolites: print('%s : %s' % (x.id, x.formula)) print("Genes") print("-----") for x in cobra_model.genes: reactions_list_str = "{" + ", ".join((i.id for i in x.reactions)) + "}" print("%s is associated with reactions: %s" % (x.id, reactions_list_str)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Example 2 Convert the reserved stock units (RSUs) an employee has in a company to the current cash value. Step2: Let's take a look at some values and see how we can produce certain outputs. Step3: Generators Step4: Let's try Creating
<ASSISTANT_TASK:> Python Code: # Store even numbers from 0 to 20 even_lst = [num for num in range(21) if num % 2 == 0] print(even_lst) cash_value = 20 rsu_dict = {"Max":20, "Willie":13, "Joanna":14} lst = [rsu_dict[name]*cash_value for name in rsu_dict] print(lst) my_dict = {"Ross":19, "Bernie":13, "Micah":15} cash_value = 20 # [19*20, 13*20, 15*20] cash_lst = [my_dict[key]*20 for key in my_dict] print(cash_lst) rows = 'ABC' cols = '123' vowels = ('a', 'e', 'i', 'o', 'u') sentence = 'cogito ergo sum' words = sentence.split() # Produce [A3, B2, C1] number_letter_lst = [rows[element]+cols[2-element] for element in range(3)] print(number_letter_lst) # Produce [A1, B1, C1, A2, B2, C2, A3, B3, C3] letter_number_lst = [r+c for c in cols for r in rows] print(letter_number_lst) x = [s1 + ' x ' + s2 for s1 in (rows[i]+cols[i] for i in range(3)) for s2 in (rows[2-j]+cols[j] for j in range(3))] print(x) # Simply accessing rows and cols in a comprehensions [A1, A2, A3, B1, B2, B3, C1, C2, C3] # Non-Pythonic lst = [] for r in rows: for c in cols: lst.append(r+c) # Pythonic lst = [r+c for r in rows for c in cols] print(lst) # let's figure this list out with normal syntax lst = [] for r in (rows[i]+cols[i] for i in range(3)): for c in (rows[2-i]+cols[i] for i in range(3)): lst.append(r + 'x' + c) print(lst) # shortened crossed_list = [x + " x " + y for x in (rows[i]+cols[i] for i in range(3)) for y in (rows[2-i]+cols[i] for i in range(3))] print(crossed_list) x = sorted(words, key=lambda x: len(x)) print(x) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Common plots Step2: Example
<ASSISTANT_TASK:> Python Code: import librosa.display import mir_eval.display librosa.display.specshow(S, x_axis='time', y_axis='mel') mir_eval.display.events(ref_beats, color='w', alpha=0.8, linewidth=3) mir_eval.display.events(est_beats, color='c', alpha=0.8, linewidth=3, linestyle='--') y_harm, y_perc = librosa.effects.hpss(y, margin=8) plt.figure(figsize=(12, 4)) mir_eval.display.separation([y_perc, y_harm], sr, labels=['percussive', 'harmonic']) plt.legend() Audio(data=numpy.vstack([ mir_eval.sonify.chords() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Corpus acquisition. Step2: You can try with any other categories. Take into account that the behavior of topic modelling algorithms may depend on the amount of documents available for the analysis. Select a category with at least 100 articles. You can browse the wikipedia category tree here, https Step3: Now, we have stored the whole text collection in two lists Step4: 2. Corpus Processing Step5: 2.2. Stemming vs Lemmatization Step6: Alternatively, we can apply lemmatization. For english texts, we can use the lemmatizer from NLTK, which is based on WordNet. If you have not used wordnet before, you will likely need to download it from nltk Step7: Task Step8: One of the advantages of the lemmatizer method is that the result of lemmmatization is still a true word, which is more advisable for the presentation of text processing results and lemmatization. Step9: In the second step, let us create a numerical version of our corpus using the doc2bow method. In general, D.doc2bow(token_list) transform any list of tokens into a list of tuples (token_id, n), one per each token in token_list, where token_id is the token identifier (according to dictionary D) and n is the number of occurrences of such token in token_list. Step10: At this point, it is good to make sure to understand what has happened. In corpus_clean we had a list of token lists. With it, we have constructed a Dictionary, D, which assign an integer identifier to each token in the corpus. Step11: Note that we can interpret each element of corpus_bow as a sparse_vector. For example, a list of tuples Step12: and a bow representation of a corpus with Step13: Before starting with the semantic analyisis, it is interesting to observe the token distribution for the given corpus. Step14: ids_sorted is a list of all token ids, sorted by decreasing number of occurrences in the whole corpus. For instance, the most frequent term is Step15: which appears Step16: In the following we plot the most frequent terms in the corpus. Step17: Exercise Step18: Exercise Step19: 3. Semantic Analysis Step20: From now on, tfidf can be used to convert any vector from the old representation (bow integer counts) to the new one (TfIdf real-valued weights) Step21: Or to apply a transformation to a whole corpus Step22: 3.1. Latent Semantic Indexing (LSI) Step23: From LSI, we can check both the topic-tokens matrix and the document-topics matrix. Step24: However, a more useful representation of topics is as a list of tuples (token, value). This is provided by the show_topic method. Step25: LSI approximates any document as a linear combination of the topic vectors. We can compute the topic weights for any input corpus entered as input to the lsi model. Step26: Task Step27: 3.2. Latent Dirichlet Allocation (LDA) Step28: 3.2.2. LDA using python lda library Step29: Document-topic distribution Step30: It allows incremental updates Step31: Now, we need a dataset to feed the Count_Vectorizer object, by joining all tokens in corpus_clean in a single string, using a space ' ' as separator. Step32: Now we are ready to compute the token counts. Step33: Now we can apply the LDA algorithm. Step34: Task Step35: Exercise
<ASSISTANT_TASK:> Python Code: # %matplotlib inline import numpy as np import matplotlib.pyplot as plt # import pylab # Required imports from wikitools import wiki from wikitools import category import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer import gensim import lda import lda.datasets from time import time from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import LatentDirichletAllocation from test_helper import Test site = wiki.Wiki("https://en.wikipedia.org/w/api.php") # Select a category with a reasonable number of articles (>100) # cat = "Economics" cat = "Pseudoscience" print cat # Loading category data. This may take a while print "Loading category data. This may take a while..." cat_data = category.Category(site, cat) corpus_titles = [] corpus_text = [] for n, page in enumerate(cat_data.getAllMembersGen()): print "\r Loading article {0}".format(n + 1), corpus_titles.append(page.title) corpus_text.append(page.getWikiText()) n_art = len(corpus_titles) print "\nLoaded " + str(n_art) + " articles from category " + cat # n = 5 # print corpus_titles[n] # print corpus_text[n] # You can comment this if the package is already available. nltk.download("punkt") nltk.download("stopwords") stopwords_en = stopwords.words('english') corpus_clean = [] for n, art in enumerate(corpus_text): print "\rProcessing article {0} out of {1}".format(n + 1, n_art), # This is to make sure that all characters have the appropriate encoding. art = art.decode('utf-8') # Tokenize each text entry. # scode: tokens = <FILL IN> token_list = word_tokenize(art) # Convert all tokens in token_list to lowercase, remove non alfanumeric tokens and stem. # Store the result in a new token list, clean_tokens. # scode: filtered_tokens = <FILL IN> filtered_tokens = [token.lower() for token in token_list if token.isalnum()] # Remove all tokens in the stopwords list and append the result to corpus_clean # scode: clean_tokens = <FILL IN> clean_tokens = [token for token in filtered_tokens if token not in stopwords_en] # scode: <FILL IN> corpus_clean.append(clean_tokens) print "\nLet's check the first tokens from document 0 after processing:" print corpus_clean[0][0:30] Test.assertTrue(len(corpus_clean) == n_art, 'List corpus_clean does not contain the expected number of articles') Test.assertTrue(len([c for c in corpus_clean[0] if c in stopwords_en])==0, 'Stopwords have not been removed') # Select stemmer. stemmer = nltk.stem.SnowballStemmer('english') corpus_stemmed = [] for n, token_list in enumerate(corpus_clean): print "\rStemming article {0} out of {1}".format(n + 1, n_art), # Convert all tokens in token_list to lowercase, remove non alfanumeric tokens and stem. # Store the result in a new token list, clean_tokens. # scode: stemmed_tokens = <FILL IN> stemmed_tokens = [stemmer.stem(token) for token in token_list] # Add art to the stemmed corpus # scode: <FILL IN> corpus_stemmed.append(stemmed_tokens) print "\nLet's check the first tokens from document 0 after stemming:" print corpus_stemmed[0][0:30] Test.assertTrue((len([c for c in corpus_stemmed[0] if c!=stemmer.stem(c)]) < 0.1*len(corpus_stemmed[0])), 'It seems that stemming has not been applied properly') # You can comment this if the package is already available. nltk.download("wordnet") wnl = WordNetLemmatizer() # Select stemmer. corpus_lemmat = [] for n, token_list in enumerate(corpus_clean): print "\rLemmatizing article {0} out of {1}".format(n + 1, n_art), # scode: lemmat_tokens = <FILL IN> lemmat_tokens = [wnl.lemmatize(token) for token in token_list] # Add art to the stemmed corpus # scode: <FILL IN> corpus_lemmat.append(lemmat_tokens) print "\nLet's check the first tokens from document 0 after stemming:" print corpus_lemmat[0][0:30] # Create dictionary of tokens D = gensim.corpora.Dictionary(corpus_clean) n_tokens = len(D) print "The dictionary contains {0} tokens".format(n_tokens) print "First tokens in the dictionary: " for n in range(10): print str(n) + ": " + D[n] # Transform token lists into sparse vectors on the D-space # scode: corpus_bow = <FILL IN> corpus_bow = [D.doc2bow(doc) for doc in corpus_clean] Test.assertTrue(len(corpus_bow)==n_art, 'corpus_bow has not the appropriate size') print "Original article (after cleaning): " print corpus_clean[0][0:30] print "Sparse vector representation (first 30 components):" print corpus_bow[0][0:30] print "The first component, {0} from document 0, states that token 0 ({1}) appears {2} times".format( corpus_bow[0][0], D[0], corpus_bow[0][0][1]) print "{0} tokens".format(len(D)) print "{0} Wikipedia articles".format(len(corpus_bow)) # SORTED TOKEN FREQUENCIES (I): # Create a "flat" corpus with all tuples in a single list corpus_bow_flat = [item for sublist in corpus_bow for item in sublist] # Initialize a numpy array that we will use to count tokens. # token_count[n] should store the number of ocurrences of the n-th token, D[n] token_count = np.zeros(n_tokens) # Count the number of occurrences of each token. for x in corpus_bow_flat: # Update the proper element in token_count # scode: <FILL IN> token_count[x[0]] += x[1] # Sort by decreasing number of occurences ids_sorted = np.argsort(- token_count) tf_sorted = token_count[ids_sorted] print D[ids_sorted[0]] print "{0} times in the whole corpus".format(tf_sorted[0]) # SORTED TOKEN FREQUENCIES (II): plt.rcdefaults() # Example data n_bins = 25 hot_tokens = [D[i] for i in ids_sorted[n_bins-1::-1]] y_pos = np.arange(len(hot_tokens)) z = tf_sorted[n_bins-1::-1]/n_art plt.barh(y_pos, z, align='center', alpha=0.4) plt.yticks(y_pos, hot_tokens) plt.xlabel('Average number of occurrences per article') plt.title('Token distribution') plt.show() display() # SORTED TOKEN FREQUENCIES: # Example data plt.semilogy(tf_sorted) plt.xlabel('Average number of occurrences per article') plt.title('Token distribution') plt.show() display() # scode: <WRITE YOUR CODE HERE> # Example data cold_tokens = [D[i] for i in ids_sorted if tf_sorted[i]==1] print "There are {0} cold tokens, which represent {1}% of the total number of tokens in the dictionary".format( len(cold_tokens), float(len(cold_tokens))/n_tokens*100) # scode: <WRITE YOUR CODE HERE> # SORTED TOKEN FREQUENCIES (I): # Count the number of occurrences of each token. token_count2 = np.zeros(n_tokens) for x in corpus_bow_flat: token_count2[x[0]] += (x[1]>0) # Sort by decreasing number of occurences ids_sorted2 = np.argsort(- token_count2) tf_sorted2 = token_count2[ids_sorted2] # SORTED TOKEN FREQUENCIES (II): # Example data n_bins = 25 hot_tokens2 = [D[i] for i in ids_sorted2[n_bins-1::-1]] y_pos2 = np.arange(len(hot_tokens2)) z2 = tf_sorted2[n_bins-1::-1]/n_art plt.figure() plt.barh(y_pos2, z2, align='center', alpha=0.4) plt.yticks(y_pos2, hot_tokens2) plt.xlabel('Average number of occurrences per article') plt.title('Token distribution') plt.show() display() tfidf = gensim.models.TfidfModel(corpus_bow) doc_bow = [(0, 1), (1, 1)] tfidf[doc_bow] corpus_tfidf = tfidf[corpus_bow] print corpus_tfidf[0][0:5] # Initialize an LSI transformation n_topics = 5 # scode: lsi = <FILL IN> lsi = gensim.models.LsiModel(corpus_tfidf, id2word=D, num_topics=n_topics) lsi.show_topics(num_topics=-1, num_words=10, log=False, formatted=True) # SORTED TOKEN FREQUENCIES (II): plt.rcdefaults() n_bins = 25 # Example data y_pos = range(n_bins-1, -1, -1) # pylab.rcParams['figure.figsize'] = 16, 8 # Set figure size plt.figure(figsize=(16, 8)) for i in range(n_topics): ### Plot top 25 tokens for topic i # Read i-thtopic # scode: <FILL IN> topic_i = lsi.show_topic(i, topn=n_bins) tokens = [t[0] for t in topic_i] weights = [t[1] for t in topic_i] # Plot # scode: <FILL IN> plt.subplot(1, n_topics, i+1) plt.barh(y_pos, weights, align='center', alpha=0.4) plt.yticks(y_pos, tokens) plt.xlabel('Top {0} topic weights'.format(n_bins)) plt.title('Topic {0}'.format(i)) plt.show() display() # On real corpora, target dimensionality of # 200–500 is recommended as a “golden standard” # Create a double wrapper over the original # corpus bow tfidf fold-in-lsi corpus_lsi = lsi[corpus_tfidf] print corpus_lsi[0] # Extract weights from corpus_lsi # scode weight0 = <FILL IN> weight0 = [doc[0][1] if doc != [] else -np.inf for doc in corpus_lsi] # Locate the maximum positive weight nmax = np.argmax(weight0) print nmax print weight0[nmax] print corpus_lsi[nmax] # Get topic 0 # scode: topic_0 = <FILL IN> topic_0 = lsi.show_topic(0, topn=n_bins) # Compute a list of tuples (token, wordcount) for all tokens in topic_0, where wordcount is the number of # occurences of the token in the article. # scode: token_counts = <FILL IN> token_counts = [(t[0], corpus_clean[nmax].count(t[0])) for t in topic_0] print "Topic 0 is:" print topic_0 print "Token counts:" print token_counts ldag = gensim.models.ldamodel.LdaModel( corpus=corpus_tfidf, id2word=D, num_topics=10, update_every=1, passes=10) ldag.print_topics() # For testing LDA, you can use the reuters dataset # X = lda.datasets.load_reuters() # vocab = lda.datasets.load_reuters_vocab() # titles = lda.datasets.load_reuters_titles() X = np.int32(np.zeros((n_art, n_tokens))) for n, art in enumerate(corpus_bow): for t in art: X[n, t[0]] = t[1] print X.shape print X.sum() vocab = D.values() titles = corpus_titles # Default parameters: # model = lda.LDA(n_topics, n_iter=2000, alpha=0.1, eta=0.01, random_state=None, refresh=10) model = lda.LDA(n_topics=10, n_iter=1500, random_state=1) model.fit(X) # model.fit_transform(X) is also available topic_word = model.topic_word_ # model.components_ also works # Show topics... n_top_words = 8 for i, topic_dist in enumerate(topic_word): topic_words = np.array(vocab)[np.argsort(topic_dist)][:-(n_top_words+1):-1] print('Topic {}: {}'.format(i, ' '.join(topic_words))) doc_topic = model.doc_topic_ for i in range(10): print("{} (top topic: {})".format(titles[i], doc_topic[i].argmax())) # This is to apply the model to a new doc(s) # doc_topic_test = model.transform(X_test) # for title, topics in zip(titles_test, doc_topic_test): # print("{} (top topic: {})".format(title, topics.argmax())) # Adapted from an example in sklearn site # http://scikit-learn.org/dev/auto_examples/applications/topics_extraction_with_nmf_lda.html # You can try also with the dataset provided by sklearn in # from sklearn.datasets import fetch_20newsgroups # dataset = fetch_20newsgroups(shuffle=True, random_state=1, #  remove=('headers', 'footers', 'quotes')) def print_top_words(model, feature_names, n_top_words): for topic_idx, topic in enumerate(model.components_): print("Topic #%d:" % topic_idx) print(" ".join([feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]])) print() print("Loading dataset...") # scode: data_samples = <FILL IN> print "*".join(['Esto', 'es', 'un', 'ejemplo']) data_samples = [" ".join(c) for c in corpus_clean] print 'Document 0:' print data_samples[0][0:200], '...' # Use tf (raw term count) features for LDA. print("Extracting tf features for LDA...") n_features = 1000 n_samples = 2000 tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=n_features, stop_words='english') t0 = time() tf = tf_vectorizer.fit_transform(data_samples) print("done in %0.3fs." % (time() - t0)) print tf[0][0][0] print("Fitting LDA models with tf features, " "n_samples=%d and n_features=%d..." % (n_samples, n_features)) # scode: lda = <FILL IN> lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=10, learning_method='online', learning_offset=50., random_state=0) # doc_topic_prior= 1.0/n_topics, topic_word_prior= 1.0/n_topics) t0 = time() corpus_lda = lda.fit_transform(tf) print corpus_lda[10]/np.sum(corpus_lda[10]) print("done in %0.3fs." % (time() - t0)) print corpus_titles[10] # print corpus_text[10] print("\nTopics in LDA model:") tf_feature_names = tf_vectorizer.get_feature_names() print_top_words(lda, tf_feature_names, 20) topics = lda.components_ topic_probs = [t/np.sum(t) for t in topics] #print topic_probs[0] print -np.sort(-topic_probs[0]) # SORTED TOKEN FREQUENCIES (II): plt.rcdefaults() n_bins = 50 # Example data y_pos = range(n_bins-1, -1, -1) # pylab.rcParams['figure.figsize'] = 16, 8 # Set figure size plt.figure(figsize=(16, 8)) for i in range(n_topics): ### Plot top 25 tokens for topic i # Read i-thtopic # scode: <FILL IN> topic_i = topic_probs[i] rank = np.argsort(- topic_i)[0:n_bins] tokens = [tf_feature_names[r] for r in rank] weights = [topic_i[r] for r in rank] # Plot # scode: <FILL IN> plt.subplot(1, n_topics, i+1) plt.barh(y_pos, weights, align='center', alpha=0.4) plt.yticks(y_pos, tokens) plt.xlabel('Top {0} topic weights'.format(n_bins)) plt.title('Topic {0}'.format(i)) plt.show() display() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Some Functions for working with Inception-v3 Step2: Putting it to use! Step3: How about more than one image
<ASSISTANT_TASK:> Python Code: import os import tensorflow as tf # import tensorflow.python.platform from tensorflow.python.platform import gfile import numpy as np import pandas as pd # Create the TensorFlow graph def create_graph(): model_dir = './CNW_Wildlife_Identification/imagenet' with gfile.FastGFile(os.path.join( model_dir, 'classify_image_graph_def.pb'), 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='') # Start a TensorFlow Session and choose our "tensor" for feature extraction # ('pool_3:0' is the last layer before classification) def setup(): create_graph() # Only needs to run the first time with tf.Session() as sess: # Get the last feature layer (preclassification) from inception-v3 next_to_last_tensor = sess.graph.get_tensor_by_name('pool_3:0') s = sess t = next_to_last_tensor return s,t # Get the actual features! def get_features(image, session, tensor): if not gfile.Exists(image): tf.logging.fatal('File does not exist %s', image) image_data = gfile.FastGFile(image, 'rb').read() predictions = session.run(tensor, {'DecodeJpeg/contents:0': image_data}) features = np.squeeze(predictions) return features.reshape(1,-1) session, tensor = setup() features = get_features('CNW_Wildlife_Identification/data/first_sample/EK000026-2.JPG', session, tensor) print features directory = 'CNW_Wildlife_Identification/data/first_sample' image_list = [] for p, dirs, files in os.walk(directory): for ff in files: if ff[-4:].lower() == '.jpg': image_list.append(p+'/'+ff) image_list # In practice this is only run once - so setup() is included as part of this function def get_features_repeatedly(image_list): '''take list of image file paths return numpy array of features ''' create_graph() with tf.Session() as session: # Get the last feature layer (preclassification) from inception-v3 tensor = session.graph.get_tensor_by_name('pool_3:0') nb_features = 2048 features = np.empty((len(image_list),nb_features)) for ind, image in enumerate(image_list): # if (ind%50 == 0): # print('Processing %s...' % (image)) print('Processing %s...' % (image)) if not gfile.Exists(image): tf.logging.fatal('File does not exist %s', image) image_data = gfile.FastGFile(image, 'rb').read() predictions = session.run(tensor, {'DecodeJpeg/contents:0': image_data}) features[ind,:] = np.squeeze(predictions) return features lotsafeatures = get_features_repeatedly(image_list) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Backpropagation Step2: Gradient Descent Step3: An implementation of a Deep Neural Network Step4: Backpropagation Step5: Solving the ODE Step6: Using neural network Step7: Using a deep neural network
<ASSISTANT_TASK:> Python Code: # Autograd will be used for later, so the numpy wrapper for Autograd must be imported import autograd.numpy as np from autograd import grad, elementwise_grad import autograd.numpy.random as npr from matplotlib import pyplot as plt def sigmoid(z): return 1/(1 + np.exp(-z)) def neural_network(params, x): # Find the weights (including and biases) for the hidden and output layer. # Assume that params is a list of parameters for each layer. # The biases are the first element for each array in params, # and the weights are the remaning elements in each array in params. w_hidden = params[0] w_output = params[1] # Assumes input x being an one-dimensional array num_values = np.size(x) x = x.reshape(-1, num_values) # Assume that the input layer does nothing to the input x x_input = x ## Hidden layer: # Add a row of ones to include bias x_input = np.concatenate((np.ones((1,num_values)), x_input ), axis = 0) z_hidden = np.matmul(w_hidden, x_input) x_hidden = sigmoid(z_hidden) ## Output layer: # Include bias: x_hidden = np.concatenate((np.ones((1,num_values)), x_hidden ), axis = 0) z_output = np.matmul(w_output, x_hidden) x_output = z_output return x_output # The trial solution using the deep neural network: def g_trial(x,params, g0 = 10): return g0 + x*neural_network(params,x) # The right side of the ODE: def g(x, g_trial, gamma = 2): return -gamma*g_trial # The cost function: def cost_function(P, x): # Evaluate the trial function with the current parameters P g_t = g_trial(x,P) # Find the derivative w.r.t x of the neural network d_net_out = elementwise_grad(neural_network,1)(P,x) # Find the derivative w.r.t x of the trial function d_g_t = elementwise_grad(g_trial,0)(x,P) # The right side of the ODE func = g(x, g_t) err_sqr = (d_g_t - func)**2 cost_sum = np.sum(err_sqr) return cost_sum def solve_ode_neural_network(x, num_neurons_hidden, num_iter, lmb): ## Set up initial weigths and biases # For the hidden layer p0 = npr.randn(num_neurons_hidden, 2 ) # For the output layer p1 = npr.randn(1, num_neurons_hidden + 1 ) # +1 since bias is included P = [p0, p1] print('Initial cost: %g'%cost_function(P, x)) ## Start finding the optimal weigths using gradient descent # Find the Python function that represents the gradient of the cost function # w.r.t the 0-th input argument -- that is the weights and biases in the hidden and output layer cost_function_grad = grad(cost_function,0) # Let the update be done num_iter times for i in range(num_iter): # Evaluate the gradient at the current weights and biases in P. # The cost_grad consist now of two arrays; # one for the gradient w.r.t P_hidden and # one for the gradient w.r.t P_output cost_grad = cost_function_grad(P, x) P[0] = P[0] - lmb * cost_grad[0] P[1] = P[1] - lmb * cost_grad[1] print('Final cost: %g'%cost_function(P, x)) return P def deep_neural_network(deep_params, x): # N_hidden is the number of hidden layers N_hidden = np.size(deep_params) - 1 # -1 since params consist of parameters to all the hidden layers AND the output layer # Assumes input x being an one-dimensional array num_values = np.size(x) x = x.reshape(-1, num_values) # Assume that the input layer does nothing to the input x x_input = x # Due to multiple hidden layers, define a variable referencing to the # output of the previous layer: x_prev = x_input ## Hidden layers: for l in range(N_hidden): # From the list of parameters P; find the correct weigths and bias for this layer w_hidden = deep_params[l] # Add a row of ones to include bias x_prev = np.concatenate((np.ones((1,num_values)), x_prev ), axis = 0) z_hidden = np.matmul(w_hidden, x_prev) x_hidden = sigmoid(z_hidden) # Update x_prev such that next layer can use the output from this layer x_prev = x_hidden ## Output layer: # Get the weights and bias for this layer w_output = deep_params[-1] # Include bias: x_prev = np.concatenate((np.ones((1,num_values)), x_prev), axis = 0) z_output = np.matmul(w_output, x_prev) x_output = z_output return x_output # The trial solution using the deep neural network: def g_trial_deep(x,params, g0 = 10): return g0 + x*deep_neural_network(params,x) # The same cost function as for the neural network, but calls deep_neural_network instead. def cost_function_deep(P, x): # Evaluate the trial function with the current parameters P g_t = g_trial_deep(x,P) # Find the derivative w.r.t x of the neural network d_net_out = elementwise_grad(deep_neural_network,1)(P,x) # Find the derivative w.r.t x of the trial function d_g_t = elementwise_grad(g_trial_deep,0)(x,P) # The right side of the ODE func = g(x, g_t) err_sqr = (d_g_t - func)**2 cost_sum = np.sum(err_sqr) return cost_sum def solve_ode_deep_neural_network(x, num_neurons, num_iter, lmb): # num_hidden_neurons is now a list of number of neurons within each hidden layer # Find the number of hidden layers: N_hidden = np.size(num_neurons) ## Set up initial weigths and biases # Initialize the list of parameters: P = [None]*(N_hidden + 1) # + 1 to include the output layer P[0] = npr.randn(num_neurons[0], 2 ) for l in range(1,N_hidden): P[l] = npr.randn(num_neurons[l], num_neurons[l-1] + 1) # +1 to include bias # For the output layer P[-1] = npr.randn(1, num_neurons[-1] + 1 ) # +1 since bias is included print('Initial cost: %g'%cost_function_deep(P, x)) ## Start finding the optimal weigths using gradient descent # Find the Python function that represents the gradient of the cost function # w.r.t the 0-th input argument -- that is the weights and biases in the hidden and output layer cost_function_deep_grad = grad(cost_function_deep,0) # Let the update be done num_iter times for i in range(num_iter): # Evaluate the gradient at the current weights and biases in P. # The cost_grad consist now of N_hidden + 1 arrays; the gradient w.r.t the weights and biases # in the hidden layers and output layers evaluated at x. cost_deep_grad = cost_function_deep_grad(P, x) for l in range(N_hidden+1): P[l] = P[l] - lmb * cost_deep_grad[l] print('Final cost: %g'%cost_function_deep(P, x)) return P def g_analytic(x, gamma = 2, g0 = 10): return g0*np.exp(-gamma*x) npr.seed(15) ## Decide the vales of arguments to the function to solve N = 10 x = np.linspace(0, 1, N) ## Set up the initial parameters num_hidden_neurons = 10 num_iter = 10000 lmb = 0.001 P = solve_ode_neural_network(x, num_hidden_neurons, num_iter, lmb) res = g_trial(x,P) res_analytical = g_analytic(x) plt.figure(figsize=(10,10)) plt.title('Performance of neural network solving an ODE compared to the analytical solution') plt.plot(x, res_analytical) plt.plot(x, res[0,:]) plt.legend(['analytical','nn']) plt.xlabel('x') plt.ylabel('g(x)') plt.show() npr.seed(15) ## Decide the vales of arguments to the function to solve N = 10 x = np.linspace(0, 1, N) ## Set up the initial parameters num_hidden_neurons = np.array([10,10]) num_iter = 10000 lmb = 0.001 P = solve_ode_deep_neural_network(x, num_hidden_neurons, num_iter, lmb) res = g_trial_deep(x,P) res_analytical = g_analytic(x) plt.figure(figsize=(10,10)) plt.title('Performance of a deep neural network solving an ODE compared to the analytical solution') plt.plot(x, res_analytical) plt.plot(x, res[0,:]) plt.legend(['analytical','dnn']) plt.ylabel('g(x)') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Sample selection Step2: 1. Google form analysis Step3: formatted version for nice display Step4: 1.1 complete sample Step5: 1.2 Per temporality Step6: 1.2.2 answered only after Step7: 1.2.3 answered both before and after Step8: 1.2.4 pretest vs posttest Step9: 1.3 Per demography Step10: 1.3.2 French speakers Step11: 1.3.3 Female Step12: 1.3.4 Male Step13: 1.3.5 biologists Step14: broad Step15: 1.3.6 gamers Step16: broad Step17: 1.4 answered only after Step18: plotCorrelationMatrix( _binarizedMatrix, _title='Questions\' Correlations', _abs=False, _clustered=False, _questionNumbers=False ) Step19: thisClustermap.ax_heatmap.annotate(overlay) Step20: thisClustermap, overlay = plotCorrelationMatrix( Step21: thisClustermap, overlay = plotCorrelationMatrix( Step22: 2. Game sessions Step23: 3. Per session and per user analysis Step24: completed vs played time Step25: x = allScores.copy() Step26: linear regression Step27: linear regression 2 Step28: linear regression 3 Step29: data = pd.DataFrame(index = range(0, len(xReshaped)), data = xReshaped, columns = ['score']) Step30: Completed vs non-completed Step31: Score increase Step32: Correlations between durations and score on questions Step33: max chapter vs scores Step34: 5. Game map Step35: Sessions (filtered) Step36: Sessions of dev IDs Step37: Unique platforms Step38: Checkpoints passed / furthest checkpoint (unfiltered) Step39: Session starts Step40: Duration Step41: Duration plot Step42: Phase 1 vs Phase 2 comparison Step43: Played time on critical checkpoints
<ASSISTANT_TASK:> Python Code: %run "../Functions/8. RM-GF correlations.ipynb" %run "../Functions/Plot.ipynb" ### Online 1.52.2 #gfdf = gfdfWebgl1522PretestPosttestUniqueProfilesVolunteers.copy() #rmdf = rmdfWebgl1522PretestPosttestUniqueProfilesVolunteers.copy() ### Playtest #gfdf = gfdfPlaytestTotalPretestPosttestUniqueProfilesVolunteers.copy() #gfdf = gfdfPlaytestPhase1PretestPosttestUniqueProfilesVolunteers.copy() #gfdf = gfdfPlaytestPhase2PretestPosttestUniqueProfilesVolunteers.copy() #rmdf = rmdfPlaytestTotalPretestPosttestUniqueProfilesVolunteers.copy() #rmdf = rmdfPlaytestPhase1PretestPosttestUniqueProfilesVolunteers.copy() #rmdf = rmdfPlaytestPhase2PretestPosttestUniqueProfilesVolunteers.copy() ### Online 1.60 #gfdf = gfdfWebgl160PretestPosttestUniqueProfilesVolunteers.copy() #rmdf = rmdfWebgl160PretestPosttestUniqueProfilesVolunteers.copy() # For quicker allData switching. gfdf = gfdfPlaytestPhase1PretestPosttestUniqueProfilesVolunteers.copy() rmdf = rmdfPlaytestPhase1PretestPosttestUniqueProfilesVolunteers.copy() allData = allBinaryDataPlaytestPhase1PretestPosttestUniqueProfilesVolunteers.copy() # For quicker allData switching. #gfdf = gfdfWebgl1522Timed.copy() #rmdf = rmdfWebgl1522Timed.copy() print("sample: gform") print("surveys: %s" % len(gform)) print("unique users: %s" % getUniqueUserCount(gform)) print("RM before: %s" % len(gform[gform[QTemporality] == answerTemporalities[0]])) print("GF before: %s" % len(getGFormBefores(gform))) print("RM after: %s" % len(gform[gform[QTemporality] == answerTemporalities[1]])) print("GF after: %s" % len(getGFormAfters(gform))) print("unique biologists: %s" % getUniqueUserCount(getSurveysOfBiologists(gform))) print("unique gamers: %s" % getUniqueUserCount(getSurveysOfGamers(gform))) print("unique perfect users: %s" % getUniqueUserCount(getSurveysOfUsersWhoAnsweredBoth(gform))) print("unique perfect users: %s" % getPerfectPretestPostestPairsCount(gform)) print("sample: gfdf") print("surveys: %s" % len(gfdf)) print("unique users: %s" % getUniqueUserCount(gfdf)) print("RM before: %s" % len(gfdf[gfdf[QTemporality] == answerTemporalities[0]])) print("GF before: %s" % len(getGFormBefores(gfdf))) print("RM after: %s" % len(gfdf[gfdf[QTemporality] == answerTemporalities[1]])) print("GF after: %s" % len(getGFormAfters(gfdf))) print("unique biologists: %s" % getUniqueUserCount(getSurveysOfBiologists(gfdf))) print("unique gamers: %s" % getUniqueUserCount(getSurveysOfGamers(gfdf))) print("unique perfect users: %s" % getUniqueUserCount(getSurveysOfUsersWhoAnsweredBoth(gfdf))) print("unique perfect users: %s" % getPerfectPretestPostestPairsCount(gfdf)) print("category | count") print("--- | ---") print("sample | gform") print("surveys | %s" % len(gform)) print("unique users | %s" % getUniqueUserCount(gform)) print("RM before | %s" % len(gform[gform[QTemporality] == answerTemporalities[0]])) print("GF before | %s" % len(getGFormBefores(gform))) print("RM after | %s" % len(gform[gform[QTemporality] == answerTemporalities[1]])) print("GF after | %s" % len(getGFormAfters(gform))) print("unique biologists | %s" % getUniqueUserCount(getSurveysOfBiologists(gform))) print("unique gamers | %s" % getUniqueUserCount(getSurveysOfGamers(gform))) print("unique perfect users | %s" % getUniqueUserCount(getSurveysOfUsersWhoAnsweredBoth(gform))) print("unique perfect users | %s" % getPerfectPretestPostestPairsCount(gform)) print() #print("(" + str(pd.to_datetime('today').date()) + ")") print("("+dataFilesNamesStem+")") print("category | count") print("--- | ---") print("sample | gfdf") print("surveys | %s" % len(gfdf)) print("unique users | %s" % getUniqueUserCount(gfdf)) print("RM before | %s" % len(gfdf[gfdf[QTemporality] == answerTemporalities[0]])) print("GF before | %s" % len(getGFormBefores(gfdf))) print("RM after | %s" % len(gfdf[gfdf[QTemporality] == answerTemporalities[1]])) print("GF after | %s" % len(getGFormAfters(gfdf))) print("unique biologists | %s" % getUniqueUserCount(getSurveysOfBiologists(gfdf))) print("unique gamers | %s" % getUniqueUserCount(getSurveysOfGamers(gfdf))) print("unique perfect users | %s" % getUniqueUserCount(getSurveysOfUsersWhoAnsweredBoth(gfdf))) print("unique perfect users | %s" % getPerfectPretestPostestPairsCount(gfdf)) print() #print("(" + str(pd.to_datetime('today').date()) + ")") print("("+dataFilesNamesStem+")") #plotSamples(getDemographicSamples(gfdf)) #plotSamples(getTemporalitySamples(gfdf)) gf_befores = getGFormBefores(gfdf) rm_befores = getRMBefores(gfdf) gfrm_befores = getRMBefores(getGFormBefores(gfdf)) (gf_befores[QUserId] == rm_befores[QUserId]).all() #plotSamples(getDemographicSamples(gf_befores)) gf_afters = getGFormAfters(gfdf) rm_afters = getRMAfters(gfdf) gfrm_afters = getRMAfters(getGFormBefores(gfdf)) (gf_afters[QUserId] == rm_afters[QUserId]).all() #plotSamples(getDemographicSamples(gf_afters)) gf_both = getSurveysOfUsersWhoAnsweredBoth(gfdf, gfMode = True, rmMode = False) rm_both = getSurveysOfUsersWhoAnsweredBoth(gfdf, gfMode = False, rmMode = True) gfrm_both = getSurveysOfUsersWhoAnsweredBoth(gfdf, gfMode = True, rmMode = True) #plotSamples(getDemographicSamples(gf_both)) #plotSamples(getDemographicSamples(rm_both)) #plotSamples(getDemographicSamples(gfrm_both)) matrixToDisplay = plotBasicStats( gfdf, horizontalPlot=False, sortedAlong="", figsize=(12,20), title = 'percentages of correct answers', annot=True, annot_kws={"size": 13}, font_scale=1.3, ); matrixToDisplay = plotBasicStats( gfdf, title = 'percentages of correct answers (sorted)', sortedAlong="progression", horizontalPlot=False, figsize=(12,20), annot=True, annot_kws={"size": 13}, font_scale=1.3, ); if False: #barIndices = matrixToDisplay.index barIndices = scientificQuestions matrixToDisplaySubset = matrixToDisplay.loc[scientificQuestions,:] pretestBars = matrixToDisplaySubset.loc[barIndices, 'pretest'] posttestBars = matrixToDisplaySubset.loc[barIndices, 'posttest'] plt.bar(np.arange(len(barIndices)), pretestBars) if False: # data to plot #barIndices = matrixToDisplay.index barIndices = scientificQuestions matrixToDisplaySubset = matrixToDisplay.loc[scientificQuestions,:] pretestBars = matrixToDisplaySubset.loc[barIndices, 'pretest'] posttestBars = matrixToDisplaySubset.loc[barIndices, 'posttest'] n_groups = len(barIndices) # create plot fig, ax = plt.subplots(figsize=(15,7)) index = np.arange(n_groups) bar_width = 0.35 opacity = 0.8 rects1 = plt.bar(index, pretestBars, bar_width, alpha=opacity, color='b', label='pretest') rects2 = plt.bar(index + bar_width, posttestBars, bar_width, alpha=opacity, color='g', label='posttest') plt.xlabel('questions') plt.ylabel('percentage correct') #plt.title('Percentage correct - pretest and posttest') #plt.xticks(index + bar_width, barIndices, rotation='vertical') plt.xticks(index + bar_width, questionCategories, rotation='vertical') plt.legend() plt.tight_layout() plt.show() barIndicesHardcoded = [ 'Device: PCONS:GFP:RBS:TER XXX', 'Device: PBAD:GFP:RBS:TER XXX', 'Device: AMPR:RBS:PCONS:TER XXX', 'Device: GFP:RBS:PCONS:TER XXX', 'Device: RBS:PCONS:AMPR:TER XXX', 'Device: RBS:PCONS:FLHDC:TER XXX', 'Function - game: CDS', 'Function: PR', 'Function - biology: CDS', 'Example: CDS', 'Function: Plasmid', 'Function: TER', 'Function: RBS', 'Name: Operator XXX', 'Name: RBS', 'Name: CDS', 'Name: PR', 'Name: Plasmid', 'Name: TER', 'Device: PCONS:RBS:FLHDC:TER', 'Device: PBAD:RBS:ARA:TER', 'Device: PBAD:RBS:GFP:TER', 'Unequip the movement device: effect', 'BioBricks and devices composition', 'Green fluorescence', 'Ampicillin antibiotic', 'Genotype and phenotype',] if True: # data to plot #barIndices = matrixToDisplay.index barIndices = scientificQuestions matrixToDisplaySubset = matrixToDisplay.loc[scientificQuestions,:] matrixToDisplaySubset['qCategory'] = questionCategories matrixToDisplaySubset = matrixToDisplaySubset.sort_values(by=['qCategory', 'posttest']) barIndices = matrixToDisplaySubset.index barIndices = barIndicesHardcoded matrixToDisplaySubset = matrixToDisplaySubset.loc[barIndices,:] barIndices = matrixToDisplaySubset.index pretestBars = matrixToDisplaySubset.loc[barIndices, 'pretest'] posttestBars = matrixToDisplaySubset.loc[barIndices, 'posttest'] n_groups = len(barIndices) # create plot fig, ax = plt.subplots(figsize=(15,7)) index = np.arange(n_groups) bar_width = 0.35 opacity = 0.8 rects1 = plt.bar(index, pretestBars, bar_width, alpha=opacity, color='b', label='pretest') rects2 = plt.bar(index + bar_width, posttestBars, bar_width, alpha=opacity, color='g', label='posttest') #plt.xlabel('questions') plt.ylabel('Correct answers') #plt.title('Percentage correct - pretest and posttest') #plt.xticks(index + bar_width, barIndices.map(questionCategoriesDictionary), rotation='vertical') plt.xticks(index + bar_width, barIndices, rotation='vertical') #plt.xticks(index + bar_width, questionCategories, rotation='vertical') plt.legend() plt.tight_layout() plt.show() if True: # data to plot #barIndices = matrixToDisplay.index barIndices = scientificQuestions matrixToDisplaySubset = matrixToDisplay.loc[scientificQuestions,:] matrixToDisplaySubset['qCategory'] = questionCategories matrixToDisplaySubset = matrixToDisplaySubset.sort_values(by=['qCategory', 'posttest']) barIndices = matrixToDisplaySubset.index for qCategory in set(questionCategories): questionsOfThatCategory = [k for k, v in questionCategoriesDictionary.items() if v == qCategory] barIndices = questionsOfThatCategory bars = matrixToDisplaySubset.loc[barIndices,:].sort_values(by=['posttest'], ascending=False) barIndices = bars.index pretestBars = bars['pretest'] posttestBars = bars['posttest'] n_groups = len(barIndices) # create plot fig, ax = plt.subplots(figsize=(12, n_groups*2)) plt.xlim(0,85) index = np.arange(len(questionsOfThatCategory)) bar_width = 0.35 opacity = 0.8 rects1 = plt.barh(index + bar_width, pretestBars, bar_width, alpha=opacity, color='b', label='pretest') rects2 = plt.barh(index, posttestBars, bar_width, alpha=opacity, color='g', label='posttest') plt.xlabel('correct answers (%)') #plt.yticks(index + bar_width, barIndices) plt.legend() plt.tight_layout() plt.show() fig.savefig("score pretest posttest h big nolabel " + qCategory) #matrixToDisplay.to_csv("../../data/sortedPrePostProgression.csv") #matrixToDisplay.T cohortEN = gfdf[gfdf[QLanguage] == enLanguageID] #plotSamples(getTemporalitySamples(cohortEN)) cohortFR = gfdf[gfdf[QLanguage] == frLanguageID] #plotSamples(getTemporalitySamples(cohortFR)) cohortF = gfdf[gfdf[QGender] == 'Female'] #plotSamples(getTemporalitySamples(cohortF)) cohortM = gfdf[gfdf[QGender] == 'Male'] #plotSamples(getTemporalitySamples(cohortM)) cohortBioS = getSurveysOfBiologists(gfdf) #plotSamples(getTemporalitySamples(cohortBioS)) cohortBioB = getSurveysOfBiologists(gfdf, False) #plotSamples(getTemporalitySamples(cohortBioB)) cohortGamS = getSurveysOfGamers(gfdf) #plotSamples(getTemporalitySamples(cohortGamS)) cohortGamB = getSurveysOfGamers(gfdf, False) #plotSamples(getTemporalitySamples(cohortGamB)) #T-tests between pretest and posttest scores among some player groups plotBasicStats(gfdf, horizontalPlot=True, sortedAlong="progression", figsize=(20,4)); plotBasicStats(cohortF, horizontalPlot=True, sortedAlong="progression", figsize=(20,4)); plotBasicStats(cohortM, horizontalPlot=True, sortedAlong="progression", figsize=(20,4)); plotBasicStats(cohortGamB, horizontalPlot=True, sortedAlong="progression", figsize=(20,4)); sciBinarizedBefore = getAllBinarized(getRMBefores(gfdf)) #sciBinarizedBefore = getAllBinarized(getGFBefores()) #plotCorrelationMatrix( _binarizedMatrix, _title='Questions\' Correlations', _abs=False, _clustered=False, _questionNumbers=False ): plotCorrelationMatrix( sciBinarizedBefore, _abs=False, _clustered=False, _questionNumbers=True, _annot = True, _figsize = (20,20), _title='Correlations on survey questions before', ) sciBinarizedAfter = getAllBinarized(getRMAfters(gfdf)) #plotCorrelationMatrix( _binarizedMatrix, _title='Questions\' Correlations', _abs=False, _clustered=False, _questionNumbers=False ): plotCorrelationMatrix( sciBinarizedAfter, _abs=False, _clustered=False, _questionNumbers=True, _annot = True, _figsize = (20,20), _title='Correlations on survey questions after', ) #plotCorrelationMatrix( _binarizedMatrix, _title='Questions\' Correlations', _abs=False, _clustered=False, _questionNumbers=False ): thisClustermap, overlay = plotCorrelationMatrix( sciBinarizedAfter, _abs=False, _clustered=True, _questionNumbers=True, _annot = True, _figsize = (20,20), _metric='correlation' ) allQuestions = correctAnswers + demographicAnswers allBinarized = getAllBinarized(gfdf, _source = allQuestions) allBinarizedBefore = getAllBinarized(getRMBefores(gfdf), _source = allQuestions) allBinarizedAfter = getAllBinarized(getRMAfters(gfdf), _source = allQuestions) #plotCorrelationMatrix( _binarizedMatrix, _title='Questions\' Correlations', _abs=False, _clustered=False, _questionNumbers=False ): plotCorrelationMatrix( allBinarized, _abs=True, _clustered=False, _questionNumbers=True, _annot = True, _figsize = (20,20), _title='Correlation of all answers', ) #plotCorrelationMatrix( _binarizedMatrix, _title='Questions\' Correlations', _abs=False, _clustered=False, _questionNumbers=False ): plotCorrelationMatrix( allBinarizedBefore, _abs=False, _clustered=False, _questionNumbers=True, _annot = True, _figsize = (20,20), _title='Correlations on all questions before', ) plotCorrelationMatrix( allBinarizedAfter, _abs=False, _clustered=False, _questionNumbers=True, _annot = True, _figsize = (20,20), _title='Correlation of all answers after', ) allBinarizedAfterSub = allBinarizedAfter.copy() allBinarizedAfterSub = allBinarizedAfterSub.loc[:,['Age'] + scientificQuestions] plotCorrelationMatrix( allBinarizedAfterSub, _abs=False, _clustered=False, _questionNumbers=True, _annot = True, _figsize = (20,20), _title='Correlation of all answers after', ) #startDate = minimum152Date #endDate = maximum152Date startDate = rmdf['userTime'].min().date() - datetime.timedelta(days=1) endDate = rmdf['userTime'].max().date() + datetime.timedelta(days=1) valuesPerDay = rmdf['userTime'].map(lambda t: t.date()).value_counts().sort_index() plotPerDay(valuesPerDay, title='RedMetrics events', startDate=startDate, endDate=endDate) valuesPerDay[pd.to_datetime('2017-09-01', utc=True).date():pd.to_datetime('2017-09-30', utc=True).date()] valuesPerDay = rmdf[rmdf['type'] == 'start']['userTime'].map(lambda t: t.date()).value_counts().sort_index() plotPerDay(valuesPerDay, title='sessions', startDate=startDate, endDate=endDate) valuesPerDay[pd.to_datetime('2017-09-01', utc=True).date():pd.to_datetime('2017-09-30', utc=True).date()] valuesPerDay = rmdf.groupby('userId').agg({ "userTime": np.min })['userTime'].map(lambda t: t.date()).value_counts().sort_index() plotPerDay(valuesPerDay, title='game users', startDate=startDate, endDate=endDate) valuesPerDay[pd.to_datetime('2017-09-01', utc=True).date():pd.to_datetime('2017-09-30', utc=True).date()] valuesPerDay = gfdf.groupby(localplayerguidkey).agg({ QTimestamp: np.min })[QTimestamp].map(lambda t: t.date()).value_counts().sort_index() plotPerDay(valuesPerDay, title='survey answers', startDate=startDate, endDate=endDate) valuesPerDay[pd.to_datetime('2017-09-01', utc=True).date():pd.to_datetime('2017-09-30', utc=True).date()] beforesPerDay = gfdf[gfdf[QTemporality] == answerTemporalities[0]].groupby(localplayerguidkey).agg({ QTimestamp: np.min })[QTimestamp].map(lambda t: t.date()).value_counts().sort_index() aftersPerDay = gfdf[gfdf[QTemporality] == answerTemporalities[1]].groupby(localplayerguidkey).agg({ QTimestamp: np.min })[QTimestamp].map(lambda t: t.date()).value_counts().sort_index() undefinedPerDay = gfdf[gfdf[QTemporality] == answerTemporalities[2]].groupby(localplayerguidkey).agg({ QTimestamp: np.min })[QTimestamp].map(lambda t: t.date()).value_counts().sort_index() plotPerDay(beforesPerDay, title='survey befores', startDate=startDate, endDate=endDate) plotPerDay(aftersPerDay, title='survey afters', startDate=startDate, endDate=endDate) plotPerDay(undefinedPerDay, title='survey undefined', startDate=startDate, endDate=endDate) #pretests = gform[gform[QTemporality] == answerTemporalities[0]] #pretests[pretests[QBBFunctionPlasmid] == ] binarized = sciBinarizedBefore intermediaryNumerator = getCrossCorrectAnswers(binarized).round().astype(int)*100 percentagesCrossCorrect = (intermediaryNumerator / binarized.shape[0]).round().astype(int) totalPerQuestion = np.dot(np.ones(binarized.shape[0]), binarized) sciBinarizedBefore.columns[totalPerQuestion == 0] getPercentageCrossCorrect(sciBinarizedBefore, figsize=(40,40)) getPercentageCrossCorrect(sciBinarizedAfter, figsize=(40,40)) len(gfdf), len(getAllResponders(gfdf)) matrixToDisplay = plotBasicStats(gfdf, horizontalPlot=True, sortedAlong="progression", figsize=(20,4)); subjectCount = allData.shape[1] measuredPretest = 100*allData.loc[pretestScientificQuestions,:].sum(axis='columns')/subjectCount measuredPretest.index = scientificQuestions measuredPosttest = 100*allData.loc[posttestScientificQuestions,:].sum(axis='columns')/subjectCount measuredPosttest.index = scientificQuestions measuredDelta2 = (measuredPosttest - measuredPretest) measuredDelta2 = pd.DataFrame(measuredDelta2.round().astype(int)) measuredDelta2.columns = ["measuredDelta2"] measuredDelta2 = measuredDelta2.sort_values(by = "measuredDelta2", ascending = True).T _fig = plt.figure(figsize=(20,2)) _ax1 = plt.subplot(111) _ax1.set_title("measuredDelta2") sns.heatmap( measuredDelta2, ax=_ax1, cmap=plt.cm.jet, square=True, annot=True, fmt='d', vmin=0, vmax=100, ) #(matrixToDisplay.loc['progression',scientificQuestions] - measuredDelta2.loc['measuredDelta2',scientificQuestions]) testDF = pd.DataFrame(columns=[ 'pretest1', 'posttest1', 'measuredDelta', 'pretest2', 'posttest2', 'matrixToDisplay'], data = 0, index= scientificQuestions) testDF['pretest1'] = measuredPretest testDF['posttest1'] = measuredPosttest testDF['measuredDelta'] = measuredDelta2.T['measuredDelta2'] testDF['pretest2'] = matrixToDisplay.T['pretest'][scientificQuestions] testDF['posttest2'] = matrixToDisplay.T['posttest'][scientificQuestions] testDF['matrixToDisplay'] = matrixToDisplay.T['progression'][scientificQuestions] testDF = testDF.round().astype(int) #testDF measuredDelta = allData.loc[deltaScientificQuestions,:].sum(axis='columns') measuredDelta.mean(), measuredDelta.median() #measuredDelta.sort_values() #pretestData = getAllUserVectorData( gfdf[gfdf[QTemporality] == answerTemporalities[0]], _source = correctAnswers ) #posttestData = getAllUserVectorData( gfdf[gfdf[QTemporality] == answerTemporalities[1]], _source = correctAnswers ) plotAllUserVectorDataCorrelationMatrix( allData.T, _abs=False, _figsize = (40,40), _clustered=False ) demographicCriteria = demographicQuestions.copy() plotAllUserVectorDataCorrelationMatrix( allData.T, _abs=False, _figsize = (20,20), _clustered=False, columnSubset=[]\ + completionTimesCriteria + totalTimesCriteria + pretestScientificQuestions #+ posttestScientificQuestions #+ deltaScientificQuestions + overallScoreCriteria #+ demographicCriteria ) #completers = rmdf[rmdf['type'] == 'complete'][QUserId] #nonCompleter = rmdf[~rmdf[QUserId].isin(completers)][QUserId].iloc[0] #getUserDataVector(nonCompleter)#.loc[14,:] #allData.shape #allData.index data = pd.DataFrame(index=allData.columns, columns=["time", "posttestScore", "deltaScore","completed"]) for userId in data.index: data.loc[userId, "time"] = getPlayedTimeUser(userId, _rmDF = rmdf)['tutorial']['totalSpentTime'].total_seconds() data.loc[userId, "posttestScore"] = allData.loc['scoreposttest', userId] data.loc[userId, "pretestScore"] = allData.loc['scorepretest', userId] data.loc[userId, "deltaScore"] = allData.loc['scoredelta', userId] data.loc[userId, "completed"] = allData.loc['complete', userId] data.shape x = data["posttestScore"] x2 = data[data["completed"]==1]["posttestScore"] y = data["time"] y2 = data[data["completed"]==1]["time"] plt.figure(figsize=(12, 4)) ax1 = plt.subplot(121) plt.scatter(x, y)#, c='blue', alpha=0.5) plt.scatter(x2, y2)#, c='red', alpha=0.5) plt.xlabel('score') plt.ylabel('time') plt.title("time against score, n=" + str(len(x))) #ax1.legend(loc='center left', bbox_to_anchor=(1, 0.5)) ax2 = plt.subplot(122) plt.scatter(y, x) plt.scatter(y2, x2) plt.xlabel('time') plt.ylabel('score') plt.title("score against time, n=" + str(len(x))) ax2.legend(loc='center left', bbox_to_anchor=(-1.2, 0.9), labels =["unfinished games","completed games"]) plt.show() x = data["posttestScore"].astype(float) x2 = data[data["completed"]==1]["posttestScore"].astype(float) y = data["time"].astype(float) y2 = data[data["completed"]==1]["time"].astype(float) # Get the linear models lm_original = np.polyfit(x, y, 1) # calculate the y values based on the co-efficients from the model r_x, r_y = zip(*((i, i*lm_original[0] + lm_original[1]) for i in x)) # Put in to a data frame, to keep is all nice lm_original_plot = pd.DataFrame({ 'scores' : r_x, 'times' : r_y }) lm_original_plot = lm_original_plot.drop_duplicates() lm_original_plot = lm_original_plot.sort_values(by="scores") lm_original_plot = lm_original_plot.drop(lm_original_plot.index[1:-1]) plt.figure(figsize=(6, 4)) ax = plt.subplot(111) plt.scatter(x, y) plt.scatter(x2, y2) # Plot the original data and model #lm_original_plot.plot(kind='line', color='Red', x='scores', y='times', ax=ax) plt.plot('scores', 'times', data=lm_original_plot, color='Red') plt.xlabel('score') plt.ylabel('time') plt.show() from sklearn import datasets, linear_model from sklearn.metrics import mean_squared_error, r2_score x = data["posttestScore"].astype(float) x2 = data[data["completed"]==1]["posttestScore"].astype(float) y = data["time"].astype(float) y2 = data[data["completed"]==1]["time"].astype(float) xReshaped = x.values.reshape(-1, 1) # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(xReshaped, y) # Make predictions using the testing set pred = regr.predict(xReshaped) # The coefficients print('Coefficients: \n', regr.coef_) # The mean squared error print("Mean squared error: %.2f" % mean_squared_error(y, pred)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % r2_score(y, pred)) # Plot outputs plt.scatter(x, y, color='black') plt.plot(x, pred, color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show() regr.intercept_,regr.coef_ sns.regplot(x=x, y=y, color="b") plt.scatter(x2, y2, color='red') plt.xlabel("score") plt.ylabel("time played") #import patsy import statsmodels.formula.api as smf data2 = data.astype(float) ### STATSMODELS ### timeScoreformula = 'time ~ posttestScore' # create a fitted model lm1 = smf.ols(formula=timeScoreformula, data=data2).fit() # print the coefficients #lm1.params #lm1.summary() # print the confidence intervals for the model coefficients lm1.conf_int() # print the p-values for the model coefficients # Represents the probability that the coefficient is actually zero lm1.pvalues # print the R-squared value for the model lm1.rsquared ### STATSMODELS ### timeScoreformula = 'time ~ posttestScore' lm1 = smf.ols(formula=timeScoreformula, data=data2).fit() lm2 = smf.ols(formula=timeScoreformula, data=data2[data2["completed"] == 0]).fit() lm3 = smf.ols(formula=timeScoreformula, data=data2[data2["completed"] == 1]).fit() lm1.rsquared,lm2.rsquared,lm3.rsquared data['deltaScoreRate'] = data['deltaScore']/data['pretestScore'] meanDelta = data['deltaScore'].mean() meanPretest = data['pretestScore'].mean() meanDelta/meanPretest overallScoreCriteria = ["scorepretest", "scoreposttest", "scoredelta",] stemTimesCriteria = ["ch" + "{0:0=2d}".format(i) for i in range(0,15)] completionTimesCriteria = [st + "completion" for st in stemTimesCriteria] + ["completionTime"] totalTimesCriteria = [st + "total" for st in stemTimesCriteria] + ["totalTime"] allData2 = allData.T.rename(str,axis="columns") allData3 = allData2[allData2['ch00completion'] < pd.Timedelta.max.total_seconds()] len(allData3) allData2[allData2[criterionLabel]>9e+09] sectionNb = '01' criterionLabel = 'ch' + sectionNb + 'completion' sectionName = 'tutorial.Checkpoint' + sectionNb testUserId = allData2[allData2[criterionLabel]>9e+09].index[0] #rmdf or rmdfConcat _rmdf = rmdfConcat _rmdf[(_rmdf[QUserId] == testUserId) \ & (_rmdf['type'] == 'reach') \ & (_rmdf['section'] == 'tutorial.Checkpoint' + sectionNb) \ ].loc[:, ['section', 'userTime']] testUserId _rmdf[(_rmdf[QUserId] == testUserId)] gfdf[gfdf[QUserId] == testUserId] #chosenPrefix = answerTemporalities[0] chosenPrefix = answerTemporalities[1] #chosenPrefix = "delta" #warning: not the same as displayed columns, see lower chosenCriteria = [chosenPrefix + " " + q for q in scientificQuestions] + overallScoreCriteria durationsScoresCorrelations = pd.DataFrame(index=completionTimesCriteria+totalTimesCriteria, columns=chosenCriteria, data=np.nan) durationsScoresCorrelations = durationsScoresCorrelations.rename(str, axis='rows') annotationMatrix = np.empty(shape=[durationsScoresCorrelations.shape[0], 1], dtype=int) #annotationMatrix2D = np.empty(durationsScoresCorrelations.shape, dtype=str) allData2 = allData.T.rename(str,axis="columns") for i in range(len(durationsScoresCorrelations.index)): checkpoint = durationsScoresCorrelations.index[i] allData3 = allData2[allData2[checkpoint] < pd.Timedelta.max.total_seconds()] annotationMatrix[i] = len(allData3) for q in durationsScoresCorrelations.columns: corr = np.corrcoef(allData3[checkpoint], allData3[q]) if corr[0,0] < 0: print("[" + checkpoint + ";" + q + "]:" + str(corr[0,0])) #if pd.isnull(corr[0,1]): # print("[" + checkpoint + ";" + q + "] null") durationsScoresCorrelations.loc[checkpoint, q] = corr[0,1] _fig, (_a0, _a1) = plt.subplots(1,2, gridspec_kw = {'width_ratios':[50, 1]}, figsize=(15,10)) #_a0.set_title("correlations between times and " + chosenPrefix + " scores") _a0.set_title("correlations between times and scores") durationsScoresCorrelations.columns = [q for q in scientificQuestions] + ["pretest score", "posttest score", "score increase",] sns.heatmap(durationsScoresCorrelations, ax=_a0, cmap=plt.cm.jet, square=True, vmin=-1, vmax=1, # annot=True, # annot=annotationMatrix2D #cbar_kws= {'panchor':(0.0, 0.0)} ) _a1.set_title("") sns.heatmap(annotationMatrix, ax=_a1, annot=annotationMatrix) _fig.tight_layout() #chosenPrefix = answerTemporalities[0] #chosenPrefix = answerTemporalities[1] #chosenPrefix = "delta" #warning: not the same as displayed columns, see lower #questions1 = [QAge,QGender] #questions1 = [QEnjoyed] #questions2 = [ # QCuriosityBiology,QCuriositySyntheticBiology,QCuriosityVideoGames, # QCuriosityEngineering, ## QPlayed, # QAge,QGender, # QInterestVideoGames, # QInterestBiology,QStudiedBiology,QPlayVideoGames, ## QHeardSynBioOrBioBricks, ## QVolunteer, # QEnjoyed] #questions2 = [ # QCuriosityBiology, # QCuriositySyntheticBiology, # QCuriosityVideoGames, # QCuriosityEngineering, # QPlayed, #QAge, #QGender, # QInterestVideoGames, # QInterestBiology, # QStudiedBiology, # QPlayVideoGames, # QHeardSynBioOrBioBricks, # QVolunteer, # QEnjoyed #use only posttest value # ] questions2 = [ QCuriosityEngineering, QCuriosityBiology, QCuriositySyntheticBiology, QInterestBiology, QStudiedBiology, QCuriosityVideoGames, QInterestVideoGames, QPlayVideoGames, # QPlayed, QAge, QGender, # QHeardSynBioOrBioBricks, # QVolunteer, # QEnjoyed #use only posttest value ] #chosenCriteria1 = completionTimesCriteria+totalTimesCriteria #chosenCriteria1 = ["posttest " + q for q in scientificQuestions] + overallScoreCriteria chosenCriteria1 = overallScoreCriteria #chosenCriteria1 = ["pretest " + q for q in questions1] #chosenCriteria1 = ["posttest " + q for q in questions1] #chosenCriteria2 = ["posttest " + q for q in questions2] #chosenCriteria2 = ["pretest " + q for q in questions2] + ["posttest " + QEnjoyed] #chosenCriteria2 = ["posttest " + q for q in scientificQuestions] + overallScoreCriteria chosenCriteria2 = ["pretest " + q for q in questions2] #chosenCriteria2 = ["maxChapter"] criteriaScoresCorrelations = pd.DataFrame(index=chosenCriteria1, columns=chosenCriteria2, data=np.nan) criteriaScoresCorrelations = criteriaScoresCorrelations.rename(str, axis='rows') annotationMatrix = np.empty(shape=[criteriaScoresCorrelations.shape[0], 1], dtype=int) #annotationMatrix2D = np.empty(durationsScoresCorrelations.shape, dtype=str) #allData2 = allData.T.rename(str,axis="columns") #allData2 = allBinaryDataPlaytestPhase1PretestPosttestUniqueProfilesVolunteers allData2 = allNumericDataPlaytestPhase1PretestPosttestUniqueProfilesVolunteers allData2 = allData2.T.rename(str,axis="columns") for i in range(len(criteriaScoresCorrelations.index)): criterion1i = criteriaScoresCorrelations.index[i] allData3 = allData2 if criterion1i in completionTimesCriteria: allData3 = allData2[allData2[criterion1i] < pd.Timedelta.max.total_seconds()] annotationMatrix[i] = len(allData3) for criterion2j in criteriaScoresCorrelations.columns: corr = np.corrcoef(allData3[criterion1i], allData3[criterion2j]) if corr[0,0] < 0: print("[" + criterion1i + ";" + criterion2j + "]:" + str(corr[0,0])) #if pd.isnull(corr[0,1]): # print("[" + criterion1i + ";" + criterion2j + "] null") criteriaScoresCorrelations.loc[criterion1i, criterion2j] = corr[0,1] #index 1 #criteriaScoresCorrelations.index = scientificQuestions + ["pretest score", "posttest score", "score increase"] #criteriaScoresCorrelations.index = questions1 criteriaScoresCorrelations.index = ["pretest score", "posttest score", "score increase"] #columns 2 criteriaScoresCorrelations.columns = questions2 #criteriaScoresCorrelations.columns = questions2 + [QEnjoyed] #criteriaScoresCorrelations.columns = scientificQuestions + ["pretest score", "posttest score", "score increase"] #criteriaScoresCorrelations.columns = ["max. checkpoint"] # (10,20) big # (12,5) small #_fig, (_a0) = plt.subplots(1,1, figsize=(10,18)) _fig, (_a0) = plt.subplots(1,1, figsize=(6,10)) #_fig, (_a0, _a1) = plt.subplots( # 1,2, figsize=(5,25), gridspec_kw = {'width_ratios':[15, 1]}) # 2,1, figsize=(17,12), gridspec_kw = {'height_ratios':[30, 1]}) #sns.set(font_scale=1) #sns.set(font_scale=1.3) sns.set(font_scale=1.7) data = criteriaScoresCorrelations.T #_a0.set_title("correlations between times and demographic criteria") #_a0.set_title("correlations between scores and demographic criteria") #_a0.set_title("correlations between (age, gender) and (curiosity, interest, practice, enjoyment)") #_a0.set_title("correlations between enjoyment and age, gender, curiosity, interest, practice, enjoyment") #plt.title("correlations between enjoyment and age, gender, curiosity, interest, practice") #_a0.set_title("correlations between times and scores") #_a0.set_title("correlations between scores and maximum checkpoint reached") _a0.set_anchor('C') sns.heatmap(data, ax=_a0, #cmap=plt.cm.jet, cmap="RdBu_r", square=True, vmin=-1, vmax=1, annot=True, # cbar = False, # annot=annotationMatrix2D #cbar_kws= {'panchor':(0.0, 0.0)} #cbar_kws = dict(use_gridspec=False,location="right"), annot_kws={"size": 13}, #annot_kws={"size": 13}, ) #_a1.set_anchor('C') #data = annotationMatrix.T #sns.heatmap(data, ax=_a1, annot=data, square=True, # cbar = False,xticklabels=False,yticklabels=False,annot_kws={"size": 12}) _fig.tight_layout() _fig, (_a1) = plt.subplots(1,1, figsize=(10,5)) _a1.set_anchor('C') #data = pd.Series(data=annotationMatrix.flatten(), index=completionTimesCriteria+totalTimesCriteria) data = annotationMatrix.T sns.heatmap(data, ax=_a1, annot=data, square=True, cbar = False, #xticklabels=False, xticklabels=completionTimesCriteria+totalTimesCriteria, yticklabels=False, #yticklabels=completionTimesCriteria+totalTimesCriteria, annot_kws={"size": 12}) _fig.tight_layout() i = 0 checkpoint = durationsScoresCorrelations.index[i] print(checkpoint + ": " + str(len(allData2[allData2[checkpoint] < pd.Timedelta.max.total_seconds()]))) testUserId = gfdf[QUserId].unique()[12] getCheckpointsTotalTimesUser(testUserId, rmdf) #timedSectionnedEvents.to_csv("ch4.csv", encoding=csvEncoding) #getAllResponders(gfdf), _source = correctAnswers, _rmDF = rmdf #testUserId = "4731525f-62dd-4128-ab56-3991b403e17e" #getUserDataVector(testUserId,_source = correctAnswers, _rmDF = rmdf) # delta or posttest? # posttest: values 0, 1 managed in plotCorrectedAnswerPerMaxCheckpoint # delta can't work: values 0, 1 and -1 not managed in plotCorrectedAnswerPerMaxCheckpoint chosenPrefix = "posttest" chosenQuestions = [chosenPrefix + " " + q for q in scientificQuestions] criteria = ["maxChapter","complete"] + chosenQuestions + overallScoreCriteria #data = allBinaryDataPlaytestPhase1PretestPosttestUniqueProfiles.loc[criteria,:] data = allBinaryDataPlaytestPhase1PretestPosttestUniqueProfilesVolunteers.loc[criteria,:] #data = allBinaryDataPlaytestPhase2PretestPosttestUniqueProfiles.loc[criteria,:] #data = allBinaryDataPlaytestPhase2PretestPosttestUniqueProfilesVolunteers.loc[criteria,:] #data = allNumericDataPlaytestPhase1PretestPosttestUniqueProfilesVolunteers.loc[criteria,:] criterion1 = chosenPrefix + ' Function - biology: CDS' criterion2 = chosenPrefix + ' Device: RBS:PCONS:FLHDC:TER XXX' xIndex = 'maxChapter' dataT = data.T def getCheckpointThreshold(bars0, bars1, thresholdRatio = .9): totalCount = np.sum(bars0) + np.sum(bars1) cumulative0 = np.cumsum(list(reversed(bars0))) cumulative1 = np.cumsum(list(reversed(bars1))) result = 0 #np.argmax(cumulative1>=thresholdCount) for i in range(len(cumulative1)): thresholdCount = np.floor(thresholdRatio * (cumulative0[i] + cumulative1[i])) if cumulative1[i] < thresholdCount: result = 15-i break return result from matplotlib import rc import pandas as pd # stacked horizontal bar plot; cf df.plot.barh? def plotCorrectedAnswerPerMaxCheckpoint(dataT, criterion, saveFig=False, plotFig=True, thresholdRatio=0.9): # y-axis in bold rc('font', weight='bold') # Values of each group bars0 = [len(dataT[(dataT[criterion]==0) & (dataT[xIndex]==maxChapterValue)]) for maxChapterValue in range(15)] bars1 = [len(dataT[(dataT[criterion]==1) & (dataT[xIndex]==maxChapterValue)]) for maxChapterValue in range(15)] if plotFig: # Heights of bars1 + bars2 (TO DO better) bars = [bars0[i] + bars1[i] for i in range(len(bars0))] # The position of the bars on the x-axis r = [i for i in range(15)] # Names of group and bar width names = [i for i in range(15)] barWidth = 1 fig, ax = plt.subplots(1,1, figsize=(10,6)) # Create red bars ax.bar(r, bars0, color='#cc0c28', edgecolor='white', width=barWidth) # Create green bars (middle), on top of the firs ones ax.bar(r, bars1, bottom=bars0, color='#557f2d', edgecolor='white', width=barWidth) # Custom X axis plt.xticks(r, names, fontweight='bold') plt.xlabel("max. checkpoint") plt.ylabel("count") plt.title("Answers to question '" + criterion + "' against max. checkpoint, n=" + str(len(dataT.index))) ax.legend(["incorrect", "correct"], bbox_to_anchor=(0.7, 0.7), # loc="upper center", ) # Show graphic plt.show() if saveFig: #correctedAnswersPerMaxCheckpoint questionTitle = "cAPMC-'" + criterion.replace(" ", "_").replace(":", "") + "'" try: fig.savefig(questionTitle) except: print("- savefig failed for " + questionTitle) return [bars0, bars1, getCheckpointThreshold(bars0, bars1, thresholdRatio)] [bars0, bars1, threshold] = plotCorrectedAnswerPerMaxCheckpoint(dataT, criterion2, saveFig=False, plotFig=True) threshold getCheckpointThreshold(bars0, bars1, thresholdRatio = 1) np.cumsum(bars1) thresholdsCheckpoints = pd.Series(index = chosenQuestions, data = 15, name = "thresholdsCheckpoints") for criterion in chosenQuestions: [bars0, bars1, threshold] = plotCorrectedAnswerPerMaxCheckpoint( dataT, criterion, saveFig=False, plotFig=False, thresholdRatio=0.8 ) thresholdsCheckpoints[criterion] = threshold thresholdsCheckpoints thresholdsCheckpoints def plotCheckpointsFromThreshold(dataT, criterion, saveFig=False): xs = [] ys = [] for x in np.linspace(0.5,1,11): [bars0, bars1, thresholdCheckpoint] = plotCorrectedAnswerPerMaxCheckpoint( dataT, criterion, saveFig=False, plotFig=False, thresholdRatio=x ) xs += [x] ys += [thresholdCheckpoint] #print("x=" + str(x) +": " + str(thresholdCheckpoint)) fig = plt.figure(figsize=(12, 4)) ax1 = plt.subplot(111) plt.plot(xs, ys) plt.ylim((-0.5, 14.5)) plt.xlabel('threshold') plt.ylabel('checkpoint') plt.title("Checkpoint against threshold, for question '" + criterion + "'") plt.show() if saveFig: #correctedAnswersPerMaxCheckpoint questionTitle = "cFT-'" + criterion.replace(" ", "_").replace(":", "") + "'" try: fig.savefig(questionTitle) except: print("- savefig failed for " + questionTitle) return ys ys = plotCheckpointsFromThreshold(dataT, criterion2) def getMostFrequentThreshold(ys): result = [x for x in ys if ((x != 15) & (x != 0))] if len(result) == 0: return Counter(ys).most_common(1)[0] else: return Counter(result).most_common(1)[0] from collections import Counter thresholdsCheckpoints2 = pd.DataFrame(index = chosenQuestions, columns = ['threshold', 'count'], data = 15) for criterion in chosenQuestions: ys = plotCheckpointsFromThreshold(dataT, criterion, saveFig=False) thresholdsCheckpoints2.loc[criterion, 'threshold'] = getMostFrequentThreshold(ys)[0] thresholdsCheckpoints2.loc[criterion, 'count'] = getMostFrequentThreshold(ys)[1] thresholdsCheckpoints2 #for criterion in criteria: criterion = 'scoreposttest' x = data.loc["maxChapter",:].values y = data.loc[criterion,:].values plt.figure(figsize=(6, 6)) ax1 = plt.subplot(111) plt.scatter(x, y)#, c='blue', alpha=0.5) plt.xlabel('max. checkpoint') plt.ylabel("posttest score") plt.title("Posttest score against max. checkpoint, n=" + str(len(x))) plt.show() sns.regplot(x=x, y=y, color="b", x_estimator=np.mean) plt.xlabel("max. checkpoint") plt.ylabel("posttest score") plt.title("Posttest score against max. checkpoint, n=" + str(len(x))) #import patsy import statsmodels.formula.api as smf dataT = data.T.astype(float) ### STATSMODELS ### scoreCheckpointformula = criterion + ' ~ maxChapter' # create a fitted model lm1 = smf.ols(formula=scoreCheckpointformula, data=dataT).fit() # print the coefficients #lm1.params #lm1.summary() # print the confidence intervals for the model coefficients lm1.conf_int() # print the p-values for the model coefficients # Represents the probability that the coefficient is actually zero lm1.pvalues # print the R-squared value for the model lm1.rsquared from scipy import optimize #x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15], dtype=float) #y = np.array([5, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 84.47, 98.36, 112.25, 126.14, 140.03]) def piecewise_linear(x, x0, y0, k1, k2): return np.piecewise(x, [x < x0], [lambda x:k1*x + y0-k1*x0, lambda x:k2*x + y0-k2*x0]) p , e = optimize.curve_fit(piecewise_linear, x, y) xd = np.linspace(0, 14, 100) plt.plot(x, y, "o") plt.plot(xd, piecewise_linear(xd, *p)) plt.xlabel("max. checkpoint") plt.ylabel("posttest score") # piecewise regression plt.title("Posttest score against max. checkpoint, segmented regression") #players = rmdf.loc[:, playerFilteringColumns] players = safeGetNormalizedRedMetricsCSV( rmdf ) players.shape #players = players.dropna(how='any') #players.head(1) #rmdf.head(1) players.shape[0] #players = players[~players['userId'].isin(excludedIDs)]; #players.shape[0] sessionscount = players["sessionId"].nunique() sessionscount uniqueplayers = players['userId'] uniqueplayers = uniqueplayers.unique() uniqueplayers.shape[0] #uniqueplayers uniqueplatforms = players['customData.platform'].unique() uniqueplatforms checkpoints = rmdf.loc[:, ['type', 'section', 'sessionId']] checkpoints = checkpoints[checkpoints['type']=='reach'].loc[:,['section','sessionId']] checkpoints = checkpoints[checkpoints['section'].str.startswith('tutorial', na=False)] checkpoints = checkpoints.groupby("sessionId") checkpoints = checkpoints.max() #len(checkpoints) checkpoints.head() maxCheckpointTable = pd.DataFrame({"maxCheckpoint" : checkpoints.values.flatten()}) maxCheckpointCounts = maxCheckpointTable["maxCheckpoint"].value_counts() maxCheckpointCounts['Start'] = None maxCheckpointCounts = maxCheckpointCounts.sort_index() print('\nmaxCheckpointCounts=\n{0}'.format(str(maxCheckpointCounts))) maxCheckpointCountsTable = pd.DataFrame({"maxCheckpoint" : maxCheckpointCounts.values}) maxCheckpointCountsTableCount = maxCheckpointCountsTable.sum(0)[0] maxCheckpointCountsTableCount checkpoints.count() maxCheckpointCountsTable.head() maxCheckpointCountsTable.describe() genericTreatment( maxCheckpointCountsTable, "best checkpoint reached", "game sessions", 0, maxCheckpointCountsTableCount, False, True ) #starts = rmdf.loc[:, checkpointsRelevantColumns] #starts = checkpoints[checkpoints['type']=='start'].loc[:,['playerId']] #starts = checkpoints[checkpoints['section'].str.startswith('tutorial', na=False)] #starts = checkpoints.groupby("playerId") #starts = checkpoints.max() #starts.head() startTutorial1Count = sessionscount neverReachedGameSessionCount = startTutorial1Count - maxCheckpointCountsTableCount fullMaxCheckpointCounts = maxCheckpointCounts fullMaxCheckpointCounts['Start'] = neverReachedGameSessionCount fullMaxCheckpointCountsTable = pd.DataFrame({"fullMaxCheckpoint" : fullMaxCheckpointCounts.values}) genericTreatment( fullMaxCheckpointCountsTable, "best checkpoint reached", "game sessions", 0, startTutorial1Count, False, True ) print('\nfullMaxCheckpointCountsTable=\n{0}'.format(fullMaxCheckpointCountsTable)) fullMaxCheckpointCountsTable.describe() durations = players.groupby("sessionId").agg({ "serverTime": [ np.min, np.max ] }) durations["duration"] = pd.to_datetime(durations["serverTime"]["amax"]) - pd.to_datetime(durations["serverTime"]["amin"]) durations["duration"] = durations["duration"].map(lambda x: np.timedelta64(x, 's')) durations = durations.sort_values(by=['duration'], ascending=[False]) durations.head() type(durations) #durations.loc[:,'duration'] #durations = durations[4:] durations["duration_seconds"] = durations["duration"].map(lambda x: pd.Timedelta(x).seconds) maxDuration = np.max(durations["duration_seconds"]) durations["duration_rank"] = durations["duration_seconds"].rank(ascending=False) ax = durations.plot(x="duration_rank", y="duration_seconds") plt.xlabel("game session") plt.ylabel("time played (s)") #plt.legend('') ax.legend_.remove() plt.xlim(0, sessionscount) plt.ylim(0, maxDuration) durations["duration_seconds"].describe() #durations.head() getCompletedRate(rmdfPlaytestTotalPretestPosttestUniqueProfilesVolunteers),\ getCompletedRate(rmdfPlaytestPhase1PretestPosttestUniqueProfilesVolunteers),\ getCompletedRate(rmdfPlaytestPhase2PretestPosttestUniqueProfilesVolunteers),\ rmdfPlaytestPhase1PretestPosttestUniqueProfilesVolunteers[QUserId].nunique(),\ rmdfPlaytestPhase2PretestPosttestUniqueProfilesVolunteers[QUserId].nunique() getCompletedRate(rmdfWebgl1522Timed),\ getCompletedRate(rmdfWebgl160Timed) ### Scores scoresPhase1 = allDataPlaytestPhase1PretestPosttestUniqueProfiles.loc['scoreposttest',:] scoresPhase2 = allDataPlaytestPhase2PretestPosttestUniqueProfiles.loc['scoreposttest',:] ttest = ttest_ind(scoresPhase1, scoresPhase2) ttest print("t test: statistic=" + repr(ttest.statistic) + " pvalue=" + repr(ttest.pvalue)) scoresPhase1 = allDataPlaytestPhase1PretestPosttestUniqueProfilesVolunteers.loc['scoreposttest',:] scoresPhase2 = allDataPlaytestPhase2PretestPosttestUniqueProfilesVolunteers.loc['scoreposttest',:] ttest = ttest_ind(scoresPhase1, scoresPhase2) ttest print("t test: statistic=" + repr(ttest.statistic) + " pvalue=" + repr(ttest.pvalue)) nbs = ["{0:0=2d}".format(i) for i in range(0,15)] completions = ['ch' + nb + 'completion' for nb in nbs] totals = ['ch' + nb + 'total' for nb in nbs] timeLabels = ['totalTime', 'completionTime'] + completions + totals for timeLabel in timeLabels: timesPhase1 = allDataPlaytestPhase1PretestPosttestUniqueProfilesVolunteers.loc[timeLabel,:] timesPhase2 = allDataPlaytestPhase2PretestPosttestUniqueProfilesVolunteers.loc[timeLabel,:] ttest = ttest_ind(timesPhase1, timesPhase2) ttest print(timeLabel + " t test: statistic=" + repr(ttest.statistic) + " pvalue=" + repr(ttest.pvalue)) allDataPlaytestPhase1PretestPosttestUniqueProfilesVolunteers.index.tolist() getRecordPlayer(rmdf1522, gform) getRecordPlayer(rmdf160, gform) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: View data schema and size Step2: Preview data (alternate way) Step4: Load sample into Pandas dataframe Step5: Explore datafame Step6: The Python variable trips is now a Pandas DataFrame. The .head() function above prints the first 5 rows of a DataFrame. Step7: Distribution analysis Step8: It appears that trips are being charged substantial fares despite having 0 distance. Step9: It appears that we have a lot of invalid data that is being coded as zero distance and some fare amounts that are definitely illegitimate. Let's remove them from our analysis. We can do this by modifying the BigQuery query to keep only trips longer than zero miles and fare amounts that are at least the minimum cab fare ($2.50). Step10: Looking at the samples above, we can see that the total amount reflects fare amount, toll and tip somewhat arbitrarily -- this is because when customers pay cash, the tip is not known. In any case tips are discretionary and shoud not be included in our fare estimation tool.
<ASSISTANT_TASK:> Python Code: from google.cloud import bigquery PROJECT = !gcloud config get-value project PROJECT = PROJECT[0] %env PROJECT=$PROJECT %%bigquery --project $PROJECT #standardSQL SELECT * FROM `nyc-tlc.yellow.trips` WHERE RAND() < .0000001 -- sample a small fraction of the data %%bigquery --project $PROJECT #standardSQL SELECT * FROM `nyc-tlc.yellow.trips` WHERE -- repeatable 1/5000th sample ABS(MOD(FARM_FINGERPRINT(CAST(pickup_datetime AS STRING)), 5000)) = 1 bq = bigquery.Client(project=PROJECT) query_string = #standardSQL SELECT * FROM `nyc-tlc.yellow.trips` Where -- repeatable 1/5000th sample ABS(MOD(FARM_FINGERPRINT(CAST(pickup_datetime AS STRING)), 5000)) = 1 trips = bq.query(query_string).to_dataframe() print(type(trips)) trips.head() trips.describe() # first 10 rows with trip_distance == 0 trips[trips["trip_distance"] == 0][:10] %matplotlib inline trips.plot(x="trip_distance", y="fare_amount", kind="scatter") # first 10 rows with toll_amount > 0 trips[trips["tolls_amount"] > 0][:10] %%bigquery --project $PROJECT #standardSQL SELECT (tolls_amount + fare_amount) AS fare_amount, -- label pickup_datetime, pickup_longitude, pickup_latitude, dropoff_longitude, dropoff_latitude FROM `nyc-tlc.yellow.trips` WHERE -- Clean Data trip_distance > 0 AND passenger_count > 0 AND fare_amount >= 2.5 AND pickup_longitude > -78 AND pickup_longitude < -70 AND dropoff_longitude > -78 AND dropoff_longitude < -70 AND pickup_latitude > 37 AND pickup_latitude < 45 AND dropoff_latitude > 37 AND dropoff_latitude < 45 -- repeatable 1/5000th sample AND ABS(MOD(FARM_FINGERPRINT(CAST(pickup_datetime AS STRING)), 5000)) = 1 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Guia inicial de TensorFlow 2.0 para principiantes Step2: Carga y prepara el conjunto de datos MNIST. Convierte los ejemplos de numeros enteros a numeros de punto flotante Step3: Construye un modelo tf.keras.Sequential apilando capas. Escoge un optimizador y una funcion de perdida para el entrenamiento de tu modelo Step4: Entrena y evalua el modelo
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Installa TensorFlow import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5) model.evaluate(x_test, y_test, verbose=2) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Load a shapefile that represents the river network Step2: Alright, let's see what fields we read in with this shapefile Step3: Great! Looks like we have length (reach length), upstream drainage area (drainage area), x and y verticies of each link/reach (x and y of polyline), and bed elevation (topographic elevation). Step4: Our network consists of 29 links between 30 nodes. In the plot above, X and Y represent the plan-view coordinates of the node locations. Step5: We must distinguish between topographic elevation (the top surface of the bed sediment) and bedrock elevation (the surface of the river in the absence of modeled sediment). Step6: In order to track sediment motion, we classify parcels as either active (representing mobile surface sediment) or inactive (immobile subsurface) during each timestep. The active parcels are the most recent parcels to arrive in the link. During a timestep, active parcels are transported downstream (increasing their location_in_link, which is a normalized value ranging from 0 to 1) according to a sediment transport formula. Step7: In addition to the required parcel attributes listed above, you can designate optional parcel characteristics, depending on your needs. For example Step8: We now collect the arrays into a dictionary of variables, some of which will be tracked through time (["item_id", "time"]), and others of which will remain constant through time Step9: With all of the required attributes collected, we can create the parcels DataRecord. Often, parcels will eventually transport off of the downstream-most link. To track these parcels, we have designated a "dummy_element" here, which has index value -2. Step10: 3. Run the NetworkSedimentTransporter Step11: Before running the NST, we need to determine flow direction on the grid (upstream and downstream for each link). To do so, we initalize and run a Landlab flow director component Step12: Then, we initialize the network sediment transporter Step13: Now we are ready to run the model forward in time Step14: 4. Plot the model results Step15: Non-network plotting Step16: We can also plot individual parcel characteristics. The plot below shows the total transport distance of each parcel through the whole model run as a function of the parcel's grain size (during the final timestep). Step17: The plot below is an example of accessing variables associated with the grid (grid.at_link.X, or grid.at_node.X), as well as a variable associated with this instance of NetworkModelGrid (nmg.X)
<ASSISTANT_TASK:> Python Code: import warnings warnings.filterwarnings("ignore") import os import pathlib import matplotlib.pyplot as plt import numpy as np import xarray as xr from landlab.components import FlowDirectorSteepest, NetworkSedimentTransporter from landlab.data_record import DataRecord from landlab.grid.network import NetworkModelGrid from landlab.plot import graph from landlab.io import read_shapefile from landlab import ExampleData from landlab.plot import plot_network_and_parcels %matplotlib inline datadir = ExampleData("io/shapefile", case="methow").base shp_file = datadir / "MethowSubBasin.shp" points_shapefile = datadir / "MethowSubBasin_Nodes_4.shp" grid = read_shapefile( shp_file, points_shapefile=points_shapefile, node_fields=["usarea_km2", "Elev_m"], link_fields=["usarea_km2", "Length_m"], link_field_conversion={ "usarea_km2": "drainage_area", "Slope": "channel_slope", "Length_m": "reach_length", }, node_field_conversion={ "usarea_km2": "drainage_area", "Elev_m": "topographic__elevation", }, threshold=0.01, ) grid.at_link.keys() grid.at_node.keys() graph.plot_graph(grid, at="node,link") grid.number_of_links grid.number_of_nodes grid.at_node["bedrock__elevation"] = grid.at_node["topographic__elevation"].copy() grid.at_link["channel_width"] = 1 * np.ones(grid.number_of_links) # m grid.at_link["flow_depth"] = 0.5 * np.ones(grid.number_of_links) # m # element_id is the link on which the parcel begins. element_id = np.repeat(np.arange(grid.number_of_links), 50) element_id = np.expand_dims(element_id, axis=1) volume = 1 * np.ones(np.shape(element_id)) # (m3) active_layer = np.ones(np.shape(element_id)) # 1= active, 0 = inactive density = 2650 * np.ones(np.size(element_id)) # (kg/m3) abrasion_rate = 0 * np.ones(np.size(element_id)) # (mass loss /m) # Lognormal GSD medianD = 0.15 # m mu = np.log(medianD) sigma = np.log(2) # assume that D84 = sigma*D50 np.random.seed(0) D = np.random.lognormal( mu, sigma, np.shape(element_id) ) # (m) the diameter of grains in each parcel time_arrival_in_link = np.random.rand(np.size(element_id), 1) location_in_link = np.random.rand(np.size(element_id), 1) lithology = ["quartzite"] * np.size(element_id) variables = { "abrasion_rate": (["item_id"], abrasion_rate), "density": (["item_id"], density), "lithology": (["item_id"], lithology), "time_arrival_in_link": (["item_id", "time"], time_arrival_in_link), "active_layer": (["item_id", "time"], active_layer), "location_in_link": (["item_id", "time"], location_in_link), "D": (["item_id", "time"], D), "volume": (["item_id", "time"], volume), } items = {"grid_element": "link", "element_id": element_id} parcels = DataRecord( grid, items=items, time=[0.0], data_vars=variables, dummy_elements={"link": [NetworkSedimentTransporter.OUT_OF_NETWORK]}, ) timesteps = 10 # total number of timesteps dt = 60 * 60 * 24 * 2 # length of timestep (seconds) fd = FlowDirectorSteepest(grid, "topographic__elevation") fd.run_one_step() nst = NetworkSedimentTransporter( grid, parcels, fd, bed_porosity=0.3, g=9.81, fluid_density=1000, transport_method="WilcockCrowe", ) for t in range(0, (timesteps * dt), dt): nst.run_one_step(dt) print("Model time: ", t / (60 * 60 * 24), "days passed") timestep_of_interest = 6 originating_link = 27 # filter the parcels to calculate total volumes of only the parcels that originated in the chosen link parcelfilter = np.zeros_like(parcels.dataset.element_id, dtype=bool) parcelfilter[:, timestep_of_interest] = ( parcels.dataset.element_id[:, 0] == originating_link ) vol_orig_link = parcels.calc_aggregate_value( xr.Dataset.sum, "volume", at="link", filter_array=parcelfilter, fill_value=0.0 ) fig = plot_network_and_parcels( grid, parcels, link_attribute=vol_orig_link, link_attribute_title="Vol of sed originating on link x", network_linewidth=5, parcel_alpha=0, ) parcel_vol_on_grid = parcels.dataset["volume"].values parcel_vol_on_grid[parcels.dataset["element_id"].values == -2] = 0 # plt.figure(figsize=(8,6)) plt.plot( np.asarray(parcels.time_coordinates) / (60 * 60 * 24), np.sum(parcel_vol_on_grid, axis=0), "-", linewidth=3, alpha=0.5, ) plt.ylabel("Total volume of parcels on grid $[m^3]$") plt.xlabel("Time [days]") plt.show() plt.loglog(parcels.dataset.D[:, -1], nst._distance_traveled_cumulative, ".") plt.xlabel("Parcel grain size (m)") plt.ylabel("Cumulative parcel travel distance (m)") # Note: some of the smallest grain travel distances can exceed the length of the # grid by "overshooting" during a single timestep of high transport rate plt.plot(grid.at_link["channel_slope"], nst.d_mean_active, ".") plt.xlabel("Channel slope (m/m)") plt.ylabel("Mean grain size of active layer (m)") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Generating Synthetic Data Step2: Next, simliar to the sparse linear inverse demo, we create Bernoull-Gaussian data. Step3: Now, we create a random transform $A$ and output $z_1 = Az_0 + w$. Step4: Representing the GLM as a Multi-Layer Network Step5: We next create a list of message handlers, one for each of the two unknown variables, z0 and z1. Again, we will just use the simple message handlers. Step6: Running the Multi-Layer VAMP Solver Step7: We now run the solver by calling the solve() method. For a small problem like this, this should be close to instantaneous. Step8: The VAMP solver estimate is the field zhat. Since there are two variables, zhat is a list. We extract the estimate zhat0=zhat[0] for z0. Then, we plot the first column (icol=0) of the true data and estimate. Step10: Since the probit measurement model is invariant to the scaling of vector z0, we measure errors via a debiased normalized MSE computed with the following function. Step11: We can then measure the debiased normalized MSE of the estimate. Step12: Finally, we can plot the actual and predicted debiased MSE as a function of the iteration number. When solver was contructed, we passed an argument hist_list=['zhat', 'zhatvar']. This indicated to store the value of the estimate zhat and predicted error variance zhatvar with each iteration. We can recover these values from solver.hist_dict, the history dictionary. We then plot the predicted and actual MSE for each of the two variables. We see that the two match well. Also, the iterations are indexed as "half-iterations" since each iteration takes two passes.
<ASSISTANT_TASK:> Python Code: # Add the vampyre path to the system path import os import sys vp_path = os.path.abspath('../../') if not vp_path in sys.path: sys.path.append(vp_path) import vampyre as vp # Load the other packages import numpy as np import matplotlib import matplotlib.pyplot as plt %matplotlib inline # Parameters nz0 = 512 # number of components per column of z0 nz1 = 4096 # number of components per column of z1 ncol = 10 # number of columns # Compute the shapes zshape0 = (nz0,ncol) # Shape of z0 matrix zshape1 = (nz1,ncol) # Shape of z1 matrix Ashape = (nz1,nz0) # Shape of A matrix # Paramaeters sparse_rat = 0.1 # sparsity ratio zmean_act = 0 # mean for the active components zvar_act = 1 # variance for the active components snr = 30 # SNR in dB # Generate the random input z0 = np.random.normal(zmean_act, np.sqrt(zvar_act), zshape0) u = np.random.uniform(0, 1, zshape0) < sparse_rat z0 = z0*u # Random transform b = np.zeros(zshape1) A = np.random.normal(0, 1/np.sqrt(nz0), Ashape) Az0 = A.dot(z0) # Add noise wvar = np.mean(np.abs(Az0)**2)*np.power(10, -0.1*snr) z1 = Az0 + np.random.normal(0,np.sqrt(wvar), zshape1) # Quantize thresh = 0 y = (z1 > thresh) # Create estimator for the input prior map_est = False est0_gauss = vp.estim.GaussEst(zmean_act,zvar_act,zshape0,map_est=map_est) est0_dis = vp.estim.DiscreteEst(0,1,zshape0) est_in = vp.estim.MixEst([est0_gauss,est0_dis],[sparse_rat,1-sparse_rat]) # Estimator for the output est_out = vp.estim.HardThreshEst(y,zshape1,thresh=thresh) # Estimtor for the linear transform Aop = vp.trans.MatrixLT(A,zshape0) est_lin = vp.estim.LinEstimTwo(Aop,b,wvar) # Put all estimators in a list est_list = [est_in,est_lin,est_out] # Create the message handlers damp=1 msg_hdl0 = vp.estim.MsgHdlSimp(map_est=map_est, shape=zshape0,damp=damp) msg_hdl1 = vp.estim.MsgHdlSimp(map_est=map_est, shape=zshape1,damp=damp) # Put the handlers in a list msg_hdl_list = [msg_hdl0,msg_hdl1] nit = 10 # number of iterations solver = solver = vp.solver.MLVamp(est_list,msg_hdl_list,comp_cost=True,\ hist_list=['zhat','zhatvar'],nit=nit) solver.solve() zhat = solver.zhat zhat0 = zhat[0] icol = 0 # column to plot t = np.array(range(nz0)) plt.plot(t,z0[:,icol]) plt.plot(t,zhat0[:,icol]) plt.axis([0,nz0,-3,3]) def debias_mse(zhat,ztrue): If zhat and ztrue are 1D vectors, the function computes the *debiased normalized MSE* defined as: dmse_lin = min_c ||ztrue-c*zhat||^2/||ztrue||^2 = (1-|zhat'*ztrue|^2/||ztrue||^2||zhat||^2) The function returns the value in dB: dmse = 10*log10(dmse_lin) If zhat and ztrue are matrices, dmse_lin is computed for each column and then averaged over the columns zcorr = np.abs(np.sum(zhat.conj()*ztrue,axis=0))**2 zhatpow = np.sum(np.abs(zhat)**2,axis=0) zpow = np.sum(np.abs(ztrue)**2,axis=0) tol = 1e-8 if np.any(zhatpow < tol) or np.any(zpow < tol): dmse = 0 else: dmse = 10*np.log10(np.mean(1 - zcorr/zhatpow/zpow)) return dmse ztrue = [z0,z1] zhat = solver.zhat nvar = len(ztrue) dmse = np.zeros(nvar) for i in range(nvar): zhati = zhat[i] ztruei = ztrue[i] dmse[i] = debias_mse(zhati,ztruei) print("z{0:d} d-MSE: {1:7.2f}".format(i, dmse[i])) # Compute the MSE as a function of the iteration zhat_hist = solver.hist_dict['zhat'] zvar_hist = solver.hist_dict['zhatvar'] nit = len(zhat_hist) mse_act = np.zeros((nit,nvar)) mse_pred = np.zeros((nit,nvar)) for ivar in range(nvar): zpowi = np.mean(np.abs(ztrue[ivar])**2, axis=0) for it in range(nit): zhati = zhat_hist[it][ivar] zhatvari = zvar_hist[it][ivar] mse_act[it,ivar] = debias_mse(zhati,ztrue[ivar]) mse_pred[it,ivar] = 10*np.log10(np.mean(zhatvari/zpowi)) for ivar in range(nvar): plt.subplot(1,nvar,ivar+1) plt.plot(range(nit), mse_act[:,ivar], 'o-', linewidth=2) plt.plot(range(nit), mse_pred[:,ivar], 's', linewidth=1) plt.xlabel('Half iteration') if (ivar == 0): plt.ylabel('Normalized MSE (dB)') plt.legend(['Actual', 'Predicted']) plt.title("z{0:d}".format(ivar)) plt.grid() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Prerequisites Step2: Visualizing the MRI Step3: Getting our MRI voxel EEG locations to head (and MRI surface RAS) coords Step4: We can then get our transformation from the MRI coordinate frame (where our Step5: Let's apply this digitization to our dataset, and in the process Step6: Now we can do standard sensor-space operations like make joint plots of Step7: Getting a source estimate Step8: Now we can actually compute the forward Step9: Finally let's compute the inverse and apply it
<ASSISTANT_TASK:> Python Code: # Authors: Eric Larson <larson.eric.d@gmail.com> # # License: BSD Style. import os.path as op import nibabel from nilearn.plotting import plot_glass_brain import numpy as np import mne from mne.channels import compute_native_head_t, read_custom_montage from mne.viz import plot_alignment data_path = mne.datasets.sample.data_path() subjects_dir = op.join(data_path, 'subjects') fname_raw = op.join(data_path, 'MEG', 'sample', 'sample_audvis_raw.fif') bem_dir = op.join(subjects_dir, 'sample', 'bem') fname_bem = op.join(bem_dir, 'sample-5120-5120-5120-bem-sol.fif') fname_src = op.join(bem_dir, 'sample-oct-6-src.fif') misc_path = mne.datasets.misc.data_path() fname_T1_electrodes = op.join(misc_path, 'sample_eeg_mri', 'T1_electrodes.mgz') fname_mon = op.join(misc_path, 'sample_eeg_mri', 'sample_mri_montage.elc') img = nibabel.load(fname_T1_electrodes) # original subject MRI w/EEG ras_mni_t = mne.transforms.read_ras_mni_t('sample', subjects_dir) # from FS mni_affine = np.dot(ras_mni_t['trans'], img.affine) # vox->ras->MNI img_mni = nibabel.Nifti1Image(img.dataobj, mni_affine) # now in MNI coords! plot_glass_brain(img_mni, cmap='hot_black_bone', threshold=0., black_bg=True, resampling_interpolation='nearest', colorbar=True) dig_montage = read_custom_montage(fname_mon, head_size=None, coord_frame='mri') dig_montage.plot() trans = compute_native_head_t(dig_montage) print(trans) # should be mri->head, as the "native" space here is MRI raw = mne.io.read_raw_fif(fname_raw) raw.pick_types(meg=False, eeg=True, stim=True, exclude=()).load_data() raw.set_montage(dig_montage) raw.plot_sensors(show_names=True) raw.set_eeg_reference(projection=True) events = mne.find_events(raw) epochs = mne.Epochs(raw, events) cov = mne.compute_covariance(epochs, tmax=0.) evoked = epochs['1'].average() # trigger 1 in auditory/left evoked.plot_joint() fig = plot_alignment( evoked.info, trans=trans, show_axes=True, surfaces='head-dense', subject='sample', subjects_dir=subjects_dir) fwd = mne.make_forward_solution( evoked.info, trans=trans, src=fname_src, bem=fname_bem, verbose=True) inv = mne.minimum_norm.make_inverse_operator( evoked.info, fwd, cov, verbose=True) stc = mne.minimum_norm.apply_inverse(evoked, inv) brain = stc.plot(subjects_dir=subjects_dir, initial_time=0.1) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Process MEG data Step2: Compute the evoked response Step3: Inverse modeling
<ASSISTANT_TASK:> Python Code: import numpy as np import mne from mne.datasets import sample from mne.minimum_norm import (make_inverse_operator, apply_inverse, write_inverse_operator) mne.set_log_level('WARNING') data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' raw = mne.io.Raw(raw_fname) events = mne.find_events(raw, stim_channel='STI 014') event_id = dict(aud_r=1) # event trigger and conditions tmin = -0.2 # start of each epoch (200ms before the trigger) tmax = 0.5 # end of each epoch (500ms after the trigger) raw.info['bads'] = ['MEG 2443', 'EEG 053'] picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=True, exclude='bads') baseline = (None, 0) # means from the first instant to t = 0 reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=baseline, reject=reject) # compute regularized noise covariance noise_cov = mne.compute_covariance( epochs, tmax=0., method=['shrunk', 'empirical']) fig_cov, fig_spectra = mne.viz.plot_cov(noise_cov, raw.info) evoked = epochs.average() evoked.plot() evoked.plot_topomap(times=np.linspace(0.05, 0.15, 5), ch_type='mag') # Read the forward solution and compute the inverse operator fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-oct-6-fwd.fif' fwd = mne.read_forward_solution(fname_fwd, surf_ori=True) # Restrict forward solution as necessary for MEG fwd = mne.pick_types_forward(fwd, meg=True, eeg=False) # make an M/EEG, MEG-only, and EEG-only inverse operators info = evoked.info inverse_operator = make_inverse_operator(info, fwd, noise_cov, loose=0.2, depth=0.8) write_inverse_operator('sample_audvis-meg-oct-6-inv.fif', inverse_operator) # Compute inverse solution method = "dSPM" snr = 3. lambda2 = 1. / snr ** 2 stc = apply_inverse(evoked, inverse_operator, lambda2, method=method, pick_ori=None) # visualize subjects_dir = data_path + '/subjects' brain = stc.plot(surface='inflated', hemi='rh', subjects_dir=subjects_dir) brain.set_data_time_index(45) brain.scale_data_colormap(fmin=8, fmid=12, fmax=15, transparent=True) brain.show_view('lateral') # morph data to average brain stc_fsaverage = stc.morph(subject_to='fsaverage', subjects_dir=subjects_dir) brain_fsaverage = stc_fsaverage.plot(surface='inflated', hemi='rh', subjects_dir=subjects_dir) brain_fsaverage.set_data_time_index(45) brain_fsaverage.scale_data_colormap(fmin=8, fmid=12, fmax=15, transparent=True) brain_fsaverage.show_view('lateral') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Clickable Surface Step2: Design our own texture Step3: Lines Step4: Camera Step6: Parametric Functions
<ASSISTANT_TASK:> Python Code: ball = Mesh(geometry=SphereGeometry(radius=1), material=LambertMaterial(color='red'), position=[2,1,0]) scene = Scene(children=[ball, AmbientLight(color=0x777777), make_text('Hello World!', height=.6)]) c = PerspectiveCamera(position=[0,5,5], up=[0,0,1], children=[DirectionalLight(color='white', position=[3,5,1], intensity=0.5)]) renderer = Renderer(camera=c, scene = scene, controls=[OrbitControls(controlling=c)]) display(renderer) ball.geometry.radius=0.5 import time, math ball.material.color = 0x4400dd for i in range(1,150,2): ball.geometry.radius=i/100. ball.material.color +=0x000300 ball.position = [math.cos(i/10.), math.sin(i/50.), i/100.] time.sleep(.05) nx,ny=(20,20) xmax=1 x = np.linspace(-xmax,xmax,nx) y = np.linspace(-xmax,xmax,ny) xx, yy = np.meshgrid(x,y) z = xx**2-yy**2 #z[6,1] = float('nan') surf_g = SurfaceGeometry(z=list(z[::-1].flat), width=2*xmax, height=2*xmax, width_segments=nx-1, height_segments=ny-1) surf = Mesh(geometry=surf_g, material=LambertMaterial(map=height_texture(z[::-1], 'YlGnBu_r'))) surfgrid = SurfaceGrid(geometry=surf_g, material=LineBasicMaterial(color='black')) hover_point = Mesh(geometry=SphereGeometry(radius=0.05), material=LambertMaterial(color='hotpink')) scene = Scene(children=[surf, surfgrid, hover_point, AmbientLight(color=0x777777)]) c = PerspectiveCamera(position=[0,3,3], up=[0,0,1], children=[DirectionalLight(color='white', position=[3,5,1], intensity=0.6)]) click_picker = Picker(root=surf, event='dblclick') hover_picker = Picker(root=surf, event='mousemove') renderer = Renderer(camera=c, scene = scene, controls=[OrbitControls(controlling=c), click_picker, hover_picker]) def f(name, value): print("Clicked on %s"%value) point = Mesh(geometry=SphereGeometry(radius=0.05), material=LambertMaterial(color='red'), position=value) scene.children = list(scene.children)+[point] click_picker.on_trait_change(f, 'point') link((hover_point, 'position'), (hover_picker, 'point')) h = HTML() def g(name, value): h.value="Green point at (%.3f, %.3f, %.3f)"%tuple(value) g(None, hover_point.position) hover_picker.on_trait_change(g, 'point') display(h) display(renderer) # when we change the z values of the geometry, we need to also change the height map surf_g.z = list((-z[::-1]).flat) surf.material.map = height_texture(-z[::-1]) import numpy as np from scipy import ndimage import matplotlib import matplotlib.pyplot as plt from skimage import img_as_ubyte jet = matplotlib.cm.get_cmap('jet') np.random.seed(int(1)) # start random number generator n = int(5) # starting points size = int(32) # size of image im = np.zeros((size,size)) # create zero image points = size*np.random.random((2, n**2)) # locations of seed values im[(points[0]).astype(np.int), (points[1]).astype(np.int)] = size # seed high values im = ndimage.gaussian_filter(im, sigma=size/(float(4)*n)) # smooth high values into surrounding areas im *= 1/np.max(im)# rescale to be in the range [0,1] rgba_im = img_as_ubyte(jet(im)) # convert the values to rgba image using the jet colormap rgba_list = list(rgba_im.flat) # make a flat list t = DataTexture(data=rgba_list, format='RGBAFormat', width=size, height=size) geometry = SphereGeometry()#TorusKnotGeometry(radius=2, radialSegments=200) material = LambertMaterial(map=t) myobject = Mesh(geometry=geometry, material=material) c = PerspectiveCamera(position=[0,3,3], fov=40, children=[DirectionalLight(color=0xffffff, position=[3,5,1], intensity=0.5)]) scene = Scene(children=[myobject, AmbientLight(color=0x777777)]) renderer = Renderer(camera=c, scene = scene, controls=[OrbitControls(controlling=c)]) display(renderer) # On windows, linewidth of the material has no effect size = 4 linesgeom = PlainGeometry(vertices=[[0,0,0],[size,0,0],[0,0,0],[0,size,0],[0,0,0],[0,0,size]], colors = ['red', 'red', 'green', 'green', 'white', 'orange']) lines = Line(geometry=linesgeom, material=LineBasicMaterial( linewidth=5, vertexColors='VertexColors'), type='LinePieces') scene = Scene(children=[lines, DirectionalLight(color=0xccaabb, position=[0,10,0]),AmbientLight(color=0xcccccc)]) c = PerspectiveCamera(position=[0,10,10]) renderer = Renderer(camera=c, scene = scene, controls=[OrbitControls(controlling=c)]) display(renderer) geometry = SphereGeometry(radius=4) t = ImageTexture(imageuri="") material = LambertMaterial(color='white', map=t) sphere = Mesh(geometry=geometry, material=material) point = Mesh(geometry=SphereGeometry(radius=.1), material=LambertMaterial(color='red')) c = PerspectiveCamera(position=[0,10,10], fov=40, children=[DirectionalLight(color='white', position=[3,5,1], intensity=0.5)]) scene = Scene(children=[sphere, point, AmbientLight(color=0x777777)]) p=Picker(event='mousemove', root=sphere) renderer = Renderer(camera=c, scene = scene, controls=[OrbitControls(controlling=c), p]) coords = Text() display(coords) display(renderer) #dlink((p,'point'), (point, 'position'), (coords, 'value')) # #camera=WebCamera() #display(camera) #display(Link(widgets=[[camera, 'imageurl'], [t, 'imageuri']])) f = function f(origu,origv) { // scale u and v to the ranges I want: [0, 2*pi] var u = 2*Math.PI*origu; var v = 2*Math.PI*origv; var x = Math.sin(u); var y = Math.cos(v); var z = Math.cos(u+v); return new THREE.Vector3(x,y,z) } surf_g = ParametricGeometry(func=f); surf = Mesh(geometry=surf_g,material=LambertMaterial(color='green', side ='FrontSide')) surf2 = Mesh(geometry=surf_g,material=LambertMaterial(color='yellow', side ='BackSide')) scene = Scene(children=[surf, surf2, AmbientLight(color=0x777777)]) c = PerspectiveCamera(position=[5,5,3], up=[0,0,1],children=[DirectionalLight(color='white', position=[3,5,1], intensity=0.6)]) renderer = Renderer(camera=c,scene = scene,controls=[OrbitControls(controlling=c)]) display(renderer) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: DataFrames Step2: Exercise 1 Step3: Print value counts for <tt>prglngth</tt> and compare to results published in the codebook Step4: Compute the mean birthweight. Step5: Create a new column named <tt>totalwgt_kg</tt> that contains birth weight in kilograms. Compute its mean. Remember that when you create a new column, you have to use dictionary syntax, not dot notation. Step6: One important note Step7: Use a boolean Series to select the records for the pregnancies that ended in live birth. Step8: Count the number of live births with <tt>birthwgt_lb</tt> between 0 and 5 pounds (including both). The result should be 1125. Step9: Count the number of live births with <tt>birthwgt_lb</tt> between 9 and 95 pounds (including both). The result should be 798 Step10: Use <tt>birthord</tt> to select the records for first babies and others. How many are there of each? Step11: Compute the mean weight for first babies and others. Step12: Compute the mean <tt>prglngth</tt> for first babies and others. Compute the difference in means, expressed in hours. Step13: Exercise 2
<ASSISTANT_TASK:> Python Code: import matplotlib import pandas as pd %matplotlib inline import nsfg df = nsfg.ReadFemPreg() df.head() pregordr = df['pregordr'] pregordr[2:5] birthord_counts = df.birthord.value_counts().sort_index() birthord_counts birthord_counts.plot(kind='bar') df['prglngth_cut'] = pd.cut(df.prglngth,bins=[0,13,26,50]) df.prglngth_cut.value_counts().sort_index() df.totalwgt_lb.mean() df['totalwgt_kg'] = 0.45359237 * df.totalwgt_lb df.totalwgt_kg.mean() lve_birth = df.outcome == 1 lve_birth.tail() live = df[df.outcome == 1] len(live) len(live[(0<=live.birthwgt_lb) & (live.birthwgt_lb<=5)]) len(live[(9<=live.birthwgt_lb) & (live.birthwgt_lb<95)]) firsts = df[df.birthord==1] others = df[df.birthord>1] len(firsts), len(others) firsts.totalwgt_lb.mean(), others.totalwgt_lb.mean() firsts.prglngth.mean(), others.prglngth.mean() import thinkstats2 resp = thinkstats2.ReadStataDct('2002FemResp.dct').ReadFixedWidth('2002FemResp.dat.gz', compression='gzip') preg = nsfg.ReadFemPreg() preg_map = nsfg.MakePregMap(preg) for index, pregnum in resp.pregnum.iteritems(): caseid = resp.caseid[index] indices = preg_map[caseid] # check that pregnum from the respondent file equals # the number of records in the pregnancy file if len(indices) != pregnum: print(caseid, len(indices), pregnum) break <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Sensor de tacte Step2: Sensor de llum Step3: Sensor de so (micròfon) Step4: Sensor ultrasònic Step5: <img src="img/interrupt.png" align="right"> Step6: És el moment de fer nous programes amb els sensors, però abans cal desconnectar el robot d'esta pàgina.
<ASSISTANT_TASK:> Python Code: from functions import connect, touch, light, sound, ultrasonic, disconnect connect(12) touch() # Per a executar repetidament, useu Ctrl + Enter light() # Per a executar repetidament, useu Ctrl + Enter sound() # Per a executar repetidament, useu Ctrl + Enter ultrasonic() # Per a executar repetidament, useu Ctrl + Enter from functions import test_sensors test_sensors() disconnect() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Reading in data sets Step2: Layers Step3: Feature columns
<ASSISTANT_TASK:> Python Code: # import and check version import tensorflow as tf # tf can be really verbose tf.logging.set_verbosity(tf.logging.ERROR) print(tf.__version__) # a small sanity check, does tf seem to work ok? hello = tf.constant('Hello TF!') sess = tf.Session() print(sess.run(hello)) sess.close() x = tf.placeholder(tf.float32) y = tf.placeholder(tf.float32) z = x + y r = tf.random_normal([10, 2]) dataset = tf.data.Dataset.from_tensor_slices(r) iterator = dataset.make_initializable_iterator() next_row = iterator.get_next() with tf.Session() as sess: sess.run(iterator.initializer) while True: try: data = sess.run(next_row) print(data) print(sess.run(z, feed_dict={x: data[0], y: data[1]})) except tf.errors.OutOfRangeError: break x = tf.placeholder(tf.float32, shape=[None, 3]) y = tf.layers.dense(inputs=x, units=1) with tf.Session() as sess: try: print(sess.run(y, {x: [[1, 2, 3], [4, 5, 6]]})) except tf.errors.FailedPreconditionError as fpe: print(fpe.message) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print(sess.run(y, {x: [[1, 2, 3], [4, 5, 6]]})) y = tf.layers.dense(inputs=x, units=2, activation=tf.nn.tanh) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print(sess.run(y, {x: [[1, 2, 3], [4, 5, 6]]})) features = { 'sales' : [[5], [10], [8], [9]], 'department': ['sports', 'sports', 'gardening', 'gardening'] } # numeric values are simple sales_column = tf.feature_column.numeric_column('sales') columns = { sales_column } inputs = tf.feature_column.input_layer(features, columns) # categories are harders, as NNs only accept dense numeric values categorical_department_column = tf.feature_column.categorical_column_with_vocabulary_list( 'department', ['sports', 'gardening']) columns = { sales_column, categorical_department_column } # we can decide if we want the category to be encoded as embedding or multi-hot try: inputs = tf.feature_column.input_layer(features, columns) except ValueError as ve: print(ve) multi_hot_department_column = tf.feature_column.indicator_column(categorical_department_column) columns = { sales_column, multi_hot_department_column } inputs = tf.feature_column.input_layer(features, columns) # feature columns also need initialization var_init = tf.global_variables_initializer() table_init = tf.tables_initializer() with tf.Session() as sess: sess.run((var_init, table_init)) # first two are departments last entry is just sales as is print(sess.run(inputs)) # multi (one in our case) hot encoding of departments columns = { multi_hot_department_column } inputs = tf.feature_column.input_layer(features, columns) var_init = tf.global_variables_initializer() table_init = tf.tables_initializer() with tf.Session() as sess: sess.run((var_init, table_init)) print(sess.run(inputs)) # alternative, embedding in three dimensions embedding_department_column = tf.feature_column.embedding_column(categorical_department_column, dimension=3) columns = { embedding_department_column } inputs = tf.feature_column.input_layer(features, columns) var_init = tf.global_variables_initializer() table_init = tf.tables_initializer() with tf.Session() as sess: sess.run((var_init, table_init)) print(sess.run(inputs)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: If we want to use our shiny python scripts, we'll need to import them too. Step2: If we want a quick man-page style summary, we can call help(spy). We can also call help(spy.&lt;func&gt;) for more information on the function &lt;func&gt;. Since the data that we're looking at is in a different directory, let's specify that now. Step3: Reading Full Files Step4: We have q (potential vorticity, this is a QG example). Let's read and plot our initial q field. Step5: What did that just do? Let's break it down and look at the inputs. Step6: Note that this is ordered as (Nx,Ny). If we had wanted MATLAB style ordering (Ny,Nx), we could have used the optional argument ordering = 'matlab' (useful for some plotting). The default is ordering = 'natural' (useful because it feels right). Step7: Perfect, now we have our grid vectors. We can also load in grid information, such as the domain size and limits. This is stored in a class that has a method called display. These are illustrated below. Step8: Plotting
<ASSISTANT_TASK:> Python Code: %matplotlib inline # Tells the system to plot in-line, only necessary for iPython notebooks, # not regular command-line python import numpy as np import os import sys import matplotlib.pyplot as plt import time # Now that we have our packages, we need data. The file 'make_2d_data.py' will # generate a sample data set. Let's run that now (may take a minute) execfile('make_2d_data.py') import spinspy as spy import matpy as mp help(spy.set_path) print('=======') print('=======') print('=======') help(spy) spy.set_path('Data/2d') ls Data/2d q = spy.reader('q', 0, [0,-1], [0,-1]) q.shape x,y = spy.get_grid() print('The shape of x is {0} and the shape of y is {1}'.format(x.shape,y.shape)) data = spy.get_params() print(data.Nx,data.Ny,data.Nz) print('---') data.display() q = spy.reader('q', 10) plt.figure(1) t0 = time.clock() plt.contour(x,y,q.T) # Transpose for plotting order t1 = time.clock() print('Time to plot: {0:1.2e}'.format(t1-t0)) plt.title('q'); plt.xlabel('x'); plt.ylabel('y'); plt.figure(2) t0 = time.clock() plt.pcolor(x,y,q.transpose()); # Regrettably, the default colormap is still jet... t1 = time.clock() print('Time to plot: {0:1.2e}'.format(t1-t0)) plt.colorbar() plt.title('Height Field'); plt.xlabel('x'); plt.ylabel('y'); plt.figure(3) t0 = time.clock() plt.pcolormesh(x,y,q.T, cmap='darkjet') # So we made darkjet! t1 = time.clock() print('Time to plot: {0:1.2e}'.format(t1-t0)) plt.colorbar() plt.title('Height Field') plt.xlabel('x') plt.ylabel('y') plt.axis('tight') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Expected
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt from matplotlib import cm, colors import numpy as np from ipywidgets import interact plt.rcParams['figure.figsize'] = 16, 8 import sys sys.path.append('../..') from crocodile.simulate import * from crocodile.synthesis import * from util.visualize import * N = 500; max_uv=25000 max_lm = 1/512/16; step_lm = 1/32768 bounds_lm = (-max_lm,max_lm,step_lm) extent_lm = (-max_lm,max_lm,-max_lm,max_lm) extent_uv = extent=(-max_uv,max_uv,-max_uv,max_uv) def draw_uv(ax, s_split): ax.set_xlabel('u [$\lambda$]'); ax.set_ylabel('v [$\lambda$]') ax.set_title("Interference pattern") return ax.imshow(s_split.real, norm=colors.Normalize(vmin=-1, vmax=1), extent=extent_uv, origin='lower') def draw_sky(ax, ls, ms): ax.set_title("Sky (around phase centre)") ax.set_xlabel('l [$1$]'); ax.set_ylabel('m [$1$]') ax.plot(ls, ms, 'ro') ax.set_xlim([-max_lm, max_lm]) ax.set_ylim([-max_lm, max_lm]) def show_pattern_2(l1,m1, l2,m2): # Generate uvw coordinates v,u = max_uv*2*coordinates2(N) w = np.full(u.shape, 0, dtype=float) uvw = np.concatenate(np.transpose((u,v,w))) # Simulate for a full uv plane s = simulate_point(uvw, l1, m1) s += simulate_point(uvw, l2, m2) fig = plt.figure() draw_sky(fig.add_subplot(121), [l1,l2], [m1,m2]) im = draw_uv(fig.add_subplot(122), np.array(np.split(s, N))) fig.colorbar(im,shrink=.4,pad=0.025) plt.show() interact(show_pattern_2,l1=bounds_lm, m1=bounds_lm,l2=bounds_lm, m2=bounds_lm); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Data Step2: Model Step3: Training Step4: Evaluation
<ASSISTANT_TASK:> Python Code: BERT_MODEL = 'bert-base-uncased' BATCH_SIZE = 16 if "base" in BERT_MODEL else 2 GRADIENT_ACCUMULATION_STEPS = 1 if "base" in BERT_MODEL else 8 MAX_SEQ_LENGTH = 100 PREFIX = "junkfood_but" import sys sys.path.append('../') import ndjson import glob from quillnlp.models.bert.preprocessing import preprocess, create_label_vocabulary train_file = f"../data/interim/{PREFIX}_train_withprompt_diverse200.ndjson" synth_files = glob.glob(f"../data/interim/{PREFIX}_train_withprompt_*.ndjson") dev_file = f"../data/interim/{PREFIX}_dev_withprompt.ndjson" test_file = f"../data/interim/{PREFIX}_test_withprompt.ndjson" with open(train_file) as i: train_data = ndjson.load(i) synth_data = [] for f in synth_files: if "allsynth" in f: continue with open(f) as i: synth_data += ndjson.load(i) with open(dev_file) as i: dev_data = ndjson.load(i) with open(test_file) as i: test_data = ndjson.load(i) label2idx = create_label_vocabulary(train_data) idx2label = {v:k for k,v in label2idx.items()} target_names = [idx2label[s] for s in range(len(idx2label))] train_dataloader = preprocess(train_data, BERT_MODEL, label2idx, MAX_SEQ_LENGTH, BATCH_SIZE) dev_dataloader = preprocess(dev_data, BERT_MODEL, label2idx, MAX_SEQ_LENGTH, BATCH_SIZE) test_dataloader = preprocess(test_data, BERT_MODEL, label2idx, MAX_SEQ_LENGTH, BATCH_SIZE, shuffle=False) import torch from quillnlp.models.bert.models import get_bert_classifier device = "cuda" if torch.cuda.is_available() else "cpu" model = get_bert_classifier(BERT_MODEL, len(label2idx), device=device) from quillnlp.models.bert.train import train output_model_file = train(model, train_dataloader, dev_dataloader, BATCH_SIZE, GRADIENT_ACCUMULATION_STEPS, device) from quillnlp.models.bert.train import evaluate from sklearn.metrics import precision_recall_fscore_support, classification_report print("Loading model from", output_model_file) device="cpu" model = get_bert_classifier(BERT_MODEL, len(label2idx), model_file=output_model_file, device=device) model.eval() _, test_correct, test_predicted = evaluate(model, test_dataloader, device) print("Test performance:", precision_recall_fscore_support(test_correct, test_predicted, average="micro")) print(classification_report(test_correct, test_predicted, target_names=target_names)) c = 0 for item, predicted, correct in zip(test_data, test_predicted, test_correct): assert item["label"] == idx2label[correct] c += (item["label"] == idx2label[predicted]) print("{}#{}#{}".format(item["text"], idx2label[correct], idx2label[predicted])) print(c) print(c/len(test_data)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Language Translation Step3: Explore the Data Step6: Implement Preprocessing Function Step8: Preprocess all the data and save it Step10: Check Point Step12: Check the Version of TensorFlow and Access to GPU Step15: Build the Neural Network Step18: Process Decoding Input Step21: Encoding Step24: Decoding - Training Step27: Decoding - Inference Step30: Build the Decoding Layer Step33: Build the Neural Network Step34: Neural Network Training Step36: Build the Graph Step39: Train Step41: Save Parameters Step43: Checkpoint Step46: Sentence to Sequence Step48: Translate
<ASSISTANT_TASK:> Python Code: DON'T MODIFY ANYTHING IN THIS CELL import helper import problem_unittests as tests source_path = 'data/small_vocab_en' target_path = 'data/small_vocab_fr' source_text = helper.load_data(source_path) target_text = helper.load_data(target_path) view_sentence_range = (0, 10) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in source_text.split()}))) sentences = source_text.split('\n') word_counts = [len(sentence.split()) for sentence in sentences] print('Number of sentences: {}'.format(len(sentences))) print('Average number of words in a sentence: {}'.format(np.average(word_counts))) print() print('English sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(source_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) print() print('French sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(target_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) def text_to_ids(source_text, target_text, source_vocab_to_int, target_vocab_to_int): Convert source and target text to proper word ids :param source_text: String that contains all the source text. :param target_text: String that contains all the target text. :param source_vocab_to_int: Dictionary to go from the source words to an id :param target_vocab_to_int: Dictionary to go from the target words to an id :return: A tuple of lists (source_id_text, target_id_text) # TODO: Implement Function x = [[source_vocab_to_int.get(word, 0) for word in sentence.split()] \ for sentence in source_text.split('\n')] y = [[target_vocab_to_int.get(word, 0) for word in sentence.split()] \ for sentence in target_text.split('\n')] source_id_text = [] target_id_text = [] for i in range(len(x)): n1 = len(x[i]) n2 = len(y[i]) source_id_text.append(x[i]) target_id_text.append(y[i] + [target_vocab_to_int['<EOS>']]) return (source_id_text, target_id_text) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_text_to_ids(text_to_ids) DON'T MODIFY ANYTHING IN THIS CELL helper.preprocess_and_save_data(source_path, target_path, text_to_ids) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np import helper (source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess() DON'T MODIFY ANYTHING IN THIS CELL from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) in [LooseVersion('1.0.0'), LooseVersion('1.0.1')], 'This project requires TensorFlow version 1.0 You are using {}'.format(tf.__version__) print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) def model_inputs(): Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate, keep probability) # TODO: Implement Function input_text = tf.placeholder(tf.int32,[None, None], name="input") target_text = tf.placeholder(tf.int32,[None, None], name="targets") learning_rate = tf.placeholder(tf.float32, name="learning_rate") keep_prob = tf.placeholder(tf.float32, name="keep_prob") return input_text, target_text, learning_rate, keep_prob DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_model_inputs(model_inputs) def process_decoding_input(target_data, target_vocab_to_int, batch_size): Preprocess target data for decoding :param target_data: Target Placeholder :param target_vocab_to_int: Dictionary to go from the target words to an id :param batch_size: Batch Size :return: Preprocessed target data # TODO: Implement Function ending = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1]) dec_input = tf.concat([tf.fill([batch_size, 1], target_vocab_to_int['<GO>']), ending], 1) return dec_input DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_process_decoding_input(process_decoding_input) def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob): Create encoding layer :param rnn_inputs: Inputs for the RNN :param rnn_size: RNN Size :param num_layers: Number of layers :param keep_prob: Dropout keep probability :return: RNN state # TODO: Implement Function enc_cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.BasicLSTMCell(rnn_size)] * num_layers) enc_cell_drop = tf.contrib.rnn.DropoutWrapper(enc_cell, output_keep_prob=keep_prob) _, enc_state = tf.nn.dynamic_rnn(enc_cell_drop, rnn_inputs, dtype=tf.float32) return enc_state DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_encoding_layer(encoding_layer) def decoding_layer_train(encoder_state, dec_cell, dec_embed_input, sequence_length, decoding_scope, output_fn, keep_prob): Create a decoding layer for training :param encoder_state: Encoder State :param dec_cell: Decoder RNN Cell :param dec_embed_input: Decoder embedded input :param sequence_length: Sequence Length :param decoding_scope: TenorFlow Variable Scope for decoding :param output_fn: Function to apply the output layer :param keep_prob: Dropout keep probability :return: Train Logits # TODO: Implement Function train_dec_fm = tf.contrib.seq2seq.simple_decoder_fn_train(encoder_state) train_seq2seq, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder(dec_cell, train_dec_fm, \ dec_embed_input, sequence_length, scope=decoding_scope) train_drop = tf.nn.dropout(train_seq2seq, keep_prob) train_logits = output_fn(train_drop) return train_logits DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer_train(decoding_layer_train) def decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, maximum_length, vocab_size, decoding_scope, output_fn, keep_prob): Create a decoding layer for inference :param encoder_state: Encoder state :param dec_cell: Decoder RNN Cell :param dec_embeddings: Decoder embeddings :param start_of_sequence_id: GO ID :param end_of_sequence_id: EOS Id :param maximum_length: The maximum allowed time steps to decode :param vocab_size: Size of vocabulary :param decoding_scope: TensorFlow Variable Scope for decoding :param output_fn: Function to apply the output layer :param keep_prob: Dropout keep probability :return: Inference Logits # TODO: Implement Function infer_decoder_fn = tf.contrib.seq2seq.simple_decoder_fn_inference( output_fn, encoder_state, dec_embeddings, start_of_sequence_id, end_of_sequence_id, maximum_length, vocab_size) inference_seq2seq, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder(dec_cell, infer_decoder_fn, scope=decoding_scope) inference_logits = tf.nn.dropout(inference_seq2seq, keep_prob) return inference_logits DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer_infer(decoding_layer_infer) def decoding_layer(dec_embed_input, dec_embeddings, encoder_state, vocab_size, sequence_length, rnn_size, num_layers, target_vocab_to_int, keep_prob): Create decoding layer :param dec_embed_input: Decoder embedded input :param dec_embeddings: Decoder embeddings :param encoder_state: The encoded state :param vocab_size: Size of vocabulary :param sequence_length: Sequence Length :param rnn_size: RNN Size :param num_layers: Number of layers :param target_vocab_to_int: Dictionary to go from the target words to an id :param keep_prob: Dropout keep probability :return: Tuple of (Training Logits, Inference Logits) # TODO: Implement Function dec_cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.BasicLSTMCell(rnn_size)] * num_layers) dec_cell_drop = tf.contrib.rnn.DropoutWrapper(dec_cell, output_keep_prob=keep_prob) # Output Layer output_fn = lambda x: tf.contrib.layers.fully_connected(x, vocab_size,\ None, scope=decoding_scope) with tf.variable_scope("decoding") as decoding_scope: train_logits = decoding_layer_train(encoder_state, dec_cell_drop, dec_embed_input,\ sequence_length, decoding_scope, output_fn, keep_prob) with tf.variable_scope("decoding", reuse=True) as decoding_scope: infer_logits = decoding_layer_infer(encoder_state, dec_cell_drop, dec_embeddings,\ target_vocab_to_int['<GO>'],target_vocab_to_int['<EOS>'], sequence_length,\ vocab_size, decoding_scope, output_fn, keep_prob) return train_logits, infer_logits DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer(decoding_layer) def seq2seq_model(input_data, target_data, keep_prob, batch_size, sequence_length, source_vocab_size, target_vocab_size, enc_embedding_size, dec_embedding_size, rnn_size, num_layers, target_vocab_to_int): Build the Sequence-to-Sequence part of the neural network :param input_data: Input placeholder :param target_data: Target placeholder :param keep_prob: Dropout keep probability placeholder :param batch_size: Batch Size :param sequence_length: Sequence Length :param source_vocab_size: Source vocabulary size :param target_vocab_size: Target vocabulary size :param enc_embedding_size: Decoder embedding size :param dec_embedding_size: Encoder embedding size :param rnn_size: RNN Size :param num_layers: Number of layers :param target_vocab_to_int: Dictionary to go from the target words to an id :return: Tuple of (Training Logits, Inference Logits) # TODO: Implement Function embed_input = tf.contrib.layers.embed_sequence(input_data, source_vocab_size, enc_embedding_size) encoder_state = encoding_layer(embed_input, rnn_size, num_layers, keep_prob) processed_target_data = process_decoding_input(target_data, target_vocab_to_int, batch_size) dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, dec_embedding_size])) dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, processed_target_data) train_logits, infer_logits = decoding_layer(dec_embed_input, dec_embeddings, encoder_state, target_vocab_size,\ sequence_length, rnn_size, num_layers, target_vocab_to_int, keep_prob) return train_logits, infer_logits DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_seq2seq_model(seq2seq_model) # Number of Epochs epochs = 20 # Batch Size batch_size = 512 # RNN Size rnn_size = 512 # Number of Layers num_layers = 1 # Embedding Size encoding_embedding_size = 256 decoding_embedding_size = 256 # Learning Rate learning_rate = 0.001 # Dropout Keep Probability keep_probability = 0.7 DON'T MODIFY ANYTHING IN THIS CELL save_path = 'checkpoints/dev' (source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess() max_source_sentence_length = max([len(sentence) for sentence in source_int_text]) train_graph = tf.Graph() with train_graph.as_default(): input_data, targets, lr, keep_prob = model_inputs() sequence_length = tf.placeholder_with_default(max_source_sentence_length, None, name='sequence_length') input_shape = tf.shape(input_data) train_logits, inference_logits = seq2seq_model( tf.reverse(input_data, [-1]), targets, keep_prob, batch_size, sequence_length, len(source_vocab_to_int), len(target_vocab_to_int), encoding_embedding_size, decoding_embedding_size, rnn_size, num_layers, target_vocab_to_int) tf.identity(inference_logits, 'logits') with tf.name_scope("optimization"): # Loss function cost = tf.contrib.seq2seq.sequence_loss( train_logits, targets, tf.ones([input_shape[0], sequence_length])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) DON'T MODIFY ANYTHING IN THIS CELL import time def get_accuracy(target, logits): Calculate accuracy max_seq = max(target.shape[1], logits.shape[1]) if max_seq - target.shape[1]: target = np.pad( target, [(0,0),(0,max_seq - target.shape[1])], 'constant') if max_seq - logits.shape[1]: logits = np.pad( logits, [(0,0),(0,max_seq - logits.shape[1]), (0,0)], 'constant') return np.mean(np.equal(target, np.argmax(logits, 2))) train_source = source_int_text[batch_size:] train_target = target_int_text[batch_size:] valid_source = helper.pad_sentence_batch(source_int_text[:batch_size]) valid_target = helper.pad_sentence_batch(target_int_text[:batch_size]) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(epochs): for batch_i, (source_batch, target_batch) in enumerate( helper.batch_data(train_source, train_target, batch_size)): start_time = time.time() _, loss = sess.run( [train_op, cost], {input_data: source_batch, targets: target_batch, lr: learning_rate, sequence_length: target_batch.shape[1], keep_prob: keep_probability}) batch_train_logits = sess.run( inference_logits, {input_data: source_batch, keep_prob: 1.0}) batch_valid_logits = sess.run( inference_logits, {input_data: valid_source, keep_prob: 1.0}) train_acc = get_accuracy(target_batch, batch_train_logits) valid_acc = get_accuracy(np.array(valid_target), batch_valid_logits) end_time = time.time() print('Epoch {:>3} Batch {:>4}/{} - Train Accuracy: {:>6.3f}, Validation Accuracy: {:>6.3f}, Loss: {:>6.3f}' .format(epoch_i, batch_i, len(source_int_text) // batch_size, train_acc, valid_acc, loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_path) print('Model Trained and Saved') DON'T MODIFY ANYTHING IN THIS CELL # Save parameters for checkpoint helper.save_params(save_path) DON'T MODIFY ANYTHING IN THIS CELL import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, (source_vocab_to_int, target_vocab_to_int), (source_int_to_vocab, target_int_to_vocab) = helper.load_preprocess() load_path = helper.load_params() def sentence_to_seq(sentence, vocab_to_int): Convert a sentence to a sequence of ids :param sentence: String :param vocab_to_int: Dictionary to go from the words to an id :return: List of word ids # TODO: Implement Function words = sentence.split(" ") word_ids = [] for word in words: word = word.lower() if word in vocab_to_int: word_id = vocab_to_int[word] else: word_id = vocab_to_int['<UNK>'] word_ids.append(word_id) return word_ids DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_sentence_to_seq(sentence_to_seq) translate_sentence = 'he saw a old yellow truck .' DON'T MODIFY ANYTHING IN THIS CELL translate_sentence = sentence_to_seq(translate_sentence, source_vocab_to_int) loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_path + '.meta') loader.restore(sess, load_path) input_data = loaded_graph.get_tensor_by_name('input:0') logits = loaded_graph.get_tensor_by_name('logits:0') keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0') translate_logits = sess.run(logits, {input_data: [translate_sentence], keep_prob: 1.0})[0] print('Input') print(' Word Ids: {}'.format([i for i in translate_sentence])) print(' English Words: {}'.format([source_int_to_vocab[i] for i in translate_sentence])) print('\nPrediction') print(' Word Ids: {}'.format([i for i in np.argmax(translate_logits, 1)])) print(' French Words: {}'.format([target_int_to_vocab[i] for i in np.argmax(translate_logits, 1)])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Problem set #2 Step2: Problem set #3 Step3: Problem set #4 Step4: Problem set #5 Step5: Specifying a field other than name, area or elevation for the sort parameter should fail silently, defaulting to sorting alphabetically. Expected output Step6: Paste your code
<ASSISTANT_TASK:> Python Code: import requests data = requests.get('http://localhost:5000/lakes').json() print(len(data), "lakes") for item in data[:10]: print(item['name'], "- elevation:", item['elevation'], "m / area:", item['area'], "km^2 / type:", item['type']) import requests data = requests.get('http://localhost:5000/lakes?type=salt').json() avg_area = sum([x['area'] for x in data if x['area'] is not None]) / len(data) avg_elev = sum([x['elevation'] for x in data if x['elevation'] is not None]) / len(data) print("average area:", int(avg_area)) print("average elevation:", int(avg_elev)) import requests data = requests.get('http://localhost:5000/lakes?sort=elevation').json() for item in [x['name'] for x in data if x['elevation'] is not None][:15]: print("*", item) import requests data = requests.get('http://localhost:5000/lakes?sort=area&type=caldera').json() for item in data: print("*", item['name']) import requests data = requests.get('http://localhost:5000/lakes', params={'type': "' OR true; --"}).json() data import requests data = requests.get('http://localhost:5000/lakes', params={'sort': "florb"}).json() [x['name'] for x in data[:5]] import pg8000 import decimal from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/lakes') def give_lakes(): conn = pg8000.connect(database = 'mondial', user = 'rebeccaschuetz') cursor = conn.cursor() sort = request.args.get('sort', 'name') type_param = request.args.get('type', None) # to get rid of not valid type_params: cursor.execute('SELECT name, elevation, area, type FROM lake WHERE type = %s LIMIT 1', [type_param]) if not cursor.fetchone(): lakes_list = [] if type_param: if sort == 'elevation' or sort == 'area': cursor.execute('SELECT name, elevation, area, type FROM lake WHERE type = %s ORDER BY ' + sort + ' desc', [type_param]) else: sort = 'name' cursor.execute('SELECT name, elevation, area, type FROM lake WHERE type = %s ORDER BY ' + sort, [type_param]) else: if sort == 'elevation' or sort == 'area': cursor.execute('SELECT name, elevation, area, type FROM lake ORDER BY ' + sort + ' desc') else: sort = 'name' cursor.execute('SELECT name, elevation, area, type FROM lake ORDER BY ' + sort) lakes_list = [] for item in cursor.fetchall(): def decimal_to_int(x): if isinstance(x, decimal.Decimal): return int(x) else: return None # elevation = item[1] # if elevation: # elevation = int(elevation) # area = item[2] # if area: # area = int(area) # lakes_dict = {'name': item[0], # 'elevation': elevation, # 'area': area, # 'type': item[3]} lakes_dict = {'name': item[0], 'elevation': decimal_to_int(item[1]), 'area': decimal_to_int(item[2]), 'type': item[3]} lakes_list.append(lakes_dict) for dictionary in lakes_list: print(dictionary) return jsonify(lakes_list) app.run() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Run the Demo Step2: Video Step3: Audio Step4: Advanced options
<ASSISTANT_TASK:> Python Code: from IPython.display import HTML HTML('''<script> code_show=true; function code_toggle() { if (code_show){ $('div.input').hide(); } else { $('div.input').show(); } code_show = !code_show } $( document ).ready(code_toggle); </script> <form action="javascript:code_toggle()"><input type="submit" value="Click here to toggle on/off the raw code."></form>''') from ipywidgets import interact import ipywidgets as widgets from common import common_vcu_demo_camera_encode_streamout import os from ipywidgets import HBox, VBox, Text, Layout video_capture_device=widgets.Text(value='', placeholder='"/dev/video1"', description='Camera Dev Id:', style={'description_width': 'initial'}, #layout=Layout(width='35%', height='30px'), disabled=False) address_path=widgets.Text(value='', placeholder='192.168.1.101 ', description='Client IP:', disabled=False) HBox([video_capture_device, address_path]) codec_type=widgets.RadioButtons( options=['avc', 'hevc'], description='Codec Type:', disabled=False) video_size=widgets.RadioButtons( options=['640x480', '1280x720', '1920x1080', '3840x2160'], description='Resolution:', description_tooltip='To select the values, please refer USB Camera Capabilities section', disabled=False) sink_name=widgets.RadioButtons( options=['none', 'fakevideosink'], description='Video Sink:', disabled=False) HBox([codec_type, video_size, sink_name]) device_id=Text(value='', placeholder='(optional) "hw:1"', description='Input Dev:', description_tooltip='To select the values, please refer Determine Audio Device Names section', disabled=False) device_id audio_sink={'none':['none'], 'aac':['auto','alsasink','pulsesink'],'vorbis':['auto','alsasink','pulsesink']} audio_src={'none':['none'], 'aac':['auto','alsasrc','pulseaudiosrc'],'vorbis':['auto','alsasrc','pulseaudiosrc']} #val=sorted(audio_sink, key = lambda k: (-len(audio_sink[k]), k)) def print_audio_sink(AudioSink): pass def print_audio_src(AudioSrc): pass def select_audio_sink(AudioCodec): audio_sinkW.options = audio_sink[AudioCodec] audio_srcW.options = audio_src[AudioCodec] audio_codecW = widgets.RadioButtons(options=sorted(audio_sink.keys(), key=lambda k: len(audio_sink[k])), description='Audio Codec:') init = audio_codecW.value audio_sinkW = widgets.RadioButtons(options=audio_sink[init], description='Audio Sink:') audio_srcW = widgets.RadioButtons(options=audio_src[init], description='Audio Src:') #j = widgets.interactive(print_audio_sink, AudioSink=audio_sinkW) k = widgets.interactive(print_audio_src, AudioSrc=audio_srcW) i = widgets.interactive(select_audio_sink, AudioCodec=audio_codecW) HBox([i, k]) frame_rate=widgets.Text(value='', placeholder='(optional) 15, 30, 60', description='Frame Rate:', disabled=False) bit_rate=widgets.Text(value='', placeholder='(optional) 1000, 20000', description='Bit Rate(Kbps):', style={'description_width': 'initial'}, disabled=False) gop_length=widgets.Text(value='', placeholder='(optional) 30, 60', description='Gop Length', disabled=False) display(HBox([bit_rate, frame_rate, gop_length])) no_of_frames=Text(value='', placeholder='(optional) 1000, 2000', description=r'<p>Frame Nos:</p>', #layout=Layout(width='25%', height='30px'), disabled=False) output_path=widgets.Text(value='', placeholder='(optional)', description='Output Path:', disabled=False) periodicity_idr=widgets.Text(value='', placeholder='(optional) 30, 40, 50', description='Periodicity Idr:', style={'description_width': 'initial'}, #layout=Layout(width='35%', height='30px'), disabled=False) #entropy_buffers #output_path #gop_length HBox([periodicity_idr, no_of_frames, output_path]) #entropy_buffers show_fps=widgets.Checkbox( value=False, description='show-fps', #style={'description_width': 'initial'}, disabled=False) compressed_mode=widgets.Checkbox( value=False, description='compressed-mode', disabled=False) HBox([compressed_mode, show_fps]) from IPython.display import clear_output from IPython.display import Javascript def run_all(ev): display(Javascript('IPython.notebook.execute_cells_below()')) def clear_op(event): clear_output(wait=True) return button1 = widgets.Button( description='Clear Output', style= {'button_color':'lightgreen'}, #style= {'button_color':'lightgreen', 'description_width': 'initial'}, layout={'width': '300px'} ) button2 = widgets.Button( description='', style= {'button_color':'white'}, #style= {'button_color':'lightgreen', 'description_width': 'initial'}, layout={'width': '83px'} ) button1.on_click(run_all) button1.on_click(clear_op) def start_demo(event): #clear_output(wait=True) arg = []; arg = common_vcu_demo_camera_encode_streamout.cmd_line_args_generator(device_id.value, video_capture_device.value, video_size.value, codec_type.value, audio_codecW.value, frame_rate.value, output_path.value, no_of_frames.value, bit_rate.value, show_fps.value, audio_srcW.value, periodicity_idr.value, gop_length.value, compressed_mode.value, sink_name.value, address_path.value); #!sh vcu-demo-camera-encode-decode-display.sh $arg > logs.txt 2>&1 !sh vcu-demo-camera-encode-streamout.sh $arg return button = widgets.Button( description='click to start camera-encode-streamout demo', style= {'button_color':'lightgreen'}, #style= {'button_color':'lightgreen', 'description_width': 'initial'}, layout={'width': '300px'} ) button.on_click(start_demo) HBox([button, button2, button1]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We first try to solve a complicated problem Step2: Lets transform the left hand side in teh same way Step3: We can simplify this as well and just take the derivative directly Step4: This was a round about way to do something simple, but we can compare them directly to make sure Step5: Or we can plot it Step6: Can make a substitution to evaluate the function
<ASSISTANT_TASK:> Python Code: import numpy as np import sympy sympy.init_printing() # pretty printing # must define symbolic variables before us x, y = sympy.symbols('x y', real=True) y = x**2*sympy.sqrt(3*x-2)/(x+1)**2 y # This causes it to output formatted nicely. # Taking the natural log of this: a = sympy.ln(x**2*sympy.sqrt(3*x-2)/(x+1)**2) a # Keep in mind that the left hand side is ln(y) # Taking its derivative with respect to x # So, we took the log of the right side, then the derivative sympy.diff(a,x) # That is kind of messy. Let the computer simplify it sympy.simplify(sympy.diff(a,x)) # We could have done this all at once sympy.simplify(sympy.diff(sympy.ln(y),x)) sympy.simplify(sympy.diff(sympy.ln(y), x)*y) sympy.simplify(sympy.diff(y, x)) sympy.simplify(sympy.diff(y, x)) == sympy.simplify(sympy.diff(sympy.ln(y),x)*y) sympy.plot((sympy.diff(y, x), (x, 0.2, 10)), (y, (x, 0.5, 10))) # To change colors # show = False delays the plot until we can set all of the parameters # legend turns on the legend and uses the labels we have later. p = sympy.plot((sympy.diff(y,x),(x,0.2,10)), (y, (x,0.5,10)), show = False, legend = True) p[0].line_color = 'blue' p[0].label = '$\\frac{dy}{dx}$' p[1].line_color = 'green' p[1].label = '$y$' p.show() from sympy.abc import alpha y.subs(x,alpha) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Start Step2: Continue
<ASSISTANT_TASK:> Python Code: #!pip install graphistry -q #!pip install OTXv2 -q import graphistry import pandas as pd from OTXv2 import OTXv2, IndicatorTypes from gotx import G_OTX # To specify Graphistry account & server, use: # graphistry.register(api=3, username='...', password='...', protocol='https', server='hub.graphistry.com') # For more options, see https://github.com/graphistry/pygraphistry#configure otx = OTXv2("MY_KEY") g_otx = G_OTX(graphistry, otx) lockergoga_pulses = otx.search_pulses('LockerGoga').get('results') lockergoga_pulses_df = g_otx.pulses_to_df(lockergoga_pulses) lockergoga_indicators_df = g_otx.pulses_to_indicators_df(lockergoga_pulses) g = g_otx.indicatormap(lockergoga_pulses_df, lockergoga_indicators_df) g.plot() ip_pulses = otx.get_indicator_details_by_section(IndicatorTypes.IPv4, lockergoga_indicators_df[lockergoga_indicators_df['indicator_type'] == 'IPv4'].values[0][0]) ip_pulses_df = g_otx.indicator_details_by_section_to_pulses_df(ip_pulses) ip_indicators_df = g_otx.indicator_details_by_section_to_indicators_df(ip_pulses) g_otx.indicatormap(ip_pulses_df, ip_indicators_df).plot() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Topic purpose Step2: Probability theory and Bayesian inference Step3: Integration over the evidence Step4: A simple mixture model Step5: Practical
<ASSISTANT_TASK:> Python Code: import numpy as np import sklearn.datasets, sklearn.linear_model, sklearn.neighbors import sklearn.manifold, sklearn.cluster import matplotlib.pyplot as plt import seaborn as sns import sys, os, time import scipy.io.wavfile, scipy.signal import pymc as mc import cv2 %matplotlib inline import matplotlib as mpl mpl.rcParams['figure.figsize'] = (18.0, 10.0) %%javascript IPython.OutputArea.auto_scroll_threshold = 9999; def joint_marginal(cov): # create an independent 2D normal distribution x,y = np.meshgrid(np.linspace(-3,3,50), np.linspace(-3,3,50)) pos = np.empty(x.shape + (2,)) pos[:,:,0] = x pos[:,:,1] = y joint_pdf = scipy.stats.multivariate_normal.pdf(pos, [0,0], cov) fig = plt.figure() # plot the joint ax = fig.add_subplot(2,2,1) ax.axis('equal') plt.title("Joint p(x,y)") ax.pcolor(x,y,joint_pdf, cmap='viridis') # plot the marginals ax = fig.add_subplot(2,2,3) ax.axis('equal') plt.title("Marginal $p(x) = \int\ p(x,y) dy$") ax.plot(x[0,:], np.sum(joint_pdf, axis=0)) ax = fig.add_subplot(2,2,2) ax.axis('equal') plt.title("Marginal $p(y) = \int\ p(x,y) dx$") ax.plot(np.sum(joint_pdf, axis=1), x[0,:]) # plot p(x|y) ax = fig.add_subplot(2,2,4) ax.axis('equal') plt.title("Conditional $p(x|y) = \\frac{p(x,y)}{p(x)}$") marginal = np.tile(np.sum(joint_pdf, axis=0), (joint_pdf.shape[0],1)) ax.pcolor(x,y,joint_pdf/marginal, cmap='viridis') joint_marginal([[1,0],[0.5,1]]) def prior_posterior(): mean = 0 std = 1 prior = scipy.stats.norm(mean,std) evidence = scipy.stats.norm(1, 0.1) xs = np.linspace(-5,5,200) plt.plot(xs, prior.pdf(xs), label="Prior") for i in range(10): # this is **not** inference! just a visual example! mean = 0.8*mean + 0.2*1 std = 0.8*std + 0.2*0.05 v = evidence.rvs() plt.plot([v,v],[0,1], 'c', alpha=0.7) plt.plot(xs, scipy.stats.norm(mean,std).pdf(xs), 'k:', alpha=0.5) plt.plot([v,v],[0,1], 'c', alpha=0.7, label="Observations") plt.plot(xs, scipy.stats.norm(mean,std).pdf(xs), 'g', label="Posterior") plt.legend() prior_posterior() ### Bayesian Linear Regression with pymc ### We use Monte Carlo sampling to estimate the distribution of a linear function with a normally ### distributed error, given some observed data. ### Vaguely based on: http://matpalm.com/blog/2012/12/27/dead_simple_pymc/ and http://sabermetricinsights.blogspot.co.uk/2014/05/bayesian-linear-regression-with-pymc.html ## Utility function to plot the graph of a PyMC model def show_dag(model): dag = mc.graph.dag(model) dag.write("graph.png",format="png") from IPython.display import Image i = Image(filename='graph.png') return i ## generate data with a known distribution ## this will be our "observed" data x = np.sort(np.random.uniform(0,20, (50,))) m = 2 c = 15 # Add on some measurement noise, with std. dev. 3.0 epsilon = data = np.random.normal(0,3, x.shape) y = m * x + c + epsilon plt.plot(x,y, '.', label="Datapoints") plt.plot(x, m*x+c, '--', lw=3, label="True") plt.legend() plt.xlabel("x") plt.xlabel("y") ## Now, set up the PyMC model ## specify the prior distribution of the unknown line function variables ## Here, we assume a normal distribution over m and c m_unknown = mc.Normal('m', 0, 0.01) c_unknown = mc.Normal('c', 0, 0.001) ## specify a prior over the precision (inverse variance) of the error term # precision = 1/variance ## Here we specify a uniform distribution from 0.001 to 10.0 precision = mc.Uniform('precision', lower=0.001, upper=10.0) # specify the observed input variable # we use a normal distribution, but this has no effect -- the values are fixed and the paramters # never updated; this is just a way of transforming x into a variable pymc can work with # (it's really a hack) x_obs = mc.Normal("x_obs", 0, 1, value=x, observed=True) @mc.deterministic(plot=False) def line(m=m_unknown, c=c_unknown, x=x_obs): return x*m+c # specify the observed output variable (note if use tau instead of sigma, we use the precision paramterisation) y_obs = mc.Normal('y_obs', mu=line, tau=precision, value=y, observed=True) model = mc.Model([m_unknown, c_unknown, precision, x_obs, y_obs]) # display the graphical model show_dag(model) # sample from the distribution mcmc = mc.MCMC(model) mcmc.sample(iter=10000) ## plot histograms of possible parameter values plt.figure() plt.hist(mcmc.trace("m")[:], normed=True, bins=30) plt.title("Estimate of m") plt.figure() plt.hist(mcmc.trace("c")[:], normed=True, bins=30) plt.title("Estimate of c") plt.figure() plt.hist(np.sqrt(1.0/mcmc.trace("precision")[:]), normed=True, bins=30) plt.title("Estimate of epsilon std.dev.") plt.figure() ## now plot overlaid samples from the linear function ms = mcmc.trace("m")[:] cs = mcmc.trace("c")[:] plt.title("Sampled fits") plt.plot(x, y, '.', label="Observed") plt.plot(x, x*m+c, '--', label="True") xf = np.linspace(-20,40,200) for m,c in zip(ms[::20], cs[::20]): plt.plot(xf, xf*m+c, 'r-', alpha=0.005) plt.legend() plt.xlim(-20,40) plt.ylim(-40,80) ## Adapted from the example given at ## http://stackoverflow.com/questions/18987697/how-to-model-a-mixture-of-3-normals-in-pymc n = 3 ndata = 500 ## A Dirichlet model specifies the distribution over categories ## All 1 means that every category is equally likely dd = mc.Dirichlet('dd', theta=(1,)*n) ## This variable "selects" the category (i.e. the normal distribution) ## to use. The Dirichlet distribution sets the prior over the categories. category = mc.Categorical('category', p=dd, size=ndata) ## Now we set our priors the precision and mean of each normal distribution ## Note the use of "size" to generate a **vector** of variables (i.e. one for each category) ## We expect the precision of each normal to be Gamma distributed (this mainly forces it to be positive!) precs = mc.Gamma('precs', alpha=0.1, beta=0.1, size=n) ## And the means of the normal to be normally distributed, with a precision of 0.001 (i.e. std. dev 1000) means = mc.Normal('means', 0, 0.001, size=n) ## These deterministic functions link the means of the observed distribution to the categories ## They just select one of the elements of the mean/precision vector, given the current value of category ## The input variables must be specified in the parameters, so that PyMC knows which variables to pass to it @mc.deterministic def mean(category=category, means=means): return means[category] @mc.deterministic def prec(category=category, precs=precs): return precs[category] ## Generate synthetic mixture-of-normals data, with means at -50,0,+50, and std. dev of 1 v = np.random.randint( 0, n, ndata) data = (v==0)*(np.random.normal(50,5,ndata)) + (v==1)*(np.random.normal(-50,5,ndata)) + (v==2)*np.random.normal(0,5,ndata) ## Plot the original data plt.hist(data, bins=50) ## Now we specify the variable we observe -- which is normally distributed, *but* ## we don't know the mean or precision. Instead, we pass the **functions** mean() and pred() ## which will be used at each sampling step. ## We specify the observed values of this node, and tell PyMC these are observed ## This is all that is needed to specify the model obs = mc.Normal('obs', mean, prec, value=data, observed = True) ## Now we just bundle all the variables together for PyMC model = mc.Model({'dd': dd, 'category': category, 'precs': precs, 'means': means, 'obs': obs}) def show_dag(model): dag = mc.graph.dag(model) dag.write("graph.png",format="png") from IPython.display import Image i = Image(filename='graph.png') return i show_dag(model) mcmc = mc.MCMC(model) ## Now we tell the sampler what method to use ## Metropolis works well, but we must tell PyMC to use a specific ## discrete sampler for the category variable to get good results in a reasonable time mcmc.use_step_method(mc.AdaptiveMetropolis, model.means) mcmc.use_step_method(mc.AdaptiveMetropolis, model.precs) mcmc.use_step_method(mc.DiscreteMetropolis, model.category) ## this step is key! mcmc.use_step_method(mc.AdaptiveMetropolis, model.dd) ## Run the sampler mcmc.sample(iter=125000, burn=2000) plt.figure() plt.hist(mcmc.trace('means').gettrace()[:], normed=True) plt.title("Estimated means") plt.legend(['Component 1', 'Component 2', 'Component 3']) plt.figure() ## show the result in terms of std. dev. (i.e sqrt(1.0/precision)) plt.title("Estimated std. dev") plt.hist(np.sqrt(1.0/mcmc.trace('precs').gettrace()[:]), normed=True) plt.legend(['Component 1', 'Component 2', 'Component 3']) ## the variables in the model should go in the list passed to Model model = mc.Model([]) ## see the graphical representation of the model show_dag(model) ## Construct a sampler mcmc = mc.MCMC(model) ## Sample from the result; you should try changing the number of iterations mcmc.sample(iter=10000) ## Use the trace methods from pymc to explore the distribution of values <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 下面是狄利克雷分布的图像,其中两个水平轴是单纯形平面上的坐标轴,垂直轴对应于概率密度的值。 Step2: ${\alpha_k}=1$的情形: Step3: ${\alpha_k}=0.1$的情形:
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from scipy.stats import dirichlet import matplotlib.tri as tri from matplotlib import cm corners = np.array([[0, 0], [1, 0], [0.5, 0.75**0.5]]) triangle = tri.Triangulation(corners[:, 0], corners[:, 1]) refiner = tri.UniformTriRefiner(triangle) trimesh = refiner.refine_triangulation(subdiv=4) plt.figure(figsize=(8, 4)) for (i, mesh) in enumerate((triangle, trimesh)): plt.subplot(1, 2, i+ 1) plt.triplot(mesh) plt.axis('off') plt.axis('equal') # Mid-points of triangle sides opposite of each corner midpoints = [(corners[(i + 1) % 3] + corners[(i + 2) % 3]) / 2.0 \ for i in range(3)] def xy2bc(xy, tol=1.e-3): '''Converts 2D Cartesian coordinates to barycentric.''' s = [(corners[i] - midpoints[i]).dot(xy - midpoints[i]) / 0.75 \ for i in range(3)] return np.clip(s, tol, 1.0 - tol) def dirichlet_pdf(x, al): from operator import mul from math import gamma alpha = np.array(al) coef = gamma(np.sum(alpha)) / reduce(mul, [gamma(a) for a in alpha]) return coef * reduce(mul, [xx ** (aa - 1) for (xx, aa)in zip(x, alpha)]) def draw_dirichlet(alpha, nlevels=200, subdiv=8, **kwargs): refiner = tri.UniformTriRefiner(triangle) trimesh = refiner.refine_triangulation(subdiv=subdiv) pvals = [dirichlet_pdf(xy2bc(xy) , alpha) for xy in zip(trimesh.x, trimesh.y)] fig = plt.figure(figsize=(10,8)) ax = fig.gca(projection='3d') ax.plot_trisurf(trimesh.x, trimesh.y, pvals, cmap=cm.jet, linewidth=0.01) plt.axis('equal') plt.show() draw_dirichlet([10,10,10]) draw_dirichlet([1,1,1]) draw_dirichlet([0.1,0.1,0.1]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Q1. Concatenate x1 and x2. Step2: Q2. Repeat x three time element-wise. Step3: Q3-1. Capitalize the first letter of x element-wise.<br/> Step4: Q4. Make the length of each element 20 and the string centered / left-justified / right-justified with paddings of _. Step5: Q5. Encode x in cp500 and decode it again. Step6: Q6. Insert a space between characters of x. Step7: Q7-1. Remove the leading and trailing whitespaces of x element-wise.<br/> Step8: Q8. Split the element of x with spaces. Step9: Q9. Split the element of x to multiple lines. Step10: Q10. Make x a numeric string of 4 digits with zeros on its left. Step11: Q11. Replace "John" with "Jim" in x. Step12: Comparison Step13: Q13. Return x1 != x2, element-wise. Step14: String information Step15: Q15. Count the lowest index of "l" in x, element-wise. Step16: Q16-1. Check if each element of x is composed of digits only.<br/> Step17: Q17. Check if each element of x starts with "hi".
<ASSISTANT_TASK:> Python Code: from __future__ import print_function import numpy as np author = "kyubyong. https://github.com/Kyubyong/numpy_exercises" np.__version__ x1 = np.array(['Hello', 'Say'], dtype=np.str) x2 = np.array([' world', ' something'], dtype=np.str) out = np.char.add(x1, x2) print(out) x = np.array(['Hello ', 'Say '], dtype=np.str) out = np.char.multiply(x, 3) print(out) x = np.array(['heLLo woRLd', 'Say sOmething'], dtype=np.str) capitalized = np.char.capitalize(x) lowered = np.char.lower(x) uppered = np.char.upper(x) swapcased = np.char.swapcase(x) titlecased = np.char.title(x) print("capitalized =", capitalized) print("lowered =", lowered) print("uppered =", uppered) print("swapcased =", swapcased) print("titlecased =", titlecased) x = np.array(['hello world', 'say something'], dtype=np.str) centered = np.char.center(x, 20, fillchar='_') left = np.char.ljust(x, 20, fillchar='_') right = np.char.rjust(x, 20, fillchar='_') print("centered =", centered) print("left =", left) print("right =", right) x = np.array(['hello world', 'say something'], dtype=np.str) encoded = np.char.encode(x, 'cp500') decoded = np.char.decode(encoded,'cp500') print("encoded =", encoded) print("decoded =", decoded) x = np.array(['hello world', 'say something'], dtype=np.str) out = np.char.join(" ", x) print(out) x = np.array([' hello world ', '\tsay something\n'], dtype=np.str) stripped = np.char.strip(x) lstripped = np.char.lstrip(x) rstripped = np.char.rstrip(x) print("stripped =", stripped) print("lstripped =", lstripped) print("rstripped =", rstripped) x = np.array(['Hello my name is John'], dtype=np.str) out = np.char.split(x) print(out) x = np.array(['Hello\nmy name is John'], dtype=np.str) out = np.char.splitlines(x) print(out) x = np.array(['34'], dtype=np.str) out = np.char.zfill(x, 4) print(out) x = np.array(['Hello nmy name is John'], dtype=np.str) out = np.char.replace(x, "John", "Jim") print(out) x1 = np.array(['Hello', 'my', 'name', 'is', 'John'], dtype=np.str) x2 = np.array(['Hello', 'my', 'name', 'is', 'Jim'], dtype=np.str) out = np.char.equal(x1, x2) print(out) x1 = np.array(['Hello', 'my', 'name', 'is', 'John'], dtype=np.str) x2 = np.array(['Hello', 'my', 'name', 'is', 'Jim'], dtype=np.str) out = np.char.not_equal(x1, x2) print(out) x = np.array(['Hello', 'my', 'name', 'is', 'Lily'], dtype=np.str) out = np.char.count(x, "l") print(out) x = np.array(['Hello', 'my', 'name', 'is', 'Lily'], dtype=np.str) out = np.char.find(x, "l") print(out) # compare # print(np.char.index(x, "l")) # => This raises an error! x = np.array(['Hello', 'I', 'am', '20', 'years', 'old'], dtype=np.str) out1 = np.char.isdigit(x) out2 = np.char.islower(x) out3 = np.char.isupper(x) print("Digits only =", out1) print("Lower cases only =", out2) print("Upper cases only =", out3) x = np.array(['he', 'his', 'him', 'his'], dtype=np.str) out = np.char.startswith(x, "hi") print(out) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's fetch the raw data of $CO_2$ measurements at Mauna Loa from the noaa.gov website Step2: As explained in the file co2_mm_mlo.txt, the average column are the raw data of $CO_2$ values averaged over a month, and some months are missing. The trend then subtracts "seasonal cycle" computed over a 7 year window. The missing values in trend are then linearly interpolated. Finally, the average column then contains the trend value plus average seasonal cycle (i.e. average and interpolated contain the same values except for missing months, which are "intelligently" interpolated). We should do this analysis ourselves in the notebook directly from the average data only, but for now let's reuse this analysis. Step3: Let's get numbers for $N$ (year 2010) and $N_0$ (year 1980) by reading it off the $y$-axis Step4: Temperature changes Step5: Warming over the past 30 years using satellite measuremenets (see a separate notebook for this calculation) Step6: We'll use the satellite measurements, as arguably they have less systematic errors. Step7: Calculation of temperature sensitivity
<ASSISTANT_TASK:> Python Code: %pylab inline import urllib # Only execute this if you want to regenerate the downloaded file open("data/co2_mm_mlo.txt", "wb").write(urllib.request.urlopen("ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt").read()) D = loadtxt("data/co2_mm_mlo.txt") years = D[:, 2] average = D[:, 3] interpolated = D[:, 4] trend = D[:, 5] plot(years, interpolated, "r-", lw=1.5, label="monthly average") plot(years, trend, "k-", label="trend") xlabel("Year") ylabel("$CO_2$ concentration [ppm]") title("Atmospheric $CO_2$ concentrations at Mauna Loa") legend(loc="upper left"); idx1980 = sum(years < 1980) idx2010 = sum(years < 2010) N0 = trend[idx1980] N = trend[idx2010] print("N0 = %.2f ppm (year %.3f)" % (N0, years[idx1980])) print("N = %.2f ppm (year %.3f)" % (N, years[idx2010])) dTdt = 0.24995728742972512 # C / decade dTdt = 0.13764588789937693 # C / decade dT = dTdt * 3 # 3 decades dT from math import log deltaT = dT * log(2) / log(1.0*N/N0) print("∆T = ", deltaT, "C") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now you are ready to run the main part of the code. Click on the cell below and then type Shift+Enter. If you do not get an error, you should receive a message indicating that a new file has been written to your output folder.
<ASSISTANT_TASK:> Python Code: ##### Configuration ##### # Configure the filename filename = "file.txt" # Configure the path to input directory input_path = "C:\Users\USERNAME\Desktop\we1s-test\input" # input_path = "/Users/USERNAME/Desktop/we1s-test/input" # Configure the path to output directory output_path = "C:\Users\USERNAME\Desktop\we1s-test\output" # output_path = "/Users/USERNAME/Desktop/we1s-test/output" ##### End of Configuration ##### # Import the os package to manage file paths import os # Create input and out file paths input_file = os.path.join(input_path, filename) output_file = os.path.join(output_path, filename) # Open the input file and read it f = open(input_file) text = f.read() f.close() print("The input file says: " + text) # Convert the text to lower case text = text.lower() # Open the output file for writing and save the new text to it output_file = os.path.join(output_path, "file2.txt") f = open(output_file, "w") f.write(text) f.close() print("I've just written a new file called 'file2.txt' to your output folder. Check it out!") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's go over the columns Step2: <a id='pipeline'></a> Step3: Now that we've imported the data, let's take a look at which fields are available for each dataset. Step4: Now that we know what fields we have access to, let's see what this data looks like when we run it through Pipeline. Step5: Here, you'll notice that each security is mapped to the corresponding value, so you could grab any security to get what you need.
<ASSISTANT_TASK:> Python Code: # For use in Quantopian Research, exploring interactively from quantopian.interactive.data.quandl import cboe_vix as dataset # import data operations from odo import odo # import other libraries we will use import pandas as pd # Let's use blaze to understand the data a bit using Blaze dshape() dataset.dshape # And how many rows are there? # N.B. we're using a Blaze function to do this, not len() dataset.count() # Let's see what the data looks like. We'll grab the first three rows. dataset[:3] # Plotting this DataFrame since 2007 df = odo(dataset, pd.DataFrame) df.head(5) # So we can plot it, we'll set the index as the `asof_date` df['asof_date'] = pd.to_datetime(df['asof_date']) df = df.set_index(['asof_date']) df.head(5) import matplotlib.pyplot as plt df.vix_open.plot(label=str(dataset)) plt.ylabel(str(dataset)) plt.legend() plt.title("Graphing %s since %s" % (str(dataset), min(df.index))) # Import necessary Pipeline modules from quantopian.pipeline import Pipeline from quantopian.research import run_pipeline from quantopian.pipeline.factors import AverageDollarVolume # Import the datasets available from quantopian.pipeline.data.quandl import cboe_vix print "Here are the list of available fields per dataset:" print "---------------------------------------------------\n" def _print_fields(dataset): print "Dataset: %s\n" % dataset.__name__ print "Fields:" for field in list(dataset.columns): print "%s - %s" % (field.name, field.dtype) print "\n" _print_fields(cboe_vix) print "---------------------------------------------------\n" pipe = Pipeline() pipe.add(cboe_vix.vix_open.latest, 'open_vix') # Setting some basic liquidity strings (just for good habit) dollar_volume = AverageDollarVolume(window_length=20) top_1000_most_liquid = dollar_volume.rank(ascending=False) < 1000 pipe.set_screen(top_1000_most_liquid & cboe_vix.vix_open.latest.notnan()) # The show_graph() method of pipeline objects produces a graph to show how it is being calculated. pipe.show_graph(format='png') # run_pipeline will show the output of your pipeline pipe_output = run_pipeline(pipe, start_date='2013-11-01', end_date='2013-11-25') pipe_output # This section is only importable in the backtester from quantopian.algorithm import attach_pipeline, pipeline_output # General pipeline imports from quantopian.pipeline import Pipeline from quantopian.pipeline.factors import AverageDollarVolume # For use in your algorithms via the pipeline API from quantopian.pipeline.data.quandl import cboe_vix def make_pipeline(): # Create our pipeline pipe = Pipeline() # Screen out penny stocks and low liquidity securities. dollar_volume = AverageDollarVolume(window_length=20) is_liquid = dollar_volume.rank(ascending=False) < 1000 # Create the mask that we will use for our percentile methods. base_universe = (is_liquid) # Add the datasets available pipe.add(cboe_vix.vix_open.latest, 'vix_open') # Set our pipeline screens pipe.set_screen(is_liquid) return pipe def initialize(context): attach_pipeline(make_pipeline(), "pipeline") def before_trading_start(context, data): results = pipeline_output('pipeline') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Tutorial - How to work with the OpenEnergy Platform (OEP) Step2: 1. Select data Step3: <div class="alert alert-block alert-info"> Step4: 3. Make calculations Step5: Sum the installed Capacity by fuels and add the Unit MW to a new column.
<ASSISTANT_TASK:> Python Code: __copyright__ = "Zentrum für nachhaltige Energiesysteme Flensburg" __license__ = "GNU Affero General Public License Version 3 (AGPL-3.0)" __url__ = "https://github.com/openego/data_processing/blob/master/LICENSE" __author__ = "wolfbunke" import requests import pandas as pd from IPython.core.display import HTML # oedb oep_url= 'http://oep.iks.cs.ovgu.de/' # token your_token = '' # select powerplant data schema = 'supply' table = 'ego_dp_conv_powerplant' where = 'version=v0.2.10' conv_powerplants = requests.get(oep_url+'/api/v0/schema/'+schema+'/tables/'+table+'/rows/?where='+where, ) conv_powerplants.status_code df_pp = pd.DataFrame(conv_powerplants.json()) df_pp.info() results = df_pp[['capacity','fuel']].groupby('fuel').sum() results['units'] = 'MW' results # Write DataFrame as csv results.to_csv('Conventional_powerplants_germany.csv', sep=',', float_format='%.3f', decimal='.', date_format='%Y-%m-%d', encoding='utf-8', if_exists="replace") # Write the results as xlsx file writer = pd.ExcelWriter('Conventional_powerplants_germany.xlsx', engine='xlsxwriter') # write results of installed Capacity by fuels results.to_excel(writer, index=False, sheet_name='Installed Capacities by fuel') # write orgininal data in second sheet df_pp.to_excel(writer, index=False, sheet_name='Conventional Powerplants') # Close the Pandas Excel writer and output the Excel file. writer.save() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: It's an xml file, so we'll need the xml.etree parser, and pandas so that we can import into a dataframe Step2: Now, the reference answers are in the second daughter node of the tree. We can extract these and store them in a dictionary. To distinguish between reference answer tokens and student response tokens, I'm going to append each token in the reference answers with <code>_RA</code>, and each of the tokens in a student response with <code>_SR</code>. Step3: Next, we need to extract each of the student responses. These are in the third daughter node Step4: OK, that seems to work OK. Now, let's define a function that takes a filename, and returns the list of token dictionaries Step5: We now have a function which takes a filename and returns a list of tokenised student responses and reference answers Step6: So next we need to be able to build a document frequency dictionary from a list of tokenised documents. Step7: Next, define a function which takes a list of tokens and a document frequency dictionary, and returns a dictionary of the tf.idf values for each of the tokens in the list. Note Step8: Finally, we want to convert the outputs for all of the responses into a dataframe. Step9: Cool, that seems to work. Now just need to do it for the complete set of files. Just use beetle/train/core for the time being. Step10: Use os.walk to get the files Step11: We can now do the same as before, but this time using all the files to construct the final dataframe. We also need a series containing the accuracy measures. Step12: And finish by exporting to a csv file
<ASSISTANT_TASK:> Python Code: filename='semeval2013-task7/semeval2013-Task7-5way/beetle/train/Core/FaultFinding-BULB_C_VOLTAGE_EXPLAIN_WHY1.xml' import pandas as pd from xml.etree import ElementTree as ET tree=ET.parse(filename) r=tree.getroot() from string import punctuation def to_tokens(textIn): '''Convert the input textIn to a list of tokens''' tokens_ls=[t.lower().strip(punctuation) for t in textIn.split()] # remove any empty tokens return [t for t in tokens_ls if t] str='"Help!" yelped the banana, who was obviously scared out of his skin.' print(str) print(to_tokens(str)) refAnswers_dict={refAnswer.attrib['id']:[t+'_RA' for t in to_tokens(refAnswer.text)] for refAnswer in r[1]} refAnswers_dict print(r[2][0].text) r[2][0].attrib responses_ls=[] for (i, studentResponse) in enumerate(r[2]): if 'answerMatch' in studentResponse.attrib: matchTokens_ls=refAnswers_dict[studentResponse.attrib['answerMatch']] else: matchTokens_ls=[] responses_ls.append({'accuracy':studentResponse.attrib['accuracy'], 'text':studentResponse.text, 'tokens':[t+'_SR' for t in to_tokens(studentResponse.text)] + matchTokens_ls}) responses_ls[36] def extract_token_dictionaries(filenameIn): # Localise the to_tokens function def to_tokens_local(textIn): '''Convert the input textIn to a list of tokens''' tokens_ls=[t.lower().strip(punctuation) for t in textIn.split()] # remove any empty tokens return [t for t in tokens_ls if t] tree=ET.parse(filenameIn) root=tree.getroot() refAnswers_dict={refAnswer.attrib['id']:[t+'_RA' for t in to_tokens_local(refAnswer.text)] for refAnswer in root[1]} responsesOut_ls=[] for (i, studentResponse) in enumerate(root[2]): if 'answerMatch' in studentResponse.attrib: matchTokens_ls=refAnswers_dict[studentResponse.attrib['answerMatch']] else: matchTokens_ls=[] responsesOut_ls.append({'accuracy':studentResponse.attrib['accuracy'], 'text':studentResponse.text, 'tokens':[t+'_SR' for t in to_tokens_local(studentResponse.text)] \ + matchTokens_ls}) return responsesOut_ls extract_token_dictionaries(filename)[:2] def document_frequencies(listOfTokenLists): # Build the dictionary of all tokens used: token_set=set() for tokenList in listOfTokenLists: token_set=token_set.union(set(tokenList)) # Then return the document frequency counts for each token return {t:len([l for l in listOfTokenLists if t in l]) for t in token_set} tokenLists_ls=[x['tokens'] for x in extract_token_dictionaries(filename)] document_frequencies(tokenLists_ls) from collections import Counter def get_tfidf(tokens_ls, docFreq_dict): tf_dict=Counter(tokens_ls) return {t:tf_dict[t]/docFreq_dict[t] for t in tf_dict if t in docFreq_dict} get_tfidf('the cat sat on the mat'.split(), {'cat':2, 'the':1}) # Extract the data from the file: tokenDictionaries_ls=extract_token_dictionaries(filename) # Build the lists of responses: tokenLists_ls=[x['tokens'] for x in extract_token_dictionaries(filename)] # Build the document frequency dict docFreq_dict=document_frequencies(tokenLists_ls) # Create the tf.idf for each response: tfidf_ls=[get_tfidf(tokens_ls, docFreq_dict) for tokens_ls in tokenLists_ls] # Now, create a dataframe which is indexed by the token dictionary: trainingText_df=pd.DataFrame(index=docFreq_dict.keys()) # Use the index of responses in the list as column headers: for (i, tokens_ls) in enumerate(tfidf_ls): trainingText_df[i]=pd.Series(tokens_ls, index=trainingText_df.index) # Finally, transpose, and replace the NaNs with 0: trainingText_df.fillna(0).T !ls semeval2013-task7/semeval2013-Task7-5way/beetle/train/Core/ import os tokenDictionaries_ls=[] # glob would have been easier... for (root, dirs, files) in os.walk('semeval2013-task7/semeval2013-Task7-5way/beetle/train/Core/'): for filename in files: if filename[-4:]=='.xml': tokenDictionaries_ls.extend(extract_token_dictionaries(os.path.join(root, filename))) # Now we've extracted the information from all the files. We can now construct the dataframe # in the same way as before: # Build the lists of responses: tokenLists_ls=[x['tokens'] for x in tokenDictionaries_ls] # Build the document frequency dict docFreq_dict=document_frequencies(tokenLists_ls) # Now, create a dataframe which is indexed by the tokens # in the token frequency dictionary: trainingText_df=pd.DataFrame(index=docFreq_dict.keys()) # Populate the dataframe with the tf.idf for each response. Also, # create a dictionary of the accuracy values while we're at it. accuracy_dict={} for (i, response_dict) in enumerate(tokenDictionaries_ls): trainingText_df[i]=pd.Series(get_tfidf(response_dict['tokens'], docFreq_dict), index=trainingText_df.index) accuracy_dict[i]=response_dict['accuracy'] # Finally, transpose, and replace the NaNs with 0: trainingText_df=trainingText_df.fillna(0).T # Also, to make it easier to store in a single csv file, let's put the accuracy # values in a column called "accuracy_txt": trainingText_df['accuracy_txt']=pd.Series(accuracy_dict) # And to have a final column containing a numerical equivalent of the # accuracy_txt column (called accuracy_num ): labels_dict={label:i for (i, label) in enumerate(set(trainingText_df['accuracy_txt']))} trainingText_df['accuracy_num']=[labels_dict[l] for l in trainingText_df['accuracy_txt']] trainingText_df.head() trainingText_df.to_csv('beetleTrainingData.csv', index=False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: There you see! Even a 3% ethernet frame loss translates to 12% packet loss for jumbo ping test. This is same as what we observed. Does the math agree?
<ASSISTANT_TASK:> Python Code: import random import numpy as np sampleCount = 100000 # total events in our simulation p = 0.03 # ethernet frame loss probability grpSize = 4 # packet count per datagram, 5000 bytes = 4 packets grpEventCount = int(sampleCount/grpSize) # datagram count # generate random packets with p% packet loss events = np.random.choice([0,1], size=sampleCount, p=[p,1-p]) # group discrete packets into a datagram grpEvents = events.reshape(grpEventCount,grpSize) # function to determine datagram loss def checkFailure(grpEvent): return (np.count_nonzero(grpEvent) < grpSize) # Return 1 if the success count is less than 3 # count the result failCount = 0 for grpEvent in grpEvents: failCount += checkFailure(grpEvent) print("The probability of a group failure is {:.2f}%".format(failCount/len(grpEvents)*100)) 1- (1-p)**4 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load image Step2: Detect Edges Step3: View Edges
<ASSISTANT_TASK:> Python Code: # Load image import cv2 import numpy as np from matplotlib import pyplot as plt # Load image as greyscale image_gray = cv2.imread('images/plane_256x256.jpg', cv2.IMREAD_GRAYSCALE) # Calculate median intensity median_intensity = np.median(image_gray) # Set thresholds to be one standard deviation above and below median intensity lower_threshold = int(max(0, (1.0 - 0.33) * median_intensity)) upper_threshold = int(min(255, (1.0 + 0.33) * median_intensity)) # Apply canny edge detector image_canny = cv2.Canny(image_gray, lower_threshold, upper_threshold) # Show image plt.imshow(image_canny, cmap='gray'), plt.axis("off") plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Setup the matplotlib environment to make the plots look pretty. Step2: Introduction Step3: Analyse the ratio Step4: Not very legible, right? But some things can be observed in the above figure anyway. First of all, there's a "dip" in the number of generated fragments around $6.5\times 10^4$. This was caused by the fact that the number of generated fragments, $N$, exceeding a certain length $L_c$ is given by a power law Step5: The more fragments were generated in a collision, the fewer fragments a given collision gave rise to in the final population. This seems counter-intuitive because large collisions are expected to contribute more to the long-term growth of the debris population than others, which generate fewer fragments [2]. However, these plots do not contradict this thesis about the reasons for the growth of the number of debris because they do not show which collisions will drive the predicted growth of the number of objects in orbit. Rather, they show which collisions are likely to results in many follow-on collisions that will amplify the number of fragments that the collisions generate, thus fuelling the "Kessler syndrome"[3]. They do not necessarily say that th number of resulting fragments will be large on absolute terms. Step6: Most collisions had a ratio of less than $2.0$. Only
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot assert matplotlib.__version__>='1.5.1' import numpy assert numpy.__version__>='1.10.4' # Show the plots inside the notebook. %matplotlib inline # Make the figures high-resolution. %config InlineBackend.figure_format='retina' # Various font sizes. ticksFontSize=18 labelsFontSizeSmall=20 labelsFontSize=30 titleFontSize=34 legendFontSize=14 matplotlib.rc('xtick', labelsize=ticksFontSize) matplotlib.rc('ytick', labelsize=ticksFontSize) # Colourmaps. cm=matplotlib.pyplot.cm.get_cmap('viridis') import urllib2, numpy from __future__ import print_function # All collisions. lines=urllib2.urlopen('https://raw.githubusercontent.com/AleksanderLidtke/\ AnalyseCollisionFragments/master/AllColGenerated').read(856393*25) # no. lines * no. chars per line allColGen=numpy.array(lines.split('\n')[1:-1],dtype=numpy.float64) # Skip the header and the last empty line lines=urllib2.urlopen('https://raw.githubusercontent.com/AleksanderLidtke/\ AnalyseCollisionFragments/master/AllColResulting').read(856393*25) allColRes=numpy.array(lines.split('\n')[1:-1],dtype=numpy.float64) assert allColGen.shape==allColRes.shape print("Read data for {} collisions.".format(allColGen.size)) # Catastrophic collisions (a subset of all collisions). lines=urllib2.urlopen('https://raw.githubusercontent.com/AleksanderLidtke/\ AnalyseCollisionFragments/master/CatColGenerated').read(500227*25) # Fewer lines for the subset of all collisions. catColGen=numpy.array(lines.split('\n')[1:-1],dtype=numpy.float64) lines=urllib2.urlopen('https://raw.githubusercontent.com/AleksanderLidtke/\ AnalyseCollisionFragments/master/CatColResulting').read(500227*25) catColRes=numpy.array(lines.split('\n')[1:-1],dtype=numpy.float64) assert catColGen.shape==catColRes.shape print("Read data for {} catastrophic collisions.".format(catColGen.size)) # Compute the ratios. allRatios=allColRes/allColGen catRatios=catColRes/catColGen # Plot. fig=matplotlib.pyplot.figure(figsize=(12,8)) ax=fig.gca() matplotlib.pyplot.grid(linewidth=1) ax.set_xlabel(r"$Time\ (s)$",fontsize=labelsFontSize) ax.set_ylabel(r"$Response\ (-)$",fontsize=labelsFontSize) ax.set_xlim(0,7) ax.set_ylim(-2,2) ax.plot(allColGen,allRatios,alpha=1.0,label=r"$All\ collisions$",marker='o',c='k',markersize=1,mew=0,lw=0) ax.plot(catColGen,catRatios,alpha=1.0,label=r"$Catastrophic$",marker='x',c='r',markersize=1,mew=2,lw=0) ax.set_xlabel(r"$No.\ generated\ fragments\ \geq10\ cm$",fontsize=labelsFontSize) ax.set_ylabel(r"$Resulting-to-generated\ ratio$",fontsize=labelsFontSize) ax.set_xlim(0,12000) ax.set_ylim(0,10) ax.ticklabel_format(axis='x', style='sci', scilimits=(-2,-1)) ax.tick_params(axis='both',reset=False,which='both',length=5,width=1.5) matplotlib.pyplot.subplots_adjust(left=0.1,right=0.95,top=0.95,bottom=0.1) box=ax.get_position() ax.set_position([box.x0+box.width*0.0,box.y0+box.height*0.05,box.width*0.99,box.height*0.88]) ax.legend(bbox_to_anchor=(0.5,1.14),loc='upper center',prop={'size':legendFontSize},fancybox=True,\ shadow=True,ncol=3) fig.show() bins=numpy.arange(0,allColGen.max(),500) means=numpy.zeros(bins.size-1) medians=numpy.zeros(bins.size-1) meansCat=numpy.zeros(bins.size-1) mediansCat=numpy.zeros(bins.size-1) for i in range(bins.size-1): means[i]=numpy.mean(allRatios[(allColGen>=bins[i]) & (allColGen<bins[i+1])]) medians[i]=numpy.median(allRatios[(allColGen>=bins[i]) & (allColGen<bins[i+1])]) meansCat[i]=numpy.mean(catRatios[(catColGen>=bins[i]) & (catColGen<bins[i+1])]) mediansCat[i]=numpy.median(catRatios[(catColGen>=bins[i]) & (catColGen<bins[i+1])]) # Plot. fig=matplotlib.pyplot.figure(figsize=(14,8)) ax=fig.gca() matplotlib.pyplot.grid(linewidth=2) ax.plot(bins[:-1],means,alpha=1.0,label=r"$Mean,\ all$",marker=None,c='k',lw=3,ls='--') ax.plot(bins[:-1],medians,alpha=1.0,label=r"$Median,\ all$",marker=None,c='k',lw=3,ls=':') ax.plot(bins[:-1],meansCat,alpha=1.0,label=r"$Mean,\ catastrophic$",marker=None,c='r',lw=3,ls='--') ax.plot(bins[:-1],mediansCat,alpha=1.0,label=r"$Median,\ catastrophic$",marker=None,c='r',lw=3,ls=':') ax.set_xlabel(r"$No.\ generated\ fragments\ \geq10\ cm$",fontsize=labelsFontSize) ax.set_ylabel(r"$Resulting-to-generated\ ratio$",fontsize=labelsFontSize) ax.set_xlim(0,12000) ax.set_ylim(0,1) ax.ticklabel_format(axis='x', style='sci', scilimits=(-2,-1)) ax.tick_params(axis='both',reset=False,which='both',length=5,width=1.5) matplotlib.pyplot.subplots_adjust(left=0.1,right=0.95,top=0.92,bottom=0.1) box=ax.get_position() ax.set_position([box.x0+box.width*0.0,box.y0+box.height*0.05,box.width*0.99,box.height*0.88]) ax.legend(bbox_to_anchor=(0.5,1.18),loc='upper center',prop={'size':legendFontSize},fancybox=True,\ shadow=True,ncol=2) fig.show() ratioBins=numpy.linspace(0,2,100) # Get colours for every bin of the number of generated fragments. cNorm=matplotlib.colors.Normalize(vmin=0, vmax=bins.size-1) scalarMap=matplotlib.cm.ScalarMappable(norm=cNorm,cmap=cm) histColours=[] for i in range(0,bins.size-1): histColours.append(scalarMap.to_rgba(i)) # Plot the histograms. fig=matplotlib.pyplot.figure(figsize=(14,8)) ax=fig.gca() matplotlib.pyplot.grid(linewidth=2) ax.set_xlabel(r"$Resulting-to-generated\ ratio$",fontsize=labelsFontSize) ax.set_ylabel(r"$Fraction\ of\ collisions$",fontsize=labelsFontSize) for i in range(bins.size-1): ax.hist(allRatios[(allColGen>=bins[i]) & (allColGen<bins[i+1])],\ ratioBins,normed=1,cumulative=1,histtype='step',ls='solid',\ color=histColours[i],label=r"${}-{},\ all$".format(bins[i],bins[i+1])) ax.hist(catRatios[(catColGen>=bins[i]) & (catColGen<bins[i+1])],\ ratioBins,normed=1,cumulative=1,histtype='step',ls='dashed',\ color=histColours[i],label=r"${}-{},\ cat$".format(bins[i],bins[i+1])) ax.set_xlim(0,2) ax.ticklabel_format(axis='y', style='sci', scilimits=(-2,-1)) ax.tick_params(axis='both',reset=False,which='both',length=5,width=1.5) matplotlib.pyplot.subplots_adjust(left=0.1,right=0.95,top=0.92,bottom=0.1) box=ax.get_position() ax.set_position([box.x0+box.width*0.0,box.y0+box.height*0.05,box.width*0.99,box.height*0.6]) ax.legend(bbox_to_anchor=(0.5,1.8),loc='upper center',prop={'size':legendFontSize},fancybox=True,\ shadow=True,ncol=5) fig.show() numpy.sum(allRatios>=2.0)/float(allRatios.size)*100 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Primera diferencia hacia atrás Step2: Primera diferencia centrada Step3: Segunda diferencia hacia adelante Step4: Segunda diferencia hacia atrás Step5: Segunda diferencia centrada
<ASSISTANT_TASK:> Python Code: def g(x): resultado = - 0.1*x**4 - 0.15*x**3 - 0.5*x**2 - 0.25*x + 1.2 return resultado def fx_adelante(f,x,h): derivada = (f(x+h) - f(x))/h return derivada print('f\'(0.5) =', fx_adelante(g,0.5,0.25)) def fx_atras(f,x,h): derivada = (f(x) - f(x-h))/h return derivada print('f\'(0.5) =', fx_atras(g,0.5,0.25)) def fx_centrada(f,x,h): derivada = (fx_adelante(f,x,h) + fx_atras(f,x,h))/2 return derivada print('f\'(0.5) =', fx_centrada(g,0.5,0.25)) def fxx_adelante(f,x,h): derivada = (f(x+2*h) - 2*f(x+h) + f(x))/h**2 return derivada print('f\'\'(0.5) =', fxx_adelante(g,0.5,0.25)) def fxx_atras(f,x,h): derivada = (f(x) - 2*f(x-h) + f(x-2*h))/h**2 return derivada print('f\'\'(0.5) =', fxx_atras(g,0.5,0.25)) def fxx_centrada(f,x,h): derivada = (fxx_adelante(f,x,h) - fxx_atras(f,x,h))/h return derivada print('f\'\'(0.5) =', fxx_centrada(g,0.5,0.25)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Model Family Step7: 1.4. Basic Approximations Step8: 2. Key Properties --&gt; Resolution Step9: 2.2. Canonical Horizontal Resolution Step10: 2.3. Range Horizontal Resolution Step11: 2.4. Number Of Vertical Levels Step12: 2.5. High Top Step13: 3. Key Properties --&gt; Timestepping Step14: 3.2. Timestep Shortwave Radiative Transfer Step15: 3.3. Timestep Longwave Radiative Transfer Step16: 4. Key Properties --&gt; Orography Step17: 4.2. Changes Step18: 5. Grid --&gt; Discretisation Step19: 6. Grid --&gt; Discretisation --&gt; Horizontal Step20: 6.2. Scheme Method Step21: 6.3. Scheme Order Step22: 6.4. Horizontal Pole Step23: 6.5. Grid Type Step24: 7. Grid --&gt; Discretisation --&gt; Vertical Step25: 8. Dynamical Core Step26: 8.2. Name Step27: 8.3. Timestepping Type Step28: 8.4. Prognostic Variables Step29: 9. Dynamical Core --&gt; Top Boundary Step30: 9.2. Top Heat Step31: 9.3. Top Wind Step32: 10. Dynamical Core --&gt; Lateral Boundary Step33: 11. Dynamical Core --&gt; Diffusion Horizontal Step34: 11.2. Scheme Method Step35: 12. Dynamical Core --&gt; Advection Tracers Step36: 12.2. Scheme Characteristics Step37: 12.3. Conserved Quantities Step38: 12.4. Conservation Method Step39: 13. Dynamical Core --&gt; Advection Momentum Step40: 13.2. Scheme Characteristics Step41: 13.3. Scheme Staggering Type Step42: 13.4. Conserved Quantities Step43: 13.5. Conservation Method Step44: 14. Radiation Step45: 15. Radiation --&gt; Shortwave Radiation Step46: 15.2. Name Step47: 15.3. Spectral Integration Step48: 15.4. Transport Calculation Step49: 15.5. Spectral Intervals Step50: 16. Radiation --&gt; Shortwave GHG Step51: 16.2. ODS Step52: 16.3. Other Flourinated Gases Step53: 17. Radiation --&gt; Shortwave Cloud Ice Step54: 17.2. Physical Representation Step55: 17.3. Optical Methods Step56: 18. Radiation --&gt; Shortwave Cloud Liquid Step57: 18.2. Physical Representation Step58: 18.3. Optical Methods Step59: 19. Radiation --&gt; Shortwave Cloud Inhomogeneity Step60: 20. Radiation --&gt; Shortwave Aerosols Step61: 20.2. Physical Representation Step62: 20.3. Optical Methods Step63: 21. Radiation --&gt; Shortwave Gases Step64: 22. Radiation --&gt; Longwave Radiation Step65: 22.2. Name Step66: 22.3. Spectral Integration Step67: 22.4. Transport Calculation Step68: 22.5. Spectral Intervals Step69: 23. Radiation --&gt; Longwave GHG Step70: 23.2. ODS Step71: 23.3. Other Flourinated Gases Step72: 24. Radiation --&gt; Longwave Cloud Ice Step73: 24.2. Physical Reprenstation Step74: 24.3. Optical Methods Step75: 25. Radiation --&gt; Longwave Cloud Liquid Step76: 25.2. Physical Representation Step77: 25.3. Optical Methods Step78: 26. Radiation --&gt; Longwave Cloud Inhomogeneity Step79: 27. Radiation --&gt; Longwave Aerosols Step80: 27.2. Physical Representation Step81: 27.3. Optical Methods Step82: 28. Radiation --&gt; Longwave Gases Step83: 29. Turbulence Convection Step84: 30. Turbulence Convection --&gt; Boundary Layer Turbulence Step85: 30.2. Scheme Type Step86: 30.3. Closure Order Step87: 30.4. Counter Gradient Step88: 31. Turbulence Convection --&gt; Deep Convection Step89: 31.2. Scheme Type Step90: 31.3. Scheme Method Step91: 31.4. Processes Step92: 31.5. Microphysics Step93: 32. Turbulence Convection --&gt; Shallow Convection Step94: 32.2. Scheme Type Step95: 32.3. Scheme Method Step96: 32.4. Processes Step97: 32.5. Microphysics Step98: 33. Microphysics Precipitation Step99: 34. Microphysics Precipitation --&gt; Large Scale Precipitation Step100: 34.2. Hydrometeors Step101: 35. Microphysics Precipitation --&gt; Large Scale Cloud Microphysics Step102: 35.2. Processes Step103: 36. Cloud Scheme Step104: 36.2. Name Step105: 36.3. Atmos Coupling Step106: 36.4. Uses Separate Treatment Step107: 36.5. Processes Step108: 36.6. Prognostic Scheme Step109: 36.7. Diagnostic Scheme Step110: 36.8. Prognostic Variables Step111: 37. Cloud Scheme --&gt; Optical Cloud Properties Step112: 37.2. Cloud Inhomogeneity Step113: 38. Cloud Scheme --&gt; Sub Grid Scale Water Distribution Step114: 38.2. Function Name Step115: 38.3. Function Order Step116: 38.4. Convection Coupling Step117: 39. Cloud Scheme --&gt; Sub Grid Scale Ice Distribution Step118: 39.2. Function Name Step119: 39.3. Function Order Step120: 39.4. Convection Coupling Step121: 40. Observation Simulation Step122: 41. Observation Simulation --&gt; Isscp Attributes Step123: 41.2. Top Height Direction Step124: 42. Observation Simulation --&gt; Cosp Attributes Step125: 42.2. Number Of Grid Points Step126: 42.3. Number Of Sub Columns Step127: 42.4. Number Of Levels Step128: 43. Observation Simulation --&gt; Radar Inputs Step129: 43.2. Type Step130: 43.3. Gas Absorption Step131: 43.4. Effective Radius Step132: 44. Observation Simulation --&gt; Lidar Inputs Step133: 44.2. Overlap Step134: 45. Gravity Waves Step135: 45.2. Sponge Layer Step136: 45.3. Background Step137: 45.4. Subgrid Scale Orography Step138: 46. Gravity Waves --&gt; Orographic Gravity Waves Step139: 46.2. Source Mechanisms Step140: 46.3. Calculation Method Step141: 46.4. Propagation Scheme Step142: 46.5. Dissipation Scheme Step143: 47. Gravity Waves --&gt; Non Orographic Gravity Waves Step144: 47.2. Source Mechanisms Step145: 47.3. Calculation Method Step146: 47.4. Propagation Scheme Step147: 47.5. Dissipation Scheme Step148: 48. Solar Step149: 49. Solar --&gt; Solar Pathways Step150: 50. Solar --&gt; Solar Constant Step151: 50.2. Fixed Value Step152: 50.3. Transient Characteristics Step153: 51. Solar --&gt; Orbital Parameters Step154: 51.2. Fixed Reference Date Step155: 51.3. Transient Method Step156: 51.4. Computation Method Step157: 52. Solar --&gt; Insolation Ozone Step158: 53. Volcanos Step159: 54. Volcanos --&gt; Volcanoes Treatment
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'awi', 'awi-cm-1-0-hr', 'atmos') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_family') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "AGCM" # "ARCM" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.basic_approximations') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "primitive equations" # "non-hydrostatic" # "anelastic" # "Boussinesq" # "hydrostatic" # "quasi-hydrostatic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.horizontal_resolution_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.range_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.high_top') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_dynamics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_shortwave_radiative_transfer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_longwave_radiative_transfer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.orography.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "present day" # "modified" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.orography.changes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "related to ice sheets" # "related to tectonics" # "modified mean" # "modified variance if taken into account in model (cf gravity waves)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "spectral" # "fixed grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "finite elements" # "finite volumes" # "finite difference" # "centered finite difference" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_order') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "second" # "third" # "fourth" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.horizontal_pole') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "filter" # "pole rotation" # "artificial island" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.grid_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Gaussian" # "Latitude-Longitude" # "Cubed-Sphere" # "Icosahedral" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.vertical.coordinate_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "isobaric" # "sigma" # "hybrid sigma-pressure" # "hybrid pressure" # "vertically lagrangian" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.timestepping_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Adams-Bashforth" # "explicit" # "implicit" # "semi-implicit" # "leap frog" # "multi-step" # "Runge Kutta fifth order" # "Runge Kutta second order" # "Runge Kutta third order" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "surface pressure" # "wind components" # "divergence/curl" # "temperature" # "potential temperature" # "total water" # "water vapour" # "water liquid" # "water ice" # "total water moments" # "clouds" # "radiation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_boundary_condition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "sponge layer" # "radiation boundary condition" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_heat') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_wind') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.lateral_boundary.condition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "sponge layer" # "radiation boundary condition" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.diffusion_horizontal.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.diffusion_horizontal.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "iterated Laplacian" # "bi-harmonic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Heun" # "Roe and VanLeer" # "Roe and Superbee" # "Prather" # "UTOPIA" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.scheme_characteristics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Eulerian" # "modified Euler" # "Lagrangian" # "semi-Lagrangian" # "cubic semi-Lagrangian" # "quintic semi-Lagrangian" # "mass-conserving" # "finite volume" # "flux-corrected" # "linear" # "quadratic" # "quartic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.conserved_quantities') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "dry mass" # "tracer mass" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.conservation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "conservation fixer" # "Priestley algorithm" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "VanLeer" # "Janjic" # "SUPG (Streamline Upwind Petrov-Galerkin)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_characteristics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "2nd order" # "4th order" # "cell-centred" # "staggered grid" # "semi-staggered grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_staggering_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Arakawa B-grid" # "Arakawa C-grid" # "Arakawa D-grid" # "Arakawa E-grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.conserved_quantities') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Angular momentum" # "Horizontal momentum" # "Enstrophy" # "Mass" # "Total energy" # "Vorticity" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.conservation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "conservation fixer" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.aerosols') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "sulphate" # "nitrate" # "sea salt" # "dust" # "ice" # "organic" # "BC (black carbon / soot)" # "SOA (secondary organic aerosols)" # "POM (particulate organic matter)" # "polar stratospheric ice" # "NAT (nitric acid trihydrate)" # "NAD (nitric acid dihydrate)" # "STS (supercooled ternary solution aerosol particle)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.spectral_integration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "wide-band model" # "correlated-k" # "exponential sum fitting" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.transport_calculation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "two-stream" # "layer interaction" # "bulk" # "adaptive" # "multi-stream" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.spectral_intervals') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.greenhouse_gas_complexity') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CO2" # "CH4" # "N2O" # "CFC-11 eq" # "CFC-12 eq" # "HFC-134a eq" # "Explicit ODSs" # "Explicit other fluorinated gases" # "O3" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.ODS') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CFC-12" # "CFC-11" # "CFC-113" # "CFC-114" # "CFC-115" # "HCFC-22" # "HCFC-141b" # "HCFC-142b" # "Halon-1211" # "Halon-1301" # "Halon-2402" # "methyl chloroform" # "carbon tetrachloride" # "methyl chloride" # "methylene chloride" # "chloroform" # "methyl bromide" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.other_flourinated_gases') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HFC-134a" # "HFC-23" # "HFC-32" # "HFC-125" # "HFC-143a" # "HFC-152a" # "HFC-227ea" # "HFC-236fa" # "HFC-245fa" # "HFC-365mfc" # "HFC-43-10mee" # "CF4" # "C2F6" # "C3F8" # "C4F10" # "C5F12" # "C6F14" # "C7F16" # "C8F18" # "c-C4F8" # "NF3" # "SF6" # "SO2F2" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "bi-modal size distribution" # "ensemble of ice crystals" # "mean projected area" # "ice water path" # "crystal asymmetry" # "crystal aspect ratio" # "effective crystal radius" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud droplet number concentration" # "effective cloud droplet radii" # "droplet size distribution" # "liquid water path" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "geometric optics" # "Mie theory" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_inhomogeneity.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Monte Carlo Independent Column Approximation" # "Triplecloud" # "analytic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "number concentration" # "effective radii" # "size distribution" # "asymmetry" # "aspect ratio" # "mixing state" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_gases.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.spectral_integration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "wide-band model" # "correlated-k" # "exponential sum fitting" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.transport_calculation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "two-stream" # "layer interaction" # "bulk" # "adaptive" # "multi-stream" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.spectral_intervals') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.greenhouse_gas_complexity') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CO2" # "CH4" # "N2O" # "CFC-11 eq" # "CFC-12 eq" # "HFC-134a eq" # "Explicit ODSs" # "Explicit other fluorinated gases" # "O3" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.ODS') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CFC-12" # "CFC-11" # "CFC-113" # "CFC-114" # "CFC-115" # "HCFC-22" # "HCFC-141b" # "HCFC-142b" # "Halon-1211" # "Halon-1301" # "Halon-2402" # "methyl chloroform" # "carbon tetrachloride" # "methyl chloride" # "methylene chloride" # "chloroform" # "methyl bromide" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.other_flourinated_gases') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HFC-134a" # "HFC-23" # "HFC-32" # "HFC-125" # "HFC-143a" # "HFC-152a" # "HFC-227ea" # "HFC-236fa" # "HFC-245fa" # "HFC-365mfc" # "HFC-43-10mee" # "CF4" # "C2F6" # "C3F8" # "C4F10" # "C5F12" # "C6F14" # "C7F16" # "C8F18" # "c-C4F8" # "NF3" # "SF6" # "SO2F2" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.physical_reprenstation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "bi-modal size distribution" # "ensemble of ice crystals" # "mean projected area" # "ice water path" # "crystal asymmetry" # "crystal aspect ratio" # "effective crystal radius" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud droplet number concentration" # "effective cloud droplet radii" # "droplet size distribution" # "liquid water path" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "geometric optics" # "Mie theory" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_inhomogeneity.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Monte Carlo Independent Column Approximation" # "Triplecloud" # "analytic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "number concentration" # "effective radii" # "size distribution" # "asymmetry" # "aspect ratio" # "mixing state" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_gases.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Mellor-Yamada" # "Holtslag-Boville" # "EDMF" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "TKE prognostic" # "TKE diagnostic" # "TKE coupled with water" # "vertical profile of Kz" # "non-local diffusion" # "Monin-Obukhov similarity" # "Coastal Buddy Scheme" # "Coupled with convection" # "Coupled with gravity waves" # "Depth capped at cloud base" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.closure_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.counter_gradient') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mass-flux" # "adjustment" # "plume ensemble" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CAPE" # "bulk" # "ensemble" # "CAPE/WFN based" # "TKE/CIN based" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "vertical momentum transport" # "convective momentum transport" # "entrainment" # "detrainment" # "penetrative convection" # "updrafts" # "downdrafts" # "radiative effect of anvils" # "re-evaporation of convective precipitation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.microphysics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "tuning parameter based" # "single moment" # "two moment" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mass-flux" # "cumulus-capped boundary layer" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "same as deep (unified)" # "included in boundary layer turbulence" # "separate diagnosis" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "convective momentum transport" # "entrainment" # "detrainment" # "penetrative convection" # "re-evaporation of convective precipitation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.microphysics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "tuning parameter based" # "single moment" # "two moment" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.hydrometeors') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "liquid rain" # "snow" # "hail" # "graupel" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mixed phase" # "cloud droplets" # "cloud ice" # "ice nucleation" # "water vapour deposition" # "effect of raindrops" # "effect of snow" # "effect of graupel" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.atmos_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "atmosphere_radiation" # "atmosphere_microphysics_precipitation" # "atmosphere_turbulence_convection" # "atmosphere_gravity_waves" # "atmosphere_solar" # "atmosphere_volcano" # "atmosphere_cloud_simulator" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.uses_separate_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "entrainment" # "detrainment" # "bulk cloud" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.diagnostic_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud amount" # "liquid" # "ice" # "rain" # "snow" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_overlap_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "random" # "maximum" # "maximum-random" # "exponential" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.convection_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "coupled with deep" # "coupled with shallow" # "not coupled with convection" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.convection_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "coupled with deep" # "coupled with shallow" # "not coupled with convection" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_estimation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "no adjustment" # "IR brightness" # "visible optical depth" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_direction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "lowest altitude level" # "highest altitude level" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.run_configuration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Inline" # "Offline" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_grid_points') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_sub_columns') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.frequency') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "surface" # "space borne" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.gas_absorption') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.effective_radius') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.ice_types') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "ice spheres" # "ice non-spherical" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.overlap') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "max" # "random" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.sponge_layer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Rayleigh friction" # "Diffusive sponge layer" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "continuous spectrum" # "discrete spectrum" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.subgrid_scale_orography') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "effect on drag" # "effect on lifting" # "enhanced topography" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.source_mechanisms') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "linear mountain waves" # "hydraulic jump" # "envelope orography" # "low level flow blocking" # "statistical sub-grid scale variance" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.calculation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "non-linear calculation" # "more than two cardinal directions" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.propagation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "linear theory" # "non-linear theory" # "includes boundary layer ducting" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.dissipation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "total wave" # "single wave" # "spectral" # "linear" # "wave saturation vs Richardson number" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.source_mechanisms') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "convection" # "precipitation" # "background spectrum" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.calculation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "spatially dependent" # "temporally dependent" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.propagation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "linear theory" # "non-linear theory" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.dissipation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "total wave" # "single wave" # "spectral" # "linear" # "wave saturation vs Richardson number" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_pathways.pathways') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "SW radiation" # "precipitating energetic particles" # "cosmic rays" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "transient" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.fixed_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.transient_characteristics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "transient" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.fixed_reference_date') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.transient_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.computation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Berger 1978" # "Laskar 2004" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.insolation_ozone.solar_ozone_impact') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.volcanos.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.volcanos.volcanoes_treatment.volcanoes_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "high frequency solar constant anomaly" # "stratospheric aerosols optical thickness" # "Other: [Please specify]" # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 사용자 정의 학습 Step2: 붓꽃 분류 문제 Step3: 데이터 탐색 Step4: 처음 5개의 데이터로부터 다음을 주목하세요. Step5: 각각의 레이블은 "setosa"와 같은 문자형 이름과 연관되어있습니다. 하지만 머신러닝은 전형적으로 숫자형 값에 의존합니다. 레이블을 다음과 같이 맵핑(mapping) 합니다. Step6: tf.data.Dataset 생성 Step7: make_csv_dataset 함수는 (features, label) 쌍으로 구성된 tf.data.Dataset을 반환합니다. features는 딕셔너리 객체인 Step8: 유사한 특성의 값은 같이 그룹 되어있거나, 배치 돼있다는 사실에 주목하세요. 각 샘플 행의 필드는 해당 특성 배열에 추가됩니다. batch_size를 조절하여 이 특성 배열에 저장된 샘플의 수를 설정하세요. Step10: 모델 구축 단계를 단순화하기 위해, 특성 딕셔너리를 (batch_size, num_features)의 형태를 가지는 단일 배열로 다시 구성하는 함수를 생성합니다. Step11: 그 후 각 (features,label)쌍의 특성을 훈련 데이터셋에 쌓기위해 tf.data.Dataset.map 메서드를 사용합니다. Step12: 데이터셋의 특성 요소는 이제 형태가 (batch_size, num_features)인 배열입니다. 첫 5개행의 샘플을 살펴봅시다. Step13: 모델 타입 선정 Step14: 활성화 함수(activation function)는 각 층에서 출력의 크기를 결정합니다. 이러한 비선형성은 중요하며, 활성화 함수가 없는 모델은 하나의 층과 동일하다고 생각할 수 있습니다. 사용 가능한 활성화 함수는 많지만, ReLU가 은닉층에 주로 사용됩니다. Step15: 각 샘플은 각 클래스에 대한 로짓(logit)을 반환합니다. Step16: tf.argmax는 예측된 값 중 가장 큰 확률(원하는 클래스)을 반환합니다. 하지만 모델이 아직 훈련되지 않았으므로 이는 좋은 예측이 아닙니다. Step17: 모델 훈련하기 Step18: 모델을 최적화하기 위해 사용되는 그래디언트(gradient)를 계산하기 위해 tf.GradientTape 컨텍스트를 사용합니다. 더 자세한 정보는 즉시 실행 가이드를 확인하세요. Step19: 옵티마이저 생성 Step20: 이 값들을 단일 최적화 단계를 계산하기 위해 사용합니다. Step21: 훈련 루프 Step22: 시간에 따른 손실함수 시각화 Step23: 모델 유효성 평가 Step24: 테스트 데이터 세트를 사용한 모델 평가 Step25: 마지막 배치에서 모델이 올바르게 예측한 것을 확인할 수 있습니다. Step26: 훈련된 모델로 예측하기
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import matplotlib.pyplot as plt import tensorflow.compat.v1 as tf print("텐서플로 버전: {}".format(tf.__version__)) print("즉시 실행: {}".format(tf.executing_eagerly())) train_dataset_url = "https://storage.googleapis.com/download.tensorflow.org/data/iris_training.csv" train_dataset_fp = tf.keras.utils.get_file(fname=os.path.basename(train_dataset_url), origin=train_dataset_url) print("데이터셋이 복사된 위치: {}".format(train_dataset_fp)) !head -n5 {train_dataset_fp} # CSV 파일안에서 컬럼의 순서 column_names = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species'] feature_names = column_names[:-1] label_name = column_names[-1] print("특성: {}".format(feature_names)) print("레이블: {}".format(label_name)) class_names = ['Iris setosa', 'Iris versicolor', 'Iris virginica'] batch_size = 32 train_dataset = tf.contrib.data.make_csv_dataset( train_dataset_fp, batch_size, column_names=column_names, label_name=label_name, num_epochs=1) features, labels = next(iter(train_dataset)) features plt.scatter(features['petal_length'].numpy(), features['sepal_length'].numpy(), c=labels.numpy(), cmap='viridis') plt.xlabel("petal length") plt.ylabel("sepal length"); def pack_features_vector(features, labels): Pack the features into a single array. features = tf.stack(list(features.values()), axis=1) return features, labels train_dataset = train_dataset.map(pack_features_vector) features, labels = next(iter(train_dataset)) print(features[:5]) model = tf.keras.Sequential([ tf.keras.layers.Dense(10, activation=tf.nn.relu, input_shape=(4,)), # input shape required tf.keras.layers.Dense(10, activation=tf.nn.relu), tf.keras.layers.Dense(3) ]) predictions = model(features) predictions[:5] tf.nn.softmax(predictions[:5]) print("예측: {}".format(tf.argmax(predictions, axis=1))) print(" 레이블: {}".format(labels)) def loss(model, x, y): y_ = model(x) return tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_) l = loss(model, features, labels) print("손실 테스트: {}".format(l)) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) return loss_value, tape.gradient(loss_value, model.trainable_variables) optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) global_step = tf.contrib.eager.Variable(0) loss_value, grads = grad(model, features, labels) print("단계: {}, 초기 손실: {}".format(global_step.numpy(), loss_value.numpy())) optimizer.apply_gradients(zip(grads, model.trainable_variables), global_step) print("단계: {}, 손실: {}".format(global_step.numpy(), loss(model, features, labels).numpy())) ## Note: 이 셀을 다시 실행하면 동일한 모델의 변수가 사용됩니다. from tensorflow import contrib tfe = contrib.eager # 도식화를 위해 결과를 저장합니다. train_loss_results = [] train_accuracy_results = [] num_epochs = 201 for epoch in range(num_epochs): epoch_loss_avg = tfe.metrics.Mean() epoch_accuracy = tfe.metrics.Accuracy() # 훈련 루프 - 32개의 배치를 사용합니다. for x, y in train_dataset: # 모델을 최적화합니다. loss_value, grads = grad(model, x, y) optimizer.apply_gradients(zip(grads, model.trainable_variables), global_step) # 진행 상황을 추적합니다. epoch_loss_avg(loss_value) # 현재 배치 손실을 추가합니다. # 예측된 레이블과 실제 레이블 비교합니다. epoch_accuracy(tf.argmax(model(x), axis=1, output_type=tf.int32), y) # epoch 종료 train_loss_results.append(epoch_loss_avg.result()) train_accuracy_results.append(epoch_accuracy.result()) if epoch % 50 == 0: print("에포크 {:03d}: 손실: {:.3f}, 정확도: {:.3%}".format(epoch, epoch_loss_avg.result(), epoch_accuracy.result())) fig, axes = plt.subplots(2, sharex=True, figsize=(12, 8)) fig.suptitle('Training Metrics') axes[0].set_ylabel("loss", fontsize=14) axes[0].plot(train_loss_results) axes[1].set_ylabel("Accuracy", fontsize=14) axes[1].set_xlabel("epoch", fontsize=14) axes[1].plot(train_accuracy_results); test_url = "https://storage.googleapis.com/download.tensorflow.org/data/iris_test.csv" test_fp = tf.keras.utils.get_file(fname=os.path.basename(test_url), origin=test_url) test_dataset = tf.contrib.data.make_csv_dataset( test_fp, batch_size, column_names=column_names, label_name='species', num_epochs=1, shuffle=False) test_dataset = test_dataset.map(pack_features_vector) test_accuracy = tfe.metrics.Accuracy() for (x, y) in test_dataset: logits = model(x) prediction = tf.argmax(logits, axis=1, output_type=tf.int32) test_accuracy(prediction, y) print("테스트 세트 정확도: {:.3%}".format(test_accuracy.result())) tf.stack([y,prediction],axis=1) predict_dataset = tf.convert_to_tensor([ [5.1, 3.3, 1.7, 0.5,], [5.9, 3.0, 4.2, 1.5,], [6.9, 3.1, 5.4, 2.1] ]) predictions = model(predict_dataset) for i, logits in enumerate(predictions): class_idx = tf.argmax(logits).numpy() p = tf.nn.softmax(logits)[class_idx] name = class_names[class_idx] print("예 {} 예측: {} ({:4.1f}%)".format(i, name, 100*p)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now let's set up REBOUNDx and add radiation_forces. We also have to set the speed of light in the units we want to use. Step2: By default, the radiation_forces effect assumes the particle at index 0 is the source of the radiation. If you'd like to use a different one, or it's possible that the radiation source might move to a different index (e.g. with a custom merger routine), you can add a radiation_source flag to the appropriate particle like this Step3: Here we show how to add two dust grains to the simulation in different ways. Let's first initialize their orbits. In both cases we use the orbital elements of Saturn's irregular satellite Phoebe, which the dust grains will inherit upon release (Tamayo et al. 2011). Since the dust grains don't interact with one another, putting them on top of each other is OK. Step4: Now we add the grains' physical properties. In order for particles to feel radiation forces, we have to set their beta parameter. $\beta$ is tha ratio of the radiation force to the gravitational force from the star (Burns et al. 1979). One can either set it directly Step5: or we can calculate it from more fundamental parameters. REBOUNDx has a convenience function that takes the gravitional constant, speed of light, radiation source's mass and luminosity, and then the grain's physical radius, bulk density, and radiation pressure coefficient Q_pr (Burns et al. 1979, equals 1 in the limit that the grain size is >> the radiation's wavelength). Step6: Now let's run for 100 years (about 3 Saturn orbits), and look at how the eccentricity varies over a Saturn year
<ASSISTANT_TASK:> Python Code: import rebound import reboundx import numpy as np sim = rebound.Simulation() sim.G = 6.674e-11 # SI units sim.dt = 1.e4 # Initial timestep in sec. sim.N_active = 2 # Make it so dust particles don't interact with one another gravitationally sim.add(m=1.99e30, hash="Sun") # add Sun with mass in kg sim.add(m=5.68e26, a=1.43e12, e=0.056, pomega = 0., f=0., hash="Saturn") # Add Saturn at pericenter ps = sim.particles rebx = reboundx.Extras(sim) rf = rebx.load_force("radiation_forces") rebx.add_force(rf) rf.params["c"] = 3.e8 ps["Sun"].params["radiation_source"] = 1 a = 1.3e10 # in meters e = 0.16 inc = 175*np.pi/180. Omega = 0. # longitude of node omega = 0. # argument of pericenter f = 0. # true anomaly # Add two dust grains with the same orbit sim.add(primary=ps["Saturn"], a=a, e=e, inc=inc, Omega=Omega, omega=omega, f=f, hash="p1") sim.add(primary=ps["Saturn"], a=a, e=e, inc=inc, Omega=Omega, omega=omega, f=f, hash="p2") ps["p1"].params["beta"] = 0.01 grain_radius = 1.e-5 # grain radius in m density = 1000. # kg/m^3 = 1g/cc Q_pr = 1. luminosity = 3.85e26 # Watts ps["p2"].params["beta"] = rebx.rad_calc_beta(sim.G, rf.params["c"], ps[0].m, luminosity, grain_radius, density, Q_pr) print("Particle 2's beta parameter = {0}".format(ps["p2"].params["beta"])) yr = 365*24*3600 # s Noutput = 1000 times = np.linspace(0,100.*yr, Noutput) e1, e2 = np.zeros(Noutput), np.zeros(Noutput) sim.move_to_com() # move to center of mass frame first for i, time in enumerate(times): sim.integrate(time) e1[i] = ps["p1"].calculate_orbit(primary=ps["Saturn"]).e e2[i] = ps["p2"].calculate_orbit(primary=ps["Saturn"]).e %matplotlib inline import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(15,5)) ax.plot(times/yr, e1, label=r"$\beta$={0:.1e}".format(ps["p1"].params["beta"])) ax.plot(times/yr, e2, label=r"$\beta$={0:.1e}".format(ps["p2"].params["beta"])) ax.set_xlabel('Time (yrs)', fontsize=24) ax.set_ylabel('Eccentricity', fontsize=24) plt.legend(fontsize=24) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Keras の例による量子化認識トレーニング Step2: 量子化認識トレーニングを使用せずに、MNIST のモデルをトレーニングする Step3: 量子化認識トレーニングを使用して、事前トレーニング済みモデルをクローンおよびファインチューニングする Step4: モデルをベースラインに対してトレーニングおよび評価する Step5: この例では、ベースラインと比較し、量子化認識トレーニング後のテスト精度の損失は、最小限あるいはゼロです。 Step6: TFLite バックエンドの量子化モデルを作成する Step7: TF から TFLite への精度の永続性を確認する Step8: 量子化されたモデルを評価し、TensorFlow の精度が TFLite バックエンドに持続されていることを確認します。 Step9: 量子化でモデルが 1/4 になることを確認する
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ! pip install -q tensorflow ! pip install -q tensorflow-model-optimization import tempfile import os import tensorflow as tf from tensorflow import keras # Load MNIST dataset mnist = keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() # Normalize the input image so that each pixel value is between 0 to 1. train_images = train_images / 255.0 test_images = test_images / 255.0 # Define the model architecture. model = keras.Sequential([ keras.layers.InputLayer(input_shape=(28, 28)), keras.layers.Reshape(target_shape=(28, 28, 1)), keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation='relu'), keras.layers.MaxPooling2D(pool_size=(2, 2)), keras.layers.Flatten(), keras.layers.Dense(10) ]) # Train the digit classification model model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model.fit( train_images, train_labels, epochs=1, validation_split=0.1, ) import tensorflow_model_optimization as tfmot quantize_model = tfmot.quantization.keras.quantize_model # q_aware stands for for quantization aware. q_aware_model = quantize_model(model) # `quantize_model` requires a recompile. q_aware_model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) q_aware_model.summary() train_images_subset = train_images[0:1000] # out of 60000 train_labels_subset = train_labels[0:1000] q_aware_model.fit(train_images_subset, train_labels_subset, batch_size=500, epochs=1, validation_split=0.1) _, baseline_model_accuracy = model.evaluate( test_images, test_labels, verbose=0) _, q_aware_model_accuracy = q_aware_model.evaluate( test_images, test_labels, verbose=0) print('Baseline test accuracy:', baseline_model_accuracy) print('Quant test accuracy:', q_aware_model_accuracy) converter = tf.lite.TFLiteConverter.from_keras_model(q_aware_model) converter.optimizations = [tf.lite.Optimize.DEFAULT] quantized_tflite_model = converter.convert() import numpy as np def evaluate_model(interpreter): input_index = interpreter.get_input_details()[0]["index"] output_index = interpreter.get_output_details()[0]["index"] # Run predictions on every image in the "test" dataset. prediction_digits = [] for i, test_image in enumerate(test_images): if i % 1000 == 0: print('Evaluated on {n} results so far.'.format(n=i)) # Pre-processing: add batch dimension and convert to float32 to match with # the model's input data format. test_image = np.expand_dims(test_image, axis=0).astype(np.float32) interpreter.set_tensor(input_index, test_image) # Run inference. interpreter.invoke() # Post-processing: remove batch dimension and find the digit with highest # probability. output = interpreter.tensor(output_index) digit = np.argmax(output()[0]) prediction_digits.append(digit) print('\n') # Compare prediction results with ground truth labels to calculate accuracy. prediction_digits = np.array(prediction_digits) accuracy = (prediction_digits == test_labels).mean() return accuracy interpreter = tf.lite.Interpreter(model_content=quantized_tflite_model) interpreter.allocate_tensors() test_accuracy = evaluate_model(interpreter) print('Quant TFLite test_accuracy:', test_accuracy) print('Quant TF test accuracy:', q_aware_model_accuracy) # Create float TFLite model. float_converter = tf.lite.TFLiteConverter.from_keras_model(model) float_tflite_model = float_converter.convert() # Measure sizes of models. _, float_file = tempfile.mkstemp('.tflite') _, quant_file = tempfile.mkstemp('.tflite') with open(quant_file, 'wb') as f: f.write(quantized_tflite_model) with open(float_file, 'wb') as f: f.write(float_tflite_model) print("Float model in Mb:", os.path.getsize(float_file) / float(2**20)) print("Quantized model in Mb:", os.path.getsize(quant_file) / float(2**20)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Introduction Step2: After being fitted, the model can then be used to predict new values Step3: SVMs decision function depends on some subset of the training data, called the support vectors. Some properties of these support vectors can be found in members support_vectors_, support_ and n_support Step4: 3.2.1 Example Step5: Now, we select two classes and two attributes. Step6: 3.2.2. Data normalization Step7: Now, we can normalize training and test data. Observe in the code that the same transformation should be applied to training and test data. This is the reason why normalization with the test data is done using the means and the variances computed with the training set. Step8: The following figure generates a plot of the normalized training data. Step9: In order to apply the gradient descent rule, we need to define two methods Step10: We can test the behavior of the gradient descent method by fitting a logistic regression model with ${\bf z}({\bf x}) = (1, {\bf x}^\intercal)^\intercal$. Step11: 3.2.3. Free parameters Step12: 3.2.5. Polynomial Logistic Regression
<ASSISTANT_TASK:> Python Code: # To visualize plots in the notebook %matplotlib inline # Imported libraries #import csv #import random #import matplotlib #import matplotlib.pyplot as plt #import pylab #import numpy as np #from mpl_toolkits.mplot3d import Axes3D #from sklearn.preprocessing import PolynomialFeatures #from sklearn import linear_model from sklearn import svm X = [[0, 0], [1, 1]] y = [0, 1] clf = svm.SVC() clf.fit(X, y) clf.predict([[2., 2.]]) # get support vectors print clf.support_vectors_ # get indices of support vectors print clf.support_ # get number of support vectors for each class print clf.n_support_ # Adapted from a notebook by Jason Brownlee def loadDataset(filename, split): xTrain = [] cTrain = [] xTest = [] cTest = [] with open(filename, 'rb') as csvfile: lines = csv.reader(csvfile) dataset = list(lines) for i in range(len(dataset)-1): for y in range(4): dataset[i][y] = float(dataset[i][y]) item = dataset[i] if random.random() < split: xTrain.append(item[0:4]) cTrain.append(item[4]) else: xTest.append(item[0:4]) cTest.append(item[4]) return xTrain, cTrain, xTest, cTest with open('iris.data', 'rb') as csvfile: lines = csv.reader(csvfile) xTrain_all, cTrain_all, xTest_all, cTest_all = loadDataset('iris.data', 0.66) nTrain_all = len(xTrain_all) nTest_all = len(xTest_all) print 'Train: ' + str(nTrain_all) print 'Test: ' + str(nTest_all) # Select attributes i = 0 # Try 0,1,2,3 j = 1 # Try 0,1,2,3 with j!=i # Select two classes c0 = 'Iris-versicolor' c1 = 'Iris-virginica' # Select two coordinates ind = [i, j] # Take training test X_tr = np.array([[xTrain_all[n][i] for i in ind] for n in range(nTrain_all) if cTrain_all[n]==c0 or cTrain_all[n]==c1]) C_tr = [cTrain_all[n] for n in range(nTrain_all) if cTrain_all[n]==c0 or cTrain_all[n]==c1] Y_tr = np.array([int(c==c1) for c in C_tr]) n_tr = len(X_tr) # Take test set X_tst = np.array([[xTest_all[n][i] for i in ind] for n in range(nTest_all) if cTest_all[n]==c0 or cTest_all[n]==c1]) C_tst = [cTest_all[n] for n in range(nTest_all) if cTest_all[n]==c0 or cTest_all[n]==c1] Y_tst = np.array([int(c==c1) for c in C_tst]) n_tst = len(X_tst) def normalize(X, mx=None, sx=None): # Compute means and standard deviations if mx is None: mx = np.mean(X, axis=0) if sx is None: sx = np.std(X, axis=0) # Normalize X0 = (X-mx)/sx return X0, mx, sx # Normalize data Xn_tr, mx, sx = normalize(X_tr) Xn_tst, mx, sx = normalize(X_tst, mx, sx) # Separate components of x into different arrays (just for the plots) x0c0 = [Xn_tr[n][0] for n in range(n_tr) if Y_tr[n]==0] x1c0 = [Xn_tr[n][1] for n in range(n_tr) if Y_tr[n]==0] x0c1 = [Xn_tr[n][0] for n in range(n_tr) if Y_tr[n]==1] x1c1 = [Xn_tr[n][1] for n in range(n_tr) if Y_tr[n]==1] # Scatterplot. labels = {'Iris-setosa': 'Setosa', 'Iris-versicolor': 'Versicolor', 'Iris-virginica': 'Virginica'} plt.plot(x0c0, x1c0,'r.', label=labels[c0]) plt.plot(x0c1, x1c1,'g+', label=labels[c1]) plt.xlabel('$x_' + str(ind[0]) + '$') plt.ylabel('$x_' + str(ind[1]) + '$') plt.legend(loc='best') plt.axis('equal') def logregFit(Z_tr, Y_tr, rho, n_it): # Data dimension n_dim = Z_tr.shape[1] # Initialize variables nll_tr = np.zeros(n_it) pe_tr = np.zeros(n_it) w = np.random.randn(n_dim,1) # Running the gradient descent algorithm for n in range(n_it): # Compute posterior probabilities for weight w p1_tr = logistic(np.dot(Z_tr, w)) p0_tr = logistic(-np.dot(Z_tr, w)) # Compute negative log-likelihood nll_tr[n] = - np.dot(Y_tr.T, np.log(p1_tr)) - np.dot((1-Y_tr).T, np.log(p0_tr)) # Update weights w += rho*np.dot(Z_tr.T, Y_tr - p1_tr) return w, nll_tr def logregPredict(Z, w): # Compute posterior probability of class 1 for weights w. p = logistic(np.dot(Z, w)) # Class D = [int(round(pn)) for pn in p] return p, D # Parameters of the algorithms rho = float(1)/50 # Learning step n_it = 200 # Number of iterations # Compute Z's Z_tr = np.c_[np.ones(n_tr), Xn_tr] Z_tst = np.c_[np.ones(n_tst), Xn_tst] n_dim = Z_tr.shape[1] # Convert target arrays to column vectors Y_tr2 = Y_tr[np.newaxis].T Y_tst2 = Y_tst[np.newaxis].T # Running the gradient descent algorithm w, nll_tr = logregFit(Z_tr, Y_tr2, rho, n_it) # Classify training and test data p_tr, D_tr = logregPredict(Z_tr, w) p_tst, D_tst = logregPredict(Z_tst, w) # Compute error rates E_tr = D_tr!=Y_tr E_tst = D_tst!=Y_tst # Error rates pe_tr = float(sum(E_tr)) / n_tr pe_tst = float(sum(E_tst)) / n_tst # NLL plot. plt.plot(range(n_it), nll_tr,'b.:', label='Train') plt.xlabel('Iteration') plt.ylabel('Negative Log-Likelihood') plt.legend() print "The optimal weights are:" print w print "The final error rates are:" print "- Training: " + str(pe_tr) print "- Test: " + str(pe_tst) print "The NLL after training is " + str(nll_tr[len(nll_tr)-1]) # Create a regtangular grid. x_min, x_max = Xn_tr[:, 0].min(), Xn_tr[:, 0].max() y_min, y_max = Xn_tr[:, 1].min(), Xn_tr[:, 1].max() dx = x_max - x_min dy = y_max - y_min h = dy /400 xx, yy = np.meshgrid(np.arange(x_min - 0.1 * dx, x_max + 0.1 * dx, h), np.arange(y_min - 0.1 * dx, y_max + 0.1 * dy, h)) X_grid = np.array([xx.ravel(), yy.ravel()]).T # Compute Z's Z_grid = np.c_[np.ones(X_grid.shape[0]), X_grid] # Compute the classifier output for all samples in the grid. pp, dd = logregPredict(Z_grid, w) # Put the result into a color plot plt.plot(x0c0, x1c0,'r.', label=labels[c0]) plt.plot(x0c1, x1c1,'g+', label=labels[c1]) plt.xlabel('$x_' + str(ind[0]) + '$') plt.ylabel('$x_' + str(ind[1]) + '$') plt.legend(loc='best') plt.axis('equal') pp = pp.reshape(xx.shape) plt.contourf(xx, yy, pp, cmap=plt.cm.copper) # Parameters of the algorithms rho = float(1)/50 # Learning step n_it = 500 # Number of iterations g = 5 # Degree of polynomial # Compute Z_tr poly = PolynomialFeatures(degree=g) Z_tr = poly.fit_transform(Xn_tr) # Normalize columns (this is useful to make algorithms more stable).) Zn, mz, sz = normalize(Z_tr[:,1:]) Z_tr = np.concatenate((np.ones((n_tr,1)), Zn), axis=1) # Compute Z_tst Z_tst = poly.fit_transform(Xn_tst) Zn, mz, sz = normalize(Z_tst[:,1:], mz, sz) Z_tst = np.concatenate((np.ones((n_tst,1)), Zn), axis=1) # Convert target arrays to column vectors Y_tr2 = Y_tr[np.newaxis].T Y_tst2 = Y_tst[np.newaxis].T # Running the gradient descent algorithm w, nll_tr = logregFit(Z_tr, Y_tr2, rho, n_it) # Classify training and test data p_tr, D_tr = logregPredict(Z_tr, w) p_tst, D_tst = logregPredict(Z_tst, w) # Compute error rates E_tr = D_tr!=Y_tr E_tst = D_tst!=Y_tst # Error rates pe_tr = float(sum(E_tr)) / n_tr pe_tst = float(sum(E_tst)) / n_tst # NLL plot. plt.plot(range(n_it), nll_tr,'b.:', label='Train') plt.xlabel('Iteration') plt.ylabel('Negative Log-Likelihood') plt.legend() print "The optimal weights are:" print w print "The final error rates are:" print "- Training: " + str(pe_tr) print "- Test: " + str(pe_tst) print "The NLL after training is " + str(nll_tr[len(nll_tr)-1]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Working with tff's ClientData. Step2: Manipulating a ClientData object Step3: Inspecting the first dataset can tell us what type of examples are in the ClientData. Step5: Note that the dataset yields collections.OrderedDict objects that have pixels and label keys, where pixels is a tensor with shape [28, 28]. Suppose we wish to flatten our inputs out to shape [784]. One possible way we can do this would be to apply a pre-processing function to our ClientData object. Step7: We may want in addition to perform some more complex (and possibly stateful) preprocessing, for example shuffling. Step8: Interfacing with a tff.Computation Step9: Before we begin working with this IterativeProcess, one comment on the semantics of ClientData is in order. A ClientData object represents the entirety of the population available for federated training, which in general is not available to the execution environment of a production FL system and is specific to simulation. ClientData indeed gives the user the capacity to bypass federated computing entirely and simply train a server-side model as usual via ClientData.create_tf_dataset_from_all_clients. Step10: If we take this route, however, we will be unable to trivially move to multimachine simulation. The datasets we construct in the local TensorFlow runtime can capture state from the surrounding python environment, and fail in serialization or deserialization when they attempt to reference state which is no longer available to them. This can manifest for example in the inscrutable error from TensorFlow's tensor_util.cc Step11: We could invoke dataset_computation and receive an eager dataset in the Python runtime, but the real power of this approach is exercised when we compose with an iterative process or another computation to avoid materializing these datasets in the global eager runtime at all. TFF provides a helper function tff.simulation.compose_dataset_computation_with_iterative_process which can be used to do exactly this. Step12: Both this tff.templates.IterativeProcesses and the one above run the same way; but former accepts preprocessed client datasets, and the latter accepts strings representing client ids, handling both dataset construction and preprocessing in its body--in fact state can be passed between the two. Step13: Scaling to large numbers of clients Step14: In fact, this is effectively what the helper we used is doing under the hood (plus performing appropriate type checking and manipulation). We could even have expressed the same logic slightly differently, by serializing preprocess_and_shuffle into a tff.Computation, and decomposing the federated_map into one step which constructs un-preprocessed datasets and another which runs preprocess_and_shuffle at each client.
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title Set up open-source environment #@test {"skip": true} # tensorflow_federated_nightly also bring in tf_nightly, which # can causes a duplicate tensorboard install, leading to errors. !pip uninstall --yes tensorboard tb-nightly !pip install --quiet --upgrade tensorflow_federated !pip install --quiet --upgrade nest_asyncio import nest_asyncio nest_asyncio.apply() #@title Import packages import collections import time import tensorflow as tf import tensorflow_federated as tff client_data, _ = tff.simulation.datasets.emnist.load_data() first_client_id = client_data.client_ids[0] first_client_dataset = client_data.create_tf_dataset_for_client( first_client_id) print(first_client_dataset.element_spec) # This information is also available as a `ClientData` property: assert client_data.element_type_structure == first_client_dataset.element_spec def preprocess_dataset(dataset): Create batches of 5 examples, and limit to 3 batches. def map_fn(input): return collections.OrderedDict( x=tf.reshape(input['pixels'], shape=(-1, 784)), y=tf.cast(tf.reshape(input['label'], shape=(-1, 1)), tf.int64), ) return dataset.batch(5).map( map_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE).take(5) preprocessed_client_data = client_data.preprocess(preprocess_dataset) # Notice that we have both reshaped and renamed the elements of the ordered dict. first_client_dataset = preprocessed_client_data.create_tf_dataset_for_client( first_client_id) print(first_client_dataset.element_spec) def preprocess_and_shuffle(dataset): Applies `preprocess_dataset` above and shuffles the result. preprocessed = preprocess_dataset(dataset) return preprocessed.shuffle(buffer_size=5) preprocessed_and_shuffled = client_data.preprocess(preprocess_and_shuffle) # The type signature will remain the same, but the batches will be shuffled. first_client_dataset = preprocessed_and_shuffled.create_tf_dataset_for_client( first_client_id) print(first_client_dataset.element_spec) def model_fn(): model = tf.keras.models.Sequential([ tf.keras.layers.InputLayer(input_shape=(784,)), tf.keras.layers.Dense(10, kernel_initializer='zeros'), ]) return tff.learning.from_keras_model( model, # Note: input spec is the _batched_ shape, and includes the # label tensor which will be passed to the loss function. This model is # therefore configured to accept data _after_ it has been preprocessed. input_spec=collections.OrderedDict( x=tf.TensorSpec(shape=[None, 784], dtype=tf.float32), y=tf.TensorSpec(shape=[None, 1], dtype=tf.int64)), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]) trainer = tff.learning.build_federated_averaging_process( model_fn, client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.01)) selected_client_ids = preprocessed_and_shuffled.client_ids[:10] preprocessed_data_for_clients = [ preprocessed_and_shuffled.create_tf_dataset_for_client( selected_client_ids[i]) for i in range(10) ] state = trainer.initialize() for _ in range(5): t1 = time.time() state, metrics = trainer.next(state, preprocessed_data_for_clients) t2 = time.time() print('loss {}, round time {}'.format(metrics['train']['loss'], t2 - t1)) print('dataset computation without preprocessing:') print(client_data.dataset_computation.type_signature) print('\n') print('dataset computation with preprocessing:') print(preprocessed_and_shuffled.dataset_computation.type_signature) trainer_accepting_ids = tff.simulation.compose_dataset_computation_with_iterative_process( preprocessed_and_shuffled.dataset_computation, trainer) for _ in range(5): t1 = time.time() state, metrics = trainer_accepting_ids.next(state, selected_client_ids) t2 = time.time() print('loss {}, round time {}'.format(metrics['train']['loss'], t2 - t1)) selected_clients_type = tff.FederatedType(preprocessed_and_shuffled.dataset_computation.type_signature.parameter, tff.CLIENTS) @tff.federated_computation(trainer.next.type_signature.parameter[0], selected_clients_type) def new_next(server_state, selected_clients): preprocessed_data = tff.federated_map(preprocessed_and_shuffled.dataset_computation, selected_clients) return trainer.next(server_state, preprocessed_data) manual_trainer_with_preprocessing = tff.templates.IterativeProcess(initialize_fn=trainer.initialize, next_fn=new_next) print(trainer_accepting_ids.next.type_signature) print(manual_trainer_with_preprocessing.next.type_signature) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: NaNにする行と列の番号をランダムに生成する Step2: 欠損値を確認 Step3: 欠損値を除外する Step4: 欠損値を補間する
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import pandas_datareader.data as web#株価など時系列データをwebから取得するパッケージ from datetime import datetime ticker = ['AMZN','FB','INTU'] start = '2012-01-01'#datetime(2016,1,1) end = '2013-12-31'#datetime(2016,12,31) df = web.DataReader(ticker,'google',start,end)['Close',:,:] df2 = df.copy() rand_row = np.random.randint(1,len(df),50) rand_col = np.random.randint(1,len(df.columns),50) for i,j in zip(rand_row,rand_col): df.iloc[i,j] = np.nan df df.isnull() df.notnull() df.count() df.dropna() df.dropna(axis=0) df.dropna(axis=1) df.dropna(axis=0,how='any') df.dropna(axis=1,how='all') for i in rand_row: df.iloc[i] = np.nan df df.dropna(axis=0,how='all') df.fillna(0) df.fillna({'FB':0,'INTU':100}) df.fillna(method='ffill') df.fillna(method='bfill') df.fillna(method='backfill',limit=70) df.fillna(method='ffill',axis=1) df.fillna(method='pad',inplace=True) df <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: the original reaclib source Step2: evaluate the rate at a given temperature (in K) Step3: a human readable string describing the rate, and the nuclei involved Step4: get the temperature sensitivity about some reference T Step5: plot the rate's temperature dependence Step6: the form of the rate with density and composition weighting -- this is what appears in a dY/dt equation Step7: output a python function that can evaluate the rate (T-dependence part) Step8: working with a group of rates Step9: print an overview of the network described by this rate collection Step10: show a network diagram Step11: write a function containing the ODEs that evolve this network
<ASSISTANT_TASK:> Python Code: r = reaclib.Rate("reaclib-rates/c13-pg-n14-nacr") print(r.original_source) r.eval(1.e9) print(r) print(r.reactants) print(r.products) print(r.get_rate_exponent(2.e7)) r.plot() print(r.ydot_string()) print(r.function_string()) files = ["c12-pg-n13-ls09", "c13-pg-n14-nacr", "n13--c13-wc12", "n13-pg-o14-lg06", "n14-pg-o15-im05", "n15-pa-c12-nacr", "o14--n14-wc12", "o15--n15-wc12"] rc = reaclib.RateCollection(files) print(rc) rc.print_network_overview() rc.plot() rc.make_network("test.py") # %load test.py import numpy as np import reaclib ip = 0 ihe4 = 1 ic12 = 2 ic13 = 3 in13 = 4 in14 = 5 in15 = 6 io14 = 7 io15 = 8 nnuc = 9 A = np.zeros((nnuc), dtype=np.int32) A[ip] = 1 A[ihe4] = 4 A[ic12] = 12 A[ic13] = 13 A[in13] = 13 A[in14] = 14 A[in15] = 15 A[io14] = 14 A[io15] = 15 def o15_n15(tf): # o15 --> n15 rate = 0.0 # wc12w rate += np.exp( -5.17053) return rate def n15_pa_c12(tf): # p + n15 --> he4 + c12 rate = 0.0 # nacrn rate += np.exp( 27.4764 + -15.253*tf.T913i + 1.59318*tf.T913 + 2.4479*tf.T9 + -2.19708*tf.T953 + -0.666667*tf.lnT9) # nacrr rate += np.exp( -6.57522 + -1.1638*tf.T9i + 22.7105*tf.T913 + -2.90707*tf.T9 + 0.205754*tf.T953 + -1.5*tf.lnT9) # nacrr rate += np.exp( 20.8972 + -7.406*tf.T9i + -1.5*tf.lnT9) # nacrr rate += np.exp( -4.87347 + -2.02117*tf.T9i + 30.8497*tf.T913 + -8.50433*tf.T9 + -1.54426*tf.T953 + -1.5*tf.lnT9) return rate def c13_pg_n14(tf): # p + c13 --> n14 rate = 0.0 # nacrn rate += np.exp( 18.5155 + -13.72*tf.T913i + -0.450018*tf.T913 + 3.70823*tf.T9 + -1.70545*tf.T953 + -0.666667*tf.lnT9) # nacrr rate += np.exp( 13.9637 + -5.78147*tf.T9i + -0.196703*tf.T913 + 0.142126*tf.T9 + -0.0238912*tf.T953 + -1.5*tf.lnT9) # nacrr rate += np.exp( 15.1825 + -13.5543*tf.T9i + -1.5*tf.lnT9) return rate def c12_pg_n13(tf): # p + c12 --> n13 rate = 0.0 # ls09n rate += np.exp( 17.1482 + -13.692*tf.T913i + -0.230881*tf.T913 + 4.44362*tf.T9 + -3.15898*tf.T953 + -0.666667*tf.lnT9) # ls09r rate += np.exp( 17.5428 + -3.77849*tf.T9i + -5.10735*tf.T913i + -2.24111*tf.T913 + 0.148883*tf.T9 + -1.5*tf.lnT9) return rate def n13_pg_o14(tf): # p + n13 --> o14 rate = 0.0 # lg06n rate += np.exp( 18.1356 + -15.1676*tf.T913i + 0.0955166*tf.T913 + 3.0659*tf.T9 + -0.507339*tf.T953 + -0.666667*tf.lnT9) # lg06r rate += np.exp( 10.9971 + -6.12602*tf.T9i + 1.57122*tf.T913i + -1.5*tf.lnT9) return rate def n14_pg_o15(tf): # p + n14 --> o15 rate = 0.0 # im05n rate += np.exp( 17.01 + -15.193*tf.T913i + -0.161954*tf.T913 + -7.52123*tf.T9 + -0.987565*tf.T953 + -0.666667*tf.lnT9) # im05r rate += np.exp( 6.73578 + -4.891*tf.T9i + 0.0682*tf.lnT9) # im05r rate += np.exp( 7.65444 + -2.998*tf.T9i + -1.5*tf.lnT9) # im05n rate += np.exp( 20.1169 + -15.193*tf.T913i + -4.63975*tf.T913 + 9.73458*tf.T9 + -9.55051*tf.T953 + 0.333333*tf.lnT9) return rate def o14_n14(tf): # o14 --> n14 rate = 0.0 # wc12w rate += np.exp( -4.62354) return rate def n13_c13(tf): # n13 --> c13 rate = 0.0 # wc12w rate += np.exp( -6.7601) return rate def rhs(t, Y, rho, T): tf = reaclib.Tfactors(T) lambda_o15_n15 = o15_n15(tf) lambda_n15_pa_c12 = n15_pa_c12(tf) lambda_c13_pg_n14 = c13_pg_n14(tf) lambda_c12_pg_n13 = c12_pg_n13(tf) lambda_n13_pg_o14 = n13_pg_o14(tf) lambda_n14_pg_o15 = n14_pg_o15(tf) lambda_o14_n14 = o14_n14(tf) lambda_n13_c13 = n13_c13(tf) dYdt = np.zeros((nnuc), dtype=np.float64) dYdt[ip] = ( -rho*Y[ip]*Y[in15]*lambda_n15_pa_c12 -rho*Y[ic13]*Y[ip]*lambda_c13_pg_n14 -rho*Y[ip]*Y[ic12]*lambda_c12_pg_n13 -rho*Y[ip]*Y[in13]*lambda_n13_pg_o14 -rho*Y[ip]*Y[in14]*lambda_n14_pg_o15 ) dYdt[ihe4] = ( +rho*Y[ip]*Y[in15]*lambda_n15_pa_c12 ) dYdt[ic12] = ( -rho*Y[ip]*Y[ic12]*lambda_c12_pg_n13 +rho*Y[ip]*Y[in15]*lambda_n15_pa_c12 ) dYdt[ic13] = ( -rho*Y[ic13]*Y[ip]*lambda_c13_pg_n14 +Y[in13]*lambda_n13_c13 ) dYdt[in13] = ( -rho*Y[ip]*Y[in13]*lambda_n13_pg_o14 -Y[in13]*lambda_n13_c13 +rho*Y[ip]*Y[ic12]*lambda_c12_pg_n13 ) dYdt[in14] = ( -rho*Y[ip]*Y[in14]*lambda_n14_pg_o15 +rho*Y[ic13]*Y[ip]*lambda_c13_pg_n14 +Y[io14]*lambda_o14_n14 ) dYdt[in15] = ( -rho*Y[ip]*Y[in15]*lambda_n15_pa_c12 +Y[io15]*lambda_o15_n15 ) dYdt[io14] = ( -Y[io14]*lambda_o14_n14 +rho*Y[ip]*Y[in13]*lambda_n13_pg_o14 ) dYdt[io15] = ( -Y[io15]*lambda_o15_n15 +rho*Y[ip]*Y[in14]*lambda_n14_pg_o15 ) return dYdt <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Contacted cones per bipolar cell (Figure3B) Step2: Contacted bipolar cells per cone (Figure 3D) Step3: Total number of contacted BC per cone Step4: Alternative S-cone selection Step5: Contacted cones per bipolar cell (alternative S-cone selection, supp. figure 5B) Step6: Contacted bipolar cells per cone (alternative S-cone selection, supp. figure 5C) Step7: Contacts between rod bipolar cells and cones Step8: Color selectivity of rod bipolar cells (Figure 5D) Step9: Contacted rod bipolar cells per cone (Figure 5E)
<ASSISTANT_TASK:> Python Code: import numpy as np from scipy.stats import itemfreq import matplotlib import matplotlib.pyplot as plt from scipy.io import loadmat import pandas as pd import seaborn as sns from sklearn import cross_validation from sklearn import svm from sklearn.decomposition import PCA %matplotlib inline matplotlib.rc('font',**{'family':'sans-serif','sans-serif':['Arial']}) matplotlib.rcParams.update({'mathtext.default': 'regular'}) matplotlib.rcParams.update({'font.size': 14}) sns.set_style("whitegrid") BC_ids=np.loadtxt('data/BC_IDs_new').astype(int) contact_summary=pd.read_pickle('data/cone_contact_predictions') cut_off_cones=np.array([73,72,71,74,201,202,211,203,88,204,142,34,4,30,199])+2000 cones_outside_cbc9=np.array([193,209,200,198,197,199,73,72,71,74,69,67,66,211,86,88,87,120,85,204,84,207,128,114,126,127,125,142,130,104,106,175,135])+2000 BC_excluded=np.array([691,709,827,836]) blue_cones=np.array([2006,2007,2009,2024,2028,2029]) all_cones=np.unique(contact_summary['cone'].as_matrix()) green_cones=all_cones[(np.in1d(all_cones,blue_cones,invert=True))&(np.in1d(all_cones,cones_outside_cbc9,invert=True))] true_contacts_green=contact_summary.ix[(contact_summary['prediction']==1)&(contact_summary['cone_type']=='green'),:4] true_contacts_blue=contact_summary.ix[(contact_summary['prediction']==1)&(contact_summary['cone_type']=='blue'),:4] true_contacts=contact_summary.ix[(contact_summary['prediction']==1)] stat_bc_contacts_green=pd.DataFrame(BC_ids[(BC_ids[:,4]>=58)&(BC_ids[:,4]<=71)&np.in1d(BC_ids[:,0],BC_excluded,invert=True)][:,[0,4]],columns=['cell','type']) stat_bc_contacts_blue=stat_bc_contacts_green.copy() green_contact_freq_type=itemfreq(true_contacts_green['cell'].as_matrix()) for i in range(stat_bc_contacts_green.shape[0]): stat_bc_contacts_green.loc[i,'count']=0 try: stat_bc_contacts_green.ix[i,'count']=green_contact_freq_type[green_contact_freq_type[:,0]==stat_bc_contacts_green.ix[i,'cell'],1] except ValueError: continue blue_contact_freq_type=itemfreq(true_contacts_blue['cell'].as_matrix()) for i in range(stat_bc_contacts_blue.shape[0]): stat_bc_contacts_blue.loc[i,'count']=0 try: stat_bc_contacts_blue.ix[i,'count']=blue_contact_freq_type[blue_contact_freq_type[:,0]==stat_bc_contacts_blue.ix[i,'cell'],1] except ValueError: continue stat_bc_contacts_all=pd.DataFrame(BC_ids[(BC_ids[:,4]>=58)&(BC_ids[:,4]<=71)&np.in1d(BC_ids[:,0],BC_excluded,invert=True)][:,[0,4]],columns=['cell','type']) all_contact_freq_type=itemfreq(true_contacts['cell'].as_matrix()) for i in range(stat_bc_contacts_all.shape[0]): stat_bc_contacts_all.loc[i,'count']=0 try: stat_bc_contacts_all.ix[i,'count']=all_contact_freq_type[all_contact_freq_type[:,0]==stat_bc_contacts_all.ix[i,'cell'],1] except ValueError: continue for i in range(stat_bc_contacts_all.shape[0]): stat_bc_contacts_all.loc[i,'count_rounded']=np.clip((stat_bc_contacts_all.ix[i,'count']+1)//2,0,4) stat_cone_contacts_all=pd.DataFrame(np.concatenate((np.tile(all_cones,14).reshape(-1,1),np.repeat(np.arange(58,72),all_cones.shape[0]).reshape(-1,1)),axis=1),columns=['cone','type']) for i in range(stat_cone_contacts_all.shape[0]): stat_cone_contacts_all.loc[i,'count']=np.sum((true_contacts['cone']==stat_cone_contacts_all.ix[i,'cone'])&\ (true_contacts['type']==stat_cone_contacts_all.ix[i,'type'])) stat_cone_contacts_green=pd.DataFrame(np.concatenate((np.tile(green_cones,14).reshape(-1,1),np.repeat(np.arange(58,72),green_cones.shape[0]).reshape(-1,1)),axis=1),columns=['cone','type']) stat_cone_contacts_blue=pd.DataFrame(np.concatenate((np.tile(blue_cones,14).reshape(-1,1),np.repeat(np.arange(58,72),blue_cones.shape[0]).reshape(-1,1)),axis=1),columns=['cone','type']) for i in range(stat_cone_contacts_green.shape[0]): stat_cone_contacts_green.loc[i,'count']=np.sum((true_contacts_green['cone']==stat_cone_contacts_green.ix[i,'cone'])&\ (true_contacts_green['type']==stat_cone_contacts_green.ix[i,'type'])) for i in range(stat_cone_contacts_blue.shape[0]): stat_cone_contacts_blue.loc[i,'count']=np.sum((true_contacts_blue['cone']==stat_cone_contacts_blue.ix[i,'cone'])&\ (true_contacts_blue['type']==stat_cone_contacts_blue.ix[i,'type'])) stat_cone_contacts_joined=pd.concat({'S-cones': stat_cone_contacts_blue, 'M-cones': stat_cone_contacts_green}) stat_cone_contacts_joined=stat_cone_contacts_joined.reset_index().drop('level_1',axis=1).rename(columns={'level_0':'cone_type'}) stat_bc_contacts_joined=pd.concat({'S-cones': stat_bc_contacts_blue, 'M-cones': stat_bc_contacts_green}) stat_bc_contacts_joined=stat_bc_contacts_joined.reset_index().drop('level_1',axis=1).rename(columns={'level_0':'cone_type'}) stat_cone_contacts_joined_no_rbc=stat_cone_contacts_joined[stat_cone_contacts_joined['type']!=71] stat_bc_contacts_joined_no_rbc=stat_bc_contacts_joined[stat_bc_contacts_joined['type']!=71] labels = ['1','2','3A','3B','4','5T','5O','5I','X','6','7','8','9'] sns.set(font='Arial',style='white',context='paper',rc={"xtick.major.size": 0, "ytick.major.size": 4}) with matplotlib.rc_context({"lines.linewidth": 0.7}): plt.figure(figsize=(8/2.54,4/2.54)) ax=sns.barplot(x='type',y='count',data=stat_bc_contacts_joined_no_rbc,hue='cone_type',order=np.arange(58,71),hue_order=['S-cones','M-cones'],ci=95) ax.set_xticklabels(labels) ax.set(ylabel='# cones',ylim=(0,10),xlabel='BC types') ax.spines['left'].set_position(('outward',3)) legend=plt.legend(loc='upper left') legend.get_title().set_fontsize(8) sns.despine() # plt.savefig('figures/joined_contacts_per_bc.svg',bbox_inches='tight',dpi=300) plt.show() labels = ['1','2','3A','3B','4','5T','5O','5I','X','6','7','8','9'] sns.set(font='Arial',context='paper',style='white',rc={"xtick.major.size": 0, "ytick.major.size": 4}) with matplotlib.rc_context({"lines.linewidth": 0.7}): plt.figure(figsize=(8/2.54,4/2.54)) ax=sns.barplot(x='type',y='count',data=stat_cone_contacts_joined_no_rbc,hue='cone_type',order=np.arange(58,71),hue_order=['S-cones','M-cones'],ci=95) ax.set_xticklabels(labels) ax.set(ylabel='# BCs',xlabel='BC types',ylim=(0,3.5),yticks=[0,1,2,3]) ax.spines['left'].set_position(('outward',3)) legend=plt.legend(bbox_to_anchor=(0.95, 1)) legend.get_title().set_fontsize(8) sns.despine() # plt.savefig('figures/joined_contacts_per_cone.svg',bbox_inches='tight',dpi=300) plt.show() cone_means=np.loadtxt('data/cone_means_rot.txt') central_cones=cone_means[(cone_means[:,2]>np.min(cone_means[:,2])+500)&(cone_means[:,2]<np.max(cone_means[:,2])-500)&\ (cone_means[:,3]>np.min(cone_means[:,3])+500)&(cone_means[:,3]<np.max(cone_means[:,3])-500),0] print('Central S-cones:',np.sum(np.in1d(central_cones,blue_cones))) print('Central M-cones:',np.sum(np.in1d(central_cones,green_cones))) stat_overall_cone_contacts=pd.concat({'S cones':pd.DataFrame(blue_cones,columns=['cone']),'M cones':pd.DataFrame(green_cones,columns=['cone'])}) stat_overall_cone_contacts=stat_overall_cone_contacts.reset_index().drop('level_1',axis=1).rename(columns={'level_0':'cone_type'}) for i in range(stat_overall_cone_contacts.shape[0]): stat_overall_cone_contacts.loc[i,'count']=np.sum(true_contacts['cone']==stat_overall_cone_contacts.ix[i,'cone']) for i in range(stat_overall_cone_contacts.shape[0]): stat_overall_cone_contacts.loc[i,'points']=np.sum(contact_summary[(contact_summary['cone']==stat_overall_cone_contacts.ix[i,'cone'])\ &contact_summary['prediction']==1]['count']) stat_overall_cone_contacts_central=stat_overall_cone_contacts[np.in1d(stat_overall_cone_contacts['cone'],central_cones)] stat_overall_cone_contacts=pd.concat({'S cones':pd.DataFrame(blue_cones,columns=['cone']),'M cones':pd.DataFrame(green_cones,columns=['cone'])}) stat_overall_cone_contacts=stat_overall_cone_contacts.reset_index().drop('level_1',axis=1).rename(columns={'level_0':'cone_type'}) for i in range(stat_overall_cone_contacts.shape[0]): stat_overall_cone_contacts.loc[i,'count']=np.sum(true_contacts['cone']==stat_overall_cone_contacts.ix[i,'cone']) stat_overall_cone_contacts.loc[i,'count_on']=np.sum(true_contacts[true_contacts['type']>62]['cone']==stat_overall_cone_contacts.ix[i,'cone']) stat_overall_cone_contacts.loc[i,'count_off']=np.sum(true_contacts[true_contacts['type']<63]['cone']==stat_overall_cone_contacts.ix[i,'cone']) for i in range(stat_overall_cone_contacts.shape[0]): stat_overall_cone_contacts.loc[i,'points']=np.sum(contact_summary[(contact_summary['cone']==stat_overall_cone_contacts.ix[i,'cone'])\ &contact_summary['prediction']==1]['count']) stat_overall_cone_contacts.loc[i,'points_on']=np.sum(contact_summary[(contact_summary['cone']==stat_overall_cone_contacts.ix[i,'cone'])\ &(contact_summary['prediction']==1)&(contact_summary['type']>62)]['count']) stat_overall_cone_contacts.loc[i,'points_off']=np.sum(contact_summary[(contact_summary['cone']==stat_overall_cone_contacts.ix[i,'cone'])\ &(contact_summary['prediction']==1)&(contact_summary['type']<63)]['count']) stat_overall_cone_contacts_central=stat_overall_cone_contacts[np.in1d(stat_overall_cone_contacts['cone'],central_cones)] print('Average number of contacted BC per M-cone (center):',\ np.mean(stat_overall_cone_contacts_central[stat_overall_cone_contacts_central['cone_type']=='M cones']['count']),\ np.std(stat_overall_cone_contacts_central[stat_overall_cone_contacts_central['cone_type']=='M cones']['count'])\ /np.sqrt(np.sum(stat_overall_cone_contacts_central['cone_type']=='M cones')-1)) print('Average number of contacted BC per S-cone (center):',\ np.mean(stat_overall_cone_contacts_central[stat_overall_cone_contacts_central['cone_type']=='S cones']['count']),\ np.std(stat_overall_cone_contacts_central[stat_overall_cone_contacts_central['cone_type']=='S cones']['count'])\ /np.sqrt(np.sum(stat_overall_cone_contacts_central['cone_type']=='S cones')-1)) print('Average number of contact points per M-cone (center):',\ np.mean(stat_overall_cone_contacts_central[stat_overall_cone_contacts_central['cone_type']=='M cones']['points']),\ np.std(stat_overall_cone_contacts_central[stat_overall_cone_contacts_central['cone_type']=='M cones']['points'])\ /np.sqrt(np.sum(stat_overall_cone_contacts_central['cone_type']=='M cones')-1)) print('Average number of contact points per S-cone (center):',\ np.mean(stat_overall_cone_contacts_central[stat_overall_cone_contacts_central['cone_type']=='S cones']['points']),\ np.std(stat_overall_cone_contacts_central[stat_overall_cone_contacts_central['cone_type']=='S cones']['points'])\ /np.sqrt(np.sum(stat_overall_cone_contacts_central['cone_type']=='S cones')-1)) blue_cones_alt=np.array([2007,2006,2010,2029,2061,2009,2031,2014,2024,2023,2100,2028,2017,2090]) green_cones_alt=all_cones[(np.in1d(all_cones,blue_cones_alt,invert=True))&(np.in1d(all_cones,cones_outside_cbc9,invert=True))] contact_summary_alt=contact_summary.copy() for i in range(contact_summary.shape[0]): if contact_summary_alt.ix[i,'cone'] in blue_cones_alt: contact_summary_alt.loc[i,'cone_type']='S-cone' elif contact_summary_alt.ix[i,'cone'] in green_cones_alt: contact_summary_alt.loc[i,'cone_type']='M-cone' else: contact_summary_alt.loc[i,'cone_type']='outside' true_contacts_green_alt=contact_summary_alt.ix[(contact_summary_alt['prediction']==1)&(contact_summary_alt['cone_type']=='M-cone'),:4] true_contacts_blue_alt=contact_summary_alt.ix[(contact_summary_alt['prediction']==1)&(contact_summary_alt['cone_type']=='S-cone'),:4] stat_bc_contacts_green_alt=pd.DataFrame(BC_ids[(BC_ids[:,4]>=58)&(BC_ids[:,4]<=71)&np.in1d(BC_ids[:,0],BC_excluded,invert=True)][:,[0,4]],columns=['cell','type']) stat_bc_contacts_blue_alt=stat_bc_contacts_green_alt.copy() green_contact_freq_type_alt=itemfreq(true_contacts_green_alt['cell'].as_matrix()) for i in range(stat_bc_contacts_green_alt.shape[0]): stat_bc_contacts_green_alt.loc[i,'count']=0 try: stat_bc_contacts_green_alt.ix[i,'count']=green_contact_freq_type_alt[green_contact_freq_type_alt[:,0]==stat_bc_contacts_green_alt.ix[i,'cell'],1] except ValueError: continue blue_contact_freq_type_alt=itemfreq(true_contacts_blue_alt['cell'].as_matrix()) for i in range(stat_bc_contacts_blue_alt.shape[0]): stat_bc_contacts_blue_alt.loc[i,'count']=0 try: stat_bc_contacts_blue_alt.ix[i,'count']=blue_contact_freq_type_alt[blue_contact_freq_type_alt[:,0]==stat_bc_contacts_blue_alt.ix[i,'cell'],1] except ValueError: continue stat_cone_contacts_green_alt=pd.DataFrame(np.concatenate((np.tile(green_cones_alt,14).reshape(-1,1),np.repeat(np.arange(58,72),green_cones_alt.shape[0]).reshape(-1,1)),axis=1),columns=['cone','type']) stat_cone_contacts_blue_alt=pd.DataFrame(np.concatenate((np.tile(blue_cones_alt,14).reshape(-1,1),np.repeat(np.arange(58,72),blue_cones_alt.shape[0]).reshape(-1,1)),axis=1),columns=['cone','type']) for i in range(stat_cone_contacts_green_alt.shape[0]): stat_cone_contacts_green_alt.loc[i,'count']=np.sum((true_contacts_green_alt['cone']==stat_cone_contacts_green_alt.ix[i,'cone'])&\ (true_contacts_green_alt['type']==stat_cone_contacts_green_alt.ix[i,'type'])) for i in range(stat_cone_contacts_blue_alt.shape[0]): stat_cone_contacts_blue_alt.loc[i,'count']=np.sum((true_contacts_blue_alt['cone']==stat_cone_contacts_blue_alt.ix[i,'cone'])&\ (true_contacts_blue_alt['type']==stat_cone_contacts_blue_alt.ix[i,'type'])) stat_cone_contacts_joined_alt=pd.concat({'S-cones': stat_cone_contacts_blue_alt, 'M-cones': stat_cone_contacts_green_alt}) stat_cone_contacts_joined_alt=stat_cone_contacts_joined_alt.reset_index().drop('level_1',axis=1).rename(columns={'level_0':'cone_type'}) stat_bc_contacts_joined_alt=pd.concat({'S-cones': stat_bc_contacts_blue_alt, 'M-cones': stat_bc_contacts_green_alt}) stat_bc_contacts_joined_alt=stat_bc_contacts_joined_alt.reset_index().drop('level_1',axis=1).rename(columns={'level_0':'cone_type'}) stat_cone_contacts_joined_no_rbc_alt=stat_cone_contacts_joined_alt[stat_cone_contacts_joined_alt['type']!=71] stat_bc_contacts_joined_no_rbc_alt=stat_bc_contacts_joined_alt[stat_bc_contacts_joined_alt['type']!=71] #alternativ blue cone selection labels = ['1','2','3A','3B','4','5T','5O','5I','X','6','7','8','9'] sns.set(font='Arial',style='white',context='paper',rc={"xtick.major.size": 0, "ytick.major.size": 4}) with matplotlib.rc_context({"lines.linewidth": 0.7}): plt.figure(figsize=(8/2.54,4/2.54)) ax=sns.barplot(x='type',y='count',data=stat_bc_contacts_joined_no_rbc_alt,hue='cone_type',order=np.arange(58,71),hue_order=['S-cones','M-cones'],ci=95) ax.set_xticklabels(labels) ax.set(ylabel='# cones',ylim=(0,10),xlabel='BC types') ax.spines['left'].set_position(('outward',3)) legend=plt.legend(loc='upper left') legend.get_title().set_fontsize(8) sns.despine() # plt.savefig('figures/joined_contacts_per_bc_alternative.svg',bbox_inches='tight',dpi=300) plt.show() #alternativ blue cone selection labels = ['1','2','3A','3B','4','5T','5O','5I','X','6','7','8','9'] sns.set(font='Arial',context='paper',style='white',rc={"xtick.major.size": 0, "ytick.major.size": 4}) with matplotlib.rc_context({"lines.linewidth": 0.7}): plt.figure(figsize=(8/2.54,4/2.54)) ax=sns.barplot(x='type',y='count',data=stat_cone_contacts_joined_no_rbc_alt,hue='cone_type',order=np.arange(58,71),hue_order=['S-cones','M-cones'],ci=95) ax.set_xticklabels(labels) ax.set(ylabel='# BCs',xlabel='BC types',ylim=(0,3.5),yticks=[0,1,2,3]) ax.spines['left'].set_position(('outward',3)) legend=plt.legend(bbox_to_anchor=(0.95, 1)) legend.get_title().set_fontsize(8) sns.despine() # plt.savefig('figures/joined_contacts_per_cone_alternative.svg',bbox_inches='tight',dpi=300) plt.show() plt.figure(figsize=(2.5/2.54,3/2.54)) sns.set(font='Arial',style='white',context='paper',rc={"xtick.major.size": 0, "ytick.major.size": 4}) ax=sns.countplot(x='count',data=stat_bc_contacts_all[stat_bc_contacts_all['type']==71],order=np.arange(0,5),color='grey') ncount=len(stat_bc_contacts_all[stat_bc_contacts_all['type']==71]['cell']) ax.set(xlabel='Contacted cones',ylabel='# RBCs',yticks=([0,20,40,60])) ax2=ax.twinx() ax2.set(ylim=([0,ax.get_ylim()[1]/ncount*100]),yticks=[0,10,20,30,40],yticklabels=['0','10','20','30','40'],ylabel='Fraction [%]') ax.spines['left'].set_position(('outward',3)) ax.spines['right'].set_position(('outward',3)) ax2.spines['left'].set_position(('outward',3)) ax2.spines['right'].set_position(('outward',3)) sns.despine(right=False) # plt.savefig('figures/rbc_contacts_per_bc.svg',bbox_inches='tight',dpi=300) plt.show() print('RBC - M cone contacts:',np.sum(stat_bc_contacts_joined[(stat_bc_contacts_joined['type']==71)&(stat_bc_contacts_joined['cone_type']=='M-cones')]['count'])) print('RBC - S cone contacts:',np.sum(stat_bc_contacts_joined[(stat_bc_contacts_joined['type']==71)&(stat_bc_contacts_joined['cone_type']=='S-cones')]['count'])) print('RBC contacts per M cone:',np.mean(stat_cone_contacts_joined[(stat_cone_contacts_joined['type']==71)&(stat_cone_contacts_joined['cone_type']=='M-cones')]['count'])) print('RBC contacts per S cone:',np.mean(stat_cone_contacts_joined[(stat_cone_contacts_joined['type']==71)&(stat_cone_contacts_joined['cone_type']=='S-cones')]['count'])) sns.set(font='Arial',style='white',context='paper',rc={"xtick.major.size": 0, "ytick.major.size": 4}) with matplotlib.rc_context({"lines.linewidth": 0.7}): plt.figure(figsize=(2.5/2.54,3/2.54)) ax=sns.pointplot(x='cone_type',y='count',data=stat_cone_contacts_joined[(stat_cone_contacts_joined['type']==71)],order=['S-cones','M-cones'],ci=95,\ linestyles='',markers='s',palette=sns.color_palette(),scale=1.5) ax.set(ylabel='# RBCs',ylim=(0,2),xlabel='Cone types',xticklabels=['S','M']) ax.spines['left'].set_position(('outward',3)) sns.despine() # plt.savefig('figures/rbc_color_selectivity.svg',bbox_inches='tight',dpi=300) plt.show() plt.figure(figsize=(2.5/2.54,3/2.54)) sns.set(font='Arial',style='white',context='paper',rc={"xtick.major.size": 0, "ytick.major.size": 4}) ax=sns.countplot(x='count',data=stat_cone_contacts_all[stat_cone_contacts_all['type']==71],order=np.arange(0,4),color='grey') ncount=len(stat_cone_contacts_all[stat_cone_contacts_all['type']==71]['cone']) ax.set(xlabel='Contacted RBCs',ylabel='# cones',yticks=([0,20,40,60])) ax2=ax.twinx() ax2.set(ylim=([0,ax.get_ylim()[1]/ncount*100]),yticks=[0,10,20,30,40],yticklabels=['0','10','20','30','40'],ylabel='Fraction [%]') ax.spines['left'].set_position(('outward',3)) ax.spines['right'].set_position(('outward',3)) ax2.spines['left'].set_position(('outward',3)) ax2.spines['right'].set_position(('outward',3)) sns.despine(right=False) # plt.savefig('figures/rbc_contacts_per_cone.svg',bbox_inches='tight',dpi=300) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Download a file of DeepVariant examples from Google Cloud Storage to the local file storage of this notebook. DeepVariant examples are stored in TFRecord format. Step2: Show one DeepVariant example Step3: You can also save the images as .png files Step4: This creates 10 PNG images labeled with locus IDs and truth labels. Step5: Flexible, modular functions
<ASSISTANT_TASK:> Python Code: # Nucleus is the only dependency we need to install. We need at least # nucleus 0.5.0, since this was the first release of Nucleus that includes the # visualization utilities we are using here. %%capture ! pip install google-nucleus==0.5.1 # Nucleus may show an error about failing to build a wheel, but it still # installs successfully. import tensorflow as tf from nucleus.util import vis print(tf.__version__) !gsutil -q cp gs://deepvariant/datalab-testdata/make_examples_datalab.tfrecord.gz /tmp/make_examples_colab.tfrecord.gz examples_path = '/tmp/make_examples_colab.tfrecord.gz' dataset = tf.data.TFRecordDataset(examples_path, compression_type="GZIP") # Take a single example and show the deepvariant pileup image for it. for e in dataset.take(1): example = tf.train.Example() example.ParseFromString(e.numpy()) # For example, in chr20:19503712_T_C, T is the reference allele and C is the # alternate allele that is proposed in this pileup image. print("Locus ID with alt:", vis.locus_id_with_alt(example)) print("Draw the channels:") vis.draw_deepvariant_pileup(example) print("Truth label:", vis.label_from_example(example)) for e in dataset.take(10): example = tf.train.Example() example.ParseFromString(e.numpy()) # For example, in chr20:19503712_T_C, T is the reference allele and C is the # alternate allele that is proposed in this pileup image. filename = 'pileup_{}_truth={}.png'.format(vis.locus_id_with_alt(example), vis.label_from_example(example)) vis.draw_deepvariant_pileup(example, path=filename, show=False) ! ls for e in dataset.take(1): example = tf.train.Example() example.ParseFromString(e.numpy()) print("Extracting the variant:") print(vis.variant_from_example(example)) # Get the pileup image as an array. arr = vis.get_image_array_from_example(example) print("\nShape of the pileup numpy array:", arr.shape) # Split that array into channels. channels = vis.split_3d_array_into_channels(arr) print("\nNumber of channels:", len(channels)) # Visualize the numpy array as an image. print("\nShowing just the first channel:") vis.array_to_png(channels[0]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <span style="color
<ASSISTANT_TASK:> Python Code: import cobra from cobra.flux_analysis import pfba import pandas as pd # for nice tables pd.set_option('display.max_colwidth', -1) from utils import show_map import escher map_loc = './maps/e_coli_core.Core metabolism.json' # the escher map used below from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" M = cobra.io.load_json_model('models/e_coli_core.json') model = M.copy() # this way we can edit model but leave M unaltered b = show_map([],map_loc) b.display_in_notebook() sol = model.optimize() b = show_map(sol,map_loc) b.display_in_notebook() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: ... or explicitly using Step2: Properties Step3: As a convenience, some of the most common properties can also be set when the axes are created Step4: And the same properties can be used with the Step5: Scale Step6: Note that Toyplot handles negative values correctly, and provides sensible results for values near zero by rendering them using a small linear region around the origin. Step7: Of course, you are free to specify any base you like, using the tuple notation
<ASSISTANT_TASK:> Python Code: import numpy y = numpy.linspace(0, 1, 20) ** 2 import toyplot canvas, axes, mark = toyplot.plot(y, width=300) canvas = toyplot.Canvas(width=300) axes = canvas.axes() axes.plot(y); x = numpy.linspace(0, 2 * numpy.pi) y = numpy.sin(x) import toyplot.locator canvas = toyplot.Canvas(width=600, height=300) axes = canvas.axes() axes.label.text = "Trigonometry 101" axes.x.label.text = "x" axes.y.label.text = "sin(x)" axes.x.ticks.show = True axes.x.ticks.locator = toyplot.locator.Explicit( [0, numpy.pi / 2, numpy.pi, 3 * numpy.pi / 2, 2 * numpy.pi], ["0", u"\u03c0 / 2", u"\u03c0", u"3 \u03c0 / 2", u"2 \u03c0"]) mark = axes.plot(x, y) x = numpy.linspace(0, 10, 100) y = 40 + x ** 2 canvas = toyplot.Canvas(300, 300) axes = canvas.axes(label="Toyplot Users", xlabel="Days", ylabel="Users") mark = axes.plot(x, y) toyplot.plot(x, y, label="Toyplot Users", xlabel="Days", ylabel="Users", ymin=0, width=300); x = numpy.linspace(-1000, 1000) canvas = toyplot.Canvas(width=700) axes = canvas.axes(grid=(2, 2, 0, 0), xscale="linear", yscale="linear") axes.plot(x, x, marker="o") axes = canvas.axes(grid=(2, 2, 0, 1), xscale="log", yscale="linear") axes.plot(x, x, marker="o") axes = canvas.axes(grid=(2, 2, 1, 0), xscale="linear", yscale="log") axes.plot(x, x, marker="o") axes = canvas.axes(grid=(2, 2, 1, 1), xscale="log", yscale="log") axes.plot(x, x, marker="o"); canvas = toyplot.Canvas(width=700) axes = canvas.axes(grid=(2,2,0), xscale="log") axes.plot(x, x) axes = canvas.axes(grid=(2,2,1), xscale="log10") axes.plot(x, x) axes = canvas.axes(grid=(2,2,2), xscale=("log", 10)) axes.plot(x, x); toyplot.plot(x, x, xscale=("log", 4), width=400); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Dataset Step2: Check the data real quick Step3: Preparing the data for training Step4: Long short-term memory (LSTM) RNNs Step5: Attach the gradients Step6: Softmax Activation Step7: Cross-entropy loss function Step8: Averaging the loss over the sequence Step9: Optimizer Step11: Define the model Step12: Test and visualize predictions
<ASSISTANT_TASK:> Python Code: from __future__ import print_function import mxnet as mx from mxnet import nd, autograd import numpy as np from collections import defaultdict mx.random.seed(1) # ctx = mx.gpu(0) ctx = mx.cpu(0) %matplotlib inline import matplotlib import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from datetime import datetime # import mpld3 sns.set_style('whitegrid') #sns.set_context('notebook') sns.set_context('poster') # Make inline plots vector graphics instead of raster graphics from IPython.display import set_matplotlib_formats #set_matplotlib_formats('pdf', 'svg') set_matplotlib_formats('pdf', 'png') SEQ_LENGTH = 100 + 1 # needs to be at least the seq_length for training + 1 because of the time shift between inputs and labels NUM_SAMPLES_TRAINING = 5000 + 1 NUM_SAMPLES_TESTING = 100 + 1 CREATE_DATA_SETS = False # True if you don't have the data files or re-create them def gimme_one_random_number(): return nd.random_uniform(low=0, high=1, shape=(1,1)).asnumpy()[0][0] def create_one_time_series(seq_length=10): freq = (gimme_one_random_number()*0.5) + 0.1 # 0.1 to 0.6 ampl = gimme_one_random_number() + 0.5 # 0.5 to 1.5 x = np.sin(np.arange(0, seq_length) * freq) * ampl return x def create_batch_time_series(seq_length=10, num_samples=4): column_labels = ['t'+str(i) for i in range(0, seq_length)] df = pd.DataFrame(create_one_time_series(seq_length=seq_length)).transpose() df.columns = column_labels df.index = ['s'+str(0)] for i in range(1, num_samples): more_df = pd.DataFrame(create_one_time_series(seq_length=seq_length)).transpose() more_df.columns = column_labels more_df.index = ['s'+str(i)] df = pd.concat([df, more_df], axis=0) return df # returns a dataframe of shape (num_samples, seq_length) # Create some time-series # uncomment below to force predictible random numbers # mx.random.seed(1) if CREATE_DATA_SETS: data_train = create_batch_time_series(seq_length=SEQ_LENGTH, num_samples=NUM_SAMPLES_TRAINING) data_test = create_batch_time_series(seq_length=SEQ_LENGTH, num_samples=NUM_SAMPLES_TESTING) # Write data to csv data_train.to_csv("../data/timeseries/train.csv") data_test.to_csv("../data/timeseries/test.csv") else: data_train = pd.read_csv("../data/timeseries/train.csv", index_col=0) data_test = pd.read_csv("../data/timeseries/test.csv", index_col=0) # num_sampling_points = min(SEQ_LENGTH, 400) # (data_train.sample(4).transpose().iloc[range(0, SEQ_LENGTH, SEQ_LENGTH//num_sampling_points)]).plot() # print(data_train.loc[:,data_train.columns[:-1]]) # inputs # print(data_train.loc[:,data_train.columns[1:]]) # outputs (i.e. inputs shift by +1) batch_size = 64 batch_size_test = 1 seq_length = 16 num_batches_train = data_train.shape[0] // batch_size num_batches_test = data_test.shape[0] // batch_size_test num_features = 1 # we do 1D time series for now, this is like vocab_size = 1 for characters # inputs are from t0 to t_seq_length - 1. because the last point is kept for the output ("label") of the penultimate point data_train_inputs = data_train.loc[:,data_train.columns[:-1]] data_train_labels = data_train.loc[:,data_train.columns[1:]] data_test_inputs = data_test.loc[:,data_test.columns[:-1]] data_test_labels = data_test.loc[:,data_test.columns[1:]] train_data_inputs = nd.array(data_train_inputs.values).reshape((num_batches_train, batch_size, seq_length, num_features)) train_data_labels = nd.array(data_train_labels.values).reshape((num_batches_train, batch_size, seq_length, num_features)) test_data_inputs = nd.array(data_test_inputs.values).reshape((num_batches_test, batch_size_test, seq_length, num_features)) test_data_labels = nd.array(data_test_labels.values).reshape((num_batches_test, batch_size_test, seq_length, num_features)) train_data_inputs = nd.swapaxes(train_data_inputs, 1, 2) train_data_labels = nd.swapaxes(train_data_labels, 1, 2) test_data_inputs = nd.swapaxes(test_data_inputs, 1, 2) test_data_labels = nd.swapaxes(test_data_labels, 1, 2) print('num_samples_training={0} | num_batches_train={1} | batch_size={2} | seq_length={3}'.format(NUM_SAMPLES_TRAINING, num_batches_train, batch_size, seq_length)) print('train_data_inputs shape: ', train_data_inputs.shape) print('train_data_labels shape: ', train_data_labels.shape) # print(data_train_inputs.values) # print(train_data_inputs[0]) # see what one batch looks like num_inputs = num_features # for a 1D time series, this is just a scalar equal to 1.0 num_outputs = num_features # same comment num_hidden_units = [8, 8] # num of hidden units in each hidden LSTM layer num_hidden_layers = len(num_hidden_units) # num of hidden LSTM layers num_units_layers = [num_features] + num_hidden_units ######################## # Weights connecting the inputs to the hidden layer ######################## Wxg, Wxi, Wxf, Wxo, Whg, Whi, Whf, Who, bg, bi, bf, bo = {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {} for i_layer in range(1, num_hidden_layers+1): num_inputs = num_units_layers[i_layer-1] num_hidden_units = num_units_layers[i_layer] Wxg[i_layer] = nd.random_normal(shape=(num_inputs,num_hidden_units), ctx=ctx) * .01 Wxi[i_layer] = nd.random_normal(shape=(num_inputs,num_hidden_units), ctx=ctx) * .01 Wxf[i_layer] = nd.random_normal(shape=(num_inputs,num_hidden_units), ctx=ctx) * .01 Wxo[i_layer] = nd.random_normal(shape=(num_inputs,num_hidden_units), ctx=ctx) * .01 ######################## # Recurrent weights connecting the hidden layer across time steps ######################## Whg[i_layer] = nd.random_normal(shape=(num_hidden_units, num_hidden_units), ctx=ctx) * .01 Whi[i_layer] = nd.random_normal(shape=(num_hidden_units, num_hidden_units), ctx=ctx) * .01 Whf[i_layer] = nd.random_normal(shape=(num_hidden_units, num_hidden_units), ctx=ctx) * .01 Who[i_layer] = nd.random_normal(shape=(num_hidden_units, num_hidden_units), ctx=ctx) * .01 ######################## # Bias vector for hidden layer ######################## bg[i_layer] = nd.random_normal(shape=num_hidden_units, ctx=ctx) * .01 bi[i_layer] = nd.random_normal(shape=num_hidden_units, ctx=ctx) * .01 bf[i_layer] = nd.random_normal(shape=num_hidden_units, ctx=ctx) * .01 bo[i_layer] = nd.random_normal(shape=num_hidden_units, ctx=ctx) * .01 ######################## # Weights to the output nodes ######################## Why = nd.random_normal(shape=(num_units_layers[-1], num_outputs), ctx=ctx) * .01 by = nd.random_normal(shape=num_outputs, ctx=ctx) * .01 params = [] for i_layer in range(1, num_hidden_layers+1): params += [Wxg[i_layer], Wxi[i_layer], Wxf[i_layer], Wxo[i_layer], Whg[i_layer], Whi[i_layer], Whf[i_layer], Who[i_layer], bg[i_layer], bi[i_layer], bf[i_layer], bo[i_layer]] params += [Why, by] # add the output layer for param in params: param.attach_grad() def softmax(y_linear, temperature=1.0): lin = (y_linear-nd.max(y_linear)) / temperature exp = nd.exp(lin) partition = nd.sum(exp, axis=0, exclude=True).reshape((-1,1)) return exp / partition def cross_entropy(yhat, y): return - nd.mean(nd.sum(y * nd.log(yhat), axis=0, exclude=True)) def rmse(yhat, y): return nd.mean(nd.sqrt(nd.sum(nd.power(y - yhat, 2), axis=0, exclude=True))) def average_ce_loss(outputs, labels): assert(len(outputs) == len(labels)) total_loss = 0. for (output, label) in zip(outputs,labels): total_loss = total_loss + cross_entropy(output, label) return total_loss / len(outputs) def average_rmse_loss(outputs, labels): assert(len(outputs) == len(labels)) total_loss = 0. for (output, label) in zip(outputs,labels): total_loss = total_loss + rmse(output, label) return total_loss / len(outputs) def SGD(params, learning_rate): for param in params: # print('grrrrr: ', param.grad) param[:] = param - learning_rate * param.grad def adam(params, learning_rate, M , R, index_adam_call, beta1, beta2, eps): k = -1 for param in params: k += 1 M[k] = beta1 * M[k] + (1. - beta1) * param.grad R[k] = beta2 * R[k] + (1. - beta2) * (param.grad)**2 # bias correction since we initilized M & R to zeros, they're biased toward zero on the first few iterations m_k_hat = M[k] / (1. - beta1**(index_adam_call)) r_k_hat = R[k] / (1. - beta2**(index_adam_call)) if((np.isnan(M[k].asnumpy())).any() or (np.isnan(R[k].asnumpy())).any()): # print('GRRRRRR ', M, K) stop() # print('grrrrr: ', param.grad) param[:] = param - learning_rate * m_k_hat / (nd.sqrt(r_k_hat) + eps) # print('m_k_hat r_k_hat', m_k_hat, r_k_hat) return params, M, R # def adam(params, learning_rate, M, R, index_iteration, beta1=0.9, beta2=0.999, eps=1e-8): # for k, param in enumerate(params): # if k==0: # print('batch_iteration {}: {}'.format(index_iteration, param)) # M[k] = beta1 * M[k] + (1. - beta1) * param.grad # R[k] = beta2 * R[k] + (1. - beta2) * (param.grad)**2 # m_k_hat = M[k] / (1. - beta1**(index_iteration)) # r_k_hat = R[k] / (1. - beta2**(index_iteration)) # param[:] = param - learning_rate * m_k_hat / (nd.sqrt(r_k_hat) + eps) # # print(beta1, beta2, M, R) # if k==0: # print('batch_iteration {}: {}'.format(index_iteration, param.grad)) # for k, param in enumerate(params): # print('batch_iteration {}: {}'.format(index_iteration, param)) # return M, R def single_lstm_unit_calcs(X, c, Wxg, h, Whg, bg, Wxi, Whi, bi, Wxf, Whf, bf, Wxo, Who, bo): g = nd.tanh(nd.dot(X, Wxg) + nd.dot(h, Whg) + bg) i = nd.sigmoid(nd.dot(X, Wxi) + nd.dot(h, Whi) + bi) f = nd.sigmoid(nd.dot(X, Wxf) + nd.dot(h, Whf) + bf) o = nd.sigmoid(nd.dot(X, Wxo) + nd.dot(h, Who) + bo) ####################### c = f * c + i * g h = o * nd.tanh(c) return c, h def deep_lstm_rnn(inputs, h, c, temperature=1.0): h: dict of nd.arrays, each key is the index of a hidden layer (from 1 to whatever). Index 0, if any, is the input layer outputs = [] # inputs is one BATCH of sequences so its shape is number_of_seq, seq_length, features_dim # (latter is 1 for a time series, vocab_size for a character, n for a n different times series) for X in inputs: # X is batch of one time stamp. E.g. if each batch has 37 sequences, then the first value of X will be a set of the 37 first values of each of the 37 sequences # that means each iteration on X corresponds to one time stamp, but it is done in batches of different sequences h[0] = X # the first hidden layer takes the input X as input for i_layer in range(1, num_hidden_layers+1): # lstm units now have the 2 following inputs: # i) h_t from the previous layer (equivalent to the input X for a non-deep lstm net), # ii) h_t-1 from the current layer (same as for non-deep lstm nets) c[i_layer], h[i_layer] = single_lstm_unit_calcs(h[i_layer-1], c[i_layer], Wxg[i_layer], h[i_layer], Whg[i_layer], bg[i_layer], Wxi[i_layer], Whi[i_layer], bi[i_layer], Wxf[i_layer], Whf[i_layer], bf[i_layer], Wxo[i_layer], Who[i_layer], bo[i_layer]) yhat_linear = nd.dot(h[num_hidden_layers], Why) + by # yhat is a batch of several values of the same time stamp # this is basically the prediction of the sequence, which overlaps most of the input sequence, plus one point (character or value) # yhat = softmax(yhat_linear, temperature=temperature) # yhat = nd.sigmoid(yhat_linear) # yhat = nd.tanh(yhat_linear) yhat = yhat_linear # we cant use a 1.0-bounded activation function since amplitudes can be greater than 1.0 outputs.append(yhat) # outputs has same shape as inputs, i.e. a list of batches of data points. # print('some shapes... yhat outputs', yhat.shape, len(outputs) ) return (outputs, h, c) def test_prediction(one_input_seq, one_label_seq, temperature=1.0): ##################################### # Set the initial state of the hidden representation ($h_0$) to the zero vector ##################################### # some better initialization needed?? h, c = {}, {} for i_layer in range(1, num_hidden_layers+1): h[i_layer] = nd.zeros(shape=(batch_size_test, num_units_layers[i_layer]), ctx=ctx) c[i_layer] = nd.zeros(shape=(batch_size_test, num_units_layers[i_layer]), ctx=ctx) outputs, h, c = deep_lstm_rnn(one_input_seq, h, c, temperature=temperature) loss = rmse(outputs[-1][0], one_label_seq) return outputs[-1][0].asnumpy()[-1], one_label_seq.asnumpy()[-1], loss.asnumpy()[-1], outputs, one_label_seq def check_prediction(index): o, label, loss, outputs, labels = test_prediction(test_data_inputs[index], test_data_labels[index], temperature=1.0) prediction = round(o, 3) true_label = round(label, 3) outputs = [float(i.asnumpy().flatten()) for i in outputs] true_labels = list(test_data_labels[index].asnumpy().flatten()) # print(outputs, '\n----\n', true_labels) df = pd.DataFrame([outputs, true_labels]).transpose() df.columns = ['predicted', 'true'] # print(df) rel_error = round(100. * (prediction / true_label - 1.0), 2) # print('\nprediction = {0} | actual_value = {1} | rel_error = {2}'.format(prediction, true_label, rel_error)) return df epochs = 48 # at some point, some nans appear in M, R matrices of Adam. TODO investigate why moving_loss = 0. learning_rate = 0.001 # 0.1 works for a [8, 8] after about 70 epochs of 32-sized batches # Adam Optimizer stuff beta1 = .9 beta2 = .999 index_adam_call = 0 # M & R arrays to keep track of momenta in adam optimizer. params is a list that contains all ndarrays of parameters M = {k: nd.zeros_like(v) for k, v in enumerate(params)} R = {k: nd.zeros_like(v) for k, v in enumerate(params)} df_moving_loss = pd.DataFrame(columns=['Loss', 'Error']) df_moving_loss.index.name = 'Epoch' # needed to update plots on the fly %matplotlib notebook fig, axes_fig1 = plt.subplots(1,1, figsize=(6,3)) fig2, axes_fig2 = plt.subplots(1,1, figsize=(6,3)) for e in range(epochs): ############################ # Attenuate the learning rate by a factor of 2 every 100 epochs ############################ if ((e+1) % 80 == 0): learning_rate = learning_rate / 2.0 # TODO check if its ok to adjust learning_rate when using Adam Optimizer h, c = {}, {} for i_layer in range(1, num_hidden_layers+1): h[i_layer] = nd.zeros(shape=(batch_size, num_units_layers[i_layer]), ctx=ctx) c[i_layer] = nd.zeros(shape=(batch_size, num_units_layers[i_layer]), ctx=ctx) for i in range(num_batches_train): data_one_hot = train_data_inputs[i] label_one_hot = train_data_labels[i] with autograd.record(): outputs, h, c = deep_lstm_rnn(data_one_hot, h, c) loss = average_rmse_loss(outputs, label_one_hot) loss.backward() # SGD(params, learning_rate) index_adam_call += 1 # needed for bias correction in Adam optimizer params, M, R = adam(params, learning_rate, M, R, index_adam_call, beta1, beta2, 1e-8) ########################## # Keep a moving average of the losses ########################## if (i == 0) and (e == 0): moving_loss = nd.mean(loss).asscalar() else: moving_loss = .99 * moving_loss + .01 * nd.mean(loss).asscalar() df_moving_loss.loc[e] = round(moving_loss, 4) ############################ # Predictions and plots ############################ data_prediction_df = check_prediction(index=e) axes_fig1.clear() data_prediction_df.plot(ax=axes_fig1) fig.canvas.draw() prediction = round(data_prediction_df.tail(1)['predicted'].values.flatten()[-1], 3) true_label = round(data_prediction_df.tail(1)['true'].values.flatten()[-1], 3) rel_error = round(100. * np.abs(prediction / true_label - 1.0), 2) print("Epoch = {0} | Loss = {1} | Prediction = {2} True = {3} Error = {4}".format(e, moving_loss, prediction, true_label, rel_error )) axes_fig2.clear() if e == 0: moving_rel_error = rel_error else: moving_rel_error = .9 * moving_rel_error + .1 * rel_error df_moving_loss.loc[e, ['Error']] = moving_rel_error axes_loss_plot = df_moving_loss.plot(ax=axes_fig2, secondary_y='Loss', color=['r','b']) axes_loss_plot.right_ax.grid(False) # axes_loss_plot.right_ax.set_yscale('log') fig2.canvas.draw() %matplotlib inline <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: An example is shown below with its output Step2: Compact Approach Step3: More Examples Step4: Calculating Compound Amount Step5: Compact Approach Step6: Calculating Compound Mass Step7: Identifying Elements in Compounds Step8: Calculating Stoichiometry Coefficients Step9: We can determine the coefficients for a list of elements using the auxi.tools.chemistry.stoichiometry.stoichiometry_coefficients function Step10: Calculating Element Mass Fractions Step11: Converting Compounds
<ASSISTANT_TASK:> Python Code: from auxi.tools.chemistry import stoichiometry molarmass_FeO = stoichiometry.molar_mass("FeO") molarmass_CO2 = stoichiometry.molar_mass("CO2") molarmass_FeCr2O4 = stoichiometry.molar_mass("FeCr2O4") print("Molar mass of FeO :", molarmass_FeO, "kg/kmol") print("Molar mass of CO2 :", molarmass_CO2, "kg/kmol") print("Molar mass of FeCr2O4:", molarmass_FeCr2O4, "kg/kmol") from auxi.tools.chemistry.stoichiometry import molar_mass as mm molarmass_FeO = mm("FeO") print("Molar mass of FeO :", molarmass_FeO, "kg/kmol") print("Molar mass of CO2 :", mm("CO2"), "kg/kmol") print("Molar mass of FeCr2O4:", mm("FeCr2O4"), "kg/kmol") from auxi.tools.chemistry.stoichiometry import molar_mass as mm def print_molar_mass(compound): print("Molar mass of", compound, "is", mm(compound), "kg/kmol.") print_molar_mass("FeO1.5") print_molar_mass("Fe2O3") print_molar_mass("FeOTiO2") print_molar_mass("FeTiO3") print_molar_mass("Fe2(CO3)3") print_molar_mass("Fe2C3O9") print_molar_mass("H2O") print_molar_mass("H") print_molar_mass("He") print_molar_mass("Au") from auxi.tools.chemistry import stoichiometry m_FeO = 10.0 n_FeO = stoichiometry.amount("FeO", m_FeO) print("There is", n_FeO, "kmol of FeO in", m_FeO , "kg of the compound.") m_CO2 = 12.3 n_CO2 = stoichiometry.amount("CO2", m_CO2) print("There is", n_CO2, "kmol of CO2 in", m_CO2 , "kg of the compound.") m_FeCr2O4 = 453.0 n_FeCr2O4 = stoichiometry.amount("FeCr2O4", m_FeCr2O4) print("There is", n_FeCr2O4, "kmol of FeCr2O4 in", m_FeCr2O4 , "kg of the compound.") from auxi.tools.chemistry.stoichiometry import amount m_FeO = 10.0 n_FeO = amount("FeO", m_FeO) print("There is", n_FeO, "kmol of FeO in", m_FeO , "kg of the compound.") m_CO2 = 12.3 n_CO2 = amount("CO2", m_CO2) print("There is", n_CO2, "kmol of CO2 in", m_CO2 , "kg of the compound.") m_FeCr2O4 = 453.0 n_FeCr2O4 = amount("FeCr2O4", m_FeCr2O4) print("There is", n_FeCr2O4, "kmol of FeCr2O4 in", m_FeCr2O4 , "kg of the compound.") from auxi.tools.chemistry import stoichiometry n_FeO = 10.0 m_FeO = stoichiometry.mass("FeO", n_FeO) print("There is", m_FeO, "kg of FeO in", n_FeO , "kmol of the compound.") m_CO2 = 12.3 n_CO2 = stoichiometry.mass("CO2", m_CO2) print("There is", m_CO2, "kg of CO2 in", n_CO2 , "kmol of the compound.") m_FeCr2O4 = 453.0 n_FeCr2O4 = stoichiometry.mass("FeCr2O4", m_FeCr2O4) print("There is", m_FeCr2O4, "kg of FeCr2O4 in", n_FeCr2O4 , "kmol of the compound.") from auxi.tools.chemistry import stoichiometry elements_Fe2O3 = stoichiometry.elements(["Fe2O3"]) print("Fe2O3 contains these elements:", elements_Fe2O3) elements_CO2 = stoichiometry.elements(["CO2"]) print("CO2 contains these elements:", elements_CO2) elements_Fe2Cr2O4 = stoichiometry.elements(["Fe2Cr2O4"]) print("Fe2Cr2O4 contains these elements:", elements_Fe2Cr2O4) elements_Al2S3O12 = stoichiometry.elements(["Al2(SO4)3"]) print("Al2(SO4)3 contains these elements:", elements_Al2S3O12) elements_all = stoichiometry.elements(["Fe2O3", "CO2", "Fe2Cr2O4", "Al2(SO4)3"]) print("Fe2O3, CO2, Fe2Cr2O4 and Al2(SO4)3 contain these elements:", elements_all) from auxi.tools.chemistry import stoichiometry coeff_Fe2O3_Fe = stoichiometry.stoichiometry_coefficient("Fe2O3", "Fe") print("Stoichiometry coefficient of Fe in Fe2O3:", coeff_Fe2O3_Fe) coeff_Fe2O3_O = stoichiometry.stoichiometry_coefficient("Fe2O3", "O") print("Stoichiometry coefficient of O in Fe2O3:", coeff_Fe2O3_O) coeff_Fe2O3_C = stoichiometry.stoichiometry_coefficient("Fe2O3", "C") print("Stoichiometry coefficient of C in Fe2O3:", coeff_Fe2O3_C) from auxi.tools.chemistry import stoichiometry elements = ["Fe", "O", "C", "Ar"] st_Fe2O3 = stoichiometry.stoichiometry_coefficients("Fe2O3", elements) print("Stoichiometry coefficient of", elements, "in Fe2O3:", st_Fe2O3) elements = ["Al", "Ca", "Fe", "Si", "O", "C", "H"] st_Lawsonite = stoichiometry.stoichiometry_coefficients("CaAl2Si2O7O2H2H2O", elements) print("Stoichiometry coefficient of", elements, "in Lawsonite (CaAl2(Si2O7)(OH)2·H2O):", st_Lawsonite) from auxi.tools.chemistry import stoichiometry y_Fe2O3_Fe = stoichiometry.element_mass_fraction("Fe2O3", "Fe") print("Mass fraction of Fe in Fe2O3:", y_Fe2O3_Fe) y_Fe2O3_O = stoichiometry.element_mass_fraction("Fe2O3", "O") print("Mass fraction of O in Fe2O3:", y_Fe2O3_O) y_Fe2O3_C = stoichiometry.element_mass_fraction("Fe2O3", "C") print("Mass fraction of C in Fe2O3:", y_Fe2O3_C) from auxi.tools.chemistry import stoichiometry elements = ["Fe", "O", "C", "Ar"] y_Fe2O3 = stoichiometry.element_mass_fractions("Fe2O3", elements) print("Mass fractions of", elements, "in Fe2O3:", y_Fe2O3) elements = ["Al", "Ca", "Fe", "Si", "O", "C", "H"] y_Lawsonite = stoichiometry.element_mass_fractions("CaAl2Si2O7O2H2H2O", elements) print("Mass fractions of", elements, "in Lawsonite (CaAl2(Si2O7)(OH)2·H2O):", y_Lawsonite) from auxi.tools.chemistry import stoichiometry m_Fe2O3 = 10.0 m_Fe = stoichiometry.convert_compound(m_Fe2O3, "Fe2O3", "Fe", "Fe") print("From", m_Fe2O3, "kg of Fe2O3,", m_Fe , "kg of Fe can be produced.") m_Fe = 10.0 m_Fe2O3 = stoichiometry.convert_compound(m_Fe, "Fe", "Fe2O3", "Fe") print("When", m_Fe, "kg of Fe is oxidised completely,", m_Fe2O3 , "kg of Fe2O3 will be produced.") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Generating data Step2: Model specification Step3: For the sunspot model, the posterior distribution of αα is concentrated between 0.6 and 1.2, indicating that we should expect more components to contribute non-negligible amounts to the mixture than for the Old Faithful waiting time model. Step4: Indeed, we see that between ten and fifteen mixture components have appreciable posterior expected weight. Step5: We now calculate and plot the fitted density estimate. Step6: Again, we can decompose the posterior expected density into weighted mixture densities.
<ASSISTANT_TASK:> Python Code: # pymc3.distributions.DensityDist? import matplotlib.pyplot as plt import matplotlib as mpl from pymc3 import Model, Normal, Slice from pymc3 import sample from pymc3 import traceplot from pymc3.distributions import Interpolated from theano import as_op import theano.tensor as tt import numpy as np from scipy import stats from matplotlib import pyplot as plt import numpy as np import pymc3 as pm import scipy as sp import seaborn as sns from statsmodels.datasets import get_rdataset from theano import tensor as tt %matplotlib inline %load_ext version_information %version_information pymc3, statsmodels, pandas sunspot_df = get_rdataset('sunspot.year', cache=True).data sunspot_df.head() sunspot_df.plot(x='time') SEED = 8675309 # from random.org np.random.seed(SEED) K = 50 N = sunspot_df.shape[0] def stick_breaking(beta): portion_remaining = tt.concatenate([[1], tt.extra_ops.cumprod(1 - beta)[:-1]]) return beta * portion_remaining with pm.Model() as model: alpha = pm.Gamma('alpha', 1., 1.) beta = pm.Beta('beta', 1, alpha, shape=K) w = pm.Deterministic('w', stick_breaking(beta)) mu = pm.Uniform('mu', 0., 300., shape=K) obs = pm.Mixture('obs', w, pm.Poisson.dist(mu), observed=sunspot_df['sunspot.year']) with model: step = pm.Metropolis() trace = pm.sample(10000, step=step, tune=90000, random_seed=SEED, njobs=6) pm.traceplot(trace, varnames=['alpha']); fig, ax = plt.subplots(figsize=(8, 6)) plot_w = np.arange(K) + 1 ax.bar(plot_w - 0.5, trace['w'].mean(axis=0), width=1., lw=0); ax.set_xlim(0.5, K); ax.set_xlabel('Component'); ax.set_ylabel('Posterior expected mixture weight'); x_plot = np.arange(250) post_pmf_contribs = sp.stats.poisson.pmf(np.atleast_3d(x_plot), trace['mu'][:, np.newaxis, :]) post_pmfs = (trace['w'][:, np.newaxis, :] * post_pmf_contribs).sum(axis=-1) post_pmf_low, post_pmf_high = np.percentile(post_pmfs, [2.5, 97.5], axis=0) fig, ax = plt.subplots(figsize=(8, 6)) ax.hist(sunspot_df['sunspot.year'].values, bins=40, normed=True, lw=0, alpha=0.75); ax.fill_between(x_plot, post_pmf_low, post_pmf_high, color='gray', alpha=0.45) ax.plot(x_plot, post_pmfs[0], c='gray', label='Posterior sample densities'); ax.plot(x_plot, post_pmfs[::200].T, c='gray'); ax.plot(x_plot, post_pmfs.mean(axis=0), c='k', label='Posterior expected density'); ax.set_xlabel('Yearly sunspot count'); ax.set_yticklabels([]); ax.legend(loc=1); fig, ax = plt.subplots(figsize=(8, 6)) ax.hist(sunspot_df['sunspot.year'].values, bins=40, normed=True, lw=0, alpha=0.75); ax.plot(x_plot, post_pmfs.mean(axis=0), c='k', label='Posterior expected density'); ax.plot(x_plot, (trace['w'][:, np.newaxis, :] * post_pmf_contribs).mean(axis=0)[:, 0], '--', c='k', label='Posterior expected\nmixture components\n(weighted)'); ax.plot(x_plot, (trace['w'][:, np.newaxis, :] * post_pmf_contribs).mean(axis=0), '--', c='k'); ax.set_xlabel('Yearly sunspot count'); ax.set_yticklabels([]); ax.legend(loc=1); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Tokens Step2: 21 tokens extracted, which include words and punctuation. Step3: And we can apply it to an entire book, "The Prince" by Machiavelli that we used last time Step4: As mentioned above, the NTLK tokeniser works in a more sophisticated way than just splitting by spaces, therefore we got this time more tokens. Step5: As you see, it is not splitting just after each full stop but check if it's part of an acronym (U.S.) or a number (0.99). Step6: Most common tokens Step7: Comma is the most common Step8: We can also remove any capital letters before tokenising Step9: Now we removed the punctuation and the capital letters but the most common token is "the", not a significative word ... Step10: This would work but would leave out also tokens such as I and you which are actually significative. Step11: Now we excluded words such as the but we can improve further the list by looking at semantically similar words, such as plural and singular versions. Step12: Stemming Step13: And now we apply one of the NLTK stemmer, the Porter stemmer Step14: As you see, all 5 different words have been reduced to the same stem and would be now the same lexical token. Step15: Now the word princ is counted 281 times, exactly like the sum of prince and princes. Step16: Lemma Step17: We tell the lemmatise that the words are nouns. In this case it considers the same lemma words such as list (singular noun) and lists (plural noun) but leave as they are the other words. Step18: We get a different result if we say that the words are verbs. Step19: It works with different adjectives, it doesn't look only at prefixes and suffixes. Step20: Yes, the lemma now is prince. Step21: The NLTK function pos_tag() will tag each token with the estimated PoS. Step22: Which are the most common PoS in The Prince book? Step24: It's not nouns (NN) but interections (IN) such as preposition or conjunction.
<ASSISTANT_TASK:> Python Code: sampleText1 = "The Elephant's 4 legs: THE Pub! You can't believe it or can you, the believer?" sampleText2 = "Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29." import nltk s1Tokens = nltk.word_tokenize(sampleText1) s1Tokens len(s1Tokens) s2Tokens = nltk.word_tokenize(sampleText2) s2Tokens # If you would like to work with the raw text you can use 'bookRaw' with open('../datasets/ThePrince.txt', 'r') as f: bookRaw = f.read() bookTokens = nltk.word_tokenize(bookRaw) bookText = nltk.Text(bookTokens) # special format nBookTokens= len(bookTokens) # or alternatively len(bookText) print ("*** Analysing book ***") print ("The book is {} chars long".format (len(bookRaw))) print ("The book has {} tokens".format (nBookTokens)) text1 = "This is the first sentence. A liter of milk in the U.S. costs $0.99. Is this the third sentence? Yes, it is!" sentences = nltk.sent_tokenize(text1) len(sentences) sentences sentences = nltk.sent_tokenize(bookRaw) # extract sentences nSent = len(sentences) print ("The book has {} sentences".format (nSent)) print ("and each sentence has in average {} tokens".format (nBookTokens / nSent)) def get_top_words(tokens): # Calculate frequency distribution fdist = nltk.FreqDist(tokens) return fdist.most_common() topBook = get_top_words(bookTokens) # Output top 20 words topBook[:20] topWords = [(freq, word) for (word,freq) in topBook if word.isalpha() and freq > 400] topWords def preprocessText(text, lowercase=True): if lowercase: tokens = nltk.word_tokenize(text.lower()) else: tokens = nltk.word_tokenize(text) return [word for word in tokens if word.isalpha()] bookWords = preprocessText(bookRaw) topBook = get_top_words(bookWords) # Output top 20 words topBook[:20] print ("*** Analysing book ***") print ("The text has now {} words (tokens)".format (len(bookWords))) meaningfulWords = [word for (word,freq) in topBook if len(word) > 5 and freq > 80] sorted(meaningfulWords) from nltk.corpus import stopwords stopwordsEN = set(stopwords.words('english')) # english language betterWords = [w for w in bookWords if w not in stopwordsEN] topBook = get_top_words(betterWords) # Output top 20 words topBook[:20] 'princes' in betterWords betterWords.count("prince") + betterWords.count("princes") input1 = "List listed lists listing listings" words1 = input1.lower().split(' ') words1 porter = nltk.PorterStemmer() [porter.stem(t) for t in words1] stemmedWords = [porter.stem(w) for w in betterWords] topBook = get_top_words(stemmedWords) topBook[:20] # Output top 20 words from nltk.stem.snowball import SnowballStemmer stemmerIT = SnowballStemmer("italian") inputIT = "Io ho tre mele gialle, tu hai una mela gialla e due pere verdi" wordsIT = inputIT.split(' ') [stemmerIT.stem(w) for w in wordsIT] from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() words1 [lemmatizer.lemmatize(w, 'n') for w in words1] # n = nouns [lemmatizer.lemmatize(w, 'v') for w in words1] # v = verbs words2 = ['good', 'better'] [porter.stem(w) for w in words2] [lemmatizer.lemmatize(w, 'a') for w in words2] lemmatisedWords = [lemmatizer.lemmatize(w, 'n') for w in betterWords] topBook = get_top_words(lemmatisedWords) topBook[:20] # Output top 20 words text1 = "Children shouldn't drink a sugary drink before bed." tokensT1 = nltk.word_tokenize(text1) nltk.pos_tag(tokensT1) nltk.help.upenn_tagset('RB') tokensAndPos = nltk.pos_tag(bookTokens) posList = [thePOS for (word, thePOS) in tokensAndPos] fdistPos = nltk.FreqDist(posList) fdistPos.most_common(5) nltk.help.upenn_tagset('IN') # Parsing sentence structure text2 = nltk.word_tokenize("Alice loves Bob") grammar = nltk.CFG.fromstring( S -> NP VP VP -> V NP NP -> 'Alice' | 'Bob' V -> 'loves' ) parser = nltk.ChartParser(grammar) trees = parser.parse_all(text2) for tree in trees: print(tree) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Description Step7: 1.4. Land Atmosphere Flux Exchanges Step8: 1.5. Atmospheric Coupling Treatment Step9: 1.6. Land Cover Step10: 1.7. Land Cover Change Step11: 1.8. Tiling Step12: 2. Key Properties --&gt; Conservation Properties Step13: 2.2. Water Step14: 2.3. Carbon Step15: 3. Key Properties --&gt; Timestepping Framework Step16: 3.2. Time Step Step17: 3.3. Timestepping Method Step18: 4. Key Properties --&gt; Software Properties Step19: 4.2. Code Version Step20: 4.3. Code Languages Step21: 5. Grid Step22: 6. Grid --&gt; Horizontal Step23: 6.2. Matches Atmosphere Grid Step24: 7. Grid --&gt; Vertical Step25: 7.2. Total Depth Step26: 8. Soil Step27: 8.2. Heat Water Coupling Step28: 8.3. Number Of Soil layers Step29: 8.4. Prognostic Variables Step30: 9. Soil --&gt; Soil Map Step31: 9.2. Structure Step32: 9.3. Texture Step33: 9.4. Organic Matter Step34: 9.5. Albedo Step35: 9.6. Water Table Step36: 9.7. Continuously Varying Soil Depth Step37: 9.8. Soil Depth Step38: 10. Soil --&gt; Snow Free Albedo Step39: 10.2. Functions Step40: 10.3. Direct Diffuse Step41: 10.4. Number Of Wavelength Bands Step42: 11. Soil --&gt; Hydrology Step43: 11.2. Time Step Step44: 11.3. Tiling Step45: 11.4. Vertical Discretisation Step46: 11.5. Number Of Ground Water Layers Step47: 11.6. Lateral Connectivity Step48: 11.7. Method Step49: 12. Soil --&gt; Hydrology --&gt; Freezing Step50: 12.2. Ice Storage Method Step51: 12.3. Permafrost Step52: 13. Soil --&gt; Hydrology --&gt; Drainage Step53: 13.2. Types Step54: 14. Soil --&gt; Heat Treatment Step55: 14.2. Time Step Step56: 14.3. Tiling Step57: 14.4. Vertical Discretisation Step58: 14.5. Heat Storage Step59: 14.6. Processes Step60: 15. Snow Step61: 15.2. Tiling Step62: 15.3. Number Of Snow Layers Step63: 15.4. Density Step64: 15.5. Water Equivalent Step65: 15.6. Heat Content Step66: 15.7. Temperature Step67: 15.8. Liquid Water Content Step68: 15.9. Snow Cover Fractions Step69: 15.10. Processes Step70: 15.11. Prognostic Variables Step71: 16. Snow --&gt; Snow Albedo Step72: 16.2. Functions Step73: 17. Vegetation Step74: 17.2. Time Step Step75: 17.3. Dynamic Vegetation Step76: 17.4. Tiling Step77: 17.5. Vegetation Representation Step78: 17.6. Vegetation Types Step79: 17.7. Biome Types Step80: 17.8. Vegetation Time Variation Step81: 17.9. Vegetation Map Step82: 17.10. Interception Step83: 17.11. Phenology Step84: 17.12. Phenology Description Step85: 17.13. Leaf Area Index Step86: 17.14. Leaf Area Index Description Step87: 17.15. Biomass Step88: 17.16. Biomass Description Step89: 17.17. Biogeography Step90: 17.18. Biogeography Description Step91: 17.19. Stomatal Resistance Step92: 17.20. Stomatal Resistance Description Step93: 17.21. Prognostic Variables Step94: 18. Energy Balance Step95: 18.2. Tiling Step96: 18.3. Number Of Surface Temperatures Step97: 18.4. Evaporation Step98: 18.5. Processes Step99: 19. Carbon Cycle Step100: 19.2. Tiling Step101: 19.3. Time Step Step102: 19.4. Anthropogenic Carbon Step103: 19.5. Prognostic Variables Step104: 20. Carbon Cycle --&gt; Vegetation Step105: 20.2. Carbon Pools Step106: 20.3. Forest Stand Dynamics Step107: 21. Carbon Cycle --&gt; Vegetation --&gt; Photosynthesis Step108: 22. Carbon Cycle --&gt; Vegetation --&gt; Autotrophic Respiration Step109: 22.2. Growth Respiration Step110: 23. Carbon Cycle --&gt; Vegetation --&gt; Allocation Step111: 23.2. Allocation Bins Step112: 23.3. Allocation Fractions Step113: 24. Carbon Cycle --&gt; Vegetation --&gt; Phenology Step114: 25. Carbon Cycle --&gt; Vegetation --&gt; Mortality Step115: 26. Carbon Cycle --&gt; Litter Step116: 26.2. Carbon Pools Step117: 26.3. Decomposition Step118: 26.4. Method Step119: 27. Carbon Cycle --&gt; Soil Step120: 27.2. Carbon Pools Step121: 27.3. Decomposition Step122: 27.4. Method Step123: 28. Carbon Cycle --&gt; Permafrost Carbon Step124: 28.2. Emitted Greenhouse Gases Step125: 28.3. Decomposition Step126: 28.4. Impact On Soil Properties Step127: 29. Nitrogen Cycle Step128: 29.2. Tiling Step129: 29.3. Time Step Step130: 29.4. Prognostic Variables Step131: 30. River Routing Step132: 30.2. Tiling Step133: 30.3. Time Step Step134: 30.4. Grid Inherited From Land Surface Step135: 30.5. Grid Description Step136: 30.6. Number Of Reservoirs Step137: 30.7. Water Re Evaporation Step138: 30.8. Coupled To Atmosphere Step139: 30.9. Coupled To Land Step140: 30.10. Quantities Exchanged With Atmosphere Step141: 30.11. Basin Flow Direction Map Step142: 30.12. Flooding Step143: 30.13. Prognostic Variables Step144: 31. River Routing --&gt; Oceanic Discharge Step145: 31.2. Quantities Transported Step146: 32. Lakes Step147: 32.2. Coupling With Rivers Step148: 32.3. Time Step Step149: 32.4. Quantities Exchanged With Rivers Step150: 32.5. Vertical Grid Step151: 32.6. Prognostic Variables Step152: 33. Lakes --&gt; Method Step153: 33.2. Albedo Step154: 33.3. Dynamics Step155: 33.4. Dynamic Lake Extent Step156: 33.5. Endorheic Basins Step157: 34. Lakes --&gt; Wetlands
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'inm', 'inm-cm5-h', 'land') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.land_atmosphere_flux_exchanges') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "water" # "energy" # "carbon" # "nitrogen" # "phospherous" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.atmospheric_coupling_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.land_cover') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "bare soil" # "urban" # "lake" # "land ice" # "lake ice" # "vegetated" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.land_cover_change') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.conservation_properties.energy') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.conservation_properties.water') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.conservation_properties.carbon') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.timestepping_framework.timestep_dependent_on_atmosphere') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.timestepping_framework.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.timestepping_framework.timestepping_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.horizontal.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.horizontal.matches_atmosphere_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.vertical.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.vertical.total_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_water_coupling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.number_of_soil layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.structure') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.texture') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.organic_matter') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.water_table') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.continuously_varying_soil_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.soil_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.prognostic') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.functions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "vegetation type" # "soil humidity" # "vegetation state" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.direct_diffuse') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "distinction between direct and diffuse albedo" # "no distinction between direct and diffuse albedo" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.number_of_wavelength_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.vertical_discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.number_of_ground_water_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.lateral_connectivity') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "perfect connectivity" # "Darcian flow" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Bucket" # "Force-restore" # "Choisnel" # "Explicit diffusion" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.freezing.number_of_ground_ice_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.freezing.ice_storage_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.freezing.permafrost') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.drainage.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.drainage.types') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Gravity drainage" # "Horton mechanism" # "topmodel-based" # "Dunne mechanism" # "Lateral subsurface flow" # "Baseflow from groundwater" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.vertical_discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.heat_storage') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Force-restore" # "Explicit diffusion" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "soil moisture freeze-thaw" # "coupling with snow temperature" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.number_of_snow_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.density') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "constant" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.water_equivalent') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.heat_content') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.temperature') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.liquid_water_content') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.snow_cover_fractions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "ground snow fraction" # "vegetation snow fraction" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "snow interception" # "snow melting" # "snow freezing" # "blowing snow" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.snow_albedo.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "prescribed" # "constant" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.snow_albedo.functions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "vegetation type" # "snow age" # "snow density" # "snow grain type" # "aerosol deposition" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.dynamic_vegetation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "vegetation types" # "biome types" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_types') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "broadleaf tree" # "needleleaf tree" # "C3 grass" # "C4 grass" # "vegetated" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biome_types') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "evergreen needleleaf forest" # "evergreen broadleaf forest" # "deciduous needleleaf forest" # "deciduous broadleaf forest" # "mixed forest" # "woodland" # "wooded grassland" # "closed shrubland" # "opne shrubland" # "grassland" # "cropland" # "wetlands" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_time_variation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed (not varying)" # "prescribed (varying from files)" # "dynamical (varying from simulation)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_map') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.interception') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.phenology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic (vegetation map)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.phenology_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.leaf_area_index') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prescribed" # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.leaf_area_index_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biomass') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biomass_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biogeography') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biogeography_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.stomatal_resistance') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "light" # "temperature" # "water availability" # "CO2" # "O3" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.stomatal_resistance_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.number_of_surface_temperatures') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.evaporation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "alpha" # "beta" # "combined" # "Monteith potential evaporation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "transpiration" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.anthropogenic_carbon') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "grand slam protocol" # "residence time" # "decay time" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.number_of_carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.forest_stand_dynamics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.photosynthesis.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.autotrophic_respiration.maintainance_respiration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.autotrophic_respiration.growth_respiration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.allocation.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.allocation.allocation_bins') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "leaves + stems + roots" # "leaves + stems + roots (leafy + woody)" # "leaves + fine roots + coarse roots + stems" # "whole plant (no distinction)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.allocation.allocation_fractions') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "function of vegetation type" # "function of plant allometry" # "explicitly calculated" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.phenology.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.mortality.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.number_of_carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.decomposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.number_of_carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.decomposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.is_permafrost_included') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.emitted_greenhouse_gases') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.decomposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.impact_on_soil_properties') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.grid_inherited_from_land_surface') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.grid_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.number_of_reservoirs') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.water_re_evaporation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "flood plains" # "irrigation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.coupled_to_atmosphere') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.coupled_to_land') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.quantities_exchanged_with_atmosphere') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "heat" # "water" # "tracers" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.basin_flow_direction_map') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "present day" # "adapted for other periods" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.flooding') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.oceanic_discharge.discharge_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "direct (large rivers)" # "diffuse" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.oceanic_discharge.quantities_transported') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "heat" # "water" # "tracers" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.coupling_with_rivers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.quantities_exchanged_with_rivers') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "heat" # "water" # "tracers" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.vertical_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.ice_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.dynamics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "No lake dynamics" # "vertical" # "horizontal" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.dynamic_lake_extent') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.endorheic_basins') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.wetlands.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: If the above cell ran without error, we're ready to go! Step2: Download public 1000 Genomes data Step3: Importing data from VCF Step4: Next we read the written file, assigning the variable mt (for matrix table). Step5: Getting to know our data Step6: Alternatively Step7: Here is how to peek at the first few sample IDs Step8: To look at the first few genotype calls, we can use entries along with select and take. The take method collects the first n rows into a list. Alternatively, we can use the show method, which prints the first n rows to the console in a table format. Step9: Adding column fields Step10: A good way to peek at the structure of a Table is to look at its schema. Step11: To peek at the first few values, use the show method Step12: Now we'll use this table to add sample annotations to our dataset, storing the annotations in column fields in our MatrixTable. First, we'll print the existing column schema Step13: We use the annotate_cols method to join the table with the MatrixTable containing our dataset. Step14: Query functions and the Hail Expression Language Step15: stats is an aggregation function that produces some useful statistics about numeric collections. We can use this to see the distribution of the CaffeineConsumption phenotype. Step16: However, these metrics aren't perfectly representative of the samples in our dataset. Here's why Step17: Since there are fewer samples in our dataset than in the full thousand genomes cohort, we need to look at annotations on the dataset. We can use aggregate_cols to get the metrics for only the samples in our dataset. Step18: The functionality demonstrated in the last few cells isn't anything especially new Step19: We can list the counts in descending order using Python's Counter class. Step20: It's nice to see that we can actually uncover something biological from this small dataset Step21: Quality Control Step22: Plotting the QC metrics is a good place to start. Step23: Often, these metrics are correlated. Step24: Removing outliers from the dataset will generally improve association results. We can make arbitrary cutoffs and use them to filter Step25: Next is genotype QC. It's a good idea to filter out genotypes where the reads aren't where they should be Step26: Variant QC is a bit more of the same Step27: These statistics actually look pretty good Step28: These filters removed about 15% of sites (we started with a bit over 10,000). This is NOT representative of most sequencing datasets! We have already downsampled the full thousand genomes dataset to include more common variants than we'd expect by chance. Step29: Looking at the bottom of the above printout, you can see the linear regression adds new row fields for the beta, standard error, t-statistic, and p-value. Step30: This doesn't look like much of a skyline. Let's check whether our GWAS was well controlled using a Q-Q (quantile-quantile) plot. Step31: Confounded! Step32: Now that we've got principal components per sample, we may as well plot them! Human history exerts a strong effect in genetic datasets. Even with a 50MB sequencing dataset, we can recover the major human populations. Step33: Now we can rerun our linear regression, controlling for sample sex and the first few principal components. We'll do this with input variable the number of alternate alleles as before, and again with input variable the genotype dosage derived from the PL field. Step34: We'll first make a Q-Q plot to assess inflation... Step35: That's more like it! This shape is indicative of a well-controlled (but not especially well-powered) study. And now for the Manhattan plot Step36: We have found a caffeine consumption locus! Now simply apply Hail's Nature paper function to publish the result. Step37: What if we want to group by minor allele frequency bin and hair color, and calculate the mean GQ? Step38: We've shown that it's easy to aggregate by a couple of arbitrary statistics. This specific examples may not provide especially useful pieces of information, but this same pattern can be used to detect effects of rare variation
<ASSISTANT_TASK:> Python Code: import hail as hl hl.init() from hail.plot import show from pprint import pprint hl.plot.output_notebook() hl.utils.get_1kg('data/') hl.import_vcf('data/1kg.vcf.bgz').write('data/1kg.mt', overwrite=True) mt = hl.read_matrix_table('data/1kg.mt') mt.rows().select().show(5) mt.row_key.show(5) mt.s.show(5) mt.entry.take(5) table = (hl.import_table('data/1kg_annotations.txt', impute=True) .key_by('Sample')) table.describe() table.show(width=100) print(mt.col.dtype) mt = mt.annotate_cols(pheno = table[mt.s]) mt.col.describe() pprint(table.aggregate(hl.agg.counter(table.SuperPopulation))) pprint(table.aggregate(hl.agg.stats(table.CaffeineConsumption))) table.count() mt.count_cols() mt.aggregate_cols(hl.agg.counter(mt.pheno.SuperPopulation)) pprint(mt.aggregate_cols(hl.agg.stats(mt.pheno.CaffeineConsumption))) snp_counts = mt.aggregate_rows(hl.agg.counter(hl.Struct(ref=mt.alleles[0], alt=mt.alleles[1]))) pprint(snp_counts) from collections import Counter counts = Counter(snp_counts) counts.most_common() p = hl.plot.histogram(mt.DP, range=(0,30), bins=30, title='DP Histogram', legend='DP') show(p) mt.col.describe() mt = hl.sample_qc(mt) mt.col.describe() p = hl.plot.histogram(mt.sample_qc.call_rate, range=(.88,1), legend='Call Rate') show(p) p = hl.plot.histogram(mt.sample_qc.gq_stats.mean, range=(10,70), legend='Mean Sample GQ') show(p) p = hl.plot.scatter(mt.sample_qc.dp_stats.mean, mt.sample_qc.call_rate, xlabel='Mean DP', ylabel='Call Rate') show(p) mt = mt.filter_cols((mt.sample_qc.dp_stats.mean >= 4) & (mt.sample_qc.call_rate >= 0.97)) print('After filter, %d/284 samples remain.' % mt.count_cols()) ab = mt.AD[1] / hl.sum(mt.AD) filter_condition_ab = ((mt.GT.is_hom_ref() & (ab <= 0.1)) | (mt.GT.is_het() & (ab >= 0.25) & (ab <= 0.75)) | (mt.GT.is_hom_var() & (ab >= 0.9))) fraction_filtered = mt.aggregate_entries(hl.agg.fraction(~filter_condition_ab)) print(f'Filtering {fraction_filtered * 100:.2f}% entries out of downstream analysis.') mt = mt.filter_entries(filter_condition_ab) mt = hl.variant_qc(mt) mt.row.describe() mt = mt.filter_rows(mt.variant_qc.AF[1] > 0.01) mt = mt.filter_rows(mt.variant_qc.p_value_hwe > 1e-6) print('Samples: %d Variants: %d' % (mt.count_cols(), mt.count_rows())) gwas = hl.linear_regression_rows(y=mt.pheno.CaffeineConsumption, x=mt.GT.n_alt_alleles(), covariates=[1.0]) gwas.row.describe() p = hl.plot.manhattan(gwas.p_value) show(p) p = hl.plot.qq(gwas.p_value) show(p) eigenvalues, pcs, _ = hl.hwe_normalized_pca(mt.GT) pprint(eigenvalues) pcs.show(5, width=100) mt = mt.annotate_cols(scores = pcs[mt.s].scores) p = hl.plot.scatter(mt.scores[0], mt.scores[1], label=mt.pheno.SuperPopulation, title='PCA', xlabel='PC1', ylabel='PC2') show(p) gwas = hl.linear_regression_rows( y=mt.pheno.CaffeineConsumption, x=mt.GT.n_alt_alleles(), covariates=[1.0, mt.pheno.isFemale, mt.scores[0], mt.scores[1], mt.scores[2]]) p = hl.plot.qq(gwas.p_value) show(p) p = hl.plot.manhattan(gwas.p_value) show(p) entries = mt.entries() results = (entries.group_by(pop = entries.pheno.SuperPopulation, chromosome = entries.locus.contig) .aggregate(n_het = hl.agg.count_where(entries.GT.is_het()))) results.show() entries = entries.annotate(maf_bin = hl.cond(entries.info.AF[0]<0.01, "< 1%", hl.cond(entries.info.AF[0]<0.05, "1%-5%", ">5%"))) results2 = (entries.group_by(af_bin = entries.maf_bin, purple_hair = entries.pheno.PurpleHair) .aggregate(mean_gq = hl.agg.stats(entries.GQ).mean, mean_dp = hl.agg.stats(entries.DP).mean)) results2.show() table = hl.import_table('data/1kg_annotations.txt', impute=True).key_by('Sample') mt = hl.read_matrix_table('data/1kg.mt') mt = mt.annotate_cols(pheno = table[mt.s]) mt = hl.sample_qc(mt) mt = mt.filter_cols((mt.sample_qc.dp_stats.mean >= 4) & (mt.sample_qc.call_rate >= 0.97)) ab = mt.AD[1] / hl.sum(mt.AD) filter_condition_ab = ((mt.GT.is_hom_ref() & (ab <= 0.1)) | (mt.GT.is_het() & (ab >= 0.25) & (ab <= 0.75)) | (mt.GT.is_hom_var() & (ab >= 0.9))) mt = mt.filter_entries(filter_condition_ab) mt = hl.variant_qc(mt) mt = mt.filter_rows(mt.variant_qc.AF[1] > 0.01) eigenvalues, pcs, _ = hl.hwe_normalized_pca(mt.GT) mt = mt.annotate_cols(scores = pcs[mt.s].scores) gwas = hl.linear_regression_rows( y=mt.pheno.CaffeineConsumption, x=mt.GT.n_alt_alleles(), covariates=[1.0, mt.pheno.isFemale, mt.scores[0], mt.scores[1], mt.scores[2]]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2. Initializing and configuring the MovieLens Environment Step2: 3. Initializing the Agent Step3: 4. Define and link the evaluation metrics Step4: 5. Initialize & configure the Replay Buffer Step5: Now we have a Replay buffer but we also need something to fill it with. Often a common practice is to have Step7: 6. Setup and Train the Model Step8: Now we have all the components ready to start training the model. Here is the process for Training the model Step9: Note Step10: One last task before starting the training Step11: <img src='./assets/example_tensorboard.png'>
<ASSISTANT_TASK:> Python Code: !pip install --quiet --upgrade --force-reinstall tensorflow==2.4 tensorflow_probability==0.12.1 tensorflow-io==0.17.0 --use-feature=2020-resolver !pip install tf_agents==0.7.1 --quiet gast==0.3.3 --upgrade --use-feature=2020-resolver import functools import os from absl import app from absl import flags import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from tf_agents.bandits.agents import dropout_thompson_sampling_agent as dropout_ts_agent from tf_agents.bandits.agents import lin_ucb_agent from tf_agents.bandits.agents import linear_thompson_sampling_agent as lin_ts_agent from tf_agents.bandits.agents import neural_epsilon_greedy_agent as eps_greedy_agent from tf_agents.bandits.agents.examples.v2 import trainer from tf_agents.bandits.environments import environment_utilities #from tf_agents.bandits.environments import movielens_per_arm_py_environment from tf_agents.bandits.environments import movielens_py_environment from tf_agents.metrics import tf_metrics from tf_agents.bandits.metrics import tf_metrics as tf_bandit_metrics from tf_agents.bandits.networks import global_and_arm_feature_network from tf_agents.environments import tf_py_environment from tf_agents.networks import q_network from tf_agents.drivers import dynamic_step_driver from tf_agents.eval import metric_utils from tf_agents.policies import policy_saver from tf_agents.replay_buffers import tf_uniform_replay_buffer from tf_agents.trajectories import time_step as ts # If there are version / incompatibility errors, make sure you restarted the kernel and use !pip freeze in a new cell to check whether the correct TF and tf_agents version had been installed. # Create target Directory if don't exist from datetime import date today = date.today() fdate = date.today().strftime('%d_%m_%Y') root_path = os.getcwd() log_path = "{}/{}".format(root_path, fdate) if not os.path.exists(log_path): os.mkdir(log_path) print("Directory {} Created".format(fdate)) else: print("Directory {} already exists".format(fdate)) print("Full path is {}".format(log_path)) # initialize the movielens pyenvironment with default parameters NUM_ACTIONS = None # take this as 20 RANK_K = None # take rank as 20 BATCH_SIZE = None # take batch size as 8 data_path = "gs://ta-reinforecement-learning/dataset/movielens.data" # specify the path to the movielens.data OR get it from the GCS bucket #TODO: replace the data path if needed env = movielens_py_environment.MovieLensPyEnvironment( data_path, RANK_K, BATCH_SIZE, num_movies=NUM_ACTIONS) environment = tf_py_environment.TFPyEnvironment(env) # Replace these values by reading the above instructions carefully EPSILON = 0 LAYERS = None LR = 0 DROPOUT_RATE = 0 # Initialize the Qnetwork network = q_network.QNetwork( input_tensor_spec=environment.time_step_spec().observation, action_spec=environment.action_spec(), fc_layer_params=LAYERS) # Creating a neuron Epsilon greedy agent with an optimizer, # Epsilon exploration value, learning & dropout rate # Replace all the `None` values with the required values agent = eps_greedy_agent.NeuralEpsilonGreedyAgent( time_step_spec=None,# get the spec/format of the environment action_spec=None, # get the spec/format of the environment reward_network=None, #q network goes here optimizer=None #start w/ adam optimizer with a learning rate of .002 epsilon=EPSILON) # we recommend an exploration of value of 1%) # Making functions for computing optimal reward/action and attaching the env variable to it using partial functions, so it doesnt need to be passed with every invocation optimal_reward_fn = functools.partial( environment_utilities.compute_optimal_reward_with_movielens_environment, environment=environment) optimal_action_fn = functools.partial( environment_utilities.compute_optimal_action_with_movielens_environment, environment=environment) # Initilializing the regret and suboptimal arms metric using the optimal reward and action functions regret_metric = tf_bandit_metrics.RegretMetric(optimal_reward_fn) suboptimal_arms_metric = tf_bandit_metrics.SuboptimalArmsMetric( optimal_action_fn) step_metric = tf_metrics.EnvironmentSteps() metrics = [tf_metrics.NumberOfEpisodes(), #equivalent to number of steps in bandits problem regret_metric, # measures regret suboptimal_arms_metric, # number of times the suboptimal arms are pulled tf_metrics.AverageReturnMetric(batch_size=environment.batch_size) # the average return ] #TODO STEPS_PER_LOOP = None # TFUniformReplayBuffer is the most commonly used replay buffer in TF-Agents. Use 'tf_uniform_replay_buffer.TFUniformReplayBuffer' to create one. buf = None #TODO: setup the replay observer as a list to capture both metrics, step metrics and provide access to the function to load data from the driver into the buffer replay_observer = None driver = dynamic_step_driver.DynamicStepDriver( env=None, policy=None, num_steps=STEPS_PER_LOOP * environment.batch_size, observers=None) AGENT_CHECKPOINT_NAME = 'agent' STEP_CHECKPOINT_NAME = 'step' CHECKPOINT_FILE_PREFIX = 'ckpt' def restore_and_get_checkpoint_manager(root_dir, agent, metrics, step_metric): Restores from `root_dir` and returns a function that writes checkpoints. trackable_objects = {metric.name: metric for metric in metrics} trackable_objects[AGENT_CHECKPOINT_NAME] = agent trackable_objects[STEP_CHECKPOINT_NAME] = step_metric checkpoint = tf.train.Checkpoint(**trackable_objects) checkpoint_manager = tf.train.CheckpointManager(checkpoint=checkpoint, directory=root_dir, max_to_keep=5) latest = checkpoint_manager.latest_checkpoint if latest is not None: print('Restoring checkpoint from %s.', latest) checkpoint.restore(latest) print('Successfully restored to step %s.', step_metric.result()) else: print('Did not find a pre-existing checkpoint. ' 'Starting from scratch.') return checkpoint_manager checkpoint_manager = restore_and_get_checkpoint_manager( log_path, agent, metrics, step_metric) saver = policy_saver.PolicySaver(agent.policy) summary_writer = tf.summary.create_file_writer(log_path) summary_writer.set_as_default() #TODO # Replace `None` with the above given values AGENT_ALPHA = None TRAINING_LOOPS = None ## TRAINING #TOFINISH: define number of training loops and write the training function TRAINING_LOOPS = None # We recommend doing 15k loops import warnings warnings.filterwarnings('ignore') for _ in range(TRAINING_LOOPS): # step 1: We first use the DynamicStepdriver instance to collect experience #(trajectories) from the environment and fill up the replay buffer. # step 2: We then extract all the stored experience from the replay buffer by #specfiying the batch size and num_steps the same as we initialized the driver with. # We extract it as tf.dataset instance. # step 3: We then iterate on the tf.dataset and the first sample we draw #actually has all the data batch_size*num_time_steps # step 4: The agent then trains on the acquired experience train_loss = agent.train(experience).loss # step 5: the replay buffer is cleared to make space for new data # step 6: Log the metrics and store them on disk metric_utils.log_metrics(metrics) for metric in metrics: metric.tf_summaries(train_step=step_metric.result()) # step 7: Save the Agent ( via checkpoints) as well as the policy checkpoint_manager.save() saver.save(os.path.join("./", 'policy_%d' % step_metric.result())) print("tensorboard dev upload --logdir {} --name \"(optional) My latest experiment\" --description \"(optional) Agent trained\"".format(log_path)) import numpy as np feature = np.reshape(environment._observe()[0], (1,20)) feature.shape ## Inference step = ts.TimeStep( tf.constant( ts.StepType.FIRST, dtype=tf.int32, shape=[1], name='step_type'), tf.constant(0.0, dtype=tf.float32, shape=[1], name='reward'), tf.constant(1.0, dtype=tf.float32, shape=[1], name='discount'), tf.constant(feature, dtype=tf.float64, shape=[1, 20], name='observation')) agent.policy.action(step).action.numpy() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create a date index from the date column Step2: resample() Step3: You need to call resample with the rule parameter, then you need to call some sort of aggregation function. This is because due to resampling, we need some sort of mathematical rule to join the rows by (mean,sum,count,etc...) Step5: Custom Resampling
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd %matplotlib inline import matplotlib.pyplot as plt # Grab data # Faster alternative # df = pd.read_csv('time_data/walmart_stock.csv',index_col='Date') df = pd.read_csv('time_data/walmart_stock.csv') df.head() df['Date'] = df['Date'].apply(pd.to_datetime) df.head() df.set_index('Date', inplace = True) df.head() # Our index df.index # Yearly Means df.resample(rule = 'A').mean() def first_day(entry): Returns the first instance of the period, regardless of samplling rate. return entry[0] df.resample(rule = 'A').apply(first_day) df['Close'].resample('A').mean().plot(kind = 'bar') plt.title('Yearly Mean Close Price for Walmart') df['Open'].resample('M').max().plot(kind = 'bar', figsize = (16, 6)) plt.title('Monthly Max Opening Price for Walmart') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step3: 1.2 Training the ML algorithm Step 1 Step6: Step 2 Step9: Step 3 Step12: Step 4 Step13: Excercise
<ASSISTANT_TASK:> Python Code: import csv sentiment_csv = "" def feature_extractor(word): last_l = word[-1] first_l = word[0] return { 'first_letter' : first_l, 'last_letter' : last_l} def main(): i_word = input("Enter the word ").lower() features = feature_extractor(i_word) print(features) main() import csv def feature_extractor(word): Extract the features for a given word and return a dictonary of the features start_letter = word[0] last_letter = word[-1] return {'start_letter' : start_letter,'last_letter' : last_letter} def ML_train(sentiment_corpus): Create feature set from the corpus given to to it. feature_set = [] with open(sentiment_corpus,'rt',encoding = 'utf-8') as sentobj: sentiment_handle = csv.reader(sentobj) for sentiment in sentiment_handle: new_row = [] new_row.append(feature_extractor(sentiment[0])) #get the dictionary of features for a word if int(sentiment[1]) >= 0: # Club the sentiment values (-5 to + 5) to just positive or negative new_row.append('positive') else: new_row.append('negative') feature_set.append(new_row) print(feature_set) def main(): sentiment_csv = "C:/Users/kmpoo/Dropbox/HEC/Teaching/Python for PhD Mar 2018/python4phd/Session 3/Sent/word_sentiment.csv" ML_train(sentiment_csv) main() import csv import random def feature_extractor(word): Extract the features for a given word and return a dictonary of the features start_letter = word[0] last_letter = word[-1] return {'start_letter' : start_letter,'last_letter' : last_letter} def ML_train(sentiment_corpus): Create feature set from the corpus given to to it. Split the feature set into training and testing sets feature_set = [] with open(sentiment_corpus,'rt',encoding = 'utf-8') as sentobj: sentiment_handle = csv.reader(sentobj) for sentiment in sentiment_handle: new_row = [] new_row.append(feature_extractor(sentiment[0])) #get the dictionary of features for a word if int(sentiment[1]) >= 0: # Club the sentiment values (-5 to + 5) to just positive or negative new_row.append('positive') else: new_row.append('negative') feature_set.append(new_row) random.shuffle(feature_set) # We need to shuffle the features since the word_sentiment.csv had words arranged in alphabetical order train_set = feature_set[:1500] #the first 1500 words becomes our training set test_set = feature_set[1500:] print(len(test_set)) def main(): sentiment_csv = "C:/Users/kmpoo/Dropbox/HEC/Teaching/Python for PhD Mar 2018/python4phd/Session 3/Sent/word_sentiment.csv" ML_train(sentiment_csv) main() import csv import random import nltk def feature_extractor(word): Extract the features for a given word and return a dictonary of the features start_letter = word[0] last_letter = word[-1] return {'start_letter' : start_letter,'last_letter' : last_letter} def ML_train(sentiment_corpus): Create feature set from the corpus given to to it. Split the feature set into training and testing sets. Train the classifier using the naive Bayes model and return the classifier. feature_set = [] with open(sentiment_corpus,'rt',encoding = 'utf-8') as sentobj: sentiment_handle = csv.reader(sentobj) for sentiment in sentiment_handle: new_row = [] new_row.append(feature_extractor(sentiment[0])) #get the dictionary of features for a word if int(sentiment[1]) >= 0: # Club the sentiment values (-5 to + 5) to just positive or negative new_row.append('positive') else: new_row.append('negative') feature_set.append(new_row) random.shuffle(feature_set) # We need to shuffle the features since the word_sentiment.csv had words arranged in alphabetical order train_set = feature_set[:1500] #the first 1500 words becomes our training set test_set = feature_set[1500:] classifier = nltk.NaiveBayesClassifier.train(train_set) # Note: to create the classifier we need to provide a dictonary of features and the label ONLY return classifier def main(): sentiment_csv = "C:/Users/kmpoo/Dropbox/HEC/Teaching/Python for PhD Mar 2018/python4phd/Session 3/Sent/word_sentiment.csv" classifier = ML_train(sentiment_csv) input_word = input('Enter a word ').lower() sentiment = classifier.classify(feature_extractor(input_word)) print('Sentiment of word "', input_word,'" is : ',sentiment) main() import csv import random import nltk def feature_extractor(word): Extract the features for a given word and return a dictonary of the features start_letter = word[0] last_letter = word[-1] return {'start_letter' : start_letter,'last_letter' : last_letter} def ML_train(sentiment_corpus): Create feature set from the corpus given to to it. Split the feature set into training and testing sets. Train the classifier using the naive Bayes model and return the classifier. feature_set = [] with open(sentiment_corpus,'rt',encoding = 'utf-8') as sentobj: sentiment_handle = csv.reader(sentobj) for sentiment in sentiment_handle: new_row = [] new_row.append(feature_extractor(sentiment[0])) #get the dictionary of features for a word if int(sentiment[1]) >= 0: # Club the sentiment values (-5 to + 5) to just positive or negative new_row.append('positive') else: new_row.append('negative') feature_set.append(new_row) random.shuffle(feature_set) # We need to shuffle the features since the word_sentiment.csv had words arranged in alphabetical order train_set = feature_set[:1500] #the first 1500 words becomes our training set test_set = feature_set[1500:] classifier = nltk.NaiveBayesClassifier.train(train_set) # Note: to create the classifier we need to provide a dictonary of features and the label ONLY print('Test accuracy of the classifier = ',nltk.classify.accuracy(classifier, test_set)) print(classifier.show_most_informative_features()) return classifier def main(): sentiment_csv = "C:/Users/kmpoo/Dropbox/HEC/Teaching/Python for PhD Mar 2018/python4phd/Session 3/Sent/word_sentiment.csv" classifier = ML_train(sentiment_csv) input_word = input('Enter a word ').lower() sentiment = classifier.classify(feature_extractor(input_word)) print('Sentiment of word "', input_word,'" is : ',sentiment) main() #Enter code here # <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Training data Step2: Network architecture Step3: Connect the layers Step4: Load parameters and build Theano graph Step5: <img src="theano_graph.svg"> Step6: Sampling from the model Step7: Probability of a text Step8: Most likely phrases from a bag of words Step9: Least likely phrases Step10: Morphology Step11: Structure
<ASSISTANT_TASK:> Python Code: # Load training file to get vocabulary text_file = 'biblia.txt' # input file with codecs.open(text_file, 'r', 'utf-8') as f: data = f.read() chars = list(set(data)) vocab_size = len(chars) char_to_ix = {ch: i for i, ch in enumerate(chars)} ix_to_char = {i: ch for i, ch in enumerate(chars)} print "Total number of chars:", len(data) print "Vocabulary size:", vocab_size print data[21000:22000] # Define the model structure embedding_size = 256 # number of hidden units per layer # Input lookup = LookupTable(length=vocab_size, dim=embedding_size) # Layer 1 fork1 = Fork(output_names=['linear1', 'gates1'], input_dim=embedding_size, output_dims=[embedding_size, embedding_size * 2]) fork1.name = 'fork1' grnn1 = GatedRecurrent(dim=embedding_size) grnn1.name = 'grnn1' # Layer 2 fork2 = Fork(output_names=['linear2', 'gates2'], input_dim=embedding_size, output_dims=[embedding_size, embedding_size * 2]) fork2.name = 'fork2' grnn2 = GatedRecurrent(dim=embedding_size) grnn2.name = 'grnn2' # Softmax layer hidden_to_output = Linear(name='hidden_to_output', input_dim=embedding_size, output_dim=vocab_size) softmax = NDimensionalSoftmax() # Propagate x until top brick to get y_hat predictions x = tensor.imatrix('features') # input y = tensor.imatrix('targets') # output embedding = lookup.apply(x) linear1, gates1 = fork1.apply(embedding) h1 = grnn1.apply(linear1, gates1) h1.name = 'h1' linear2, gates2 = fork2.apply(h1) h2 = grnn2.apply(linear2, gates2) h2.name = 'h2' linear3 = hidden_to_output.apply(h2) linear3.name = 'linear3' y_hat = softmax.apply(linear3, extra_ndim=1) y_hat.name = 'y_hat' # COST cost = softmax.categorical_cross_entropy(y, linear3, extra_ndim=1).mean() cost.name = 'cost' model = Model(cost) # Load model parameters from a file with open('grnn_best.tar') as model_file: model_params = model.get_parameter_dict().keys() param_vals = {k:v for k,v in load_parameters(model_file).iteritems() if k in model_params} model.set_parameter_values(param_vals) # Define Theano graph y, x = model.inputs softmax = NDimensionalSoftmax() linear_output = [v for v in model.variables if v.name == 'linear3'][0] y_hat = softmax.apply(linear_output, extra_ndim=1) predict = theano.function([x], y_hat) #theano.printing.pydotprint(predict, outfile="theano_graph.svg", format = 'svg', var_with_name_simple=True) #take activations of last element activations = [h1[-1].flatten(), h2[-1].flatten()] initial_states = [grnn1.parameters[-1], grnn2.parameters[-1]] states_as_params = [tensor.vector(dtype=initial.dtype) for initial in initial_states] #Get prob. distribution of the last element in the last seq of the batch fprop = theano.function([x] + states_as_params, activations + [y_hat[-1, -1, :]], givens=zip(initial_states, states_as_params)) def sample(x_curr, states_values, fprop, temperature=1.0): ''' Propagate x_curr sequence and sample next element according to temperature sampling. Return: sampled element and a list of the hidden activations produced by fprop. ''' activations = fprop(x_curr, *states_values) probs = activations.pop().astype('float64') probs = probs / probs.sum() if numpy.random.binomial(1, temperature) == 1: sample = numpy.random.multinomial(1, probs).nonzero()[0][0] else: sample = probs.argmax() return sample, activations, probs[sample] def init_params(primetext=u''): if not primetext or len(primetext) == 0: primetext = ix_to_char[numpy.random.randint(vocab_size)] primetext = ''.join([ch for ch in primetext if ch in char_to_ix.keys()]) if len(primetext) == 0: raise Exception('primetext characters are not in the vocabulary') x_curr = numpy.expand_dims( numpy.array([char_to_ix[ch] for ch in primetext], dtype='uint8'), axis=1) states_values = [initial.get_value() for initial in initial_states] return x_curr, states_values def stochastic_sampling(length, primetext=u'', temperature=1.0): x_curr, states_values = init_params(primetext) sys.stdout.write('Starting sampling\n' + primetext) for _ in range(length): idx, states_values, probs = sample(x_curr, states_values, fprop, temperature) sys.stdout.write(ix_to_char[idx]) x_curr = [[idx]] sys.stdout.write('\n') def beam_sampling(length, primetext=u'', beam_size=5, temperature=1.0): x_curr, states_values = init_params(primetext) inputs = [x_curr] * beam_size states = [states_values] * beam_size logprobs = numpy.zeros((beam_size, 1)) seqs = numpy.zeros((length+x_curr.shape[0], beam_size)) seqs[0:x_curr.shape[0], :] = numpy.repeat(x_curr, beam_size, axis=1) for k in range(length): probs = numpy.zeros((beam_size,beam_size)) indices = numpy.zeros((beam_size,beam_size), dtype='int32') hstates = numpy.empty((beam_size,beam_size), dtype=list) for i in range(beam_size): for j in range(beam_size): indices[i][j], hstates[i][j], probs[i][j] = sample(inputs[i], states[i], fprop, temperature) probs = numpy.log(probs) + logprobs best_idx = probs.argmax(axis=1) inputs = [[[idx]] for idx in indices[range(beam_size), best_idx]] states = [hs for hs in hstates[range(beam_size), best_idx]] logprobs = probs[range(beam_size), best_idx].reshape((beam_size, 1)) seqs[k +x_curr.shape[0], :] = numpy.array(inputs).flatten() return logprobs.flatten(), numpy.array(seqs).squeeze() logprobs, seqs = beam_sampling(100, primetext=u'blanco ', beam_size = 7, temperature = 1.0) for i in logprobs.flatten().argsort()[::-1]: print 'log P(s) = {0:3.3f}. Sample: '.format(logprobs.flatten()[i]) + u''.join([ix_to_char[ix] for ix in numpy.array(seqs).squeeze()[:,i]]) print '~' * 50 stochastic_sampling(3000, primetext=u'El sentido de la vida es', temperature=0.3) # Function to calculate the probability of a text def log_likelihood(text): text = ''.join([ch for ch in text if ch in char_to_ix]) x_curr = numpy.expand_dims(numpy.array([char_to_ix[ch] for ch in text], dtype='uint8'), axis=1) probs = predict(x_curr).squeeze() return sum([numpy.log(probs[i,c]) for i,c in enumerate(x_curr[1:].flatten())]) log_likelihood("buscad, y hallaréis") log_likelihood("this is a test") from itertools import permutations bow = [' ', 'hombre', 'ama', 'a', 'el'] perms = [' '.join(perm) for perm in permutations(bow)] for p, t in sorted([(-log_likelihood(text),text) for text in perms])[:20]: print p, t perms = [' '.join(perm) for perm in permutations(bow)] for p, t in sorted([(-log_likelihood(text),text) for text in perms])[-20:]: print p, t from itertools import permutations from random import shuffle text = list(u'mnpu') perms = [''.join(perm) for perm in permutations(text)] for p, t in sorted([(-log_likelihood(text),text) for text in perms])[:5]: print p, t print "------------------" for p, t in sorted([(-log_likelihood(text),text) for text in perms])[-5:]: print p, t print stochastic_sampling(400, u"(Lc. ", temperature = 0.1) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: PARA RECORDAR Step2: Usando la función binom de python podemos graficar la función de distribución binomial para este caso. Step3: $\textbf{FIGURA 1.}$ Distribución binomial para el ejemplo. Step4: $\textbf{FIGURA 2.}$ Galaxias en el espacio profundo. Step5: Si decimos que la distribución que se determinó en el paso anterior es una distribución de Poisson (suposición), podemos decir cosas como Step6: Comparemos ahora la distribución obtenida con la correspondiente distribución de Poisson Step7: $\textbf{FIGURA 3.}$ Distribución de Poisson ideal con respecto a la generada por los datos.
<ASSISTANT_TASK:> Python Code: dado = np.array([5, 3, 3, 2, 5, 1, 2, 3, 6, 2, 1, 3, 6, 6, 2, 2, 5, 6, 4, 2, 1, 3, 4, 2, 2, 5, 3, 3, 2, 2, 2, 1, 6, 2, 2, 6, 1, 3, 3, 3, 4, 4, 6, 6, 1, 2, 2, 6, 1, 4, 2, 5, 3, 6, 6, 3, 5, 2, 2, 4, 2, 2, 4, 4, 3, 3, 1, 2, 6, 1, 3, 3, 5, 4, 6, 6, 4, 2, 5, 6, 1, 4, 5, 4, 3, 5, 4, 1, 4, 6, 6, 6, 3, 1, 5, 6, 4, 3, 4, 6, 3, 5, 2, 6, 3, 6, 1, 4, 3, 4, 1]) suma = np.array([8, 5, 6, 5, 8, 4, 12, 4, 11, 6, 4, 6, 7, 6, 4, 3, 8, 8, 4, 6, 8, 12, 3, 8, 5, 7, 9, 9, 7, 6, 4, 8, 6, 3, 7, 6, 9, 12, 6, 11, 5, 9, 8, 5, 10, 12, 4, 11, 7, 10, 8, 8, 9, 7, 7, 5]) prob = 10./36 # probabilidad de sacar una suma inferior a 6 #prob = 6./21 # probabilidad de sacar una suma inferior a 6 #np.where(suma[0:8]<6) mediaS = suma.size*prob # media de la distribución binomial devS = np.sqrt(suma.size*prob*(1.-prob)) # desviación estándar de la distribución binomial real = np.where(suma<6) # where entrega la info en un tuple de una posición donde está el array real = real[0] # extraemos la información del tuple en la posición uno y la guardamos en real duda = 16 # x, número de éxitos cuya probabilidad se quiere conocer Prob = 0 # probabilidad de tener un número de éxitos inferior o igual a duda for cont in range(0,duda): Prob = Prob + (math.factorial(suma.size)/(math.factorial(cont)*math.factorial(suma.size - cont))) \ *prob**cont*(1.-prob)**(suma.size-cont) print('La probabilidad de que la suma sea inferior a 6 es %.2f' % prob) print('Número total de pruebas igual a %d' % suma.size) print('Suma promedio igual a %.1f' %mediaS) print('Desviación estándar de la suma = %.1f' % devS) print('Número de veces que suma menos de 6 en la muestra es %.1f' % real.size) print('La probabilidad de que el número de éxitos en una muestra de %d sea \ inferior o igual a %d, donde el éxito es que la suma sea inferior a 6, es %.4f' %(suma.size,duda,Prob)) n = suma.size p = prob x = np.arange(0,30) histB = stats.binom.pmf(x, n, p) plt.figure(1) plt.rcParams['figure.figsize'] = 20, 6 # para modificar el tamaño de la figura plt.plot(x, histB, 'bo', ms=8, label='Distribucion binomial') plt.xlabel('Numero de exitos') plt.ylabel('Probabilidad') ProbB = np.sum(histB[0:duda]) print('Probabilidad de que en solo %d ocasiones la suma sea inferior a 6 es %.4f' %(duda,ProbB)) Ima = misc.imread('HDF-bw.jpg') # Se lee la imagen como matriz en escala de 8 bit plt.rcParams['figure.figsize'] = 20, 6 # para modificar el tamaño de la figura Imab = Ima[100:500,100:700,1] # La imagen original tenía tres canales (RGB); se elige un canal y se recorta plt.figure(2) plt.imshow(Imab, cmap='gray') plt.rcParams['figure.figsize'] = 18, 15 # para modificar el tamaño de la figura fil, col = Imab.shape # número de filas y columnas de la imagen numlado = 10 # Número de imágenes por lado contar = 1 plt.figure(5) for enfil in range(1,numlado+1): for encol in range(1,numlado+1): plt.subplot(numlado,numlado,contar) plt.imshow(Imab[(enfil-1)*np.int(fil/numlado):enfil*np.int(fil/numlado), \ (encol-1)*np.int(col/numlado):encol*np.int(col/numlado)],cmap='gray') frame1 = plt.gca() frame1.axes.get_yaxis().set_visible(False) frame1.axes.get_xaxis().set_visible(False) contar = contar + 1 # Para el caso de 7x7 imágenes en gal se presentan el número de galaxias contadas gal = np.array([2., 3., 6., 5., 4., 9., 10., \ 2., 3., 7., 1., 3., 1., 6., \ 6., 5., 4., 3., 4., 2., 4., \ 4., 6., 3., 3., 4., 3., 2., \ 5., 4., 2., 2., 6., 5., 9., \ 4., 7., 2., 3., 3., 3., 5., \ 6., 3., 4., 7., 4., 6., 7.]) la = np.mean(gal) # Valor promedio del conjunto de datos # Distribución del conjunto de datos. La primera fila es el número de galaxias, la segunda es el número de veces que # se repite dicho número de galaxias distriGal = np.array([[0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.],[0., 1., 8., 11., 10., 5., 6., 4., 0., 2., 1.]]) print('Valor promedio del conjunto de datos = %.2f' % la) plt.figure(figsize=(16,9)) plt.plot(distriGal[0,:],distriGal[1,:]/gal.size,'r*',ms=10,label='Distribución datos con promedio %.1f' % la) plt.legend() plt.xlabel('Número de galaxias en el intervalo') plt.ylabel('Rata de ocurrencia') plt.grid() num = 2. # Número de galaxias que se espera encontrar prob = (la**num*np.exp(-la)/math.factorial(num))*100 # Probabilidad de encontrar dicho número de galaxias x = np.arange(0,20) # rango de datos: número de galaxias histP = stats.poisson.pmf(x, la) # función de probabilidad de Poisson ProbP = (np.sum(histP[0:int(num)+1]))*100 # Probabilidad acumulada print('Promedio de galaxias en el área estudiada = %.2f' % la) print('La probabilidad de que se observe en la imagen del espacio profundo %d galaxias es = %.1f%%' % (num,prob)) print('Probabilidad de observar hasta %d galaxias = %.1f%%' %(num,ProbP)) plt.figure(figsize=(16,9)) plt.plot(x, histP, 'bo--', ms=8, label='Distribución de Poisson con $\lambda=$ %.1f' % la) plt.plot(distriGal[0,:],distriGal[1,:]/gal.size,'r*--',ms=10,label='Conjunto de datos con promedio %.1f' % la) plt.xlabel('Numero de galaxias (sucesos)') plt.ylabel('Rata de ocurrencia') plt.legend() plt.grid() plt.figure(4) plt.rcParams['figure.figsize'] = 12, 6 # para modificar el tamaño de la figura probP = np.zeros(20) for la in range(1,10,2): for num in range(0,20): probP[num] = la**num*np.exp(-la)/math.factorial(num) plt.plot(probP,marker='.',ms=15,label='$\lambda = %d$' %la) mu = la # media aritmética sigma = np.sqrt(la) # desviación estándar x = np.arange(0,20,1) f = (1./np.sqrt(2*np.pi*sigma**2))*np.exp(-(x-mu)**2/(2*sigma**2)) plt.plot(f,marker='*',ms=10,color='black',label='$ \overline{x} = %d , \ \sigma = %.1f$'%(mu,sigma)) plt.xlabel('Evento') plt.ylabel('Probabilidad') plt.legend() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The <a href="http Step2: We will take some time off now to assign each document to a category, to ease our work later on. Since the two last documents refer to classification we will label them as "Relevant" and the first document as "Not relevant". Since we only have two categories, this makes it a binary problem and we will represent "Relevant" as 1 and "Not relevant" as -1. Step3: We now create our document collection Step4: Now we will create the object responsible for the hashed BoW representation. We are going to specify that we want a hash size of 8 bits, which will be translated to a dimension of size 2^8 = 256 (powers of 2 are considered to speed up computatins) and a tokenizer that creates 5-grams. We will also specify that we want to Step5: And that was it!<br> Step6: We have now created our svm. The parameter C specifies the regularization constant. The best choice for this parameter will usually be selected after a model selection process.<br> Step7: When the execution finishes, we will have learned our so desired linear model! Mind that for large collections the above call can take hours.<br> Step8: We can see that it misclassified the first document. This has to do with the nature of our overly-simplified toy dataset which doesn't provide enough information. However, another option of the HashedDocDotFeatures class will allow us to extract some more information from the same dataset!<br> Step9: If we do not specify these numbers, as we did not do before, then, (you maybe have guessed it!) they are set by default to the following values, n=1, k=0! Step10: Better!<br>
<ASSISTANT_TASK:> Python Code: %matplotlib inline import os SHOGUN_DATA_DIR=os.getenv('SHOGUN_DATA_DIR', '../../../data') from shogun import StringCharFeatures, RAWBYTE, HashedDocDotFeatures, NGramTokenizer doc_1 = "this is the first document" doc_2 = "document classification introduction" doc_3 = "a third document about classification" document_collection = [doc_1, doc_2, doc_3] from shogun import BinaryLabels from numpy import array labels = BinaryLabels(array([-1, 1, 1])) string_features = StringCharFeatures(document_collection, RAWBYTE) hash_size = 8 tokenizer = NGramTokenizer(5) normalize = True hashed_feats = HashedDocDotFeatures(hash_size, string_features, tokenizer, normalize) from shogun import SVMOcas C = 0.1 epsilon = 0.01 svm = SVMOcas(C, hashed_feats, labels) svm.set_epsilon(epsilon) _=svm.train() predicted_labels = svm.apply() print (predicted_labels.get_labels()) k = 3 # number of tokens, up to which we allow it to skip n = 3 # number of tokens, up to which we allow it to combine hashed_feats_quad = HashedDocDotFeatures(hash_size, string_features, tokenizer, normalize, n, k) svm.set_features(hashed_feats_quad) svm.train() predicted_labels = svm.apply() print(predicted_labels.get_labels()) from pylab import * # HashedDocDotFeatures results hashed_training_examples = [5000, 10000, 15000, 20000, 25000, 30000, 50000, 100000] # For C=1 hashed_C_1_sec = [2682.750000,5202.690000,8120.460000,10846.410000,13944.200000,17016.840000,30496.720000,66302.950000] hashed_C_1_roc = [0.980730,0.986382,0.988894,0.990666,0.991602,0.991957,0.993680,0.995184] # For C=0.1 hashed_C_01_sec = [1074.130000,2142.390000,3434.710000,4641.380000,5984.530000,7206.040000,12864.270000,28393.540000] hashed_C_01_roc = [0.976560,0.982660,0.985251,0.987380,0.988368,0.989022,0.990950,0.993197] # Spectrum kernel results kernel_training_examples = [5000, 10000, 15000, 20000, 25000] # For C=1 kernel_C_1_sec = [2912.410000,6543.220000,10840.550000,16108.360000,19899.610000] kernel_C_1_roc = [0.971284,0.976628,0.979715,0.982084,0.984355] # For C=0.1 kernel_C_01_sec = [1441.380000,3261.870000,5071.040000,7568.130000,10436.430000] kernel_C_01_roc = [0.946308,0.955245,0.961576,0.965204,0.968264] figure(figsize=(12,6)) subplot(1,2,1) plot(hashed_training_examples, hashed_C_1_sec, 'b') plot(kernel_training_examples, kernel_C_1_sec, 'r') title("Time comparison for C=1") xlabel("Number of examples") ylabel("Time in seconds") legend(["HashedDocDotFeatures", "Spectrum Kernel"], loc=2) subplot(1,2,2) plot(hashed_training_examples, hashed_C_1_roc, 'b') plot(kernel_training_examples, kernel_C_1_roc, 'r') title("Area under ROC comparison for C=1") xlabel("Number of examples") ylabel("auROC") _=legend(["HashedDocDotFeatures", "Spectrum Kernel"], loc=4) clf figure(figsize=(12,6)) subplot(1,2,1) plot(hashed_training_examples, hashed_C_01_sec, 'b') plot(kernel_training_examples, kernel_C_01_sec, 'r') title("Time comparison for C=0.1") xlabel("Number of examples") ylabel("Time in seconds") ylim((0,70000)) legend(["HashedDocDotFeatures", "Spectrum Kernel"], loc=2) subplot(1,2,2) plot(hashed_training_examples, hashed_C_01_roc, 'b') plot(kernel_training_examples, kernel_C_01_roc, 'r') title("Area under ROC comparison for C=0.1") xlabel("Number of examples") ylabel("auROC") _=legend(["HashedDocDotFeatures", "Spectrum Kernel"], loc=4) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: import pandas as pd df=pd.DataFrame(data=[[1,1,2,5],[1,3,4,1],[4,1,2,5],[5,1,4,9],[1,1,2,5]],columns=['val', 'col1','col2','3col']) def g(df): cols = list(df.filter(like='col')) df['index_original'] = df.groupby(cols)[cols[0]].transform('idxmax') for i in range(len(df)): i = len(df) - 1 - i origin = df.loc[i, 'index_original'] if i <= origin: continue if origin == df.loc[origin, 'index_original']: df.loc[origin, 'index_original'] = i df.loc[i, 'index_original'] = df.loc[origin, 'index_original'] return df[df.duplicated(subset=cols, keep='last')] result = g(df.copy()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Read the RegOnline output into a pandas DataFrame Step2: Extract the Sunday Sessions Step3: Let's create two new columns in our DataFrame Step4: Now loop through the five unique sessions, updating the PrimerID column for each participant Step5: Create an abbreviated code for each session. This will be added to the nametag to spark conversation among participants. Step6: A quick preview of the first few rows to see the result Step7: Extract the Monday Sessions Step8: Extract Tuesday Sessions Step9: Combine the DataFrames Step10: Now create a new DataFrame that is a subset of the newdf with only the columns of interest. Also, make sure the DataFrame is sorted by lastname, the index is reset, and it's a copy of newdf instead of a pointer to newdf. Step11: Now replace all empty cells for "Company" to a very general location Step12: Replace NaNs for PrimerID with the "Not Attending" ID Step13: Check for NaNs in the Monday ID Step14: Replace NaNs for the MonID with the "Not Attending" ID Step15: Replace NaNs for the TueID with the "Not Attending" ID Step16: Test out the wrap-around text for institute for participants that have long institution names. This regular expression will look for institutions (or Companies, as RegOnline refers to them), and find items that have a '/', and if no '/', either a '-', ',', or 'at' in the text. If so, add a newline character to make the text wrap around to the next line. Step17: And test a cell that is long, contains at, but at is part of a longer word Step18: And a quick test on a few more institutions Step19: Now update the full Company column of the DataFrame Step20: Plot Labels
<ASSISTANT_TASK:> Python Code: import re import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.image as mpimg import matplotlib #%matplotlib inline df = pd.read_excel('/Users/matt/projects/EPRV/data/missings2.xls', encoding='utf-8') df.columns df.loc[16:17] #df['AgendaItem'].str.contains('Doppler Primer:') sundf = df[df['AgendaItem'].str.contains('Doppler Primer:')].copy() len(sundf) sundf['PrimerID'] = 0 sundf['Primer'] = [re.search(r'(.*):\s(.*)$', item).group(2) for item in sundf['AgendaItem']] sundf[['AgendaItem', 'Primer']].head(3) sundf['Primer'].unique() dopID = 0 for agItem in sundf['Primer'].unique(): sundf.loc[sundf['Primer'] == agItem, 'PrimerID'] = dopID dopID += 1 sun_ses = ['NA', 'SA', 'IC', 'DC', 'SM'] sundf[['AgendaItem', 'Primer', 'PrimerID']].head(4) mondf = df[df['AgendaItem'].str.contains('Monday Break-out:')].copy() len(mondf) mondf['MonID'] = 0 mondf['Monday'] = [re.search(r'(.*):\s(.*)$', item).group(2) for item in mondf['AgendaItem']] mondf['Monday'].unique() monID = 0 for agItem in mondf['Monday'].unique(): mondf.loc[mondf['Monday'] == agItem, 'MonID'] = monID monID += 1 mondf['Monday'].unique() mon_ses = ['NA', 'FS', 'TC', 'BC', 'FC'] mondf[['AgendaItem', 'Monday', 'MonID']].head(4) tuedf = df[df['AgendaItem'].str.contains('Tuesday Break-out:')].copy() len(tuedf) tuedf['TueID'] = 0 tuedf['Tuesday'] = [re.search(r'(.*):\s(.*)$', item).group(2) for item in tuedf['AgendaItem']] tuedf['Tuesday'].unique() tuesID = 0 for agItem in tuedf['Tuesday'].unique(): tuedf.loc[tuedf['Tuesday'] == agItem, 'TueID'] = tuesID tuesID += 1 tuedf['Tuesday'].unique() tue_ses = ['NA', 'ST', 'DC', 'LB', 'PS'] tuedf[['AgendaItem', 'Tuesday', 'TueID']].head(4) fulldf = df[['RegId', 'GroupId', 'FirstName', 'LastName', 'Company']] print(len(fulldf)) fulldf = fulldf.drop_duplicates() print(len(fulldf)) print(len(sundf)) print(len(mondf)) print(len(tuedf)) fulldf.columns sundf.columns newdf = pd.merge(fulldf, sundf, on=['RegId', 'GroupId', 'FirstName', 'LastName', 'Company'], how='left') print(len(newdf)) newdf = pd.merge(newdf, mondf, on=['RegId', 'GroupId', 'FirstName', 'LastName', 'Company'], how='left') print(len(newdf)) newdf = pd.merge(newdf, tuedf, on=['RegId', 'GroupId', 'FirstName', 'LastName', 'Company'], how='left') print(len(newdf)) newdf.head(5) newdf.columns finaldf = newdf[['FirstName', 'LastName', 'Company', 'Primer', 'PrimerID', 'Monday', 'MonID', 'Tuesday', 'TueID']].sort('LastName').reset_index().copy() finaldf.head(5) len(finaldf) finaldf.columns finaldf.Company = ['Earth' if pd.isnull(company_el) else company_el for company_el in finaldf.Company] finaldf.PrimerID = [4 if pd.isnull(primerid_el) else primerid_el for primerid_el in finaldf.PrimerID] len(finaldf[pd.isnull(finaldf['MonID'])]) finaldf.MonID = [4 if pd.isnull(monid_el) else monid_el for monid_el in finaldf.MonID] len(finaldf[pd.isnull(finaldf['MonID'])]) len(finaldf[pd.isnull(finaldf['TueID'])]) finaldf.TueID = [4 if pd.isnull(tueid_el) else tueid_el for tueid_el in finaldf.TueID] len(finaldf[pd.isnull(finaldf['TueID'])]) p = re.compile ('(/|^(?!.*/).*-|^(?!.*/).*,|^(?!.*/).*\sat\s)') p.subn(r'\1\n', finaldf.loc[2].Company)[0] #p.subn(r'\1\n', finaldf.loc[53].Company)[0] [p.sub(r'\1\n', company_el) if len(company_el) > 30 else company_el for company_el in finaldf.head(5).Company.values] finaldf.Company = [p.sub(r'\1\n', company_el) if len(company_el) > 30 else company_el for company_el in finaldf.Company.values] png = mpimg.imread('/Users/matt/projects/EPRV/images/NameTag2.png') png.shape import matplotlib.font_manager as mfm fontpaths = fontpaths=['/System/Library/Fonts/', '/Library/Fonts', '/Library/Fonts/Microsoft', '/usr/X11/lib/X11/fonts', '/opt/X11/share/fonts', '/Users/matt/Library/Fonts'] blaa = mfm.findSystemFonts(fontpaths=fontpaths) colors = ['#FFE2A9', '#4BA4D8', '#768085', '#BF5338', '#335B8F'] colors2 = ['#335B8F', '#BF5338', '#768085', '#4BA4D8', '#FFE2A9'] colors3 = ['#4BA4D8', '#FFE2A9', '#BF5338', '#768085', '#335B8F'] circ_ypos = 775 name_dict = {'family': 'YaleNew-Roman', 'color': '#D6E8E1', 'weight': 'bold', 'size': 28 } company_dict = {'family': 'YaleNew-Roman', 'color': '#D6E8E1', 'weight': 'bold', 'size': 16 } circle_dict = {'family': 'YaleNew-Roman', 'color': '#1D2523', 'weight': 'normal', 'size': 20 } def change_name_size(name, name_dict): if len(name) < 16: name_dict['size'] = 28 elif ((len(name) >= 16) and (len(name) < 19)): name_dict['size'] = 24 elif ((len(name) >= 19) and (len(name) < 24)): name_dict['size'] = 20 elif ((len(name) >= 24) and (len(name) < 30)): name_dict['size'] = 17 else: name_dict['size'] = 16 return name_dict def change_company_size(company, company_dict): newlines = len(re.findall(r'\n', finaldf.loc[0].Company)) if newlines == 0: if len(company) < 15: company_dict['size'] = 18 elif ((len(company) >= 15) and (len(company) < 30)): company_dict['size'] = 14 elif ((len(company) >= 30) and (len(company) < 40)): company_dict['size'] = 12 elif ((len(company) >= 40) and (len(company) < 50)): company_dict['size'] = 10 else: company_dict['size'] = 8 else: if len(company) < 15: company_dict['size'] = 18 elif ((len(company) >= 15) and (len(company) < 40)): company_dict['size'] = 14 elif ((len(company) >= 40) and (len(company) < 50)): company_dict['size'] = 12 else: company_dict['size'] = 10 return company_dict # The HP Color LaserJet CP4020 offsets things by 1/16th of an inch left-to-right. # This fudge factor should fix that: hrz_fdg = 1. / 16./ 8.5 leftarr = np.array([0.0294, 0.5, 0.0294, 0.5, 0.0294, 0.5]) + hrz_fdg bottomarr = [0.091, 0.091, 0.364, 0.364, 0.637, 0.637] width = 0.4706 height = 0.273 # loop through the total number of pages: for page in range(int(np.ceil((len(finaldf))/6.))): print('Now on page: {}'.format(page)) fig = plt.figure(figsize=(8.5, 11)) for indx in range(6): # add an if statement to handle the last page if there are less than # six participants remaining: if ((page*6 + indx) < len(finaldf)): rect = [leftarr[indx], bottomarr[indx], width, height] ax = fig.add_axes(rect) ax.imshow(png) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) print(u'Now making name tag for: {} {}'.format(finaldf.loc[page*6 + indx].FirstName, finaldf.loc[page*6 + indx].LastName)) #add name text: name = finaldf.loc[page*6 + indx].FirstName + ' ' + finaldf.loc[page*6 + indx].LastName this_name_dict = change_name_size(name, name_dict) ax.text(600, 500, name, fontdict=this_name_dict, horizontalalignment='center') #add company text: company = finaldf.loc[page*6 + indx].Company this_co_dict = change_company_size(company, company_dict) ax.text(600, 625, company, fontdict=this_co_dict, horizontalalignment='center') #add circles for sessions: circ1 = plt.Circle((750, circ_ypos), 70, color=colors[int(finaldf.loc[page*6 + indx].PrimerID)]) fig.gca().add_artist(circ1) ax.text(750, circ_ypos + 27.5, sun_ses[int(finaldf.loc[page*6 + indx].PrimerID)], fontdict=circle_dict, horizontalalignment='center') circ2 = plt.Circle((925, circ_ypos), 70, color=colors2[int(finaldf.loc[page*6 + indx].MonID)]) fig.gca().add_artist(circ2) ax.text(925, circ_ypos + 27.5, mon_ses[int(finaldf.loc[page*6 + indx].MonID)], fontdict=circle_dict, horizontalalignment='center') circ3 = plt.Circle((1100, circ_ypos), 70, color=colors3[int(finaldf.loc[page*6 + indx].TueID)]) fig.gca().add_artist(circ3) ax.text(1100, circ_ypos + 27.5, tue_ses[int(finaldf.loc[page*6 + indx].TueID)], fontdict=circle_dict, horizontalalignment='center') plt.savefig('../nametags/more_missing_nameTags_bold_p'+str(page)+'.png', dpi=300) finaldf.columns finaldf.FirstName.values finaldf.LastName.values hrz_fdg = 1. / 16./ 8.5 leftarr = np.array([0.0294, 0.5, 0.0294, 0.5, 0.0294, 0.5]) leftarr + hrz_fdg <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Probar la visualización con los primeris n vectores Step2: Podemos ver como se puede reconstruir la imagen sin utilizar toda la información de la matriz original,
<ASSISTANT_TASK:> Python Code: ####################################################################### ### Parte 2 import numpy as np import pandas as pd import matplotlib.pyplot as plt from PIL import Image # Importar imagen imagen = Image.open('C:/Users/Data Mining/Documents/ITAM/Propedeutico/Alumnos/PropedeuticoDataScience2017/Alumnos/Leonardo_Marin/black_and_white.jpg') imagen_gris = imagen.convert('LA') ## Convertir a escala de grises ## Convertir la imagen a una matriz imagen_mat = np.array(list(imagen_gris.getdata(band=0)), float) imagen_mat.shape = (imagen_gris.size[1], imagen_gris.size[0]) imagen_mat = np.matrix(imagen_mat) plt.imshow(imagen_mat, cmap='gray') imagen_gris ## Desompoición singular U, sigma, V = np.linalg.svd(imagen_mat) # n= 1 j = 1 matriz_equivalente = np.matrix(U[:, :j]) * np.diag(sigma[:j]) * np.matrix(V[:j, :]) plt.imshow(matriz_equivalente, cmap='gray') # n = 5 j = 5 matriz_equivalente = np.matrix(U[:, :j]) * np.diag(sigma[:j]) * np.matrix(V[:j, :]) plt.imshow(matriz_equivalente, cmap='gray') # n = 25 j = 25 matriz_equivalente = np.matrix(U[:, :j]) * np.diag(sigma[:j]) * np.matrix(V[:j, :]) plt.imshow(matriz_equivalente, cmap='gray') # n = 50 j = 50 matriz_equivalente = np.matrix(U[:, :j]) * np.diag(sigma[:j]) * np.matrix(V[:j, :]) plt.imshow(matriz_equivalente, cmap='gray') A = np.array([[1,0],[1,2]]) A def pseudoinversa(A): U,s,V=np.linalg.svd(A) peudoinversa = V*(np.diag(1/s))*U.T return peudoinversa B = pseudoinversa(A) B <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Dan lezen we lezen de gegevens in Step2: Samenbrengen en voorbereiden van de data Step3: Voor de tentoonstellingen moeten we ook nog inperken op thema, en ook de permanente tentoonstellingen eruit zwieren. Bvendien lopen tentoonstellingen ook gedurende een zekere periode, dus we moeten ook controleren op tentoonstellingen die nog voor 1 januari 2014 beginnen, maar wel nog tijdens 2014 lopen. Idem voor einde van het jaar. Step4: We gaan nu de de organisator omzetten naar een typering. We moeten eerst beginnen met die mapping van organisator naar typering op te bouwen op basis van de gegevens die Simon wist aan te leveren. Step5: Nu voegen we alles mooi samen, selecteren enkel de juiste kolommen, en gooien ook duplicaten op basis van datum, gemeente en tekst eruit. Bovendien hebben we de kolom met speelmomenten ook niet meer nodig. Step6: We kunnen kort inspecteren hoe deze data eruitzien. Step7: We zien dat elke lijn een event beschrijving bevat, de plaats waar een event plaatsvindt, en ook de datum. Merk op dat events die op meerdere dagen plaatsvinden een aparte lijn krijgen. We zullen hiermee rekening houden in de interpretatie van de resultaten. Step8: En hoeveel daarvan hebben geen beschrijving? Step9: Zo, we kunnen deze dataset nu mooi uitschrijven naar een Excel bestand, zodat Simon nog enkele laatste correcties en aanvullingen kan doorvoeren. Step10: Landsvermeldingen Step11: We kunnen voor de volledigheid eventjes een overzicht maken van (organisatoren, discipline). Step12: Voor onze analyse hebben we ook nood aan een lijst van namen van landen, coordinaten voor de plaatsnamen, en ook een manueel gemaakte mapping om de plaatsnamen in de UiTdatabank gegevens te normaliseren. Step13: Laten we even in detail deze tabellen bekijken. De landen Step14: Voor elk land weten we in welk (staatkundig) continent het ligt, en we hebben in de kolom 'Mention' verschillende manieren waarop dat land kan voorkomen in de tekst. Step15: De kolom Gemeente Origineel is de naam van de gemeente in de uitdatabank gegevens, en we kunnen de naam in de kolom Fusiegemeente en Province (English) gebruiken om een genormaliseerd zicht te krijgen. Step16: Hiermee kunnen we voor iedere Fusiegemeente (zie vorige tabel) de latitude en longitude ophalen.
<ASSISTANT_TASK:> Python Code: from pandas import read_excel, read_csv, DataFrame, Series, concat from datetime import datetime from codecs import open from re import compile from json import dumps from datetime import datetime from random import sample from collections import Counter from itertools import combinations df_podium = read_excel("ruwe data/podium.xlsx", sheetname='theaterdans1014') df_bk = read_excel("ruwe data/beeldendekunsten.xlsx", sheetname='UitRapport') df_muziek = read_excel("ruwe data/muziek.xlsx", sheetname='Int nat reg') df_podium["Organisator"] = df_podium["Typologie organisator"] df_podium = df_podium[df_podium["Datum"].between(datetime(2014, 1, 1), datetime(2014, 12, 31))] datumregex = compile(r"\d\d/\d\d/\d\d") df_muziek_expanded = df_muziek.copy() for row in df_muziek_expanded.iterrows(): speelmomenten = row[1]["Speelmomenten"] if str(speelmomenten) != "nan": for speelmoment in datumregex.findall(speelmomenten): speelmoment_dt = datetime(int("20" + speelmoment.split("/")[2]), int(speelmoment.split("/")[1]), int(speelmoment.split("/")[0])) if speelmoment_dt != row[1]["Datum"]: df_muziek_expanded = df_muziek_expanded.append( Series( {"Discipline": row[1]["Discipline"], "Subdiscipline": row[1]["Subdiscipline"], "Tekst": row[1]["Tekst"], "Datum": speelmoment_dt, "Gemeente": row[1]["Gemeente"] }, name=speelmoment_dt.isoformat() + " " + str(row[0]) ) ) df_muziek_expanded = df_muziek_expanded[df_muziek_expanded["Datum"].between(datetime(2014, 1, 1), datetime(2014, 12, 31))] subdisciplines = ["Beeldhouwkunst", "Fotografie", "Grafiek", "Installatiekunst", "Kunst en kunsteducatie", "Meerdere kunstvormen", "Schilderkunst"] df_bk_filtered = df_bk[df_bk["Datum tot"] != datetime(1900, 1, 1)] df_bk_filtered = df_bk_filtered[df_bk_filtered["Subdiscipline"].isin(subdisciplines)] df_bk_filtered = df_bk_filtered[ (df_bk_filtered["Datum van"].between(datetime(2014, 1, 1), datetime(2014, 12, 31))) | (df_bk_filtered["Datum tot"].between(datetime(2014, 1, 1), datetime(2014, 12, 31))) ] df_bk_filtered["Datum"] = df_bk_filtered["Datum van"] df_bk_filtered = df_bk_filtered.drop(["Datum van", "Datum tot"], axis=1) typering = read_excel("extra gegevens/typologie-organisatoren-plat.xlsx") def simplify_key(k): return str(str(k).lower().strip().replace(" ", "").encode("ascii", "replace")).replace("?", "").replace("_", "").replace('"', '').lstrip("b'").rstrip("'").replace('"', '').replace("'", "").replace(".", "").replace(",", "") def map_organisator_naar_typologie_plat(item, mapping): key = simplify_key(item) try: return mapping[mapping["key"] == key]["value"].values[0] except IndexError: onmapbaar.add(key) onmapbaar = set() df_bk_filtered["typering"] = df_bk_filtered["Organisator"].apply(map_organisator_naar_typologie_plat, args=(typering,)) df_muziek_expanded["typering"] = df_muziek_expanded["Organisator"].apply(map_organisator_naar_typologie_plat, args=(typering,)) df_podium["typering"] = df_podium["Organisator"].apply(map_organisator_naar_typologie_plat, args=(typering,)) df_muziek_expanded_clean = df_muziek_expanded.drop("Speelmomenten", axis=1) df_podium_clean = df_podium.drop("Typologie organisator", axis=1) df = concat([df_podium_clean, df_bk_filtered, df_muziek_expanded_clean]) df.drop_duplicates(subset=["Datum", "Titel", "Discipline", "Subdiscipline", "Gemeente", "Tekst"], inplace=True) df.drop(["Titel", "Organisator"], axis=1, inplace=True) df.head() df["Discipline"].value_counts() print("podium", len(df[(df["Tekst"].str.strip() == "") & (df["Discipline"] == "podium")]["Tekst"]), "concert", len(df[(df["Tekst"].str.strip() == "") & (df["Discipline"] == "Concert")]["Tekst"]), "beeldend", len(df[(df["Tekst"].str.strip() == "") & (df["Discipline"] == "Tentoonstelling")]["Tekst"])) def encode(item): return item.replace("\x08", "") df["Tekst"] = df["Tekst"].apply(encode) df.to_excel("samengevoegde data/df.xlsx") df = read_excel("samengevoegde data/df.xlsx") df.groupby(["typering", "Discipline"]).size() typering = read_csv("extra gegevens/mapping_udb-gemeente_fusie-gemeente.csv", delimiter=';') coord = read_csv("extra gegevens/coordinaten.csv", delimiter=';') landen = read_excel("extra gegevens/landen.xlsx", sheetname="uitgebreide lijst 2014") landen.head() typering.tail() coord.head() niet_vlaams = ["Jodoigne", "Tournai", "Escanaffles", "Houffalize", "Haulchin", "Braine l'Alleud", "Tourinnes-la-Grosse", "Liège", "Marchienne-au-Pont", "Eupen", "Lessines", "Charleroi"] count = 1 kwic = [] aantal_treffers = 0 for row in df.iterrows(): if count % 5000 == 0: print(count, "of", len(df.index)) count += 1 tekst = row[1]["Tekst"] gemeente = row[1]["Gemeente"] organisatie = row[1]["typering"] if str(gemeente) != "nan" and str(gemeente) not in niet_vlaams: for land in set(landen["Land"].values): regex = compile(r"\b(" + r"|".join(landen[landen["Land"] == land]["Mention"]) + r")\b") matches = regex.finditer(str(tekst)) for match in matches: aantal_treffers += 1 typeringlijn = typering[typering["Gemeente Origineel"] == gemeente] fusiegemeente = typeringlijn["Fusiegemeente"].values[0] provincie = typeringlijn["Province (English)"].values[0] continent = landen[landen["Land"] == land]["Continent (staatkundig)"].values[0] discipline = row[1]["Discipline"] subdiscipline = row[1]["Subdiscipline"] uid = count kwic_lijn = [uid, tekst[:match.start()], tekst[match.start():match.end()], tekst[match.end():], gemeente, land, discipline, subdiscipline] kwic.append(kwic_lijn) DataFrame(kwic, columns=["uid", "left context", "keyword", "right context", "gemeente", "land", "discipline", "subdiscipline"]).to_excel("kwic.xlsx") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load and check data Step2: ## Analysis Step3: Does improved weight pruning outperforms regular SET Step4: No significant difference between the two approaches
<ASSISTANT_TASK:> Python Code: %load_ext autoreload %autoreload 2 from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import glob import tabulate import pprint import click import numpy as np import pandas as pd from ray.tune.commands import * from nupic.research.frameworks.dynamic_sparse.common.browser import * exps = ['improved_magpruning_eval1', ] paths = [os.path.expanduser("~/nta/results/{}".format(e)) for e in exps] df = load_many(paths) df.head(5) # replace hebbian prine df['hebbian_prune_perc'] = df['hebbian_prune_perc'].replace(np.nan, 0.0, regex=True) df['weight_prune_perc'] = df['weight_prune_perc'].replace(np.nan, 0.0, regex=True) df.columns df.shape df.iloc[1] df.groupby('model')['model'].count() # Did any trials failed? df[df["epochs"]<30]["epochs"].count() # Removing failed or incomplete trials df_origin = df.copy() df = df_origin[df_origin["epochs"]>=30] df.shape # which ones failed? # failed, or still ongoing? df_origin['failed'] = df_origin["epochs"]<30 df_origin[df_origin['failed']]['epochs'] # helper functions def mean_and_std(s): return "{:.3f} ± {:.3f}".format(s.mean(), s.std()) def round_mean(s): return "{:.0f}".format(round(s.mean())) stats = ['min', 'max', 'mean', 'std'] def agg(columns, filter=None, round=3): if filter is None: return (df.groupby(columns) .agg({'val_acc_max_epoch': round_mean, 'val_acc_max': stats, 'model': ['count']})).round(round) else: return (df[filter].groupby(columns) .agg({'val_acc_max_epoch': round_mean, 'val_acc_max': stats, 'model': ['count']})).round(round) agg(['model']) agg(['on_perc', 'model']) agg(['weight_prune_perc', 'model']) agg(['on_perc', 'pruning_early_stop', 'model']) agg(['on_perc', 'pruning_early_stop', 'model']) agg(['pruning_early_stop']) agg(['model', 'pruning_early_stop']) agg(['on_perc', 'pruning_early_stop']) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: classes buyers and sellers Step2: Construct the market Step3: Observer Step4: Example Market Step5: run the model Step6: Operations Research Formulation Step7: Time of last run
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import random as rnd import pandas as pd import numpy as np import time import datetime import calendar # fix what is missing with the datetime/time/calendar package def add_months(sourcedate,months): month = sourcedate.month - 1 + months year = int(sourcedate.year + month / 12 ) month = month % 12 + 1 day = min(sourcedate.day,calendar.monthrange(year, month)[1]) return datetime.date(year,month,day) # measure how long it takes to run the script startit = time.time() dtstartit = datetime.datetime.now() class Seller(): def __init__(self, name): self.name = name self.wta = [] self.step = 0 self.prod = 2000 self.lb_price = 10 self.ub_price = 20 self.reserve = 500000 #multiple market idea, also ga away from market self.subscr_market = {} # the supplier has n quantities that they can sell # they may be willing to sell this quantity anywhere from a lower price of l # to a higher price of u def set_quantity(self): n = self.prod l = self.lb_price u = self.ub_price wta = [] for i in range(n): p = rnd.uniform(l, u) wta.append(p) self.wta = wta def get_name(self): return self.name def get_asks(self): return self.wta def clear_wta(self): self.wta = [] def extract(self, cur_extraction): if self.reserve > 0: self.reserve = self.reserve - cur_extraction else: self.prod = 0 class Buyer(): def __init__(self, name): self.name = name self.wtp = [] self.step = 0 self.base_demand = 0 self.max_demand = 0 self.lb_price = 10 self.ub_price = 20 # the supplier has n quantities that they can buy # they may be willing to sell this quantity anywhere from a lower price of l # to a higher price of u def set_quantity(self): n = int(self.consumption(self.step)) l = self.lb_price u = self.ub_price wtp = [] for i in range(n): p = rnd.uniform(l, u) wtp.append(p) self.wtp = wtp # gets a little to obvious def get_name(self): return self.name # return list of willingness to pay def get_bids(self): return self.wtp # is this neccesary? def clear_wtp(self): self.wtp = [] def consumption(self, x): # make it initialise to seller b = self.base_demand m = self.max_demand y = b + m * (.5 * (1 + np.cos((x/6)*np.pi))) return(y) # the book is an object of the market used for the clearing procedure class Book(): def __init__(self): self.ledger = pd.DataFrame(columns = ("role","name","price","cleared")) def set_asks(self,seller_list): # ask each seller their name # ask each seller their willingness # for each willingness append the data frame for seller in seller_list: seller_name = seller.get_name() seller_price = seller.get_asks() for price in seller_price: self.ledger=self.ledger.append({"role":"seller","name":seller_name,"price":price,"cleared":"in process"}, ignore_index=True) def set_bids(self,buyer_list): # ask each seller their name # ask each seller their willingness # for each willingness append the data frame for buyer in buyer_list: buyer_name = buyer.get_name() buyer_price = buyer.get_bids() for price in buyer_price: self.ledger=self.ledger.append({"role":"buyer","name":buyer_name,"price":price,"cleared":"in process"}, ignore_index=True) def update_ledger(self,ledger): self.ledger = ledger def get_ledger(self): return self.ledger def clean_ledger(self): self.ledger = pd.DataFrame(columns = ("role","name","price","cleared")) class Market(): def __init__(self): self.count = 0 self.last_price = '' self.book = Book() self.b = [] self.s = [] self.buyer_list = [] self.seller_list = [] self.buyer_dict = {} self.seller_dict = {} self.ledger = '' def update_seller(self): for i in self.seller_dict: self.seller_dict[i].step += 1 self.seller_dict[i].set_quantity() def update_buyer(self): for i in self.buyer_dict: self.buyer_dict[i].step += 1 self.buyer_dict[i].set_quantity() def add_buyer(self,buyer): self.b.append(buyer) self.buyer_list.append(buyer) def add_seller(self,seller): self.s.append(seller) self.seller_list.append(seller) def set_book(self): self.book.set_bids(self.buyer_list) self.book.set_asks(self.seller_list) def get_ledger(self): self.ledger = self.book.get_ledger() return self.ledger def get_bids(self): # this is a data frame ledger = self.book.get_ledger() rows= ledger.loc[ledger['role'] == 'buyer'] # this is a series prices=rows['price'] # this is a list bids = prices.tolist() return bids def get_asks(self): # this is a data frame ledger = self.book.get_ledger() rows = ledger.loc[ledger['role'] == 'seller'] # this is a series prices=rows['price'] # this is a list asks = prices.tolist() return asks # return the price at which the market clears # this fails because there are more buyers then sellers def get_clearing_price(self): # buyer makes a bid starting with the buyer which wants it most b = self.get_bids() s = self.get_asks() # highest to lowest self.b=sorted(b, reverse=True) # lowest to highest self.s=sorted(s, reverse=False) # find out whether there are more buyers or sellers # then drop the excess buyers or sellers; they won't compete n = len(b) m = len(s) # there are more sellers than buyers # drop off the highest priced sellers if (m > n): s = s[0:n] matcher = n # There are more buyers than sellers # drop off the lowest bidding buyers else: b = b[0:m] matcher = m # It's possible that not all items sold actually clear the market here count = 0 for i in range(matcher): if (self.b[i] > self.s[i]): count +=1 self.last_price = self.b[i] # copy count to market self.count = count return self.last_price # TODO: Annotate the ledger def annotate_ledger(self,clearing_price): ledger = self.book.get_ledger() for index, row in ledger.iterrows(): if (row['role'] == 'seller'): if (row['price'] < clearing_price): ledger.loc[index,'cleared'] = 'True' else: ledger.loc[index,'cleared'] = 'False' else: if (row['price'] > clearing_price): ledger.loc[index,'cleared'] = 'True' else: ledger.loc[index,'cleared'] = 'False' self.book.update_ledger(ledger) def get_units_cleared(self): return self.count def clean_ledger(self): self.ledger = '' self.book.clean_ledger() def run_it(self): self.pre_clearing_operation() self.clearing_operation() self.after_clearing_operation() #pre clearing empty out the last run and start # clean ledger is kind of sloppy, rewrite functions to overide the ledger def pre_clearing_operation(self): self.clean_ledger() self.update_buyer() self.update_seller() def clearing_operation(self): self.set_book() clearing_price = self.get_clearing_price() self.annotate_ledger(clearing_price) def after_clearing_operation(self): for i in self.seller_dict: name = self.seller_dict[i].name cur_extract = len(self.book.ledger[(self.book.ledger.cleared == 'True') & (self.book.ledger.name == name)]) self.seller_dict[i].extract(cur_extract) class Observer(): def __init__(self, x, y, z): self.init_buyer = x self.init_seller = y self.maxrun = z self.hist_book = [] self.buyer_dict = {} self.seller_dict = {} self.timetick = 0 self.gas_market = '' self.reserve = [] def set_buyer(self, buyer_info): for name in buyerinfo: self.buyer_dict[name] = Buyer('%s' % name) self.buyer_dict[name].base_demand = buyer_info[name]['b'] self.buyer_dict[name].max_demand = buyer_info[name]['m'] def set_seller(self, seller_info): for name in seller_info: self.seller_dict[name] = Seller('%s' % name) self.seller_dict[name].prod = seller_info[name][0] def get_reserve(self): reserve = [] for name in self.seller_dict: reserve.append(self.seller_dict[name].reserve) return reserve def set_market(self): self.gas_market = Market() #add suplliers and buyers to this market for supplier in self.seller_dict.values(): self.gas_market.add_seller(supplier) for buyer in self.buyer_dict.values(): self.gas_market.add_buyer(buyer) self.gas_market.seller_dict = self.seller_dict self.gas_market.buyer_dict = self.buyer_dict def run_it(self): # Timing # time initialising startit_init = time.time() #initialise, setting up all the agents first_run = True if first_run: self.set_buyer(self.init_buyer) self.set_seller(self.init_seller) self.set_market() first_run=False # time init stop stopit_init = time.time() - startit_init print('%s : init' % stopit_init) for period in range(self.maxrun): # time the period startit_period = time.time() self.timetick += 1 print('#######################################') period_now = add_months(period_null, self.timetick-1) print(period_now.strftime('%Y-%b')) # real action on the market self.gas_market.run_it() # data collection p_clearing = self.gas_market.last_price q_sold = self.gas_market.count self.reserve.append([period_now.strftime('%Y-%b'),*self.get_reserve()]) # recording the step_info # since this operation can take quite a while, print after every operation period_time = time.time() - startit_period print('%s : period time' % period_time) self.hist_book.append([period_now.strftime('%Y-%b'), p_clearing, q_sold]) # Show some real consumption data, for more data see folder data analytics #read montly consumption data of 2010 into a dataframe df = pd.read_csv('2010cbstestrun.csv', header=0, index_col=0) df = df.transpose() #plot the 2010 monthly consumption data df.plot(); df # make initialization dictionary init_buyer = {'elec':{'b':400, 'm' : 673}, 'indu':{'b':400, 'm':1171}, 'home':{'b': 603, 'm': 3615}} init_seller = {'netherlands' : (2000, 0, 10), 'Russia' : (2000, 0, 10)} # make a history book to record every timestep hist_book = [] # set the starting time period_null= datetime.date(2010,1,1) # create observer and run the model # first data about buyers then sellers and then model ticks years = 1 timestep = 12 obser1 = Observer(init_buyer, init_seller, years*timestep) obser1.run_it() #get the info from the observer hist_book = obser1.hist_book # recording the total run def write_to_csv(hist_book): f = open('hist_book.csv', 'a') for item in hist_book: f.write('%s,%s\n' % (item[0], item[1])) f.close() #write_to_csv(hist_book) # make a dataframe of clearing prices df_hb = pd.DataFrame(hist_book) df_hb = df_hb.set_index(0) df_hb.index.name = 'month' df_hb.rename(columns={1: 'price', 2: 'quantity'}, inplace=True) # timeit stopit = time.time() dtstopit = datetime.datetime.now() print('it took us %s seconds to get to this conclusion' % (stopit-startit)) print('in another notation (h:m:s) %s'% (dtstopit - dtstartit)) # print the run results price = df_hb['price'] fig = price.plot() plt.ylabel('€ / unit') plt.show() quantity = df_hb['quantity'] fig = quantity.plot() plt.ylabel('quantity') plt.show() # print the time of last run print('last run of this notebook:') time.strftime("%a, %d %b %Y %H:%M:%S", time.localtime()) #df_hb df_res = pd.DataFrame(obser1.reserve, columns=['time', *[i for i in init_seller]]) df_res = df_res.set_index('time') df_res.plot(); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code:: from keras.models import Sequential from keras.layers import Dense from sklearn.datasets import make_blobs from sklearn.preprocessing import MinMaxScaler from numpy import array X, y = make_blobs(n_samples=100, centers=2, n_features=2, random_state=1) scalar = MinMaxScaler() scalar.fit(X) X = scalar.transform(X) model = Sequential() model.add(Dense(4, input_shape=(2,), activation='relu')) model.add(Dense(4, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam') model.fit(X, y, epochs=500, verbose=0) Xnew = array([[0.89337759, 0.65864154]]) ynew = model.predict_classes(Xnew) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: def getSum(n , d ) : sum = 0 ; for i in range(n + 1 ) : if(i % 10 == d ) : sum += i   return sum  if __name__== "__main __": n , d = 30 , 3 print(getSum(n , d ) )  <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Test N2 case Step2: Reference results from GetCro Step3: Test LF calculations (CG version) Step4: With sym summation
<ASSISTANT_TASK:> Python Code: # Imports import numpy as np import pandas as pd import xarray as xr # Special functions # from scipy.special import sph_harm import spherical_functions as sf import quaternion # Performance & benchmarking libraries # from joblib import Memory # import xyzpy as xyz import numba as nb # Timings with ttictoc or time # https://github.com/hector-sab/ttictoc # from ttictoc import TicToc import time # Package fns. # For module testing, include path to module here import sys import os if sys.platform == "win32": modPath = r'D:\code\github\ePSproc' # Win test machine else: modPath = r'/home/femtolab/github/ePSproc/' # Linux test machine sys.path.append(modPath) import epsproc as ep # TODO: tidy this up! from epsproc.util import matEleSelector from epsproc.geomFunc import geomCalc, geomUtils from epsproc.geomFunc.lfblmGeom import lfblmXprod # Load data from modPath\data dataPath = os.path.join(modPath, 'data', 'photoionization') dataFile = os.path.join(dataPath, 'n2_3sg_0.1-50.1eV_A2.inp.out') # Set for sample N2 data for testing # Scan data file dataSet = ep.readMatEle(fileIn = dataFile) dataXS = ep.readMatEle(fileIn = dataFile, recordType = 'CrossSection') # XS info currently not set in NO2 sample file. # Plot cross sections using Xarray functionality dataXS[0].sel({'Type':'L', 'XC':'SIGMA'}).plot.line(x='Eke'); # Plot B2 dataXS[0].sel({'Type':'L', 'XC':'BETA'}).plot.line(x='Eke'); # Set parameters SFflag = False # Multiply matrix elements by SF? symSum = False # Sum over symmetries? phaseConvention = 'S' thres = 1e-2 selDims = {'it':1, 'Type':'L'} thresDims = 'Eke' # Set terms for testing - NOTE ORDERING HERE may affect CG term!!! dlistMatE = ['lp', 'l', 'L', 'mp', 'm', 'M'] # Match published terms dlistP = ['p1', 'p2', 'L', 'mup', 'mu', 'M'] # dlistMatE = ['l', 'lp', 'L', 'm', 'mp', 'M'] # Standard terms # dlistP = ['p1', 'p2', 'L', 'mu', 'mup', 'M'] # Set matrix elements matE = dataSet[0].copy() # Calculate betas BetaNormXS, BetaNorm, BetaRaw, XSmatE = lfblmXprod(matE, symSum = symSum, SFflag = SFflag, thres = thres, thresDims = thresDims, selDims = selDims, phaseConvention = phaseConvention, dlistMatE = dlistMatE, dlistP = dlistP) # Here BetaNormXS includes the correct normalisation term as per the original formalism, and XSmatE is the sum of the squared matrix elements, as used for the normalisation (== cross section without correct scaling). plotThres = None ep.util.matEleSelector(XSmatE, thres = plotThres, dims='Eke', sq=True, drop=True).real.plot.line(x='Eke', col='Sym'); ep.util.matEleSelector(BetaNormXS, thres = plotThres, dims='Eke', sq=True, drop=True).real.plot.line(x='Eke', col='Sym'); # Summing over M gives the final LF terms, as defined above. # The B0 term (==cross section) is not correctly scaled here. # The B2 term matches the GetCro reference results. ep.util.matEleSelector(BetaNormXS.unstack('LM').sum('M'), thres = plotThres, dims='Eke', sq=True, drop=True).real.plot.line(x='Eke', col='Sym'); # Set parameters SFflag = False # Multiply matrix elements by SF? symSum = True # Sum over symmetries? phaseConvention = 'S' thres = 1e-2 selDims = {'it':1, 'Type':'L'} thresDims = 'Eke' # Set terms for testing - NOTE ORDERING HERE may affect CG term!!! dlistMatE = ['lp', 'l', 'L', 'mp', 'm', 'M'] # Match published terms dlistP = ['p1', 'p2', 'L', 'mup', 'mu', 'M'] # dlistMatE = ['l', 'lp', 'L', 'm', 'mp', 'M'] # Standard terms # dlistP = ['p1', 'p2', 'L', 'mu', 'mup', 'M'] # Set matrix elements matE = dataSet[0].copy() # Calculate betas BetaNormXS, BetaNorm, BetaRaw, XSmatE = lfblmXprod(matE, symSum = symSum, SFflag = SFflag, thres = thres, thresDims = thresDims, selDims = selDims, phaseConvention = phaseConvention, dlistMatE = dlistMatE, dlistP = dlistP) # Here BetaNormXS includes the correct normalisation term as per the original formalism, and XSmatE is the sum of the squared matrix elements, as used for the normalisation (== cross section without correct scaling). plotThres = None ep.util.matEleSelector(XSmatE, thres = plotThres, dims='Eke', sq=True, drop=True).real.plot.line(x='Eke'); ep.util.matEleSelector(BetaNormXS, thres = plotThres, dims='Eke', sq=True, drop=True).real.plot.line(x='Eke'); # Summing over M gives the final LF terms, as defined above. # The B0 term (==cross section) is not correctly scaled here. # The B2 term matches the GetCro reference results. ep.util.matEleSelector(BetaNormXS.unstack('LM').sum('M'), thres = plotThres, dims='Eke', sq=True, drop=True).real.plot.line(x='Eke'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Overview Step2: Setup KFP Host Step3: Setup Google Cloud Project Step4: Setup Google Cloud Credentials Step5: Upload your service account file (colab specific code block) Step6: Setup your local runtime enviorment Step7: Enable the below Google Cloud Services for the solution Step9: Adjust other varables Step12: Reset the local context for local development if needed Step13: Instantiate the KFP Client Step15: Create Google Cloud Storage bucket and folder - function Step16: Test locally create_gcs_bucket_folder Step18: Create BigQuery dataset - function Step19: Test locally create_bq_ds Step22: Load the data to BigQuery - function Step23: Test locally load_bq_ds Step27: Create the BigQuery ML model - function Step28: Test locally create_bq_ml Step33: Evaluate the BigQuery ML model - function Step34: Test locally evaluate_ml_model Step37: Prepare dataset for batch prediction with BigQuery ML - function Step38: Test locally create batch prediction dataset Step41: Make batch prediction - function Step42: Test locally batch prediction Step44: Determine the new revision of the model - function Step45: Test locally get_bqml_model_version Step49: Export the BigQuery ML model to the Google Cloud Storage bucket - function Step50: Test locally export_bqml_model_to_gcs Step53: Deploy the ML model - function Step54: Test locally deploy_ml_model_online_pred Step58: Make online prediction - function Step59: Test locally predict_online_ml_model Step62: Define the KubeFlow Pipeline (KFP) Step64: Compile, watch out for errors in the pipeline composition Step66: Create an experiment and run the pipeline immediately Step67: If there is error in the pipeline, you will see that in the KubeFlow Pipelines UI in the Experiments section. If you encounter any errors, identify the issue, fix it in the Python function, unit test the function, update the pipeline defintion, compile, create an experiment, and run the experiment. Iterate through the process until you successfully run a pipeline. Step69: The utilities method in the section below provides convinient way to delete the Google Cloud resources. You can use the methods while developing your pipeline components. Step71: Delete Google Cloud Storage folder Step73: Delete Google Cloud Storage bucket Step75: Delete the table in BigQuery Step77: Delete the dataset in BigQuery Step79: Delete the Google Cloud Storage folders which contains exported model artifacts Step81: Delete the Cloud AI Platform Prediction models
<ASSISTANT_TASK:> Python Code: # Copyright 2020 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. !pip install google-cloud-storage #for Storage Account !pip install google-cloud #for cloud sdk !pip install google-cloud-bigquery #for BigQuery !pip install google-cloud-bigquery-storage #for BigQuery Storage client !pip install kfp # Install the KFP AI SDK RPM_GCP_KFP_HOST = "<Your KFP pipeline host>" # set the Google Cloud project id RPM_GCP_PROJECT = "<Your Google Cloud project>" #for local !bash # download the ServiceAccount key and provide the path to the file below RPM_GCP_APPLICATION_CREDENTIALS = "<Full path with the file name to the above downloaded json file>" # uncomment the below code in codelab environment # from google.colab import files # # Upload service account key # keyfile_upload = files.upload() # RPM_GCP_APPLICATION_CREDENTIALS = list(keyfile_upload.keys())[0] !export RPM_GCP_PROJECT !echo $RPM_GCP_PROJECT # et the desired Google Cloud project !gcloud config set project $RPM_GCP_PROJECT # alidate that the Google Cloud project has been set properly. !gcloud info --format='value(config.project)' import os os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = RPM_GCP_APPLICATION_CREDENTIALS # set the account !gcloud auth activate-service-account --key-file=$RPM_GCP_APPLICATION_CREDENTIALS # set the proper Permission for the required Google Cloud Services !gcloud services enable \ storage-component.googleapis.com \ bigquery.googleapis.com \ ml.googleapis.com \ notebooks.googleapis.com # validate that all desired Permission have been set properl. !gcloud services list | grep 'storage-component.googleapis.com\|bigquery.googleapis.com\|ml.googleapis.com\|notebooks.googleapis.com' # load_params import json def load_params(): The variables are used in the pipeline. Provide appropriate variables for your environments Set apppriate variables with the pattern RPM_* (these are IMMUTABLE variables those acts as default) You could print all the variables used in your environment (e.g. local environment) which starts with RPM_* or rpm_* (comes handy while troubleshooting) Returns: dict: all python variables used in the pipeline return { 'RPM_GCP_PROJECT': RPM_GCP_PROJECT, 'RPM_LOCATION': 'us-central1-b', # KFP/K8s cluster zone 'RPM_PVC_DATASET_FOLDER_NAME': 'rpm_ds', 'RPM_PVC_NAME': 'rpm-vol', # create the bucket if it don't exists 'RPM_GCP_STORAGE_BUCKET': '', # create the folder if it don't exists 'RPM_GCP_STORAGE_BUCKET_FOLDER': '', 'RPM_DEFAULT_BUCKET_EXT': '_retail_propensity_model_assets', 'RPM_DEFAULT_BUCKET_FOLDER_NAME': 'rpm_data_set', 'RPM_BQ_DATASET_NAME': '', # create the dataset if it don't exists 'RPM_BQ_TABLE_NAME': '', 'RPM_DEFAULT_BQ_TABLE_NAME_EXT': '_tbl', 'RPM_DEFAULT_DATA_SET_NAME_EXT': '_rpm_data_set', 'RPM_MODEL_NAME': '', 'RPM_DEFAULT_MODEL_NAME': 'rpm_bqml_model', 'RPM_MODEL_EXPORT_PATH': '', 'RPM_DEFAULT_MODEL_EXPORT_PATH': 'bqml/model/export/', 'RPM_MODEL_VER_PREFIX': 'V_', 'RPM_RUNTIME_VERSION': '1.15', # do not change 'RPM_PYTHON_VERSION': '3.7', # do not change 'RPM_CLUSTER_NAME': 'cluster-1', # KFP/K8s cluster name # variables created by the program # from user supplied set or from the program defaults 'rpm_bq_ds_name': '', 'rpm_gcs_rpm_ds_url': '', 'rpm_file_name': '', 'rpm_table_id': '', 'rpm_bqml_model': '', 'rpm_bqml_model_export_path': '', 'rpm_model_version': '', 'rpm_model_uri': '', 'rpm_pred_table_id': '', } all_vars = load_params() RPM_DS_DOWNLOAD_EXPERIMENT_NAME = 'GoogleStore Retail Pipeline' # reset_local_context def reset_local_context(): Resets all the variables used in the local environment. Comes handy while deveoping and testing the code locally. try: del globals()['local_context'] except KeyError as e: print('local_context not found!!!') print(e) globals().get('local_context') # validate that the local variable is removed # reset_local_context() # use before testing a component locally if needed # get_local_context def get_local_context(init_var=None): Define local rpm_context object The funtion sets the appropriate variables to execute the code in a local environment. local_context contains all the variables used in the local envrionmnet. You could check the variable before and after the call to find out the desired result (comes handy while developing and testing the code locally) Args: init_var (:obj:`dict`, optional): The dict object overrides the existing local context (use sparingly only, when needed) Returns: dict: all python variables used in the pipeline global local_context local_context = globals().get('local_context') if not local_context: local_context = load_params() if init_var: local_context = init_var local_context["RPM_PVC_NAME"] = os.environ["HOME"] if not local_context.get("rpm_bq_ds_name"): local_context["rpm_bq_ds_name"] = f"{all_vars['RPM_GCP_PROJECT'].replace('-','_')}_rpm_data_set" if not local_context.get("rpm_gcs_rpm_ds_url"): local_context["rpm_gcs_rpm_ds_url"] = f"gs://{all_vars['RPM_GCP_PROJECT']}_retail_propensity_model_assets/rpm_data_set/" if not local_context.get("rpm_table_id"): local_context["rpm_table_id"] = f"{all_vars['RPM_GCP_PROJECT']}.{all_vars['RPM_GCP_PROJECT'].replace('-','_')}_rpm_data_set.{all_vars['RPM_GCP_PROJECT'].replace('-','_')}_rpm_data_set_tbl" if not local_context.get("RPM_MODEL_NAME"): local_context["rpm_bqml_model"] = "rpm_bqml_model" if not local_context.get("rpm_bqml_model_export_path"): local_context["rpm_bqml_model_export_path"] = "bqml/model/export/V_1/" if not local_context.get("rpm_model_version"): local_context["rpm_model_version"] = "V_1" if not local_context["rpm_model_uri"]: local_context["rpm_model_uri"] = f"gs://{all_vars['RPM_GCP_PROJECT']}_retail_propensity_model_assets/rpm_data_set/bqml/model/export/V_1/" if not local_context["rpm_pred_table_id"]: local_context["rpm_pred_table_id"] = f"{all_vars['RPM_GCP_PROJECT']}.{all_vars['RPM_GCP_PROJECT'].replace('-','_')}_rpm_data_set.{all_vars['RPM_GCP_PROJECT'].replace('-','_')}_rpm_data_set_pred_tbl" print (local_context) return local_context def test_comp_local(func): local_context = get_local_context() import json new_local_context_str = func(json.dumps(local_context)) print(f'type: {type(new_local_context_str)}; new_local_context_str:{new_local_context_str}') local_context = json.loads(new_local_context_str) def update_local_context(output): print(f'type: {type(output)}; new_local_context_str:{output}') local_context = json.loads(output[0]) # Create a KFP Client and Validate that you are able to access the KFP Pipelines # You will be using the KFP HOST to deploy the KFP pipeline (experiment) and lauch the experiment import kfp kfp_client = kfp.Client(host=RPM_GCP_KFP_HOST) kfp_client.LOCAL_KFP_CONTEXT # create_gcs_bucket_folder from typing import NamedTuple def create_gcs_bucket_folder(ctx: str, RPM_GCP_STORAGE_BUCKET: str, RPM_GCP_PROJECT: str, RPM_DEFAULT_BUCKET_EXT: str, RPM_GCP_STORAGE_BUCKET_FOLDER: str, RPM_DEFAULT_BUCKET_FOLDER_NAME: str ) -> NamedTuple('Outputs', [ ('rpm_context', str), ('rpm_gcs_rpm_ds_url', str), ]): The function (also used as a base for a KFP Component) creates a Google Cloud Storage bucket and a folder if they don't exist. The idea is to create the bucket and folder only on the first run of the pipeline. The pipeline uses the same storage account and the folder for repeated runs. Args: ctx(:obj:`str`): The dict object with all the variables used in the pipeline RPM_GCP_STORAGE_BUCKET(:obj:`str`): User supplied Storage Bucket name RPM_GCP_PROJECT:(:obj:`str`): Google Cloud project for deployment RPM_DEFAULT_BUCKET_EXT:(:obj:`str`): Name of the bucket, when user hasn't supplied a bucket name RPM_GCP_STORAGE_BUCKET_FOLDER:(:obj:`str`): User supplied folder name RPM_DEFAULT_BUCKET_FOLDER_NAME:(:obj:`str`): Name for creating a bucket, when User hasn't supplied a folder name Returns: Outputs(:obj: `tuple`): Returns the below outputs: rpm_context(:obj:`str`): All variables used in the pipeline rpm_gcs_rpm_ds_url(:obj:`str`): Full Google Cloud Storage path with bucket name and folder name # loading rpm_context string import json rpm_context = json.loads(ctx) print(rpm_context) RPM_GCP_STORAGE_BUCKET = rpm_context['RPM_GCP_STORAGE_BUCKET'] RPM_GCP_PROJECT = rpm_context['RPM_GCP_PROJECT'] RPM_DEFAULT_BUCKET_EXT = rpm_context['RPM_DEFAULT_BUCKET_EXT'] RPM_GCP_STORAGE_BUCKET_FOLDER = rpm_context['RPM_GCP_STORAGE_BUCKET_FOLDER'] RPM_DEFAULT_BUCKET_FOLDER_NAME = rpm_context['RPM_DEFAULT_BUCKET_FOLDER_NAME'] if RPM_GCP_STORAGE_BUCKET: gcs_storage_bucket_name = RPM_GCP_STORAGE_BUCKET else: gcs_storage_bucket_name = RPM_GCP_PROJECT + RPM_DEFAULT_BUCKET_EXT if RPM_GCP_STORAGE_BUCKET_FOLDER: gcs_folder_name = RPM_GCP_STORAGE_BUCKET_FOLDER + '/' else: gcs_folder_name = RPM_DEFAULT_BUCKET_FOLDER_NAME + '/' print(f"{gcs_storage_bucket_name} bucket and {gcs_folder_name} will be used in the project.") rpm_gcs_rpm_ds_url = f"gs://{gcs_storage_bucket_name}/{gcs_folder_name}" print(rpm_gcs_rpm_ds_url) rpm_context['rpm_gcs_rpm_ds_url'] = rpm_gcs_rpm_ds_url # defining the install function import subprocess def install(name): subprocess.call(['pip', 'install', name]) pacakages_to_install = ['google-cloud', 'google-cloud-storage'] for each_package in pacakages_to_install: install(each_package) print(f"'{each_package}' package installed :)") cmd = f"gcloud config set project {rpm_context['RPM_GCP_PROJECT']}" print(cmd) process = subprocess.run(cmd, shell=True, check=True, stdout=subprocess.PIPE, universal_newlines=True) print(f"'output from {cmd}': {process.stdout}") from google.cloud import storage from google.cloud.exceptions import NotFound from google.cloud.exceptions import Forbidden import traceback def check_storage_bucket_and_folder(bucket_name, folder_name): if not bucket_name or not folder_name: return(False, False) client = storage.Client() try: # check if the bucket exists and that we have the proper permission bucket = client.get_bucket(bucket_name) print(f"Bucket: {bucket_name} exists.") bucket_exists = True try: blob = bucket.get_blob(folder_name) if blob is None: print(f"Folder name {folder_name} does not exist!") folder_exists = False else: print(f"Folder name {folder_name} exist.") folder_exists = True except: print(f"Folder name {folder_name} doest not exist!") folder_exists = False except Forbidden as e: print(f"Sorry, you don't have access to the bucket: {bucket_name}!") print(e) error = traceback.format_exc() print(error) bucket_exists = False folder_exists = False except NotFound as e: print(f"Sorry, the bucket: {bucket_name} does not exist!") print(e) error = traceback.format_exc() print(error) bucket_exists = False folder_exists = False return(bucket_exists, folder_exists) # Create a bucket if it doesn't exists def create_storage_bucket(bucket_name): if bucket_name: client = storage.Client() try: bucket = client.create_bucket(bucket_name) print(f"Bucket {bucket.name} created") return True except Exception as e: print(f"Bucket {bucket_name} couldn't be created") print(e) error = traceback.format_exc() print(error) return False else: print(f"Bucket {bucket_name} couldn't be created. Name is empty.") return False # Create the folder in the bucket def create_storage_folder(bucket_name, folder_name): if len(bucket_name) == 0 or len(folder_name) == 0: print(f"Folder {folder_name} couldn't be created. Name is empty.") return False else: client = storage.Client() try: bucket = client.get_bucket(bucket_name) blob = bucket.blob(folder_name) blob.upload_from_string('') print(f"Folder {blob.name} created") return True except Exception as e: print(f"Folder {folder_name} couldn't be created") print(e) error = traceback.format_exc() print(error) return False result = check_storage_bucket_and_folder(gcs_storage_bucket_name, gcs_folder_name) if result[0] == False: create_storage_bucket(gcs_storage_bucket_name) if result[1] == False: create_storage_folder(gcs_storage_bucket_name, gcs_folder_name) return ( json.dumps(rpm_context), rpm_context['rpm_gcs_rpm_ds_url'] ) # test locally create_gcs_bucket_folder # You could unit test the above code in your local environment. # You don't need to execute the code, when simply building or running the KFP pipeline (experiment) local_context = get_local_context() import json update_local_context(create_gcs_bucket_folder( json.dumps(local_context), local_context['RPM_GCP_STORAGE_BUCKET'], local_context['RPM_GCP_PROJECT'], local_context['RPM_DEFAULT_BUCKET_EXT'], local_context['RPM_GCP_STORAGE_BUCKET_FOLDER'], local_context['RPM_DEFAULT_BUCKET_FOLDER_NAME'] )) # create_bq_ds from typing import NamedTuple def create_bq_ds(ctx: str, RPM_GCP_PROJECT: str, RPM_BQ_DATASET_NAME: str, RPM_LOCATION: str ) -> NamedTuple('Outputs', [ ('rpm_context', str), ('rpm_bq_ds_name', str), ]): The function(also used as a base for a KFP Component) creates a BigQuery dataset if don't exist. The idea is to create DataSet only on the first run of the pipeline. The pipeline uses the same DataSet for repeated runs. Args: ctx(:obj:`str`): The dict object with all the variables used in the pipeline RPM_GCP_PROJECT:(:obj:`str`): Google Cloud project for deployment RPM_BQ_DATASET_NAME:(:obj:`str`): Name of the dataset. RPM_LOCATION:(:obj:`str`): Location of the Google Cloud region of the BigQuery dataset Returns: Outputs(:obj: `tuple`): Returns the below outputs: rpm_context(:obj:`str`): All variables used in the pipeline rpm_bq_ds_name(:obj:`str`): The dataset name used in the rest of the pipeline import json rpm_context = json.loads(ctx) print(rpm_context) rpm_bq_ds_name = rpm_context['RPM_BQ_DATASET_NAME'] if not rpm_bq_ds_name: rpm_bq_ds_name = \ f"{rpm_context['RPM_GCP_PROJECT']}{rpm_context['RPM_DEFAULT_DATA_SET_NAME_EXT']}" rpm_bq_ds_name = rpm_bq_ds_name.replace('-', '_') rpm_context['rpm_bq_ds_name'] = rpm_bq_ds_name import subprocess import traceback def exec_cmd(cmd): try: print(cmd) process = subprocess.run(cmd, shell=True, check=True, stdout=subprocess.PIPE, universal_newlines=True) print(f"'output from {cmd}': {process.stdout}") except subprocess.CalledProcessError as e: error = traceback.format_exc() print(error) print(e.output) exec_cmd(f"gcloud config set project {rpm_context['RPM_GCP_PROJECT']}") def install(name): subprocess.call(['pip', 'install', name]) pacakages_to_install = ['google-cloud', 'google-cloud-bigquery'] for each_package in pacakages_to_install: install(each_package) print(f"'{each_package}' package installed :)") from google.cloud import bigquery from google.cloud.exceptions import NotFound client = bigquery.Client() dataset_id = f"{rpm_context['RPM_GCP_PROJECT']}.{rpm_bq_ds_name}" ds_found = True try: client.get_dataset(dataset_id) # Make an API request. print('Dataset {} already exists'.format(dataset_id)) except NotFound: print('Dataset {} is not found'.format(dataset_id)) ds_found = False if ds_found is False: try: # Construct a full Dataset object to send to the API. dataset = bigquery.Dataset(dataset_id) dataset.location = rpm_context['RPM_LOCATION'].split('-')[0].upper() dataset = client.create_dataset(dataset) # Make an API request. print('Created dataset {}.{} in location: {}.'.\ format(client.project, dataset.dataset_id, dataset.location)) except Exception as e: error = traceback.format_exc() print(error) print(e) raise RuntimeError(f"Can't create the BigQuery DS {dataset_id}") return ( json.dumps(rpm_context), rpm_context['rpm_bq_ds_name'] ) # test locally create_bq_ds # You could unit test the above code in your local environment. # You don't need to execute the code, when simply building or running the KFP pipeline (experiment) local_context = get_local_context() import json update_local_context(create_bq_ds( json.dumps(local_context), local_context['RPM_GCP_PROJECT'], local_context['RPM_BQ_DATASET_NAME'], local_context['RPM_LOCATION'])) from typing import NamedTuple def load_bq_ds(ctx: str, RPM_GCP_PROJECT: str, RPM_BQ_TABLE_NAME: str, RPM_DEFAULT_BQ_TABLE_NAME_EXT: str, rpm_bq_ds_name: str, ) -> NamedTuple('Outputs', [ ('rpm_context', str), ('rpm_table_id', str), ]): The function(also used as a base for a KFP Component) loads the data to a BigQuery table. You need to replace the component with your data source e.g. you might download the data from a different source, in which case you to code those steps Decide on your load strategy here such add or append. Furthermore you could cache this KFP component if the load is just a onetime thing. Args: ctx(:obj:`str`): The dict object with all the variables used in the pipeline RPM_GCP_PROJECT:(:obj:`str`): Google Cloud project for deployment RPM_BQ_TABLE_NAME:(:obj:`str`): Name of the table. RPM_DEFAULT_BQ_TABLE_NAME_EXT:(:obj:`str`): Default table name if the user didn't provide one(RPM_BQ_TABLE_NAME) rpm_bq_ds_name(:obj:`str`): The dataset name used in the rest of the pipeline Returns: Outputs(:obj: `tuple`): Returns the below outputs: rpm_context(:obj:`str`): All variables used in the pipeline rpm_table_id(:obj:`str`): The table name used in the rest of the pipeline import json rpm_context = json.loads(ctx) print(rpm_context) rpm_bq_ds_name = rpm_context['rpm_bq_ds_name'] dataset_id = f"{rpm_context['RPM_GCP_PROJECT']}.{rpm_bq_ds_name}" if not rpm_context['RPM_BQ_TABLE_NAME']: rpm_table_id = f"{dataset_id}.{rpm_bq_ds_name}{rpm_context['RPM_DEFAULT_BQ_TABLE_NAME_EXT']}" else: rpm_table_id = f"{dataset_id}.{rpm_context['RPM_BQ_TABLE_NAME']}" rpm_context['rpm_table_id'] = rpm_table_id import subprocess def install(name): subprocess.call(['pip', 'install', name]) pacakages_to_install = ['google-cloud', 'google-cloud-bigquery'] for each_package in pacakages_to_install: install(each_package) print(f"'{each_package}' package installed :)") query = f # select initial features and label to feed into our model CREATE OR REPLACE TABLE {rpm_table_id} OPTIONS( description="Google Store curated Data" ) AS SELECT fullVisitorId, bounces, time_on_site, will_buy_on_return_visit # <--- our label FROM # features (SELECT fullVisitorId, IFNULL(totals.bounces, 0) AS bounces, IFNULL(totals.timeOnSite, 0) AS time_on_site FROM `bigquery-public-data.google_analytics_sample.*` WHERE totals.newVisits = 1 AND date BETWEEN '20160801' AND '20170430') # train on first 9 months JOIN (SELECT fullvisitorid, IF(COUNTIF(totals.transactions > 0 AND totals.newVisits IS NULL) > 0, 1, 0) AS will_buy_on_return_visit FROM `bigquery-public-data.google_analytics_sample.*` GROUP BY fullvisitorid) USING (fullVisitorId) ORDER BY time_on_site DESC # order by most time spent first print(query) import traceback from google.cloud import bigquery try: client = bigquery.Client() print(query) query_job = client.query(query) # Make an API request. print(f"Table {rpm_table_id} created.") except Exception as e: error = traceback.format_exc() print(error) print(e) raise RuntimeError(f"Can't create the table {rpm_table_id}") destination_table = rpm_table_id print(f"{destination_table}") return ( json.dumps(rpm_context), rpm_context['rpm_table_id'] ) # test locally load_bq_ds # You could unit test the above code in your local environment. # You don't need to execute the code, when simply building or running the KFP pipeline (experiment) local_context = get_local_context() import json update_local_context(load_bq_ds( json.dumps(local_context), local_context['RPM_GCP_PROJECT'], local_context['RPM_BQ_TABLE_NAME'], local_context['RPM_DEFAULT_BQ_TABLE_NAME_EXT'], local_context['rpm_bq_ds_name'], )) # create_bq_ml from typing import NamedTuple def create_bq_ml(ctx: str, RPM_GCP_PROJECT: str, RPM_MODEL_NAME: str, RPM_DEFAULT_MODEL_NAME: str, rpm_bq_ds_name: str, rpm_table_id: str ) -> NamedTuple('Outputs', [ ('rpm_context', str), ('rpm_bqml_model', str), ]): The function(also used as a base for a KFP Component) creates a model from the data that you have already loaded previously. You need to adjust the model type, model hyperparamters, features, and label depending on your need. Args: ctx(:obj:`str`): The dict object with all the variables used in the pipeline RPM_GCP_PROJECT:(:obj:`str`): Google Cloud project for deployment RPM_MODEL_NAME:(:obj:`str`): Name of the model. RPM_DEFAULT_MODEL_NAME:(:obj:`str`): Default model name if the user didn't provide one(RPM_MODEL_NAME) rpm_bq_ds_name(:obj:`str`): The dataset name used in the rest of the pipeline rpm_table_id(:obj:`str`): The table name used in the rest of the pipeline Returns: Outputs(:obj: `tuple`): Returns the below outputs: rpm_context(:obj:`str`): All variables used in the pipeline rpm_bqml_model(:obj:`str`): The model name used in the rest of the pipeline import json rpm_context = json.loads(ctx) print(rpm_context) rpm_bqml_model = rpm_context['RPM_MODEL_NAME'] if not rpm_bqml_model: rpm_bqml_model = rpm_context['RPM_DEFAULT_MODEL_NAME'] rpm_bqml_model = rpm_bqml_model.replace('-', '_') rpm_context['rpm_bqml_model'] = rpm_bqml_model import subprocess import traceback def exec_cmd(cmd): try: print(cmd) process = subprocess.run(cmd, shell=True, check=True, stdout=subprocess.PIPE, universal_newlines=True) print(f"'output from {cmd}': {process.stdout}") return process.stdout except subprocess.CalledProcessError as e: error = traceback.format_exc() print(error) print(e.output) return e.output exec_cmd(f"gcloud config set project {rpm_context['RPM_GCP_PROJECT']}") bqml_create_sql = f CREATE OR REPLACE MODEL {rpm_context['rpm_bq_ds_name']}.{rpm_bqml_model} OPTIONS ( model_type='LOGISTIC_REG', auto_class_weights=TRUE, input_label_cols=['will_buy_on_return_visit']) AS SELECT * EXCEPT(fullVisitorId) FROM {rpm_context['rpm_table_id'].replace(RPM_GCP_PROJECT+'.', '')} # you can uncomment the below query to try out the XGBoost model # bqml_create_sql = f # CREATE OR REPLACE MODEL # \`{rpm_context['rpm_bq_ds_name']}.{rpm_bqml_model}\` # OPTIONS(MODEL_TYPE='BOOSTED_TREE_CLASSIFIER', # BOOSTER_TYPE = 'GBTREE', # NUM_PARALLEL_TREE = 1, # MAX_ITERATIONS = 50, # TREE_METHOD = 'HIST', # EARLY_STOP = FALSE, # SUBSAMPLE = 0.85, # INPUT_LABEL_COLS = ['will_buy_on_return_visit']) # AS # SELECT # * EXCEPT(fullVisitorId) # FROM # \`{rpm_context['rpm_table_id']}\` # exec_cmd(f'bq query --use_legacy_sql=false "{bqml_create_sql}"') bq_model_created = exec_cmd(f"bq ls -m --format=pretty {rpm_context['rpm_bq_ds_name']} | grep {rpm_bqml_model}") if not bq_model_created: raise RuntimeError(f"Please check if the model {rpm_context['rpm_bq_ds_name']} created.") return ( json.dumps(rpm_context), rpm_context['rpm_bqml_model'] ) # test locally create_bq_ml # You could unit test the above code in your local environment. # You don't need to execute the code, when simply building or running the KFP pipeline (experiment) local_context = get_local_context() import json update_local_context(create_bq_ml( json.dumps(local_context), local_context['RPM_GCP_PROJECT'], local_context['RPM_MODEL_NAME'], local_context['RPM_DEFAULT_MODEL_NAME'], local_context['rpm_bq_ds_name'], local_context['rpm_table_id'])) # evaluate_ml_model from typing import NamedTuple def evaluate_ml_model(ctx: str, RPM_GCP_PROJECT: str, rpm_bq_ds_name: str, rpm_bqml_model: str, ) -> NamedTuple('Outputs', [ ('rpm_context', str), ('rpm_eval_query', str), ('rpm_eval_result', str), ]): The function(also used as a base for a KFP Component) evaluates the model you created. Update your selection criteria and stop the pipeline if the model didn't meet the criteria You can raise an exception to stop the pipeline Args: ctx(:obj:`str`): The dict object with all the variables used in the pipeline RPM_GCP_PROJECT:(:obj:`str`): Google Cloud project for deployment rpm_bq_ds_name(:obj:`str`): The dataset name used in the rest of the pipeline rpm_bqml_model(:obj:`str`): The model name used in the rest of the pipeline Returns: Outputs(:obj: `tuple`): Returns the below outputs: rpm_context(:obj:`str`): All variables used in the pipeline rpm_eval_query(:obj:`str`): The evaluate sql query, which is saved for auditing purpose in the pipeline artifacts rpm_eval_result(:obj:`str`): The result of the evaluated query, which is saved for auditing purpose in the pipeline artifacts import json rpm_context = json.loads(ctx) print(rpm_context) import subprocess import traceback def exec_cmd(cmd): try: print(cmd) process = subprocess.run(cmd, shell=True, check=True, stdout=subprocess.PIPE, universal_newlines=True) print(f"'output from {cmd}': {process.stdout}") return(process.stdout, 0) except subprocess.CalledProcessError as e: error = traceback.format_exc() print(error) print(e.output) return(e.output, 1) exec_cmd(f"gcloud config set project {rpm_context['RPM_GCP_PROJECT']}") bqml_eval_query = f SELECT roc_auc, CASE WHEN roc_auc > .9 THEN 'good' WHEN roc_auc > .8 THEN 'fair' WHEN roc_auc > .7 THEN 'decent' WHEN roc_auc > .6 THEN 'not great' ELSE 'poor' END AS modelquality FROM ML.EVALUATE(MODEL {rpm_bq_ds_name}.{rpm_bqml_model}) rpm_eval_result = exec_cmd(f'bq query --use_legacy_sql=false --format=json "{bqml_eval_query}"') print(rpm_eval_result) rpm_context['bqml_eval_query'] = bqml_eval_query rpm_context['rpm_eval_result'] = rpm_eval_result return ( json.dumps(rpm_context), f{bqml_eval_query}, f{rpm_eval_result}, ) # test locally evaluate_ml_model # You could unit test the above code in your local environment. # You don't need to execute the code, when simply building or running the KFP pipeline (experiment) local_context = get_local_context() import json update_local_context(evaluate_ml_model( json.dumps(local_context), local_context['RPM_GCP_PROJECT'], local_context['rpm_bq_ds_name'], local_context['rpm_bqml_model'], )) # create_batch_prediction_dataset from typing import NamedTuple def create_batch_prediction_dataset(ctx: str, RPM_GCP_PROJECT: str, rpm_bq_ds_name: str, rpm_table_id: str ) -> NamedTuple('Outputs', [ ('rpm_context', str), ('rpm_pred_table_id', str), ]): The function(also used as a base for a KFP Component) creates a BigQuery table which contains the input data for which we want predictions. You might not need this this componenet with your input table if already exists. You might need some transformation or filteration on your input data, in which case you need to make appropriate code change. Args: ctx(:obj:`str`): The dict object with all the variables used in the pipeline RPM_GCP_PROJECT:(:obj:`str`): Google Cloud project for deployment rpm_bq_ds_name(:obj:`str`): The dataset name used in the rest of the pipeline rpm_table_id(:obj:`str`): The table name used in the rest of the pipeline Returns: Outputs(:obj: `tuple`): Returns the below outputs: rpm_context(:obj:`str`): All variables used in the pipeline rpm_pred_table_id(:obj:`str`): The table that contains the input data, which we want batch predict later import json rpm_context = json.loads(ctx) print(rpm_context) import subprocess def install(name): subprocess.call(['pip', 'install', name]) pacakages_to_install = ['google-cloud', 'google-cloud-bigquery'] for each_package in pacakages_to_install: install(each_package) print(f"'{each_package}' package installed :)") rpm_pred_table_id = rpm_table_id.replace('_tbl', '_pred_tbl') query = f # create the input table to conduct batch predict CREATE OR REPLACE TABLE {rpm_pred_table_id} OPTIONS( description="Input data for prediction" ) AS SELECT * FROM {rpm_context['rpm_table_id']} LIMIT 10 print(query) import traceback from google.cloud import bigquery try: client = bigquery.Client() query_job = client.query(query) # Make an API request. print(f"Table {rpm_pred_table_id} created.") except Exception as e: error = traceback.format_exc() print(error) print(e) raise RuntimeError(f"Can't create the table {rpm_pred_table_id}") rpm_context['rpm_pred_table_id'] = rpm_pred_table_id return (json.dumps(rpm_context), rpm_context['rpm_pred_table_id'], ) #test locally create batch prediction dataset # You could unit test the above code in your local environment. # You don't need to execute the code, when simply building or running the KFP pipeline (experiment) local_context = get_local_context() import json update_local_context(create_batch_prediction_dataset( json.dumps(local_context), local_context['RPM_GCP_PROJECT'], local_context['rpm_bq_ds_name'], local_context['rpm_table_id'], )) # predict_batch_ml_model from typing import NamedTuple def predict_batch_ml_model(ctx: str, RPM_GCP_PROJECT: str, rpm_bq_ds_name: str, rpm_bqml_model: str, rpm_pred_table_id: str, ) -> NamedTuple('Outputs', [ ('rpm_context', str), ('rpm_predict_batch_output', str), ]): The function(also used as a base for a KFP Component) uses the model to predict the data in mass. You migth also need to save the predicted values at an appropriate repository of your choice. Currently the predicted value is printed on the console and returned as an output from the function. Args: ctx(:obj:`str`): The dict object with all the variables used in the pipeline RPM_GCP_PROJECT:(:obj:`str`): Google Cloud project for deployment rpm_bq_ds_name(:obj:`str`): The dataset name used in the rest of the pipeline rpm_bqml_model(:obj:`str`): The model name used in the rest of the pipeline rpm_pred_table_id(:obj:`str`): The table that contains the input data which we want batch predict later Returns: Outputs(:obj: `tuple`): Returns the below outputs: rpm_context(:obj:`str`): All variables used in the pipeline rpm_predict_batch_output(:obj:`str`): The output f rom the batch prediction import json rpm_context = json.loads(ctx) print(rpm_context) import subprocess def install(name): subprocess.call(['pip', 'install', name]) pacakages_to_install = ["google-cloud", "google-cloud-bigquery"] for each_package in pacakages_to_install: install(each_package) print(f"'{each_package}' package installed :)") query = f # predict the inputs (rows) from the input table SELECT fullVisitorId, predicted_will_buy_on_return_visit FROM ML.PREDICT(MODEL {rpm_bq_ds_name}.{rpm_bqml_model}, ( SELECT fullVisitorId, bounces, time_on_site from {rpm_pred_table_id} )) print(query) import traceback from google.cloud import bigquery output = "" try: client = bigquery.Client() query_job = client.query(query) # Make an API request. print("The query data:") for row in query_job: # Row values can be accessed by field name or index. print(f"row data: {row}") output += str(row) except Exception as e: error = traceback.format_exc() print(error) print(e) raise RuntimeError(f"Can't batch predict") rpm_context['rpm_predict_output'] = output return ( json.dumps(rpm_context), rpm_context['rpm_predict_output'], ) #test locally batch prediction # You could unit test the above code in your local environment. # You don't need to execute the code, when simply building or running the KFP pipeline (experiment) local_context = get_local_context() import json update_local_context(predict_batch_ml_model( json.dumps(local_context), local_context['RPM_GCP_PROJECT'], local_context['rpm_bq_ds_name'], local_context['rpm_bqml_model'], local_context['rpm_pred_table_id'], )) # get_bqml_model_version from typing import NamedTuple def get_bqml_model_version(ctx: str, RPM_GCP_PROJECT: str, RPM_MODEL_EXPORT_PATH: str, RPM_DEFAULT_MODEL_EXPORT_PATH: str, RPM_MODEL_VER_PREFIX: str, rpm_gcs_rpm_ds_url: str ) -> NamedTuple('Outputs', [ ('rpm_context', str), ('rpm_bqml_model_export_path', str), ('rpm_model_version', str), ]): The function(also used as a base for a KFP Component) determines the revision of the models. It checkes the current version and increments by 1. It prepares the folder for the BigQuery ML to export the model. Args: ctx(:obj:`str`): The dict object with all the variables used in the pipeline RPM_GCP_PROJECT:(:obj:`str`): Google Cloud project for deployment RPM_MODEL_EXPORT_PATH(:obj:`str`): User supplied model export path RPM_DEFAULT_MODEL_EXPORT_PATH(:obj:`str`): Uses the default path, if the user didn't provide a path RPM_MODEL_VER_PREFIX(:obj:`str`): The folder with prefix rpm_pred_table_id(:obj:`str`): The table that contains the input data which we want batch predict later Returns: Outputs(:obj: `tuple`): Returns the below outputs: rpm_context(:obj:`str`): All variables used in the pipeline rpm_bqml_model_export_path(:obj:`str`): the path to which we can export the model rpm_model_version(:obj:`str`): the version which we will use when we deploy the model to Cloud AI Prediction import json rpm_context = json.loads(ctx) print(rpm_context) # defining the install function import subprocess import os def install(name): subprocess.call(['pip', 'install', name]) pacakages_to_install = ['google-cloud', 'google-cloud-storage'] for each_package in pacakages_to_install: install(each_package) print(f"'{each_package}' package installed :)") cmd = f"gcloud config set project {rpm_context['RPM_GCP_PROJECT']}" print(cmd) process = subprocess.run(cmd, shell=True, check=True, stdout=subprocess.PIPE, universal_newlines=True) print(f"'output from {cmd}': {process.stdout}") from google.cloud import storage from google.cloud.exceptions import NotFound from google.cloud.exceptions import Forbidden import traceback client = storage.Client() try: bucket_name= rpm_context['rpm_gcs_rpm_ds_url'].split('/')[2] rpm_bq_ds_name = rpm_context['rpm_gcs_rpm_ds_url'].split('/')[3] rpm_bqml_model_export_path = rpm_context['RPM_MODEL_EXPORT_PATH'] if not rpm_bqml_model_export_path: rpm_bqml_model_export_path = rpm_context['RPM_DEFAULT_MODEL_EXPORT_PATH'] bucket = client.get_bucket(bucket_name) print(f'Details: {bucket}') folder_name = os.path.join(rpm_bq_ds_name, rpm_bqml_model_export_path) blob = bucket.get_blob(folder_name) model_version = 0 if blob is None: print(f"Folder name {folder_name} does not exist!") print(f"{bucket_name}, {folder_name}") blob = bucket.blob(folder_name) blob.upload_from_string('') print(f"Folder name {folder_name} created.") else: print(f"Folder name {folder_name} exist.") client = storage.Client() blobs = client.list_blobs(bucket_name, prefix=folder_name) print('Blobs:') for blob in blobs: print(f"blob name: {blob.name}") curr_ver = blob.name.replace(folder_name, '') print(f"folder_name: {folder_name}") print(f"after folder_name replace: {curr_ver}") if rpm_context['RPM_MODEL_VER_PREFIX'] in curr_ver \ and len(curr_ver.split('/')) == 2 and \ len(curr_ver.split('/')[1]) == 0: curr_ver = curr_ver.replace(rpm_context['RPM_MODEL_VER_PREFIX'], '').replace('/','').split('/')[0] model_version = max(model_version, int(curr_ver)) # increment the model version model_version += 1 model_version_full_name = f"{rpm_context['RPM_MODEL_VER_PREFIX']}{model_version}/" folder_name = os.path.join(folder_name, model_version_full_name) print(f"Going to create folder {folder_name} created.") blob = bucket.get_blob(folder_name) blob = bucket.blob(folder_name) blob.upload_from_string('') print(f"Folder name {folder_name} created.") rpm_context['rpm_bqml_model_export_path'] = os.path.join(rpm_bqml_model_export_path, model_version_full_name) rpm_context['rpm_model_version'] = model_version_full_name.rstrip('/') except Forbidden as e: print(f"Sorry, you don't have access to the bucket: {bucket_name}!") print(e) error = traceback.format_exc() print(error) except NotFound as e: print(f"Sorry, the bucket: {bucket_name} does not exist!") print(e) error = traceback.format_exc() print(error) return ( json.dumps(rpm_context), rpm_context['rpm_bqml_model_export_path'], rpm_context['rpm_model_version'] ) # test locally get_bqml_model_version # You could unit test the above code in your local environment. # You don't need to execute the code, when simply building or running the KFP pipeline (experiment) local_context = get_local_context() import json update_local_context(get_bqml_model_version( json.dumps(local_context), local_context['RPM_GCP_PROJECT'], local_context['RPM_MODEL_EXPORT_PATH'], local_context['RPM_DEFAULT_MODEL_EXPORT_PATH'], local_context['RPM_MODEL_VER_PREFIX'], local_context['rpm_gcs_rpm_ds_url'])) # export_bqml_model_to_gcs from typing import NamedTuple def export_bqml_model_to_gcs(ctx: str, RPM_GCP_PROJECT: str, RPM_PVC_NAME: str, RPM_PVC_DATASET_FOLDER_NAME: str, rpm_bqml_model_export_path: str, rpm_gcs_rpm_ds_url: str, rpm_bq_ds_name: str, rpm_bqml_model: str, ) -> NamedTuple('Outputs', [ ('rpm_context', str), ('rpm_model_uri', str), ]): The function(also used as a base for a KFP Component) exports the BigQuery ML model. It also saves the the details used in the model e.g. losses, learning rate adjustment, #of iterations. It also saves the evaluation details e.g. roc, accuracy, etc. Args: ctx(:obj:`str`): The dict object with all the variables used in the pipeline RPM_GCP_PROJECT:(:obj:`str`): Google Cloud project for deployment RPM_PVC_NAME:(:obj:`str`): Ther persitent volume name RPM_MODEL_EXPORT_PATH(:obj:`str`): The path to store the temporary files before we upload to Google Cloud Storage RPM_PVC_DATASET_FOLDER_NAME(:obj:`str`): The folder name to store the temporary files before we upload to Google Cloud Storage rpm_bqml_model_export_path(:obj:`str`): The path to which we can export the model rpm_gcs_rpm_ds_url(:obj:`str`): Full Google Cloud Storage path with bucket name and folder name rpm_bq_ds_name(:obj:`str`): The dataset name used in the rest of the pipeline rpm_bqml_model(:obj:`str`): The model name used in the rest of the pipeline Returns: Outputs(:obj: `tuple`): Returns the below outputs: rpm_context(:obj:`str`): All variables used in the pipeline rpm_model_uri(:obj:`str`): The path to where we export the model import json rpm_context = json.loads(ctx) print(rpm_context) import subprocess import traceback def exec_cmd(cmd): try: print(cmd) process = subprocess.run(cmd, shell=True, check=True, stdout=subprocess.PIPE, universal_newlines=True) print(f"'output from {cmd}': {process.stdout}") return process.stdout except subprocess.CalledProcessError as e: error = traceback.format_exc() print(error) print(e.output) return e.output import os if not rpm_context['rpm_bqml_model_export_path']: raise RuntimeError("Can't export the BigQuery model: export destination is empty!") import os path_to_ds = os.path.join(rpm_context['RPM_PVC_NAME'], rpm_context['RPM_PVC_DATASET_FOLDER_NAME']) # check if that the dataset directory already exists exec_cmd(f"test -d {path_to_ds} && echo 'Exists' || echo 'Does not exist'") # create the datset directory exec_cmd(f"mkdir -p {path_to_ds}") # validate that the dataset directory has been created exec_cmd(f"test -d {path_to_ds} && echo 'Exists' || echo 'Does not exist'") rpm_bqml_model_export_path = os.path.join(rpm_context['rpm_gcs_rpm_ds_url'], rpm_context['rpm_bqml_model_export_path']) rpm_bqml_model_export_path=rpm_bqml_model_export_path.rstrip('/') exec_cmd(f"gcloud config set project {rpm_context['RPM_GCP_PROJECT']}") cmd = f"bq extract -m {rpm_context['rpm_bq_ds_name']}.{rpm_context['rpm_bqml_model']} {rpm_bqml_model_export_path}" print(cmd) exec_cmd(cmd) rpm_context['rpm_model_uri'] = \ os.path.join(rpm_context['rpm_gcs_rpm_ds_url'], rpm_context['rpm_bqml_model_export_path']) bqml_eval_query = f SELECT * FROM ML.EVALUATE(MODEL `{rpm_bq_ds_name}.{rpm_bqml_model}`) rpm_eval_output = exec_cmd(f"bq query --use_legacy_sql=false --format=json '{bqml_eval_query}'") print(rpm_eval_output) bqml_train_detail_query = f SELECT * FROM ML.TRAINING_INFO(MODEL `{rpm_bq_ds_name}.{rpm_bqml_model}`) bqml_train_detail_query_output = exec_cmd(f"bq query --use_legacy_sql=false --format=json '{bqml_train_detail_query}'") print(bqml_train_detail_query_output) path_to_ds = f"/{rpm_context['RPM_PVC_NAME']}/{rpm_context['RPM_PVC_DATASET_FOLDER_NAME']}/" import os # export the eval model output in a file called evalu_details.txt rpm_eval_output_filename = os.path.join(path_to_ds, 'eval_detail.txt') with open(rpm_eval_output_filename, 'w') as outfile: outfile.write(rpm_eval_output) exec_cmd(f"cat {rpm_eval_output_filename}") exec_cmd(f"gsutil -m cp {rpm_eval_output_filename} {rpm_context['rpm_model_uri']}") # export the training details in a file called train_details.txt bqml_train_detail_query_filename = os.path.join(path_to_ds, 'train_detail.txt') with open(bqml_train_detail_query_filename, 'w') as outfile: outfile.write(bqml_train_detail_query_output) exec_cmd(f"cat {bqml_train_detail_query_filename}") exec_cmd(f"gsutil -m cp {bqml_train_detail_query_filename} {rpm_context['rpm_model_uri']}") return (json.dumps(rpm_context), rpm_context['rpm_model_uri'], ) # test locally export_bqml_model_to_gcs # You could unit test the above code in your local environment. # You don't need to execute the code, when simply building or running the KFP pipeline (experiment) local_context = get_local_context() import json update_local_context(export_bqml_model_to_gcs( json.dumps(local_context), local_context['RPM_GCP_PROJECT'], local_context['RPM_PVC_NAME'], local_context['RPM_PVC_DATASET_FOLDER_NAME'], local_context['rpm_bqml_model_export_path'], local_context['rpm_gcs_rpm_ds_url'], local_context['rpm_bq_ds_name'], local_context['rpm_bqml_model'], )) from typing import NamedTuple def deploy_ml_model_online_pred(ctx: str, RPM_GCP_PROJECT: str, RPM_LOCATION: str, RPM_RUNTIME_VERSION: str, RPM_PYTHON_VERSION: str, rpm_model_uri: str, rpm_bqml_model: str, rpm_model_version: str, rpm_gcs_rpm_ds_url: str, ) -> NamedTuple('Outputs', [ ('rpm_context', str), ('rpm_url_to_monitor', str), ('rpm_model_region', str), ]): The function(also used as a base for a KFP Component) deploys the model that is exported above to Cloud AI Platform Prediction Args: ctx(:obj:`str`): The dict object with all the variables used in the pipeline RPM_GCP_PROJECT:(:obj:`str`): Google Cloud project for deployment RPM_LOCATION:(:obj:`str`): Google Cloud region where we are going to deploy the model RPM_RUNTIME_VERSION(:obj:`str`): The runtime version of the caip predicted RPM_PYTHON_VERSION(:obj:`str`): The python version of the caip predicted rpm_model_uri(:obj:`str`): The path to where we export the model rpm_bqml_model(:obj:`str`): The model name used in the rest of the pipeline rpm_model_version(:obj:`str`): The version which we will use when we deploy the model to caip prediction rpm_gcs_rpm_ds_url(:obj:`str`): Full Google Cloud Storage path with bucket name and folder name Returns: Outputs(:obj: `tuple`): Returns the below outputs: rpm_context(:obj:`str`): All variables used in the pipeline rpm_url_to_monitor(:obj:`str`): The url in the Google Cloud Console which you can use to monitor rpm_model_region(:obj:`str`): The Google Cloud region where you are going to deploy the model import json rpm_context = json.loads(ctx) print(rpm_context) rpm_context['rpm_url_to_monitor'] = f"https://console.cloud.google.com/ai-platform/models/{rpm_bqml_model}/versions" model_region = RPM_LOCATION[:-2] rpm_context['rpm_model_region'] = model_region import subprocess import traceback def exec_cmd(cmd): try: print(cmd) process = subprocess.run(cmd, shell=True, check=True, stdout=subprocess.PIPE, universal_newlines=True) print(f"'output from {cmd}': {process.stdout}") return(process.stdout, 0) except subprocess.CalledProcessError as e: error = traceback.format_exc() print(error) print(e.output) return(e.output, 1) exec_cmd(f"gcloud config set project {rpm_context['RPM_GCP_PROJECT']}") (output, returncode) = \ exec_cmd(f"gcloud ai-platform models list --format='value(name)' | grep {rpm_bqml_model}") print(f'output:{output}, returncode:{returncode}') if returncode == 0: #grep returns 1 if nothing is found print(f"{rpm_bqml_model} already exists") else: print(f"{rpm_bqml_model} doesn't exists. Creating...") (output_create, returncode_create) = \ exec_cmd(f'gcloud ai-platform models create --regions={model_region} {rpm_bqml_model}') print(f"output:{output_create}, returncode:{returncode_create}") if returncode_create != 0: raise RuntimeError(f"Can't create the ML Model {rpm_bqml_model}") print(f"{rpm_bqml_model} created.") (output, returncode) = \ exec_cmd(f"gcloud ai-platform versions list --model {rpm_bqml_model} --format='value(name)' | grep {rpm_model_version}") if returncode == 0: #grep returns 1 if nothing is found print(f"{rpm_bqml_model} with version {rpm_model_version} already exists") else: print(f"{rpm_bqml_model} with version {rpm_model_version} doesn't exists. Creating...") cmd = f gcloud ai-platform versions create --model={rpm_bqml_model} \ {rpm_model_version} \ --framework=tensorflow --python-version={RPM_PYTHON_VERSION} \ --runtime-version={RPM_RUNTIME_VERSION} \ --origin={rpm_model_uri} \ --staging-bucket=gs://{rpm_gcs_rpm_ds_url.split('/')[2]} (output_create, returncode_create) = exec_cmd(cmd) print(f"output:{output_create}, returncode:{returncode_create}") if returncode_create != 0: raise RuntimeError(f"Can't create the ML Model {rpm_bqml_model} with version {rpm_model_version}!!!") print(f"{rpm_bqml_model} with version {rpm_model_version} created.") print(f"Monitor models at {rpm_context['rpm_url_to_monitor']}") return ( json.dumps(rpm_context), rpm_context['rpm_url_to_monitor'], rpm_context['rpm_model_region'] ) # test locally deploy_ml_model_online_pred # You could unit test the above code in your local environment. # You don't need to execute the code, when simply building or running the KFP pipeline (experiment) local_context = get_local_context() import json update_local_context(deploy_ml_model_online_pred( json.dumps(local_context), local_context['RPM_GCP_PROJECT'], local_context['RPM_LOCATION'], local_context['RPM_RUNTIME_VERSION'], local_context['RPM_PYTHON_VERSION'], local_context['rpm_model_uri'], local_context['rpm_bqml_model'], local_context['rpm_model_version'], local_context['rpm_gcs_rpm_ds_url'], )) # predict_online_ml_model from typing import NamedTuple def predict_online_ml_model(ctx: str, RPM_GCP_PROJECT: str, RPM_PVC_NAME: str, RPM_PVC_DATASET_FOLDER_NAME: str, rpm_bqml_model: str, rpm_model_version: str, ) -> NamedTuple('Outputs', [ ('rpm_context', str), ('rpm_predict_online_output', str), ]): The function(also used as a base for a KFP Component) does the online prediction. This is to confirm that the endpoint is available and ready to serve. Args: ctx(:obj:`str`): The dict object with all the variables used in the pipeline RPM_GCP_PROJECT:(:obj:`str`): Google Cloud project for deployment RPM_PVC_NAME:(:obj:`str`): Ther persitent volume name RPM_PVC_DATASET_FOLDER_NAME(:obj:`str`): The folder name to store the temporary files before we upload to Google Cloud Storage rpm_bqml_model(:obj:`str`): The model name used in the rest of the pipeline rpm_model_version(:obj:`str`): The version which we will use when we deploy the model to Cloud AI Platform Prediction Returns: Outputs(:obj: `tuple`): Returns the below outputs: rpm_context(:obj:`str`): All variables used in the pipeline rpm_url_to_monitor(:obj:`str`): The url in the Google Cloud Console which you can use to monitor rpm_predict_online_output(:obj:`str`): The output from the online prediction import json rpm_context = json.loads(ctx) print(rpm_context) import subprocess import traceback def exec_cmd(cmd): try: print(cmd) process = subprocess.run(cmd, shell=True, check=True, stdout=subprocess.PIPE, universal_newlines=True) print(f"'output from {cmd}': {process.stdout}") return(process.stdout, 0) except subprocess.CalledProcessError as e: error = traceback.format_exc() print(error) print(e.output) return(e.output, 1) exec_cmd(f"gcloud config set project {rpm_context['RPM_GCP_PROJECT']}") import os path_to_ds = os.path.join(rpm_context['RPM_PVC_NAME'], rpm_context['RPM_PVC_DATASET_FOLDER_NAME']) # check if that the dataset directory already exists exec_cmd(f"test -d {path_to_ds} && echo 'Exists' || echo 'Does not exist'") # create the datset directory exec_cmd(f"mkdir -p {path_to_ds}") # validate that the dataset directory has been created exec_cmd(f"test -d {path_to_ds} && echo 'Exists' || echo 'Does not exist'") input_data = {"bounces": 0, "time_on_site": 7363} filename = os.path.join(path_to_ds, 'input.json') with open(filename, 'w') as outfile: outfile.write(input_data) cmd = f gcloud ai-platform predict --model {rpm_bqml_model} \ --version {rpm_model_version} --json-instances {filename} (output, returncode) = exec_cmd(cmd) print(f"Predicted results for {input_data} is {output} ") rpm_context['rpm_predict_online_output'] = output return ( json.dumps(rpm_context), rpm_context['rpm_predict_online_output'], ) # test locally predict_online_ml_model # You could unit test the above code in your local environment. # You don't need to execute the code, when simply building or running the KFP pipeline (experiment) local_context = get_local_context() import json update_local_context(predict_online_ml_model( json.dumps(local_context), local_context['RPM_GCP_PROJECT'], local_context['RPM_PVC_NAME'], local_context['RPM_PVC_DATASET_FOLDER_NAME'], local_context['rpm_bqml_model'], local_context['rpm_model_version'], )) # define the pipeline import kfp.components as comp def create_kfp_comp(rpm_comp): Converts a Python function to a component and returns a task(ContainerOp) factory Returns: Outputs (:obj: `ContainerOp`): returns the operation return comp.func_to_container_op( func=rpm_comp, base_image="google/cloud-sdk:latest" ) # reload the properties; undo any properties set to test component locally all_vars = load_params() from kfp.dsl import pipeline, VolumeOp import kfp.dsl as dsl import json # define the pipeline metadata @pipeline( name='Propensity to purchase using BigQuery ML', description='Propensity model if a customer is likely to purchase' ) # define the pipeline def bq_googlestr_dataset_to_bq_to_caip_pipeline( data_path = all_vars['RPM_PVC_NAME'] #you can pass input variables ): The function defines the pipeline. Args: data_path:(:obj:`str`): the volume to store the temporary files rpm_context = json.dumps(all_vars) gcs_bucket_folder_op = create_kfp_comp(create_gcs_bucket_folder)( rpm_context, all_vars['RPM_GCP_STORAGE_BUCKET'], all_vars['RPM_GCP_PROJECT'], all_vars['RPM_DEFAULT_BUCKET_EXT'], all_vars['RPM_GCP_STORAGE_BUCKET_FOLDER'], all_vars['RPM_DEFAULT_BUCKET_FOLDER_NAME'] ) create_bq_ds_op = create_kfp_comp(create_bq_ds)( gcs_bucket_folder_op.outputs['rpm_context'], all_vars['RPM_GCP_PROJECT'], all_vars['RPM_BQ_DATASET_NAME'], all_vars['RPM_LOCATION'] ) load_bq_ds_op = create_kfp_comp(load_bq_ds)( create_bq_ds_op.outputs['rpm_context'], all_vars['RPM_GCP_PROJECT'], all_vars['RPM_BQ_TABLE_NAME'], all_vars['RPM_DEFAULT_BQ_TABLE_NAME_EXT'], create_bq_ds_op.outputs['rpm_bq_ds_name'], ) create_bq_ml_op = create_kfp_comp(create_bq_ml)( load_bq_ds_op.outputs['rpm_context'], all_vars['RPM_GCP_PROJECT'], all_vars['RPM_MODEL_NAME'], all_vars['RPM_DEFAULT_MODEL_NAME'], create_bq_ds_op.outputs['rpm_bq_ds_name'], load_bq_ds_op.outputs['rpm_table_id'] ) evaluate_ml_model_op = create_kfp_comp(evaluate_ml_model)( create_bq_ml_op.outputs['rpm_context'], all_vars['RPM_GCP_PROJECT'], create_bq_ds_op.outputs['rpm_bq_ds_name'], create_bq_ml_op.outputs['rpm_bqml_model'], ) create_batch_prediction_dataset_op = create_kfp_comp(create_batch_prediction_dataset)( evaluate_ml_model_op.outputs['rpm_context'], all_vars['RPM_GCP_PROJECT'], create_bq_ds_op.outputs['rpm_bq_ds_name'], load_bq_ds_op.outputs['rpm_table_id'], ) predict_batch_ml_model_op = create_kfp_comp(predict_batch_ml_model)( evaluate_ml_model_op.outputs['rpm_context'], all_vars['RPM_GCP_PROJECT'], create_bq_ds_op.outputs['rpm_bq_ds_name'], create_bq_ml_op.outputs['rpm_bqml_model'], create_batch_prediction_dataset_op.outputs['rpm_pred_table_id'], ) get_versioned_bqml_model_export_path_op = create_kfp_comp(get_bqml_model_version)( create_bq_ml_op.outputs['rpm_context'], all_vars['RPM_GCP_PROJECT'], all_vars['RPM_MODEL_EXPORT_PATH'], all_vars['RPM_DEFAULT_MODEL_EXPORT_PATH'], all_vars['RPM_MODEL_VER_PREFIX'], gcs_bucket_folder_op.outputs['rpm_gcs_rpm_ds_url'] ) # create a volume where the dataset will be temporarily stored. pvc_op = VolumeOp( name=all_vars['RPM_PVC_NAME'], resource_name=all_vars['RPM_PVC_NAME'], size="20Gi", modes=dsl.VOLUME_MODE_RWO ) export_bqml_model_to_gcs_op = create_kfp_comp(export_bqml_model_to_gcs)(get_versioned_bqml_model_export_path_op.outputs['rpm_context'], all_vars['RPM_GCP_PROJECT'], all_vars['RPM_PVC_NAME'], all_vars['RPM_PVC_DATASET_FOLDER_NAME'], get_versioned_bqml_model_export_path_op.outputs['rpm_bqml_model_export_path'], gcs_bucket_folder_op.outputs['rpm_gcs_rpm_ds_url'], create_bq_ds_op.outputs['rpm_bq_ds_name'], create_bq_ml_op.outputs['rpm_bqml_model'], ) export_bqml_model_to_gcs_op.add_pvolumes({data_path: pvc_op.volume}) model_deploy_op = create_kfp_comp(deploy_ml_model_online_pred)( export_bqml_model_to_gcs_op.outputs['rpm_context'], all_vars['RPM_GCP_PROJECT'], all_vars['RPM_LOCATION'], all_vars['RPM_RUNTIME_VERSION'], all_vars['RPM_PYTHON_VERSION'], export_bqml_model_to_gcs_op.outputs['rpm_model_uri'], create_bq_ml_op.outputs['rpm_bqml_model'], get_versioned_bqml_model_export_path_op.outputs['rpm_model_version'], gcs_bucket_folder_op.outputs['rpm_gcs_rpm_ds_url'], ) predict_online_ml_model_op = create_kfp_comp(predict_online_ml_model)( model_deploy_op.outputs['rpm_context'], all_vars['RPM_GCP_PROJECT'], all_vars['RPM_PVC_NAME'], all_vars['RPM_PVC_DATASET_FOLDER_NAME'], create_bq_ml_op.outputs['rpm_bqml_model'], get_versioned_bqml_model_export_path_op.outputs['rpm_model_version'], ) predict_online_ml_model_op.add_pvolumes({data_path: pvc_op.volume}) # don't cache the following comps # the below is for model versioning only get_versioned_bqml_model_export_path_op.execution_options.caching_strategy.max_cache_staleness = "P0D" export_bqml_model_to_gcs_op.execution_options.caching_strategy.max_cache_staleness = "P0D" model_deploy_op.execution_options.caching_strategy.max_cache_staleness = "P0D" predict_online_ml_model_op.execution_options.caching_strategy.max_cache_staleness = "P0D" # don't cache any comps # you don't want to cache any comps when you are repetatively integration testing gcs_bucket_folder_op.execution_options.caching_strategy.max_cache_staleness = "P0D" create_bq_ds_op.execution_options.caching_strategy.max_cache_staleness = "P0D" load_bq_ds_op.execution_options.caching_strategy.max_cache_staleness = "P0D" create_bq_ml_op.execution_options.caching_strategy.max_cache_staleness = "P0D" evaluate_ml_model_op.execution_options.caching_strategy.max_cache_staleness = "P0D" create_batch_prediction_dataset_op.execution_options.caching_strategy.max_cache_staleness = "P0D" predict_batch_ml_model_op.execution_options.caching_strategy.max_cache_staleness = "P0D" get_versioned_bqml_model_export_path_op.execution_options.caching_strategy.max_cache_staleness = "P0D" export_bqml_model_to_gcs_op.execution_options.caching_strategy.max_cache_staleness = "P0D" model_deploy_op.execution_options.caching_strategy.max_cache_staleness = "P0D" predict_online_ml_model_op.execution_options.caching_strategy.max_cache_staleness = "P0D" #compile the pipeline def complie_pipeline(pipeline_func): Compile the pipeline, watch out for errors in the pipeline composition. Args: pipeline_func (:obj:`bq_googlestr_dataset_to_bq_to_caip_pipeline`): The pipeline definition Returns: pipeline_filename (:obj:`str`): the compressed file compipled file to upload to CloudAI Platform Prediction pipeline_func (:obj:`str`): bq_googlestr_dataset_to_bq_to_caip_pipeline, name of the the pipeline arguments (:obj:`str`): the arguments to pass to the pipeline when you launch it pipeline_func = pipeline_func pipeline_filename = pipeline_func.__name__ + '.zip' import kfp.compiler as compiler compiler.Compiler().compile(pipeline_func, pipeline_filename) arguments = {} return (pipeline_filename, pipeline_func, arguments) pipeline_filename, pipeline_func, arguments = complie_pipeline(bq_googlestr_dataset_to_bq_to_caip_pipeline) # create and run an experiment def create_experiment_and_run(): Create an experiment and run the pipeline immediately. Please use the links in the output to go directly to the experiment/run launched in the browser client = kfp.Client(RPM_GCP_KFP_HOST) experiment = client.create_experiment(RPM_DS_DOWNLOAD_EXPERIMENT_NAME) #Submit a pipeline run run_name = pipeline_func.__name__ + ' run' run_result = client.run_pipeline( experiment_id=experiment.id, job_name=run_name, pipeline_package_path=pipeline_filename, params=arguments) create_experiment_and_run() # Data Exploration !!! BE CAREFUL !!! adjust the query to sample the data. # 1. Get pandas df from BigQuery # 2. plot histogram using matplotlib ######################### from google.cloud import bigquery as bq import pandas as pd rpm_context = get_local_context() client = bq.Client(project=rpm_context["RPM_GCP_PROJECT"]) # adjust the below query to grab only a sample dataset e.g. use a where clause. df = client.query(''' SELECT * FROM `%s.%s` LIMIT 10 ''' % (rpm_context["rpm_bq_ds_name"], rpm_context["rpm_table_id"].split('.')[2])).to_dataframe() df.head() df.tail() df.info() df.shape import matplotlib.pyplot as plt %matplotlib inline plt.close('all') df.hist(bins=50, figsize=(20,15)) plt.show() # takes a bit of time...BE CAREFUL!!! # works on local Jupyter instance. import pandas_profiling as pp pp.ProfileReport(df) # delete_pod_pvc def delete_pod_pvc(ctx: str) -> str: Removes the Pods and Persistence Volume (PVCs) created in the pipeline, This is not recommendated to use it in a production enviornment. Comes handy in the iterative development and testing phases of the SDLC. !!! BE CAREFUL !!!! Args: ctx(:obj:`str`): The dict object with all the variables in the local context # loading rpm_context string import json rpm_context = json.loads(ctx) print(rpm_context) import subprocess def exec_cmd (cmd): try: print(cmd) process = subprocess.run(cmd, shell=True, check=True, stdout=subprocess.PIPE, universal_newlines=True) print(f"'output from {cmd}': {process.stdout}") except subprocess.CalledProcessError as e: error = traceback.format_exc() print(error) print(e) exec_cmd(f"gcloud config set project {rpm_context['RPM_GCP_PROJECT']}") exec_cmd(f"gcloud container clusters get-credentials {rpm_context['RPM_CLUSTER_NAME']} --zone {rpm_context['RPM_LOCATION']} --project {rpm_context['RPM_GCP_PROJECT']}") exec_cmd(''' for pod in `kubectl get pod | grep 'bq-public-google-ds-to-bq-' | awk -F ' ' '{print $1}'`; do echo kubectl delete pod $pod; kubectl delete pod $pod; done ''') exec_cmd(''' for pvc in `kubectl get pvc | grep 'bq-public-google-ds-to-bq-' | awk -F ' ' '{print $1}'`; do echo kubectl delete pvc $pvc; kubectl delete pvc $pvc; done ''') exec_cmd(''' for pod in `kubectl get pod | grep 'bq-public-google-ds-to-bq-' | awk -F ' ' '{print $1}'`; do echo kubectl patch pod $pod -p '{"metadata":{"finalizers":null}}'; kubectl patch pod $pod -p '{"metadata":{"finalizers":null}}'; done ''') exec_cmd(''' for pvc in `kubectl get pvc | grep 'bq-public-google-ds-to-bq-' | awk -F ' ' '{print $1}'`; do echo kubectl patch pvc $pvc -p '{"metadata":{"finalizers":null}}'; kubectl patch pvc $pvc -p '{"metadata":{"finalizers":null}}'; done ''') test_comp_local(delete_pod_pvc) # delete the storage folder from google.cloud import storage from google.cloud.exceptions import NotFound from google.cloud.exceptions import Forbidden import traceback def delete_storage_folder(bucket_name, folder_name): Deletes a folder in the Google Cloust Storage, This is not recommendated to use it in a production enviornment. Comes handy in the iterative development and testing phases of the SDLC. !!! BE CAREFUL !!!! Args: bucket_name(:obj:`str`): The Cloud Storage bucket name, where the folder exists folder_name(:obj:`str`): The folder that we want to delete Returns: (:obj:`boolean`): True if we are able to scucessfully delete the folder if len(bucket_name) == 0 or len(folder_name) == 0: print(f"Folder {folder_name} couldn't be deleted. Name is empty.") return False else: client = storage.Client() try: bucket = client.get_bucket(bucket_name) blob = bucket.get_blob(folder_name) if blob is None: print(f"Folder name {folder_name} does not exist!") return False else: bucket.delete_blobs(blobs=bucket.list_blobs(prefix=folder_name)) print(f"Folder {folder_name} deleted") return True except Exception as e: print(f"Folder {folder_name} couldn't be deleted") print(e) error = traceback.format_exc() print(error) return False # delete storage folder if desired...!!!BE CAREFUL!!!! local_context = get_local_context() delete_storage_folder(local_context['rpm_gcs_rpm_ds_url'].split('/')[2], local_context['rpm_gcs_rpm_ds_url'].split('/')[3]+'/') #delete the bucket from google.cloud import storage from google.cloud.exceptions import NotFound from google.cloud.exceptions import Forbidden import traceback def delete_storage_bucket (bucket_name): Deletes a folder in the Google Cloust Storage, This is not recommendated to use it in a production enviornment. Comes handy in the iterative development and testing phases of the SDLC. !!! BE CAREFUL !!!! Args: bucket_name(:obj:`str`): The Cloud Storage bucket name, that we want to delete Returns: (:obj:`boolean`): True if we are able to scucessfully delete the folder if bucket_name: client = storage.Client() try: bucket = client.get_bucket(bucket_name) bucket.delete() print(f"Bucket {bucket.name} deleted") return True except Exception as e: print(f"Bucket {bucket_name} couldn't be deleted") print(e) error = traceback.format_exc() print(error) return False else: print(f"Bucket {bucket_name} couldn't be deleted. Name is empty.") return False # delete storage bucket if desired...!!! BE CAREFUL !!!! delete_storage_bucket(get_local_context()['rpm_gcs_rpm_ds_url'].split('/')[2]) #delete BigQuery table if not needed...!!! BE CAREFUL !!! def delete_table(table_id): Deletes a BigQuery table This is not recommendated to use it in a production enviornment. Comes handy in the iterative development and testing phases of the SDLC. !!! BE CAREFUL !!!! Args: table_id(:obj:`str`): The BigQuery table name that we want to delete from google.cloud import bigquery # Construct a BigQuery client object. client = bigquery.Client() # client.delete_table(table_id, not_found_ok=True) # Make an API request. client.delete_table(table_id) # Make an API request. print("Deleted table '{}'.".format(table_id)) #delete the table in the BigQuery delete_table(get_local_context()['rpm_table_id']) def delete_dataset(dataset_id): Deletes a BigQuery dataset This is not recommendated to use it in a production enviornment. Comes handy in the iterative development and testing phases of the SDLC. !!! BE CAREFUL !!!! Args: dataset_id(:obj:`str`): The BigQuery dataset name that we want to delete # [START bigquery_delete_dataset] from google.cloud import bigquery # Construct a BigQuery client object. client = bigquery.Client() # dataset_id = 'your-project.your_dataset' # Use the delete_contents parameter to delete a dataset and its contents. # Use the not_found_ok parameter to not receive an error if the # dataset has already been deleted. client.delete_dataset( dataset_id, delete_contents=True, not_found_ok=True ) # Make an API request. print("Deleted dataset '{}'.".format(dataset_id)) #delete the BigQuery dataset rpm_context = get_local_context() delete_dataset(f"{rpm_context['RPM_GCP_PROJECT']}.{rpm_context['rpm_bq_ds_name']}") # delete the Cloud Storage folders where the models are saved local_context = get_local_context() bucket_name= local_context['rpm_gcs_rpm_ds_url'].split('/')[2] rpm_bq_ds_name = local_context['rpm_gcs_rpm_ds_url'].split('/')[3] rpm_bqml_model_export_path = local_context['RPM_MODEL_EXPORT_PATH'] if not rpm_bqml_model_export_path: rpm_bqml_model_export_path = local_context["RPM_DEFAULT_MODEL_EXPORT_PATH"] folder_name = os.path.join(rpm_bq_ds_name, rpm_bqml_model_export_path) assert delete_storage_folder(bucket_name, folder_name) == True #exec a cmd in python; an utility func import subprocess import traceback def exec_cmd(cmd): Executes an OS command. Args: cmd(:obj:`str`): The OS command Returns: (:obj:`str`): The output of the execution of the OS command (:obj:`str`): The returned code of the excecution of the OS command try: print(cmd) process = subprocess.run(cmd, shell=True, check=True, stdout=subprocess.PIPE, universal_newlines=True) print(f"'output from {cmd}': {process.stdout}") return (process.stdout, 0) except subprocess.CalledProcessError as e: error = traceback.format_exc() print(error) print(e.output) return (e.output, 1) #delete the model def delete_caip_model(): Deletes the models from the Cloud AI Platform Prediction local_context = get_local_context() (output, returncode) = exec_cmd(f"gcloud ai-platform versions list --model {local_context['rpm_bqml_model']} --format='value(name)'") for each_ver in output.split('\n'): print(each_ver) cmd = f"gcloud ai-platform versions delete {each_ver} --model={local_context['rpm_bqml_model']}" exec_cmd(cmd) cmd = f'gcloud ai-platform models delete {local_context["rpm_bqml_model"]}' exec_cmd(cmd) delete_caip_model() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 6.1.3 SGDの欠点 Step2: 6.1.4 Momentum Step3: 6.1.5 AdaGrad Step4: 6.1.6 Adam Step5: 6.1.7 どの更新手法を用いるか? Step6: 上記ではAdaGradが一番良く見えるが、扱う問題やハイパーパラメータ(学習係数など)の設定値によって結果が変わる。 Step7: SGD以外の手法が早く学習できている。AdaGradが最も早く学習出来ているように見える。一般にSGDよりほかの3つの手法のほうが早く学習でき、時には最終的な認識性能も高くなる。 Step8: 上記の上表を見ると、標準偏差1のガウス分布で与えられた重みの初期値において各層のアクティベーションは0や1に偏っている。 Step9: 6.2.3 ReLUの場合の重みの初期値 Step10: 「std=0.01」の場合いずれの層でもアクティベーションは小さくなるため、逆伝播の際の勾配も小さくなる。「Xavierの初期値」の場合層が深くなるにつれて偏りが少しづつ大きくなる。これより層を深くすればアクティベーションの方よりも大きくなり、学習の際に勾配消失問題が発生してしまう。「Heの初期値」においては均一の広がりであることが見て取れる。逆伝播の際にもよい結果が得られる。 Step11: 「std=0.01」ではほとんど学習が進んでいない。アクティベーションが0に偏っており、勾配が殆どないため重みの更新がほとんど行われていないためと考えられる。 Step12: 重みの初期値の標準偏差を変えたときの学習経過は上記になる。実践がBatch Normあり、破線がBatch Normなしである。多くのケースでBatch Normを利用したほうが学習が早く進んでいる。 Step13: エポック(訓練データを全て見終わった単位)毎に、訓練データとテストデータの認識精度を確認した結果が上記となる。 Step14: Weight decayを加えた結果、訓練データとテストデータ間の差は縮まった事が分かる。一方で訓練データの認識性能が下がったことも注目すべきである。 Step15: Dropout=0.2とした場合、上記結果となる。訓練データセットとテストデータセットの差が縮まってきており、上手く学習が行えている。このようにDropoutを行なうと表現力を保ったまま、過学習を抑制することが出来る。
<ASSISTANT_TASK:> Python Code: class SGD: def __init__(self, lr=0.01): self.lr = lr def update(self, params, grads): for key in params.keys(): params[key] -= self.lr * grads[key] # cf.http://d.hatena.ne.jp/white_wheels/20100327/p3 import numpy as np import matplotlib.pylab as plt from mpl_toolkits.mplot3d import Axes3D def _numerical_gradient_no_batch(f, x, axis='x'): h = 1e-4 # 0.0001 grad = np.zeros_like(x) for idx in range(x.size): tmp_val = x[idx] x[idx] = float(tmp_val) + h fxh1 = f(x, axis) # f(x+h) x[idx] = tmp_val - h fxh2 = f(x, axis) # f(x-h) grad[idx] = (fxh1 - fxh2) / (2*h) x[idx] = tmp_val # 値を元に戻す return grad def numerical_gradient(f, X): if X.ndim == 1: return _numerical_gradient_no_batch(f, X) else: grad = np.zeros_like(X) for idx, x in enumerate(X): if(idx == 0): grad[idx] = _numerical_gradient_no_batch(f, x, axis='x') elif(idx == 1): grad[idx] = _numerical_gradient_no_batch(f, x, axis='y') return grad def function_2(x, axis='x'): if(axis == 'x'): return np.sum(x**2 / 20) elif(axis == 'y'): return np.sum(x**2) if __name__ == '__main__': x = np.arange(-10, 10, 1) y = np.arange(-10, 10, 1) X, Y = np.meshgrid(x, y) X = X.flatten() Y = Y.flatten() grad = numerical_gradient(function_2, np.array([X, Y]) ) plt.figure() plt.quiver(X, Y, -grad[0], -grad[1], angles="xy",color="#666666")#,headwidth=10,scale=40,color="#444444") plt.xlim([-10, 10]) plt.ylim([-10, 10]) plt.xlabel('x') plt.ylabel('y') plt.grid() plt.legend() plt.draw() plt.show() class Momentum: def __init__(self, lr=0.01, momentum=0.9): self.lr = lr self.momentum = momentum self.v = None def update(self, params, grads): if self.v is None: self.v = {} for key, val in params.items(): self.v[key] = np.zeros_like(val) for key in params.keys(): self.v[key] = self.momentum*self.v[key] - self.lr*grads[key] params[key] += self.v[key] class AdaGrad: def __init__(self, lr=0.01): self.lr = lr self.h = None def update(self, params, grads): if self.h is None: self.h = {} for key, val in params.items(): self.h[key] = np.zeros_like(val) for key in params.keys(): self.h[key] += grads[key] * grads[key] params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7) class Adam: def __init__(self, lr=0.001, beta1=0.9, beta2=0.999): self.lr = lr self.beta1 = beta1 self.beta2 = beta2 self.iter = 0 self.m = None self.v = None def update(self, params, grads): if self.m is None: self.m, self.v = {}, {} for key, val in params.items(): self.m[key] = np.zeros_like(val) self.v[key] = np.zeros_like(val) self.iter += 1 lr_t = self.lr * np.sqrt(1.0 - self.beta2**self.iter) / (1.0 - self.beta1**self.iter) for key in params.keys(): #self.m[key] = self.beta1*self.m[key] + (1-self.beta1)*grads[key] #self.v[key] = self.beta2*self.v[key] + (1-self.beta2)*(grads[key]**2) self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key]) self.v[key] += (1 - self.beta2) * (grads[key]**2 - self.v[key]) params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7) #unbias_m += (1 - self.beta1) * (grads[key] - self.m[key]) # correct bias #unbisa_b += (1 - self.beta2) * (grads[key]*grads[key] - self.v[key]) # correct bias #params[key] += self.lr * unbias_m / (np.sqrt(unbisa_b) + 1e-7) # coding: utf-8 import sys, os sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import numpy as np import matplotlib.pyplot as plt from collections import OrderedDict from src.optimizer import * def f(x, y): return x**2 / 20.0 + y**2 def df(x, y): return x / 10.0, 2.0*y init_pos = (-7.0, 2.0) params = {} params['x'], params['y'] = init_pos[0], init_pos[1] grads = {} grads['x'], grads['y'] = 0, 0 optimizers = OrderedDict() optimizers["SGD"] = SGD(lr=0.95) optimizers["Momentum"] = Momentum(lr=0.1) optimizers["AdaGrad"] = AdaGrad(lr=1.5) optimizers["Adam"] = Adam(lr=0.3) idx = 1 for key in optimizers: optimizer = optimizers[key] x_history = [] y_history = [] params['x'], params['y'] = init_pos[0], init_pos[1] for i in range(30): x_history.append(params['x']) y_history.append(params['y']) grads['x'], grads['y'] = df(params['x'], params['y']) optimizer.update(params, grads) x = np.arange(-10, 10, 0.01) y = np.arange(-5, 5, 0.01) X, Y = np.meshgrid(x, y) Z = f(X, Y) # for simple contour line mask = Z > 7 Z[mask] = 0 # plot plt.subplot(2, 2, idx) idx += 1 plt.plot(x_history, y_history, 'o-', color="red") plt.contour(X, Y, Z) plt.ylim(-10, 10) plt.xlim(-10, 10) plt.plot(0, 0, '+') #colorbar() #spring() plt.title(key) plt.xlabel("x") plt.ylabel("y") plt.show() import os import sys sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import matplotlib.pyplot as plt from src.mnist import load_mnist from src.util import smooth_curve from src.multi_layer_net import MultiLayerNet from src.optimizer import * # 0:MNISTデータの読み込み========== (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True) train_size = x_train.shape[0] batch_size = 128 max_iterations = 2000 # 1:実験の設定========== optimizers = {} optimizers['SGD'] = SGD() optimizers['Momentum'] = Momentum() optimizers['AdaGrad'] = AdaGrad() optimizers['Adam'] = Adam() #optimizers['RMSprop'] = RMSprop() networks = {} train_loss = {} for key in optimizers.keys(): networks[key] = MultiLayerNet( input_size=784, hidden_size_list=[100, 100, 100, 100], output_size=10) train_loss[key] = [] # 2:訓練の開始========== for i in range(max_iterations): batch_mask = np.random.choice(train_size, batch_size) x_batch = x_train[batch_mask] t_batch = t_train[batch_mask] for key in optimizers.keys(): grads = networks[key].gradient(x_batch, t_batch) optimizers[key].update(networks[key].params, grads) loss = networks[key].loss(x_batch, t_batch) train_loss[key].append(loss) if i % 100 == 0: print( "===========" + "iteration:" + str(i) + "===========") for key in optimizers.keys(): loss = networks[key].loss(x_batch, t_batch) print(key + ":" + str(loss)) # 3.グラフの描画========== markers = {"SGD": "o", "Momentum": "x", "AdaGrad": "s", "Adam": "D"} x = np.arange(max_iterations) for key in optimizers.keys(): plt.plot(x, smooth_curve(train_loss[key]), marker=markers[key], markevery=100, label=key) plt.xlabel("iterations") plt.ylabel("loss") plt.ylim(0, 1) plt.legend() plt.show() import numpy as np import matplotlib.pyplot as plt def sigmoid(x): return 1 / (1 + np.exp(-x)) def ReLU(x): return np.maximum(0, x) def tanh(x): return np.tanh(x) input_data = np.random.randn(1000, 100) # 1000個のデータ node_num = 100 # 各隠れ層のノード(ニューロン)の数 hidden_layer_size = 5 # 隠れ層が5層 activations = {} # ここにアクティベーションの結果を格納する activations01 = {} # ここにアクティベーションの結果を格納する activationsxa = {} # ここにアクティベーションの結果を格納する x = input_data x01 = input_data xxa = input_data for i in range(hidden_layer_size): if i != 0: x = activations[i-1] x01 = activations01[i-1] xxa = activationsxa[i-1] # 初期値の値をいろいろ変えて実験しよう! w = np.random.randn(node_num, node_num) * 1 w01 = np.random.randn(node_num, node_num) * 0.01 wxa = np.random.randn(node_num, node_num) * np.sqrt(1.0 / node_num) # w = np.random.randn(node_num, node_num) * np.sqrt(2.0 / node_num) a = np.dot(x, w) a01 = np.dot(x01, w01) axa = np.dot(xxa, wxa) # 活性化関数の種類も変えて実験しよう! z = sigmoid(a) z01 = sigmoid(a01) zxa = sigmoid(axa) # z = ReLU(a) # z = tanh(a) activations[i] = z activations01[i] = z01 activationsxa[i] = zxa # ヒストグラムを描画(標準偏差1) for i, a in activations.items(): plt.subplot(1, len(activations), i+1) plt.title(str(i+1) + "-layer") if i != 0: plt.yticks([], []) # plt.xlim(0.1, 1) # plt.ylim(0, 7000) plt.hist(a.flatten(), 30, range=(0,1)) plt.show() # ヒストグラムを描画(標準偏差0.1) for i, a in activations01.items(): plt.subplot(1, len(activations), i+1) plt.title(str(i+1) + "-layer") if i != 0: plt.yticks([], []) # plt.xlim(0.1, 1) # plt.ylim(0, 7000) plt.hist(a.flatten(), 30, range=(0,1)) plt.show() # ヒストグラムを描画(標準偏差 Xavier) for i, a in activationsxa.items(): plt.subplot(1, len(activations), i+1) plt.title(str(i+1) + "-layer") if i != 0: plt.yticks([], []) # plt.xlim(0.1, 1) # plt.ylim(0, 7000) plt.hist(a.flatten(), 30, range=(0,1)) plt.show() import numpy as np import matplotlib.pyplot as plt def sigmoid(x): return 1 / (1 + np.exp(-x)) def ReLU(x): return np.maximum(0, x) def tanh(x): return np.tanh(x) input_data = np.random.randn(1000, 100) # 1000個のデータ node_num = 100 # 各隠れ層のノード(ニューロン)の数 hidden_layer_size = 5 # 隠れ層が5層 activations001 = {} # ここにアクティベーションの結果を格納する activationsxa = {} # ここにアクティベーションの結果を格納する activationshe = {} # ここにアクティベーションの結果を格納する x001 = input_data xxa = input_data xhe = input_data for i in range(hidden_layer_size): if i != 0: x001 = activations001[i-1] xxa = activationsxa[i-1] xhe = activationshe[i-1] # 初期値の値をいろいろ変えて実験しよう! w001 = np.random.randn(node_num, node_num) * 0.01 wxa = np.random.randn(node_num, node_num) * np.sqrt(1.0 / node_num) whe = np.random.randn(node_num, node_num) * np.sqrt(2.0 / node_num) a001 = np.dot(x001, w001) axa = np.dot(xxa, wxa) ahe = np.dot(xhe, whe) z001 = ReLU(a001) zxa = ReLU(axa) zhe = ReLU(ahe) activations001[i] = z001 activationsxa[i] = zxa activationshe[i] = zhe # ヒストグラムを描画(標準偏差0.01) for i, a in activations001.items(): plt.subplot(1, len(activations), i+1) plt.title(str(i+1) + "-layer") if i != 0: plt.yticks([], []) plt.xlim(0.1, 1) plt.ylim(0, 7000) plt.hist(a.flatten(), 30, range=(0,1)) plt.show() # ヒストグラムを描画(Xavier) for i, a in activationsxa.items(): plt.subplot(1, len(activations), i+1) plt.title(str(i+1) + "-layer") if i != 0: plt.yticks([], []) plt.xlim(0.1, 1) plt.ylim(0, 7000) plt.hist(a.flatten(), 30, range=(0,1)) plt.show() # ヒストグラムを描画(He) for i, a in activationshe.items(): plt.subplot(1, len(activations), i+1) plt.title(str(i+1) + "-layer") if i != 0: plt.yticks([], []) plt.xlim(0.1, 1) plt.ylim(0, 7000) plt.hist(a.flatten(), 30, range=(0,1)) plt.show() import os import sys sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import numpy as np import matplotlib.pyplot as plt from src.mnist import load_mnist from src.util import smooth_curve from src.multi_layer_net import MultiLayerNet from src.optimizer import SGD # 0:MNISTデータの読み込み========== (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True) train_size = x_train.shape[0] batch_size = 128 max_iterations = 2000 # 1:実験の設定========== weight_init_types = {'std=0.01': 0.01, 'Xavier': 'sigmoid', 'He': 'relu'} optimizer = SGD(lr=0.01) networks = {} train_loss = {} for key, weight_type in weight_init_types.items(): networks[key] = MultiLayerNet(input_size=784, hidden_size_list=[100, 100, 100, 100], output_size=10, weight_init_std=weight_type) train_loss[key] = [] # 2:訓練の開始========== for i in range(max_iterations): batch_mask = np.random.choice(train_size, batch_size) x_batch = x_train[batch_mask] t_batch = t_train[batch_mask] for key in weight_init_types.keys(): grads = networks[key].gradient(x_batch, t_batch) optimizer.update(networks[key].params, grads) loss = networks[key].loss(x_batch, t_batch) train_loss[key].append(loss) if i % 100 == 0: print("===========" + "iteration:" + str(i) + "===========") for key in weight_init_types.keys(): loss = networks[key].loss(x_batch, t_batch) print(key + ":" + str(loss)) # 3.グラフの描画========== markers = {'std=0.01': 'o', 'Xavier': 's', 'He': 'D'} x = np.arange(max_iterations) for key in weight_init_types.keys(): plt.plot(x, smooth_curve(train_loss[key]), marker=markers[key], markevery=100, label=key) plt.xlabel("iterations") plt.ylabel("loss") plt.ylim(0, 2.5) plt.legend() plt.show() import sys, os sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import numpy as np import matplotlib.pyplot as plt from src.mnist import load_mnist from src.multi_layer_net_extend import MultiLayerNetExtend from src.optimizer import SGD, Adam (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True) # 学習データを削減 x_train = x_train[:1000] t_train = t_train[:1000] max_epochs = 20 train_size = x_train.shape[0] batch_size = 100 learning_rate = 0.01 def __train(weight_init_std): bn_network = MultiLayerNetExtend(input_size=784, hidden_size_list=[100, 100, 100, 100, 100], output_size=10, weight_init_std=weight_init_std, use_batchnorm=True) network = MultiLayerNetExtend(input_size=784, hidden_size_list=[100, 100, 100, 100, 100], output_size=10, weight_init_std=weight_init_std) optimizer = SGD(lr=learning_rate) train_acc_list = [] bn_train_acc_list = [] iter_per_epoch = max(train_size / batch_size, 1) epoch_cnt = 0 for i in range(1000000000): batch_mask = np.random.choice(train_size, batch_size) x_batch = x_train[batch_mask] t_batch = t_train[batch_mask] for _network in (bn_network, network): grads = _network.gradient(x_batch, t_batch) optimizer.update(_network.params, grads) if i % iter_per_epoch == 0: train_acc = network.accuracy(x_train, t_train) bn_train_acc = bn_network.accuracy(x_train, t_train) train_acc_list.append(train_acc) bn_train_acc_list.append(bn_train_acc) # print("epoch:" + str(epoch_cnt) + " | " + str(train_acc) + " - " + str(bn_train_acc)) epoch_cnt += 1 if epoch_cnt >= max_epochs: break return train_acc_list, bn_train_acc_list # 3.グラフの描画========== plt.figure(figsize=(10,9)) weight_scale_list = np.logspace(0, -4, num=16) x = np.arange(max_epochs) for i, w in enumerate(weight_scale_list): # print( "============== " + str(i+1) + "/16" + " ==============") train_acc_list, bn_train_acc_list = __train(w) plt.subplot(4,4,i+1) plt.title("W:" + str(w)) if i == 15: plt.plot(x, bn_train_acc_list, label='Batch Normalization', markevery=2) plt.plot(x, train_acc_list, linestyle = "--", label='Normal(without BatchNorm)', markevery=2) else: plt.plot(x, bn_train_acc_list, markevery=2) plt.plot(x, train_acc_list, linestyle="--", markevery=2) plt.ylim(0, 1.0) if i % 4: plt.yticks([]) else: plt.ylabel("accuracy") if i < 12: plt.xticks([]) else: plt.xlabel("epochs") plt.legend(loc='lower right') plt.show() import os import sys sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import numpy as np import matplotlib.pyplot as plt from src.mnist import load_mnist from src.multi_layer_net import MultiLayerNet from src.optimizer import SGD (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True) # 過学習を再現するために、学習データを削減 x_train = x_train[:300] t_train = t_train[:300] # weight decay(荷重減衰)の設定 ======================= weight_decay_lambda = 0 # weight decayを使用しない場合 # weight_decay_lambda = 0.1 # ==================================================== network = MultiLayerNet(input_size=784, hidden_size_list=[100, 100, 100, 100, 100, 100], output_size=10, weight_decay_lambda=weight_decay_lambda) optimizer = SGD(lr=0.01) max_epochs = 201 train_size = x_train.shape[0] batch_size = 100 train_loss_list = [] train_acc_list = [] test_acc_list = [] iter_per_epoch = max(train_size / batch_size, 1) epoch_cnt = 0 for i in range(1000000000): batch_mask = np.random.choice(train_size, batch_size) x_batch = x_train[batch_mask] t_batch = t_train[batch_mask] grads = network.gradient(x_batch, t_batch) optimizer.update(network.params, grads) if i % iter_per_epoch == 0: train_acc = network.accuracy(x_train, t_train) test_acc = network.accuracy(x_test, t_test) train_acc_list.append(train_acc) test_acc_list.append(test_acc) # print("epoch:" + str(epoch_cnt) + ", train acc:" + str(train_acc) + ", test acc:" + str(test_acc)) epoch_cnt += 1 if epoch_cnt >= max_epochs: break # 3.グラフの描画========== markers = {'train': 'o', 'test': 's'} x = np.arange(max_epochs) plt.plot(x, train_acc_list, marker='o', label='train', markevery=10) plt.plot(x, test_acc_list, marker='s', label='test', markevery=10) plt.xlabel("epochs") plt.ylabel("accuracy") plt.ylim(0, 1.0) plt.legend(loc='lower right') plt.show() import os import sys sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import numpy as np import matplotlib.pyplot as plt from src.mnist import load_mnist from src.multi_layer_net import MultiLayerNet from src.optimizer import SGD (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True) # 過学習を再現するために、学習データを削減 x_train = x_train[:300] t_train = t_train[:300] # weight decay(荷重減衰)の設定 ======================= # weight_decay_lambda = 0 # weight decayを使用しない場合 weight_decay_lambda = 0.1 # ==================================================== network = MultiLayerNet(input_size=784, hidden_size_list=[100, 100, 100, 100, 100, 100], output_size=10, weight_decay_lambda=weight_decay_lambda) optimizer = SGD(lr=0.01) max_epochs = 201 train_size = x_train.shape[0] batch_size = 100 train_loss_list = [] train_acc_list = [] test_acc_list = [] iter_per_epoch = max(train_size / batch_size, 1) epoch_cnt = 0 for i in range(1000000000): batch_mask = np.random.choice(train_size, batch_size) x_batch = x_train[batch_mask] t_batch = t_train[batch_mask] grads = network.gradient(x_batch, t_batch) optimizer.update(network.params, grads) if i % iter_per_epoch == 0: train_acc = network.accuracy(x_train, t_train) test_acc = network.accuracy(x_test, t_test) train_acc_list.append(train_acc) test_acc_list.append(test_acc) # print("epoch:" + str(epoch_cnt) + ", train acc:" + str(train_acc) + ", test acc:" + str(test_acc)) epoch_cnt += 1 if epoch_cnt >= max_epochs: break # 3.グラフの描画========== markers = {'train': 'o', 'test': 's'} x = np.arange(max_epochs) plt.plot(x, train_acc_list, marker='o', label='train', markevery=10) plt.plot(x, test_acc_list, marker='s', label='test', markevery=10) plt.xlabel("epochs") plt.ylabel("accuracy") plt.ylim(0, 1.0) plt.legend(loc='lower right') plt.show() import os import sys sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import numpy as np import matplotlib.pyplot as plt from src.mnist import load_mnist from src.multi_layer_net_extend import MultiLayerNetExtend from src.trainer import Trainer (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True) # 過学習を再現するために、学習データを削減 x_train = x_train[:300] t_train = t_train[:300] # Dropuoutの有無、割り合いの設定 ======================== use_dropout = True # Dropoutなしのときの場合はFalseに dropout_ratio = 0.2 # ==================================================== network = MultiLayerNetExtend(input_size=784, hidden_size_list=[100, 100, 100, 100, 100, 100], output_size=10, use_dropout=use_dropout, dropout_ration=dropout_ratio) trainer = Trainer(network, x_train, t_train, x_test, t_test, epochs=301, mini_batch_size=100, optimizer='sgd', optimizer_param={'lr': 0.01}, verbose=False) trainer.train() train_acc_list, test_acc_list = trainer.train_acc_list, trainer.test_acc_list # グラフの描画========== markers = {'train': 'o', 'test': 's'} x = np.arange(len(train_acc_list)) plt.plot(x, train_acc_list, marker='o', label='train', markevery=10) plt.plot(x, test_acc_list, marker='s', label='test', markevery=10) plt.xlabel("epochs") plt.ylabel("accuracy") plt.ylim(0, 1.0) plt.legend(loc='lower right') plt.show() import sys, os sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import numpy as np import matplotlib.pyplot as plt from src.mnist import load_mnist from src.multi_layer_net import MultiLayerNet from src.util import shuffle_dataset from src.trainer import Trainer (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True) # 高速化のため訓練データの削減 x_train = x_train[:500] t_train = t_train[:500] # 検証データの分離 validation_rate = 0.20 validation_num = x_train.shape[0] * validation_rate x_train, t_train = shuffle_dataset(x_train, t_train) x_val = x_train[:int(validation_num)] t_val = t_train[:int(validation_num)] x_train = x_train[int(validation_num):] t_train = t_train[int(validation_num):] def __train(lr, weight_decay, epocs=50): network = MultiLayerNet(input_size=784, hidden_size_list=[100, 100, 100, 100, 100, 100], output_size=10, weight_decay_lambda=weight_decay) trainer = Trainer(network, x_train, t_train, x_val, t_val, epochs=epocs, mini_batch_size=100, optimizer='sgd', optimizer_param={'lr': lr}, verbose=False) trainer.train() return trainer.test_acc_list, trainer.train_acc_list # ハイパーパラメータのランダム探索====================================== optimization_trial = 100 results_val = {} results_train = {} for _ in range(optimization_trial): # 探索したハイパーパラメータの範囲を指定=============== weight_decay = 10 ** np.random.uniform(-8, -4) lr = 10 ** np.random.uniform(-6, -2) # ================================================ val_acc_list, train_acc_list = __train(lr, weight_decay) print("val acc:" + str(val_acc_list[-1]) + " | lr:" + str(lr) + ", weight decay:" + str(weight_decay)) key = "lr:" + str(lr) + ", weight decay:" + str(weight_decay) results_val[key] = val_acc_list results_train[key] = train_acc_list # グラフの描画======================================================== print("=========== Hyper-Parameter Optimization Result ===========") graph_draw_num = 20 col_num = 5 row_num = int(np.ceil(graph_draw_num / col_num)) i = 0 for key, val_acc_list in sorted(results_val.items(), key=lambda x:x[1][-1], reverse=True): print("Best-" + str(i+1) + "(val acc:" + str(val_acc_list[-1]) + ") | " + key) plt.subplot(row_num, col_num, i+1) plt.title("Best-" + str(i+1)) plt.ylim(0.0, 1.0) if i % 5: plt.yticks([]) plt.xticks([]) x = np.arange(len(val_acc_list)) plt.plot(x, val_acc_list) plt.plot(x, results_train[key], "--") i += 1 if i >= graph_draw_num: break plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As specified before, addtwo is the nodename, Node is the Nodetype, Function(...) is the interface_function and add_node is the labelname of the this node. In this particular case, we created an artificial input field, called x_input, an artificial output field called val_output and specified that this node should run the function add_two(). Step2: After all input fields are specified, we can run the node with run() Step3: And what is the output of this node? Step4: Example of a neuroimaging node Step5: In the Interface tutorial, we were able to specify the input file with the in_file parameter. This works exactly the same way in this case, where the interface is in a node. The only thing that we have to be careful about when we use a node is to specify where this node should be executed. This is only relevant for when we execute a node by itself, but not when we use them in a Workflow. Step6: As we know from the Interface tutorial, the skull stripped output is stored under res.outputs.out_file. So let's take a look at the before and the after Step7: Exercise 1 Step8: Exercise 2
<ASSISTANT_TASK:> Python Code: # Import Node and Function module from nipype import Node, Function # Create a small example function def add_two(x_input): return x_input + 2 # Create Node addtwo = Node(Function(input_names=["x_input"], output_names=["val_output"], function=add_two), name='add_node') addtwo.inputs.x_input = 4 addtwo.run() temp_res = addtwo.run() temp_res.outputs addtwo.result.outputs # Import BET from the FSL interface from nipype.interfaces.fsl import BET # Import the Node module from nipype import Node # Create Node bet = Node(BET(frac=0.3), name='bet_node') in_file = '/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz' # Specify node inputs bet.inputs.in_file = in_file bet.inputs.out_file = '/output/node_T1w_bet.nii.gz' res = bet.run() from nilearn.plotting import plot_anat %matplotlib inline import matplotlib.pyplot as plt plot_anat(in_file, title='BET input', cut_coords=(10,10,10), display_mode='ortho', dim=-1, draw_cross=False, annotate=False); plot_anat(res.outputs.out_file, title='BET output', cut_coords=(10,10,10), display_mode='ortho', dim=-1, draw_cross=False, annotate=False); # write your solution here # Import the Node module from nipype import Node # Import IsotropicSmooth from the FSL interface from nipype.interfaces.fsl import IsotropicSmooth # Define a node smooth_node = Node(IsotropicSmooth(), name="smoothing") smooth_node.inputs.in_file = '/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz' smooth_node.inputs.fwhm = 4 smooth_node.inputs.out_file = '/output/node_T1w_smooth.nii.gz' smooth_res = smooth_node.run() # write your solution here from nilearn.plotting import plot_anat %pylab inline plot_anat(smooth_node.inputs.in_file, title='smooth input', cut_coords=(10,10,10), display_mode='ortho', dim=-1, draw_cross=False, annotate=False); plot_anat(smooth_res.outputs.out_file, title='smooth output', cut_coords=(10,10,10), display_mode='ortho', dim=-1, draw_cross=False, annotate=False); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Chemistry Scheme Scope Step7: 1.4. Basic Approximations Step8: 1.5. Prognostic Variables Form Step9: 1.6. Number Of Tracers Step10: 1.7. Family Approach Step11: 1.8. Coupling With Chemical Reactivity Step12: 2. Key Properties --&gt; Software Properties Step13: 2.2. Code Version Step14: 2.3. Code Languages Step15: 3. Key Properties --&gt; Timestep Framework Step16: 3.2. Split Operator Advection Timestep Step17: 3.3. Split Operator Physical Timestep Step18: 3.4. Split Operator Chemistry Timestep Step19: 3.5. Split Operator Alternate Order Step20: 3.6. Integrated Timestep Step21: 3.7. Integrated Scheme Type Step22: 4. Key Properties --&gt; Timestep Framework --&gt; Split Operator Order Step23: 4.2. Convection Step24: 4.3. Precipitation Step25: 4.4. Emissions Step26: 4.5. Deposition Step27: 4.6. Gas Phase Chemistry Step28: 4.7. Tropospheric Heterogeneous Phase Chemistry Step29: 4.8. Stratospheric Heterogeneous Phase Chemistry Step30: 4.9. Photo Chemistry Step31: 4.10. Aerosols Step32: 5. Key Properties --&gt; Tuning Applied Step33: 5.2. Global Mean Metrics Used Step34: 5.3. Regional Metrics Used Step35: 5.4. Trend Metrics Used Step36: 6. Grid Step37: 6.2. Matches Atmosphere Grid Step38: 7. Grid --&gt; Resolution Step39: 7.2. Canonical Horizontal Resolution Step40: 7.3. Number Of Horizontal Gridpoints Step41: 7.4. Number Of Vertical Levels Step42: 7.5. Is Adaptive Grid Step43: 8. Transport Step44: 8.2. Use Atmospheric Transport Step45: 8.3. Transport Details Step46: 9. Emissions Concentrations Step47: 10. Emissions Concentrations --&gt; Surface Emissions Step48: 10.2. Method Step49: 10.3. Prescribed Climatology Emitted Species Step50: 10.4. Prescribed Spatially Uniform Emitted Species Step51: 10.5. Interactive Emitted Species Step52: 10.6. Other Emitted Species Step53: 11. Emissions Concentrations --&gt; Atmospheric Emissions Step54: 11.2. Method Step55: 11.3. Prescribed Climatology Emitted Species Step56: 11.4. Prescribed Spatially Uniform Emitted Species Step57: 11.5. Interactive Emitted Species Step58: 11.6. Other Emitted Species Step59: 12. Emissions Concentrations --&gt; Concentrations Step60: 12.2. Prescribed Upper Boundary Step61: 13. Gas Phase Chemistry Step62: 13.2. Species Step63: 13.3. Number Of Bimolecular Reactions Step64: 13.4. Number Of Termolecular Reactions Step65: 13.5. Number Of Tropospheric Heterogenous Reactions Step66: 13.6. Number Of Stratospheric Heterogenous Reactions Step67: 13.7. Number Of Advected Species Step68: 13.8. Number Of Steady State Species Step69: 13.9. Interactive Dry Deposition Step70: 13.10. Wet Deposition Step71: 13.11. Wet Oxidation Step72: 14. Stratospheric Heterogeneous Chemistry Step73: 14.2. Gas Phase Species Step74: 14.3. Aerosol Species Step75: 14.4. Number Of Steady State Species Step76: 14.5. Sedimentation Step77: 14.6. Coagulation Step78: 15. Tropospheric Heterogeneous Chemistry Step79: 15.2. Gas Phase Species Step80: 15.3. Aerosol Species Step81: 15.4. Number Of Steady State Species Step82: 15.5. Interactive Dry Deposition Step83: 15.6. Coagulation Step84: 16. Photo Chemistry Step85: 16.2. Number Of Reactions Step86: 17. Photo Chemistry --&gt; Photolysis Step87: 17.2. Environmental Conditions
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'bcc', 'sandbox-3', 'atmoschem') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.chemistry_scheme_scope') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "troposhere" # "stratosphere" # "mesosphere" # "mesosphere" # "whole atmosphere" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.basic_approximations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.prognostic_variables_form') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "3D mass/mixing ratio for gas" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.number_of_tracers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.family_approach') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.coupling_with_chemical_reactivity') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Operator splitting" # "Integrated" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_advection_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_physical_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_chemistry_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_alternate_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.integrated_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.integrated_scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Implicit" # "Semi-implicit" # "Semi-analytic" # "Impact solver" # "Back Euler" # "Newton Raphson" # "Rosenbrock" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.turbulence') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.convection') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.precipitation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.emissions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.gas_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.tropospheric_heterogeneous_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.stratospheric_heterogeneous_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.photo_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.aerosols') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.matches_atmosphere_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.is_adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.use_atmospheric_transport') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.transport_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Vegetation" # "Soil" # "Sea surface" # "Anthropogenic" # "Biomass burning" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Climatology" # "Spatially uniform mixing ratio" # "Spatially uniform concentration" # "Interactive" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Aircraft" # "Biomass burning" # "Lightning" # "Volcanos" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Climatology" # "Spatially uniform mixing ratio" # "Spatially uniform concentration" # "Interactive" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.concentrations.prescribed_lower_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.concentrations.prescribed_upper_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HOx" # "NOy" # "Ox" # "Cly" # "HSOx" # "Bry" # "VOCs" # "isoprene" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_bimolecular_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_termolecular_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_tropospheric_heterogenous_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_stratospheric_heterogenous_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_advected_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_steady_state_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.interactive_dry_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.wet_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.wet_oxidation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.gas_phase_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Cly" # "Bry" # "NOy" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.aerosol_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sulphate" # "Polar stratospheric ice" # "NAT (Nitric acid trihydrate)" # "NAD (Nitric acid dihydrate)" # "STS (supercooled ternary solution aerosol particule))" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.number_of_steady_state_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.sedimentation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.coagulation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.gas_phase_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.aerosol_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sulphate" # "Nitrate" # "Sea salt" # "Dust" # "Ice" # "Organic" # "Black carbon/soot" # "Polar stratospheric ice" # "Secondary organic aerosols" # "Particulate organic matter" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.number_of_steady_state_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.interactive_dry_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.coagulation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.number_of_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.photolysis.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Offline (clear sky)" # "Offline (with clouds)" # "Online" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.photolysis.environmental_conditions') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Data delivered by Geoff Reeves 9/6/2016 Step2: Oberved Data Step3: Make diagnostic plots of the posteriour distributions as created using MCMC. Step4: Predictions based on this model Step5: Plot up many lines for a feel at uncertantity Step6: Same as previous figure with the red lines overlayed as 100 joint draws from the model posterior in order to show spread.
<ASSISTANT_TASK:> Python Code: # http://onlinelibrary.wiley.com/doi/10.1002/2016JA022652/epdf import pymc3 import tqdm from pprint import pprint import numpy as np import matplotlib.pyplot as plt import spacepy.plot as spp import seaborn as sns sns.set(font_scale=1.5) # min_Dst, min_L data = np.asarray([ 65.000, 3.8000, 50.000, 3.7000, 67.000, 3.5000, 61.000, 3.4000, 77.000, 3.2000, 99.000, 2.8900, 87.000, 2.8000, 98.000, 2.8000, 96.000, 2.8000, 93.000, 2.3000, 92.000, 2.3000, 225.00, 2.3000, 206.00, 2.3000, 125.00, 2.3000]).reshape((-1,2)) dst = data[:,0] minL = data[:,1] print(dst, minL, data.dtype) # make bins in Dst dst_bins = np.arange(25, 300, 10) print(dst_bins) dst_bins_centers = np.asarray([dst_bins[:-1] + np.diff(dst_bins)/2]).T[:,0] print(dst_bins_centers, dst_bins_centers.shape) n_events_dig = np.digitize(dst, dst_bins) print(n_events_dig) n_events = np.zeros(len(dst_bins)-1) success = np.zeros_like(n_events) for i, v in enumerate(np.unique(n_events_dig)): n_events[v-1] = np.sum(n_events_dig==v) success[v-1] = np.sum(minL[n_events_dig==v] <= 2.4) print(n_events) print(success) plt.plot(dst, minL, 'o') plt.xlim((25, 250)) plt.ylim((2.2, 4.0)) plt.xlabel('Min Dst') plt.ylabel('Min L Shell') plt.plot(dst, minL, 'o') plt.xlim((25, 250)) plt.ylim((2.2, 4.0)) plt.xlabel('Min Dst') plt.ylabel('Min L Shell') for v in dst_bins: plt.axvline(v, lw=0.25) plt.axhline(2.4, c='r', lw=1) ind = n_events > 0 for i, j in zip(success[ind], n_events[ind]): print(i,j) # define priors # these are wide uninformative priors # alpha = pymc.Normal('alpha', mu=0, tau=1.0/5**2) # beta = pymc.Normal('beta', mu=0, tau=1.0/10**2) with pymc3.Model() as model: alpha = pymc3.Uniform('alpha', -100, 100) beta = pymc3.Uniform('beta', -100, 100) # cannot feed in zero events ind = n_events > 0 # define likelihood p = pymc3.math.invlogit(alpha + beta*dst_bins_centers[ind]) y = pymc3.Binomial('y_obs', n=n_events[ind], p=p, observed=success[ind]) step = pymc3.Metropolis([alpha, beta]) trace = pymc3.sample(10000, njobs=5, tune=5000, step=step) pymc3.traceplot(trace, combined=True) pymc3.summary(trace) xp = np.linspace(dst_bins_centers[ind].min(), dst_bins_centers[ind].max(), 100) a = trace['alpha'].mean() b = trace['beta'].mean() y_val = pymc3.math.invlogit(a + b*xp).eval() plt.plot(xp, y_val) plt.scatter(dst_bins_centers[ind], success[ind]/n_events[ind], s=50); plt.xlabel('Minimum Dst') plt.ylabel('Probability slot is filled') plt.gca().ticklabel_format(useOffset=False) # get the minimum Dst where 99% should be successes for percentage in [50,75,90,95,99]: ind99 = y_val >= percentage/100 minDst99 = xp[ind99][0] print('At a minimum Dst of {0:0.0f}nT it is predicted to have a {1}% percent of a slot filling at this energy'.format(minDst99, percentage)) pymc3.math.invlogit(trace['alpha'][4] + trace['beta'][4]*xp).eval() # one should be able to get estimates of the line uncertainity ilu = np.empty((1000, len(xp)), dtype=float) ilu = [] for ii, v in tqdm.tqdm(enumerate(np.random.randint(0, len(trace['alpha']), 100)), total=100): if trace['alpha'][v] == 0: continue if trace['beta'][v] == 0: continue ilu.append(pymc3.math.invlogit(trace['alpha'][v] + trace['beta'][v]*xp).eval()) ilu=np.asarray(ilu) ilu.shape plt.figure(figsize=(8,5)) xp = np.linspace(dst_bins_centers[ind].min(), dst_bins_centers[ind].max(), 100) for v in ilu: plt.plot(xp, v, alpha=.3, c='r') plt.plot(xp, np.percentile(ilu, [25, 50, 75],axis=0).T, c='k', lw=3) # a = trace['alpha'].mean() # b = trace['beta'].mean() # plt.plot(xp, invlogit(a + b*xp).value) # a = trace['alpha'].stats()['quantiles'][50] # b = trace['beta'].stats()['quantiles'][50] # plt.plot(xp, invlogit(a + b*xp).value, c='y') plt.scatter(dst_bins_centers[ind], success[ind]/n_events[ind], s=50); plt.xlabel('Minimum Dst') plt.ylabel('Probability slot is filled') xp.shape, np.percentile(ilu, [25, 50, 75],axis=0).T.shape ii50 = np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,0] > 0.5)[0] ii75 = np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,0] > 0.75)[0] ii90 = np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,0] > 0.90)[0] ii95 = np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,0] > 0.95)[0] ii99 = np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,0] > 0.99)[0] print('At a minimum Dst of {0:0.0f}nT it is predicted to have a 50% percent of a slot filling at this energy'.format(xp[ii50[0]])) print('At a minimum Dst of {0:0.0f}nT it is predicted to have a 75% percent of a slot filling at this energy'.format(xp[ii75[0]])) print('At a minimum Dst of {0:0.0f}nT it is predicted to have a 90% percent of a slot filling at this energy'.format(xp[ii90[0]])) print('At a minimum Dst of {0:0.0f}nT it is predicted to have a 95% percent of a slot filling at this energy'.format(xp[ii95[0]])) print('At a minimum Dst of {0:0.0f}nT it is predicted to have a 99% percent of a slot filling at this energy'.format(xp[ii99[0]])) ii50 = np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,1] > 0.5)[0] ii75 = np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,1] > 0.75)[0] ii90 = np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,1] > 0.90)[0] ii95 = np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,1] > 0.95)[0] ii99 = np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,1] > 0.99)[0] print('At a minimum Dst of {0:0.0f}nT it is predicted to have a 50% percent of a slot filling at this energy'.format(xp[ii50[0]])) print('At a minimum Dst of {0:0.0f}nT it is predicted to have a 75% percent of a slot filling at this energy'.format(xp[ii75[0]])) print('At a minimum Dst of {0:0.0f}nT it is predicted to have a 90% percent of a slot filling at this energy'.format(xp[ii90[0]])) print('At a minimum Dst of {0:0.0f}nT it is predicted to have a 95% percent of a slot filling at this energy'.format(xp[ii95[0]])) print('At a minimum Dst of {0:0.0f}nT it is predicted to have a 99% percent of a slot filling at this energy'.format(xp[ii99[0]])) ii50 = np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,2] > 0.5)[0] ii75 = np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,2] > 0.75)[0] ii90 = np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,2] > 0.90)[0] ii95 = np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,2] > 0.95)[0] ii99 = np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,2] > 0.99)[0] print('At a minimum Dst of {0:0.0f}nT it is predicted to have a 50% percent of a slot filling at this energy'.format(xp[ii50[0]])) print('At a minimum Dst of {0:0.0f}nT it is predicted to have a 75% percent of a slot filling at this energy'.format(xp[ii75[0]])) print('At a minimum Dst of {0:0.0f}nT it is predicted to have a 90% percent of a slot filling at this energy'.format(xp[ii90[0]])) print('At a minimum Dst of {0:0.0f}nT it is predicted to have a 95% percent of a slot filling at this energy'.format(xp[ii95[0]])) print('At a minimum Dst of {0:0.0f}nT it is predicted to have a 99% percent of a slot filling at this energy'.format(xp[ii99[0]])) v50 = [xp[np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,2] > 0.5)[0][0]], xp[np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,1] > 0.5)[0][0]], xp[np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,0] > 0.5)[0][0]]] v75 = [xp[np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,2] > 0.75)[0][0]], xp[np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,1] > 0.75)[0][0]], xp[np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,0] > 0.75)[0][0]]] v90 = [xp[np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,2] > 0.90)[0][0]], xp[np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,1] > 0.90)[0][0]], xp[np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,0] > 0.90)[0][0]]] v95 = [xp[np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,2] > 0.95)[0][0]], xp[np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,1] > 0.95)[0][0]], xp[np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,0] > 0.95)[0][0]]] v99 = [xp[np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,2] > 0.99)[0][0]], xp[np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,1] > 0.99)[0][0]], xp[np.where(np.percentile(ilu, [25, 50, 75],axis=0).T[:,0] > 0.99)[0][0]]] v50, v75, v90, v95, v99 print("a 50% probability of slot filling for {0:.0f}<dst<{1:.0f}".format(v50[0], v50[2])) print("a 75% probability of slot filling for {0:.0f}<dst<{1:.0f}".format(v75[0], v75[2])) print("a 90% probability of slot filling for {0:.0f}<dst<{1:.0f}".format(v90[0], v90[2])) print("a 95% probability of slot filling for {0:.0f}<dst<{1:.0f}".format(v95[0], v95[2])) print("a 99% probability of slot filling for {0:.0f}<dst<{1:.0f}".format(v99[0], v99[2])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code:: from keras.models import Sequential from keras.layers import Dense from sklearn.datasets import make_regression from sklearn.preprocessing import MinMaxScaler from numpy import array X, y = make_regression(n_samples=100, n_features=2, noise=0.1, random_state=1) scalarX, scalarY = MinMaxScaler(), MinMaxScaler() scalarX.fit(X) scalarY.fit(y.reshape(100,1)) X = scalarX.transform(X) y = scalarY.transform(y.reshape(100,1)) model = Sequential() model.add(Dense(4, input_shape=(2,), activation='relu')) model.add(Dense(4, activation='relu')) model.add(Dense(1, activation='linear')) model.compile(loss='mse', optimizer='adam') model.fit(X, y, epochs=1000, verbose=0) Xnew = array([[0.29466096, 0.30317302]]) ynew = model.predict(Xnew) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Start main dataset by USA companies from companies.csv Step2: Extract company category features Step3: Since there are too many categories, we'll be selecting the top 50 more frequent ones. Step4: So now we added more 50 categories to our dataset. Step5: Analyzing date variables Step6: Change dataset index Step7: Extract acquisitions features Step8: Extract investments feature Step9: Extract average number of investors and amount invested per round Step10: Drop useless features Step11: Normalize numeric variables Step12: Normalize date variables Step13: Extract state_code features Step14: As we did for the categories variable, in order to decrease the amount of features in our dataset, let's just select the top 15 more frequent states (which cover already 82% of our companies) Step15: Move status to the end of dataframe and save to file
<ASSISTANT_TASK:> Python Code: #All imports here import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import preprocessing from datetime import datetime from dateutil import relativedelta %matplotlib inline #Let's start by importing our csv files into dataframes df_companies = pd.read_csv('data/companies.csv') df_acquisitions = pd.read_csv('data/acquisitions.csv') df_investments = pd.read_csv('data/investments.csv') df_rounds = pd.read_csv('data/rounds.csv') #Our final database will be stored in 'startups_USA' startups_USA = df_companies[df_companies['country_code'] == 'USA'] startups_USA.head() from operator import methodcaller def split_categories(categories): #get a unique list of the categories splitted_categories = list(categories.astype('str').unique()) #split each category by | splitted_categories = map(methodcaller("split", "|"), splitted_categories) #flatten the list of sub categories splitted_categories = [item for sublist in splitted_categories for item in sublist] return splitted_categories def explore_categories(categories, top_n_categories): cat = split_categories(categories) print 'There are in total {} different categories'.format(len(cat)) prob = pd.Series(cat).value_counts() print prob.head() #select first <top_n_categories> mask = prob > prob[top_n_categories] head_prob = prob.loc[mask].sum() tail_prob = prob.loc[~mask].sum() total_sum = prob.sum() prob = prob.loc[mask] prob2 = pd.DataFrame({'top '+str(top_n_categories)+' categories': head_prob, 'others': tail_prob},index=[0]) fig, axs = plt.subplots(2,1, figsize=(15,6)) prob.plot(kind='bar', ax=axs[0]) prob2.plot(kind='bar', ax=axs[1]) for bar in axs[1].patches: height = bar.get_height() axs[1].text(bar.get_x() + bar.get_width()/2., 0.50*height, '%.2f' % (float(height)/float(total_sum)*100) + "%", ha='center', va='top') fig.tight_layout() plt.xticks(rotation=90) plt.show() explore_categories(startups_USA['category_list'], top_n_categories=50) def expand_top_categories_into_dummy_variables(df): cat = df['category_list'].astype('str') cat_count = cat.str.split('|').apply(lambda x: pd.Series(x).value_counts()).sum() #Get a dummy dataset for categories dummies = cat.str.get_dummies(sep='|') #Count of categories splitted first 50) top50categories = list(cat_count.sort_values(ascending=False).index[:50]) #Create a dataframe with the 50 top categories to be concatenated later to the complete dataframe categories_df = dummies[top50categories] categories_df = categories_df.add_prefix('Category_') return pd.concat([df, categories_df], axis=1, ignore_index=False) startups_USA = expand_top_categories_into_dummy_variables(startups_USA) startups_USA.head() startups_USA['funding_rounds'].hist(bins=range(1,10)) plt.title("Histogram of the number of funding rounds") plt.ylabel('Number of companies') plt.xlabel('Number of funding rounds') #funding_total_usd #funding_rounds plt.subplot() startups_USA[startups_USA['funding_total_usd'] != '-']. \ set_index('name')['funding_total_usd'] \ .astype(float) \ .sort_values(ascending=False)\ [:30].plot(kind='barh', figsize=(5,7)) plt.gca().invert_yaxis() plt.title('Companies with highest total funding') plt.ylabel('Companies') plt.xlabel('Total amount of funding (USD)') # Investment types df_rounds['funding_round_type'].value_counts() import warnings warnings.filterwarnings('ignore') #Iterate over each kind of funding type, and add two new features for each into the dataframe def add_dummy_for_funding_type(df, aggr_rounds, funding_type): funding_df = aggr_rounds.iloc[aggr_rounds.index.get_level_values('funding_round_type') == funding_type].reset_index() funding_df.columns = funding_df.columns.droplevel() funding_df.columns = ['company_permalink', funding_type, funding_type+'_funding_total_usd', funding_type+'_funding_rounds'] funding_df = funding_df.drop(funding_type,1) new_df = pd.merge(df, funding_df, on='company_permalink', how='left') new_df = new_df.fillna(0) return new_df def expand_investment_rounds(df, df_rounds): #Prepare an aggregated rounds dataframe grouped by company and funding type rounds_agg = df_rounds.groupby(['company_permalink', 'funding_round_type'])['raised_amount_usd'].agg({'amount': [ pd.Series.sum, pd.Series.count]}) #Get available unique funding types funding_types = list(rounds_agg.index.levels[1]) #Prepare the dataframe where all the dummy features for each funding type will be added (number of rounds and total sum for each type) rounds_df = df[['permalink']] rounds_df = rounds_df.rename(columns = {'permalink':'company_permalink'}) #For each funding type, add two more columns to rounds_df for funding_type in funding_types: rounds_df = add_dummy_for_funding_type(rounds_df, rounds_agg, funding_type) #remove the company_permalink variable, since it's already available in the companies dataframe rounds_df = rounds_df.drop('company_permalink', 1) #set rounds_df to have the same index of the other dataframes rounds_df.index = df.index return pd.concat([df, rounds_df], axis=1, ignore_index=False) startups_USA = expand_investment_rounds(startups_USA, df_rounds) startups_USA.head() startups_USA = startups_USA.set_index('permalink') import warnings warnings.filterwarnings('ignore') def extract_feature_number_of_acquisitions(df, df_acquisitions): number_of_acquisitions = df_acquisitions.groupby(['acquirer_permalink'])['acquirer_permalink'].agg({'amount': [ pd.Series.count]}).reset_index() number_of_acquisitions.columns = number_of_acquisitions.columns.droplevel() number_of_acquisitions.columns = ['permalink', 'number_of_acquisitions'] number_of_acquisitions = number_of_acquisitions.set_index('permalink') number_of_acquisitions = number_of_acquisitions.fillna(0) new_df = df.join(number_of_acquisitions) new_df['number_of_acquisitions'] = new_df['number_of_acquisitions'].fillna(0) return new_df startups_USA = extract_feature_number_of_acquisitions(startups_USA, df_acquisitions) import warnings warnings.filterwarnings('ignore') def extract_feature_number_of_investments(df, df_investments): number_of_investments = df_investments.groupby(['investor_permalink'])['investor_permalink'].agg({'amount': [ pd.Series.count]}).reset_index() number_of_investments.columns = number_of_investments.columns.droplevel() number_of_investments.columns = ['permalink', 'number_of_investments'] number_of_investments = number_of_investments.set_index('permalink') number_of_unique_investments = df_investments.groupby(['investor_permalink'])['company_permalink'].agg({'amount': [ pd.Series.nunique]}).reset_index() number_of_unique_investments.columns = number_of_unique_investments.columns.droplevel() number_of_unique_investments.columns = ['permalink', 'number_of_unique_investments'] number_of_unique_investments = number_of_unique_investments.set_index('permalink') new_df = df.join(number_of_investments) new_df['number_of_investments'] = new_df['number_of_investments'].fillna(0) new_df = new_df.join(number_of_unique_investments) new_df['number_of_unique_investments'] = new_df['number_of_unique_investments'].fillna(0) return new_df startups_USA = extract_feature_number_of_investments(startups_USA, df_investments) import warnings warnings.filterwarnings('ignore') def extract_feature_avg_investors_per_round(df, investments): number_of_investors_per_round = investments.groupby(['company_permalink', 'funding_round_permalink'])['investor_permalink'].agg({'investor_permalink': [ pd.Series.count]}).reset_index() number_of_investors_per_round.columns = number_of_investors_per_round.columns.droplevel(0) number_of_investors_per_round.columns = ['company_permalink', 'funding_round_permalink', 'count'] number_of_investors_per_round = number_of_investors_per_round.groupby(['company_permalink']).agg({'count': [ pd.Series.mean]}).reset_index() number_of_investors_per_round.columns = number_of_investors_per_round.columns.droplevel(0) number_of_investors_per_round.columns = ['company_permalink', 'number_of_investors_per_round'] number_of_investors_per_round = number_of_investors_per_round.set_index('company_permalink') new_df = df.join(number_of_investors_per_round) new_df['number_of_investors_per_round'] = new_df['number_of_investors_per_round'].fillna(-1) return new_df def extract_feature_avg_amount_invested_per_round(df, investments): investmentsdf = investments.copy() investmentsdf['raised_amount_usd'] = investmentsdf['raised_amount_usd'].astype(float) avg_amount_invested_per_round = investmentsdf.groupby(['company_permalink', 'funding_round_permalink'])['raised_amount_usd'].agg({'raised_amount_usd': [ pd.Series.mean]}).reset_index() avg_amount_invested_per_round.columns = avg_amount_invested_per_round.columns.droplevel(0) avg_amount_invested_per_round.columns = ['company_permalink', 'funding_round_permalink', 'mean'] avg_amount_invested_per_round = avg_amount_invested_per_round.groupby(['company_permalink']).agg({'mean': [ pd.Series.mean]}).reset_index() avg_amount_invested_per_round.columns = avg_amount_invested_per_round.columns.droplevel(0) avg_amount_invested_per_round.columns = ['company_permalink', 'avg_amount_invested_per_round'] avg_amount_invested_per_round = avg_amount_invested_per_round.set_index('company_permalink') new_df = df.join(avg_amount_invested_per_round) new_df['avg_amount_invested_per_round'] = new_df['avg_amount_invested_per_round'].fillna(-1) return new_df startups_USA = extract_feature_avg_investors_per_round(startups_USA, df_investments) startups_USA = extract_feature_avg_amount_invested_per_round(startups_USA, df_investments) startups_USA.head() #drop features startups_USA = startups_USA.drop(['name','homepage_url', 'category_list', 'region', 'city', 'country_code'], 1) #move status to the end of the dataframe cols = list(startups_USA) cols.append(cols.pop(cols.index('status'))) startups_USA = startups_USA.ix[:, cols] def normalize_numeric_features(df, columns_to_scale = None): min_max_scaler = preprocessing.MinMaxScaler() startups_normalized = df.copy() #Convert '-' to zeros in funding_total_usd startups_normalized['funding_total_usd'] = startups_normalized['funding_total_usd'].replace('-', 0) #scale numeric features startups_normalized[columns_to_scale] = min_max_scaler.fit_transform(startups_normalized[columns_to_scale]) return startups_normalized columns_to_scale = list(startups_USA.filter(regex=(".*(funding_rounds|funding_total_usd)|(number_of|avg_).*")).columns) startups_USA = normalize_numeric_features(startups_USA, columns_to_scale) def date_to_age_in_months(date): if date != date or date == 0: #is NaN return 0 date1 = datetime.strptime(date, '%Y-%m-%d') date2 = datetime.strptime('2017-01-01', '%Y-%m-%d') #get age until 01/01/2017 delta = relativedelta.relativedelta(date2, date1) return delta.years * 12 + delta.months def normalize_date_variables(df): date_vars = ['founded_at', 'first_funding_at', 'last_funding_at'] for var in date_vars: df[var] = df[var].map(date_to_age_in_months) df = normalize_numeric_features(df, date_vars) return df startups_USA = normalize_date_variables(startups_USA) def explore_states(states, top_n_states): print 'There are in total {} different states'.format(len(states.unique())) prob = pd.Series(states).value_counts() print prob.head() #select first <top_n_categories> mask = prob > prob[top_n_states] head_prob = prob.loc[mask].sum() tail_prob = prob.loc[~mask].sum() total_sum = prob.sum() prob = prob.loc[mask] prob2 = pd.DataFrame({'top '+str(top_n_states)+' states': head_prob, 'others': tail_prob},index=[0]) fig, axs = plt.subplots(2,1, figsize=(15,6)) prob.plot(kind='bar', ax=axs[0]) prob2.plot(kind='bar', ax=axs[1]) for bar in axs[1].patches: height = bar.get_height() axs[1].text(bar.get_x() + bar.get_width()/2., 0.50*height, '%.2f' % (float(height)/float(total_sum)*100) + "%", ha='center', va='top') fig.tight_layout() plt.xticks(rotation=90) plt.show() explore_states(startups_USA['state_code'], top_n_states=15) def expand_top_states_into_dummy_variables(df): states = df['state_code'].astype('str') #Get a dummy dataset for categories dummies = pd.get_dummies(states) #select top most frequent states top15states = list(states.value_counts().sort_values(ascending=False).index[:15]) #Create a dataframe with the 15 top states to be concatenated later to the complete dataframe states_df = dummies[top15states] states_df = states_df.add_prefix('State_') new_df = pd.concat([df, states_df], axis=1, ignore_index=False) new_df = new_df.drop(['state_code'], axis=1) return new_df startups_USA = expand_top_states_into_dummy_variables(startups_USA) cols = list(startups_USA) cols.append(cols.pop(cols.index('status'))) startups_USA = startups_USA.ix[:, cols] startups_USA.to_csv('data/startups_pre_processed.csv') startups_USA.head() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <font size='7' face='Times New Roman'><b>1. <u>Primal</u></b></font> Step2: <font size='7' face='Times New Roman'><b>2. <u>Dual</u></b></font>
<ASSISTANT_TASK:> Python Code: # Imports import numpy as np import gurobipy as gbp import datetime as dt # Constants Aij = np.random.randint(5, 50, 250000) Aij = Aij.reshape(500,500) AijSum = np.sum(Aij) Cj = np.random.randint(10, 20, 500) CjSum = np.sum(Cj) Bi = np.random.randint(10, 20, 500) BiSum = np.sum(Bi) # Matrix Shape rows = range(len(Aij)) cols = range(len(Aij[0])) # Instantiate Model mPrimal_Standard_GUROBI = gbp.Model(' -- Standard Primal Linear Programming Problem -- ') # Set Focus to Optimality gbp.setParam('MIPFocus', 2) # Decision Variables desc_var = [] for dest in cols: desc_var.append([]) desc_var[dest].append(mPrimal_Standard_GUROBI.addVar(vtype=gbp.GRB.CONTINUOUS, name='y'+str(dest+1))) # Surplus Variables surp_var = [] for orig in rows: surp_var.append([]) surp_var[orig].append(mPrimal_Standard_GUROBI.addVar(vtype=gbp.GRB.CONTINUOUS, name='s'+str(orig+1))) # Update Model mPrimal_Standard_GUROBI.update() #Objective Function mPrimal_Standard_GUROBI.setObjective(gbp.quicksum(Cj[dest]*desc_var[dest][0] for dest in cols), gbp.GRB.MINIMIZE) # Constraints for orig in rows: mPrimal_Standard_GUROBI.addConstr(gbp.quicksum(Aij[orig][dest]*desc_var[dest][0] for dest in cols) - surp_var[orig][0] - Bi[orig] == 0) # Optimize mPrimal_Standard_GUROBI.optimize() # Write LP file mPrimal_Standard_GUROBI.write('LP.lp') print '\n*************************************************************************' print ' | Decision Variables' for v in mPrimal_Standard_GUROBI.getVars(): print ' | ', v.VarName, '=', v.x print '*************************************************************************' val = mPrimal_Standard_GUROBI.objVal print ' | Objective Value ------------------ ', val print ' | Aij Sum -------------------------- ', AijSum print ' | Cj Sum --------------------------- ', CjSum print ' | Bi Sum --------------------------- ', BiSum print ' | Matrix Dimensions ---------------- ', Aij.shape print ' | Date/Time ------------------------ ', dt.datetime.now() print '*************************************************************************' print '-- Gurobi Standard Primal Linear Programming Problem --' print '\nJames Gaboardi, 2015' # Instantiate Model mDual_Standard_GUROBI = gbp.Model(' -- Standard Dual Linear Programming Problem -- ') # Set Focus to Optimality gbp.setParam('MIPFocus', 2) # Decision Variables desc_var = [] for orig in rows: desc_var.append([]) desc_var[orig].append(mDual_Standard_GUROBI.addVar(vtype=gbp.GRB.CONTINUOUS, name='u'+str(orig+1))) # Slack Variables slack_var = [] for dest in cols: slack_var.append([]) slack_var[dest].append(mDual_Standard_GUROBI.addVar(vtype=gbp.GRB.CONTINUOUS, name='t'+str(dest+1))) # Update Model mDual_Standard_GUROBI.update() #Objective Function mDual_Standard_GUROBI.setObjective(gbp.quicksum(Bi[orig]*desc_var[orig][0] for orig in rows), gbp.GRB.MAXIMIZE) # Constraints for dest in cols: mDual_Standard_GUROBI.addConstr(gbp.quicksum(Aij[orig][dest]*desc_var[orig][0] for orig in rows) + slack_var[dest][0] - Cj[dest] == 0) # Optimize mDual_Standard_GUROBI.optimize() # Write LP file mDual_Standard_GUROBI.write('LP.lp') print '\n*************************************************************************' print ' | Decision Variables' for v in mDual_Standard_GUROBI.getVars(): print ' | ', v.VarName, '=', v.x print '*************************************************************************' val = mDual_Standard_GUROBI.objVal print ' | Objective Value ------------------ ', val print ' | Aij Sum -------------------------- ', AijSum print ' | Cj Sum --------------------------- ', CjSum print ' | Bi Sum --------------------------- ', BiSum print ' | Matrix Dimensions ---------------- ', Aij.shape print ' | Date/Time ------------------------ ', dt.datetime.now() print '*************************************************************************' print '-- Gurobi Standard Dual Linear Programming Problem --' print '\nJames Gaboardi, 2015' <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Getting Data Step2: Thermodynamic Calculations Step3: Basic Skew-T Plotting Step4: Advanced Skew-T Plotting Step5: Adding a Hodograph
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import inset_axes import numpy as np import pandas as pd import metpy.calc as mpcalc from metpy.cbook import get_test_data from metpy.plots import Hodograph, SkewT from metpy.units import units col_names = ['pressure', 'height', 'temperature', 'dewpoint', 'direction', 'speed'] df = pd.read_fwf(get_test_data('nov11_sounding.txt', as_file_obj=False), skiprows=5, usecols=[0, 1, 2, 3, 6, 7], names=col_names) df['u_wind'], df['v_wind'] = mpcalc.get_wind_components(df['speed'], np.deg2rad(df['direction'])) # Drop any rows with all NaN values for T, Td, winds df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed', 'u_wind', 'v_wind'), how='all').reset_index(drop=True) # We will pull the data out of the example dataset into individual variables and # assign units. p = df['pressure'].values * units.hPa T = df['temperature'].values * units.degC Td = df['dewpoint'].values * units.degC wind_speed = df['speed'].values * units.knots wind_dir = df['direction'].values * units.degrees u, v = mpcalc.get_wind_components(wind_speed, wind_dir) # Calculate the LCL lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0]) print(lcl_pressure, lcl_temperature) # Calculate the parcel profile. parcel_prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC') # Create a new figure. The dimensions here give a good aspect ratio fig = plt.figure(figsize=(9, 9)) skew = SkewT(fig) # Plot the data using normal plotting functions, in this case using # log scaling in Y, as dictated by the typical meteorological plot skew.plot(p, T, 'r', linewidth=2) skew.plot(p, Td, 'g', linewidth=2) skew.plot_barbs(p, u, v) # Show the plot plt.show() # Create a new figure. The dimensions here give a good aspect ratio fig = plt.figure(figsize=(9, 9)) skew = SkewT(fig, rotation=30) # Plot the data using normal plotting functions, in this case using # log scaling in Y, as dictated by the typical meteorological plot skew.plot(p, T, 'r') skew.plot(p, Td, 'g') skew.plot_barbs(p, u, v) skew.ax.set_ylim(1000, 100) skew.ax.set_xlim(-40, 60) # Plot LCL temperature as black dot skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black') # Plot the parcel profile as a black line skew.plot(p, parcel_prof, 'k', linewidth=2) # Shade areas of CAPE and CIN skew.shade_cin(p, T, parcel_prof) skew.shade_cape(p, T, parcel_prof) # Plot a zero degree isotherm skew.ax.axvline(0, color='c', linestyle='--', linewidth=2) # Add the relevant special lines skew.plot_dry_adiabats() skew.plot_moist_adiabats() skew.plot_mixing_lines() # Show the plot plt.show() # Create a new figure. The dimensions here give a good aspect ratio fig = plt.figure(figsize=(9, 9)) skew = SkewT(fig, rotation=30) # Plot the data using normal plotting functions, in this case using # log scaling in Y, as dictated by the typical meteorological plot skew.plot(p, T, 'r') skew.plot(p, Td, 'g') skew.plot_barbs(p, u, v) skew.ax.set_ylim(1000, 100) skew.ax.set_xlim(-40, 60) # Plot LCL as black dot skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black') # Plot the parcel profile as a black line skew.plot(p, parcel_prof, 'k', linewidth=2) # Shade areas of CAPE and CIN skew.shade_cin(p, T, parcel_prof) skew.shade_cape(p, T, parcel_prof) # Plot a zero degree isotherm skew.ax.axvline(0, color='c', linestyle='--', linewidth=2) # Add the relevant special lines skew.plot_dry_adiabats() skew.plot_moist_adiabats() skew.plot_mixing_lines() # Create a hodograph # Create an inset axes object that is 40% width and height of the # figure and put it in the upper right hand corner. ax_hod = inset_axes(skew.ax, '40%', '40%', loc=1) h = Hodograph(ax_hod, component_range=80.) h.add_grid(increment=20) h.plot_colormapped(u, v, wind_speed) # Plot a line colored by wind speed # Show the plot plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2D random walk Step2: asymmetric random walk
<ASSISTANT_TASK:> Python Code: n_trials = 1000 # number of trials (i.e., number of walks) n_steps = 1000 # number of steps taken during each trial distances = [] # use this to keep track of distance for each trial this_trial = 0 # loop over trials while this_trial < n_trials: # reset step and distance to zero this_distance = 0 step=0 while(step < n_steps): # random number is either 0 or 1 (heads/tails) if random.randint(0,1) > 0: this_distance += 1 else: this_distance -= 1 step+=1 # keep track of distances distances.append(abs(this_distance)) this_trial += 1 plt.hist(distances) distances = np.array(distances) # convert to numpy array to make life easier # in 1D, asymptotic solution for mean walk length is (n_steps*2/pi)**(1/2) print(math.sqrt(n_steps*2.0/math.pi),distances.mean(),distances.min(),distances.max()) n_trials_2D = 100 # number of trials (i.e., number of walks) n_steps_2D = 100 # number of steps per trial distances_2D = [] # to keep track of distances of each walk this_trial = 0 # lists for x, y position of *each step* for the last trial. # (This is just for visualization purposes - we want to make a plot.) xpos=[] ypos=[] while this_trial < n_trials_2D: x,y = 0.0,0.0 # keep track of walker position for last trial if this_trial == n_trials_2D - 1: xpos.append(x) ypos.append(y) step=0 # go until we reach the number of steps we want to take while(step < n_steps_2D): # pick a random angle between zero and 2*pi theta = random.random()*2.0*math.pi # step x and y in that direction x += math.cos(theta) y += math.sin(theta) # if last trial, keep track of walker positions if this_trial == n_trials_2D - 1: xpos.append(x) ypos.append(y) step+=1 this_distance = (x**2 + y**2)**0.5 #print(this_trial, abs(this_distance)) distances_2D.append(abs(this_distance)) this_trial += 1 plt.hist(distances_2D) distances_2D = np.array(distances_2D) # expect roughly sqrt(n_steps_2D) to be the right answer! print(math.sqrt(n_steps_2D),distances_2D.mean(),distances_2D.min(),distances_2D.max()) plt.plot(0.0,0.0,'ro',xpos,ypos) #plt.xlim(-16,16) #plt.ylim(-16,16) n_trials = 100000 n_steps = 100 prob_right = 0.6 distances = [] this_trial = 0 while this_trial < n_trials: this_distance = 0 step=0 while(step < n_steps): if random.random() < prob_right: this_distance += 1 else: this_distance -= 1 step+=1 #print(this_trial, abs(this_distance)) distances.append(this_distance) this_trial += 1 plt.hist(distances) distances = np.array(distances) #print(math.sqrt(n_steps*2.0/math.pi),distances.mean(),distances.min(),distances.max()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Setting up Network and Geometry Step2: Before we move on to setting up our fluid and physics objects, we must constrict throats in the z and y direction by a factor (Gostick et al included this tightening of throats in only these two directions to create realistic anisotropy in the model). For his SGL simulation, Gostick uses a constriction factor of .95. Finally, because we have changed values for pore and throat diameters (first by accounting for pores and throats that are too big, and the finally constricting throats in the y and z directions), we must recalculate all pore and throat values relying on these diameters. Step3: OpenPNM makes it very easy to visualize the network we have generated through the "Visualization" methods. We can create vtk files to be viewed using ParaView (downloadable at http Step4: An example is seen here Step5: We are now ready to establish physical properties for our fluid objects. To do this, we will Step6: Running Ordinary Percolation, Fickian Diffusion, and Stokes Flow Step7: This algorithm performed a start to finish simulation, which fully flooded the network. The 'results()' command can be used to update the phase occupancy values throughout the network. To save some computation, we will filter the invasion points so that relative transport properties can be calculated approximately every 5% increment in saturation. The OrdinaryPercolation object has a method to return the intrusion data as a named tuple of Capillary Pressure (Pcap) and Saturation of the non-wetting phase (Snwp). Step8: We now define a helper function to update the phases and properties with the results of the OP algorithm. The multiphase conduit conductance model looks at the phase occupancy in the conduits made by the 1/2 pore - throat - 1/2 pore neighbor elements. When the mode is 'strict' the phase must occupy all three elements for the conduit to be considered open to flow for that phase. If the phase is not present in at least one of the elements in the conduit then the throat conductance is divided by 6 orders of magnitude. In this way the conductivity is severely reduced by the presence of the other phase and flow must go around, thus decreasing the permeability/diffusivity of the network. Step9: The following call will get the pore and throat phase occupancy which is an array of 1s and 0s representing that the phase occupies a particular pore or throat, update the phase objects and and multiphase conductanct models to the physics objects Step10: The next step will be to calculate effective diffusivity and permeability at different saturations. Note that we want to run Fickian diffusion and Stokes flow algorithms at different points within our ordinary percolation process. Step11: Now we can repeat the algorithms at each filtered pressure. This process takes about 1 minute. Step12: Now we can plot the results including those from the paper
<ASSISTANT_TASK:> Python Code: import numpy as np import openpnm as op import matplotlib.pyplot as plt import openpnm.models as mods %matplotlib inline np.random.seed(10) Lc = 40.5e-6 # 1. Set up network sgl = op.network.Cubic(shape=[26, 26, 10], spacing=Lc, name='SGL10BA') sgl.add_boundary_pores() proj = sgl.project wrk = op.Workspace() wrk.settings['loglevel'] = 50 # 2. Set up geometries Ps = sgl.pores('*boundary', mode='not') Ts = sgl.find_neighbor_throats(pores=Ps, mode='xnor', flatten=True) geo = op.geometry.GenericGeometry(network=sgl,pores=Ps,throats=Ts,name='geo') geo.add_model(propname='pore.seed', model=mods.misc.random, element='pore', num_range=[0, 0.8834], seed=None) geo.add_model(propname='throat.seed', model=mods.misc.from_neighbor_pores, pore_prop='pore.seed', mode='min') geo.add_model(propname='pore.diameter', model=mods.geometry.pore_size.weibull, shape=3.07, loc=19.97e-6, scale=1.6e-5) geo.add_model(propname='throat.diameter', model=mods.geometry.throat_size.weibull, shape=3.07, loc=19.97e-6, scale=1.6e-5) geo.add_model(propname='pore.area', model=mods.geometry.pore_area.sphere) geo.add_model(propname='pore.volume', model=mods.geometry.pore_volume.sphere) geo.add_model(propname='throat.length', model=mods.geometry.throat_length.ctc) geo.add_model(propname='throat.volume', model=mods.geometry.throat_volume.cylinder) geo.add_model(propname='throat.area', model=mods.geometry.throat_area.cylinder) geo.add_model(propname='throat.surface_area', model=mods.geometry.throat_surface_area.cylinder) geo.add_model(propname='throat.endpoints', model=mods.geometry.throat_endpoints.spherical_pores) geo.add_model(propname='throat.conduit_lengths', model=mods.geometry.throat_length.conduit_lengths) Ps = sgl.pores('*boundary') Ts = sgl.find_neighbor_throats(pores=Ps, mode='or') boun = op.geometry.Boundary(network=sgl, pores=Ps, throats=Ts, name='boun') throats = geo.throats() connected_pores = sgl.find_connected_pores(throats) x1 = [sgl['pore.coords'][pair[0]][0] for pair in connected_pores] x2 = [sgl['pore.coords'][pair[1]][0] for pair in connected_pores] same_x = [x - y == 0 for x, y in zip(x1,x2)] factor = [s*.95 + (not s)*1 for s in same_x] throat_diameters = sgl['throat.diameter'][throats]*factor geo['throat.diameter'] = throat_diameters geo.regenerate_models(exclude=['throat.diameter']) import openpnm.io.VTK as iovtk iovtk.save(network=sgl, filename='network_SGL') air = op.phases.Air(network = sgl, name = 'air') water = op.phases.Water(network = sgl, name = 'water') # Reset pore contact angle water['pore.contact_angle'] = 100.0 phys_water = op.physics.Standard(network=sgl, phase=water, geometry=geo) phys_air = op.physics.Standard(network=sgl, phase=air, geometry=geo) phys_water_b = op.physics.Standard(network=sgl, phase=water, geometry=boun) phys_air_b = op.physics.Standard(network=sgl, phase=air, geometry=boun) inlets = sgl.pores('bottom_boundary') used_inlets = [inlets[x] for x in range(0, len(inlets), 2)] OP_1 = op.algorithms.OrdinaryPercolation(project=proj) OP_1.set_inlets(pores=used_inlets) OP_1.setup(phase=water, pore_volume='pore.volume', throat_volume='throat.volume') OP_1.run(points=100) data = OP_1.get_intrusion_data() # Filter for evenly spaced sat inc. first and last filter_pc = [data.Pcap[0]] sat = [data.Snwp[0]] for i, pc in enumerate(data.Pcap): if data.Snwp[i] - sat[-1] > 0.05: filter_pc.append(pc) sat.append(data.Snwp[i]) filter_pc.append(data.Pcap[-1]) sat.append(data.Snwp[-1]) def update_phase_and_phys(results): water['pore.occupancy'] = results['pore.occupancy'] air['pore.occupancy'] = 1-results['pore.occupancy'] water['throat.occupancy'] = results['throat.occupancy'] air['throat.occupancy'] = 1-results['throat.occupancy'] # Add multiphase conductances mode='strict' phys_air.add_model(model=mods.physics.multiphase.conduit_conductance, propname='throat.conduit_diffusive_conductance', throat_conductance='throat.diffusive_conductance', mode=mode) phys_water.add_model(model=mods.physics.multiphase.conduit_conductance, propname='throat.conduit_diffusive_conductance', throat_conductance='throat.diffusive_conductance', mode=mode) phys_air.add_model(model=mods.physics.multiphase.conduit_conductance, propname='throat.conduit_hydraulic_conductance', throat_conductance='throat.hydraulic_conductance', mode=mode) phys_water.add_model(model=mods.physics.multiphase.conduit_conductance, propname='throat.conduit_hydraulic_conductance', throat_conductance='throat.hydraulic_conductance', mode=mode) phys_air_b.add_model(model=mods.physics.multiphase.conduit_conductance, propname='throat.conduit_diffusive_conductance', throat_conductance='throat.diffusive_conductance', mode=mode) phys_water_b.add_model(model=mods.physics.multiphase.conduit_conductance, propname='throat.conduit_diffusive_conductance', throat_conductance='throat.diffusive_conductance', mode=mode) phys_air_b.add_model(model=mods.physics.multiphase.conduit_conductance, propname='throat.conduit_hydraulic_conductance', throat_conductance='throat.hydraulic_conductance', mode=mode) phys_water_b.add_model(model=mods.physics.multiphase.conduit_conductance, propname='throat.conduit_hydraulic_conductance', throat_conductance='throat.hydraulic_conductance', mode=mode) update_phase_and_phys(OP_1.results(Pc=1e3)) perm_air = {'0': [], '1': [], '2': []} diff_air = {'0': [], '1': [], '2': []} perm_water = {'0': [], '1': [], '2': []} diff_water = {'0': [], '1': [], '2': []} max_Pc = max(OP_1['throat.invasion_pressure']) num_seq = 20 pore_volumes = sgl['pore.volume'] throat_volumes = sgl['throat.volume'] totV = np.sum(pore_volumes) + np.sum(throat_volumes) K_air_single_phase = [None, None, None] D_air_single_phase = [None, None, None] K_water_single_phase = [None, None, None] D_water_single_phase = [None, None, None] bounds = [['front', 'back'], ['left', 'right'], ['top', 'bottom']] for bound_increment in range(len(bounds)): # Run Single phase algs effective properties BC1_pores = sgl.pores(labels=bounds[bound_increment][0]+'_boundary') BC2_pores = sgl.pores(labels=bounds[bound_increment][1]+'_boundary') # Effective permeability : air sf_air = op.algorithms.StokesFlow(network=sgl, phase=air) sf_air.setup(conductance='throat.hydraulic_conductance') sf_air.set_value_BC(values=0.6, pores=BC1_pores) sf_air.set_value_BC(values=0.2, pores=BC2_pores) sf_air.run() K_air_single_phase[bound_increment] = sf_air.calc_effective_permeability() proj.purge_object(obj=sf_air) # Effective diffusivity : air fd_air = op.algorithms.FickianDiffusion(network=sgl,phase=air) fd_air.setup(conductance='throat.diffusive_conductance') fd_air.set_value_BC(values=0.6, pores=BC1_pores) fd_air.set_value_BC(values=0.2, pores=BC2_pores) fd_air.run() D_air_single_phase[bound_increment] = fd_air.calc_effective_diffusivity() proj.purge_object(obj=fd_air) # Effective permeability : water sf_water = op.algorithms.StokesFlow(network=sgl, phase=water) sf_water.setup(conductance='throat.hydraulic_conductance') sf_water.set_value_BC(values=0.6, pores=BC1_pores) sf_water.set_value_BC(values=0.2, pores=BC2_pores) sf_water.run() K_water_single_phase[bound_increment] = sf_water.calc_effective_permeability() proj.purge_object(obj=sf_water) # Effective diffusivity : water fd_water = op.algorithms.FickianDiffusion(network=sgl,phase=water) fd_water.setup(conductance='throat.diffusive_conductance') fd_water.set_value_BC(values=0.6, pores=BC1_pores) fd_water.set_value_BC(values=0.2, pores=BC2_pores) fd_water.run() D_water_single_phase[bound_increment] = fd_water.calc_effective_diffusivity() proj.purge_object(obj=fd_water) for Pc in filter_pc: update_phase_and_phys(OP_1.results(Pc=Pc)) print('-' * 80) print('Pc', Pc) for bound_increment in range(len(bounds)): BC1_pores = sgl.pores(labels=bounds[bound_increment][0]+'_boundary') BC2_pores = sgl.pores(labels=bounds[bound_increment][1]+'_boundary') # Multiphase sf_air = op.algorithms.StokesFlow(network=sgl,phase=air) sf_air.setup(conductance='throat.conduit_hydraulic_conductance') sf_water = op.algorithms.StokesFlow(network=sgl,phase=water) sf_water.setup(conductance='throat.conduit_hydraulic_conductance') fd_air = op.algorithms.FickianDiffusion(network=sgl,phase=air) fd_air.setup(conductance='throat.conduit_diffusive_conductance') fd_water = op.algorithms.FickianDiffusion(network=sgl,phase=water) fd_water.setup(conductance='throat.conduit_diffusive_conductance') #BC1 sf_air.set_value_BC(values=0.6, pores=BC1_pores) sf_water.set_value_BC(values=0.6, pores=BC1_pores) fd_air.set_value_BC(values=0.6, pores=BC1_pores) fd_water.set_value_BC(values=0.6, pores=BC1_pores) #BC2 sf_air.set_value_BC(values=0.2, pores=BC2_pores) sf_water.set_value_BC(values=0.2, pores=BC2_pores) fd_air.set_value_BC(values=0.2, pores=BC2_pores) fd_water.set_value_BC(values=0.2, pores=BC2_pores) # Run Multiphase algs sf_air.run() sf_water.run() fd_air.run() fd_water.run() Keff_air_mphase = sf_air.calc_effective_permeability() Deff_air_mphase = fd_air.calc_effective_diffusivity() Keff_water_mphase = sf_air.calc_effective_permeability() Deff_water_mphase = fd_water.calc_effective_diffusivity() Kr_eff_air = Keff_air_mphase / K_air_single_phase[bound_increment] Kr_eff_water = Keff_water_mphase / K_water_single_phase[bound_increment] Dr_eff_air = Deff_air_mphase / D_air_single_phase[bound_increment] Dr_eff_water = Deff_water_mphase / D_water_single_phase[bound_increment] perm_air[str(bound_increment)].append(Kr_eff_air) diff_air[str(bound_increment)].append(Dr_eff_air) perm_water[str(bound_increment)].append(Kr_eff_water) diff_water[str(bound_increment)].append(Dr_eff_water) proj.purge_object(obj=sf_air) proj.purge_object(obj=sf_water) proj.purge_object(obj=fd_air) proj.purge_object(obj=fd_water) #NBVAL_IGNORE_OUTPUT from matplotlib.font_manager import FontProperties %matplotlib inline # Data points taken directly from Gostick's graphs using GraphClick gostick_saturation_1 = [0.008, 0.04, 0.093, 0.14, 0.193, 0.246, 0.293, 0.337, 0.395, 0.442, 0.496, 0.542, 0.59, 0.641, 0.687, 0.748, 0.793, 0.838, 0.894, 0.945, 0.986] gostick_perm_air_case1 = [0.917, 0.821, 0.68, 0.568, 0.466, 0.366, 0.286, 0.204, 0.144, 0.096, 0.051, 0.024, 0.003, -1.08E-04, -1.96E-04, -3.12E-04, -3.97E-04, -4.84E-04, -5.90E-04, 0.002, 0.002] gostick_saturation_2 = [0.99, 0.899, 0.847, 0.802, 0.75, 0.701, 0.645, 0.594, 0.546, 0.497, 0.449, 0.398, 0.348, 0.298, 0.245, 0.196, 0.147, 0.094, 0.044, 0.003] gostick_perm_water = [0.935, 0.774, 0.709, 0.664, 0.618, 0.572, 0.514, 0.461, 0.401, 0.347, 0.284, 0.211, 0.145, 0.084, 0.044, 0.024, 0.012, 0.001, 0.001, 0.001] gostick_saturation_3 =[0.006, 0.05, 0.102, 0.151, 0.199, 0.247, 0.297, 0.348, 0.399, 0.447, 0.496, 0.546, 0.597, 0.645, 0.699, 0.75, 0.798, 0.846, 0.899, 0.949, 0.983] gostick_diff_air_case1 = [0.939, 0.836, 0.725, 0.626, 0.531, 0.442, 0.353, 0.27, 0.203, 0.14, 0.085, 0.048, 0.008, 5.49E-04, 4.48E-04, 3.50E-04, 2.59E-04, 1.67E-04, 0.003, 0.003, 0.003] gostick_saturation_4 = [0.985, 0.946, 0.898, 0.846, 0.795, 0.749, 0.695, 0.643, 0.596, 0.545, 0.496, 0.448, 0.396, 0.346, 0.298, 0.251, 0.196, 0.146, 0.094] gostick_diff_water = [0.941, 0.901, 0.853, 0.809, 0.756, 0.7, 0.638, 0.569, 0.503, 0.428, 0.36, 0.291, 0.214, 1.48E-01, 8.00E-02, 4.50E-02, 2.30E-02, 1.60E-02, 0.005] fontP = FontProperties() fontP.set_size('small') # Setting up subplots fig = plt.figure(figsize=(6, 10), dpi=80, facecolor='w', edgecolor='k') ax1 = fig.add_subplot(211) #top ax2 = fig.add_subplot(212) #bottom x_values1 = [x/20 for x in range(21)] z = '.75' # Plots for subplot1 - strict permeability p1, = ax1.plot(sat, perm_water['0'], color = 'k', linestyle = '-', marker = 'o') p2, = ax1.plot(sat, perm_water['1'], color = z, linestyle = '-', marker = 'o') p3, = ax1.plot(sat, perm_water['2'], color = 'b', linestyle = '-', marker = 'o') p4, = ax1.plot(sat, perm_air['0'], color = 'k', linestyle = '-', marker = '^') p5, = ax1.plot(sat, perm_air['1'], color = z, linestyle = '-', marker = '^') p6, = ax1.plot(sat, perm_air['2'], color = 'b', linestyle = '-', marker = '^') p10, = ax1.plot(x_values1, [x**(3) for x in x_values1], 'k--') ax1.plot(x_values1, [(1-x)**(3) for x in x_values1], 'k--') gs1, = ax1.plot(gostick_saturation_1, gostick_perm_air_case1, color = 'r', linestyle = '-', marker = 'D') gs2, = ax1.plot(gostick_saturation_2, gostick_perm_water, color = 'r', linestyle = '-', marker = 'o') ax1.set_ylabel('permeability') ax1.set_xlabel("saturation") ax1.set_ylim([0,1]) ax1.set_xlim([0,1]) # Need to work on legend to match up with the right things lgd1 = ax1.legend([p1, p2, p3, p4, p5, p6, p10, gs1, gs2], ["KrWater,x", "KrWater,y", "KrWater,z", "KrAir,x","KrAir,y","KrAir,z", "a = 3", "Gostick et al \n KrAir,x (case 1)", "Gostick et al \n KrWater,x"], loc='center left', bbox_to_anchor=(1, 0.5), prop=fontP) # Plots for subplot4 - diffusivity p11, = ax2.plot(sat, diff_water['0'], color = 'k', linestyle = '-', marker = 'o') p12, = ax2.plot(sat, diff_water['1'], color = z, linestyle = '-', marker = 'o') p13, = ax2.plot(sat, diff_water['2'], color = 'b', linestyle = '-', marker = 'o') p14, = ax2.plot(sat, diff_air['0'], color = 'k', linestyle = '-', marker = '^') p15, = ax2.plot(sat, diff_air['1'], color = z, linestyle = '-', marker = '^') p16, = ax2.plot(sat, diff_air['2'], color = 'b', linestyle = '-', marker = '^') p20, = ax2.plot(x_values1, [x**(2) for x in x_values1], 'k--') ax2.plot(x_values1, [(1-x)**(2) for x in x_values1], 'k--') gs3, = ax2.plot(gostick_saturation_3, gostick_diff_air_case1, color = 'r', linestyle = '-', marker = 'D') gs4, = ax2.plot(gostick_saturation_4, gostick_diff_water, color = 'r', linestyle = '-', marker = 'o') ax2.set_ylabel('diffusivity') ax2.set_xlabel("saturation") ax2.set_ylim([0,1]) ax2.set_xlim([0,1]) lgd2 = ax2.legend([p11, p12, p13, p14, p15, p16, p20, gs3, gs4], ["DrWater,x", "DrWater,y", "DrWater,z", "DrAir,x","DrAir,y","DrAir,z", "a = 2", "Gostick et al \n DrAir,x (case 1)", "Gostick et al \n DrWater,x"], loc='center left', bbox_to_anchor=(1, 0.5), prop=fontP) fig.subplots_adjust(left=0.13, right=.7, top=0.95, bottom=0.05) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step5: Training data was collected in the Self-Driving Car simulator on Mac OS using a Playstation 3 console controller. Step7: Image Preprocessor Step11: Track 1 Training Dataset class Step12: Instantiates the Track 1 training dataset, prints details about the object then prints the first 5 elements of the dataframe. Step13: Feature Plotting Step14: Steering Histogram Plot Step15: Steering Line Plot Step16: Explore the features Step17: Here I randomize the training data and inject to first 10 measurements into the batch generator. Note each item in X_train is an instance of the RecordingMeasurement class. Step18: Visualize batch features Step19: Network Architecture Step21: Track1 extends BaseNetwork. Step22: Instantiate the classifier Step23: Train the network
<ASSISTANT_TASK:> Python Code: class RecordingMeasurement: A representation of a vehicle's state at a point in time while driving around a track during recording. Features available are: left_camera_view - An image taken by the LEFT camera. center_camera_view - An image taken by the CENTER camera. right_camera_view - An image taken by the RIGHT camera. steering_angle - A normalized steering angle in the range -1 to 1. speed - The speed in which the vehicle was traveling at measurement time. This class serves the following purposes: 1. Provides convenience getter methods for left, center and camera images. In an effort to reduce memory footprint, they're essentially designed to lazily instantiate (once) the actual image array at the time the method is invoked. 2. Strips whitespace off the left, center, and right camera image paths. 3. Casts the original absolute path of each camera image to a relative path. This adds reassurance the image will load on any computer. 4. Provides a convenient #is_valid_measurment method which encapsulates pertinent logic to ensure data quality is satisfactory. def __init__(self, measurement_data): self.measurement_data = measurement_data self.steering_angle = round(float(measurement_data['steering']), 4) self.speed = round(float(measurement_data['speed']), 4) l = measurement_data['left'].strip() c = measurement_data['center'].strip() r = measurement_data['right'].strip() # cast absolute path to relative path to be environment agnostic l, c, r = [('./IMG/' + os.path.split(file_path)[1]) for file_path in (l, c, r)] self.left_camera_view_path = l self.center_camera_view_path = c self.right_camera_view_path = r def is_valid_measurement(self): Return true if the original center image is available to load. return os.path.isfile(self.center_camera_view_path) def left_camera_view(self): Lazily instantiates the left camera view image at first call. if not hasattr(self, '__left_camera_view'): self.__left_camera_view = self.__load_image(self.left_camera_view_path) return self.__left_camera_view def center_camera_view(self): Lazily instantiates the center camera view image at first call. if not hasattr(self, '__center_camera_view'): self.__center_camera_view = self.__load_image(self.center_camera_view_path) return self.__center_camera_view def right_camera_view(self): Lazily instantiates the right camera view image at first call. if not hasattr(self, '__right_camera_view'): self.__right_camera_view = self.__load_image(self.right_camera_view_path) return self.__right_camera_view def __load_image(self, imagepath): image_array = None if os.path.isfile(imagepath): image_array = misc.imread(imagepath) else: print('File Not Found: {}'.format(imagepath)) return image_array def __str__(self): results = [] results.append('Image paths:') results.append('') results.append(' Left camera path: {}'.format(self.left_camera_view_path)) results.append(' Center camera path: {}'.format(self.center_camera_view_path)) results.append(' Right camera path: {}'.format(self.right_camera_view_path)) results.append('') results.append('Additional features:') results.append('') results.append(' Steering angle: {}'.format(self.steering_angle)) results.append(' Speed: {}'.format(self.speed)) return '\n'.join(results) def preprocess_image(image_array, output_shape=(40, 80), colorspace='yuv'): Reminder: Source image shape is (160, 320, 3) Our preprocessing algorithm consists of the following steps: 1. Converts BGR to YUV colorspace. This allows us to leverage luminance (Y channel - brightness - black and white representation), and chrominance (U and V - blue–luminance and red–luminance differences respectively) 2. Crops top 31.25% portion and bottom 12.5% portion. The entire width of the image is preserved. This allows the model to generalize better to unseen roadways since we clop artifacts such as trees, buildings, etc. above the horizon. We also clip the hood from the image. 3. Finally, I allow users of this algorithm the ability to specify the shape of the final image via the output_shape argument. Once I've cropped the image, I resize it to the specified shape using the INTER_AREA interpolation agorithm as it is the best choice to preserve original image features. See `Scaling` section in OpenCV documentation: http://docs.opencv.org/trunk/da/d6e/tutorial_py_geometric_transformations.html # convert image to another colorspace if colorspace == 'yuv': image_array = cv2.cvtColor(image_array, cv2.COLOR_BGR2YUV) elif colorspace == 'hsv': image_array = cv2.cvtColor(image_array, cv2.COLOR_BGR2HSV) elif colorspace == 'rgb': image_array = cv2.cvtColor(image_array, cv2.COLOR_BGR2RGB) # [y1:y2, x1:x2] # # crops top 31.25% portion and bottom 12.5% portion # # The entire width of the image is preserved image_array = image_array[50:140, 0:320] # Let's blur the image to smooth out some of the artifacts kernel_size = 5 # Must be an odd number (3, 5, 7...) image_array = cv2.GaussianBlur(image_array, (kernel_size, kernel_size), 0) # resize image to output_shape image_array = cv2.resize(image_array, (output_shape[1], output_shape[0]), interpolation=cv2.INTER_AREA) return image_array class Track1Dataset: Parses driving_log.csv and constructs training, validation and test datasets corresponding to measurements taken at various points in time while recording on track 1. * X_train - A set of examples used for learning, that is to fit the parameters [i.e., weights] of the classifier. * X_val - A set of examples used to tune the hyperparameters [i.e., architecture, not weights] of a classifier, for example to choose the number of hidden units in a neural network. * X_test - A set of examples used only to assess the performance [generalization] of a fully-specified classifier. * y_train, y_val, y_test - The steering angle corresponding to their respective X features. DRIVING_LOG_PATH = './driving_log.csv' def __init__(self, validation_split_percentage=0.2, test_split_percentage=0.05): self.X_train = [] self.X_val = [] self.X_test = [] self.y_train = [] self.y_val = [] self.y_test = [] self.dataframe = None self.headers = [] self.__loaded = False self.__load(validation_split_percentage=validation_split_percentage, test_split_percentage=test_split_percentage) assert self.__loaded == True, 'The dataset was not loaded. Perhaps driving_log.csv is missing.' def __load(self, validation_split_percentage, test_split_percentage): Splits the training data into a validation and test dataset. * X_train - A set of examples used for learning, that is to fit the parameters [i.e., weights] of the classifier. * X_val - A set of examples used to tune the hyperparameters [i.e., architecture, not weights] of a classifier, for example to choose the number of hidden units in a neural network. * X_test - A set of examples used only to assess the performance [generalization] of a fully-specified classifier. * y_train, y_val, y_test - The steering angle corresponding to their respective X features. if not self.__loaded: X_train, y_train, headers, df = [], [], [], None # read in driving_log.csv and construct the # initial X_train and y_train before splitting # it into validation and testing sets. if os.path.isfile(self.DRIVING_LOG_PATH): df = pd.read_csv(self.DRIVING_LOG_PATH) headers = list(df.columns.values) for index, measurement_data in df.iterrows(): measurement = RecordingMeasurement(measurement_data=measurement_data) X_train.append(measurement) y_train.append(measurement.steering_angle) self.__loaded = True # generate the validation set X_train, X_val, y_train, y_val = train_test_split( X_train, y_train, test_size=validation_split_percentage, random_state=0) X_train, y_train, X_val, y_val = np.array(X_train), np.array(y_train, dtype=np.float32), \ np.array(X_val), np.array(y_val, dtype=np.float32) # generate the test set X_train, X_test, y_train, y_test = train_test_split( X_train, y_train, test_size=test_split_percentage, random_state=0) X_train, y_train, X_test, y_test = np.array(X_train), np.array(y_train, dtype=np.float32), \ np.array(X_test), np.array(y_test, dtype=np.float32) self.X_train = X_train self.X_val = X_val self.X_test = X_test self.y_train = y_train self.y_val = y_val self.y_test = y_test self.dataframe = df self.headers = headers def batch_generator(self, X, Y, label, num_epochs, batch_size=32, output_shape=(160, 320), flip_images=True, classifier=None, colorspace='yuv'): A custom batch generator with the main goal of reducing memory footprint on computers and GPUs with limited memory space. Infinitely yields `batch_size` elements from the X and Y datasets. During batch iteration, this algorithm randomly flips the image and steering angle to reduce bias towards a specific steering angle/direction. population = len(X) counter = 0 _index_in_epoch = 0 _tot_epochs = 0 batch_size = min(batch_size, population) batch_count = int(math.ceil(population / batch_size)) assert X.shape[0] == Y.shape[0], 'X and Y size must be identical.' print('Batch generating against the {} dataset with population {} and shape {}'.format(label, population, X.shape)) while True: counter += 1 print('batch gen iter {}'.format(counter)) for i in range(batch_count): start_i = _index_in_epoch _index_in_epoch += batch_size if _index_in_epoch >= population: # Save the classifier to support manual early stoppage if classifier is not None: classifier.save() print(' sampled entire population. reshuffling deck and resetting all counters.') perm = np.arange(population) np.random.shuffle(perm) X = X[perm] Y = Y[perm] start_i = 0 _index_in_epoch = batch_size _tot_epochs += 1 end_i = _index_in_epoch X_batch = [] y_batch = [] for j in range(start_i, end_i): steering_angle = Y[j] measurement = X[j] center_image = measurement.center_camera_view() if center_image is not None: image = preprocess_image(center_image, output_shape=output_shape, colorspace=colorspace) # Here I throw in a random image flip to reduce bias towards # a specific direction/steering angle. if flip_images and random.random() > 0.5: X_batch.append(np.fliplr(image)) y_batch.append(-steering_angle) else: X_batch.append(image) y_batch.append(steering_angle) yield np.array(X_batch), np.array(y_batch) def __str__(self): results = [] results.append('{} Stats:'.format(self.__class__.__name__)) results.append('') results.append(' [Headers]') results.append('') results.append(' {}'.format(self.headers)) results.append('') results.append('') results.append(' [Shapes]') results.append('') results.append(' training features: {}'.format(self.X_train.shape)) results.append(' training labels: {}'.format(self.y_train.shape)) results.append('') results.append(' validation features: {}'.format(self.X_val.shape)) results.append(' validation labels: {}'.format(self.y_val.shape)) results.append('') results.append(' test features: {}'.format(self.X_test.shape)) results.append(' test labels: {}'.format(self.y_test.shape)) results.append('') results.append(' [Dataframe sample]') results.append('') results.append(str(self.dataframe.head(n=5))) return '\n'.join(results) dataset = Track1Dataset(validation_split_percentage=0.2, test_split_percentage=0.05) print(dataset) %matplotlib inline import matplotlib.pyplot as plt dataset.dataframe.plot.hist(alpha=0.5) dataset.dataframe['steering'].plot.hist(alpha=0.5) dataset.dataframe['steering'].plot(alpha=0.5) print('Center camera view shape:\n\n{}\n'.format(dataset.X_train[0].center_camera_view().shape)) print(dataset.X_train[0]) perm = np.arange(len(dataset.X_train)) np.random.shuffle(perm) output_shape = (40, 80, 3) generator = dataset.batch_generator( colorspace='yuv', X=dataset.X_train[0:10], Y=dataset.y_train[0:10], output_shape=output_shape, label='batch feature exploration', num_epochs=1, batch_size=10 ) from zimpy.plot.image_plotter import ImagePlotter # Grab the first 10 items from the training set and X_batch, y_batch = next(generator) # print(X_batch.shape) # print(y_batch.shape) # Cast to string so they render nicely in graph y_batch = [str(x) for x in y_batch] ImagePlotter.plot_images(X_batch, y_batch, rows=2, columns=5) ImagePlotter.plot_images(X_batch[:,:,:,0], y_batch, rows=2, columns=5) ImagePlotter.plot_images(X_batch[:,:,:,1], y_batch, rows=2, columns=5) ImagePlotter.plot_images(X_batch[:,:,:,2], y_batch, rows=2, columns=5) class BaseNetwork: WEIGHTS_FILE_NAME = 'model_final.h5' MODEL_FILE_NAME = 'model_final.json' def __init__(self): self.uuid = uuid.uuid4() self.model = None self.weights = None def fit(self, X_train, y_train, X_val, y_val, nb_epoch=2, batch_size=32, samples_per_epoch=None, output_shape=(40, 80, 3)): raise NotImplementedError def build_model(self, input_shape, output_shape, learning_rate=0.001, dropout_prob=0.1, activation='relu'): raise NotImplementedError def save(self): print('Saved {} model.'.format(self.__class__.__name__)) self.__persist() def __persist(self): save_dir = os.path.join(os.path.dirname(__file__)) weights_save_path = os.path.join(save_dir, self.WEIGHTS_FILE_NAME) model_save_path = os.path.join(save_dir, self.MODEL_FILE_NAME) if not os.path.exists(save_dir): os.makedirs(save_dir) self.model.save_weights(weights_save_path) with open(model_save_path, 'w') as outfile: json.dump(self.model.to_json(), outfile) def __str__(self): results = [] if self.model is not None: results.append(self.model.summary()) return '\n'.join(results) class Track1(BaseNetwork): def fit(self, model, dataset, nb_epoch=2, batch_size=32, samples_per_epoch=None, output_shape=(40, 80, 3)): # Fit the model leveraging the custom # batch generator baked into the # dataset itself. history = model.fit_generator( dataset.batch_generator( X=dataset.X_train, Y=dataset.y_train, label='train set', num_epochs=nb_epoch, batch_size=batch_size, output_shape=output_shape, classifier=self ), nb_epoch=nb_epoch, samples_per_epoch=len(X_train), verbose=2, validation_data=dataset.batch_generator( X=dataset.X_val, Y=dataset.y_val, label='validation set', num_epochs=nb_epoch, batch_size=batch_size, output_shape=output_shape ) ) print(history.history) self.save() def build_model(self, input_shape, output_shape, learning_rate=0.001, dropout_prob=0.1, activation='relu'): Inital zero-mean normalization input layer. A 4-layer deep neural network with 4 fully connected layers at the top. ReLU activation used on each convolution layer. Dropout of 10% (default) used after initially flattening after convolution layers. Dropout of 10% (default) used after first fully connected layer. Adam optimizer with 0.001 learning rate (default) used in this network. Mean squared error loss function was used since this is a regression problem and MSE is quite common and robust for regression analysis. model = Sequential() model.add(Lambda(lambda x: x / 255 - 0.5, input_shape=input_shape, output_shape=output_shape)) model.add(Convolution2D(24, 5, 5, border_mode='valid', activation=activation)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(36, 5, 5, border_mode='valid', activation=activation)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(48, 5, 5, border_mode='same', activation=activation)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(64, 3, 3, border_mode='same', activation=activation)) model.add(Flatten()) model.add(Dropout(dropout_prob)) model.add(Dense(1024, activation=activation)) model.add(Dropout(dropout_prob)) model.add(Dense(100, activation=activation)) model.add(Dense(50, activation=activation)) model.add(Dense(10, activation=activation)) model.add(Dense(1, init='normal')) optimizer = Adam(lr=learning_rate) model.compile(loss='mse', optimizer=optimizer, metrics=['accuracy']) self.model = model model.summary() return model output_shape=(40, 80, 3) clf = Track1() model = clf.build_model( input_shape=output_shape, output_shape=output_shape, learning_rate=0.001, dropout_prob=0.1, activation='relu' ) if False: clf.fit( model, dataset, nb_epoch=2, batch_size=32 ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create a ClusterEnsemble object by passing in a numpy array (or list) of redshifts Step2: Display what we have so far Step3: Add richness values to the dataframe Step4: Access any column of the dataframe as an array Step5: If you don't want units, you can get just the values Step6: Or access the Pandas DataFrame directly Step7: Change the redshifts Step8: Change the mass or richness values Step9: Change the parameters in the mass-richness relation Step10: Calculate $\Sigma(r)$ and $\Delta\Sigma(r)$ for NFW model Step11: Calculate Miscentered NFW Profiles
<ASSISTANT_TASK:> Python Code: from __future__ import print_function import numpy as np from astropy import units from matplotlib import pyplot as plt %matplotlib inline from clusterlensing import ClusterEnsemble z = [0.1,0.2,0.3] c = ClusterEnsemble(z) c.describe c.show() n200 = np.ones(3)*20. c.n200 = n200 c.show() print('z: \t', c.z) print('n200: \t', c.n200) print('r200: \t', c.r200) print('m200: \t', c.m200) print('c200: \t', c.c200) print('rs: \t', c.rs) c.r200.value c.dataframe c.z = np.array([0.4,0.5,0.6]) c.dataframe c.m200 = [3e13,2e14,1e15] c.show() c.n200 = [20,30,40] c.show() c.massrich_slope = 1.5 c.show() # Show basic table without Pandas formatting c.show(notebook = False) rmin, rmax = 0.1, 5. # Mpc nbins = 20 rbins = np.logspace(np.log10(rmin), np.log10(rmax), num = nbins) print('rbins range from', rbins.min(), 'to', rbins.max(), 'Mpc') c.calc_nfw(rbins) # calculate the profiles sigma = c.sigma_nfw # access the profiles deltasigma = c.deltasigma_nfw sigma[0] fig = plt.figure(figsize=(12,5)) fig.suptitle('Centered NFW Cluster Profiles', size=30) first = fig.add_subplot(1,2,1) second = fig.add_subplot(1,2,2) for rich, profile in zip(c.n200,deltasigma): first.plot(rbins, profile, label='$N_{200}=$ '+str(rich)) first.set_xscale('log') first.set_xlabel('$r\ [\mathrm{Mpc}]$', fontsize=20) first.set_ylabel('$\Delta\Sigma(r)\ [\mathrm{M}_\mathrm{sun}/\mathrm{pc}^2]$', fontsize=20) first.set_xlim(rbins.min(), rbins.max()) first.legend(fontsize=20) for rich, profile in zip(c.n200,sigma): second.plot(rbins, profile, label='$N_{200}=$ '+str(rich)) second.set_xscale('log') second.set_xlabel('$r\ [\mathrm{Mpc}]$', fontsize=20) second.set_ylabel('$\Sigma(r)\ [\mathrm{M}_\mathrm{sun}/\mathrm{pc}^2]$', fontsize=20) second.set_xlim(0.05, 1.) second.set_xlim(rbins.min(), rbins.max()) second.legend(fontsize=20) fig.tight_layout() plt.subplots_adjust(top=0.88) offsets = np.array([0.1,0.1,0.1]) #same length as number of clusters c.calc_nfw(rbins, offsets=offsets) deltasigma_off = c.deltasigma_nfw sigma_off = c.sigma_nfw fig = plt.figure(figsize=(12,5)) fig.suptitle('Miscentered NFW Cluster Profiles', size=30) first = fig.add_subplot(1,2,1) second = fig.add_subplot(1,2,2) for rich, profile in zip(c.n200,deltasigma_off): first.plot(rbins, profile, label='$N_{200}=$ '+str(rich)) first.set_xscale('log') first.set_xlabel('$r\ [\mathrm{Mpc}]$', fontsize=20) ytitle = '$\Delta\Sigma^\mathrm{sm}(r)\ [\mathrm{M}_\mathrm{sun}/\mathrm{pc}^2]$' first.set_ylabel(ytitle, fontsize=20) first.set_xlim(rbins.min(), rbins.max()) first.legend(fontsize=20) for rich, profile in zip(c.n200,sigma_off): second.plot(rbins, profile, label='$N_{200}=$ '+str(rich)) second.set_xscale('log') second.set_xlabel('$r\ [\mathrm{Mpc}]$', fontsize=20) ytitle = '$\Sigma^\mathrm{sm}(r)\ [\mathrm{M}_\mathrm{sun}/\mathrm{pc}^2]$' second.set_ylabel(ytitle, fontsize=20) second.set_xlim(rbins.min(), rbins.max()) second.legend(fontsize=20) fig.tight_layout() plt.subplots_adjust(top=0.88) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Read in an Image Step9: Ideas for Lane Detection Pipeline Step10: Test Images Step11: Build a Lane Finding Pipeline Step12: Test on Videos Step13: Let's try the one with the solid white lane on the right first ... Step15: Play the video inline, or if you prefer find the video in your filesystem (should be in the same directory) and play it in your video player of choice. Step17: Improve the draw_lines() function Step19: Writeup and Submission
<ASSISTANT_TASK:> Python Code: #importing some useful packages import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import cv2 %matplotlib inline #reading in an image image = mpimg.imread('test_images/solidWhiteRight.jpg') #printing out some stats and plotting print('This image is:', type(image), 'with dimensions:', image.shape) plt.imshow(image) # if you wanted to show a single color channel image called 'gray', for example, call as plt.imshow(gray, cmap='gray') import math def grayscale(img): Applies the Grayscale transform This will return an image with only one color channel but NOTE: to see the returned image as grayscale (assuming your grayscaled image is called 'gray') you should call plt.imshow(gray, cmap='gray') return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Or use BGR2GRAY if you read an image with cv2.imread() # return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) def canny(img, low_threshold, high_threshold): Applies the Canny transform return cv2.Canny(img, low_threshold, high_threshold) def gaussian_blur(img, kernel_size): Applies a Gaussian Noise kernel return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0) def region_of_interest(img, vertices): Applies an image mask. Only keeps the region of the image defined by the polygon formed from `vertices`. The rest of the image is set to black. #defining a blank mask to start with mask = np.zeros_like(img) #defining a 3 channel or 1 channel color to fill the mask with depending on the input image if len(img.shape) > 2: channel_count = img.shape[2] # i.e. 3 or 4 depending on your image ignore_mask_color = (255,) * channel_count else: ignore_mask_color = 255 #filling pixels inside the polygon defined by "vertices" with the fill color cv2.fillPoly(mask, vertices, ignore_mask_color) #returning the image only where mask pixels are nonzero masked_image = cv2.bitwise_and(img, mask) return masked_image def draw_lines(img, lines, color=[255, 0, 0], thickness=2): NOTE: this is the function you might want to use as a starting point once you want to average/extrapolate the line segments you detect to map out the full extent of the lane (going from the result shown in raw-lines-example.mp4 to that shown in P1_example.mp4). Think about things like separating line segments by their slope ((y2-y1)/(x2-x1)) to decide which segments are part of the left line vs. the right line. Then, you can average the position of each of the lines and extrapolate to the top and bottom of the lane. This function draws `lines` with `color` and `thickness`. Lines are drawn on the image inplace (mutates the image). If you want to make the lines semi-transparent, think about combining this function with the weighted_img() function below # Right/Left Slope lslope = [] rslope = [] # Right/Left Centers lcenter = [] rcenter = [] for line in lines: for x1, y1, x2, y2 in line: slope = (y2 - y1) / (x2 - x1) center = [(x1 + x2) / 2, (y1 + y2) / 2] if slope > 0.5 and slope < 1.0: # Right Lane rslope.append(slope) rcenter.append(center) if slope < -0.5 and slope > -1.0: # Left Lane lslope.append(slope) lcenter.append(center) lslope_avg = np.sum(lslope) / len(lslope) rslope_avg = np.sum(rslope) / len(rslope) lcenter_avg = np.divide(np.sum(lcenter, axis=0), len(lcenter)) rcenter_avg = np.divide(np.sum(rcenter, axis=0), len(rcenter)) ly1 = int(img.shape[0]) lx1 = int((ly1 - lcenter_avg[1]) / lslope_avg + lcenter_avg[0]) ly2 = int(img.shape[0] * 0.6) lx2 = int((ly2 - lcenter_avg[1]) / lslope_avg + lcenter_avg[0]) ry1 = int(img.shape[0]) rx1 = int((ry1 - rcenter_avg[1]) / rslope_avg + rcenter_avg[0]) ry2 = int(img.shape[0] * 0.6) rx2 = int((ry2 - rcenter_avg[1]) / rslope_avg + rcenter_avg[0]) cv2.line(img, (lx1, ly1), (lx2, ly2), color, thickness) cv2.line(img, (rx1, ry1), (rx2, ry2), color, thickness) def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap): `img` should be the output of a Canny transform. Returns an image with hough lines drawn. lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap) line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) draw_lines(line_img, lines, thickness=10) return line_img # Python 3 has support for cool math symbols. def weighted_img(img, initial_img, α=0.8, β=1., γ=0.): `img` is the output of the hough_lines(), An image with lines drawn on it. Should be a blank image (all black) with lines drawn on it. `initial_img` should be the image before any processing. The result image is computed as follows: initial_img * α + img * β + γ NOTE: initial_img and img must be the same shape! return cv2.addWeighted(initial_img, α, img, β, γ) import os os.listdir("test_images/") # TODO: Build your pipeline that will draw lane lines on the test_images # then save them to the test_images_output directory. low_threshold = 50 # Canny edge detection high_threshold = 150 # Canny edge detection kernel_size = 5 # Gaussian blurring rho = 2 # Hough Tranform, distance resolution in pixels of the Hough grid theta = np.pi / 180 # Hough Tranform, angular resolution in radians of Hough grid threshold = 15 # Hough Tranform, minimum number of votes (intersections in Hough grid cell) min_line_len = 40 # Hough Tranform, minimum number of pixels making up a line max_line_gap = 20 # Hough Tranform, maximum gap in pixels between connectable line segments original_images = os.listdir('test_images/') for image in original_images: img = mpimg.imread('test_images/' + image) vertices = np.array([[(0, img.shape[0]), (450, 320), (510, 320), (img.shape[1], img.shape[0])]], dtype=np.int32) # Image mask polygon gray_img = grayscale(img) # Greyed out image edge_img = canny(gray_img, low_threshold, high_threshold) # Canny edges mask_img = region_of_interest(edge_img, vertices) # Region of interest line_img = hough_lines(mask_img, rho, theta, threshold, min_line_len, max_line_gap) lane_line_img = weighted_img(img, line_img) #cv2.imwrite('test_images_output/' + image, lane_line_img) mpimg.imsave('test_images_output/' + image, lane_line_img) #reading in an image image = mpimg.imread('test_images_output/whiteCarLaneSwitch.jpg') #printing out some stats and plotting print('This image is:', type(image), 'with dimensions:', image.shape) plt.imshow(image) # Import everything needed to edit/save/watch video clips from moviepy.editor import VideoFileClip from IPython.display import HTML def process_image(image): # NOTE: The output you return should be a color image (3 channel) for processing video below # TODO: put your pipeline here, # you should return the final output (image where lines are drawn on lanes) vertices = np.array([[(0, image.shape[0]), (450, 320), (510, 320), (image.shape[1], image.shape[0])]], dtype=np.int32) # Image mask polygon gray_img = grayscale(image) # Greyed out image edge_img = canny(gray_img, low_threshold, high_threshold) # Canny edges mask_img = region_of_interest(edge_img, vertices) # Region of interest line_img = hough_lines(mask_img, rho, theta, threshold, min_line_len, max_line_gap) lane_line_img = weighted_img(image, line_img) return lane_line_img white_output = 'test_videos_output/solidWhiteRight.mp4' ## To speed up the testing process you may want to try your pipeline on a shorter subclip of the video ## To do so add .subclip(start_second,end_second) to the end of the line below ## Where start_second and end_second are integer values representing the start and end of the subclip ## You may also uncomment the following line for a subclip of the first 5 seconds ##clip1 = VideoFileClip("test_videos/solidWhiteRight.mp4").subclip(0,5) clip1 = VideoFileClip("test_videos/solidWhiteRight.mp4") white_clip = clip1.fl_image(process_image) #NOTE: this function expects color images!! %time white_clip.write_videofile(white_output, audio=False) HTML( <video width="960" height="540" controls> <source src="{0}"> </video> .format(white_output)) yellow_output = 'test_videos_output/solidYellowLeft.mp4' ## To speed up the testing process you may want to try your pipeline on a shorter subclip of the video ## To do so add .subclip(start_second,end_second) to the end of the line below ## Where start_second and end_second are integer values representing the start and end of the subclip ## You may also uncomment the following line for a subclip of the first 5 seconds ##clip2 = VideoFileClip('test_videos/solidYellowLeft.mp4').subclip(0,5) clip2 = VideoFileClip('test_videos/solidYellowLeft.mp4') yellow_clip = clip2.fl_image(process_image) %time yellow_clip.write_videofile(yellow_output, audio=False) HTML( <video width="960" height="540" controls> <source src="{0}"> </video> .format(yellow_output)) challenge_output = 'test_videos_output/challenge.mp4' ## To speed up the testing process you may want to try your pipeline on a shorter subclip of the video ## To do so add .subclip(start_second,end_second) to the end of the line below ## Where start_second and end_second are integer values representing the start and end of the subclip ## You may also uncomment the following line for a subclip of the first 5 seconds ##clip3 = VideoFileClip('test_videos/challenge.mp4').subclip(0,5) clip3 = VideoFileClip('test_videos/challenge.mp4') challenge_clip = clip3.fl_image(process_image) %time challenge_clip.write_videofile(challenge_output, audio=False) HTML( <video width="960" height="540" controls> <source src="{0}"> </video> .format(challenge_output)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Get familiar with the following basic tensorflow methods Step2: Linear Regression example
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np import tensorflow as tf # Define C=B*A in a symbolic way A = tf.Variable(tf.ones([10])) B = tf.constant(np.ones(10)*2, tf.float32) C = tf.multiply(A, B) init = tf.global_variables_initializer() # Launch the graph with tf.Session() as sess: # initialize variables sess.run(init) # run the graph and evaluate C c = sess.run([C]) print('c:', c) # Generate ground truth 100 x, y data points in NumPy, y = 3.0 * x + 1.0 # Regress for W and b that compute y_data = W * x_data + b x_data = np.random.rand(100).astype(np.float32) y_data = 3.0 * x_data + 1.0 plt.plot(x_data, y_data) # define trainable variables W = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) b = tf.Variable(tf.zeros([1])) # define graph operations y = tf.multiply(W, x_data) + b # define loss, L2 loss = tf.reduce_mean(tf.square(y - y_data)) # define optimizer for training train_optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.5).minimize(loss) # define the operation that initializes variables init = tf.global_variables_initializer() # Launch the graph with tf.Session() as sess: # initialization sess.run(init) # starting training training_iters = 100 for step in range(training_iters): if step % 20 == 0 or (step+1)==training_iters: print(step, sess.run(W), sess.run(b)) # run optimizer during training _ = sess.run([train_optimizer]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Basic Element, Specie and Composition objects Step2: You can see that units are printed for atomic masses and ionic radii. Pymatgen comes with a complete system of managing units in pymatgen.core.unit. A Unit is a subclass of float that attaches units and handles conversions. For example, Step3: Please refer to the Units example for more information on units. Species are like Elements, except they have an explicit oxidation state. They can be used wherever Element is used for the most part. Step4: A Composition is essentially an immutable mapping of Elements/Species with amounts, and useful properties like molecular weight, get_atomic_fraction, etc. Note that you can conveniently either use an Element/Specie object or a string as keys (this is a feature). Step5: Lattice & Structure objects Step6: A Structure object represents a crystal structure (lattice + basis). A Structure is essentially a list of PeriodicSites with the same Lattice. Let us now create a CsCl structure. Step7: The Structure object contains many useful manipulation functions. Since Structure is essentially a list, it contains a simple pythonic API for manipulation its sites. Some examples are given below. Please note that there is an immutable version of Structure known as IStructure, for the use case where you really need to enforce that the structure does not change. Conversion between these forms of Structure can be performed using from_sites(). Step8: Basic analyses Step9: We also have an extremely powerful structure matching tool. Step10: Input/output Step11: The vaspio_set module provides a means o obtain a complete set of VASP input files for performing calculations. Several useful presets based on the parameters used in the Materials Project are provided.
<ASSISTANT_TASK:> Python Code: import pymatgen as mg si = mg.Element("Si") print("Atomic mass of Si is {}".format(si.atomic_mass)) print("Si has a melting point of {}".format(si.melting_point)) print("Ionic radii for Si: {}".format(si.ionic_radii)) print("Atomic mass of Si in kg: {}".format(si.atomic_mass.to("kg"))) fe2 = mg.Specie("Fe", 2) print(fe2.atomic_mass) print(fe2.ionic_radius) comp = mg.Composition("Fe2O3") print("Weight of Fe2O3 is {}".format(comp.weight)) print("Amount of Fe in Fe2O3 is {}".format(comp["Fe"])) print("Atomic fraction of Fe is {}".format(comp.get_atomic_fraction("Fe"))) print("Weight fraction of Fe is {}".format(comp.get_wt_fraction("Fe"))) # Creates cubic Lattice with lattice parameter 4.2 lattice = mg.Lattice.cubic(4.2) print(lattice.lengths_and_angles) structure = mg.Structure(lattice, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.5]]) print("Unit cell vol = {}".format(structure.volume)) print("First site of the structure is {}".format(structure[0])) structure.make_supercell([2, 2, 1]) #Make a 3 x 2 x 1 supercell of the structure del structure[0] #Remove the first site structure.append("Na", [0,0,0]) #Append a Na atom. structure[-1] = "Li" #Change the last added atom to Li. structure[0] = "Cs", [0.01, 0.5, 0] #Shift the first atom by 0.01 in fractional coordinates in the x-direction. immutable_structure = mg.IStructure.from_sites(structure) #Create an immutable structure (cannot be modified). print(immutable_structure) #Determining the symmetry from pymatgen.symmetry.analyzer import SpacegroupAnalyzer finder = SpacegroupAnalyzer(structure) print("The spacegroup is {}".format(finder.get_space_group_symbol())) from pymatgen.analysis.structure_matcher import StructureMatcher #Let's create two structures which are the same topologically, but with different elements, and one lattice is larger. s1 = mg.Structure(lattice, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.5]]) s2 = mg.Structure(mg.Lattice.cubic(5), ["Rb", "F"], [[0, 0, 0], [0.5, 0.5, 0.5]]) m = StructureMatcher() print(m.fit_anonymous(s1, s2)) #Returns a mapping which maps s1 and s2 onto each other. Strict element fitting is also available. #Convenient IO to various formats. Format is intelligently determined from file name and extension. structure.to(filename="POSCAR") structure.to(filename="CsCl.cif") #Or if you just supply fmt, you simply get a string. print(structure.to(fmt="poscar")) print(structure.to(fmt="cif")) #Reading a structure from a file. structure = mg.Structure.from_file("POSCAR") from pymatgen.io.vasp.sets import MPRelaxSet v = MPRelaxSet(structure) v.write_input("MyInputFiles") #Writes a complete set of input files for structure to the directory MyInputFiles <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load and prepare the data Step2: Checking out the data Step3: Dummy variables Step4: Scaling target variables Step5: Splitting the data into training, testing, and validation sets Step6: We'll split the data into two sets, one for training and one for validating as the network is being trained. Since this is time series data, we'll train on historical data, then try to predict on future data (the validation set). Step7: Time to build the network Step8: Training the network Step9: Check out your predictions Step10: Thinking about your results
<ASSISTANT_TASK:> Python Code: %matplotlib inline %config InlineBackend.figure_format = 'retina' import numpy as np import pandas as pd import matplotlib.pyplot as plt data_path = 'Bike-Sharing-Dataset/hour.csv' rides = pd.read_csv(data_path) rides.head() rides[:24*10].plot(x='dteday', y='cnt') dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday'] for each in dummy_fields: dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False) rides = pd.concat([rides, dummies], axis=1) fields_to_drop = ['instant', 'dteday', 'season', 'weathersit', 'weekday', 'atemp', 'mnth', 'workingday', 'hr'] data = rides.drop(fields_to_drop, axis=1) data.head() quant_features = ['casual', 'registered', 'cnt', 'temp', 'hum', 'windspeed'] # Store scalings in a dictionary so we can convert back later scaled_features = {} for each in quant_features: mean, std = data[each].mean(), data[each].std() scaled_features[each] = [mean, std] data.loc[:, each] = (data[each] - mean)/std # Save the last 21 days test_data = data[-21*24:] data = data[:-21*24] # Separate the data into features and targets target_fields = ['cnt', 'casual', 'registered'] features, targets = data.drop(target_fields, axis=1), data[target_fields] test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields] # Hold out the last 60 days of the remaining data as a validation set train_features, train_targets = features[:-60*24], targets[:-60*24] val_features, val_targets = features[-60*24:], targets[-60*24:] class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Set number of nodes in input, hidden and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Initialize weights self.weights_input_to_hidden = np.random.normal(0.0, self.hidden_nodes**-0.5, (self.hidden_nodes, self.input_nodes)) self.weights_hidden_to_output = np.random.normal(0.0, self.output_nodes**-0.5, (self.output_nodes, self.hidden_nodes)) self.lr = learning_rate #### Set this to your implemented sigmoid function #### # Activation function is the sigmoid function self.activation_function = lambda x: 1/(1+np.exp(-x)) def train(self, inputs_list, targets_list): # Convert inputs list to 2d array inputs = np.array(inputs_list, ndmin=2).T targets = np.array(targets_list, ndmin=2).T #### Implement the forward pass here #### ### Forward pass ### # TODO: Hidden layer hidden_inputs = np.dot(self.weights_input_to_hidden, inputs) hidden_outputs = self.activation_function(hidden_inputs) # TODO: Output layer final_inputs = np.dot(self.weights_hidden_to_output, hidden_outputs) # signals into final output layer final_outputs = final_inputs # signals from final output layer #### Implement the backward pass here #### ### Backward pass ### # TODO: Output error output_errors = targets - final_outputs # Output layer error is the difference between desired target and actual output. # TODO: Backpropagated error hidden_errors = np.dot(self.weights_hidden_to_output.T, output_errors) # errors propagated to the hidden layer hidden_grad = hidden_outputs*(1-hidden_outputs) # TODO: Update the weights self.weights_hidden_to_output += self.lr * np.dot(output_errors, hidden_outputs.T)# update hidden-to-output weights with gradient descent step self.weights_input_to_hidden += self.lr * np.dot((hidden_grad*hidden_errors), inputs.T) # update input-to-hidden weights with gradient descent step def run(self, inputs_list): # Run a forward pass through the network inputs = np.array(inputs_list, ndmin=2).T #### Implement the forward pass here #### # TODO: Hidden layer hidden_inputs = np.dot(self.weights_input_to_hidden, inputs) hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer # TODO: Output layer final_inputs = np.dot(self.weights_hidden_to_output, hidden_outputs)# signals into final output layer final_outputs = final_inputs # signals from final output layer return final_outputs def MSE(y, Y): return np.mean((y-Y)**2) import sys ### Set the hyperparameters here ### epochs = 3000 learning_rate = 0.01 hidden_nodes = 15 output_nodes = 1 N_i = train_features.shape[1] network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate) losses = {'train':[], 'validation':[]} for e in range(epochs): # Go through a random batch of 128 records from the training data set batch = np.random.choice(train_features.index, size=128) for record, target in zip(train_features.ix[batch].values, train_targets.ix[batch]['cnt']): network.train(record, target) # Printing out the training progress train_loss = MSE(network.run(train_features), train_targets['cnt'].values) val_loss = MSE(network.run(val_features), val_targets['cnt'].values) sys.stdout.write("\rProgress: " + str(100 * e/float(epochs))[:4] \ + "% ... Training loss: " + str(train_loss)[:5] \ + " ... Validation loss: " + str(val_loss)[:5]) losses['train'].append(train_loss) losses['validation'].append(val_loss) plt.plot(losses['train'], label='Training loss') plt.plot(losses['validation'], label='Validation loss') plt.legend() plt.ylim(ymax=0.5) fig, ax = plt.subplots(figsize=(8,4)) mean, std = scaled_features['cnt'] predictions = network.run(test_features)*std + mean ax.plot(predictions[0], label='Prediction') ax.plot((test_targets['cnt']*std + mean).values, label='Data') ax.set_xlim(right=len(predictions)) ax.legend() dates = pd.to_datetime(rides.ix[test_data.index]['dteday']) dates = dates.apply(lambda d: d.strftime('%b %d')) ax.set_xticks(np.arange(len(dates))[12::24]) _ = ax.set_xticklabels(dates[12::24], rotation=45) import unittest inputs = [0.5, -0.2, 0.1] targets = [0.4] test_w_i_h = np.array([[0.1, 0.4, -0.3], [-0.2, 0.5, 0.2]]) test_w_h_o = np.array([[0.3, -0.1]]) class TestMethods(unittest.TestCase): ########## # Unit tests for data loading ########## def test_data_path(self): # Test that file path to dataset has been unaltered self.assertTrue(data_path.lower() == 'bike-sharing-dataset/hour.csv') def test_data_loaded(self): # Test that data frame loaded self.assertTrue(isinstance(rides, pd.DataFrame)) ########## # Unit tests for network functionality ########## def test_activation(self): network = NeuralNetwork(3, 2, 1, 0.5) # Test that the activation function is a sigmoid self.assertTrue(np.all(network.activation_function(0.5) == 1/(1+np.exp(-0.5)))) def test_train(self): # Test that weights are updated correctly on training network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() network.train(inputs, targets) self.assertTrue(np.allclose(network.weights_hidden_to_output, np.array([[ 0.37275328, -0.03172939]]))) self.assertTrue(np.allclose(network.weights_input_to_hidden, np.array([[ 0.10562014, 0.39775194, -0.29887597], [-0.20185996, 0.50074398, 0.19962801]]))) def test_run(self): # Test correctness of run method network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() self.assertTrue(np.allclose(network.run(inputs), 0.09998924)) suite = unittest.TestLoader().loadTestsFromModule(TestMethods()) unittest.TextTestRunner().run(suite) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Environment Preparation Step2: Install Analytics Zoo Step3: Distributed TensorFlow (v1.15) using Orca APIs Step4: Step 1 Step5: This is the only place where you need to specify local or distributed mode. View Orca Context for more details. Step6: Step 3 Step7: Step 4 Step8: Next, fit the Estimator. Step9: Finally, evaluate using the Estimator. Step10: Now, the accuracy of this model has reached 98%.
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Install jdk8 !apt-get install openjdk-8-jdk-headless -qq > /dev/null import os # Set environment variable JAVA_HOME. os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64" !update-alternatives --set java /usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java !java -version # Install latest pre-release version of Analytics Zoo # Installing Analytics Zoo from pip will automatically install pyspark, bigdl, and their dependencies. !pip install --pre --upgrade analytics-zoo # Install required dependencies !pip install tensorflow==1.15.0 tensorflow-datasets==2.1.0 # import necesary libraries and modules import argparse from zoo.orca.learn.tf.estimator import Estimator from zoo.orca import init_orca_context, stop_orca_context from zoo.orca import OrcaContext OrcaContext.log_output = True # recommended to set it to True when running Analytics Zoo in Jupyter notebook (this will display terminal's stdout and stderr in the Jupyter notebook). cluster_mode = "local" if cluster_mode == "local": init_orca_context(cluster_mode="local", cores=4) # run in local mode elif cluster_mode == "k8s": init_orca_context(cluster_mode="k8s", num_nodes=2, cores=2) # run on K8s cluster elif cluster_mode == "yarn": init_orca_context(cluster_mode="yarn-client", num_nodes=2, cores=2) # run on Hadoop YARN cluster import tensorflow as tf def accuracy(logits, labels): predictions = tf.argmax(logits, axis=1, output_type=labels.dtype) is_correct = tf.cast(tf.equal(predictions, labels), dtype=tf.float32) return tf.reduce_mean(is_correct) def lenet(images): with tf.variable_scope('LeNet', [images]): net = tf.layers.conv2d(images, 32, (5, 5), activation=tf.nn.relu, name='conv1') net = tf.layers.max_pooling2d(net, (2, 2), 2, name='pool1') net = tf.layers.conv2d(net, 64, (5, 5), activation=tf.nn.relu, name='conv2') net = tf.layers.max_pooling2d(net, (2, 2), 2, name='pool2') net = tf.layers.flatten(net) net = tf.layers.dense(net, 1024, activation=tf.nn.relu, name='fc3') logits = tf.layers.dense(net, 10) return logits # tensorflow inputs images = tf.placeholder(dtype=tf.float32, shape=(None, 28, 28, 1)) # tensorflow labels labels = tf.placeholder(dtype=tf.int32, shape=(None,)) logits = lenet(images) loss = tf.reduce_mean(tf.losses.sparse_softmax_cross_entropy(logits=logits, labels=labels)) acc = accuracy(logits, labels) import tensorflow_datasets as tfds def preprocess(data): data['image'] = tf.cast(data["image"], tf.float32) / 255. return data['image'], data['label'] # get DataSet dataset_dir = "~/tensorflow_datasets" mnist_train = tfds.load(name="mnist", split="train", data_dir=dataset_dir) mnist_test = tfds.load(name="mnist", split="test", data_dir=dataset_dir) mnist_train = mnist_train.map(preprocess) mnist_test = mnist_test.map(preprocess) est = Estimator.from_graph(inputs=images, outputs=logits, labels=labels, loss=loss, optimizer=tf.train.AdamOptimizer(), metrics={"acc": acc}) max_epoch = 1 est.fit(data=mnist_train, batch_size=320, epochs=max_epoch, validation_data=mnist_test) result = est.evaluate(mnist_test) print(result) est.save_tf_checkpoint("/tmp/lenet/model") # Stop orca context when your program finishes stop_orca_context() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Read the data Step3: GTZAN Melspectrogram Generator Step4: Custom CNN (Melspectrogram version) Step6: Loss function Step7: Majority Vote Step8: Compared to the classical approach, we are winning now!
<ASSISTANT_TASK:> Python Code: @description: Method to split a song into multiple songs using overlapping windows def splitsongs(X, y, window = 0.05, overlap = 0.5): # Empty lists to hold our results temp_X = [] temp_y = [] # Get the input song array size xshape = X.shape[0] chunk = int(xshape*window) offset = int(chunk*(1.-overlap)) # Split the song and create new ones on windows spsong = [X[i:i+chunk] for i in range(0, xshape - chunk + offset, offset)] for s in spsong: if s.shape[0] != chunk: continue temp_X.append(s) temp_y.append(y) return np.array(temp_X), np.array(temp_y) @description: Method to convert a list of songs to a np array of melspectrograms def to_melspectrogram(songs, n_fft=1024, hop_length=256): # Transformation function melspec = lambda x: librosa.feature.melspectrogram(x, n_fft=n_fft, hop_length=hop_length, n_mels=128)[:,:,np.newaxis] # map transformation of input songs to melspectrogram using log-scale tsongs = map(melspec, songs) # np.array([librosa.power_to_db(s, ref=np.max) for s in list(tsongs)]) return np.array(list(tsongs)) def split_convert(X, y): arr_specs, arr_genres = [], [] # Convert to spectrograms and split into small windows for fn, genre in zip(X, y): signal, sr = librosa.load(fn) signal = signal[:song_samples] # Convert to dataset of spectograms/melspectograms signals, y = splitsongs(signal, genre) # Convert to "spec" representation specs = to_melspectrogram(signals) # Save files arr_genres.extend(y) arr_specs.extend(specs) return np.array(arr_specs), to_categorical(arr_genres) def read_data(src_dir, genres, song_samples): # Empty array of dicts with the processed features from all files arr_fn = [] arr_genres = [] # Get file list from the folders for x,_ in genres.items(): folder = src_dir + x for root, subdirs, files in os.walk(folder): for file in files: file_name = folder + "/" + file # Save the file name and the genre arr_fn.append(file_name) arr_genres.append(genres[x]) # Split into train and test X_train, X_test, y_train, y_test = train_test_split( arr_fn, arr_genres, test_size=0.3, random_state=42, stratify=arr_genres ) # Split into small segments and convert to spectrogram X_train, y_train = split_convert(X_train, y_train) X_test, y_test = split_convert(X_test, y_test) return X_train, X_test, y_train, y_test # Parameters gtzan_dir = '../data/genres/' song_samples = 660000 genres = {'metal': 0, 'disco': 1, 'classical': 2, 'hiphop': 3, 'jazz': 4, 'country': 5, 'pop': 6, 'blues': 7, 'reggae': 8, 'rock': 9} # Read the data X_train, X_test, y_train, y_test = read_data(gtzan_dir, genres, song_samples) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) # Histogram for train and test values, count = np.unique(np.argmax(y_train, axis=1), return_counts=True) plt.bar(values, count) values, count = np.unique(np.argmax(y_test, axis=1), return_counts=True) plt.bar(values, count) plt.show() from tensorflow.keras.utils import Sequence class GTZANGenerator(Sequence): def __init__(self, X, y, batch_size=64, is_test = False): self.X = X self.y = y self.batch_size = batch_size self.is_test = is_test def __len__(self): return int(np.ceil(len(self.X)/self.batch_size)) def __getitem__(self, index): # Get batch indexes signals = self.X[index*self.batch_size:(index+1)*self.batch_size] # Apply data augmentation if not self.is_test: signals = self.__augment(signals) return signals, self.y[index*self.batch_size:(index+1)*self.batch_size] def __augment(self, signals, hor_flip = 0.5, random_cutout = 0.5): spectrograms = [] for s in signals: signal = copy(s) # Perform horizontal flip if np.random.rand() < hor_flip: signal = np.flip(signal, 1) # Perform random cutoout of some frequency/time if np.random.rand() < random_cutout: lines = np.random.randint(signal.shape[0], size=3) cols = np.random.randint(signal.shape[0], size=4) signal[lines, :, :] = -80 # dB signal[:, cols, :] = -80 # dB spectrograms.append(signal) return np.array(spectrograms) def on_epoch_end(self): self.indexes = np.arange(len(self.X)) np.random.shuffle(self.indexes) return None def conv_block(x, n_filters, pool_size=(2, 2)): x = Conv2D(n_filters, (3, 3), strides=(1, 1), padding='same')(x) x = Activation('relu')(x) x = MaxPooling2D(pool_size=pool_size, strides=pool_size)(x) x = Dropout(0.25)(x) return x # Model Definition def create_model(input_shape, num_genres): inpt = Input(shape=input_shape) x = conv_block(inpt, 16) x = conv_block(x, 32) x = conv_block(x, 64) x = conv_block(x, 128) x = conv_block(x, 256) # Global Pooling and MLP x = Flatten()(x) x = Dropout(0.5)(x) x = Dense(512, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.02))(x) x = Dropout(0.25)(x) predictions = Dense(num_genres, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2(0.02))(x) model = Model(inputs=inpt, outputs=predictions) return model model = create_model(X_train[0].shape, 10) model.summary() model.compile(loss=tf.keras.losses.categorical_crossentropy, optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy']) reduceLROnPlat = ReduceLROnPlateau( monitor='val_loss', factor=0.95, patience=3, verbose=1, mode='min', min_delta=0.0001, cooldown=2, min_lr=1e-5 ) # Generators batch_size = 128 train_generator = GTZANGenerator(X_train, y_train) steps_per_epoch = np.ceil(len(X_train)/batch_size) validation_generator = GTZANGenerator(X_test, y_test) val_steps = np.ceil(len(X_test)/batch_size) hist = model.fit_generator( train_generator, steps_per_epoch=steps_per_epoch, validation_data=validation_generator, validation_steps=val_steps, epochs=150, verbose=1, callbacks=[reduceLROnPlat]) score = model.evaluate(X_test, y_test, verbose=0) print("val_loss = {:.3f} and val_acc = {:.3f}".format(score[0], score[1])) plt.figure(figsize=(15,7)) plt.subplot(1,2,1) plt.plot(hist.history['accuracy'], label='train') plt.plot(hist.history['val_accuracy'], label='validation') plt.title('Accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend() plt.subplot(1,2,2) plt.plot(hist.history['loss'], label='train') plt.plot(hist.history['val_loss'], label='validation') plt.title('Loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.tight_layout() plt.show() #http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') preds = np.argmax(model.predict(X_test), axis = 1) y_orig = np.argmax(y_test, axis = 1) cm = confusion_matrix(preds, y_orig) keys = OrderedDict(sorted(genres.items(), key=lambda t: t[1])).keys() plt.figure(figsize=(10,10)) plot_confusion_matrix(cm, keys, normalize=True) def majority_vote(scores): values, counts = np.unique(scores,return_counts=True) ind = np.argmax(counts) return values[ind] preds = model.predict(X_test, batch_size=128, verbose=0) # Each sound was divided into 39 segments in our custom function scores_songs = np.split(np.argmax(preds, axis=1), 300) scores_songs = [majority_vote(scores) for scores in scores_songs] # Same analysis for split label = np.split(np.argmax(y_test, axis=1), 300) label = [majority_vote(l) for l in label] from sklearn.metrics import accuracy_score print("majority voting system (acc) = {:.3f}".format(accuracy_score(label, scores_songs))) # Save the model model.save('../models/custom_cnn_2d.h5') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We define the model, adapted from the Keras CIFAR-10 example Step2: We train the model using the Step3: Now let's train the model again, using the XLA compiler.
<ASSISTANT_TASK:> Python Code: import tensorflow as tf # Check that GPU is available: cf. https://colab.research.google.com/notebooks/gpu.ipynb assert(tf.test.is_gpu_available()) tf.keras.backend.clear_session() tf.config.optimizer.set_jit(False) # Start with XLA disabled. def load_data(): (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() x_train = x_train.astype('float32') / 256 x_test = x_test.astype('float32') / 256 # Convert class vectors to binary class matrices. y_train = tf.keras.utils.to_categorical(y_train, num_classes=10) y_test = tf.keras.utils.to_categorical(y_test, num_classes=10) return ((x_train, y_train), (x_test, y_test)) (x_train, y_train), (x_test, y_test) = load_data() def generate_model(): return tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:]), tf.keras.layers.Activation('relu'), tf.keras.layers.Conv2D(32, (3, 3)), tf.keras.layers.Activation('relu'), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Dropout(0.25), tf.keras.layers.Conv2D(64, (3, 3), padding='same'), tf.keras.layers.Activation('relu'), tf.keras.layers.Conv2D(64, (3, 3)), tf.keras.layers.Activation('relu'), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Dropout(0.25), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512), tf.keras.layers.Activation('relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10), tf.keras.layers.Activation('softmax') ]) model = generate_model() def compile_model(model): opt = tf.keras.optimizers.RMSprop(lr=0.0001, decay=1e-6) model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) return model model = compile_model(model) def train_model(model, x_train, y_train, x_test, y_test, epochs=25): model.fit(x_train, y_train, batch_size=256, epochs=epochs, validation_data=(x_test, y_test), shuffle=True) def warmup(model, x_train, y_train, x_test, y_test): # Warm up the JIT, we do not wish to measure the compilation time. initial_weights = model.get_weights() train_model(model, x_train, y_train, x_test, y_test, epochs=1) model.set_weights(initial_weights) warmup(model, x_train, y_train, x_test, y_test) %time train_model(model, x_train, y_train, x_test, y_test) scores = model.evaluate(x_test, y_test, verbose=1) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) # We need to clear the session to enable JIT in the middle of the program. tf.keras.backend.clear_session() tf.config.optimizer.set_jit(True) # Enable XLA. model = compile_model(generate_model()) (x_train, y_train), (x_test, y_test) = load_data() warmup(model, x_train, y_train, x_test, y_test) %time train_model(model, x_train, y_train, x_test, y_test) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Problem 1 Step2: Solution 1 Step3: Supplement Step4: Decorator with argument Step5: Decorator assignment Step6: Decorator assignment (2) Step8: Decorator scenario Step9: Case 2 Step10: Case 3 Step11: Case 4 Step12: Decorator trick Step13: Flask Step14: Context manager Step15: 上面 with 的使用方式同等於下面列的程式碼 Step16: Context manager decorator Step17: 到這邊你可能會疑惑這兩邊哪裡一樣?然後 yield 的東西呢? Step18: Contextmanager limitation Step19: with statement Step20: with + @contextmanager Step21: Case 1 Step22: Case 2 Step23: Study 1
<ASSISTANT_TASK:> Python Code: def deco(func): def wrapped(): print('Before func') func() print('After func') return wrapped @deco def f1(): print('This is f1 function') f1() def deco(func): def wrapped(): print('Before func') func() print('After func') return wrapped @deco def f1(): print('This is f1 function') print(f1.__name__) from functools import wraps def deco(func): @wraps(func) def wrapped(): print('Before func') func() print('After func') return wrapped @deco def f1(): print('This is f1 function') print(f1.__name__) import time from functools import wraps def deco(func): @wraps(func) def wrapped(*args, **kwargs): print('Before func') print('---') print('{} argument:\nargs = {}\nkwargs = {}\n'.format( func.__name__, args, kwargs )) func(*args, **kwargs) print('---') print('After func') return wrapped @deco def f1(*args, **kwargs): print('This is f1 function') f1(1, '2', [3], {'4': 4}, time=time.ctime()) from functools import wraps def tag(name): def deco(func): @wraps(func) def wrapped(*args, **kwargs): print('<{}>'.format(name)) func(*args, **kwargs) print('</{}>'.format(name)) return wrapped return deco @tag('p') def content(*args, **kwargs): for i in args: print(i) content('Hello World.', 'This is second argument.') from functools import wraps def tag(name): def deco(func): @wraps(func) def wrapped(*args, **kwargs): print('<{}>'.format(name)) func(*args, **kwargs) print('</{}>'.format(name)) return wrapped return deco tag_p = tag('p') @tag_p def content(*args, **kwargs): for i in args: print(i) content('Hello World.', 'This is second argument.') from functools import wraps def tag(name): def deco(func): @wraps(func) def wrapped(*args, **kwargs): print('<{}>'.format(name)) func(*args, **kwargs) print('</{}>'.format(name)) return wrapped return deco tag_div = tag('div') tag_p = tag('p') @tag_div @tag_p def content(*args, **kwargs): for i in args: print(i) content('Hello World.', 'This is second argument.') import time import logging from functools import wraps LOGGER = logging.getLogger(__name__) def func_profiling(func): @wraps(func) def wrapped(*args, **kwargs): start_time = time.time() result = func(*args, **kwargs) time_spent = time.time() - start_time fullname = '{}.{}'.format(func.__module__, func.__name__) LOGGER.debug('{}[args={}, kwargs={}] completed in {}'.format( fullname, args, kwargs, time_spent )) return result return wrapped @func_profiling def test_func_profiling(msg=None): import random sleep_sec = random.randrange(1,3) LOGGER.debug('random sleep in {} sec'.format(sleep_sec)) time.sleep(sleep_sec) LOGGER.info(msg) LOGGER.debug('Wake up') if __name__ == '__main__': testing import sys logging.basicConfig( level=logging.DEBUG, format='%(asctime)s %(filename)12s:L%(lineno)3s [%(levelname)8s] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', stream=sys.stdout ) test_func_profiling('Hello World') from functools import wraps def author(email): def sub_command(func): @wraps(func) def wrapped(*args, **kwargs): try: func(*args, **kwargs) except ValueError: '''you can use your own defined exception''' print('some useful message to debug') except Exception: print('Unexpected exception, please contant author: {}'.format(email)) return wrapped return sub_command @author('afun@example.com') def divide(a, b): print('{}/{} = {}'.format(a, b, a/b)) return a/b divide(6, 2) divide(6, 0) from functools import lru_cache @lru_cache() def heavy_jobs(x): print('do some heavy jobs with input {}'.format(x)) return x+1000 print(heavy_jobs(1)) print(heavy_jobs(1)) print(heavy_jobs(2)) print(heavy_jobs(1)) print(heavy_jobs(2)) import json from functools import wraps def cache_json(filename): def deco(func): @wraps(func) def wrapped(*args, **kwargs): try: print('Before try wrapped') return json.load(open(filename)) except FileNotFoundError: print('Before except wrapped') data = func(*args, **kwargs) json.dump(data, open(filename, 'w')) return data return wrapped return deco @cache_json('heavy.json') def heavy_jobs(*args, **kwargs): print('do heavy jobs') if 'count' in kwargs: return kwargs['count'] return print(heavy_jobs(user='afun', count=5)) from functools import wraps function_map = {} def deco(func): global function_map function_map[func.__name__] = func @wraps(func) def wrapped(*args, **kwargs): func(*args, **kwargs) return wrapped @deco def f1(): print('This is f1') @deco def f2(): print('This is f2') print(function_map) from flask import Flask app = Flask(__name__) @app.route('/') def index(): return 'Index page' @app.route('/hello') def hello(): return 'Hello, world!' @app.route('/post/<int:post_id>') def show_post(post_id): return 'Post {}'.format(post_id) class my_context(object): def __enter__(self): print('in enter') return 'enter' def __exit__(self, *excinfo): print('in exit') return 'exit' with my_context() as f: print('Hello') print('World') context = my_context() obj = context.__enter__() try: print('Hello') print('World') except Exception as e: if context.__exit__(sys.exc_info()): raise e else: context.__exit__() from contextlib import contextmanager @contextmanager def my_context(): print('do things in enter') yield 'It is a feature, not a bug!!!' print('do things in exit') with my_context() as obj: print('Hello') print('World') @contextmanager def my_context(): print('do things in enter') yield 'It is a feature, not a bug!!!' print('do things in exit') # 透過 contextmanager 轉換, 與下面這段程式碼等價 class my_context(object): def __enter__(self): print('do things in enter') return 'It is a feature, not a bug!!!' def __exit__(self, *excinfo): print('do things in exit') return 'exit' from contextlib import contextmanager @contextmanager def my_context(): yield 'Hello' yield 'World' with my_context(): print('line 1') print('line 2') from contextlib import contextmanager @contextmanager def context_loop(): for i in range(100): yield i with context_loop(): print('line 1') print('line 2') from contextlib import contextmanager @contextmanager def context_condition(cond): if cond: yield 'in condition' else: yield 'else case' with context_condition(True) as f1: print(f1) print('line 1') print('line 2') with context_condition(False) as f2: print(f2) print('line 3') print('line 4') from contextlib import contextmanager @contextmanager def context_try(cond): try: yield 'normal' except Exception: print('exception') finally: print('finally') with context_try(True): print('line 1') print('line 2') fp = open('test.txt', 'w+') try: fp.write('Hello world') finally: fp.close() # 上面這種寫法透過 with 實現的話會變成下面這種程式碼 with open('test.txt', 'w+') as fp: fp.write('Hello world') from contextlib import contextmanager @contextmanager def tag(name): print('<{}>'.format(name)) yield print('</{}>'.format(name)) with tag('div'): print('content 1') from contextlib import contextmanager @contextmanager def tag(name): print('<{}>'.format(name)) yield print('</{}>'.format(name)) # nested with tag('div'): with tag('p'): print('content 1') print() # multiple with tag('div'), tag('h1'): print('content 2') from contextlib import redirect_stdout with open('test_redirect.txt', 'w+') as f: with redirect_stdout(f): help(redirect_stdout) print('afun defined message') from contextlib import contextmanager import time @contextmanager def timeit(name=''): start_time = time.time() yield elapse_time = time.time() - start_time print('{} - completed in {:.6f}'.format(name, elapse_time)) # note: comprehension speed seens slower when range(10) test = [i for i in range(100000)] with timeit('afun 1'): a = [i for i in test if i % 2 == 0] with timeit('afun 2'): b = [] for i in test: if i % 2 == 0: b.append(i) @timeit('afun 3') def func(test_list): result = [] for i in test_list: if i % 2 == 0: result.append(i) return result c = func(test) from functools import wraps # contextmanager 原始碼 # 這邊就是我們上面提過的 decorator 寫法 # 雖然他是回傳 _GeneratorContextManager 這個 helper class, 但其實這邊主要是透過 ContextDecorator 實作 def contextmanager(func): @wraps(func) def helper(*args, **kwds): return _GeneratorContextManager(func, args, kwds) return helper # ContextDecorator 原始碼 # _recreate_cm 會回傳自己的 instance class ContextDecorator(object): def _recreate_cm(self): return self def __call__(self, func): @wraps(func) def inner(*args, **kwds): with self._recreate_cm(): return func(*args, **kwds) return inner <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Authentication and Authorisation Step3: Post this step, we will have full access to twitter api's Step9: Streaming with tweepy Step12: Drawbacks of twitter streaming API
<ASSISTANT_TASK:> Python Code: import logging # python logging module # basic format for logging logFormat = "%(asctime)s - [%(levelname)s] (%(funcName)s:%(lineno)d) %(message)s" # logs will be stored in tweepy.log logging.basicConfig(filename='tweepy.log', level=logging.INFO, format=logFormat, datefmt="%Y-%m-%d %H:%M:%S") import tweepy # importing all the modules required import socket # will be used to create sockets import json # manipulate json from httplib import IncompleteRead # Keep these tokens secret, as anyone can have full access to your # twitter account, using these tokens consumerKey = "#" consumerSecret = "#" accessToken = "#" accessTokenSecret = "#" # Performing the authentication and authorization, post this step # we will have full access to twitter api's def connectToTwitter(): Connect to twitter. try: auth = tweepy.OAuthHandler(consumerKey, consumerSecret) auth.set_access_token(accessToken, accessTokenSecret) api = tweepy.API(auth) logging.info("Successfully logged in to twitter.") return api, auth except Exception as e: logging.info("Something went wrong in oauth, please check your tokens.") logging.error(e) # Tweet listner class which subclasses from tweepy.StreamListener class TweetListner(tweepy.StreamListener): Twitter stream listner def __init__(self, csocket): self.clientSocket = csocket def dataProcessing(self, data): Process the data, before sending to spark streaming sendData = {} # data that is sent to spark streamer user = data.get("user", {}) name = user.get("name", "undefined").encode('utf-8') followersCount = user.get("followers_count", 0) sendData["name"] = name sendData["followersCount"] = followersCount #data_string = "{}:{}".format(name, followersCount) self.clientSocket.send(json.dumps(sendData) + u"\n") # append new line character, so that spark recognizes it logging.debug(json.dumps(sendData)) def on_data(self, raw_data): Called when raw data is received from connection. return False to stop stream and close connection. try: data = json.loads(raw_data) self.dataProcessing(data) #self.clientSocket.send(json.dumps(sendData) + u"\n") # Because the connection was breaking return True except Exception as e: logging.error("An unhandled exception has occured, check your data processing") logging.error(e) raise e def on_error(self, status_code): Called when a non-200 status code is returned logging.error("A non-200 status code is returned") return True # Creating a proxy socket def createProxySocket(host, port): Returns a socket which can be used to connect to spark. try: s = socket.socket() # initialize socket instance s.bind((host, port)) # bind to the given host and port s.listen(5) # Enable a server to accept connections. logging.info("Listening on the port {}".format(port)) cSocket, address = s.accept() # waiting for a connection logging.info("Received Request from: {}".format(address)) return cSocket except socket.error as e: if e.errno == socket.errno.EADDRINUSE: # Address in use logging.error("The given host:port {}:{} is already in use"\ .format(host, port)) logging.info("Trying on port: {}".format(port + 1)) return createProxySocket(host, port + 1) def getWOEIDForTrendsAvailable(api, place): Returns the WOEID of the country if the trend is available there. # Iterate through trends data = api.trends_available() for item in data: if item["name"] == place: # Use place = "Worldwide" to get woeid of world woeid = item["woeid"] break return woeid #name = India, woeid # Get the list of trending topics from twitter def getTrendingTopics(api, woeid): Get the top trending topics from twitter data = api.trends_place(woeid) listOfTrendingTopic = [trend["name"] for trend in data[0]["trends"]] return listOfTrendingTopic if __name__ == "__main__": try: api, auth = connectToTwitter() # connecting to twitter # Global information is available by using 1 as the WOEID # woeid = getWOEIDForTrendsAvailable(api, "Worldwide") # get the woeid of the worldwide woeid = 1 trendingTopics = getTrendingTopics(api, woeid)[:10] # Pick only top 10 trending topics host = "localhost" port = 8888 cSocket = createProxySocket(host, port) # Creating a socket while True: try: # Connect/reconnect the stream tweetStream = tweepy.Stream(auth, TweetListner(cSocket)) # Stream the twitter data # DON'T run this approach async or you'll just create a ton of streams! tweetStream.filter(track=trendingTopics) # Filter on trending topics except IncompleteRead: # Oh well, reconnect and keep trucking continue except KeyboardInterrupt: # Or however you want to exit this loop tweetStream.disconnect() break except Exception as e: logging.error("Unhandled exception has occured") logging.error(e) continue except KeyboardInterrupt: # Keyboard interrupt called logging.error("KeyboardInterrupt was hit") except Exception as e: logging.error("Unhandled exception has occured") logging.error(e) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Simple graph example Step3: Bellow we define Graph, Node, Edge classes. Step4: Then we define and register reduce/factory for dumping/loading. Step5: Now we can load AXON message with graph definition into Graph object and dump it. Step6: Numpy arrays
<ASSISTANT_TASK:> Python Code: from __future__ import print_function, unicode_literals from axon.api import loads, dumps from IPython.display import HTML, display text = graph { nodes: [ &1 node {x:1 y:1} &2 node {x:1 y:2} &3 node {x:2 y:2} ] edges: [ edge {*1 *2} edge {*1 *3} edge {*2 *3} ] } class Base(object): # def __str__(self): return '%s: %r' % (self.__class__.__name__, self.__dict__) # __repr__ = __str__ class Graph(Base): def __init__(self, nodes=None, edges=None): self.nodes = list(nodes) if nodes else [] self.edges = list(edges) if edges else [] class Node(Base): def __init__(self, x, y): self.x = x self.y = y class Edge(Base): def __init__(self, p1, p2): self.left = p1 self.right = p2 from axon.utils import factory, reduce import axon @factory('graph') def create_graph(attrs, args): return Graph(**attrs) @factory('node') def create_node(attrs, args): return Node(**attrs) @factory('edge') def create_edge(attrs, args): return Edge(*args) @reduce(Graph) def reduce_graph(graph): return axon.node('graph', {'nodes': graph.nodes, 'edges': graph.edges}) @reduce(Node) def reduce_node(node): return axon.node('node', {'x': node.x, 'y': node.y}) @reduce(Edge) def reduce_edge(edge): return axon.node('edge', None, [edge.left, edge.right]) g = loads(text, mode='strict') display(HTML(u'<b>Graph object:</b>')) print(g[0]) display(HTML(u'<b>Compact dump:</b>')) print(dumps(g, crossref=1)) display(HTML(u'<b>Formatted dump without braces:</b>')) print(dumps(g, pretty=1, crossref=1, hsize=4)) display(HTML(u'<b>Formatted dump with braces:</b>')) print(dumps(g, pretty=1, braces=1, crossref=1, hsize=4)) from axon import dump_as_str, as_unicode, factory, reduce import numpy as np @factory('ndarray') def create_array(mapping, sequence): shape = mapping.get('shape', None) dtype = mapping['dtype'] if type(dtype) is list: dtype = [(str(n), str(t)) for n, t in dtype] a = np.array(sequence, dtype=dtype) if shape is not None: a.shape = shape return a @reduce(np.ndarray) def reduce_array(a): signes = {'<', '=', '>', '!'} if len(a.dtype.descr) > 1: dtype = [ (as_unicode(n), (as_unicode(t[1:]) \ if t[0] in signes \ else as_unicode(t))) for n, t in a.dtype.descr] return axon.node('ndarray', {'dtype':dtype}, a.tolist()) else: dtype_str = a.dtype.str dtype_str = as_unicode(dtype_str[1:]) \ if dtype_str[0] in signes \ else as_unicode(dtype_str) return axon.node('ndarray', {'shape': a.shape, 'dtype':as_unicode(dtype_str)}, a.tolist()) dump_as_str(np.int8) dump_as_str(np.int16) dump_as_str(np.int32) dump_as_str(np.int64) dump_as_str(np.float16) dump_as_str(np.float32) dump_as_str(np.float64) dump_as_str(np.float128) dump_as_str(np.int_) dump_as_str(np.float_) dump_as_str(np.double) a = np.array([[1, 2, 3], [3, 4, 5], [5, 6, 7]]) display(HTML('<b>Compact form:</b>')) text = dumps([a]) print(text) b = loads(text, mode="strict")[0] display(HTML('<b>Formatted form with braces:</b>')) text = dumps([a], pretty=1, braces=1, hsize=4) print(text) display(HTML('<b>Formatted form with braces:</b>')) text = dumps([a], pretty=1, hsize=4) print(text) b = loads(text, mode="strict")[0] a = np.array( [(1, 2, 3.0), (3, 4, 5.0), (4, 5, 6.0)], dtype=[('x', int), ('y', int), ('z', float)]) text = dumps([a]) print('val=', text) b = loads(text, mode="strict")[0] print('val=', repr(b)) display(HTML('<b>Formatted form</b>:')) text = dumps([a]) print('val=', text) display(HTML('<b>Formatted form</b>:')) text = dumps([a], pretty=1, braces=1, hsize=3) print('val=', text) display(HTML('<b>Indented form:</b>')) text = dumps([a], pretty=1, hsize=3) print('val=', text) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The top and bottom "3" digits Step2: UMAP
<ASSISTANT_TASK:> Python Code: %%capture !curl -L https://github.com/tensorflow/privacy/releases/download/0.2.3/order.tgz -o order.tgz !tar zxvf order.tgz mnist_priv_train = np.load('data/order_mnist_priv_train.npy') mnist_priv_test = np.load('data/order_mnist_priv_test.npy') mnist_priv_train.shape (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() x_train_orig = x_train x_train.shape trainList = [] for i, d in enumerate(np.argsort(mnist_priv_train)): trainList.append({ 'priv_order': d, 'y': y_train[i], 'i': i }) df = pd.DataFrame(trainList) top3df = df[df['y'] == 3].sort_values(['priv_order'], ascending=True).head(10) f, axarr = plt.subplots(1, 10) for i, d in enumerate(top3df['i'].to_list()): axarr[i].imshow(x_train[d]) bot3df = df[df['y'] == 3].sort_values(['priv_order'], ascending=False).head(10) f, axarr = plt.subplots(1, 10) for i, d in enumerate(bot3df['i'].to_list()): axarr[i].imshow(x_train[d]) train, test = tf.keras.datasets.mnist.load_data() train_data, train_labels = train test_data, test_labels = test train_data = np.array(train_data, dtype=np.float32) / 255 test_data = np.array(test_data, dtype=np.float32) / 255 train_data = train_data.reshape(train_data.shape[0], 28, 28, 1) test_data = test_data.reshape(test_data.shape[0], 28, 28, 1) train_labels = np.array(train_labels, dtype=np.int32) test_labels = np.array(test_labels, dtype=np.int32) train_labels = tf.keras.utils.to_categorical(train_labels, num_classes=10) test_labels = tf.keras.utils.to_categorical(test_labels, num_classes=10) model_784 = tf.keras.Sequential([ tf.keras.layers.Conv2D(16, 8, strides=2, padding='same', activation='relu', input_shape=(28, 28, 1)), tf.keras.layers.MaxPool2D(2, 1), tf.keras.layers.Conv2D(32, 4, strides=2, padding='valid', activation='relu'), tf.keras.layers.MaxPool2D(2, 1), tf.keras.layers.Flatten(), tf.keras.layers.Dense(28*28, activation='relu', name='embedding_784'), tf.keras.layers.Dense(32, activation='relu', name='embedding_32'), tf.keras.layers.Dense(10, name='logit') ]) model_784.summary() loss = tf.keras.losses.CategoricalCrossentropy( from_logits=True, reduction=tf.losses.Reduction.NONE) model_784.compile(loss=loss, optimizer="adam", metrics=["accuracy"]) model_784.fit( train_data, train_labels, validation_data=(test_data, test_labels), epochs=10, batch_size=250, verbose=2, ) embedding_layer_model_784 = tf.keras.Model( inputs=model_784.input, outputs=model_784.get_layer('embedding_784').output) with tf.compat.v1.Session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) train_embeddings_784 = sess.run(embedding_layer_model_784(train_data)) def umapDigit(digit=0, embeddings=train_embeddings_784, digit_type='', slug='784_'): dfN = df[df['y'] == digit] embeddingsN = embeddings.take(dfN['i'].to_list(), axis=0) reducer = umap.UMAP(random_state=42, min_dist=.05, n_neighbors=8) umap_xy = reducer.fit_transform(embeddingsN) fig, ax = plt.subplots(figsize=(6, 6)) color = dfN['priv_order'] plt.scatter(umap_xy[:, 0], umap_xy[:, 1], c=color, cmap="Spectral", s=3) plt.setp(ax, xticks=[], yticks=[]) plt.title("MNIST " + str(digit) + " - UMAP", fontsize=18) plt.show() rootdir = 'umap-digits/' outpath = rootdir + 'umap_train_' + slug + digit_type + str(digit) + '.npy' with open(outpath, 'w') as outfile: np.save(outfile, umap_xy) for i in range(0, 10): umapDigit(i) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's have a regression example Step2: Creating the model Step3: Maximum-A-Posteriori Step4: Hamiltonian Monte Carlo Step5: Plotting simulated functions Step6: Sparse Regression
<ASSISTANT_TASK:> Python Code: from matplotlib import pyplot %matplotlib inline import IPython import torch import numpy import sys, os sys.path.append(os.path.join(os.getcwd(),'..')) pyplot.style.use('ggplot') import candlegp import candlegp.training.hmc N = 12 X = torch.rand(N,1).double() Y = (torch.sin(12*X) + 0.6*torch.cos(25*X) + torch.randn(N,1).double()*0.1+3.0).squeeze(1) pyplot.figure() pyplot.plot(X.numpy(), Y.numpy(), 'kx', mew=2) k = candlegp.kernels.Matern52(1, lengthscales=torch.tensor([0.3], dtype=torch.double), variance=torch.tensor([1.0], dtype=torch.double)) mean = candlegp.mean_functions.Linear(torch.tensor([1], dtype=torch.double), torch.tensor([0], dtype=torch.double)) m = candlegp.models.GPR(X, Y.unsqueeze(1), kern=k, mean_function=mean) m.likelihood.variance.set(torch.tensor([0.01], dtype=torch.double)) m xstar = torch.linspace(0,1,100).double() mu, var = m.predict_y(xstar.unsqueeze(1)) cred_size = (var**0.5*2).squeeze(1) mu = mu.squeeze(1) pyplot.plot(xstar.numpy(),mu.data.numpy(),'b') pyplot.fill_between(xstar.numpy(),mu.data.numpy()+cred_size.data.numpy(), mu.data.numpy()-cred_size.data.numpy(),facecolor='0.75') pyplot.plot(X.numpy(), Y.numpy(), 'kx', mew=2) opt = torch.optim.LBFGS(m.parameters(), lr=1e-2, max_iter=40) def eval_model(): obj = m() opt.zero_grad() obj.backward() return obj for i in range(50): obj = m() opt.zero_grad() obj.backward() opt.step(eval_model) if i%5==0: print(i,':',obj.item()) m xstar = torch.linspace(0,1,100).double() mu, var = m.predict_y(xstar.unsqueeze(1)) cred_size = (var**0.5*2).squeeze(1) mu = mu.squeeze(1) pyplot.plot(xstar.numpy(),mu.data.numpy(),'b') pyplot.fill_between(xstar.numpy(),mu.data.numpy()+cred_size.data.numpy(), mu.data.numpy()-cred_size.data.numpy(),facecolor='0.75') pyplot.plot(X.numpy(), Y.numpy(), 'kx', mew=2) k2 = candlegp.kernels.RBF(1, lengthscales=torch.tensor([0.3], dtype=torch.double), variance=torch.tensor([1.0], dtype=torch.double)) mean2 = candlegp.mean_functions.Linear(torch.tensor([1], dtype=torch.double), torch.tensor([0], dtype=torch.double)) m2 = candlegp.models.GPR(X, Y.unsqueeze(1), kern=k2, mean_function=mean2) m2.load_state_dict(m.state_dict()) dt = torch.double m2.likelihood.variance.prior = candlegp.priors.Gamma(1.0,1.0, dtype=dt) m2.kern.variance.prior = candlegp.priors.Gamma(1.0,1.0, dtype=dt) m2.kern.lengthscales.prior = candlegp.priors.Gamma(1.0,1.0,dtype=dt) m2.mean_function.A.prior = candlegp.priors.Gaussian(0.0,10.0, dtype=dt) m2.mean_function.b.prior = candlegp.priors.Gaussian(0.0,10.0, dtype=dt) print("likelihood with priors",m2().item()) m2 # res = candlegp.training.hmc.hmc_sample(m2,500,0.2,burn=50, thin=10) res = candlegp.training.hmc.hmc_sample(m2,50,0.2,burn=50, thin=10) pyplot.plot(res[0]); pyplot.title("likelihood"); for (n,p0),p,c in zip(m.named_parameters(),res[1:],['r','g','b','y','b']): pyplot.plot(torch.stack(p).squeeze().numpy(), c=c, label=n) pyplot.plot((0,len(p)),(p0.data.view(-1)[0],p0.data.view(-1)[0]), c=c) pyplot.legend(); xstar = torch.linspace(0,1,100).double() mc_params = torch.stack([torch.cat(p, dim=0).view(-1) for p in res[1:]], dim=1) allsims = [] for ps in mc_params[:50]: for mp, p in zip(m2.parameters(), ps): with torch.no_grad(): mp.set(p) allsims.append(m2.predict_f_samples(xstar.unsqueeze(1), 1).squeeze(0).t()) allsims = torch.cat(allsims, dim=0) pyplot.plot(xstar.numpy(),allsims.data.numpy().T, 'b', lw=2, alpha=0.1) mu, var = m.predict_y(xstar.unsqueeze(1)) cred_size = (var**0.5*2).squeeze(1) mu = mu.squeeze(1) pyplot.plot(xstar.numpy(),mu.data.numpy(),'b') pyplot.fill_between(xstar.numpy(),mu.data.numpy()+cred_size.data.numpy(), mu.data.numpy()-cred_size.data.numpy(),facecolor='0.75') pyplot.plot(X.numpy(), Y.numpy(), 'kx', mew=2) k3 = candlegp.kernels.RBF(1, lengthscales=torch.tensor([0.3], dtype=torch.double), variance=torch.tensor([1.0], dtype=torch.double)) mean3 = candlegp.mean_functions.Linear(torch.tensor([1], dtype=torch.double), torch.tensor([0], dtype=torch.double)) m3 = candlegp.models.SGPR(X, Y.unsqueeze(1), k3, X[:7].clone(), mean_function=mean3) m3.likelihood.variance.set(torch.tensor([0.01], dtype=torch.double)) m3 opt = torch.optim.LBFGS(m3.parameters(), lr=1e-2, max_iter=40) def eval_model(): obj = m3() opt.zero_grad() obj.backward() return obj for i in range(50): obj = m3() opt.zero_grad() obj.backward() opt.step(eval_model) if i%5==0: print(i,':',obj.item()) m3 xstar = torch.linspace(0,1,100).double() mu, var = m3.predict_y(xstar.unsqueeze(1)) cred_size = (var**0.5*2).squeeze(1) mu = mu.squeeze(1) pyplot.plot(xstar.numpy(),mu.data.numpy(),'b') pyplot.fill_between(xstar.numpy(),mu.data.numpy()+cred_size.data.numpy(), mu.data.numpy()-cred_size.data.numpy(),facecolor='0.75') pyplot.plot(X.numpy(), Y.numpy(), 'kx', mew=2) pyplot.plot(m3.Z.data.numpy(), torch.zeros(m3.Z.size(0)).numpy(),'o') <END_TASK>