text_prompt
stringlengths
168
30.3k
code_prompt
stringlengths
67
124k
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1-D series Step2: DataFrame Step3: Data types Step4: converting types Step5: Filtering with Pandas Step6: Creating a new index not on the values but on the 2 letter geo-code column Step7: Row index with "iloc" method
<ASSISTANT_TASK:> Python Code: import pandas as pd s = pd.Series([3, 5, 67, 2, 4]) s s.name = "OneDArray" s s.index s.values s.sum() s.min() s.count() s * 3 s.sort_values() s.value_counts() s.abs? eu = pd.read_csv('data/eu_revolving_loans.csv', header=[1,2,3], index_col=0, skiprows=1) eu.tail(4) eu.index eu.columns eu.shape eu.min(axis=1) eu.min() eu * 3 %pylab inline eu.plot(legend=False) eu.dtypes eu = pd.read_csv('data/eu_revolving_loans.csv', header=[1,2,3], index_col=0, skiprows=1, na_values=['-']) eu.dtypes trade = pd.read_csv('data/ext_lt_intratrd.tsv', sep='\t') trade.dtypes trade.columns # expect an key error below due to extra spaces in names trade['2013'] new_cols = dict([(col, col.strip()) for col in trade.columns]) new_cols trade.rename(columns=new_cols) trade = trade.rename(columns=new_cols) trade['2013'] # selecting row 3 trade.ix[3] # selecting all rows where column index = 0 trade.ix[:,0] # split out the column with index 0 & assign to new column 'geo' # representing the country 2 letter code trade['geo'] = trade.ix[:,0].map(lambda row: row.split(',')[-1]) trade['geo'].head() trade['geo'].isin(['UK', 'DE']) trade[trade['geo'].isin(['UK', 'DE'])] # boolean selecting with more complex boolean expressions # - find all countries where there are continuous growth from 2012-2014 trade[(trade['2014'] > trade['2013']) & (trade['2013'] > trade['2012'])] # create a column that represents those with increase from 2012 - 2013 trade['2013inc'] = trade['2013'] > trade['2012'] trade['2013inc'].head() trade = trade.set_index('geo') # now filter based on the geo column trade.loc['DE'] # now filter based on row index for the top 100 rows trade.iloc[:100] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Integrating MinDiff with MinDiffModel Step2: First, download the data. For succinctness, the input preparation logic has been factored out into helper functions as described in the input preparation guide. You can read the full guide for details on this process. Step3: Original Model Step4: Training with a tf.data.Dataset Step5: Integrating MinDiff for training Step6: Wrap it in a MinDiffModel. Step7: Compile it as you would without MinDiff. Step8: Train it with the MinDiff dataset (train_with_min_diff_ds in this case). Step9: Evaluation and Prediction with MinDiffModel Step10: When calling predict you can technically also pass in the dataset with the MinDiff data but it will be ignored and not affect the output. Step11: Limitations of using MinDiffModel directly Step12: For keras.Sequential or keras.Model, this is perfectly fine since they use the same functions. Step13: However, if your model is a subclass of keras.Model, wrapping it with MinDiffModel will effectively lose the customization.
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. !pip install --upgrade tensorflow-model-remediation import tensorflow as tf tf.get_logger().setLevel('ERROR') # Avoid TF warnings. from tensorflow_model_remediation import min_diff from tensorflow_model_remediation.tools.tutorials_utils import uci as tutorials_utils # Original DataFrame for training, sampled at 0.3 for reduced runtimes. train_df = tutorials_utils.get_uci_data(split='train', sample=0.3) # Dataset needed to train with MinDiff. train_with_min_diff_ds = ( tutorials_utils.get_uci_with_min_diff_dataset(split='train', sample=0.3)) model = tutorials_utils.get_uci_model() model.compile(optimizer='adam', loss='binary_crossentropy') df_without_target = train_df.drop(['target'], axis=1) # Drop 'target' for x. _ = model.fit( x=dict(df_without_target), # The model expects a dictionary of features. y=train_df['target'], batch_size=128, epochs=1) model = tutorials_utils.get_uci_model() model.compile(optimizer='adam', loss='binary_crossentropy') _ = model.fit( tutorials_utils.df_to_dataset(train_df, batch_size=128), # Converted to Dataset. epochs=1) original_model = tutorials_utils.get_uci_model() min_diff_model = min_diff.keras.MinDiffModel( original_model=original_model, loss=min_diff.losses.MMDLoss(), loss_weight=1) min_diff_model.compile(optimizer='adam', loss='binary_crossentropy') _ = min_diff_model.fit(train_with_min_diff_ds, epochs=1) _ = min_diff_model.evaluate( tutorials_utils.df_to_dataset(train_df, batch_size=128)) # Calling with MinDiff data will include min_diff_loss in metrics. _ = min_diff_model.evaluate(train_with_min_diff_ds) _ = min_diff_model.predict( tutorials_utils.df_to_dataset(train_df, batch_size=128)) _ = min_diff_model.predict(train_with_min_diff_ds) # Identical to results above. print('MinDiffModel.fit == keras.Model.fit') print(min_diff.keras.MinDiffModel.fit == tf.keras.Model.fit) print('MinDiffModel.train_step == keras.Model.train_step') print(min_diff.keras.MinDiffModel.train_step == tf.keras.Model.train_step) print('Sequential.fit == keras.Model.fit') print(tf.keras.Sequential.fit == tf.keras.Model.fit) print('tf.keras.Sequential.train_step == keras.Model.train_step') print(tf.keras.Sequential.train_step == tf.keras.Model.train_step) class CustomModel(tf.keras.Model): def train_step(self, **kwargs): pass # Custom implementation. print('CustomModel.train_step == keras.Model.train_step') print(CustomModel.train_step == tf.keras.Model.train_step) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We will output to a static html file. Step2: See many examples of configuring plot tools at http Step3: Here we'll interact with Glue from the notebook. Step4: Now we have access to the data collection in our notebook Step5: Now go select the "Western arm" of the star-forming region (in Glue) and make a subset of it Step6: We can add something to our catalog and it shows up in Glue. Step7: We can define a new subset group here or in Glue
<ASSISTANT_TASK:> Python Code: import bokeh import numpy as np from astropy.table import Table sdss = Table.read('data/sdss_galaxies_qsos_50k.fits') sdss from bokeh.models import ColumnDataSource from bokeh.plotting import figure, gridplot, output_notebook, output_file, show umg = sdss['u'] - sdss['g'] gmr = sdss['g'] - sdss['r'] rmi = sdss['r'] - sdss['i'] imz = sdss['i'] - sdss['z'] # create a column data source for the plots to share source = ColumnDataSource(data=dict(umg=umg, gmr=gmr, rmi=rmi,imz=imz)) output_file('sdss_color_color.html') TOOLS = "pan,wheel_zoom,reset,box_select,poly_select,help" # create a new plot and add a renderer left = figure(tools=TOOLS, width=400, height=400, title='SDSS g-r vs u-g', webgl=True) left.x('umg', 'gmr', source=source) # create another new plot and add a renderer right = figure(tools=TOOLS, width=400, height=400, title='SDSS i-z vs r-i') right.x('rmi', 'imz', source=source) p = gridplot([[left, right]]) show(p) #import glue # Quick way to launch Glue #from glue import qglue #qglue() import astropy.io.fits as fits hdu = fits.open('data/w5.fits') hdu[0].header from astropy.table import Table w5catalog = Table.read('data/w5_psc.vot') wisecat = Table.read('data/w5_wise.tbl', format='ipac') %gui qt #qglue(catalog=catalog, image=hdu, wisecat=wisecat) from glue.core.data_factories import load_data from glue.core import DataCollection from glue.core.link_helpers import LinkSame from glue.app.qt.application import GlueApplication #load 2 datasets from files image = load_data('data/w5.fits') catalog = load_data('data/w5_psc.vot') dc = DataCollection([image, catalog]) # link positional information dc.add_link(LinkSame(image.id['Right Ascension'], catalog.id['RAJ2000'])) dc.add_link(LinkSame(image.id['Declination'], catalog.id['DEJ2000'])) #start Glue app = GlueApplication(dc) app.start() dc dc[0].components dc[0].id['Right Ascension'] catalog = dc[1] j_minus_h = catalog['Jmag'] - catalog['Hmag'] catalog['jmh'] = j_minus_h hmag = catalog.id['Hmag'] jmag = catalog.id['Jmag'] jmhred = (jmag - hmag) > 1.5 dc.new_subset_group('j - h > 1.5', jmhred) dc.subset_groups dc.subset_groups[2].label catalog.subsets catalog.subsets[0]['Jmag'] mask = catalog.subsets[0].to_mask() new_catalog = w5catalog[mask] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load data Step2: Create the figure
<ASSISTANT_TASK:> Python Code: import shapefile import numpy as np from matplotlib import cm, rcParams import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap rcParams.update({'font.size': 16}) # Increase font-size # Load the topo file to get header information etopo1name = 'data/basemap/etopo1_bedrock.asc' topo_file = open(etopo1name, 'r') # Read header (number of columns and rows, cell-size, and lower left coordinates) ncols = int(topo_file.readline().split()[1]) nrows = int(topo_file.readline().split()[1]) xllcorner = float(topo_file.readline().split()[1]) yllcorner = float(topo_file.readline().split()[1]) cellsize = float(topo_file.readline().split()[1]) topo_file.close() # Read in topography as a whole, disregarding first five rows (header) etopo = np.loadtxt(etopo1name, skiprows=5) # Data resolution is quite high. I decrease the data resolution # to decrease the size of the final figure dres = 2 # Swap the rows etopo[:nrows+1, :] = etopo[nrows+1::-1, :] etopo = etopo[::dres, ::dres] # Create longitude and latitude vectors for etopo lons = np.arange(xllcorner, xllcorner+cellsize*ncols, cellsize)[::dres] lats = np.arange(yllcorner, yllcorner+cellsize*nrows, cellsize)[::dres] fig = plt.figure(figsize=(8, 6)) # Create basemap, 870 km east-west, 659 km north-south, # intermediate resolution, Transverse Mercator projection, # centred around lon/lat 1°/58.5° m = Basemap(width=870000, height=659000, resolution='i', projection='tmerc', lon_0=1, lat_0=58.5) # Draw coast line m.drawcoastlines(color='k') # Draw continents and lakes m.fillcontinents(lake_color='b', color='none') # Draw a think border around the whole map m.drawmapboundary(linewidth=3) # Convert etopo1 coordinates lon/lat in ° to x/y in m # (From the basemap help: Calling a Basemap class instance with the arguments # lon, lat will convert lon/lat (in degrees) to x/y map projection coordinates # (in meters).) rlons, rlats = m(*np.meshgrid(lons,lats)) # Draw etopo1, first for land and then for the ocean, with different colormaps llevels = np.arange(-500,2251,100) # check etopo.ravel().max() lcs = m.contourf(rlons, rlats, etopo, llevels, cmap=cm.terrain) olevels = np.arange(-3500,1,100) # check etopo.ravel().min() cso = m.contourf(rlons, rlats, etopo, olevels, cmap=cm.ocean) # Draw parallels and meridians m.drawparallels(np.arange(-56,63.,2.), color='.2', labels=[1,0,0,0]) m.drawparallels(np.arange(-55,63.,2.), color='.2', labels=[0,0,0,0]) m.drawmeridians(np.arange(-6.,12.,2.), color='.2', labels=[0,0,0,1]) m.drawmeridians(np.arange(-7.,12.,2.), color='.2', labels=[0,0,0,0]) # Draw Block 9 boundaries m.plot([1, 2, 2, 1, 1], [59, 59, 60, 60, 59], 'b', linewidth=2, latlon=True) plt.annotate('9', m(1.1, 59.7), color='b') # Draw maritime boundaries m.readshapefile('data/basemap/DECC_OFF_Median_Line', 'medline', linewidth=2) # Add Harding, Edinburgh, Bergen # 1. Convert coordinates EDIx, EDIy = m(-3.188889, 55.953056) BERx, BERy = m(5.33, 60.389444) HARx, HARy = m(1.5, 59.29) # 2. Plot symbol plt.plot(HARx, HARy, mfc='r', mec='k', marker='s', markersize=10) plt.plot(EDIx, EDIy, mfc='r', mec='k', marker='o', markersize=10) plt.plot(BERx, BERy, mfc='r', mec='k', marker='o', markersize=10) # 3. Plot name plt.text(EDIx+50000, EDIy+10000,'Edinburgh', color='r') plt.text(BERx-140000, BERy, 'Bergen', color='r') plt.text(HARx-160000, HARy, 'Harding', color='r') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Online Prediction with scikit-learn on AI Platform Step2: Download the data Step3: Part 1 Step4: Part 2 Step5: Note Step6: Part 3 Step7: Part 4 Step8: Use the created YAML file to create a model version. Step9: Part 5 Step10: Use gcloud to make online predictions Step11: Test the model with an online prediction using the data of a person who makes >50K. Step12: Use Python to make online predictions Step13: [Optional] Part 6 Step14: Use a confusion matrix create a visualization of the predicted results from the local model. These results should be identical to the results above. Step15: Directly compare the two results
<ASSISTANT_TASK:> Python Code: # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. %env PROJECT_ID PROJECT_ID %env BUCKET_NAME BUCKET_NAME %env MODEL_NAME census %env VERSION_NAME v1 %env REGION us-central1 # Create a directory to hold the data ! mkdir census_data # Download the data ! curl https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data --output census_data/adult.data ! curl https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test --output census_data/adult.test import googleapiclient.discovery import json import numpy as np import os import pandas as pd import pickle from sklearn.ensemble import RandomForestClassifier from sklearn.externals import joblib from sklearn.feature_selection import SelectKBest from sklearn.pipeline import FeatureUnion from sklearn.pipeline import Pipeline from sklearn.preprocessing import LabelBinarizer # Define the format of your input data including unused columns (These are the columns from the census data files) COLUMNS = ( 'age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'income-level' ) # Categorical columns are columns that need to be turned into a numerical value to be used by scikit-learn CATEGORICAL_COLUMNS = ( 'workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country' ) # Load the training census dataset with open('./census_data/adult.data', 'r') as train_data: raw_training_data = pd.read_csv(train_data, header=None, names=COLUMNS) # Remove the column we are trying to predict ('income-level') from our features list # Convert the Dataframe to a lists of lists train_features = raw_training_data.drop('income-level', axis=1).as_matrix().tolist() # Create our training labels list, convert the Dataframe to a lists of lists train_labels = (raw_training_data['income-level'] == ' >50K').as_matrix().tolist() # Load the test census dataset with open('./census_data/adult.test', 'r') as test_data: raw_testing_data = pd.read_csv(test_data, names=COLUMNS, skiprows=1) # Remove the column we are trying to predict ('income-level') from our features list # Convert the Dataframe to a lists of lists test_features = raw_testing_data.drop('income-level', axis=1).values.tolist() # Create our training labels list, convert the Dataframe to a lists of lists test_labels = (raw_testing_data['income-level'] == ' >50K.').values.tolist() # Since the census data set has categorical features, we need to convert # them to numerical values. We'll use a list of pipelines to convert each # categorical column and then use FeatureUnion to combine them before calling # the RandomForestClassifier. categorical_pipelines = [] # Each categorical column needs to be extracted individually and converted to a numerical value. # To do this, each categorical column will use a pipeline that extracts one feature column via # SelectKBest(k=1) and a LabelBinarizer() to convert the categorical value to a numerical one. # A scores array (created below) will select and extract the feature column. The scores array is # created by iterating over the COLUMNS and checking if it is a CATEGORICAL_COLUMN. for i, col in enumerate(COLUMNS[:-1]): if col in CATEGORICAL_COLUMNS: # Create a scores array to get the individual categorical column. # Example: # data = [39, 'State-gov', 77516, 'Bachelors', 13, 'Never-married', 'Adm-clerical', # 'Not-in-family', 'White', 'Male', 2174, 0, 40, 'United-States'] # scores = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # # Returns: [['State-gov']] # Build the scores array. scores = [0] * len(COLUMNS[:-1]) # This column is the categorical column we want to extract. scores[i] = 1 skb = SelectKBest(k=1) skb.scores_ = scores # Convert the categorical column to a numerical value lbn = LabelBinarizer() r = skb.transform(train_features) lbn.fit(r) # Create the pipeline to extract the categorical feature categorical_pipelines.append( ('categorical-{}'.format(i), Pipeline([ ('SKB-{}'.format(i), skb), ('LBN-{}'.format(i), lbn)]))) # Create pipeline to extract the numerical features skb = SelectKBest(k=6) # From COLUMNS use the features that are numerical skb.scores_ = [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0] categorical_pipelines.append(('numerical', skb)) # Combine all the features using FeatureUnion preprocess = FeatureUnion(categorical_pipelines) # Create the classifier classifier = RandomForestClassifier() # Transform the features and fit them to the classifier classifier.fit(preprocess.transform(train_features), train_labels) # Create the overall model as a single pipeline pipeline = Pipeline([ ('union', preprocess), ('classifier', classifier) ]) # Export the model to a file joblib.dump(pipeline, 'model.joblib') print('Model trained and saved') ! gcloud config set project $PROJECT_ID ! gsutil cp ./model.joblib gs://$BUCKET_NAME/model.joblib ! gcloud ml-engine models create $MODEL_NAME --regions $REGION %%writefile ./config.yaml deploymentUri: "gs://BUCKET_NAME/" runtimeVersion: '1.4' framework: "SCIKIT_LEARN" pythonVersion: "3.5" ! gcloud ml-engine versions create $VERSION_NAME \ --model $MODEL_NAME \ --config config.yaml # Get one person that makes <=50K and one that makes >50K to test our model. print('Show a person that makes <=50K:') print('\tFeatures: {0} --> Label: {1}\n'.format(test_features[0], test_labels[0])) with open('less_than_50K.json', 'w') as outfile: json.dump(test_features[0], outfile) print('Show a person that makes >50K:') print('\tFeatures: {0} --> Label: {1}'.format(test_features[3], test_labels[3])) with open('more_than_50K.json', 'w') as outfile: json.dump(test_features[3], outfile) ! gcloud ml-engine predict --model $MODEL_NAME --version $VERSION_NAME --json-instances less_than_50K.json ! gcloud ml-engine predict --model $MODEL_NAME --version $VERSION_NAME --json-instances more_than_50K.json import googleapiclient.discovery import os import pandas as pd PROJECT_ID = os.environ['PROJECT_ID'] VERSION_NAME = os.environ['VERSION_NAME'] MODEL_NAME = os.environ['MODEL_NAME'] service = googleapiclient.discovery.build('ml', 'v1') name = 'projects/{}/models/{}'.format(PROJECT_ID, MODEL_NAME) name += '/versions/{}'.format(VERSION_NAME) # Due to the size of the data, it needs to be split in 2 first_half = test_features[:int(len(test_features)/2)] second_half = test_features[int(len(test_features)/2):] complete_results = [] for data in [first_half, second_half]: responses = service.projects().predict( name=name, body={'instances': data} ).execute() if 'error' in responses: print(response['error']) else: complete_results.extend(responses['predictions']) # Print the first 10 responses for i, response in enumerate(complete_results[:10]): print('Prediction: {}\tLabel: {}'.format(response, test_labels[i])) actual = pd.Series(test_labels, name='actual') online = pd.Series(complete_results, name='online') pd.crosstab(actual,online) local_results = pipeline.predict(test_features) local = pd.Series(local_results, name='local') pd.crosstab(actual,local) identical = 0 different = 0 for i in range(len(complete_results)): if complete_results[i] == local_results[i]: identical += 1 else: different += 1 print('identical: {}, different: {}'.format(identical,different)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: import numpy as np value = 1.0 result = np.degrees(np.arcsin(value)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The following example loads a cube from iris-sample-data and displays it as follows Step2: With HoloViews, you can quickly view the data in the cube interactively
<ASSISTANT_TASK:> Python Code: import holoviews as hv import holocube as hc from cartopy import crs from cartopy import feature as cf hv.notebook_extension() %%opts GeoFeature [projection=crs.Geostationary()] coasts = hc.GeoFeature(cf.COASTLINE) borders = hc.GeoFeature(cf.BORDERS) ocean = hc.GeoFeature(cf.OCEAN) ocean + borders + (ocean*borders).relabel("Overlay") import iris surface_temp = iris.load_cube(iris.sample_data_path('GloSea4', 'ensemble_001.pp')) print surface_temp.summary() %%opts GeoImage [colorbar=True] (cmap='viridis') (hc.HoloCube(surface_temp).groupby(['time'], group_type=hc.Image) * hc.GeoFeature(cf.COASTLINE)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Model Family Step7: 1.4. Basic Approximations Step8: 1.5. Prognostic Variables Step9: 2. Key Properties --&gt; Seawater Properties Step10: 2.2. Eos Functional Temp Step11: 2.3. Eos Functional Salt Step12: 2.4. Eos Functional Depth Step13: 2.5. Ocean Freezing Point Step14: 2.6. Ocean Specific Heat Step15: 2.7. Ocean Reference Density Step16: 3. Key Properties --&gt; Bathymetry Step17: 3.2. Type Step18: 3.3. Ocean Smoothing Step19: 3.4. Source Step20: 4. Key Properties --&gt; Nonoceanic Waters Step21: 4.2. River Mouth Step22: 5. Key Properties --&gt; Software Properties Step23: 5.2. Code Version Step24: 5.3. Code Languages Step25: 6. Key Properties --&gt; Resolution Step26: 6.2. Canonical Horizontal Resolution Step27: 6.3. Range Horizontal Resolution Step28: 6.4. Number Of Horizontal Gridpoints Step29: 6.5. Number Of Vertical Levels Step30: 6.6. Is Adaptive Grid Step31: 6.7. Thickness Level 1 Step32: 7. Key Properties --&gt; Tuning Applied Step33: 7.2. Global Mean Metrics Used Step34: 7.3. Regional Metrics Used Step35: 7.4. Trend Metrics Used Step36: 8. Key Properties --&gt; Conservation Step37: 8.2. Scheme Step38: 8.3. Consistency Properties Step39: 8.4. Corrected Conserved Prognostic Variables Step40: 8.5. Was Flux Correction Used Step41: 9. Grid Step42: 10. Grid --&gt; Discretisation --&gt; Vertical Step43: 10.2. Partial Steps Step44: 11. Grid --&gt; Discretisation --&gt; Horizontal Step45: 11.2. Staggering Step46: 11.3. Scheme Step47: 12. Timestepping Framework Step48: 12.2. Diurnal Cycle Step49: 13. Timestepping Framework --&gt; Tracers Step50: 13.2. Time Step Step51: 14. Timestepping Framework --&gt; Baroclinic Dynamics Step52: 14.2. Scheme Step53: 14.3. Time Step Step54: 15. Timestepping Framework --&gt; Barotropic Step55: 15.2. Time Step Step56: 16. Timestepping Framework --&gt; Vertical Physics Step57: 17. Advection Step58: 18. Advection --&gt; Momentum Step59: 18.2. Scheme Name Step60: 18.3. ALE Step61: 19. Advection --&gt; Lateral Tracers Step62: 19.2. Flux Limiter Step63: 19.3. Effective Order Step64: 19.4. Name Step65: 19.5. Passive Tracers Step66: 19.6. Passive Tracers Advection Step67: 20. Advection --&gt; Vertical Tracers Step68: 20.2. Flux Limiter Step69: 21. Lateral Physics Step70: 21.2. Scheme Step71: 22. Lateral Physics --&gt; Momentum --&gt; Operator Step72: 22.2. Order Step73: 22.3. Discretisation Step74: 23. Lateral Physics --&gt; Momentum --&gt; Eddy Viscosity Coeff Step75: 23.2. Constant Coefficient Step76: 23.3. Variable Coefficient Step77: 23.4. Coeff Background Step78: 23.5. Coeff Backscatter Step79: 24. Lateral Physics --&gt; Tracers Step80: 24.2. Submesoscale Mixing Step81: 25. Lateral Physics --&gt; Tracers --&gt; Operator Step82: 25.2. Order Step83: 25.3. Discretisation Step84: 26. Lateral Physics --&gt; Tracers --&gt; Eddy Diffusity Coeff Step85: 26.2. Constant Coefficient Step86: 26.3. Variable Coefficient Step87: 26.4. Coeff Background Step88: 26.5. Coeff Backscatter Step89: 27. Lateral Physics --&gt; Tracers --&gt; Eddy Induced Velocity Step90: 27.2. Constant Val Step91: 27.3. Flux Type Step92: 27.4. Added Diffusivity Step93: 28. Vertical Physics Step94: 29. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Details Step95: 30. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Tracers Step96: 30.2. Closure Order Step97: 30.3. Constant Step98: 30.4. Background Step99: 31. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Momentum Step100: 31.2. Closure Order Step101: 31.3. Constant Step102: 31.4. Background Step103: 32. Vertical Physics --&gt; Interior Mixing --&gt; Details Step104: 32.2. Tide Induced Mixing Step105: 32.3. Double Diffusion Step106: 32.4. Shear Mixing Step107: 33. Vertical Physics --&gt; Interior Mixing --&gt; Tracers Step108: 33.2. Constant Step109: 33.3. Profile Step110: 33.4. Background Step111: 34. Vertical Physics --&gt; Interior Mixing --&gt; Momentum Step112: 34.2. Constant Step113: 34.3. Profile Step114: 34.4. Background Step115: 35. Uplow Boundaries --&gt; Free Surface Step116: 35.2. Scheme Step117: 35.3. Embeded Seaice Step118: 36. Uplow Boundaries --&gt; Bottom Boundary Layer Step119: 36.2. Type Of Bbl Step120: 36.3. Lateral Mixing Coef Step121: 36.4. Sill Overflow Step122: 37. Boundary Forcing Step123: 37.2. Surface Pressure Step124: 37.3. Momentum Flux Correction Step125: 37.4. Tracers Flux Correction Step126: 37.5. Wave Effects Step127: 37.6. River Runoff Budget Step128: 37.7. Geothermal Heating Step129: 38. Boundary Forcing --&gt; Momentum --&gt; Bottom Friction Step130: 39. Boundary Forcing --&gt; Momentum --&gt; Lateral Friction Step131: 40. Boundary Forcing --&gt; Tracers --&gt; Sunlight Penetration Step132: 40.2. Ocean Colour Step133: 40.3. Extinction Depth Step134: 41. Boundary Forcing --&gt; Tracers --&gt; Fresh Water Forcing Step135: 41.2. From Sea Ice Step136: 41.3. Forced Mode Restoring
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'ec-earth-consortium', 'sandbox-3', 'ocean') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.model_family') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OGCM" # "slab ocean" # "mixed layer ocean" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.basic_approximations') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Primitive equations" # "Non-hydrostatic" # "Boussinesq" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Potential temperature" # "Conservative temperature" # "Salinity" # "U-velocity" # "V-velocity" # "W-velocity" # "SSH" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Linear" # "Wright, 1997" # "Mc Dougall et al." # "Jackett et al. 2006" # "TEOS 2010" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_temp') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Potential temperature" # "Conservative temperature" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_salt') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Practical salinity Sp" # "Absolute salinity Sa" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pressure (dbars)" # "Depth (meters)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_freezing_point') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "TEOS 2010" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_specific_heat') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_reference_density') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.reference_dates') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Present day" # "21000 years BP" # "6000 years BP" # "LGM" # "Pliocene" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.type') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.ocean_smoothing') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.source') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.nonoceanic_waters.isolated_seas') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.nonoceanic_waters.river_mouth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.range_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.is_adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.thickness_level_1') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.scheme') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Energy" # "Enstrophy" # "Salt" # "Volume of ocean" # "Momentum" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.consistency_properties') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.corrected_conserved_prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.was_flux_correction_used') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.vertical.coordinates') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Z-coordinate" # "Z*-coordinate" # "S-coordinate" # "Isopycnic - sigma 0" # "Isopycnic - sigma 2" # "Isopycnic - sigma 4" # "Isopycnic - other" # "Hybrid / Z+S" # "Hybrid / Z+isopycnic" # "Hybrid / other" # "Pressure referenced (P)" # "P*" # "Z**" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.vertical.partial_steps') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Lat-lon" # "Rotated north pole" # "Two north poles (ORCA-style)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.staggering') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Arakawa B-grid" # "Arakawa C-grid" # "Arakawa E-grid" # "N/a" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Finite difference" # "Finite volumes" # "Finite elements" # "Unstructured grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.diurnal_cycle') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Via coupling" # "Specific treatment" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.tracers.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Leap-frog + Asselin filter" # "Leap-frog + Periodic Euler" # "Predictor-corrector" # "Runge-Kutta 2" # "AM3-LF" # "Forward-backward" # "Forward operator" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.tracers.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Preconditioned conjugate gradient" # "Sub cyling" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Leap-frog + Asselin filter" # "Leap-frog + Periodic Euler" # "Predictor-corrector" # "Runge-Kutta 2" # "AM3-LF" # "Forward-backward" # "Forward operator" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.barotropic.splitting') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "split explicit" # "implicit" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.barotropic.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.vertical_physics.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.momentum.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Flux form" # "Vector form" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.momentum.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.momentum.ALE') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.flux_limiter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.effective_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.passive_tracers') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Ideal age" # "CFC 11" # "CFC 12" # "SF6" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.passive_tracers_advection') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.vertical_tracers.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.vertical_tracers.flux_limiter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Eddy active" # "Eddy admitting" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.direction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Horizontal" # "Isopycnal" # "Isoneutral" # "Geopotential" # "Iso-level" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.order') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Harmonic" # "Bi-harmonic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Second order" # "Higher order" # "Flux limiter" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Space varying" # "Time + space varying (Smagorinsky)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.constant_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.variable_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.coeff_background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.coeff_backscatter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.mesoscale_closure') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.submesoscale_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.direction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Horizontal" # "Isopycnal" # "Isoneutral" # "Geopotential" # "Iso-level" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.order') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Harmonic" # "Bi-harmonic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Second order" # "Higher order" # "Flux limiter" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Space varying" # "Time + space varying (Smagorinsky)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.constant_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.variable_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.coeff_background') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.coeff_backscatter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "GM" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.constant_val') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.flux_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.added_diffusivity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.details.langmuir_cells_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure - TKE" # "Turbulent closure - KPP" # "Turbulent closure - Mellor-Yamada" # "Turbulent closure - Bulk Mixed Layer" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.closure_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure - TKE" # "Turbulent closure - KPP" # "Turbulent closure - Mellor-Yamada" # "Turbulent closure - Bulk Mixed Layer" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.closure_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.convection_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Non-penetrative convective adjustment" # "Enhanced vertical diffusion" # "Included in turbulence closure" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.tide_induced_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.double_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.shear_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure / TKE" # "Turbulent closure - Mellor-Yamada" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.profile') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure / TKE" # "Turbulent closure - Mellor-Yamada" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.profile') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Linear implicit" # "Linear filtered" # "Linear semi-explicit" # "Non-linear implicit" # "Non-linear filtered" # "Non-linear semi-explicit" # "Fully explicit" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.embeded_seaice') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.type_of_bbl') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Diffusive" # "Acvective" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.lateral_mixing_coef') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.sill_overflow') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.surface_pressure') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.momentum_flux_correction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers_flux_correction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.wave_effects') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.river_runoff_budget') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.geothermal_heating') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.momentum.bottom_friction.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Linear" # "Non-linear" # "Non-linear (drag function of speed of tides)" # "Constant drag coefficient" # "None" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.momentum.lateral_friction.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Free-slip" # "No-slip" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "1 extinction depth" # "2 extinction depth" # "3 extinction depth" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.ocean_colour') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.extinction_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.from_atmopshere') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Freshwater flux" # "Virtual salt flux" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.from_sea_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Freshwater flux" # "Virtual salt flux" # "Real salt flux" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.forced_mode_restoring') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Creating Step2: You can also supply more extensive metadata Step3: <div class="alert alert-info"><h4>Note</h4><p>When assigning new values to the fields of an Step4: Creating Step5: It is necessary to supply an "events" array in order to create an Epochs Step6: More information about the event codes Step7: Finally, we must specify the beginning of an epoch (the end will be inferred Step8: Now we can create the Step9: Creating
<ASSISTANT_TASK:> Python Code: import mne import numpy as np # Create some dummy metadata n_channels = 32 sampling_rate = 200 info = mne.create_info(n_channels, sampling_rate) print(info) # Names for each channel channel_names = ['MEG1', 'MEG2', 'Cz', 'Pz', 'EOG'] # The type (mag, grad, eeg, eog, misc, ...) of each channel channel_types = ['grad', 'grad', 'eeg', 'eeg', 'eog'] # The sampling rate of the recording sfreq = 1000 # in Hertz # The EEG channels use the standard naming strategy. # By supplying the 'montage' parameter, approximate locations # will be added for them montage = 'standard_1005' # Initialize required fields info = mne.create_info(channel_names, sfreq, channel_types, montage) # Add some more information info['description'] = 'My custom dataset' info['bads'] = ['Pz'] # Names of bad channels print(info) # Generate some random data data = np.random.randn(5, 1000) # Initialize an info structure info = mne.create_info( ch_names=['MEG1', 'MEG2', 'EEG1', 'EEG2', 'EOG'], ch_types=['grad', 'grad', 'eeg', 'eeg', 'eog'], sfreq=100 ) custom_raw = mne.io.RawArray(data, info) print(custom_raw) # Generate some random data: 10 epochs, 5 channels, 2 seconds per epoch sfreq = 100 data = np.random.randn(10, 5, sfreq * 2) # Initialize an info structure info = mne.create_info( ch_names=['MEG1', 'MEG2', 'EEG1', 'EEG2', 'EOG'], ch_types=['grad', 'grad', 'eeg', 'eeg', 'eog'], sfreq=sfreq ) # Create an event matrix: 10 events with alternating event codes events = np.array([ [0, 0, 1], [1, 0, 2], [2, 0, 1], [3, 0, 2], [4, 0, 1], [5, 0, 2], [6, 0, 1], [7, 0, 2], [8, 0, 1], [9, 0, 2], ]) event_id = dict(smiling=1, frowning=2) # Trials were cut from -0.1 to 1.0 seconds tmin = -0.1 custom_epochs = mne.EpochsArray(data, info, events, tmin, event_id) print(custom_epochs) # We can treat the epochs object as we would any other _ = custom_epochs['smiling'].average().plot() # The averaged data data_evoked = data.mean(0) # The number of epochs that were averaged nave = data.shape[0] # A comment to describe to evoked (usually the condition name) comment = "Smiley faces" # Create the Evoked object evoked_array = mne.EvokedArray(data_evoked, info, tmin, comment=comment, nave=nave) print(evoked_array) _ = evoked_array.plot() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Datos LHC Step2: Utilidades Step3: Columnas Step4: Y si quiero imprimir columnas, una por una? Step5: Recuerda Step6: Dividir datos Step7: Preguntas Step8: Visualizar! Step9: Histogramas Step10: Scatter plots Step11: Ven algun problema ?
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np # modulo de computo numerico import matplotlib.pyplot as plt # modulo de graficas # esta linea hace que las graficas salgan en el notebook import seaborn as sns %matplotlib inline df = pd.read_csv('files/mini-LHC.csv') df.head() print(df.shape) print(len(df)) print(df.columns) for col in df.columns: print(col) df['PRI_met'] boson_df = df[df['Label']=='s'] ruido_df = df[df['Label']=='b'] print (len(boson_df)) print (len(ruido_df)) sns.boxplot(x="Label", y="DER_mass_MMC",data=df) plt.show() sns.distplot(boson_df["DER_mass_MMC"],label='boson') sns.distplot(ruido_df["DER_mass_MMC"],label='ruido') plt.ylabel('Frecuencia') plt.legend() plt.title("Distribucion de DER_mass_MMC") plt.show() ejeX = "DER_mass_MMC" ejeY = "PRI_tau_pt" plt.scatter(df[ejeX],df[ejeY],alpha=0.5) plt.xlabel(ejeX) plt.ylabel(ejeY) plt.show() ejeX = "DER_mass_MMC" ejeY = "PRI_tau_pt" plt.scatter(boson_df[ejeX],boson_df[ejeY],c='r',alpha=0.9,s=20,label='boson',lw=0) plt.scatter(ruido_df[ejeX],ruido_df[ejeY],c='g',alpha=0.1,s=10,label='ruido',lw=0) plt.xlabel(ejeX) plt.ylabel(ejeY) plt.legend() plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Creating an ICsound object automatically starts the engine Step2: You can set the properties of the Csound engine with parameters to the startEngine() function. Step3: The engine runs in a separate thread, so it doesn't block execution of python. Step4: Use the %%csound magic command to directly type csound language code in the cell and send it to the engine. The number after the magic command is optional; it references the slot where the engine is running. If omitted, slot#1 is assumed. Step5: So where did it print? Step6: By default, messages from Csound are not shown, but they are stored in an internal buffer. You can view them with the printLog() function. If the log is getting too long and confusing, use the clearLog() function. Step7: Tables can be plotted in the usual matplotlib way, but ICsound provides a plotTable function which styles the graphs. Step8: You can get the function table values from the csound instance Step9: Tables can also be passed by their variable name in Csound Step10: The following will create 320 tables with 720 points each Step11: Sending instruments Step12: Channels Step13: You can also read the channels from Csound. These channels can be set from ICsound or within instruments with the outvalue/chnset opcodes Step14: Recording the output Step15: Remote engines Step16: Now send notes and instruments from the client Step17: And show the log in the server Step18: Stopping the engine Step19: If we don't need cs_client anymore, we can delete its slot with the %csound line magic (note the single % sign and the negative slot#). The python instance cs_client can then be deleted Step20: Audification Step21: Instrument to play back the earthquake data stored in a table Step22: Listen Step23: Slower Step24: Quicker Step25: Other tests
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt %load_ext csoundmagics cs = ICsound(port=12894) help(cs.startEngine) cs.startEngine() %%csound 1 gkinstr init 1 %%csound print i(gkinstr) cs.printLog() cs.fillTable(1, np.array([8, 7, 9, 1, 1, 1])) cs.fillTable(2, [4, 5, 7, 0, 8, 7, 9, 6]) cs.plotTable(1) cs.plotTable(2, reuse=True) plt.grid() cs.table(2) cs.makeTable(2, 1024, 10, 1) cs.makeTable(3, 1024, -10, 0.5, 1) cs.plotTable(2) cs.plotTable(3, reuse=True) #ylim((-1.1,1.1)) cs.table(2)[100: 105] %%csound 1 giHalfSine ftgen 0, 0, 1024, 9, .5, 1, 0 cs.plotTable('giHalfSine') randsig = np.random.random((320, 720)) i = 0 for i, row in enumerate(randsig): cs.fillTable(50 + i, row) print(i, '..', end=' ') cs.plotTable(104) %%csound 1 instr 1 asig asds %%csound 1 instr 1 asig oscil 0.5, 440 outs asig, asig %%csound 1 instr 1 asig oscil 0.5, 440 outs asig, asig endin cs.setChannel("val", 20) cs.channel("val") cs.startRecord("out.wav") cs.sendScore("i 1 0 1") import time time.sleep(1) cs.stopRecord() !aplay out.wav cs_client = ICsound() cs_client.startClient() cs.clearLog() cs_client.sendScore("i 1 0 1") cs_client.sendCode("print i(gkinstr)") cs.printLog() cs.stopEngine() cs %csound -2 del cs_client prefix = 'http://service.iris.edu/irisws/timeseries/1/query?' SCNL_parameters = 'net=IU&sta=ANMO&loc=00&cha=BHZ&' times = 'starttime=2005-01-01T00:00:00&endtime=2005-01-02T00:00:00&' output = 'output=ascii' import urllib f = urllib.request.urlopen(prefix + SCNL_parameters + times + output) timeseries = f.read() import ctcsound data = ctcsound.pstring(timeseries).split('\n') dates = [] values = [] for line in data[1:-1]: date, val = line.split() dates.append(date) values.append(float(val)) plt.plot(values) cs.startEngine() cs.fillTable(1, values) %%csound 1 instr 1 idur = p3 itable = p4 asig poscil 1/8000, 1/p3, p4 outs asig, asig endin cs.sendScore('i 1 0 3 1') cs.sendScore('i 1 0 7 1') cs.sendScore('i 1 0 1 1') ics = ICsound(bufferSize=64) ics.listInterfaces() %%csound 2 instr 1 asig oscil 0.5, 440 outs asig, asig endin ics.sendScore("i 1 0 0.5") %csound -2 del ics cs.stopEngine() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Problem 1 Step2: Generate a set of $50$ one-dimensional inputs regularly spaced between -5 and 5 and store them in a variable called x, then compute the covariance matrix for these inputs, for $A=\Gamma=1$, store the results in a variable called K, and display it using matplotlib's imshow function. Step3: Problem 1b Step4: Now draw 5 samples from the distribution and plot them. Step5: Problem 1c Step6: Execute the cell below to define a handful of observations Step7: Evaluate and plot the mean and 95% confidence interval of the resulting posterior distribution, as well as a few samples, for a squared exponential GP with $A=\Gamma=1$, assuming the measurement uncertainty on each observation was 0.1 Step8: Some things to note Step9: Try evaluating the likelihood of the model given the observations you defined in problem 1 by executing the cell below. Hopefully it will run without errors... Step10: Now try changing the covariance parameters and the observational uncertainties, and see how that affects the likelihood. Does it behave as you would expect, given the way these parameters affected the predictive distribution? Step11: Plot the data and the predictive distribution and samples for the best-fit hyper-parameters Step12: That may not have worked quite as well as you might have liked -- it's normal Step13: Problem 3a Step14: Problem 3b Step15: Now you are ready to fit for all the hyper-parameters simultaneously Step16: NB Step17: NB Step18: Now try fitting the data using the LinearMean mean function and the M32Kernel covariance function. Step19: How does the best fit likelihood compare to what you obtained using the SEKernel? Which kernel would you adopt if you had to chose between the two. Write your answer in the cell below. Step20: Now evaluate the BIC in each case. Which model is preferred? Step21: Thus the model with a non-zero mean function is strongly preferred (BIC differences $> 10$ are generally considered to represent very strong support for one model over the other). Step22: As you can see, the predictive distribution are essentially indistinguishable in regions where we have lots of data, but the predictive ability of the model without mean function is much poorer away from the data. Of course, this is as expected.
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt from scipy.spatial.distance import cdist from numpy.random import multivariate_normal from numpy.linalg import inv from numpy.linalg import slogdet from scipy.optimize import fmin def SEKernel(par, x1, x2): A, Gamma = par D2 = cdist(x1.reshape(len(x1),1), x2.reshape(len(x2),1), metric = 'sqeuclidean') return A * np.exp(-Gamma*D2) x = np.linspace(-5,5,50) K = SEKernel([1.0,1.0],x,x) plt.imshow(K,interpolation='none'); m = np.zeros(len(x)) sig = np.sqrt(np.diag(K)) plt.plot(x,m,'k-') plt.fill_between(x,m+2*sig,m-2*sig,color='k',alpha=0.2) plt.xlabel(r'$x$') plt.ylabel(r'$y$') plt.title('Prior distribution'); samples = multivariate_normal(m,K,5) plt.plot(x,samples.T) plt.xlabel(r'$x$') plt.ylabel(r'$y$') plt.title('Samples from prior distribution'); def Pred_GP(CovFunc, CovPar, xobs, yobs, eobs, xtest): # evaluate the covariance matrix for pairs of observed inputs K = CovFunc(CovPar, xobs, xobs) # add white noise K += np.identity(xobs.shape[0]) * eobs**2 # evaluate the covariance matrix for pairs of test inputs Kss = CovFunc(CovPar, xtest, xtest) # evaluate the cross-term Ks = CovFunc(CovPar, xtest, xobs) # invert K Ki = inv(K) # evaluate the predictive mean m = np.dot(Ks, np.dot(Ki, yobs)) # evaluate the covariance cov = Kss - np.dot(Ks, np.dot(Ki, Ks.T)) return m, cov xobs = np.array([-4,-2,0,1,2]) yobs = np.array([1.0,-1.0, -1.0, 0.7, 0.0]) eobs = 0.1 m,C=Pred_GP(SEKernel,[1.0,1.0],xobs,yobs,eobs,x) sig = np.sqrt(np.diag(C)) samples = multivariate_normal(m,C,5) plt.errorbar(xobs,yobs,yerr=2*eobs,capsize=0,fmt='k.') plt.plot(x,m,'k-') plt.fill_between(x,m+2*sig,m-2*sig,color='k',alpha=0.2) plt.plot(x,samples.T,alpha=0.5) plt.xlabel(r'$x$') plt.ylabel(r'$y$') plt.title('Predictive distribution'); def NLL_GP(p,CovFunc,x,y,e): # Evaluate the covariance matrix K = CovFunc(p,x,x) # Add the white noise term K += np.identity(x.shape[0]) * e**2 # invert it Ki = inv(K) # evaluate each of the three terms in the NLL term1 = 0.5 * np.dot(y,np.dot(Ki,y)) term2 = 0.5 * slogdet(K)[1] term3 = 0.5 * len(y) * np.log(2*np.pi) # return the total return term1 + term2 + term3 print(NLL_GP([1.0,1.0],SEKernel,xobs,yobs,eobs)) p0 = [1.0,1.0] p1 = fmin(NLL_GP,p0,args=(SEKernel,xobs,yobs,eobs)) print(p1) m,C=Pred_GP(SEKernel,p1,xobs,yobs,eobs,x) sig = np.sqrt(np.diag(C)) samples = multivariate_normal(m,C,5) plt.errorbar(xobs,yobs,yerr=2*eobs,capsize=0,fmt='k.') plt.plot(x,m,'k-') plt.fill_between(x,m+2*sig,m-2*sig,color='k',alpha=0.2) plt.plot(x,samples.T,alpha=0.5) plt.xlabel(r'$x$') plt.ylabel(r'$y$') plt.title('Maximum likelihood distribution'); xobs = np.linspace(-10,10,50) linear_trend = 0.03 * xobs - 0.3 correlated_noise = multivariate_normal(np.zeros(len(xobs)),SEKernel([0.005,2.0],xobs,xobs),1).flatten() eobs = 0.01 white_noise = np.random.normal(0,eobs,len(xobs)) yobs = linear_trend + correlated_noise + white_noise plt.errorbar(xobs,yobs,yerr=eobs,fmt='k.',capsize=0) plt.xlabel(r'$x$') plt.ylabel(r'$y$'); def LinearMean(p,x): return p[0] * x + p[1] pm0 = [0.03, -0.3] m = LinearMean(pm0,xobs) plt.errorbar(xobs,yobs,yerr=eobs,fmt='k.',capsize=0) plt.plot(xobs,m,'r-') plt.xlabel(r'$x$') plt.ylabel(r'$y$'); def NLL_GP2(p,CovFunc,x,y,e, MeanFunc=None, nmp = 0): if MeanFunc: pc = p[:-nmp] pm = p[-nmp:] r = y - MeanFunc(pm,x) else: pc = p[:] r = y[:] # Evaluate the covariance matrix K = CovFunc(pc,x,x) # Add the white noise term K += np.identity(x.shape[0]) * e**2 # invert it Ki = inv(K) # evaluate each of the three terms in the NLL term1 = 0.5 * np.dot(r,np.dot(Ki,r)) term2 = 0.5 * slogdet(K)[1] term3 = 0.5 * len(r) * np.log(2*np.pi) # return the total return term1 + term2 + term3 p0 = [0.005,2.0,0.03,-0.3] print(NLL_GP2(p0,SEKernel,xobs,yobs,eobs,MeanFunc=LinearMean,nmp=2)) p1 = fmin(NLL_GP2,p0,args=(SEKernel,xobs,yobs,eobs,LinearMean,2)) print(p1) # Generate test inputs (values at which we ant to evaluate the predictive distribution) x = np.linspace(-15,15,300) # Evaluate mean function at observed inputs, and compute residuals mobs = LinearMean(p1[-2:],xobs) robs = yobs-mobs # Evaluate stochastic component at test inputs m,C = Pred_GP(SEKernel,p1[:2],xobs,robs,eobs,x) # Evaluate mean function at test inputs m += LinearMean(p1[-2:],x) sig = np.sqrt(np.diag(C)) plt.errorbar(xobs,yobs,yerr=2*eobs,capsize=0,fmt='k.') plt.plot(x,m,'k-') plt.fill_between(x,m+2*sig,m-2*sig,color='k',alpha=0.2) plt.xlabel(r'$x$') plt.ylabel(r'$y$') plt.title('Maximum likelihood distribution'); def M32Kernel(par, x1, x2): A, Gamma = par R = cdist(x1.reshape(len(x1),1), x2.reshape(len(x2),1), V = [1.0/float(Gamma)], metric = 'seuclidean') return A * (1+np.sqrt(3)*R) * np.exp(-np.sqrt(3)*R) p0 = [0.005,2.0,0.03,-0.3] print(NLL_GP2(p0,M32Kernel,xobs,yobs,eobs,MeanFunc=LinearMean,nmp=2)) p1 = fmin(NLL_GP2,p0,args=(M32Kernel,xobs,yobs,eobs,LinearMean,2)) print(p1) print(NLL_GP2(p1,M32Kernel,xobs,yobs,eobs,MeanFunc=LinearMean,nmp=2)) p0_mean = [0.005,2.0,0.03,-0.3] p1_mean = fmin(NLL_GP2,p0_mean,args=(SEKernel,xobs,yobs,eobs,LinearMean,2)) NLL_mean = NLL_GP2(p1_mean,SEKernel,xobs,yobs,eobs,MeanFunc=LinearMean,nmp=2) print(NLL_mean) p0_no_mean = [0.005,2.0] p1_no_mean = fmin(NLL_GP2,p0_no_mean,args=(SEKernel,xobs,yobs,eobs)) NLL_no_mean = NLL_GP2(p1_no_mean,SEKernel,xobs,yobs,eobs) print(NLL_no_mean) N = len(xobs) BIC_mean = np.log(N) * len(p1_mean) + 2 * NLL_mean print(BIC_mean) BIC_no_mean = np.log(N) * len(p1_no_mean) + 2 * NLL_no_mean print(BIC_no_mean) # Plot the data plt.errorbar(xobs,yobs,yerr=2*eobs,capsize=0,fmt='k.') plt.xlabel(r'$x$') plt.ylabel(r'$y$') plt.title('Model comparison') # Evaluate and plot the predictive distribution with a mean function mobs = LinearMean(p1_mean[-2:],xobs) robs = yobs-mobs m,C = Pred_GP(SEKernel,p1_mean[:2],xobs,robs,eobs,x) m += LinearMean(p1[-2:],x) sig = np.sqrt(np.diag(C)) plt.plot(x,m,'b-') plt.fill_between(x,m+2*sig,m-2*sig,color='b',alpha=0.2) # Now do the same for the model without mean function m,C = Pred_GP(SEKernel,p1_no_mean,xobs,yobs,eobs,x) sig = np.sqrt(np.diag(C)) plt.plot(x,m,'r-') plt.fill_between(x,m+2*sig,m-2*sig,color='r',alpha=0.2) from astropy.table import Table tab = Table.read('KIC2157356.txt',format='ascii') qs = np.unique(tab['quarter']) for q in qs: t = tab[tab['quarter']==q] plt.plot(t['time'],t['flux'],'.') def QPKernel(par,x1,x2): A, P, Gamma1, Gamma2 = par D = cdist(x1.reshape(len(x1),1), x2.reshape(len(x2),1), metric = 'euclidean') D2 = cdist(x1.reshape(len(x1),1), x2.reshape(len(x2),1), metric = 'sqeuclidean') return A * np.exp(-Gamma1*np.sin(D*np.pi/P)**2-Gamma2*D2) for q in qs: # select data for the quarter t = tab[tab['quarter']==q] xobs = t['time'] yobs = t['flux'] eobs = t['error'] # normalise m = np.median(yobs) yobs = yobs / m - 1 eobs /= m # subsample to keep computing time reasonable xtrain = xobs[::10] ytrain = yobs[::10] etrain = eobs[::10] # fit for hyper-parameters p0 = [np.var(yobs), 13.61, 1.0, 1e-4] p1 = fmin(NLL_GP,p0,args=(QPKernel,xtrain,ytrain,etrain)) print(p1) # test outputs for plots x = np.linspace(xobs.min()-10,xobs.max()+10,1000) plt.figure() plt.plot(xobs,yobs,'k,') plt.plot(xtrain,ytrain,'k.') m,C = Pred_GP(QPKernel,p0,xtrain,ytrain,etrain,x) sig = np.sqrt(np.diag(C)) plt.plot(x,m,'k-') plt.fill_between(x,m+2*sig,m-2*sig,color='k',alpha=0.2) plt.xlabel(r'$t$') plt.ylabel(r'$y$') plt.title('Quarter {}'.format(q)); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Ice Albedo Step7: 1.4. Atmospheric Coupling Variables Step8: 1.5. Oceanic Coupling Variables Step9: 1.6. Prognostic Variables Step10: 2. Key Properties --&gt; Software Properties Step11: 2.2. Code Version Step12: 2.3. Code Languages Step13: 3. Grid Step14: 3.2. Adaptive Grid Step15: 3.3. Base Resolution Step16: 3.4. Resolution Limit Step17: 3.5. Projection Step18: 4. Glaciers Step19: 4.2. Description Step20: 4.3. Dynamic Areal Extent Step21: 5. Ice Step22: 5.2. Grounding Line Method Step23: 5.3. Ice Sheet Step24: 5.4. Ice Shelf Step25: 6. Ice --&gt; Mass Balance Step26: 7. Ice --&gt; Mass Balance --&gt; Basal Step27: 7.2. Ocean Step28: 8. Ice --&gt; Mass Balance --&gt; Frontal Step29: 8.2. Melting Step30: 9. Ice --&gt; Dynamics Step31: 9.2. Approximation Step32: 9.3. Adaptive Timestep Step33: 9.4. Timestep
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'bnu', 'sandbox-1', 'landice') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.ice_albedo') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "prescribed" # "function of ice age" # "function of ice density" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.atmospheric_coupling_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.oceanic_coupling_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "ice velocity" # "ice thickness" # "ice temperature" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.grid.adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.grid.base_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.grid.resolution_limit') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.grid.projection') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.glaciers.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.glaciers.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.glaciers.dynamic_areal_extent') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.grounding_line_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "grounding line prescribed" # "flux prescribed (Schoof)" # "fixed grid size" # "moving grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.ice_sheet') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.ice_shelf') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.mass_balance.surface_mass_balance') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.mass_balance.basal.bedrock') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.mass_balance.basal.ocean') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.mass_balance.frontal.calving') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.mass_balance.frontal.melting') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.dynamics.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.dynamics.approximation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "SIA" # "SAA" # "full stokes" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.dynamics.adaptive_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.dynamics.timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set parameters
<ASSISTANT_TASK:> Python Code: # Author: Martin Luessi <mluessi@nmr.mgh.harvard.edu> # # License: BSD (3-clause) import mne from mne import io from mne.connectivity import spectral_connectivity from mne.datasets import sample from mne.viz import plot_sensors_connectivity print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' # Setup for reading the raw data raw = io.read_raw_fif(raw_fname) events = mne.read_events(event_fname) # Add a bad channel raw.info['bads'] += ['MEG 2443'] # Pick MEG gradiometers picks = mne.pick_types(raw.info, meg='grad', eeg=False, stim=False, eog=True, exclude='bads') # Create epochs for the visual condition event_id, tmin, tmax = 3, -0.2, 1.5 # need a long enough epoch for 5 cycles epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6)) # Compute connectivity for band containing the evoked response. # We exclude the baseline period fmin, fmax = 3., 9. sfreq = raw.info['sfreq'] # the sampling frequency tmin = 0.0 # exclude the baseline period epochs.load_data().pick_types(meg='grad') # just keep MEG and no EOG now con, freqs, times, n_epochs, n_tapers = spectral_connectivity( epochs, method='pli', mode='multitaper', sfreq=sfreq, fmin=fmin, fmax=fmax, faverage=True, tmin=tmin, mt_adaptive=False, n_jobs=1) # Now, visualize the connectivity in 3D plot_sensors_connectivity(epochs.info, con[:, :, 0]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Constants Step2: You probably noticed that DROPOUT_RATE has been set 0.0. Dropout has been used Step3: Implementing the DeiT variants of ViT Step6: Now, we'll implement the MLP and Transformer blocks. Step8: We'll now implement a ViTClassifier class building on top of the components we just Step9: This class can be used standalone as ViT and is end-to-end trainable. Just remove the Step10: Let's verify if the ViTDistilled class can be initialized and called as expected. Step11: Implementing the trainer Step12: Load the teacher model Step13: Training through distillation
<ASSISTANT_TASK:> Python Code: from typing import List import tensorflow as tf import tensorflow_addons as tfa import tensorflow_datasets as tfds import tensorflow_hub as hub from tensorflow import keras from tensorflow.keras import layers tfds.disable_progress_bar() tf.keras.utils.set_random_seed(42) # Model MODEL_TYPE = "deit_distilled_tiny_patch16_224" RESOLUTION = 224 PATCH_SIZE = 16 NUM_PATCHES = (RESOLUTION // PATCH_SIZE) ** 2 LAYER_NORM_EPS = 1e-6 PROJECTION_DIM = 192 NUM_HEADS = 3 NUM_LAYERS = 12 MLP_UNITS = [ PROJECTION_DIM * 4, PROJECTION_DIM, ] DROPOUT_RATE = 0.0 DROP_PATH_RATE = 0.1 # Training NUM_EPOCHS = 20 BASE_LR = 0.0005 WEIGHT_DECAY = 0.0001 # Data BATCH_SIZE = 256 AUTO = tf.data.AUTOTUNE NUM_CLASSES = 5 def preprocess_dataset(is_training=True): def fn(image, label): if is_training: # Resize to a bigger spatial resolution and take the random # crops. image = tf.image.resize(image, (RESOLUTION + 20, RESOLUTION + 20)) image = tf.image.random_crop(image, (RESOLUTION, RESOLUTION, 3)) image = tf.image.random_flip_left_right(image) else: image = tf.image.resize(image, (RESOLUTION, RESOLUTION)) label = tf.one_hot(label, depth=NUM_CLASSES) return image, label return fn def prepare_dataset(dataset, is_training=True): if is_training: dataset = dataset.shuffle(BATCH_SIZE * 10) dataset = dataset.map(preprocess_dataset(is_training), num_parallel_calls=AUTO) return dataset.batch(BATCH_SIZE).prefetch(AUTO) train_dataset, val_dataset = tfds.load( "tf_flowers", split=["train[:90%]", "train[90%:]"], as_supervised=True ) num_train = train_dataset.cardinality() num_val = val_dataset.cardinality() print(f"Number of training examples: {num_train}") print(f"Number of validation examples: {num_val}") train_dataset = prepare_dataset(train_dataset, is_training=True) val_dataset = prepare_dataset(val_dataset, is_training=False) # Referred from: github.com:rwightman/pytorch-image-models. class StochasticDepth(layers.Layer): def __init__(self, drop_prop, **kwargs): super().__init__(**kwargs) self.drop_prob = drop_prop def call(self, x, training=True): if training: keep_prob = 1 - self.drop_prob shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x def mlp(x, dropout_rate: float, hidden_units: List): FFN for a Transformer block. # Iterate over the hidden units and # add Dense => Dropout. for (idx, units) in enumerate(hidden_units): x = layers.Dense( units, activation=tf.nn.gelu if idx == 0 else None, )(x) x = layers.Dropout(dropout_rate)(x) return x def transformer(drop_prob: float, name: str) -> keras.Model: Transformer block with pre-norm. num_patches = NUM_PATCHES + 2 if "distilled" in MODEL_TYPE else NUM_PATCHES + 1 encoded_patches = layers.Input((num_patches, PROJECTION_DIM)) # Layer normalization 1. x1 = layers.LayerNormalization(epsilon=LAYER_NORM_EPS)(encoded_patches) # Multi Head Self Attention layer 1. attention_output = layers.MultiHeadAttention( num_heads=NUM_HEADS, key_dim=PROJECTION_DIM, dropout=DROPOUT_RATE, )(x1, x1) attention_output = ( StochasticDepth(drop_prob)(attention_output) if drop_prob else attention_output ) # Skip connection 1. x2 = layers.Add()([attention_output, encoded_patches]) # Layer normalization 2. x3 = layers.LayerNormalization(epsilon=LAYER_NORM_EPS)(x2) # MLP layer 1. x4 = mlp(x3, hidden_units=MLP_UNITS, dropout_rate=DROPOUT_RATE) x4 = StochasticDepth(drop_prob)(x4) if drop_prob else x4 # Skip connection 2. outputs = layers.Add()([x2, x4]) return keras.Model(encoded_patches, outputs, name=name) class ViTClassifier(keras.Model): Vision Transformer base class. def __init__(self, **kwargs): super().__init__(**kwargs) # Patchify + linear projection + reshaping. self.projection = keras.Sequential( [ layers.Conv2D( filters=PROJECTION_DIM, kernel_size=(PATCH_SIZE, PATCH_SIZE), strides=(PATCH_SIZE, PATCH_SIZE), padding="VALID", name="conv_projection", ), layers.Reshape( target_shape=(NUM_PATCHES, PROJECTION_DIM), name="flatten_projection", ), ], name="projection", ) # Positional embedding. init_shape = ( 1, NUM_PATCHES + 1, PROJECTION_DIM, ) self.positional_embedding = tf.Variable( tf.zeros(init_shape), name="pos_embedding" ) # Transformer blocks. dpr = [x for x in tf.linspace(0.0, DROP_PATH_RATE, NUM_LAYERS)] self.transformer_blocks = [ transformer(drop_prob=dpr[i], name=f"transformer_block_{i}") for i in range(NUM_LAYERS) ] # CLS token. initial_value = tf.zeros((1, 1, PROJECTION_DIM)) self.cls_token = tf.Variable( initial_value=initial_value, trainable=True, name="cls" ) # Other layers. self.dropout = layers.Dropout(DROPOUT_RATE) self.layer_norm = layers.LayerNormalization(epsilon=LAYER_NORM_EPS) self.head = layers.Dense( NUM_CLASSES, name="classification_head", ) def call(self, inputs, training=True): n = tf.shape(inputs)[0] # Create patches and project the patches. projected_patches = self.projection(inputs) # Append class token if needed. cls_token = tf.tile(self.cls_token, (n, 1, 1)) cls_token = tf.cast(cls_token, projected_patches.dtype) projected_patches = tf.concat([cls_token, projected_patches], axis=1) # Add positional embeddings to the projected patches. encoded_patches = ( self.positional_embedding + projected_patches ) # (B, number_patches, projection_dim) encoded_patches = self.dropout(encoded_patches) # Iterate over the number of layers and stack up blocks of # Transformer. for transformer_module in self.transformer_blocks: # Add a Transformer block. encoded_patches = transformer_module(encoded_patches) # Final layer normalization. representation = self.layer_norm(encoded_patches) # Pool representation. encoded_patches = representation[:, 0] # Classification head. output = self.head(encoded_patches) return output class ViTDistilled(ViTClassifier): def __init__(self, regular_training=False, **kwargs): super().__init__(**kwargs) self.num_tokens = 2 self.regular_training = regular_training # CLS and distillation tokens, positional embedding. init_value = tf.zeros((1, 1, PROJECTION_DIM)) self.dist_token = tf.Variable(init_value, name="dist_token") self.positional_embedding = tf.Variable( tf.zeros( ( 1, NUM_PATCHES + self.num_tokens, PROJECTION_DIM, ) ), name="pos_embedding", ) # Head layers. self.head = layers.Dense( NUM_CLASSES, name="classification_head", ) self.head_dist = layers.Dense( NUM_CLASSES, name="distillation_head", ) def call(self, inputs, training=True): n = tf.shape(inputs)[0] # Create patches and project the patches. projected_patches = self.projection(inputs) # Append the tokens. cls_token = tf.tile(self.cls_token, (n, 1, 1)) dist_token = tf.tile(self.dist_token, (n, 1, 1)) cls_token = tf.cast(cls_token, projected_patches.dtype) dist_token = tf.cast(dist_token, projected_patches.dtype) projected_patches = tf.concat( [cls_token, dist_token, projected_patches], axis=1 ) # Add positional embeddings to the projected patches. encoded_patches = ( self.positional_embedding + projected_patches ) # (B, number_patches, projection_dim) encoded_patches = self.dropout(encoded_patches) # Iterate over the number of layers and stack up blocks of # Transformer. for transformer_module in self.transformer_blocks: # Add a Transformer block. encoded_patches = transformer_module(encoded_patches) # Final layer normalization. representation = self.layer_norm(encoded_patches) # Classification heads. x, x_dist = ( self.head(representation[:, 0]), self.head_dist(representation[:, 1]), ) if not training or self.regular_training: # During standard train / finetune, inference average the classifier # predictions. return (x + x_dist) / 2 elif training: # Only return separate classification predictions when training in distilled # mode. return x, x_dist deit_tiny_distilled = ViTDistilled() dummy_inputs = tf.ones((2, 224, 224, 3)) outputs = deit_tiny_distilled(dummy_inputs, training=False) print(outputs.shape) class DeiT(keras.Model): # Reference: # https://keras.io/examples/vision/knowledge_distillation/ def __init__(self, student, teacher, **kwargs): super().__init__(**kwargs) self.student = student self.teacher = teacher self.student_loss_tracker = keras.metrics.Mean(name="student_loss") self.dist_loss_tracker = keras.metrics.Mean(name="distillation_loss") @property def metrics(self): metrics = super().metrics metrics.append(self.student_loss_tracker) metrics.append(self.dist_loss_tracker) return metrics def compile( self, optimizer, metrics, student_loss_fn, distillation_loss_fn, ): super().compile(optimizer=optimizer, metrics=metrics) self.student_loss_fn = student_loss_fn self.distillation_loss_fn = distillation_loss_fn def train_step(self, data): # Unpack data. x, y = data # Forward pass of teacher teacher_predictions = tf.nn.softmax(self.teacher(x, training=False), -1) teacher_predictions = tf.argmax(teacher_predictions, -1) with tf.GradientTape() as tape: # Forward pass of student. cls_predictions, dist_predictions = self.student(x / 255.0, training=True) # Compute losses. student_loss = self.student_loss_fn(y, cls_predictions) distillation_loss = self.distillation_loss_fn( teacher_predictions, dist_predictions ) loss = (student_loss + distillation_loss) / 2 # Compute gradients. trainable_vars = self.student.trainable_variables gradients = tape.gradient(loss, trainable_vars) # Update weights. self.optimizer.apply_gradients(zip(gradients, trainable_vars)) # Update the metrics configured in `compile()`. student_predictions = (cls_predictions + dist_predictions) / 2 self.compiled_metrics.update_state(y, student_predictions) self.dist_loss_tracker.update_state(distillation_loss) self.student_loss_tracker.update_state(student_loss) # Return a dict of performance. results = {m.name: m.result() for m in self.metrics} return results def test_step(self, data): # Unpack the data. x, y = data # Compute predictions. y_prediction = self.student(x / 255.0, training=False) # Calculate the loss. student_loss = self.student_loss_fn(y, y_prediction) # Update the metrics. self.compiled_metrics.update_state(y, y_prediction) self.student_loss_tracker.update_state(student_loss) # Return a dict of performance. results = {m.name: m.result() for m in self.metrics} return results def call(self, inputs): return self.student(inputs / 255.0, training=False) !wget -q https://github.com/sayakpaul/deit-tf/releases/download/v0.1.0/bit_teacher_flowers.zip !unzip -q bit_teacher_flowers.zip bit_teacher_flowers = keras.models.load_model("bit_teacher_flowers") deit_tiny = ViTDistilled() deit_distiller = DeiT(student=deit_tiny, teacher=bit_teacher_flowers) lr_scaled = (BASE_LR / 512) * BATCH_SIZE deit_distiller.compile( optimizer=tfa.optimizers.AdamW(weight_decay=WEIGHT_DECAY, learning_rate=lr_scaled), metrics=["accuracy"], student_loss_fn=keras.losses.CategoricalCrossentropy( from_logits=True, label_smoothing=0.1 ), distillation_loss_fn=keras.losses.SparseCategoricalCrossentropy(from_logits=True), ) _ = deit_distiller.fit(train_dataset, validation_data=val_dataset, epochs=NUM_EPOCHS) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step5: plotting a neuron Step6: Testing function Step7: Testing function Step8: Testing seq2seq Step9: We may have to write our own dense --> seq with keras layers Dense( ) and LSTM( ).
<ASSISTANT_TASK:> Python Code: import numpy as np import McNeuron from keras.models import Sequential from keras.layers.core import Dense, Reshape from keras.layers.recurrent import LSTM import matplotlib.pyplot as plt from copy import deepcopy import os %matplotlib inline neuron_list = McNeuron.visualize.get_all_path(os.getcwd()+"/Data/Pyramidal/chen") neuron = McNeuron.Neuron(file_format = 'swc', input_file=neuron_list[19]) McNeuron.visualize.plot_2D(neuron) #tmp = neuron.subsample_main_nodes() np.shape(neuron.parent_index) from numpy import linalg as LA def random_subsample(neuron, number_random_node): randomly select a few number of nodes on the neuron and make a neuron based on that. In the selected nodes, the consecutive nodes on the neuron connects by a stright line. Parameters ---------- neuron: Neuron number_random_node: int number of nodes to be selected. Returns ------- The subsample neuron. I = np.arange(neuron.n_soma, neuron.n_node) np.random.shuffle(I) selected_index = I[0:number_random_node] selected_index = np.union1d(np.arange(neuron.n_soma), selected_index) selected_index = selected_index.astype(int) selected_index = np.unique(np.sort(selected_index)) parent_ind = np.array([],dtype = int) for i in selected_index: p = neuron.parent_index[i] while(~np.any(selected_index == p)): p = neuron.parent_index[p] (ind,) = np.where(selected_index==p) parent_ind = np.append(parent_ind, ind) n_list = [] for i in range(selected_index.shape[0]): n = McNeuron.Node() n.xyz = neuron.nodes_list[selected_index[i]].xyz n.r = neuron.nodes_list[selected_index[i]].r n.type = neuron.nodes_list[selected_index[i]].type n_list.append(n) for i in np.arange(1,selected_index.shape[0]): j = parent_ind[i] n_list[i].parent = n_list[j] n_list[j].add_child(n_list[i]) return McNeuron.Neuron(file_format = 'only list of nodes', input_file = n_list) def mesoscale_subsample(neuron, number): main_point = neuron.subsample_main_nodes() Nodes = main_point.nodes_list num_rm = (main_point.n_node - number)/2. for remove in range(int(num_rm)): pair_list = [] Dis = np.array([]) for n in Nodes: if n.parent is not None: if n.parent.parent is not None: a = n.parent.children if(len(a)==2): n1 = a[0] n2 = a[1] if(len(n1.children) == 0 and len(n2.children) == 0): pair_list.append([n1 , n2]) dis = LA.norm(a[0].xyz - a[1].xyz,2) Dis = np.append(Dis,dis) (b,) = np.where(Dis == Dis.min()) b = pair_list[b[0]] par = b[0].parent loc = b[0].xyz + b[1].xyz loc = loc/2 par.children = [] par.xyz = loc Nodes.remove(b[1]) Nodes.remove(b[0]) return McNeuron.Neuron(file_format = 'only list of nodes', input_file = Nodes) def reducing_data(swc_df, pruning_number=10): Parameters ---------- swc_df: dataframe the original swc file pruning_number: int number of nodes remaining at the end of pruning Returns ------- pruned_df: dataframe pruned dataframe L = [] for i in range(len(swc_df)): L.append(mesoscale_subsample(McNeuron.Neuron(file_format = 'swc', input_file = swc_df[i]), pruning_number)) return L def separate(list_of_neurons): Parameters ---------- list_of_neurons: List of Neurons Returns ------- geometry: array of shape (n-1, 3) (x, y, z) coordinates of each shape assuming that soma is at (0, 0, 0) morphology : array of shape (n-1,) index of node - index of parent Geo = list() Morph = list() for n in range(len(list_of_neurons)): neuron = list_of_neurons[n] Geo.append(neuron.location) Morph.append(neuron.parent_index) return Geo, Morph def geometry_generator(n_nodes=10): Generator network: fully connected 2-layer network to generate locations Parameters ---------- n_nodes: int number of nodes Returns ------- model: keras object number of models model = Sequential() model.add(Dense(input_dim=100, output_dim=512)) model.add(Activation('tanh')) model.add(Dense(input_dim=512, output_dim=512)) model.add(Activation('tanh')) model.add(Dense(input_dim=512, output_dim=n_nodes * 3)) model.add(Reshape((n_nodes, 3))) return model def morphology_generator(n_nodes=10): Generator network: fully connected 2-layer network to generate locations Parameters ---------- n_nodes: int number of nodes Returns ------- model: keras object number of models model = Sequential() # A keras seq to seq model, with the following characteristics: # input length: 1 # input dimensionality: 100 # some hidden layers for encoding # some hidden layers for decoding # output length: n_nodes - 1 # output dimensionality: n_nodes - 1 (there will finally be a softmax on each output node) return model for i in range(4): n_nodes = 10 + 30 * i subsampled_neuron = mesoscale_subsample(deepcopy(neuron), n_nodes) print 'Number of nodes: %d' % (n_nodes) McNeuron.visualize.plot_2D(subsampled_neuron, size = 4) McNeuron.visualize.plot_dedrite_tree(subsampled_neuron) plt.show() tmp = reducing_data(neuron_list[0:3], pruning_number=10) geo, morph = separate(tmp) print morph[0] print morph[1] print morph[2] geo[2][0:3,9] import seq2seq from seq2seq.models import Seq2Seq from keras.layers.core import Activation model = Seq2Seq(input_shape=(100, 1), hidden_dim=100, output_length=11, output_dim=10, depth=2, dropout=0.4) #model.add(Activation('softmax')) model.compile(loss='mse', optimizer='rmsprop') model.predict(np.random.randn(1, 100, 1)) ggm = geometry_generator(10) tmp = ggm.predict(np.random.randn(5,100)) tmp.shape <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Model parameters (parameters of the Generalized Maxwell model) Step2: Cantilever and general simulation paramters Step3: Main portion of the static force spectroscopy simulation Step4: Performing theoretical convolution Step5: Comparing the simulation results with the theoretical convolution Step6: Performing non-linear square optimization to retrieve properties Step7: First a fit assuming force is linear in time Step8: Without linear load assumption
<ASSISTANT_TASK:> Python Code: import sys sys.path.append('d:\github\pycroscopy') from pycroscopy.simulation.afm_lib import sfs_genmaxwell_lr, compliance_maxwell from pycroscopy.simulation.nls_fit import nls_fit, linear_fit_nob from pycroscopy.simulation.rheology import chi_th, j_t, theta_v, theta_g from pycroscopy.simulation.afm_calculations import derivative_cd, log_scale, av_dt, log_tw from numba import jit import numpy as np import matplotlib.pyplot as plt %matplotlib inline M = 5 #number of Maxwell arms for Generalized Maxwell model Ge = 1.0e6 #Equilibrium modulus G = np.zeros(M) tau = np.zeros(M) G[0] = 9.0e8 G[1] = 5.0e6 G[2] = 3.0e7 G[3] = 2.0e6 G[4] = 1.0e5 Gg = sum(G[:]) + Ge tau[0] = 1.0e-3 tau[1] = 1.0e-2 tau[2] = 1.0e-1 tau[3] = 1.0e0 tau[4] = 1.0e1 k_m1 = 1.0 #first eigenmode stiffness R = 2000.0e-9 #tip radius alfa = 16.0*np.sqrt(R)/3.0 #cell constant (related to tip geometry) y_dot = 100.0e-9 #approach speed y_t_initial = 1.0e-10 #initial position of cantilever with respect to the sample #1st, 2nd and 3rd eigenmode quality factors Q1 = 100.0 Q2 = 200.0 Q3 = 300.0 fo1 = 1.0e4 #first eigenmode resonance frequency period1 = 1.0/fo1 #fundamental period dt = period1/10.0e3 #simulation timestep simultime = y_t_initial/y_dot + 1.0 #total simulation time printstep = 1.0e-5 #how often will the result be stored in the arrays (this should be larger than dt) print('This cell may take a while to compute, it is performing the simulation') jit_sfs = jit()(sfs_genmaxwell_lr) #accelerating the simulation with numba %time t, tip, Fts, xb, defl, zs = jit_sfs(G, tau, R, dt, simultime, y_dot, y_t_initial, k_m1, fo1, Ge, Q1, printstep) #obtaining the compliance of the generalized Maxwell model via simulation jit_compliance = jit()(compliance_maxwell) t_r, J_r = jit_compliance(G, tau, Ge, t[2]-t[1], t[len(t)-1]-t[0]) #performing the time derivative of force that will be convolved with the cree compliance df_dt = derivative_cd(Fts, t-t[0]) #numerical convolution of the creep compliance with the time derivative of force as in the above equation conv = np.convolve(J_r, df_dt[0:len(df_dt)-2], mode='full')*(t[2]-t[1]) conv = conv[range(len(J_r))] plt.plot(t -t[0], 16.0/3.0*np.sqrt(R)*(-tip)**(3.0/2), 'y', lw=5, label = 'Lee&Radok simulation') #Lee Radok plt.plot(t_r -t_r[0], conv, 'r--', lw=3, label = 'Theoretical convolution') plt.xlabel(r'$time, \,s$', fontsize='20',fontweight='bold') plt.ylabel(r'$\int_0^t J(t-\zeta) \frac{dF(\zeta)}{d\zeta} d\zeta$',fontsize='20',fontweight='bold') plt.xscale('log') plt.yscale('log') plt.xlim(printstep, simultime) plt.legend(loc=4) t_res = 1.0e-4 #time resolution (inverse of sampling frequency) t_exp = 1.0 #total experimental time tip_log, t_log_sim = log_scale(tip, t-t[0], t_res, t_exp) #Weighting time and tip arrays in logarithmic scale F_log, _ = log_scale(Fts, t -t[0], t_res, t_exp) #Weighting force array in logarithmic scale Fdot = linear_fit_nob(t_log_sim, F_log) #Getting linear slope of force in time trace chi_simul = alfa*pow(-tip_log,1.5)/Fdot #according to eq 19, relation between chi and tip when force is assumed to be linear print('This cell may take a while to compute, it is performing the non-linear least square fitting') method = 0 #the load is assumed to be linear in time arms = 4 #number of Maxwell arms in the model %time Jg_c, tau_c, J_c = nls_fit(t-t[0], -tip, Fts, R, t_res, t_exp, arms, method) # defining time and frequency axes for plots t_log = log_tw(t_res, t_exp) omega = log_tw(1.0e-1, 1.0e5, 20) #chi_theor = chi_th(t_th, Jg_v, J_v, tau_v) chi_5 = chi_th(t_log, Jg_c, J_c, tau_c) plt.plot(t_log_sim, chi_simul, 'r*', markersize=15, label=r'Simulation, see Eq.(14)') plt.plot(t_log, chi_5, 'b', lw = 3.0, label=r'4-Voigt Fit, Eq. (9)') plt.legend(loc=4, fontsize=13) plt.xlabel(r'$time, \,s$', fontsize='20',fontweight='bold') plt.ylabel(r'$\chi(t), \,Pa^{-1}s$',fontsize='20',fontweight='bold') plt.xscale('log') plt.yscale('log') theta_th = theta_g(omega, G, tau, Ge) theta_5 = theta_v(omega, Jg_c, J_c, tau_c) plt.plot(omega, theta_th, 'y', lw = 5.0, label=r'Theoretical') plt.plot(omega, theta_5, 'b', lw = 3.0, label=r'Fit, linear assumption') plt.legend(loc='best', fontsize=13) plt.xlabel(r'$\omega, \,rad/s$', fontsize='20',fontweight='bold') plt.ylabel(r'$\theta(\omega),\,deg$',fontsize='20',fontweight='bold') plt.xscale('log') print('This cell may take a while to compute, it is performing the non-linear least square fitting') method = 1 #the load is NOT assumed to be linear in time arms = 3 #number of voigt units in the fitting model %time Jg_nl, tau_nl, J_nl = nls_fit(t-t[0], -tip, Fts, R, t_res, t_exp, arms, method, Jg_c, J_c[1], tau_c[1], J_c[2], tau_c[2], J_c[3], tau_c[3]) theta_th = theta_g(omega, G, tau, Ge) theta_5 = theta_v(omega, Jg_c, J_c, tau_c) plt.plot(omega, theta_th, 'y', lw = 5.0, label=r'Theoretical') plt.plot(omega, theta_5, 'b', lw = 3.0, label=r'Fit, linear assumption') theta_5nl = theta_v(omega, Jg_nl, J_nl, tau_nl) plt.plot(omega, theta_5nl, 'g', lw = 3.0, label=r'4-Voigt Fit, non linear') plt.legend(loc='best', fontsize=13) plt.xlabel(r'$\omega, \,rad/s$', fontsize='20',fontweight='bold') plt.ylabel(r'$\theta(\omega),\,deg$',fontsize='20',fontweight='bold') plt.xscale('log') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Alternative model Step3: Study corpus Step4: Not really zipfian so far. Maybe read that if we really care about that.
<ASSISTANT_TASK:> Python Code: import numpy as np from dictlearn.generate_synthetic_data import FakeTextGenerator V = 100 embedding_size = 50 markov_order = 6 temperature=1.0 sentence_size = 20 model = FakeTextGenerator(V, embedding_size, markov_order, temperature) n_sentences=1000 sentences = model.create_corpus(n_sentences, 5, 10, 0.7, 0.1, 0.5) import numpy as np from dictlearn.generate_synthetic_data_alt import FakeTextGenerator embedding_size = 20 markov_order = 3 temperature=1.0 sentence_size = 20 model = FakeTextGenerator(100, 400, embedding_size, markov_order, temperature) n_sentences=1000 sentences = model.create_corpus(n_sentences, 5, 10, 0.7, 0.1) import matplotlib.pyplot as plt %matplotlib inline plt.figure(figsize=(20, 20)) plt.imshow(model.features.T, interpolation='none') plt.colorbar() plt.show() import matplotlib.pyplot as plt %matplotlib inline from collections import Counter def summarize(sentences, V, label): sentences: list of list of characters V: vocabulary size sentence_size = len(sentences[0]) # count tokens and their positions #positions = np.zeros((V,sentence_size)) unigram_counts = Counter() for sentence in sentences: for i,tok in enumerate(sentence): unigram_counts[tok] += 1 #positions[w, i] += 1 ordered_count = [c for _, c in unigram_counts.most_common()] print ordered_count[:100] print ordered_count[500:600] print ordered_count[-100:] total_word_count = sum(ordered_count) # compute empirical frequency ordered_freq = [float(oc)/total_word_count for oc in ordered_count] print len(ordered_count), len(ordered_freq), V plt.plot(range(len(ordered_freq)), ordered_freq) plt.title("word frequency ordered by decreasing order of occurences (rank) on " + label) plt.show() plt.plot(np.log(range(len(ordered_freq))), np.log(ordered_count)) plt.title("log(word frequency) / log(rank) on " + label) plt.show() summarize(sentences, model.V, "corpus") definitions = [] for defs in model.dictionary.values(): definitions += defs summarize(definitions, V, "definitions") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: From a sample of the RMS Titanic data, we can see the various features present for each passenger on the ship Step3: The very same sample of the RMS Titanic data now shows the Survived feature removed from the DataFrame. Note that data (the passenger data) and outcomes (the outcomes of survival) are now paired. That means for any passenger data.loc[i], they have the survival outcome outcome[i]. Step5: Tip Step6: Question 1 Step7: Answer Step9: Examining the survival statistics, a large majority of males did not survive the ship sinking. However, a majority of females did survive the ship sinking. Let's build on our previous prediction Step10: Question 2 Step11: Answer Step13: Examining the survival statistics, the majority of males younger than 10 survived the ship sinking, whereas most males age 10 or older did not survive the ship sinking. Let's continue to build on our previous prediction Step14: Question 3 Step15: Answer Step17: After exploring the survival statistics visualization, fill in the missing code below so that the function will make your prediction. Step18: Question 4
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd # RMS Titanic data visualization code from titanic_visualizations import survival_stats from IPython.display import display %matplotlib inline # Load the dataset in_file = 'titanic_data.csv' full_data = pd.read_csv(in_file) # Print the first few entries of the RMS Titanic data display(full_data.head()) # Store the 'Survived' feature in a new variable and remove it from the dataset outcomes = full_data['Survived'] data = full_data.drop('Survived', axis = 1) # Show the new dataset with 'Survived' removed display(data.head()) def accuracy_score(truth, pred): Returns accuracy score for input truth and predictions. # Ensure that the number of predictions matches number of outcomes if len(truth) == len(pred): # Calculate and return the accuracy as a percent return "Predictions have an accuracy of {:.2f}%.".format((truth == pred).mean()*100) else: return "Number of predictions does not match number of outcomes!" # Test the 'accuracy_score' function predictions = pd.Series(np.ones(5, dtype = int)) print accuracy_score(outcomes[:5], predictions) def predictions_0(data): Model with no features. Always predicts a passenger did not survive. predictions = [] for _, passenger in data.iterrows(): # Predict the survival of 'passenger' predictions.append(0) # Return our predictions return pd.Series(predictions) # Make the predictions predictions = predictions_0(data) print accuracy_score(outcomes, predictions) survival_stats(data, outcomes, 'Sex') def predictions_1(data): Model with one feature: - Predict a passenger survived if they are female. predictions = [] for _, passenger in data.iterrows(): # Remove the 'pass' statement below # and write your prediction conditions here if passenger.Sex == 'male': predictions.append(0) else: predictions.append(1) # Return our predictions return pd.Series(predictions) # Make the predictions predictions = predictions_1(data) print accuracy_score(outcomes, predictions) survival_stats(data, outcomes, 'Age', ["Sex == 'male'"]) def predictions_2(data): Model with two features: - Predict a passenger survived if they are female. - Predict a passenger survived if they are male and younger than 10. predictions = [] for _, passenger in data.iterrows(): # Remove the 'pass' statement below # and write your prediction conditions here if (passenger.Sex == 'female'): predictions.append(1) elif (passenger.Sex == 'male' and passenger.Age < 10): predictions.append(1) else: predictions.append(0) # Return our predictions return pd.Series(predictions) # Make the predictions predictions = predictions_2(data) print accuracy_score(outcomes, predictions) survival_stats(data, outcomes, 'Embarked', ["Pclass == 3", "Age < 30", "Sex == female", "SibSp == 2"]) def predictions_3(data): Model with multiple features. Makes a prediction with an accuracy of at least 80%. predictions = [] for _, passenger in data.iterrows(): # Remove the 'pass' statement below # and write your prediction conditions here if (passenger.Sex == 'female' and passenger.Pclass <> 3): predictions.append(1) elif (passenger.Sex == 'female' and passenger.Pclass == 3 and passenger.Age < 28 and passenger.SibSp == 0): predictions.append(1) elif (passenger.Sex == 'male' and passenger.Pclass <> 3 and passenger.Age < 10): predictions.append(1) elif (passenger.Sex == 'male' and passenger.Pclass == 1 and passenger.Age > 31 and passenger.Age < 44 and passenger.Fare > 5.000): predictions.append(1) else: predictions.append(0) # Return our predictions return pd.Series(predictions) # Make the predictions predictions = predictions_3(data) print accuracy_score(outcomes, predictions) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step3: Even though the top code cell contains no instructions to draw, Vpython's way of integrating into Jupyter Notebook seems to be by adding a scene right after the first code cell. Look below for the code that made all of the above happen. Yes, that's a bit strange.
<ASSISTANT_TASK:> Python Code: from vpython import * class Vector: def __init__(self, x, y, z): self.v = vector(x, y, z) def __add__(self, other): v_sum = self.v + other.v return Vector(*v_sum.value) def __neg__(self): return Vector(*((-self.v).value)) def __sub__(self, other): V = (self + (-other)) return Vector(*V.v.value) def __mul__(self, scalar): V = scalar * self.v return Vector(*V.value) def norm(self): v = norm(self.v) return Vector(*v.value) def length(self): return mag(self.v) def draw(self): self.the_cyl = cylinder(pos=vector(0,0,0), axis=self.v, radius=0.1) self.the_cyl.color = color.cyan XBASIS = Vector(1,0,0) YBASIS = Vector(0,1,0) ZBASIS = Vector(0,0,1) XNEG = -XBASIS YNEG = -YBASIS ZNEG = -ZBASIS XYZ = [XBASIS, XNEG, YBASIS, YNEG, ZBASIS, ZNEG] sphere(pos=vector(0,0,0), color = color.orange, radius=0.2) for radial in XYZ: radial.draw() class Edge: def __init__(self, v0, v1): self.v0 = v0 self.v1 = v1 def draw(self): cylinder wants a starting point, and a direction vector pointer = (self.v1 - self.v0) direction_v = norm(pointer) * pointer.length() # normalize then stretch self.the_cyl = cylinder(pos = self.v0.v, axis=direction_v.v, radius=0.1) self.the_cyl.color = color.green class Polyhedron: def __init__(self, faces, corners): self.faces = faces self.corners = corners self.edges = self._get_edges() def _get_edges(self): take a list of face-tuples and distill all the unique edges, e.g. ((1,2,3)) => ((1,2),(2,3),(1,3)) e.g. icosahedron has 20 faces and 30 unique edges ( = cubocta 24 + tetra's 6 edges to squares per jitterbug) uniqueset = set() for f in self.faces: edgetries = zip(f, f[1:]+ (f[0],)) for e in edgetries: e = tuple(sorted(e)) # keeps out dupes uniqueset.add(e) return tuple(uniqueset) def draw(self): for edge in self.edges: the_edge = Edge(Vector(*self.corners[edge[0]]), Vector(*self.corners[edge[1]])) the_edge.draw() the_verts = \ { 'A': (0.35355339059327373, 0.35355339059327373, 0.35355339059327373), 'B': (-0.35355339059327373, -0.35355339059327373, 0.35355339059327373), 'C': (-0.35355339059327373, 0.35355339059327373, -0.35355339059327373), 'D': (0.35355339059327373, -0.35355339059327373, -0.35355339059327373), 'E': (-0.35355339059327373, -0.35355339059327373, -0.35355339059327373), 'F': (0.35355339059327373, 0.35355339059327373, -0.35355339059327373), 'G': (0.35355339059327373, -0.35355339059327373, 0.35355339059327373), 'H': (-0.35355339059327373, 0.35355339059327373, 0.35355339059327373)} the_faces = (('A','B','C'),('A','C','D'),('A','D','B'),('B','C','D')) other_faces = (('E','F','G'), ('E','G','H'),('E','H','F'),('F','G','H')) tetrahedron = Polyhedron(the_faces, the_verts) inv_tetrahedron = Polyhedron(other_faces, the_verts) print(tetrahedron._get_edges()) print(inv_tetrahedron._get_edges()) tetrahedron.draw() inv_tetrahedron.draw() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Next, let's define our potential by a $1\,\rm M_\odot$ point mass, and put our tracer particle initially at $1\,\rm AU$. Step2: Let's also place our tracer on a circular orbit Step3: Now that the potential and the initial conditions are set, we need to define a few of the orbital integration parameters. First, we need to set the type of potential, next the integrator, then how long we want to integrate the orbit, with how big time steps, and in which direction (+1 for forward in time, -1 for back in time). Step6: To speed up the calculations in the streakline module, integrator and potential variables are assigned an integer ids, which will be input for the orbit integrator. Here are a couple of helper functions that do the translation. Step7: So far, we've made use of astropy units, which simplifies calculations in python. However, the streakline code is written in c for performance, and expects all inputs in SI units. Step8: Now we have all the input parameters for the orbit integrator. It is called by streakline.orbit(x_init, v_init, potential_params, potential_id, integrator_id, Nsteps, time_step, sign). This function returns a $6\times\rm N_{step}$ array, with the orbital evolution of a tracer particle. The columns of the array are Step9: Let's check how well the integrator does by plotting the numerically integrated orbit (black) and the analytic solution (red). Step10: Numerical orbit agrees with the analytic fairly well for this time step size. Explore what happens when you change it!
<ASSISTANT_TASK:> Python Code: from __future__ import print_function, division import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import astropy.units as u from astropy.constants import G import streakline %matplotlib inline mpl.rcParams['figure.figsize'] = (8,8) mpl.rcParams['font.size'] = 18 M = 1*u.Msun x_ = np.array([1, 0, 0])*u.au vc = np.sqrt(G*M/np.sqrt(np.sum(x_**2))) vc.to(u.km/u.s) v_ = np.array([0, vc.value, 0])*vc.unit potential_ = 'point' integrator_ = 'lf' age = 1*u.yr dt_ = 1*u.day sign = 1. def get_intid(integrator): Assign integrator ID for a given integrator choice Parameter: integrator - either 'lf' for leap frog or 'rk' for Runge-Kutta integrator_dict = {'lf': 0, 'rk': 1} return integrator_dict[integrator] def get_potid(potential): Assign potential ID for a given potential choice Parameter: potential - one of the following: 'point' -- point mass 'log' -- triaxial logarithmic halo 'nfw' -- triaxial NFW halo 'gal' -- Hernquist bulge + Miyamoto-Nagai disk + triaxial NFW halo potential_dict = {'point': 0, 'log': 2, 'nfw': 3, 'gal': 4} return potential_dict[potential] x = x_.si.value v = v_.si.value params = [M.si.value,] potential = get_potid(potential_) integrator = get_intid(integrator_) N = int(age/dt_) dt = dt_.si.value orbit_ = streakline.orbit(x, v, params, potential, integrator, N, dt, sign) orbit = {} orbit['x'] = orbit_[:3]*u.m orbit['v'] = orbit_[3:]*u.m/u.s plt.figure() plt.plot(orbit['x'][0].to(u.au), orbit['x'][1].to(u.au), 'k-', lw=4, zorder=0) circle = mpl.patches.Circle((0,0), radius=1, lw=2, ec='r', fc='none', zorder=1) plt.gca().add_artist(circle) plt.xlim(-1, 1) plt.ylim(-1, 1) plt.xlabel("x (AU)"); plt.ylabel("y (AU)"); dt_ = 1*u.hr N = int(age/dt_) dt = dt_.si.value print('{} timesteps'.format(N)) %timeit -n1000 orbit_ = streakline.orbit(x, v, params, potential, integrator, N, dt, sign) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This allows inline graphics in IPython (Jupyter) notebooks and imports functions nessesary for ploting as plt. In addition we import numpy as np. Step2: Plot is as easy as this Step3: Line style and labels are controlled in a way similar to Matlab Step4: You can plot several individual lines at once Step5: One more example Step6: If you feel a bit playful (only in matplotlib > 1.3) Step7: Following example is from matplotlib - 2D and 3D plotting in Python - great place to start for people interested in matplotlib. Step8: When you going to plot something more or less complicated in Matplotlib, the first thing you do is open the Matplotlib example gallery and choose example closest to your case. Step9: Maps ... using Basemap Step10: Here we create netCDF variable objec for air (we would like to have acces to some of the attributes), but from lat and lon we import only data valies Step11: Easiest way to look at the array is imshow Step12: But we want some real map Step13: Our coordinate variables are vectors Step14: For the map we need 2d coordinate arrays. Convert lot lan to 2d Step15: Import Basemap - library for plotting 2D data on maps Step16: Create Basemap instance (with certain characteristics) and convert lon lat to map coordinates Step17: Creating the map now is only two lines Step18: We can make the map look prettier by adding couple of lines Step19: You can change map characteristics by changin the Basemap instance Step20: While the rest of the code might be the same Step21: One more map exampe
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pylab as plt import numpy as np x = np.linspace(0,10,20) y = x ** 2 plt.plot(x,y); plt.plot(x, y, 'r--o') plt.xlabel('x') plt.ylabel('y') plt.title('title'); plt.plot(x, y, 'r--o', x, y ** 1.1, 'bs', x, y ** 1.2, 'g^-' ); mu, sigma = 100, 15 x = mu + sigma * np.random.randn(10000) # the histogram of the data n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75) plt.xlabel('Smarts') plt.ylabel('Probability') plt.title('Histogram of IQ') plt.text(60, .025, r'$\mu=100,\ \sigma=15$') plt.axis([40, 160, 0, 0.03]) plt.grid(True) with plt.xkcd(): x = np.linspace(0, 1) y = np.sin(4 * np.pi * x) * np.exp(-5 * x) plt.fill(x, y, 'r') plt.grid(False) n = np.array([0,1,2,3,4,5]) xx = np.linspace(-0.75, 1., 100) x = np.linspace(0, 5, 10) fig, axes = plt.subplots(1, 4, figsize=(12,3)) axes[0].scatter(xx, xx + 0.25*np.random.randn(len(xx))) axes[1].step(n, n**2, lw=2) axes[2].bar(n, n**2, align="center", width=0.5, alpha=0.5) axes[3].fill_between(x, x**2, x**3, color="green", alpha=0.5); # %load http://matplotlib.org/mpl_examples/pylab_examples/griddata_demo.py from numpy.random import uniform, seed from matplotlib.mlab import griddata import matplotlib.pyplot as plt import numpy as np # make up data. #npts = int(raw_input('enter # of random points to plot:')) seed(0) npts = 200 x = uniform(-2, 2, npts) y = uniform(-2, 2, npts) z = x*np.exp(-x**2 - y**2) # define grid. xi = np.linspace(-2.1, 2.1, 100) yi = np.linspace(-2.1, 2.1, 200) # grid the data. zi = griddata(x, y, z, xi, yi, interp='linear') # contour the gridded data, plotting dots at the nonuniform data points. CS = plt.contour(xi, yi, zi, 15, linewidths=0.5, colors='k') CS = plt.contourf(xi, yi, zi, 15, cmap=plt.cm.rainbow, vmax=abs(zi).max(), vmin=-abs(zi).max()) plt.colorbar() # draw colorbar # plot data points. plt.scatter(x, y, marker='o', c='b', s=5, zorder=10) plt.xlim(-2, 2) plt.ylim(-2, 2) plt.title('griddata test (%d points)' % npts) plt.show() from netCDF4 import Dataset f =Dataset('air.sig995.2012.nc') air = f.variables['air'] lat = f.variables['lat'][:] lon = f.variables['lon'][:] plt.imshow(air[0,:,:]) plt.colorbar(); air_c = air[:] - 273.15 lat.shape lon2, lat2 = np.meshgrid(lon,lat) from mpl_toolkits.basemap import Basemap m = Basemap(projection='npstere',boundinglat=60,lon_0=0,resolution='l') x, y = m(lon2, lat2) m.drawcoastlines() m.contourf(x,y,air_c[0,:,:]) fig = plt.figure(figsize=(15,7)) m.fillcontinents(color='gray',lake_color='gray') m.drawcoastlines() m.drawparallels(np.arange(-80.,81.,20.)) m.drawmeridians(np.arange(-180.,181.,20.)) m.drawmapboundary(fill_color='white') m.contourf(x,y,air_c[0,:,:],40) plt.title('Monthly mean SAT') plt.colorbar() m = Basemap(projection='ortho',lat_0=45,lon_0=-100,resolution='l') x, y = m(lon2, lat2) fig = plt.figure(figsize=(15,7)) #m.fillcontinents(color='gray',lake_color='gray') m.drawcoastlines() m.drawparallels(np.arange(-80.,81.,20.)) m.drawmeridians(np.arange(-180.,181.,20.)) m.drawmapboundary(fill_color='white') cs = m.contourf(x,y,air_c[0,:,:],20) plt.title('Monthly mean SAT') m = Basemap(projection='cyl',llcrnrlat=-90,urcrnrlat=90,\ llcrnrlon=0,urcrnrlon=360,resolution='c') x, y = m(lon2, lat2) fig = plt.figure(figsize=(15,7)) #m.fillcontinents(color='gray',lake_color='gray') m.drawcoastlines() m.drawparallels(np.arange(-80.,81.,20.)) m.drawmeridians(np.arange(0.,360.,20.)) m.drawmapboundary(fill_color='white') cs = m.contourf(x,y,air[0,:,:],20) plt.title('Monthly mean SAT') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Para inserir website, o display do IPython tem suporte para mostrar um IFrame, onde é possível colocar o endereço de um website
<ASSISTANT_TASK:> Python Code: from IPython.display import YouTubeVideo # a talk about IPython at Sage Days at U. Washington, Seattle. # Video credit: William Stein. YouTubeVideo('1j_HxD4iLn8') from IPython.display import IFrame IFrame('http://adessowiki.fee.unicamp.br/rnpi', width=700, height=350) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <a id='pyenv'></a> Step2: Creating a VE Step3: Notice that the * is missing. Step4: Automatically activating and deactivating VEs
<ASSISTANT_TASK:> Python Code: %%bash echo -n "System Python version: " python --version %%bash which python %%bash echo -n "Trying to import pip-install-test ... " python -c " try: import pip_install_test except ModuleNotFoundError: print('pip-install-test is not installed') else: print('pip-install-test is installed')" %%bash python -m venv /tmp/test_VE %%bash tree /tmp/test_VE | head ls -l /tmp/test_VE/lib/python3.8/site-packages/ %%bash echo "Activating VE" source /tmp/test_VE/bin/activate echo "Python's path" which python ls -l `which python` echo "Python's version" python --version echo "Trying to import pip-install-test" python -c " try: import pip_install_test except ModuleNotFoundError: print('pip-install-test is not installed') else: print('pip-install-test is installed')" echo "Installing pip-install-test" pip install pip-install-test echo "Trying to import pip-install-test" python -c " try: import pip_install_test except ModuleNotFoundError: print('pip-install-test is not installed') else: print('pip-install-test is installed')" echo "Deactivating VE" deactivate echo "Python's path" which python echo "Python's version" python --version echo "Trying to import pip-install-test" python -c " try: import pip_install_test except ModuleNotFoundError: print('pip-install-test is not installed') else: print('pip-install-test is installed')" echo "Deleting VE" rm -rf /tmp/test_VE %%bash pyenv install 3.8.5 %%bash pyenv versions %%bash pyenv which python %%bash pyenv global 3.8.5 %%bash pyenv versions %%bash pyenv which python %%bash which python %%bash python --version %%bash echo "Trying to import pip-install-test" python -c " try: import pip_install_test except: print('pip-install-test is not installed') else: print('pip-install-test is installed')" echo "Which pip I'm using?" which pip echo "Installing pip-install-test" pip install pip-install-test echo "Trying to import pip-install-test" python -c " try: import pip_install_test except: print('pip-install-test is not installed') else: print('pip-install-test is installed')" %%bash echo "Returning to System's Python" pyenv global system pyenv versions echo "Pringing Python's version" python --version echo "Priting selected Python's version" pyenv version %%bash pyenv uninstall -f 3.8.5 %%bash pyenv install 3.8.5 %%bash pyenv virtualenv 3.8.5 socket_programming__385 %%bash pyenv virtualenvs %%bash eval "$(pyenv init -)" # <- This should be in .bashrc pyenv activate socket_programming__385 pyenv virtualenvs pyenv deactivate %%bash pyenv virtualenvs %%bash pyenv uninstall -f socket_programming__385 %%bash echo "Showing versions of Python" pyenv version echo "Ensure the test VE does not exit" pyenv uninstall -f my_python_project__system echo "Create the test VE" pyenv virtualenv 3.8.5 my_python_project__system echo "Create and go into the test Python project" rm -rf /tmp/my_python_project mkdir /tmp/my_python_project cd /tmp/my_python_project echo "Hook the VE and the project" pyenv local my_python_project__system echo "Inside of the project the Python's version is ..." python --version echo "Outside of the project the Python's version is ..." cd python --version <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Análise manual Step2: O deputado que mais usou a cota parlamentar totalizou R\$ 516.027,24 em 2015, uma média de um pouco mais que R$ 43.000,00 mensais. Vamos verificar seu maior gasto Step3: Será que um pagamento de R$ 88.500,00 para divulgação da atividade parlamentar é muito alto? Vamos ver os 5 maiores pagamentos desse tipo, entre todos os deputados, ordenado do maior pro menor Step4: Descobrimos então que outros parlamentares gastaram ainda mais para divulgar suas atividades. Nesse momento, seu foco pode ter mudado dos R\$ 88.500,00 de Jhonatan de Jesus para os R\$ 189.600,00 de Arnaldo Faria de Sá. Comparando os gastos da tabela acima, o primeiro colocado se destoa a ponto de investigarmos melhor esse gasto? Note que começamos com uma ideia Step5: Observe que os valores de x = 0 são mais frequentes e a frequência diminui para as laterais. Você pode conferir mais detalhes sobre a Distribuição Normal na Wikipedia. Step6: Bem diferente da distribuição normal padrão, não é? Embora invisíveis nessa escala, há alguns poucos gastos muito altos à direita. Além disso, notamos muitos gastos próximo do zero e uma diminuição brusca da barra ao lado. Step7: Agora os gastos estão muito mais próximos da distribuição normal padrão. Segundo Andrew Ng, a distribuição não precisa ser muito igual à normal para obter bons resultados. Podemos seguir para o próximo passo Step8: Os gastos com divulgação são os primeiros colocados. A tabela acima é a mesma que a última tabela da abordagem manual e sofre do mesmo problema Step9: NaN significa que não há esse valor nos dados, mas é fácil entender o porquê pelo nome. Step10: A porcentagem está bem próxima da teórica. Mais de 99% dos gastos com alimentação está abaixo de R\$ 564,93 e não é à toa que os gastos entre 4 e 6 mil estão entre os 5 primeiros da tabela acima. Marllos Sampaio, por exemplo, faz parte dos cerca de 0,3\% que mais gastaram com alimentação.
<ASSISTANT_TASK:> Python Code: import pandas as pd ceap = pd.read_csv('dados/ceap2015.csv.zip') linhas, colunas = ceap.shape print('Temos {} entradas com {} colunas cada.'.format(linhas, colunas)) print('Primeira entrada:') ceap.iloc[0] colunas = ['txNomeParlamentar', 'sgPartido', 'sgUF', 'vlrLiquido'] grupo = ['txNomeParlamentar', 'sgPartido', 'sgUF'] ceap[colunas].groupby(grupo).sum().sort_values('vlrLiquido', ascending=False).head(3) nome = "JHONATAN DE JESUS" ceap[ceap.txNomeParlamentar == nome].sort_values('vlrLiquido', ascending=False).iloc[0] colunas = ['vlrLiquido', 'txNomeParlamentar', 'sgPartido', 'sgUF', 'txtDescricao'] ceap.query('numSubCota == 5')[colunas].sort_values('vlrLiquido', ascending=False).head() import matplotlib # gráficos import numpy as np # cálculos %matplotlib inline matplotlib.style.use('ggplot') positivos = ceap[ceap.vlrLiquido > 0].vlrLiquido aleatorios = pd.Series(np.random.randn(len(positivos)), name='normal') aleatorios.plot.hist(bins=75, ylim=(0, 35000)); positivos.plot.hist(bins=75); def log_zscores(valores): positivos = valores[valores > 0].dropna() logs = np.log(positivos) return (logs - logs.mean()) / logs.std() vlrLiquido_z = log_zscores(ceap.vlrLiquido) pd.concat([aleatorios, vlrLiquido_z], axis=1).plot.hist(bins=75, alpha=0.6); from scipy.stats import norm def prob(valores): probs = valores.copy() probs[probs <= 0] = np.nan z = log_zscores(probs) probs[z.index] = norm.sf(z) return probs ceap['prob_geral'] = prob(ceap.vlrLiquido) colunas = ['prob_geral', 'vlrLiquido', 'txNomeParlamentar', 'sgPartido', 'sgUF', 'txtDescricao'] ceap[colunas].sort_values('prob_geral').head() colunas = ['numSubCota', 'vlrLiquido'] ceap['prob_grupo'] = ceap[colunas].groupby('numSubCota').transform(prob) colunas = ['prob_grupo', 'vlrLiquido', 'txNomeParlamentar', 'sgPartido', 'sgUF', 'txtDescricao'] ceap[colunas].sort_values('prob_grupo').head() alim = ceap.query('numSubCota == 13 and vlrLiquido > 0').vlrLiquido.dropna() alim_log = np.log(alim) média_log = alim_log.mean() sigma_log = alim_log.std() limite_log = média_log + 3 * sigma_log limite = np.exp(limite_log) print('Valor limite = R$ {:.2f}:'.format(limite)) valores_abaixo = len(alim[alim < limite]) valores_totais = len(alim) print('{} valores abaixo, em um total de {} = {:.3f}%.'.format( valores_abaixo, valores_totais, 100 * valores_abaixo/valores_totais)) ceap['prob_total'] = ceap.prob_geral * ceap.prob_grupo colunas = ['prob_total', 'vlrLiquido', 'txNomeParlamentar', 'sgPartido', 'sgUF', 'txtDescricao'] ceap[colunas].sort_values('prob_total').head(10) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Model Family Step7: 1.4. Basic Approximations Step8: 2. Key Properties --&gt; Resolution Step9: 2.2. Canonical Horizontal Resolution Step10: 2.3. Range Horizontal Resolution Step11: 2.4. Number Of Vertical Levels Step12: 2.5. High Top Step13: 3. Key Properties --&gt; Timestepping Step14: 3.2. Timestep Shortwave Radiative Transfer Step15: 3.3. Timestep Longwave Radiative Transfer Step16: 4. Key Properties --&gt; Orography Step17: 4.2. Changes Step18: 5. Grid --&gt; Discretisation Step19: 6. Grid --&gt; Discretisation --&gt; Horizontal Step20: 6.2. Scheme Method Step21: 6.3. Scheme Order Step22: 6.4. Horizontal Pole Step23: 6.5. Grid Type Step24: 7. Grid --&gt; Discretisation --&gt; Vertical Step25: 8. Dynamical Core Step26: 8.2. Name Step27: 8.3. Timestepping Type Step28: 8.4. Prognostic Variables Step29: 9. Dynamical Core --&gt; Top Boundary Step30: 9.2. Top Heat Step31: 9.3. Top Wind Step32: 10. Dynamical Core --&gt; Lateral Boundary Step33: 11. Dynamical Core --&gt; Diffusion Horizontal Step34: 11.2. Scheme Method Step35: 12. Dynamical Core --&gt; Advection Tracers Step36: 12.2. Scheme Characteristics Step37: 12.3. Conserved Quantities Step38: 12.4. Conservation Method Step39: 13. Dynamical Core --&gt; Advection Momentum Step40: 13.2. Scheme Characteristics Step41: 13.3. Scheme Staggering Type Step42: 13.4. Conserved Quantities Step43: 13.5. Conservation Method Step44: 14. Radiation Step45: 15. Radiation --&gt; Shortwave Radiation Step46: 15.2. Name Step47: 15.3. Spectral Integration Step48: 15.4. Transport Calculation Step49: 15.5. Spectral Intervals Step50: 16. Radiation --&gt; Shortwave GHG Step51: 16.2. ODS Step52: 16.3. Other Flourinated Gases Step53: 17. Radiation --&gt; Shortwave Cloud Ice Step54: 17.2. Physical Representation Step55: 17.3. Optical Methods Step56: 18. Radiation --&gt; Shortwave Cloud Liquid Step57: 18.2. Physical Representation Step58: 18.3. Optical Methods Step59: 19. Radiation --&gt; Shortwave Cloud Inhomogeneity Step60: 20. Radiation --&gt; Shortwave Aerosols Step61: 20.2. Physical Representation Step62: 20.3. Optical Methods Step63: 21. Radiation --&gt; Shortwave Gases Step64: 22. Radiation --&gt; Longwave Radiation Step65: 22.2. Name Step66: 22.3. Spectral Integration Step67: 22.4. Transport Calculation Step68: 22.5. Spectral Intervals Step69: 23. Radiation --&gt; Longwave GHG Step70: 23.2. ODS Step71: 23.3. Other Flourinated Gases Step72: 24. Radiation --&gt; Longwave Cloud Ice Step73: 24.2. Physical Reprenstation Step74: 24.3. Optical Methods Step75: 25. Radiation --&gt; Longwave Cloud Liquid Step76: 25.2. Physical Representation Step77: 25.3. Optical Methods Step78: 26. Radiation --&gt; Longwave Cloud Inhomogeneity Step79: 27. Radiation --&gt; Longwave Aerosols Step80: 27.2. Physical Representation Step81: 27.3. Optical Methods Step82: 28. Radiation --&gt; Longwave Gases Step83: 29. Turbulence Convection Step84: 30. Turbulence Convection --&gt; Boundary Layer Turbulence Step85: 30.2. Scheme Type Step86: 30.3. Closure Order Step87: 30.4. Counter Gradient Step88: 31. Turbulence Convection --&gt; Deep Convection Step89: 31.2. Scheme Type Step90: 31.3. Scheme Method Step91: 31.4. Processes Step92: 31.5. Microphysics Step93: 32. Turbulence Convection --&gt; Shallow Convection Step94: 32.2. Scheme Type Step95: 32.3. Scheme Method Step96: 32.4. Processes Step97: 32.5. Microphysics Step98: 33. Microphysics Precipitation Step99: 34. Microphysics Precipitation --&gt; Large Scale Precipitation Step100: 34.2. Hydrometeors Step101: 35. Microphysics Precipitation --&gt; Large Scale Cloud Microphysics Step102: 35.2. Processes Step103: 36. Cloud Scheme Step104: 36.2. Name Step105: 36.3. Atmos Coupling Step106: 36.4. Uses Separate Treatment Step107: 36.5. Processes Step108: 36.6. Prognostic Scheme Step109: 36.7. Diagnostic Scheme Step110: 36.8. Prognostic Variables Step111: 37. Cloud Scheme --&gt; Optical Cloud Properties Step112: 37.2. Cloud Inhomogeneity Step113: 38. Cloud Scheme --&gt; Sub Grid Scale Water Distribution Step114: 38.2. Function Name Step115: 38.3. Function Order Step116: 38.4. Convection Coupling Step117: 39. Cloud Scheme --&gt; Sub Grid Scale Ice Distribution Step118: 39.2. Function Name Step119: 39.3. Function Order Step120: 39.4. Convection Coupling Step121: 40. Observation Simulation Step122: 41. Observation Simulation --&gt; Isscp Attributes Step123: 41.2. Top Height Direction Step124: 42. Observation Simulation --&gt; Cosp Attributes Step125: 42.2. Number Of Grid Points Step126: 42.3. Number Of Sub Columns Step127: 42.4. Number Of Levels Step128: 43. Observation Simulation --&gt; Radar Inputs Step129: 43.2. Type Step130: 43.3. Gas Absorption Step131: 43.4. Effective Radius Step132: 44. Observation Simulation --&gt; Lidar Inputs Step133: 44.2. Overlap Step134: 45. Gravity Waves Step135: 45.2. Sponge Layer Step136: 45.3. Background Step137: 45.4. Subgrid Scale Orography Step138: 46. Gravity Waves --&gt; Orographic Gravity Waves Step139: 46.2. Source Mechanisms Step140: 46.3. Calculation Method Step141: 46.4. Propagation Scheme Step142: 46.5. Dissipation Scheme Step143: 47. Gravity Waves --&gt; Non Orographic Gravity Waves Step144: 47.2. Source Mechanisms Step145: 47.3. Calculation Method Step146: 47.4. Propagation Scheme Step147: 47.5. Dissipation Scheme Step148: 48. Solar Step149: 49. Solar --&gt; Solar Pathways Step150: 50. Solar --&gt; Solar Constant Step151: 50.2. Fixed Value Step152: 50.3. Transient Characteristics Step153: 51. Solar --&gt; Orbital Parameters Step154: 51.2. Fixed Reference Date Step155: 51.3. Transient Method Step156: 51.4. Computation Method Step157: 52. Solar --&gt; Insolation Ozone Step158: 53. Volcanos Step159: 54. Volcanos --&gt; Volcanoes Treatment
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'ipsl', 'sandbox-3', 'atmos') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_family') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "AGCM" # "ARCM" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.basic_approximations') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "primitive equations" # "non-hydrostatic" # "anelastic" # "Boussinesq" # "hydrostatic" # "quasi-hydrostatic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.horizontal_resolution_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.range_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.high_top') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_dynamics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_shortwave_radiative_transfer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_longwave_radiative_transfer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.orography.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "present day" # "modified" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.orography.changes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "related to ice sheets" # "related to tectonics" # "modified mean" # "modified variance if taken into account in model (cf gravity waves)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "spectral" # "fixed grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "finite elements" # "finite volumes" # "finite difference" # "centered finite difference" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_order') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "second" # "third" # "fourth" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.horizontal_pole') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "filter" # "pole rotation" # "artificial island" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.grid_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Gaussian" # "Latitude-Longitude" # "Cubed-Sphere" # "Icosahedral" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.vertical.coordinate_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "isobaric" # "sigma" # "hybrid sigma-pressure" # "hybrid pressure" # "vertically lagrangian" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.timestepping_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Adams-Bashforth" # "explicit" # "implicit" # "semi-implicit" # "leap frog" # "multi-step" # "Runge Kutta fifth order" # "Runge Kutta second order" # "Runge Kutta third order" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "surface pressure" # "wind components" # "divergence/curl" # "temperature" # "potential temperature" # "total water" # "water vapour" # "water liquid" # "water ice" # "total water moments" # "clouds" # "radiation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_boundary_condition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "sponge layer" # "radiation boundary condition" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_heat') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_wind') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.lateral_boundary.condition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "sponge layer" # "radiation boundary condition" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.diffusion_horizontal.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.diffusion_horizontal.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "iterated Laplacian" # "bi-harmonic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Heun" # "Roe and VanLeer" # "Roe and Superbee" # "Prather" # "UTOPIA" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.scheme_characteristics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Eulerian" # "modified Euler" # "Lagrangian" # "semi-Lagrangian" # "cubic semi-Lagrangian" # "quintic semi-Lagrangian" # "mass-conserving" # "finite volume" # "flux-corrected" # "linear" # "quadratic" # "quartic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.conserved_quantities') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "dry mass" # "tracer mass" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.conservation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "conservation fixer" # "Priestley algorithm" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "VanLeer" # "Janjic" # "SUPG (Streamline Upwind Petrov-Galerkin)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_characteristics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "2nd order" # "4th order" # "cell-centred" # "staggered grid" # "semi-staggered grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_staggering_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Arakawa B-grid" # "Arakawa C-grid" # "Arakawa D-grid" # "Arakawa E-grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.conserved_quantities') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Angular momentum" # "Horizontal momentum" # "Enstrophy" # "Mass" # "Total energy" # "Vorticity" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.conservation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "conservation fixer" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.aerosols') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "sulphate" # "nitrate" # "sea salt" # "dust" # "ice" # "organic" # "BC (black carbon / soot)" # "SOA (secondary organic aerosols)" # "POM (particulate organic matter)" # "polar stratospheric ice" # "NAT (nitric acid trihydrate)" # "NAD (nitric acid dihydrate)" # "STS (supercooled ternary solution aerosol particle)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.spectral_integration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "wide-band model" # "correlated-k" # "exponential sum fitting" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.transport_calculation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "two-stream" # "layer interaction" # "bulk" # "adaptive" # "multi-stream" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.spectral_intervals') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.greenhouse_gas_complexity') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CO2" # "CH4" # "N2O" # "CFC-11 eq" # "CFC-12 eq" # "HFC-134a eq" # "Explicit ODSs" # "Explicit other fluorinated gases" # "O3" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.ODS') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CFC-12" # "CFC-11" # "CFC-113" # "CFC-114" # "CFC-115" # "HCFC-22" # "HCFC-141b" # "HCFC-142b" # "Halon-1211" # "Halon-1301" # "Halon-2402" # "methyl chloroform" # "carbon tetrachloride" # "methyl chloride" # "methylene chloride" # "chloroform" # "methyl bromide" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.other_flourinated_gases') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HFC-134a" # "HFC-23" # "HFC-32" # "HFC-125" # "HFC-143a" # "HFC-152a" # "HFC-227ea" # "HFC-236fa" # "HFC-245fa" # "HFC-365mfc" # "HFC-43-10mee" # "CF4" # "C2F6" # "C3F8" # "C4F10" # "C5F12" # "C6F14" # "C7F16" # "C8F18" # "c-C4F8" # "NF3" # "SF6" # "SO2F2" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "bi-modal size distribution" # "ensemble of ice crystals" # "mean projected area" # "ice water path" # "crystal asymmetry" # "crystal aspect ratio" # "effective crystal radius" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud droplet number concentration" # "effective cloud droplet radii" # "droplet size distribution" # "liquid water path" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "geometric optics" # "Mie theory" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_inhomogeneity.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Monte Carlo Independent Column Approximation" # "Triplecloud" # "analytic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "number concentration" # "effective radii" # "size distribution" # "asymmetry" # "aspect ratio" # "mixing state" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_gases.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.spectral_integration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "wide-band model" # "correlated-k" # "exponential sum fitting" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.transport_calculation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "two-stream" # "layer interaction" # "bulk" # "adaptive" # "multi-stream" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.spectral_intervals') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.greenhouse_gas_complexity') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CO2" # "CH4" # "N2O" # "CFC-11 eq" # "CFC-12 eq" # "HFC-134a eq" # "Explicit ODSs" # "Explicit other fluorinated gases" # "O3" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.ODS') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CFC-12" # "CFC-11" # "CFC-113" # "CFC-114" # "CFC-115" # "HCFC-22" # "HCFC-141b" # "HCFC-142b" # "Halon-1211" # "Halon-1301" # "Halon-2402" # "methyl chloroform" # "carbon tetrachloride" # "methyl chloride" # "methylene chloride" # "chloroform" # "methyl bromide" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.other_flourinated_gases') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HFC-134a" # "HFC-23" # "HFC-32" # "HFC-125" # "HFC-143a" # "HFC-152a" # "HFC-227ea" # "HFC-236fa" # "HFC-245fa" # "HFC-365mfc" # "HFC-43-10mee" # "CF4" # "C2F6" # "C3F8" # "C4F10" # "C5F12" # "C6F14" # "C7F16" # "C8F18" # "c-C4F8" # "NF3" # "SF6" # "SO2F2" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.physical_reprenstation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "bi-modal size distribution" # "ensemble of ice crystals" # "mean projected area" # "ice water path" # "crystal asymmetry" # "crystal aspect ratio" # "effective crystal radius" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud droplet number concentration" # "effective cloud droplet radii" # "droplet size distribution" # "liquid water path" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "geometric optics" # "Mie theory" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_inhomogeneity.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Monte Carlo Independent Column Approximation" # "Triplecloud" # "analytic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "number concentration" # "effective radii" # "size distribution" # "asymmetry" # "aspect ratio" # "mixing state" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_gases.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Mellor-Yamada" # "Holtslag-Boville" # "EDMF" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "TKE prognostic" # "TKE diagnostic" # "TKE coupled with water" # "vertical profile of Kz" # "non-local diffusion" # "Monin-Obukhov similarity" # "Coastal Buddy Scheme" # "Coupled with convection" # "Coupled with gravity waves" # "Depth capped at cloud base" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.closure_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.counter_gradient') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mass-flux" # "adjustment" # "plume ensemble" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CAPE" # "bulk" # "ensemble" # "CAPE/WFN based" # "TKE/CIN based" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "vertical momentum transport" # "convective momentum transport" # "entrainment" # "detrainment" # "penetrative convection" # "updrafts" # "downdrafts" # "radiative effect of anvils" # "re-evaporation of convective precipitation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.microphysics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "tuning parameter based" # "single moment" # "two moment" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mass-flux" # "cumulus-capped boundary layer" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "same as deep (unified)" # "included in boundary layer turbulence" # "separate diagnosis" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "convective momentum transport" # "entrainment" # "detrainment" # "penetrative convection" # "re-evaporation of convective precipitation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.microphysics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "tuning parameter based" # "single moment" # "two moment" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.hydrometeors') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "liquid rain" # "snow" # "hail" # "graupel" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mixed phase" # "cloud droplets" # "cloud ice" # "ice nucleation" # "water vapour deposition" # "effect of raindrops" # "effect of snow" # "effect of graupel" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.atmos_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "atmosphere_radiation" # "atmosphere_microphysics_precipitation" # "atmosphere_turbulence_convection" # "atmosphere_gravity_waves" # "atmosphere_solar" # "atmosphere_volcano" # "atmosphere_cloud_simulator" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.uses_separate_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "entrainment" # "detrainment" # "bulk cloud" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.diagnostic_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud amount" # "liquid" # "ice" # "rain" # "snow" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_overlap_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "random" # "maximum" # "maximum-random" # "exponential" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.convection_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "coupled with deep" # "coupled with shallow" # "not coupled with convection" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.convection_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "coupled with deep" # "coupled with shallow" # "not coupled with convection" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_estimation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "no adjustment" # "IR brightness" # "visible optical depth" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_direction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "lowest altitude level" # "highest altitude level" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.run_configuration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Inline" # "Offline" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_grid_points') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_sub_columns') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.frequency') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "surface" # "space borne" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.gas_absorption') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.effective_radius') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.ice_types') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "ice spheres" # "ice non-spherical" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.overlap') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "max" # "random" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.sponge_layer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Rayleigh friction" # "Diffusive sponge layer" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "continuous spectrum" # "discrete spectrum" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.subgrid_scale_orography') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "effect on drag" # "effect on lifting" # "enhanced topography" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.source_mechanisms') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "linear mountain waves" # "hydraulic jump" # "envelope orography" # "low level flow blocking" # "statistical sub-grid scale variance" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.calculation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "non-linear calculation" # "more than two cardinal directions" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.propagation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "linear theory" # "non-linear theory" # "includes boundary layer ducting" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.dissipation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "total wave" # "single wave" # "spectral" # "linear" # "wave saturation vs Richardson number" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.source_mechanisms') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "convection" # "precipitation" # "background spectrum" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.calculation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "spatially dependent" # "temporally dependent" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.propagation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "linear theory" # "non-linear theory" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.dissipation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "total wave" # "single wave" # "spectral" # "linear" # "wave saturation vs Richardson number" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_pathways.pathways') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "SW radiation" # "precipitating energetic particles" # "cosmic rays" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "transient" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.fixed_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.transient_characteristics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "transient" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.fixed_reference_date') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.transient_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.computation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Berger 1978" # "Laskar 2004" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.insolation_ozone.solar_ozone_impact') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.volcanos.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.volcanos.volcanoes_treatment.volcanoes_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "high frequency solar constant anomaly" # "stratospheric aerosols optical thickness" # "Other: [Please specify]" # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load Annotated Data Step2: Params Step3: Prep Data Step4: Sklearn Experiments Step5: No tfidf Step6: With tfidf Step7: TFIDF improves the ROC score for both types of ngram models although it gives a bigger boost for the char-ngram models. Step8: LSTM Step9: Conv LSTM
<ASSISTANT_TASK:> Python Code: def get_best_estimator(cv): params = cv.best_params_ model = cv.estimator model = model.set_params(**params) return model def save_best_estimator(cv, directory, name): model = get_best_estimator(cv) save_pipeline(model, directory, name) task = 'attack' data = load_comments_and_labels(task) path = '../../models/cv/' n_max = 10000000 n_iter = 15 X_train, y_train_ohv = assemble_data(data, 'comments', 'plurality', splits = ['train']) X_dev, y_dev_ohv = assemble_data(data, 'comments', 'plurality', splits = ['dev']) _, y_train_ed = assemble_data(data, 'comments', 'empirical_dist', splits = ['train']) _, y_dev_ed = assemble_data(data, 'comments', 'empirical_dist', splits = ['dev']) y_train_ohm = one_hot(y_train_ed) y_dev_ohm = one_hot(y_dev_ed) X_train = X_train[:n_max] X_dev = X_dev[:n_max] y_train_ohv = y_train_ohv[:n_max] y_dev_ohv = y_dev_ohv[:n_max] y_train_ed = y_train_ed[:n_max] y_dev_ed = y_dev_ed[:n_max] y_train_ohm = y_train_ohm[:n_max] y_dev_ohm = y_dev_ohm[:n_max] results_list = [] max_features = (5000, 10000, 50000, 100000) C = (0.0001, 0.001, 0.01, 0.1, 1, 10) alg = Pipeline([ ('vect', CountVectorizer()), ('clf', LogisticRegression()), ]) # linear char-gram, no tfidf param_grid = { 'vect__max_features': max_features, 'vect__ngram_range': ((1,5),), 'vect__analyzer' : ('char',), 'clf__C' : C, } m = tune (X_train, y_train_ohv, X_dev, y_dev_ohv, alg, param_grid, n_iter, roc_scorer, n_jobs = 6, verbose = True) # linear word-gram, no tfidf param_grid = { 'vect__max_features': max_features, 'vect__ngram_range': ((1,2),), 'vect__analyzer' : ('word',), 'clf__C' : C, } m = tune (X_train, y_train_ohv, X_dev, y_dev_ohv, alg, param_grid, n_iter, roc_scorer, n_jobs = 6, verbose = True) alg = Pipeline([ ('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', LogisticRegression()), ]) # linear char-gram, tfidf param_grid = { 'vect__max_features': max_features, 'vect__ngram_range': ((1,5),), 'vect__analyzer' : ('char',), 'tfidf__sublinear_tf' : (True, False), 'tfidf__norm' : (None, 'l2'), 'clf__C' : C, } m = tune (X_train, y_train_ohv, X_dev, y_dev_ohv, alg, param_grid, n_iter, roc_scorer, n_jobs = 6, verbose = True) # linear word-gram, tfidf param_grid = { 'vect__max_features': max_features, 'vect__ngram_range': ((1,2),), 'vect__analyzer' : ('word',), 'tfidf__sublinear_tf' : (True, False), 'tfidf__norm' : (None, 'l2'), 'clf__C' : C, } m = tune (X_train, y_train_ohv, X_dev, y_dev_ohv, alg, param_grid, n_iter, roc_scorer, n_jobs = 6, verbose = True) alg = Pipeline([ ('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('to_dense', DenseTransformer()), ('clf', KerasClassifier(build_fn=make_mlp, output_dim = 2, verbose=False)), ]) dependencies = [( 'vect__max_features', 'clf__input_dim')] char_vec_params = { 'vect__max_features': (5000, 10000, 30000), 'vect__ngram_range': ((1,5),), 'vect__analyzer' : ('char',) } word_vect_params = { 'vect__max_features': (5000, 10000, 30000), 'vect__ngram_range': ((1,2),), 'vect__analyzer' : ('word',) } tfidf_params = { 'tfidf__sublinear_tf' : (True, False), 'tfidf__norm' : ('l2',), } linear_clf_params = { 'clf__alpha' : (0.000000001, 0.0000001, 0.00001, 0.001, 0.01), 'clf__hidden_layer_sizes' : ((),), 'clf__nb_epoch' : (2,4,8,16), 'clf__batch_size': (200,) } mlp_clf_params = { 'clf__alpha' : (0.000000001, 0.0000001, 0.00001, 0.001, 0.01), 'clf__hidden_layer_sizes' : ((50,), (50, 50), (50, 50, 50)), 'clf__nb_epoch' : (2,4,8,16), 'clf__batch_size': (200,) } for model in ['linear', 'mlp']: for gram in ['word', 'char']: for label in ['oh', 'ed']: params = {} if model == 'linear': params.update(linear_clf_params) else: params.update(mlp_clf_params) params.update(tfidf_params) if gram == 'char': params.update(char_vec_params) else: params.update(word_vect_params) if label == 'oh': y_train = y_train_ohm y_dev = y_dev_ohm else: y_train = y_train_ed y_dev = y_dev_ed print('\n\n\n %s %s %s' % (model, gram, label)) cv = tune (X_train, y_train, X_dev, y_dev, alg, params, n_iter, roc_scorer, n_jobs = 1, verbose = True, dependencies = dependencies) save_best_estimator(cv, path, '%s_%s_%s' % (model, gram, label)) est = get_best_estimator(cv) est.fit(X_train, y_train) best_spearman = spearman_scorer(est, X_dev, y_dev_ed) * 100 print ("\n best spearman: ", best_spearman) best_roc = max(cv.grid_scores_, key=lambda x: x[1])[1] * 100 print ("\n best roc: ", best_roc) results_list.append({'model_type': model, 'ngram_type': gram, 'label_type' : label, 'cv': cv.grid_scores_, 'best_roc': round(best_roc, 3), 'best_spearman': round(best_spearman, 3) }) results_df = pd.DataFrame(results_list) results_df grid_scores[0].mean_validation_score grid_scores = results_df['cv'][0] max(grid_scores, key = lambda x: x.mean_validation_score).parameters import json def get_best_params(grid_scores): return json.dumps(max(grid_scores, key = lambda x: x.mean_validation_score).parameters) results_df['best_params'] = results_df['cv'].apply(get_best_params) results_df.to_csv('cv_results.csv') alg = Pipeline([ ('seq', SequenceTransformer()), ('clf', KerasClassifier(build_fn=make_lstm, output_dim = 2, verbose=True)), ]) dependencies = [( 'seq__max_features', 'clf__max_features'), ( 'seq__max_len', 'clf__max_len')] word_seq_params = { 'seq__max_features' : (5000, 10000, 30000), 'seq__max_len' : (100, 200, 500), 'seq__analyzer' : ('word',) } char_seq_params = { 'seq__max_features' : (100,), 'seq__max_len' : (200, 500, 1000), 'seq__analyzer' : ('char',) } clf_params = { 'clf__dropout' : (0.1, 0.2, 0.4), 'clf__embedding_size' : (64, 128), 'clf__lstm_output_size': (64, 128), 'clf__nb_epoch' : (2,3,4), 'clf__batch_size': (200,) } from pprint import pprint model = 'lstm' for gram in ['word', 'char']: for label in ['oh', 'ed']: params = {} params.update(clf_params) if gram == 'char': params.update(char_seq_params) else: params.update(word_seq_params) if label == 'oh': y_train = y_train_ohm y_dev = y_dev_ohm else: y_train = y_train_ed y_dev = y_dev_ed pprint(params) print('\n\n\n %s %s %s' % (model, gram, label)) cv = tune (X_train, y_train, X_dev, y_dev, alg, params, n_iter, roc_scorer, n_jobs = 1, verbose = True, dependencies = dependencies) save_best_estimator(cv, path, '%s_%s_%s' % (model, gram, label)) est = get_best_estimator(cv) est.fit(X_train, y_train) best_spearman = spearman_scorer(est, X_dev, y_dev_ed) * 100 print ("\n best spearman: ", best_spearman) best_roc = max(cv.grid_scores_, key=lambda x: x[1])[1] * 100 print ("\n best roc: ", best_roc) results_list.append({'model_type': model, 'ngram_type': gram, 'label_type' : label, 'cv': cv.grid_scores_, 'best_roc': round(best_roc, 3), 'best_spearman': round(best_spearman, 3) }) alg = Pipeline([ ('seq', SequenceTransformer()), ('clf', KerasClassifier(build_fn=make_conv_lstm, output_dim = 2, verbose=True)), ]) dependencies = [( 'seq__max_features', 'clf__max_features'), ( 'seq__max_len', 'clf__max_len')] word_seq_params = { 'seq__max_features' : (5000, 10000, 30000), 'seq__max_len' : (100, 200, 500), 'seq__analyzer' : ('word',), 'clf__filter_length': (2, 4, 6), 'clf__pool_length' : (2, 4, 6) } char_seq_params = { 'seq__max_features' : (100,), 'seq__max_len' : (200, 500, 1000), 'seq__analyzer' : ('char',), 'clf__filter_length': (5, 10, 15), 'clf__pool_length' : (5, 10, 15) } clf_params = { 'clf__dropout' : (0.1, 0.2, 0.4), 'clf__embedding_size' : (64, 128), 'clf__lstm_output_size': (64, 128), 'clf__nb_epoch' : (2,3,4), 'clf__batch_size': (200,), 'clf__nb_filter' : (64, 128), } model = 'conv_lstm' for gram in ['word', 'char']: for label in ['oh', 'ed']: params = {} params.update(clf_params) if gram == 'char': params.update(char_seq_params) else: params.update(word_seq_params) if label == 'oh': y_train = y_train_ohm y_dev = y_dev_ohm else: y_train = y_train_ed y_dev = y_dev_ed pprint(params) print('\n\n\n %s %s %s' % (model, gram, label)) cv = tune (X_train, y_train, X_dev, y_dev, alg, params, n_iter, roc_scorer, n_jobs = 1, verbose = True, dependencies = dependencies) save_best_estimator(cv, path, '%s_%s_%s' % (model, gram, label)) est = get_best_estimator(cv) est.fit(X_train, y_train) best_spearman = spearman_scorer(est, X_dev, y_dev_ed) * 100 print ("\n best spearman: ", best_spearman) best_roc = max(cv.grid_scores_, key=lambda x: x[1])[1] * 100 print ("\n best roc: ", best_roc) results_list.append({'model_type': model, 'ngram_type': gram, 'label_type' : label, 'cv': cv.grid_scores_, 'best_roc': round(best_roc, 3), 'best_spearman': round(best_spearman, 3) }) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Lower Dropout Step2: It's definitely overfitting. Step3: It takes longer to reach a slightly lower validation score, but does not overfit.
<ASSISTANT_TASK:> Python Code: import pylearn2.utils import pylearn2.config import theano import neukrill_net.dense_dataset import neukrill_net.utils import numpy as np %matplotlib inline import matplotlib.pyplot as plt import holoviews as hl %load_ext holoviews.ipython import sklearn.metrics m = pylearn2.utils.serial.load( "/disk/scratch/neuroglycerin/models/8aug_extra_layers0p8_recent.pkl") nll_channels = [c for c in m.monitor.channels.keys() if 'nll' in c] def make_curves(model, *args): curves = None for c in args: channel = model.monitor.channels[c] c = c[0].upper() + c[1:] if not curves: curves = hl.Curve(zip(channel.example_record,channel.val_record),group=c) else: curves += hl.Curve(zip(channel.example_record,channel.val_record),group=c) return curves make_curves(m,*nll_channels) mh = pylearn2.utils.serial.load( "/disk/scratch/neuroglycerin/models/8aug_extra_layers0p5_recent.pkl") make_curves(mh,*nll_channels) cl = m.monitor.channels['valid_y_nll'] ch = mh.monitor.channels['valid_y_nll'] compare = [] for t,v in zip(cl.example_record,cl.val_record): for t2,v2 in zip(ch.example_record,ch.val_record): if v2 < v: compare.append((float(v),np.max([t2-t,0]))) break plt.plot(*zip(*compare)) plt.xlabel("valid_y_nll") plt.ylabel("time difference") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This code sets up everything we need Step2: Put your code below this!
<ASSISTANT_TASK:> Python Code: import numpy as np %matplotlib inline import matplotlib.pyplot as plt from IPython.display import display, clear_output def calc_total_distance(table_of_distances, city_order): ''' Calculates distances between a sequence of cities. Inputs: N x N table containing distances between each pair of the N cities, as well as an array of length N+1 containing the city order, which starts and ends with the same city (ensuring that the path is closed) Returns: total path length for the closed loop. ''' total_distance = 0.0 # loop over cities and sum up the path length between successive pairs for i in range(city_order.size-1): total_distance += table_of_distances[city_order[i]][city_order[i+1]] return total_distance def plot_cities(city_order,city_x,city_y): ''' Plots cities and the path between them. Inputs: ordering of cities, x and y coordinates of each city. Returns: a plot showing the cities and the path between them. ''' # first make x,y arrays x = [] y = [] # put together arrays of x and y positions that show the order that the # salesman traverses the cities for i in range(0, city_order.size): x.append(city_x[city_order[i]]) y.append(city_y[city_order[i]]) # append the first city onto the end so the loop is closed x.append(city_x[city_order[0]]) y.append(city_y[city_order[0]]) #time.sleep(0.1) clear_output(wait=True) display(fig) # Reset display fig.clear() # clear output for animation plt.xlim(-0.2, 20.2) # give a little space around the edges of the plot plt.ylim(-0.2, 20.2) # plot city positions in blue, and path in red. plt.plot(city_x,city_y, 'bo', x, y, 'r-') # number of cities we'll use. number_of_cities = 30 # seed for random number generator so we get the same value every time! np.random.seed(2024561414) # create random x,y positions for our current number of cities. (Distance scaling is arbitrary.) city_x = np.random.random(size=number_of_cities)*20.0 city_y = np.random.random(size=number_of_cities)*20.0 # table of city distances - empty for the moment city_distances = np.zeros((number_of_cities,number_of_cities)) # calculate distnace between each pair of cities and store it in the table. # technically we're calculating 2x as many things as we need (as well as the # diagonal, which should all be zeros), but whatever, it's cheap. for a in range(number_of_cities): for b in range(number_of_cities): city_distances[a][b] = ((city_x[a]-city_x[b])**2 + (city_y[a]-city_y[b])**2 )**0.5 # create the array of cities in the order we're going to go through them city_order = np.arange(city_distances.shape[0]) # tack on the first city to the end of the array, since that ensures a closed loop city_order = np.append(city_order, city_order[0]) fig = plt.figure() # Put your code here! # number of steps we'll take N_steps = 1000 step = [0] distance = [calc_total_distance(city_distances,city_order)] for i in range(N_steps): swap1 = np.random.randint(1,city_order.shape[0]-2) swap2 = np.random.randint(1,city_order.shape[0]-2) orig_distance = calc_total_distance(city_distances,city_order) new_city_order = np.copy(city_order) hold = new_city_order[swap1] new_city_order[swap1] = new_city_order[swap2] new_city_order[swap2] = hold new_distance = calc_total_distance(city_distances,new_city_order) if new_distance < orig_distance: city_order = np.copy(new_city_order) step.append(i) distance.append(new_distance) plot_cities(city_order,city_x,city_y) plt.plot(step,distance) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We would now like to classify the test data with the kNN classifier. Recall that we can break down this process into two steps Step2: Inline Question #1 Step3: You should expect to see approximately 27% accuracy. Now lets try out a larger k, say k = 5 Step5: You should expect to see a slightly better performance than with k = 1. Step6: Cross-validation
<ASSISTANT_TASK:> Python Code: # Run some setup code for this notebook. import random import numpy as np from cs231n.data_utils import load_CIFAR10 import matplotlib.pyplot as plt # This is a bit of magic to make matplotlib figures appear inline in the notebook # rather than in a new window. %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # Some more magic so that the notebook will reload external python modules; # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython %load_ext autoreload %autoreload 2 # Load the raw CIFAR-10 data. cifar10_dir = 'cs231n/datasets/cifar-10-batches-py' X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) # As a sanity check, we print out the size of the training and test data. print 'Training data shape: ', X_train.shape print 'Training labels shape: ', y_train.shape print 'Test data shape: ', X_test.shape print 'Test labels shape: ', y_test.shape # Visualize some examples from the dataset. # We show a few examples of training images from each class. classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] num_classes = len(classes) samples_per_class = 7 for y, cls in enumerate(classes): idxs = np.flatnonzero(y_train == y) idxs = np.random.choice(idxs, samples_per_class, replace=False) for i, idx in enumerate(idxs): plt_idx = i * num_classes + y + 1 plt.subplot(samples_per_class, num_classes, plt_idx) plt.imshow(X_train[idx].astype('uint8')) plt.axis('off') if i == 0: plt.title(cls) plt.show() # Subsample the data for more efficient code execution in this exercise num_training = 5000 mask = range(num_training) X_train = X_train[mask] y_train = y_train[mask] num_test = 500 mask = range(num_test) X_test = X_test[mask] y_test = y_test[mask] # Reshape the image data into rows X_train = np.reshape(X_train, (X_train.shape[0], -1)) X_test = np.reshape(X_test, (X_test.shape[0], -1)) print X_train.shape, X_test.shape from cs231n.classifiers import KNearestNeighbor # Create a kNN classifier instance. # Remember that training a kNN classifier is a noop: # the Classifier simply remembers the data and does no further processing classifier = KNearestNeighbor() classifier.train(X_train, y_train) # Open cs231n/classifiers/k_nearest_neighbor.py and implement # compute_distances_two_loops. # Test your implementation: dists = classifier.compute_distances_two_loops(X_test) print dists.shape # We can visualize the distance matrix: each row is a single test example and # its distances to training examples plt.imshow(dists, interpolation='none') plt.show() # Now implement the function predict_labels and run the code below: # We use k = 1 (which is Nearest Neighbor). y_test_pred = classifier.predict_labels(dists, k=1) # Compute and print the fraction of correctly predicted examples num_correct = np.sum(y_test_pred == y_test) accuracy = float(num_correct) / num_test print 'Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy) y_test_pred = classifier.predict_labels(dists, k=5) num_correct = np.sum(y_test_pred == y_test) accuracy = float(num_correct) / num_test print 'Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy) # Now lets speed up distance matrix computation by using partial vectorization # with one loop. Implement the function compute_distances_one_loop and run the # code below: dists_one = classifier.compute_distances_one_loop(X_test) # To ensure that our vectorized implementation is correct, we make sure that it # agrees with the naive implementation. There are many ways to decide whether # two matrices are similar; one of the simplest is the Frobenius norm. In case # you haven't seen it before, the Frobenius norm of two matrices is the square # root of the squared sum of differences of all elements; in other words, reshape # the matrices into vectors and compute the Euclidean distance between them. difference = np.linalg.norm(dists - dists_one, ord='fro') print 'Difference was: %f' % (difference, ) if difference < 0.001: print 'Good! The distance matrices are the same' else: print 'Uh-oh! The distance matrices are different' # Now implement the fully vectorized version inside compute_distances_no_loops # and run the code dists_two = classifier.compute_distances_no_loops(X_test) # check that the distance matrix agrees with the one we computed before: difference = np.linalg.norm(dists - dists_two, ord='fro') print 'Difference was: %f' % (difference, ) if difference < 0.001: print 'Good! The distance matrices are the same' else: print 'Uh-oh! The distance matrices are different' # Let's compare how fast the implementations are def time_function(f, *args): Call a function f with args and return the time (in seconds) that it took to execute. import time tic = time.time() f(*args) toc = time.time() return toc - tic two_loop_time = time_function(classifier.compute_distances_two_loops, X_test) print 'Two loop version took %f seconds' % two_loop_time one_loop_time = time_function(classifier.compute_distances_one_loop, X_test) print 'One loop version took %f seconds' % one_loop_time no_loop_time = time_function(classifier.compute_distances_no_loops, X_test) print 'No loop version took %f seconds' % no_loop_time # you should see significantly faster performance with the fully vectorized implementation num_folds = 5 k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100] X_train_folds = [] y_train_folds = [] ################################################################################ # TODO: # # Split up the training data into folds. After splitting, X_train_folds and # # y_train_folds should each be lists of length num_folds, where # # y_train_folds[i] is the label vector for the points in X_train_folds[i]. # # Hint: Look up the numpy array_split function. # ################################################################################ from sklearn.cross_validation import KFold X_val_folds = [] y_val_folds = [] kf = KFold(y_train.shape[0], n_folds=num_folds) for train_index, val_index in kf: X_train_fold, X_val_fold = X_train[train_index], X_train[val_index] y_train_fold, y_val_fold = y_train[train_index], y_train[val_index] X_train_folds.append(X_train_fold) y_train_folds.append(y_train_fold) X_val_folds.append(X_val_fold) y_val_folds.append(y_val_fold) ################################################################################ # END OF YOUR CODE # ################################################################################ # A dictionary holding the accuracies for different values of k that we find # when running cross-validation. After running cross-validation, # k_to_accuracies[k] should be a list of length num_folds giving the different # accuracy values that we found when using that value of k. k_to_accuracies = {} ################################################################################ # TODO: # # Perform k-fold cross validation to find the best value of k. For each # # possible value of k, run the k-nearest-neighbor algorithm num_folds times, # # where in each case you use all but one of the folds as training data and the # # last fold as a validation set. Store the accuracies for all fold and all # # values of k in the k_to_accuracies dictionary. # ################################################################################ k_to_accuracies = {} classifier = KNearestNeighbor() for k in k_choices: for n_fold in range(num_folds): classifier.train(X_train_folds[n_fold], y_train_folds[n_fold]) dists = classifier.compute_distances_no_loops(X_val_folds[n_fold]) y_val_pred = classifier.predict_labels(dists, k=k) num_correct = np.sum(y_val_pred == y_val_folds[n_fold]) accuracy = float(num_correct) / y_val_folds[n_fold].shape[0] if not k in k_to_accuracies: k_to_accuracies[k] = [] k_to_accuracies[k].append(accuracy) print "k = {}".format(k) print 'Got %d / %d correct => accuracy: %f' % (num_correct, y_val_folds[n_fold].shape[0], accuracy) ################################################################################ # END OF YOUR CODE # ################################################################################ # Print out the computed accuracies for k in sorted(k_to_accuracies): for accuracy in k_to_accuracies[k]: print 'k = %d, accuracy = %f' % (k, accuracy) # plot the raw observations for k in k_choices: accuracies = k_to_accuracies[k] plt.scatter([k] * len(accuracies), accuracies) # plot the trend line with error bars that correspond to standard deviation accuracies_mean = np.array([np.mean(v) for k,v in sorted(k_to_accuracies.items())]) accuracies_std = np.array([np.std(v) for k,v in sorted(k_to_accuracies.items())]) plt.errorbar(k_choices, accuracies_mean, yerr=accuracies_std) plt.title('Cross-validation on k') plt.xlabel('k') plt.ylabel('Cross-validation accuracy') max_index = np.argmax(accuracies_mean) print "Best k = {}, maximum value ={}".format(k_choices[max_index], accuracies_mean[max_index]) plt.show() # Based on the cross-validation results above, choose the best value for k, # retrain the classifier using all the training data, and test it on the test # data. You should be able to get above 28% accuracy on the test data. best_k = 10 classifier = KNearestNeighbor() classifier.train(X_train, y_train) y_test_pred = classifier.predict(X_test, k=best_k) # Compute and display the accuracy num_correct = np.sum(y_test_pred == y_test) accuracy = float(num_correct) / num_test print 'Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Note Step2: Now, let's start with the ANTs normalization workflow! Step3: Experiment parameters (ANTs) Step4: Note if you're not using the corresponding docker image, than the template file might not be in your data directory. To get mni_icbm152_nlin_asym_09c, either download it from this website, unpack it and move it to /data/ds000114/derivatives/fmriprep/ or run the following command in a cell Step5: Specify input & output stream (ANTs) Step6: Specify Workflow (ANTs) Step7: Visualize the workflow (ANTs) Step8: Run the Workflow (ANTs) Step9: Normalization with SPM12 Step10: Experiment parameters (SPM12) Step11: Specify Nodes (SPM12) Step12: Specify input & output stream (SPM12) Step13: Specify Workflow (SPM12) Step14: Visualize the workflow (SPM12) Step15: Run the Workflow (SPM12) Step16: Comparison between ANTs and SPM normalization Step17: First, let's compare the normalization of the anatomical images Step18: And what about the contrast images for Finger > others?
<ASSISTANT_TASK:> Python Code: %%bash datalad get -J 4 -d /data/ds000114 /data/ds000114/derivatives/fmriprep/sub-0[2345789]/anat/*h5 !ls /data/ds000114/derivatives/fmriprep/sub-*/anat/*h5 from os.path import join as opj from nipype import Workflow, Node, MapNode from nipype.interfaces.ants import ApplyTransforms from nipype.interfaces.utility import IdentityInterface from nipype.interfaces.io import SelectFiles, DataSink from nipype.interfaces.fsl import Info experiment_dir = '/output' output_dir = 'datasink' working_dir = 'workingdir' # list of subject identifiers (remember we use only right handed subjects) subject_list = ['02', '03', '04', '05', '07', '08', '09'] # task name task_name = "fingerfootlips" # Smoothing widths used during preprocessing fwhm = [4, 8] # Template to normalize to template = '/data/ds000114/derivatives/fmriprep/mni_icbm152_nlin_asym_09c/1mm_T1.nii.gz' # Apply Transformation - applies the normalization matrix to contrast images apply2con = MapNode(ApplyTransforms(args='--float', input_image_type=3, interpolation='BSpline', invert_transform_flags=[False], num_threads=1, reference_image=template, terminal_output='file'), name='apply2con', iterfield=['input_image']) # Infosource - a function free node to iterate over the list of subject names infosource = Node(IdentityInterface(fields=['subject_id', 'fwhm_id']), name="infosource") infosource.iterables = [('subject_id', subject_list), ('fwhm_id', fwhm)] # SelectFiles - to grab the data (alternativ to DataGrabber) templates = {'con': opj(output_dir, '1stLevel', 'sub-{subject_id}/fwhm-{fwhm_id}', '???_00??.nii'), 'transform': opj('/data/ds000114/derivatives/fmriprep/', 'sub-{subject_id}', 'anat', 'sub-{subject_id}_t1w_space-mni152nlin2009casym_warp.h5')} selectfiles = Node(SelectFiles(templates, base_directory=experiment_dir, sort_filelist=True), name="selectfiles") # Datasink - creates output folder for important outputs datasink = Node(DataSink(base_directory=experiment_dir, container=output_dir), name="datasink") # Use the following DataSink output substitutions substitutions = [('_subject_id_', 'sub-')] subjFolders = [('_fwhm_id_%ssub-%s' % (f, sub), 'sub-%s_fwhm%s' % (sub, f)) for f in fwhm for sub in subject_list] subjFolders += [('_apply2con%s/' % (i), '') for i in range(9)] # number of contrast used in 1stlevel an. substitutions.extend(subjFolders) datasink.inputs.substitutions = substitutions # Initiation of the ANTs normalization workflow antsflow = Workflow(name='antsflow') antsflow.base_dir = opj(experiment_dir, working_dir) # Connect up the ANTs normalization components antsflow.connect([(infosource, selectfiles, [('subject_id', 'subject_id'), ('fwhm_id', 'fwhm_id')]), (selectfiles, apply2con, [('con', 'input_image'), ('transform', 'transforms')]), (apply2con, datasink, [('output_image', 'norm_ants.@con')]), ]) # Create ANTs normalization graph antsflow.write_graph(graph2use='colored', format='png', simple_form=True) # Visualize the graph from IPython.display import Image Image(filename=opj(antsflow.base_dir, 'antsflow', 'graph.png')) antsflow.run('MultiProc', plugin_args={'n_procs': 4}) from os.path import join as opj from nipype.interfaces.spm import Normalize12 from nipype.interfaces.utility import IdentityInterface from nipype.interfaces.io import SelectFiles, DataSink from nipype.algorithms.misc import Gunzip from nipype import Workflow, Node experiment_dir = '/output' output_dir = 'datasink' working_dir = 'workingdir' # list of subject identifiers subject_list = ['02', '03', '04', '05', '07', '08', '09'] # task name task_name = "fingerfootlips" # Smoothing withds used during preprocessing fwhm = [4, 8] template = '/opt/spm12-r7219/spm12_mcr/spm12/tpm/TPM.nii' # Gunzip - unzip the anatomical image gunzip = Node(Gunzip(), name="gunzip") # Normalize - normalizes functional and structural images to the MNI template normalize = Node(Normalize12(jobtype='estwrite', tpm=template, write_voxel_sizes=[1, 1, 1]), name="normalize") # Infosource - a function free node to iterate over the list of subject names infosource = Node(IdentityInterface(fields=['subject_id', 'fwhm_id']), name="infosource") infosource.iterables = [('subject_id', subject_list), ('fwhm_id', fwhm)] # SelectFiles - to grab the data (alternativ to DataGrabber) templates = {'con': opj(output_dir, '1stLevel', 'sub-{subject_id}/fwhm-{fwhm_id}', '???_00??.nii'), 'anat': opj('/data/ds000114/derivatives', 'fmriprep', 'sub-{subject_id}', 'anat', 'sub-{subject_id}_t1w_preproc.nii.gz')} selectfiles = Node(SelectFiles(templates, base_directory=experiment_dir, sort_filelist=True), name="selectfiles") # Datasink - creates output folder for important outputs datasink = Node(DataSink(base_directory=experiment_dir, container=output_dir), name="datasink") # Use the following DataSink output substitutions substitutions = [('_subject_id_', 'sub-')] subjFolders = [('_fwhm_id_%ssub-%s' % (f, sub), 'sub-%s_fwhm%s' % (sub, f)) for f in fwhm for sub in subject_list] substitutions.extend(subjFolders) datasink.inputs.substitutions = substitutions # Specify Normalization-Workflow & Connect Nodes spmflow = Workflow(name='spmflow') spmflow.base_dir = opj(experiment_dir, working_dir) # Connect up SPM normalization components spmflow.connect([(infosource, selectfiles, [('subject_id', 'subject_id'), ('fwhm_id', 'fwhm_id')]), (selectfiles, normalize, [('con', 'apply_to_files')]), (selectfiles, gunzip, [('anat', 'in_file')]), (gunzip, normalize, [('out_file', 'image_to_align')]), (normalize, datasink, [('normalized_files', 'norm_spm.@files'), ('normalized_image', 'norm_spm.@image'), ]), ]) # Create SPM normalization graph spmflow.write_graph(graph2use='colored', format='png', simple_form=True) # Visualize the graph from IPython.display import Image Image(filename=opj(spmflow.base_dir, 'spmflow', 'graph.png')) spmflow.run('MultiProc', plugin_args={'n_procs': 4}) from nilearn.plotting import plot_stat_map %matplotlib inline anatimg = '/data/ds000114/derivatives/fmriprep/mni_icbm152_nlin_asym_09c/1mm_T1.nii.gz' plot_stat_map( '/data/ds000114/derivatives/fmriprep/sub-02/anat/sub-02_t1w_space-mni152nlin2009casym_preproc.nii.gz', title='anatomy - ANTs (normalized to ICBM152)', bg_img=anatimg, threshold=200, display_mode='ortho', cut_coords=(-50, 0, -10)); plot_stat_map( '/output/datasink/norm_spm/sub-02_fwhm4/wsub-02_t1w_preproc.nii', title='anatomy - SPM (normalized to SPM\'s TPM)', bg_img=anatimg, threshold=200, display_mode='ortho', cut_coords=(-50, 0, -10)); plot_stat_map( '/output/datasink/norm_ants/sub-02_fwhm8/con_0005_trans.nii', title='contrast5 - fwhm=8 - ANTs', bg_img=anatimg, threshold=2, vmax=5, display_mode='ortho', cut_coords=(-39, -37, 56)); plot_stat_map( '/output/datasink/norm_spm/sub-02_fwhm8/wcon_0005.nii', title='contrast5 - fwhm=8 - SPM', bg_img=anatimg, threshold=2, vmax=5, display_mode='ortho', cut_coords=(-39, -37, 56)); from nilearn.plotting import plot_glass_brain plot_glass_brain( '/output/datasink/norm_ants/sub-02_fwhm8/con_0005_trans.nii', colorbar=True, threshold=3, display_mode='lyrz', black_bg=True, vmax=6, title='contrast5 - fwhm=8 - ANTs') plot_glass_brain( '/output/datasink/norm_spm/sub-02_fwhm8/wcon_0005.nii', colorbar=True, threshold=3, display_mode='lyrz', black_bg=True, vmax=6, title='contrast5 - fwhm=8 - SPM'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <h2> Input </h2> Step2: <h2> Create features out of input data </h2> Step3: <h2> train_and_evaluate </h2>
<ASSISTANT_TASK:> Python Code: # Ensure the right version of Tensorflow is installed. !pip freeze | grep tensorflow==2.6 import tensorflow as tf import numpy as np import shutil print(tf.__version__) CSV_COLUMNS = ['fare_amount', 'pickuplon','pickuplat','dropofflon','dropofflat','passengers', 'key'] LABEL_COLUMN = 'fare_amount' DEFAULTS = [[0.0], [-74.0], [40.0], [-74.0], [40.7], [1.0], ['nokey']] def read_dataset(filename, mode, batch_size = 512): def _input_fn(): def decode_csv(value_column): columns = tf.compat.v1.decode_csv(value_column, record_defaults = DEFAULTS) features = dict(zip(CSV_COLUMNS, columns)) label = features.pop(LABEL_COLUMN) return features, label # Create list of files that match pattern file_list = tf.compat.v1.gfile.Glob(filename) # Create dataset from file list dataset = tf.compat.v1.data.TextLineDataset(file_list).map(decode_csv) if mode == tf.estimator.ModeKeys.TRAIN: num_epochs = None # indefinitely dataset = dataset.shuffle(buffer_size = 10 * batch_size) else: num_epochs = 1 # end-of-input after this dataset = dataset.repeat(num_epochs).batch(batch_size) return dataset.make_one_shot_iterator().get_next() return _input_fn INPUT_COLUMNS = [ tf.feature_column.numeric_column('pickuplon'), tf.feature_column.numeric_column('pickuplat'), tf.feature_column.numeric_column('dropofflat'), tf.feature_column.numeric_column('dropofflon'), tf.feature_column.numeric_column('passengers'), ] def add_more_features(feats): # Nothing to add (yet!) return feats feature_cols = add_more_features(INPUT_COLUMNS) def serving_input_fn(): feature_placeholders = { 'pickuplon' : tf.compat.v1.placeholder(tf.float32, [None]), 'pickuplat' : tf.compat.v1.placeholder(tf.float32, [None]), 'dropofflat' : tf.compat.v1.placeholder(tf.float32, [None]), 'dropofflon' : tf.compat.v1.placeholder(tf.float32, [None]), 'passengers' : tf.compat.v1.placeholder(tf.float32, [None]), } features = { key: tf.expand_dims(tensor, -1) for key, tensor in feature_placeholders.items() } return tf.estimator.export.ServingInputReceiver(features, feature_placeholders) def train_and_evaluate(output_dir, num_train_steps): estimator = tf.estimator.LinearRegressor( model_dir = output_dir, feature_columns = feature_cols) train_spec=tf.estimator.TrainSpec( input_fn = read_dataset('./taxi-train.csv', mode = tf.estimator.ModeKeys.TRAIN), max_steps = num_train_steps) exporter = tf.estimator.LatestExporter('exporter', serving_input_fn) eval_spec=tf.estimator.EvalSpec( input_fn = read_dataset('./taxi-valid.csv', mode = tf.estimator.ModeKeys.EVAL), steps = None, start_delay_secs = 1, # start evaluating after N seconds throttle_secs = 10, # evaluate every N seconds exporters = exporter) tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) # Run training OUTDIR = 'taxi_trained' shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time train_and_evaluate(OUTDIR, num_train_steps = 5000) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Fix the Contents sheet to correctly reflect the Worksheet names Step2: Tidy up Data Step3: One down, 31 to go... Step4: Those '\n (Quarter 4 2021)' entries are unnecessary, so for this table, lets clear them Step5: Table 2a Step6: Table 2x Step7: 6 down, 26 to go. Step8: Table 4 Step9: Of note; new offset for the header row at index 3 instead of index 1, due to lots of fluff at the start that is probably not going to be consistent between reports so that will almost certainly mess up my day in a few months. Step11: Thats awkward enough to get it's own function... Step12: Table 5 Step13: For some reason; Mid-ulster has a 'Standardised HPI' which throws off the above trick, so we gotta make it ugly... Step15: We could turn this into a proper multiindex but it would mean pushing the Period/Year/Quarter columns into keys which would be inconsistent behaviour with the rest of the 'cleaned' dataset, so that can be a downstream problem; at least we've got the relevant metrics consistent! Step16: Table 5a Step18: df.iloc[1,2]=c Step19: Table 6 Step21: Table 7 Step22: Table 8 Step23: Table 9 Step24: Table 9x Step25: Table 10x Step26: And We're Done!
<ASSISTANT_TASK:> Python Code: from bs4 import BeautifulSoup import pandas as pd import requests # Pull the latest pages of https://www.finance-ni.gov.uk/publications/ni-house-price-index-statistical-reports and extract links base_url= 'https://www.finance-ni.gov.uk/publications/ni-house-price-index-statistical-reports' base_content = requests.get(base_url).content base_soup = BeautifulSoup(base_content) for a in base_soup.find_all('a'): if a.attrs.get('href','').endswith('xlsx'): source_name, source_url = a.contents[1],a.attrs['href'] source_df = pd.read_excel(source_url, sheet_name = None) # Load all worksheets in source_df.keys() source_df['Contents'] new_header = source_df['Contents'].iloc[0] source_df['Contents'] = source_df['Contents'][1:] source_df['Contents'].columns = new_header source_df['Contents'].columns = [*new_header[:-1],'Title'] [t for t in source_df['Contents']['Title'].values if t.startswith('Table')] # Replace 'Figure' with 'Fig' in 'Worksheet Name' with pd.option_context('mode.chained_assignment',None): source_df['Contents']['Worksheet Name'] = source_df['Contents']['Worksheet Name'].str.replace('Figure','Fig') source_df['Table 1'] def basic_cleanup(df:pd.DataFrame, offset=1)->pd.DataFrame: df = df.copy() # Re-header from row 1 (which was row 3 in excel) new_header = df.iloc[offset] df = df.iloc[offset+1:] df.columns = new_header # remove 'NaN' trailing columns df = df[df.columns[pd.notna(df.columns)]] # 'NI' is a usually hidden column that appears to be a checksum; #if it's all there and all 100, remove it, otherwise, complain. # (Note, need to change this 'if' logic to just 'if there's a # column with all 100's, but cross that bridge later) if 'NI' in df: assert df['NI'].all() and df['NI'].mean() == 100, "Not all values in df['NI'] == 100" df = df.drop('NI', axis=1) # Strip rows below the first all-nan row, if there is one # (Otherwise this truncates the tables as there is no # idxmax in the table of all 'false's) if any(df.isna().all(axis=1)): idx_first_bad_row = df.isna().all(axis=1).idxmax() df = df.loc[:idx_first_bad_row-1] # By Inspection, other tables use 'Sale Year' and 'Sale Quarter' if set(df.keys()).issuperset({'Sale Year','Sale Quarter'}): df = df.rename(columns = { 'Sale Year':'Year', 'Sale Quarter': 'Quarter' }) # For 'Year','Quarter' indexed pages, there is an implied Year # in Q2/4, so fill it downwards if set(df.keys()).issuperset({'Year','Quarter'}): df['Year'] = df['Year'].astype(float).fillna(method='ffill').astype(int) # In Pandas we can represent Y/Q combinations as proper datetimes #https://stackoverflow.com/questions/53898482/clean-way-to-convert-quarterly-periods-to-datetime-in-pandas df.insert(loc=0, column='Period', value=pd.PeriodIndex(df.apply(lambda r:f'{r.Year}-{r.Quarter}', axis=1), freq='Q') ) # reset index, try to fix dtypes, etc, (this should be the last # operation before returning! df = df.reset_index(drop=True).infer_objects() return df df = basic_cleanup(source_df['Table 1']) df dest_df = { 'Table 1': basic_cleanup(source_df['Table 1']) } len([k for k in source_df.keys() if k.startswith('Table')]) df = basic_cleanup(source_df['Table 2']) df df.columns = [c.split('\n')[0] for c in df.columns] df dest_df['Table 2'] = df df = basic_cleanup(source_df['Table 2a']) df dest_df['Table 2']['Property Type'] import re table2s = re.compile('Table 2[a-z]') assert table2s.match('Table 2') is None, 'Table 2 is matching itself!' assert table2s.match('Table 20') is None, 'Table 2 is greedy!' assert table2s.match('Table 2z') is not None, 'Table 2 is matching incorrectly!' table2s = re.compile('Table 2[a-z]') for table in source_df: if table2s.match(table): dest_df[table] = basic_cleanup(source_df[table]) len(dest_df), len([k for k in source_df.keys() if k.startswith('Table') and k not in dest_df]) df = basic_cleanup(source_df['Table 3']) df.columns = [c.split('\n')[0] for c in df.columns] # Stolen from Table 2 Treatment df dest_df['Table 3'] = df df = basic_cleanup(source_df['Table 3a']) df table3s = re.compile('Table 3[a-z]') for table in source_df: if table3s.match(table): dest_df[table] = basic_cleanup(source_df[table]) len(dest_df), len([k for k in source_df.keys() if k.startswith('Table') and k not in dest_df]) df = source_df['Table 4'] df df.iloc[:,1]=df.iloc[:,1].str.replace('Quarter ([1-4])',r'Q\1', regex=True) df df=df[~df.iloc[:,1].str.contains('Total').fillna(False)] # Lose the year new-lines (needs astype because non str lines are # correctly inferred to be ints, so .str methods nan-out with pd.option_context('mode.chained_assignment',None): df.iloc[:,0]=df.iloc[:,0].astype(str).str.replace('\n','') df basic_cleanup(df, offset=3) def cleanup_table_4(df): Table 4: Number of Verified Residential Property Sales * Regex 'Quarter X' to 'QX' in future 'Sales Quarter' column * Drop Year Total rows * Clear any Newlines from the future 'Sales Year' column * call `basic_cleanup` with offset=3 df.iloc[:,1]=df.iloc[:,1].str.replace('Quarter ([1-4])',r'Q\1', regex=True) df=df[~df.iloc[:,1].str.contains('Total').fillna(False)] # Lose the year new-lines (needs astype because non str lines are # correctly inferred to be ints, so .str methods nan-out with pd.option_context('mode.chained_assignment',None): df.iloc[:,0]=df.iloc[:,0].astype(str).str.replace('\n','') return basic_cleanup(df, offset=3) cleanup_table_4(source_df['Table 4'].copy()) dest_df['Table 4'] = cleanup_table_4(source_df['Table 4']) len(dest_df), len([k for k in source_df.keys() if k.startswith('Table') and k not in dest_df]) df = basic_cleanup(source_df['Table 5']) df # Two inner-columns per LGD lgds = df.columns[3:].str.replace(' HPI','').str.replace(' Standardised Price','').unique() lgds lgds = df.columns[3:].str.replace(' Standardised HPI',' HPI')\ .str.replace(' HPI','')\ .str.replace(' Standardised Price','').unique() lgds df.columns = [*df.columns[:3], *pd.MultiIndex.from_product([lgds,['Index','Price']], names=['LGD','Metric'])] df def cleanup_table_5(df): Table 5: Standardised House Price & Index for each Local Government District Northern Ireland * # Basic Cleanup first df = basic_cleanup(df) # Build multi-index of LGD / Metric [Index,Price] # Two inner-columns per LGD lgds = df.columns[3:].str.replace(' Standardised HPI',' HPI')\ .str.replace(' HPI','')\ .str.replace(' Standardised Price','')\ .unique() df.columns = [*df.columns[:3], *pd.MultiIndex.from_product([lgds,['Index','Price']], names=['LGD','Metric'])] return df cleanup_table_5(source_df['Table 5']) dest_df['Table 5']=cleanup_table_5(source_df['Table 5']) len(dest_df), len([k for k in source_df.keys() if k.startswith('Table') and k not in dest_df]) df = source_df['Table 5a'].copy() df dates = df.iloc[:,0].str.extract('(Q[1-4]) ([0-9]{4})').rename(columns={0:'Quarter',1:'Year'}) for c in ['Quarter','Year']:# insert the dates in order, so they come out in reverse in the insert df.insert(1,c,dates[c]) df.iloc[2,1]=c # Need to have the right colname for when `basic_cleanup` is called. df.iloc[2,1]=c df df=df[~df.iloc[:,0].str.contains('Total').fillna(False)] basic_cleanup(df,offset=2) def cleanup_table_5a(df): Table 5a: Number of Verified Residential Property Sales by Local Government District * Parse the 'Sale Year/Quarter' to two separate cols * Insert future-headers for Quarter and Year cols * Remove rows with 'total' in the first column * Disregard the 'Sale Year/Quarter' column * perform `basic_cleanup` with offset=2 # Safety first df=df.copy() # Extract 'Quarter' and 'Year' columns from the future 'Sale Year/Quarter' column dates = df.iloc[:,0].str.extract('(Q[1-4]) ([0-9]{4})').rename(columns={0:'Quarter',1:'Year'}) for c in ['Quarter','Year']:# insert the dates in order, so they come out in reverse in the insert df.insert(1,c,dates[c]) df.iloc[2,1]=c # Need to have the right colname for when `basic_cleanup` is called. # Remove 'total' rows from the future 'Sale Year/Quarter' column df=df[~df.iloc[:,0].str.contains('Total').fillna(False)] # Remove the 'Sale Year/Quarter' column all together df = df.iloc[:,1:] # Standard cleanup df = basic_cleanup(df, offset=2) return df cleanup_table_5a(source_df['Table 5a']) dest_df['Table 5a']=cleanup_table_5a(source_df['Table 5a']) len(dest_df), len([k for k in source_df.keys() if k.startswith('Table') and k not in dest_df]) df = basic_cleanup(source_df['Table 6']) df dest_df['Table 6']=basic_cleanup(source_df['Table 6']) len(dest_df), len([k for k in source_df.keys() if k.startswith('Table') and k not in dest_df]) df = source_df['Table 7'].copy() df.head() df.iloc[1,0] = 'Year' df.iloc[1,1] = 'Quarter' df.head() basic_cleanup(df).head() def cleanup_table_7(df): Table 7: Standardised House Price & Index for Rural Areas of Northern Ireland by drive times * Insert Year/Quarter future-headers * Clean normally # TODO THIS MIGHT BE VALID FOR MULTIINDEXING ON DRIVETIME/[Index/Price] df = df.copy() df.iloc[1,0] = 'Year' df.iloc[1,1] = 'Quarter' df = basic_cleanup(df) return df cleanup_table_7(source_df['Table 7']) dest_df['Table 7'] = cleanup_table_7(source_df['Table 7']) len(dest_df), len([k for k in source_df.keys() if k.startswith('Table') and k not in dest_df]) cleanup_table_5a(source_df['Table 8']).head() cleanup_table_8 = cleanup_table_5a dest_df['Table 8'] = cleanup_table_8(source_df['Table 8']) len(dest_df), len([k for k in source_df.keys() if k.startswith('Table') and k not in dest_df]) basic_cleanup(source_df['Table 9']) dest_df['Table 9'] = basic_cleanup(source_df['Table 9']) len(dest_df), len([k for k in source_df.keys() if k.startswith('Table') and k not in dest_df]) cleanup_table_7(source_df['Table 9a']) cleanup_table_9x = cleanup_table_7 table9s = re.compile('Table 9[a-z]') for table in source_df: if table9s.match(table): dest_df[table] = cleanup_table_9x(source_df[table]) len(dest_df), len([k for k in source_df.keys() if k.startswith('Table') and k not in dest_df]) source_df['Table 10a'] cleanup_table_5a(source_df['Table 10a']) cleanup_table_10x = cleanup_table_5a table10s = re.compile('Table 10[a-z]') for table in source_df: if table10s.match(table): dest_df[table] = cleanup_table_10x(source_df[table]) len(dest_df), len([k for k in source_df.keys() if k.startswith('Table') and k not in dest_df]) dest_df['Contents'] = source_df['Contents'][source_df['Contents']['Worksheet Name'].str.startswith('Table')] with pd.ExcelWriter('NI Housing Price Index.xlsx') as writer: # Thankfully these are semantically sortable otherwise this would be a _massive_ pain for k,df in sorted(dest_df.items()): df.to_excel(writer, sheet_name=k) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The test is condected at a fully confined two-aquifer system. Both the pumping well and the observation piezometer are screened at the second aquifer. Step2: Load data of two observation wells Step3: Create single layer model (overlying aquifer and aquitard are excluded) Step4: To improve model's performance, rc & res are adding Step5: Create three-layer conceptual model Step6: Try adding res & rc Step7: Calibrate with fitted characters for upper aquifer Step8: The optimized value of res is very close to the minimum limitation, thus res has little effect on the performance of the model. res is removed in this calibration. Step9: Summary of values simulated by MLU
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt import pandas as pd from ttim import * Q = 82.08 #constant discharge in m^3/d zt0 = -46 #top boundary of upper aquifer in m zb0 = -49 #bottom boundary of upper aquifer in m zt1 = -52 #top boundary of lower aquifer in m zb1 = -55 #bottom boundary of lower aquifer in m rw = 0.05 #well radius in m data1 = np.loadtxt('data/schroth_obs1.txt', skiprows = 1) t1 = data1[:, 0] h1 = data1[:, 1] r1 = 0 data2 = np.loadtxt('data/schroth_obs2.txt', skiprows = 1) t2 = data2[:, 0] h2 = data2[:, 1] r2 = 46 #distance between observation well2 and pumping well ml_0 = ModelMaq(z=[zt1, zb1], kaq=10, Saq=1e-4, tmin=1e-4, tmax=1) w_0 = Well(ml_0, xw=0, yw=0, rw=rw, tsandQ = [(0, Q), (1e+08, 0)]) ml_0.solve() ca_0 = Calibrate(ml_0) ca_0.set_parameter(name='kaq0', initial=10) ca_0.set_parameter(name='Saq0', initial=1e-4) ca_0.series(name='obs1', x=r1, y=0, t=t1, h=h1, layer=0) ca_0.series(name='obs2', x=r2, y=0, t=t2, h=h2, layer=0) ca_0.fit(report=True) display(ca_0.parameters) print('RMSE:', ca_0.rmse()) hm1_0 = ml_0.head(r1, 0, t1) hm2_0 = ml_0.head(r2, 0, t2) plt.figure(figsize = (8, 5)) plt.semilogx(t1, h1, '.', label='obs1') plt.semilogx(t2, h2, '.', label='obs2') plt.semilogx(t1, hm1_0[-1], label='ttim1') plt.semilogx(t2, hm2_0[-1], label='ttim2') plt.xlabel('time(d)') plt.ylabel('head(m)') plt.legend() plt.savefig('C:/Users/DELL/Python Notebook/MT BE/Fig/schroth_one1.eps'); ml_1 = ModelMaq(z=[zt1, zb1], kaq=10, Saq=1e-4, tmin=1e-4, tmax=1) w_1 = Well(ml_1, xw=0, yw=0, rw=rw, rc=0, res=5, tsandQ = [(0, Q), (1e+08, 0)]) ml_1.solve() ca_1 = Calibrate(ml_1) ca_1.set_parameter(name='kaq0', initial=10) ca_1.set_parameter(name='Saq0', initial=1e-4) ca_1.set_parameter_by_reference(name='rc', parameter=w_1.rc[:], initial=0.2) ca_1.set_parameter_by_reference(name='res', parameter=w_1.res[:], initial=3) ca_1.series(name='obs1', x=r1, y=0, t=t1, h=h1, layer=0) ca_1.series(name='obs2', x=r2, y=0, t=t2, h=h2, layer=0) ca_1.fit(report=True) display(ca_1.parameters) print('RMSE:', ca_1.rmse()) hm1_1 = ml_1.head(r1, 0, t1) hm2_1 = ml_1.head(r2, 0, t2) plt.figure(figsize = (8, 5)) plt.semilogx(t1, h1, '.', label='obs1') plt.semilogx(t2, h2, '.', label='obs2') plt.semilogx(t1, hm1_1[-1], label='ttim1') plt.semilogx(t2, hm2_1[-1], label='ttim2') plt.xlabel('time(d)') plt.ylabel('head(m)') plt.legend() plt.savefig('C:/Users/DELL/Python Notebook/MT BE/Fig/schroth_one2.eps'); ml_2 = ModelMaq(kaq=[17.28, 2], z=[zt0, zb0, zt1, zb1], c=200, Saq=[1.2e-4, 1e-5],\ Sll=3e-5, topboundary='conf', tmin=1e-4, tmax=0.5) w_2 = Well(ml_2, xw=0, yw=0, rw=rw, tsandQ = [(0, Q), (1e+08, 0)], layers=1) ml_2.solve() ca_2 = Calibrate(ml_2) ca_2.set_parameter(name= 'kaq0', initial=20, pmin=0) ca_2.set_parameter(name='kaq1', initial=1, pmin=0) ca_2.set_parameter(name='Saq0', initial=1e-4, pmin=0) ca_2.set_parameter(name='Saq1', initial=1e-5, pmin=0) ca_2.set_parameter_by_reference(name='Sll', parameter=ml_2.aq.Sll[:],\ initial=1e-4, pmin=0) ca_2.set_parameter(name='c1', initial=100, pmin=0) ca_2.series(name='obs1', x=r1, y=0, t=t1, h=h1, layer=1) ca_2.series(name='obs2', x=r2, y=0, t=t2, h=h2, layer=1) ca_2.fit(report=True) display(ca_2.parameters) print('RMSE:',ca_2.rmse()) hm1_2 = ml_2.head(r1, 0, t1) hm2_2 = ml_2.head(r2, 0, t2) plt.figure(figsize = (8, 5)) plt.semilogx(t1, h1, '.', label='obs1') plt.semilogx(t2, h2, '.', label='obs2') plt.semilogx(t1, hm1_2[-1], label='ttim1') plt.semilogx(t2, hm2_2[-1], label='ttim2') plt.xlabel('time(d)') plt.ylabel('head(m)') plt.legend() plt.savefig('C:/Users/DELL/Python Notebook/MT BE/Fig/schroth_three1.eps'); ml_3 = ModelMaq(kaq=[19, 2], z=[zt0, zb0, zt1, zb1], c=200, Saq=[4e-4, 1e-5],\ Sll=1e-4, topboundary='conf', tmin=1e-4, tmax=0.5) w_3 = Well(ml_3, xw=0, yw=0, rw=rw, rc=None, res=0, tsandQ = [(0, Q), (1e+08, 0)], \ layers=1) ml_3.solve() ca_3 = Calibrate(ml_3) ca_3.set_parameter(name= 'kaq0', initial=20, pmin=0) ca_3.set_parameter(name='kaq1', initial=1, pmin=0) ca_3.set_parameter(name='Saq0', initial=1e-4, pmin=0) ca_3.set_parameter(name='Saq1', initial=1e-5, pmin=0) ca_3.set_parameter_by_reference(name='Sll', parameter=ml_3.aq.Sll[:],\ initial=1e-4, pmin=0) ca_3.set_parameter(name='c1', initial=100, pmin=0) ca_3.set_parameter_by_reference(name='res', parameter=w_3.res[:], initial=0, pmin=0) ca_3.set_parameter_by_reference(name='rc', parameter=w_3.rc[:], initial=0.2, pmin=0) ca_3.series(name='obs1', x=r1, y=0, t=t1, h=h1, layer=1) ca_3.series(name='obs2', x=r2, y=0, t=t2, h=h2, layer=1) ca_3.fit(report=True) display(ca_3.parameters) print('RMSE:', ca_3.rmse()) hm1_3 = ml_3.head(r1, 0, t1) hm2_3 = ml_3.head(r2, 0, t2) plt.figure(figsize = (8, 5)) plt.semilogx(t1, h1, '.', label='obs1') plt.semilogx(t2, h2, '.', label='obs2') plt.semilogx(t1, hm1_3[-1], label='ttim1') plt.semilogx(t2, hm2_3[-1], label='ttim2') plt.xlabel('time(d)') plt.ylabel('head(m)') plt.legend() plt.savefig('C:/Users/DELL/Python Notebook/MT BE/Fig/schroth_three2.eps'); ml_4 = ModelMaq(kaq=[17.28, 2], z=[zt0, zb0, zt1, zb1], c=200, Saq=[1.2e-4, 1e-5],\ Sll=3e-5, topboundary='conf', tmin=1e-4, tmax=0.5) w_4 = Well(ml_4, xw=0, yw=0, rw=rw, rc=None, res=0, tsandQ = [(0, Q), (1e+08, 0)], \ layers=1) ml_4.solve() ca_4 = Calibrate(ml_4) ca_4.set_parameter(name='kaq1', initial=1, pmin=0) ca_4.set_parameter(name='Saq1', initial=1e-5, pmin=0) ca_4.set_parameter(name='c1', initial=100, pmin=0) ca_4.set_parameter_by_reference(name='rc', parameter=w_4.rc[:], initial=0.2, pmin=0) ca_4.series(name='obs1', x=r1, y=0, t=t1, h=h1, layer=1) ca_4.series(name='obs2', x=r2, y=0, t=t2, h=h2, layer=1) ca_4.fit(report=True) display(ca_4.parameters) print('RMSE:', ca_4.rmse()) hm1_4 = ml_4.head(r1, 0, t1) hm2_4 = ml_4.head(r2, 0, t2) plt.figure(figsize = (8, 5)) plt.semilogx(t1, h1, '.', label='obs1') plt.semilogx(t2, h2, '.', label='obs2') plt.semilogx(t1, hm1_4[-1], label='ttim1') plt.semilogx(t2, hm2_4[-1], label='ttim2') plt.xlabel('time(d)') plt.ylabel('head(m)') plt.legend() plt.savefig('C:/Users/DELL/Python Notebook/MT BE/Fig/schroth_three3.eps'); t = pd.DataFrame(columns=['k0[m/d]','k1[m/d]','Ss0[1/m]','Ss1[1/m]','Sll[1/m]','c[d]',\ 'res', 'rc'], \ index=['MLU', 'MLU-fixed k1','ttim','ttim-rc','ttim-fixed upper']) t.loc['ttim-rc'] = ca_3.parameters['optimal'].values t.iloc[2,0:6] = ca_2.parameters['optimal'].values t.iloc[4,5] = ca_4.parameters['optimal'].values[2] t.iloc[4,7] = ca_4.parameters['optimal'].values[3] t.iloc[4,0] = 17.28 t.iloc[4,1] = ca_4.parameters['optimal'].values[0] t.iloc[4,2] = 1.2e-4 t.iloc[4,3] = ca_4.parameters['optimal'].values[1] t.iloc[4,4] = 3e-5 t.iloc[0, 0:6] = [17.424, 6.027e-05, 1.747, 6.473e-06, 3.997e-05, 216] t.iloc[1, 0:6] = [2.020e-04, 9.110e-04, 3.456, 6.214e-05, 7.286e-05, 453.5] t['RMSE'] = [0.023452, 0.162596, ca_2.rmse(), ca_3.rmse(), ca_4.rmse()] t <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set Caffe to CPU mode, load the net in the test phase for inference, and configure input preprocessing. Step2: Let's start with a simple classification. We'll set a batch of 50 to demonstrate batch processing, even though we'll only be classifying one image. (Note that the batch size can also be changed on-the-fly.) Step3: Feed in the image (with some preprocessing) and classify with a forward pass. Step4: What did the input look like? Step5: Adorable, but was our classification correct? Step6: Indeed! But how long did it take? Step7: That's a while, even for a batch size of 50 images. Let's switch to GPU mode. Step8: Much better. Now let's look at the net in more detail. Step9: The parameters and their shapes. The parameters are net.params['name'][0] while biases are net.params['name'][1]. Step10: Helper functions for visualization Step11: The input image Step12: The first layer output, conv1 (rectified responses of the filters above, first 36 only) Step13: The second layer filters, conv2 Step14: The second layer output, conv2 (rectified, only the first 36 of 256 channels) Step15: The third layer output, conv3 (rectified, all 384 channels) Step16: The fourth layer output, conv4 (rectified, all 384 channels) Step17: The fifth layer output, conv5 (rectified, all 256 channels) Step18: The fifth layer after pooling, pool5 Step19: The first fully connected layer, fc6 (rectified) Step20: The second fully connected layer, fc7 (rectified) Step21: The final probability output, prob Step22: Let's see the top 5 predicted labels.
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt %matplotlib inline # Make sure that caffe is on the python path: caffe_root = '/home/ubuntu/digits/caffe/' # this file is expected to be in {caffe_root}/examples import sys sys.path.insert(0, caffe_root + 'python') import caffe plt.rcParams['figure.figsize'] = (10, 10) plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' import os if not os.path.isfile(caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'): print("Downloading pre-trained CaffeNet model...") # !../scripts/download_model_binary.py ../models/bvlc_reference_caffenet caffe.set_mode_cpu() net = caffe.Net(caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt', caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel', caffe.TEST) # input preprocessing: 'data' is the name of the input blob == net.inputs[0] transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2,0,1)) transformer.set_mean('data', np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1)) # mean pixel transformer.set_raw_scale('data', 255) # the reference model operates on images in [0,255] range instead of [0,1] transformer.set_channel_swap('data', (2,1,0)) # the reference model has channels in BGR order instead of RGB mean = np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy') print mean.shape print mean.mean(1).mean(1) # set net to batch size of 50 net.blobs['data'].reshape(50,3,227,227) net.blobs['data'].data[...] = transformer.preprocess('data', caffe.io.load_image(caffe_root + 'examples/images/fish-bike.jpg')) out = net.forward() print("Predicted class is #{}.".format(out['prob'].argmax())) plt.imshow(transformer.deprocess('data', net.blobs['data'].data[0])) # load labels imagenet_labels_filename = caffe_root + 'data/ilsvrc12/synset_words.txt' try: labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\t') except: !../data/ilsvrc12/get_ilsvrc_aux.sh labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\t') # sort top k predictions from softmax output top_k = net.blobs['prob'].data[0].flatten().argsort()[-1:-6:-1] print labels[top_k] # CPU mode net.forward() # call once for allocation %timeit net.forward() # GPU mode caffe.set_device(0) caffe.set_mode_gpu() net.forward() # call once for allocation %timeit net.forward() [(k, v.data.shape) for k, v in net.blobs.items()] [(k, v[0].data.shape) for k, v in net.params.items()] # take an array of shape (n, height, width) or (n, height, width, channels) # and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n) def vis_square(data, padsize=1, padval=0): data -= data.min() data /= data.max() # force the number of filters to be square n = int(np.ceil(np.sqrt(data.shape[0]))) padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3) data = np.pad(data, padding, mode='constant', constant_values=(padval, padval)) # tile the filters into an image data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1))) data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:]) print data.shape plt.imshow(data) # the parameters are a list of [weights, biases] filters = net.params['conv1'][0].data vis_square(filters.transpose(0, 2, 3, 1)) feat = net.blobs['conv1'].data[0, :36] vis_square(feat, padval=1) filters = net.params['conv2'][0].data vis_square(filters[:48].reshape(48**2, 5, 5)) feat = net.blobs['conv2'].data[0, :36] vis_square(feat, padval=1) feat = net.blobs['conv3'].data[0] vis_square(feat, padval=0.5) feat = net.blobs['conv4'].data[0] vis_square(feat, padval=0.5) feat = net.blobs['conv5'].data[0] vis_square(feat, padval=0.5) feat = net.blobs['pool5'].data[0] vis_square(feat, padval=1) feat = net.blobs['fc6'].data[0] plt.subplot(2, 1, 1) plt.plot(feat.flat) plt.subplot(2, 1, 2) _ = plt.hist(feat.flat[feat.flat > 0], bins=100) feat = net.blobs['fc7'].data[0] plt.subplot(2, 1, 1) plt.plot(feat.flat) plt.subplot(2, 1, 2) _ = plt.hist(feat.flat[feat.flat > 0], bins=100) feat = net.blobs['prob'].data[0] plt.plot(feat.flat) # load labels imagenet_labels_filename = caffe_root + 'data/ilsvrc12/synset_words.txt' try: labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\t') except: !../data/ilsvrc12/get_ilsvrc_aux.sh labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\t') # sort top k predictions from softmax output top_k = net.blobs['prob'].data[0].flatten().argsort()[-1:-6:-1] print labels[top_k] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Preparing the data Step2: Counting word frequency Step3: Let's keep the first 10000 most frequent words. As Andrew noted, most of the words in the vocabulary are rarely used so they will have little effect on our predictions. Below, we'll sort vocab by the count value and keep the 10000 most frequent words. Step4: What's the last word in our vocabulary? We can use this to judge if 10000 is too few. If the last word is pretty common, we probably need to keep more words. Step5: The last word in our vocabulary shows up in 30 reviews out of 25000. I think it's fair to say this is a tiny proportion of reviews. We are probably fine with this number of words. Step6: Text to vector function Step7: If you do this right, the following code should return Step8: Now, run through our entire review data set and convert each review to a word vector. Step9: Train, Validation, Test sets Step10: Building the network Step11: Intializing the model Step12: Training the network Step13: Testing Step14: Try out your own text!
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np import tensorflow as tf import tflearn from tflearn.data_utils import to_categorical reviews = pd.read_csv('reviews.txt', header=None) labels = pd.read_csv('labels.txt', header=None) from collections import Counter total_counts = Counter() for i, r in enumerate(reviews[0]): tokens = r.split(" ") for i, t in enumerate(tokens): total_counts[t] += 1 print("Total words in data set: ", len(total_counts)) vocab = sorted(total_counts, key=total_counts.get, reverse=True)[:10000] print(vocab[:60]) vocab = sorted(total_counts, key=total_counts.get, reverse=True)[:10000] print(vocab[:60]) print(vocab[-1], ': ', total_counts[vocab[-1]]) word2idx = {word: i for i, word in enumerate(vocab)} def text_to_vector(text): word_vector = np.zeros(len(vocab), dtype=np.int_) for word in text.split(' '): idx = word2idx.get(word, None) if idx is None: continue else: word_vector[idx] += 1 return np.array(word_vector) text_to_vector('The tea is for a party to celebrate ' 'the movie so she has no time for a cake')[:65] word_vectors = np.zeros((len(reviews), len(vocab)), dtype=np.int_) for ii, (_, text) in enumerate(reviews.iterrows()): word_vectors[ii] = text_to_vector(text[0]) # Printing out the first 5 word vectors word_vectors[:5, :23] Y = (labels=='positive').astype(np.int_) records = len(labels) shuffle = np.arange(records) np.random.shuffle(shuffle) test_fraction = 0.9 train_split, test_split = shuffle[:int(records*test_fraction)], shuffle[int(records*test_fraction):] trainX, trainY = word_vectors[train_split,:], to_categorical(Y.values[train_split], 2) testX, testY = word_vectors[test_split,:], to_categorical(Y.values[test_split], 2) trainY # Network building def build_model(): # This resets all parameters and variables, leave this here tf.reset_default_graph() #### Your code #### net = tflearn.input_data([None, 10000]) # Input net = tflearn.fully_connected(net, 5, activation='ReLU') # Hidden net = tflearn.fully_connected(net, 2, activation='softmax') # Output net = tflearn.regression(net, optimizer='sgd', learning_rate=0.1, loss='categorical_crossentropy') model = tflearn.DNN(net) return model model = build_model() # Training model.fit(trainX, trainY, validation_set=0.1, show_metric=True, batch_size=128, n_epoch=10) predictions = (np.array(model.predict(testX))[:,0] >= 0.5).astype(np.int_) test_accuracy = np.mean(predictions == testY[:,0], axis=0) print("Test accuracy: ", test_accuracy) # Helper function that uses your model to predict sentiment def test_sentence(sentence): positive_prob = model.predict([text_to_vector(sentence.lower())])[0][1] print('Sentence: {}'.format(sentence)) print('P(positive) = {:.3f} :'.format(positive_prob), 'Positive' if positive_prob > 0.5 else 'Negative') sentence = "Moonlight is by far the best movie of 2016." test_sentence(sentence) sentence = "It's amazing anyone could be talented enough to make something this spectacularly awful" test_sentence(sentence) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Compile and build. Step2: We can wire up the GPIO pins to a logic analyzer to verify that our circuit produces the correct sine waveform. Step3: TODO
<ASSISTANT_TASK:> Python Code: import math import numpy as np def sine(x): return np.sin(2 * math.pi * x) x = np.linspace(0., 1., num=256, endpoint=False) import magma as m m.set_mantle_target('ice40') import mantle def DefineDDS(n, has_ce=False): class _DDS(m.Circuit): name = f'DDS{n}' IO = ['I', m.In(m.UInt(n)), "O", m.Out(m.UInt(n))] + m.ClockInterface(has_ce=has_ce) @classmethod def definition(io): reg = mantle.Register(n, has_ce=has_ce) m.wire(reg(m.uint(reg.O) + io.I, CE=io.CE), io.O) return _DDS def DDS(n, has_ce=False): return DefineDDS(n, has_ce)() from loam.boards.icestick import IceStick icestick = IceStick() icestick.Clock.on() for i in range(8): icestick.J1[i].input().on() icestick.J3[i].output().on() main = icestick.main() dds = DDS(16, True) wavetable = 128 + 127 * sine(x) wavetable = [int(x) for x in wavetable] rom = mantle.Memory(height=256, width=16, rom=list(wavetable), readonly=True) phase = m.concat(main.J1, m.bits(0,8)) # You can also hardcode a constant as the phase # phase = m.concat(m.bits(32, 8), m.bits(0,8)) # Use counter COUT hooked up to CE of registers to slow everything down so we can see it on the LEDs c = mantle.Counter(10) addr = dds( phase, CE=c.COUT) O = rom( addr[8:] ) m.wire( c.COUT, rom.RE ) m.wire( O[0:8], main.J3 ) m.EndCircuit() m.compile('build/dds', main) %%bash cd build cat sin.pcf yosys -q -p 'synth_ice40 -top main -blif dds.blif' dds.v arachne-pnr -q -d 1k -o dds.txt -p dds.pcf dds.blif icepack dds.txt dds.bin iceprog dds.bin import csv import magma as m with open("data/dds-capture.csv") as sine_capture_csv: csv_reader = csv.reader(sine_capture_csv) next(csv_reader, None) # skip the headers rows = [row for row in csv_reader] timestamps = [float(row[0]) for row in rows] values = [m.bitutils.seq2int(tuple(int(x) for x in row[1:])) for row in rows] %matplotlib inline import matplotlib.pyplot as plt plt.plot(timestamps[:100], values[:100], "b.") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: With NumPy arrays, all the same functionality you know and love from lists is still there. Step2: These operations all work whether you're using Python lists or NumPy arrays. Step3: To build the NumPy equivalent, you can basically just feed the Python list-matrix into the NumPy array method Step4: The real difference, though, comes with actually indexing these elements. With Python lists, you can index individual elements only in this way Step5: With NumPy arrays, you can use that same notation...or you can use comma-separated indices Step6: It's not earth-shattering, but enough to warrant a heads-up. Step7: Here's a great visual summary of slicing NumPy arrays, assuming you're starting from an array with shape (3, 3) Step8: We know video is 3D because we can also access its ndim attribute. Step9: Another example--to go straight to cutting-edge academic research--is 3D video microscope data of multiple tagged fluorescent markers. This would result in a five-axis NumPy object Step10: We can also ask how many elements there are total, using the size attribute Step11: These are extreme examples, but they're to illustrate how flexible NumPy arrays are. Step12: Notice how the number "9", initially the third axis, steadily marches to the front as the axes before it are accessed. Step13: how does Python know that you want to add the scalar value 10 to each element of the vector x? Because (in a word) broadcasting. Step14: In this example, the scalar value 1 is broadcast to all the elements of zeros, converting the operation to element-wise addition. Step15: But on some intuitive level, this hopefully makes sense Step16: In this example, the shape of x is (3, 4). The shape of y is just 4. Their trailing axes are both 4, therefore the "smaller" array will be broadcast to fit the size of the larger array, and the operation (addition, in this case) is performed element-wise. Step17: This is randomly generated data, yes, but it could easily be 7 data points in 4 dimensions. That is, we have 7 observations of variables with 4 descriptors. Perhaps it's Step18: Just for your reference, here's the original data Step19: Now, we can use our mask to access only the indices we want to set to 0. Step20: voilà! Every negative number has been set to 0, and all the other values were left unchanged. Now we can continue with whatever analysis we may have had in mind. Step21: Fancy Indexing Step22: We have 8 rows and 4 columns, where each row is a 4-element vector of the same value repeated across the columns, and that value is the index of the row. Step23: Ta-daaa! Pretty spiffy! Step24: Ok, this will take a little explaining, bear with me
<ASSISTANT_TASK:> Python Code: li = ["this", "is", "a", "list"] print(li) print(li[1:3]) # Print element 1 (inclusive) to 3 (exclusive) print(li[2:]) # Print element 2 and everything after that print(li[:-1]) # Print everything BEFORE element -1 (the last one) import numpy as np x = np.array([1, 2, 3, 4, 5]) print(x) print(x[1:3]) print(x[2:]) print(x[:-1]) python_matrix = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] print(python_matrix) numpy_matrix = np.array(python_matrix) print(numpy_matrix) print(python_matrix) # The full list-of-lists print(python_matrix[0]) # The inner-list at the 0th position of the outer-list print(python_matrix[0][0]) # The 0th element of the 0th inner-list print(numpy_matrix) print(numpy_matrix[0]) print(numpy_matrix[0, 0]) # Note the comma-separated format! x = np.array([ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]) print(x) print(x[:, 1]) # Take ALL of axis 0, and one index of axis 1. video = np.empty(shape = (1920, 1080, 5000)) print("Axis 0 length:", video.shape[0]) # How many rows? print("Axis 1 length:", video.shape[1]) # How many columns? print("Axis 2 length:", video.shape[2]) # How many frames? print(video.ndim) del video tensor = np.empty(shape = (2, 640, 480, 360, 100)) print(tensor.shape) # Axis 0: color channel--used to differentiate between fluorescent markers # Axis 1: height--same as before # Axis 2: width--same as before # Axis 3: depth--capturing 3D depth at each time interval, like a 3D movie # Axis 4: frame--same as before print(tensor.size) del tensor example = np.empty(shape = (3, 5, 9)) print(example.shape) sliced = example[0] # Indexed the first axis. print(sliced.shape) sliced_again = example[0, 0] # Indexed the first and second axes. print(sliced_again.shape) x = np.array([1, 2, 3, 4, 5]) x += 10 print(x) zeros = np.zeros(shape = (3, 4)) print(zeros) zeros += 1 # Just add 1. print(zeros) x = np.zeros(shape = (3, 3)) y = np.ones(4) x + y x = np.zeros(shape = (3, 4)) y = np.array([1, 2, 3, 4]) z = x + y print(z) x = np.random.standard_normal(size = (7, 4)) print(x) mask = x < 0 print(mask) print(x) x[mask] = 0 print(x) mask = (x < 1) & (x > 0.5) # True for any value less than 1 but greater than 0.5 x[mask] = 99 # We're setting any value in this matrix < 1 but > 0.5 to 99 print(x) matrix = np.empty(shape = (8, 4)) for i in range(8): matrix[i] = i # Broadcasting is happening here! print(matrix) indices = np.array([7, 0, 5, 2]) # Here's my "indexing" array--note the order of the numbers. print(matrix[indices]) matrix = np.arange(32).reshape((8, 4)) print(matrix) # This 8x4 matrix has integer elements that increment by 1 column-wise, then row-wise. indices = ( np.array([1, 7, 4]), np.array([3, 0, 1]) ) # This is a tuple of 2 NumPy arrays! print(matrix[indices]) ( np.array([1, 7, 4]), np.array([3, 0, 1]) ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: import pandas as pd df = pd.DataFrame({'Sp': ['MM1', 'MM1', 'MM1', 'MM2', 'MM2', 'MM2', 'MM4', 'MM4', 'MM4'], 'Mt': ['S1', 'S1', 'S3', 'S3', 'S4', 'S4', 'S2', 'S2', 'S2'], 'Value': ['a', 'n', 'cb', 'mk', 'bg', 'dgd', 'rd', 'cb', 'uyi'], 'count': [3, 2, 5, 8, 10, 1, 2, 2, 7]}) def g(df): return df[df.groupby(['Sp', 'Mt'])['count'].transform(min) == df['count']] result = g(df.copy()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load the Captured Streaming Data in Python Step3: Load Data in SparkSQL
<ASSISTANT_TASK:> Python Code: sc sqlContext import time import simplejson as json filename = '/home/anaconda/md0/data/2016_potus/stream/tweets.json' langs = {} start_time = time.time() f_p = open(filename,'r') for line in f_p: tweet = json.loads(line) if 'lang' in tweet: if tweet['lang'] in langs: langs[tweet['lang']] += 1 else: langs[tweet['lang']] = 1 elapsed_time = time.time() - start_time print "%02f seconds" % elapsed_time # Pretty print langs as JSON print "%s" % json.dumps(langs, indent=4) import time filename = '/home/anaconda/md0/data/2016_potus/stream/tweets.json' start_time = time.time() # Form a Spark dataframe and register a temp table sdf = sqlContext.read.json(filename) sdf.registerTempTable('tweets') query = "select lang, count(*) as num from tweets group by lang order by num desc" pdf = sqlContext.sql(query).toPandas() elapsed_time = time.time() - start_time print "%02f seconds" % elapsed_time pdf sdf.printSchema() start_time = time.time() query = select sq2.time_zone as time_zone, sq2.mentions as mentions, sq2.clinton_rank as clinton_rank, sq2.trump_rank as trump_rank, sq2.sanders_rank as sanders_rank from ( select sq.time_zone as time_zone, sq.clinton + sq.trump + sq.sanders as mentions, dense_rank() over (order by sq.clinton desc) as clinton_rank, dense_rank() over (order by sq.trump desc) as trump_rank, dense_rank() over (order by sq.sanders desc) as sanders_rank from ( select user.time_zone as time_zone, sum(case when lower(text) like '%clinton%' or lower(text) like '%hillary%' then 1 else 0 end) as clinton, sum(case when lower(text) like '%trump%' or lower(text) like '%donald%' then 1 else 0 end) as trump, sum(case when lower(text) like '%sanders%' or lower(text) like '%bernie%' then 1 else 0 end) as sanders from tweets group by user.time_zone ) sq ) sq2 where sq2.clinton_rank < 30 or sq2.trump_rank < 30 or sq2.sanders_rank < 30 order by sq2.mentions desc pdf = sqlContext.sql(query).toPandas() elapsed_time = time.time() - start_time print "%02f seconds" % elapsed_time pdf <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 6.2 Updating dictionaries Step2: An implication of this is that we can start with an empty dictionary and add keys as we go along. Step3: 6.2.1 Dictionary exercise Step4: 6.2.2 Using the .update method Step5: 6.2.3 Creating dictionaries using kwargs Step6: Note from the example above that when creating dictionaries, DO NOT enclose the keys within quotation marks. However, when accessing the value of a dictionary by its key, you MUST use quotation marks. Step7: 7. If and boolen conditionals Step8: Here is our first example using the if keyword. Step9: The variable x has been assigned the value 300. When Python sees the statement if x == 300 Step10: The conditional checks and see whether the remainder of 13 when divided by 2 is 0. (Recall that's what % does.) Since 13 returns 1 remainder when divided by 2, the condition is false. Hence the string 'This is an even number' is not printed. Step11: Try re-executing the cell above with various values of y and see the effect on the output. Step12: See how much more elegant this is instead of nested if else statements. Step13: As before, play around with the various values of marks to make sure that elif structure is working as intended. Notice that I phrased the conditional only to check agains a lower bound. This is because Python will only execute the code block corresponding to first True conditional in the elif sequence. Even if subsequent conditionals evaluate to true, their code is not run. Step14: But Python allows us to write a more readable form of the for loop. So the following is equivalent to the above and is preferred. Step15: Note that the "counter variable" staff_name is actually a variable containing the current item in the list as the loop progresses. I could have used any name I wanted for the variable - I could use i to represent the staff's name. But I chose staff_name for readability purposes. As the variable staff_name runs through each item of staff, the code block print is executed with the current value of staff_name. Once that is done, the variable is updated with the next item in the list and the block is executed once more. This proceeds until the end of the list is reached and the for loop terminates. Step16: Here's a more mathematical usage of the for statement. Suppose we want to compute the decimal expansion of $\sqrt{2}$ accurate to 3 decimal places.After searching Wikipedia, I came up with this recursive formula $$\begin{align}a_0 &=1 \ a_{n+1} &= \frac{a_n}{2}+\frac{1}{a_n}\end{align}$$ Here's how we could implement this. Step17: 8.2.1 Your mission, should you choose to accept it
<ASSISTANT_TASK:> Python Code: # creating a dictionary and assigning it to a variable staff = {'name': 'Andy', 'age': 28, 'email': 'andy@company.com' } staff['name'] staff['age'] print(staff['email']) # A dictionary is of class dict print(type(staff)) # list of all keys, note the brackets at the end. # .keys is a method associated to dictionaries staff.keys() # list of all values, in no particular order staff.values() # list all key-value pairings using .items staff.items() # Hey, Andy mistakenly keyed in his age. He is actually 29 years old! staff['age'] = 29 print(staff) # HR wants us to record down his staff ID. staff['id'] = 12345 print(staff) # Let's check the list of keys staff.keys() favourite_food = dict() # You could also type favourite_food = {} print(favourite_food) # update your dictionary here # and print the dictionary print(favourite_food) staff.update({'salary': 980.15, 'department':'finance', 'colleagues': ['George', 'Liz']}) # Who are Andy's colleagues? Enter answer below # Which department does he work in? Enter answer below my_favourite_things = dict(food="Assam Laksa", music="classical", number = 2) # my favourite number my_favourite_things['number'] # An error my_favourite_things[food] # ...but this is correct food = 'food' my_favourite_things[food] # examples of binary comparison 1 < 2 # compound statements 1 < 2 or 1 == 2 # using bitwise operators 1<2 & 1==2 x = 300 if x == 300: print('This is Sparta!') y = 13 print(y) if y % 2 == 0: print('This is an even number') print("I guess it's odd then") y = 22 if y%2 ==0: print("{} is an even number".format(y)) else: print("{} is an odd number".format(y)) y = 13 if y%2 ==0: print("{} is an even number".format(y)) else: print("{} is an odd number".format(y)) # Nested if else statements y = 25 remainder = y%3 if remainder == 0: print("{} is divisible by 3".format(y)) else: print("{} is not divisible by 3".format(y)) if remainder ==1: print("But has remainder {}".format(remainder)) else: print("But has remainder {}".format(remainder)) y=25 remainder = y%3 if remainder == 0: div = 'is' s = 'Hence' elif remainder == 1: div = 'is not' s = 'But' elif remainder == 2: div = 'is not' s = 'But' print('{} {} divisible by 3\n{} has remainder {}'.format(y, div, s, remainder)) marks = 78.35 if marks >= 80: grade = 'A' elif marks >= 70: grade = 'B' elif marks >= 60: grade = 'C' elif marks >= 50: grade = 'D' elif marks >= 45: grade = 'E' else: grade = 'F' print('Student obtained %.1f marks in the test and hence is awarded %s for this module' % (marks, grade)) staff = ['Lisa', 'Mark', 'Andy'] for i in range(0,3): # range(0,3) is a function that produces a sequence of numbers in the form of a list: [0,1,2] print("Staff member "+staff[i]) for staff_name in staff: print("Staff member "+ staff_name) # A common programming interview task. Print 'foo' if x is divisible by 3 and 'bar' if it is divisible by 5 and 'baz' # if x is divisible by both 3 and 5. Do this for numbers 1 to 15. for num in range(1,16): # range(1,16) produces a list of numbers started from 1 and ending at 15. if num % 3 == 0 and num % 5 !=0: print('%d foo' % (num)) elif num % 5 == 0 and num % 3 != 0: print('%d bar' % (num)) elif num % 5 == 0 and num % 3 == 0: print('%d baz' % (num)) else: print('%d' % (num)) max_iter = 10 a = 1 # Since _ is considered a valid variable name, we can use this to # "suppress" counting indices. for _ in range(0, max_iter): a_next = a/2.0 + 1/a if abs(a_next-a) < 1e-4: # You can use engineering format numbers in Python print("Required accuracy found! Breaking out of the loop.") break a = a_next print("Approximation of sqrt(2) is: %.3f" % (a)) # Answer <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set the structure Step2: Result from VASP DFPT calculations using the supercell structure Step3: Initialize phonopy and set the force constants obtained from VASP Step4: Define the paths for plotting the bandstructure and set them in phonopy Step5: Set the mesh in reciprocal space and plot DOS
<ASSISTANT_TASK:> Python Code: import os import numpy as np import pymatgen as pmg from pymatgen.io.vasp.outputs import Vasprun from phonopy import Phonopy from phonopy.structure.atoms import Atoms as PhonopyAtoms %matplotlib inline Si_primitive = PhonopyAtoms(symbols=['Si'] * 2, scaled_positions=[(0, 0, 0), (0.75, 0.5, 0.75)], cell=[[3.867422 ,0.000000, 0.000000], [1.933711, 3.349287, 0.000000], [-0.000000, -2.232856, 3.157737]]) # supercell size scell = [[2,0,0],[0,2,0],[0,0,2]] vrun = Vasprun(os.path.join(os.path.dirname(pmg.__file__), "..", 'test_files', "vasprun.xml.dfpt.phonon")) phonon = Phonopy(Si_primitive, scell) # negative sign to ensure consistency with phonopy convention phonon.set_force_constants(-vrun.force_constants) bands = [] # path 1 q_start = np.array([0.5, 0.5, 0.0]) q_end = np.array([0.0, 0.0, 0.0]) band = [] for i in range(51): band.append(q_start + (q_end - q_start) / 50 * i) bands.append(band) # path 2 q_start = np.array([0.0, 0.0, 0.0]) q_end = np.array([0.5, 0.0, 0.0]) band = [] for i in range(51): band.append(q_start + (q_end - q_start) / 50 * i) bands.append(band) phonon.set_band_structure(bands) phonon.plot_band_structure().show() mesh = [31, 31, 31] phonon.set_mesh(mesh) phonon.set_total_DOS() phonon.plot_total_DOS().show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Second, let's create the motion correction and smoothing node. For an explanation about this step, see the Nodes and Interfaces tutorial. Step2: Third, let's create the workflow that will contain those three nodes. For an explanation about this step, see the Workflow tutorial. Step3: Now that everything is set up, let's run the preprocessing workflow. Step4: After the execution of the workflow we have all the data hidden in the working directory 'working_dir'. Let's take a closer look at the content of this folder Step5: Let's take a look at the output folder Step6: Let's take a look at the new output folder structure
<ASSISTANT_TASK:> Python Code: from nipype import SelectFiles, Node # Create SelectFiles node templates={'func': '{subject_id}/func/{subject_id}_task-flanker_run-1_bold.nii.gz'} sf = Node(SelectFiles(templates), name='selectfiles') sf.inputs.base_directory = '/data/ds102' sf.inputs.subject_id = 'sub-01' from nipype.interfaces.fsl import MCFLIRT, IsotropicSmooth # Create Motion Correction Node mcflirt = Node(MCFLIRT(mean_vol=True, save_plots=True), name='mcflirt') # Create Smoothing node smooth = Node(IsotropicSmooth(fwhm=4), name='smooth') from nipype import Workflow from os.path import abspath # Create a preprocessing workflow wf = Workflow(name="preprocWF") wf.base_dir = 'working_dir' # Connect the three nodes to each other wf.connect([(sf, mcflirt, [("func", "in_file")]), (mcflirt, smooth, [("out_file", "in_file")])]) wf.run() from nipype.interfaces.io import DataSink # Create DataSink object sinker = Node(DataSink(), name='sinker') # Name of the output folder sinker.inputs.base_directory = 'output' # Connect DataSink with the relevant nodes wf.connect([(smooth, sinker, [('out_file', 'in_file')]), (mcflirt, sinker, [('mean_img', 'mean_img'), ('par_file', 'par_file')]), ]) wf.run() wf.connect([(smooth, sinker, [('out_file', 'preproc.@in_file')]), (mcflirt, sinker, [('mean_img', 'preproc.@mean_img'), ('par_file', 'preproc.@par_file')]), ]) wf.run() # Define substitution strings substitutions = [('_task-flanker', ''), ('_bold_mcf', ''), ('.nii.gz_mean_reg', '_mean'), ('.nii.gz.par', '.par')] # Feed the substitution strings to the DataSink node sinker.inputs.substitutions = substitutions # Run the workflow again with the substitutions in place wf.run() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: In this example, we will download some text from wikipedia, split it up into chunks and then plot it. We will use the wikipedia package to retrieve the wiki pages for 'dog' and 'cat'. Step2: Below is a snippet of some of the text from the dog wikipedia page. As you can see, the word dog appears in many of the sentences, but also words related to dog like wolf and carnivore appear. Step3: Now we will simply pass the text samples as a list to hyp.plot. By default hypertools will transform the text data using a topic model that was fit on a variety of wikipedia pages. Specifically, the text is vectorized using the scikit-learn CountVectorizer and then passed on to a LatentDirichletAllocation to estimate topics. As can be seen below, the 5 chunks of text from the dog/cat wiki pages cluster together, suggesting they are made up of distint topics. Step4: Now, let's add a third very different topic to the plot. Step5: As you might expect, the cat and dog text chunks are closer to each other than to basketball in this topic space. Since cats and dogs are both animals, they share many more features (and thus are described with similar text) than basketball. Step6: Visualizing Wikipedia pages Step7: Visualizing State of the Union Addresses Step8: Changing the reduction model Step9: Defining a corpus
<ASSISTANT_TASK:> Python Code: import hypertools as hyp import wikipedia as wiki %matplotlib inline def chunk(s, count): return [''.join(x) for x in zip(*[list(s[z::count]) for z in range(count)])] chunk_size = 5 dog_text = wiki.page('Dog').content cat_text = wiki.page('Cat').content dog = chunk(dog_text, int(len(dog_text)/chunk_size)) cat = chunk(cat_text, int(len(cat_text)/chunk_size)) dog[0][:1000] hue=['dog']*chunk_size+['cat']*chunk_size geo = hyp.plot(dog + cat, 'o', hue=hue, size=[8, 6]) bball_text = wiki.page('Basketball').content bball = chunk(bball_text, int(len(bball_text)/chunk_size)) hue=['dog']*chunk_size+['cat']*chunk_size+['bball']*chunk_size geo = hyp.plot(dog + cat + bball, 'o', hue=hue, labels=hue, size=[8, 6]) nips = hyp.load('nips') nips.plot(size=[8, 6]) wiki = hyp.load('wiki') wiki.plot(size=[8, 6]) sotus = hyp.load('sotus') sotus.plot(size=[10,8]) sotus.plot(reduce='UMAP', size=[10, 8]) sotus.plot(reduce='UMAP', corpus='nips', size=[10, 8]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Task Step3: A toy example Step4: See some of the co-occrrence statistics Step5: this says us that idea was seen with time 258 times in the corpus I've used. Step6: Task Step7: Projecting word vectors from 2000 dimensions to 2 Step8: Now we have word vector embedding to a low dimensional space! Step9: Task Do the cluster you see align with your grouping of words? Step11: Just an example to see what we've got there.
<ASSISTANT_TASK:> Python Code: # This is a code cell. It can be executed by pressing CTRL+Enter print('Hello') %matplotlib inline import warnings warnings.filterwarnings('ignore') import pandas pandas.options.display.max_columns = 11 pandas.options.display.max_rows = 5 import matplotlib matplotlib.rcParams['font.size'] = 15 matplotlib.rcParams['figure.figsize'] = 15, 9 matplotlib.rcParams['savefig.dpi'] = 227 from random import sample from urllib.request import urlretrieve import pandas as pd import seaborn as sns import numpy as np def get_space(url, key='space'): Download the co-occurrence data. frame_file, _ = urlretrieve(url) return pd.read_hdf(frame_file, key=key) # Load the space into the memory toy_space = get_space( 'http://www.eecs.qmul.ac.uk/~dm303/static/eecs_open14/space_frame_eecs14.h5' ) # So far we are interested in just these words interesting_words = ['idea', 'notion', 'boy', 'girl'] # Query the vector space for the words of interest toy_space.loc[interesting_words] # We are going to use pairwise_distances function from the sklearn package from sklearn.metrics.pairwise import pairwise_distances # Compute distances for the words of interest distances = pairwise_distances( toy_space.loc[interesting_words].values, metric='cosine', ) # Show the result np.round( pd.DataFrame(distances, index=interesting_words, columns=interesting_words), 3, ) # np.exp(-distances) is a fancy way of converting distances to similarities pd.DataFrame(np.exp(-distances), index=interesting_words, columns=interesting_words) from sklearn import manifold from sklearn.preprocessing import MinMaxScaler # clf will be able to "project" word vectors to 2 dimensions clf = manifold.MDS(n_components=2, dissimilarity='precomputed') # in X we store the projection results X = MinMaxScaler().fit_transform( # Normalize the values between 0 and 1 so it's easier to plot. clf.fit_transform(pairwise_distances(toy_space.values, metric='cosine')) ) pd.DataFrame(X, index=toy_space.index) import pylab as pl pl.figure() for word, (x, y) in zip(toy_space.index, X): pl.text(x, y, word) pl.tight_layout() space = get_space( 'http://www.eecs.qmul.ac.uk/~dm303/static/data/bigo_matrix.h5.gz' ) space.loc[ ['John', 'Mary', 'girl', 'boy'], ['tree', 'car', 'face', 'England', 'France'] ] def plot(space, words, file_name=None): Plot the `words` from the given `space`. cooc = space.loc[words] missing_words = list(cooc[cooc.isnull().all(axis=1)].index) assert not missing_words, '{0} are not in the space'.format(missing_words) distances = pairwise_distances(cooc, metric='cosine') clf = manifold.MDS(n_components=2, dissimilarity='precomputed', n_jobs=2) X = MinMaxScaler().fit_transform( clf.fit_transform(distances) ) for word, (x, y) in zip(words, X): pl.text(x, y, word) pl.tight_layout() if file_name is not None: pl.savefig(file_name) matplotlib.rcParams['font.size'] = 20 x= plot( space, ( 'red orange pink green blue white yellow black ' 'mother father son daughter aunt uncle ' 'concept research theory ' 'car bus tube road bicycle train ' 'karate fight fencing ' 'apple company fruit train set ' ''.split() ) ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Given an ordered binary tree $t$, the expression $t.\texttt{isEmpty}()$ checks whether $t$ is the empty tree. Step2: Given an ordered binary tree $t$ and a key $k$, the expression $t.\texttt{member}(k)$ returns True if the key $k$ is stored in the tree $t$. Step3: The method $\texttt{insert}()$ is specified via recursive equations. Step4: The method $\texttt{self}.\texttt{delete}(k)$ removes the key $k$ from the tree $\texttt{self}$. It is defined as follows Step5: The method $\texttt{self}.\texttt{delMin}()$ removes the smallest key from the given tree $\texttt{self}$ Step6: Given two ordered binary trees $s$ and $t$, the expression $s.\texttt{update}(t)$ overwrites the attributes of $s$ with the corresponding attributes of $t$. Step7: The function $\texttt{restore}(\texttt{self})$ restores the balancing condition of the given binary tree Step8: The function $\texttt{self}.\texttt{_setValues}(k, l, r)$ overwrites the member variables of the node $\texttt{self}$ with the given values. Step9: The function $\texttt{createNode}(k, l, r)$ creates an AVL-tree of that has the key $k$ stored at its root, Step10: The method $t.\texttt{pop}()$ take an AVL tree $t$ and removes and returns the smallest key that is present in $t$. It is specified as follows Step11: Display Code Step12: Given an ordered binary tree, this function renders the tree graphically using graphviz. Step13: This method assigns a unique identifier with each node. The dictionary NodeDict maps these identifiers to the nodes where they occur. Step14: Testing Step15: Let's generate an ordered binary tree with random keys. Step16: This tree looks more or less balanced. Lets us try to create a tree by inserting sorted numbers because that resulted in linear complexity for ordered binary trees. Step17: Next, we compute the set of prime numbers $\leq 100$. Mathematically, this set is given as follows
<ASSISTANT_TASK:> Python Code: class Set: def __init__(self): self.mKey = None self.mLeft = None self.mRight = None self.mHeight = 0 def isEmpty(self): return self.mKey == None Set.isEmpty = isEmpty def member(self, key): if self.isEmpty(): return elif self.mKey == key: return True elif key < self.mKey: return self.mLeft.member(key) else: return self.mRight.member(key) Set.member = member def insert(self, key): if self.isEmpty(): self.mKey = key self.mLeft = Set() self.mRight = Set() self.mHeight = 1 elif self.mKey == key: pass elif key < self.mKey: self.mLeft.insert(key) self._restore() else: self.mRight.insert(key) self._restore() Set.insert = insert def delete(self, key): if self.isEmpty(): return if key == self.mKey: if self.mLeft.isEmpty(): self._update(self.mRight) elif self.mRight.isEmpty(): self._update(self.mLeft) else: self.mRight, self.mKey = self.mRight._delMin() elif key < self.mKey: self.mLeft.delete(key) else: self.mRight.delete(key) Set.delete = delete def _delMin(self): if self.mLeft.isEmpty(): return self.mRight, self.mKey else: ls, km = self.mLeft._delMin() self.mLeft = ls self._restore() return self, km Set._delMin = _delMin def _update(self, t): self.mKey = t.mKey self.mLeft = t.mLeft self.mRight = t.mRight self.mHeight = t.mHeight Set._update = _update def _restore(self): if abs(self.mLeft.mHeight - self.mRight.mHeight) <= 1: self._restoreHeight() return if self.mLeft.mHeight > self.mRight.mHeight: k1, l1, r1 = self.mKey, self.mLeft, self.mRight k2, l2, r2 = l1.mKey, l1.mLeft, l1.mRight if l2.mHeight >= r2.mHeight: self._setValues(k2, l2, createNode(k1, r2, r1)) else: k3, l3, r3 = r2.mKey, r2.mLeft, r2.mRight self._setValues(k3, createNode(k2, l2, l3), createNode(k1, r3, r1)) elif self.mRight.mHeight > self.mLeft.mHeight: k1, l1, r1 = self.mKey, self.mLeft, self.mRight k2, l2, r2 = r1.mKey, r1.mLeft, r1.mRight if r2.mHeight >= l2.mHeight: self._setValues(k2, createNode(k1, l1, l2), r2) else: k3, l3, r3 = l2.mKey, l2.mLeft, l2.mRight self._setValues(k3, createNode(k1, l1, l3), createNode(k2, r3, r2)) self._restoreHeight() Set._restore = _restore def _setValues(self, k, l, r): self.mKey = k self.mLeft = l self.mRight = r Set._setValues = _setValues def _restoreHeight(self): self.mHeight = max(self.mLeft.mHeight, self.mRight.mHeight) + 1 Set._restoreHeight = _restoreHeight def createNode(key, left, right): node = Set() node.mKey = key node.mLeft = left node.mRight = right node.mHeight = max(left.mHeight, right.mHeight) + 1 return node def pop(self): if self.mKey == None: raise KeyError if self.mLeft.mKey == None: key = self.mKey self._update(self.mRight) return key return self.mLeft.pop() Set.pop = pop import graphviz as gv def toDot(self): Set.sNodeCount = 0 # this is a static variable of the class Set dot = gv.Digraph(node_attr={'shape': 'record', 'style': 'rounded'}) NodeDict = {} self._assignIDs(NodeDict) for n, t in NodeDict.items(): if t.mKey != None: dot.node(str(n), label=str(t.mKey)) else: dot.node(str(n), label='', shape='point') for n, t in NodeDict.items(): if not t.mLeft == None: dot.edge(str(n), str(t.mLeft.mID)) if not t.mRight == None: dot.edge(str(n), str(t.mRight.mID)) return dot Set.toDot = toDot def _assignIDs(self, NodeDict): Set.sNodeCount += 1 self.mID = Set.sNodeCount NodeDict[self.mID] = self if self.isEmpty(): return self.mLeft ._assignIDs(NodeDict) self.mRight._assignIDs(NodeDict) Set._assignIDs = _assignIDs def demo(): m = Set() m.insert("anton") m.insert("hugo") m.insert("gustav") m.insert("jens") m.insert("hubert") m.insert("andre") m.insert("philipp") m.insert("rene") return m t = demo() t.toDot() while not t.isEmpty(): print(t.pop()) display(t.toDot()) import random as rnd t = Set() for k in range(30): k = rnd.randrange(100) t.insert(k) display(t.toDot()) while not t.isEmpty(): print(t.pop(), end=' ') display(t.toDot()) t = Set() for k in range(30): t.insert(k) display(t.toDot()) while not t.isEmpty(): print(t.pop(), end=' ') display(t.toDot()) S = Set() for k in range(2, 101): S.insert(k) display(S.toDot()) for i in range(2, 101): for j in range(2, 101): S.delete(i * j) display(S.toDot()) while not S.isEmpty(): print(S.pop(), end=' ') display(S.toDot()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Indefinite integrals Step2: Integral 1 Step3: Integral 2 Step4: Integral 3 Step5: Integral 4 Step6: Integral 5
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np import seaborn as sns from scipy import integrate def integrand(x, a): return 1.0/(x**2 + a**2) def integral_approx(a): # Use the args keyword argument to feed extra arguments to your integrand I, e = integrate.quad(integrand, 0, np.inf, args=(a,)) return I def integral_exact(a): return 0.5*np.pi/a print("Numerical: ", integral_approx(1.0)) print("Exact : ", integral_exact(1.0)) assert True # leave this cell to grade the above integral def integrand(x,a,b): return np.sin(a*x)/np.sinh(b*x) def integrate_approx(a,b): I,e=integrate.quad(integrand,0,np.inf, args=(a,b)) return I def integrate_exact(a,b): return np.pi/(2*b)*np.tanh(a*np.pi/(2*b)) print('Numerical:', integrate_approx(1.0,2.0)) print('Exact:', integrate_exact(1.0,2.0)) assert True # leave this cell to grade the above integral def integrand(x,a,b): return np.exp(-a*x)*np.cos(b*x) def integrate_approx(a,b): I,e=integrate.quad(integrand,0,np.inf, args=(a,b)) return I def integrate_exact(a,b): return a/(a**2+b**2) print('Numerical:', integrate_approx(1.0,2.0)) print('Exact:', integrate_exact(1.0,2.0)) assert True # leave this cell to grade the above integral def integrand(x,p): return (1-np.cos(p*x))/x**2 def integrate_approx(p): I,e=integrate.quad(integrand,0,np.inf, args=(p)) return I def integrate_exact(p): return p*np.pi/2 print('Numerical:', integrate_approx(4.0)) print('Exact:', integrate_exact(4.0)) assert True # leave this cell to grade the above integral def integrand(x,a,b): return np.log(a**2+x**2)/(b**2+x**2) def integrate_approx(a,b): I,e=integrate.quad(integrand,0,np.inf, args=(a,b)) return I def integrate_exact(a,b): return np.pi/b*np.log(a+b) print('Numerical:', integrate_approx(3.0,4.0)) print('Exact:', integrate_exact(3.0,4.0)) assert True # leave this cell to grade the above integral def integrand(x,a,b): return np.sqrt(a**2-x**2) def integrate_approx(a,b): I,e=integrate.quad(integrand,0,a, args=(a,b)) return I def integrate_exact(a,b): return np.pi*a**2/4 print('Numerical:', integrate_approx(1.0,2.0)) print('Exact:', integrate_exact(1.0,2.0)) assert True # leave this cell to grade the above integral <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Euler's method Step4: The midpoint method is another numerical method for solving the above differential equation. In general it is more accurate than the Euler method. It uses the update equation Step6: You are now going to solve the following differential equation Step7: In the following cell you are going to solve the above ODE using four different algorithms
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np from scipy.integrate import odeint from IPython.html.widgets import interact, fixed def solve_euler(derivs, y0, x): Solve a 1d ODE using Euler's method. Parameters ---------- derivs : function The derivative of the diff-eq with the signature deriv(y,x) where y and x are floats. y0 : float The initial condition y[0] = y(x[0]). x : np.ndarray, list, tuple The array of times at which of solve the diff-eq. Returns ------- y : np.ndarray Array of solutions y[i] = y(x[i]) h=x[-1]-x[-2] data = [y0] for t in x[1:]: data.append(data[-1]+h*derivs(data[-1],t)) return data assert np.allclose(solve_euler(lambda y, x: 1, 0, [0,1,2]), [0,1,2]) def solve_midpoint(derivs, y0, x): Solve a 1d ODE using the Midpoint method. Parameters ---------- derivs : function The derivative of the diff-eq with the signature deriv(y,x) where y and x are floats. y0 : float The initial condition y[0] = y(x[0]). x : np.ndarray, list, tuple The array of times at which of solve the diff-eq. Returns ------- y : np.ndarray Array of solutions y[i] = y(x[i]) h=x[-1]-x[-2] data = [y0] for t in x[1:]: data.append(data[-1]+h*derivs(data[-1]+h/2*derivs(data[-1],t),t+h/2)) return data assert np.allclose(solve_euler(lambda y, x: 1, 0, [0,1,2]), [0,1,2]) def solve_exact(x): compute the exact solution to dy/dx = x + 2y. Parameters ---------- x : np.ndarray Array of x values to compute the solution at. Returns ------- y : np.ndarray Array of solutions at y[i] = y(x[i]). data = np.array(.25*np.exp(2*x)-.5*x-.25) return data assert np.allclose(solve_exact(np.array([0,1,2])),np.array([0., 1.09726402, 12.39953751])) x = np.linspace(0,1,11) def derivs(y, x): dy = x+2*y return dy euler_error = np.array(solve_euler(derivs, 0, x))-solve_exact(x) midpoint_error = np.array(solve_midpoint(derivs, 0, x))-solve_exact(x) odeint_error = np.array(odeint(derivs, 0, x)).flatten()-solve_exact(x) f = plt.figure(figsize = (9,6)) ax = plt.subplot(211) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') plt.plot(x,solve_euler(derivs, 0, x), label="Euler") plt.plot(x,solve_midpoint(derivs, 0, x), label="Midpoint") plt.plot(x,solve_exact(x), label="Exact") plt.plot(x,odeint(derivs, 0, x), label="ODEInt") plt.ylabel("y(x)") plt.xlabel("x") plt.title(r"Numerical Solutions to $\frac{dy}{dx}=x+2y$") plt.legend(loc = "best") ax = plt.subplot(212) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') plt.plot(x,abs(euler_error), label = "Euler Error") plt.plot(x,abs(midpoint_error), label = "Midpoint Error") plt.plot(x,abs(odeint_error), label = "ODEInt Error") plt.ylabel("Errors") plt.xlabel("x") plt.title(r"Errors of numerical solutions to $\frac{dy}{dx}=x+2y$") plt.legend(loc = "best") plt.tight_layout() assert True # leave this for grading the plots <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Survey Step2: Trivariate
<ASSISTANT_TASK:> Python Code: import dit from dit.pid.helpers import compare_measures from dit.pid.distributions import bivariates, trivariates dit.ditParams['print.exact'] = dit.ditParams['repr.print'] = True dit.ditParams['text.font'] = 'linechar' for name, dist in bivariates.items(): compare_measures(dist, name=name) for name, dist in trivariates.items(): compare_measures(dist, name=name) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1.3 Lecture des données métier Step2: 2 Exploration par Analyse en composantes principales Step3: La fonction définie ci-après affiche un nuage de points dans un plan factoriel. Step4: Calcul de la matrice des composantes principales. C'est aussi un changement (transformation) de base; de la base canonique dans la base des vecteurs propres. Step5: 2.2 Valeurs propres ou variances des composantes principales Step6: Un graphique plus explicite décrit les distribution de ces composantes par des diagrames boîtes; seules les premières sont affichées. Step7: Commenter la décroissance des variances, le choix éventuel d'une dimension ou nombre de composantes à retenir sur les 561. Step8: Q Commenter la séparation des deux types de situation par le premier axe. Step9: Graphe illisible en mettant les libellés en clair. Seule une * est représentée. Step10: Identification des variables participant le plus au premier axe. Ce n'est pas plus clair ! Seule la réprésentation des individus apporte finalement des éléments de compréhension. Step11: 3 Exploration par Analyse Factorielle Discriminante (AFD) Step12: 3.2 Représentation des individus Step13: Q Que dire de la séparation des classes. Sont-elles toutes séparables deux à deux ? Step14: 4.2. Prévision de l'activité pour l'échantillon test Step15: Q Quelles sont les classes qui restent difficiles à discriminer ? Step16: 5.2. Prévision de l'activité pour l'échantillon test
<ASSISTANT_TASK:> Python Code: # Importation des principals librairies et # Affichage des graphiques dans le notebook %matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt import time # Lecture des données d'apprentissage # Attention, il peut y avoir plusieurs espaces comme séparateur dans le fichier Xtrain = pd.read_table("X_train.txt", sep = '\s+', header = None) Xtrain.head() # Variable cible ytrain = pd.read_table("y_train.txt", sep = '\s+', header = None, names = list('y')) # Le type dataFrame est inutile et même gênant pour les la suite ytrain = ytrain["y"] # Lecture des données de test Xtest = pd.read_table("X_test.txt", sep = '\s+', header = None) Xtest.shape ytest = pd.read_table("y_test.txt", sep = '\s+', header = None, names = list('y')) ytest = ytest["y"] # Significaiton des codes de y label_dic = {1 : "Marcher", 2 : "Monter escalier", 3 : "Descendre escalier", 4 : "Assis", 5 : "Debout", 6 : "Couche"} labels = label_dic.values() from sklearn.decomposition import PCA from sklearn.preprocessing import scale def plot_pca(X_R, fig, ax, nbc, nbc2): for i in range(6): xs = X_R[ytrain == i + 1, nbc - 1] ys = X_R[ytrain == i + 1, nbc2 - 1] label = label_dic[i + 1] color = cmaps(i) ax.scatter(xs, ys, color = color, alpha = .8, s = 1, label = label) ax.set_xlabel("PC%d : %.2f %%" %(nbc, pca.explained_variance_ratio_[nbc - 1] * 100), fontsize = 10) ax.set_ylabel("PC%d : %.2f %%" %(nbc2, pca.explained_variance_ratio_[nbc2 - 1] * 100), fontsize = 10) pca = PCA() X_r = pca.fit_transform(Xtrain) plt.plot(pca.explained_variance_ratio_[0:10]) plt.show() plt.boxplot(X_r[:,0:10]) plt.show() cmaps = plt.get_cmap("Accent") fig = plt.figure(figsize = (20, 20)) count = 0 for nbc, nbc2,count in [(1, 2, 1), (1, 3, 2), (1, 4, 3), (2, 3, 5), (2, 4, 6), (3, 4, 9)] : ax = fig.add_subplot(3, 3, count) plot_pca(X_r, fig, ax, nbc, nbc2) plt.legend(loc = 'upper right', bbox_to_anchor = (1.8, 0.5), markerscale = 10) plt.show() with open('features.txt', 'r') as content_file: featuresNames = content_file.read() columnsNames = list(map(lambda x : x.split(" ")[1], featuresNames.split("\n")[:-1])) # coordonnées des variables coord1 = pca.components_[0] * np.sqrt(pca.explained_variance_[0]) coord2 = pca.components_[1] * np.sqrt(pca.explained_variance_[1]) fig = plt.figure(figsize = (8,8)) ax = fig.add_subplot(1, 1, 1) for i, j in zip(coord1, coord2, ): plt.text(i, j, "*") plt.arrow(0, 0, i, j, color = 'r') plt.axis((-1.2, 1.2, -1.2, 1.2)) # cercle c = plt.Circle((0,0), radius = 1, color = 'b', fill = False) ax.add_patch(c) plt.show() np.array(columnsNames)[abs(coord1) > .6] from sklearn.discriminant_analysis import LinearDiscriminantAnalysis method = LinearDiscriminantAnalysis() lda = method.fit(Xtrain, ytrain) X_r2 = lda.transform(Xtrain) fig = plt.figure(figsize= (20, 20)) count = 0 for nbc, nbc2,count in [(1, 2, 1), (1, 3, 2), (1, 4, 3), (2, 3, 5), (2, 4, 6), (3, 4, 9)] : ax = fig.add_subplot(3, 3, count) plot_pca(X_r2, fig, ax, nbc, nbc2) plt.legend(loc = 'upper right', bbox_to_anchor = (1.8, 0.5), markerscale = 10) plt.show() method = LinearDiscriminantAnalysis() ts = time.time() method.fit(Xtrain, ytrain) scoreLDA = method.score(Xtest, ytest) ypredLDA = method.predict(Xtest) te = time.time() from sklearn.metrics import confusion_matrix print("Score : %f, time running : %d secondes" %(scoreLDA, te - ts)) pd.DataFrame(confusion_matrix(ytest, ypredLDA), index = labels, columns=labels) from sklearn.linear_model import LogisticRegression ts = time.time() method = LogisticRegression() method.fit(Xtrain, ytrain) scoreLR = method.score(Xtest, ytest) ypredLR = method.predict(Xtest) te = time.time() from sklearn.metrics import confusion_matrix print("Score : %f, time running : %d secondes" %(scoreLR, te-ts)) pd.DataFrame(confusion_matrix(ytest, ypredLR), index = labels, columns=labels) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Language Translation Step3: Explore the Data Step6: Implement Preprocessing Function Step8: Preprocess all the data and save it Step10: Check Point Step12: Check the Version of TensorFlow and Access to GPU Step15: Build the Neural Network Step18: Process Decoding Input Step21: Encoding Step24: Decoding - Training Step27: Decoding - Inference Step30: Build the Decoding Layer Step33: Build the Neural Network Step34: Neural Network Training Step36: Build the Graph Step39: Train Step41: Save Parameters Step43: Checkpoint Step46: Sentence to Sequence Step48: Translate
<ASSISTANT_TASK:> Python Code: DON'T MODIFY ANYTHING IN THIS CELL import helper import problem_unittests as tests source_path = 'data/small_vocab_en' target_path = 'data/small_vocab_fr' source_text = helper.load_data(source_path) target_text = helper.load_data(target_path) view_sentence_range = (0, 10) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in source_text.split()}))) sentences = source_text.split('\n') word_counts = [len(sentence.split()) for sentence in sentences] print('Number of sentences: {}'.format(len(sentences))) print('Average number of words in a sentence: {}'.format(np.average(word_counts))) print() print('English sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(source_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) print() print('French sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(target_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) def text_to_ids(source_text, target_text, source_vocab_to_int, target_vocab_to_int): Convert source and target text to proper word ids :param source_text: String that contains all the source text. :param target_text: String that contains all the target text. :param source_vocab_to_int: Dictionary to go from the source words to an id :param target_vocab_to_int: Dictionary to go from the target words to an id :return: A tuple of lists (source_id_text, target_id_text) source_id_text = [] target_id_text = [] for sentence in source_text.split('\n'): source_ids_words = [source_vocab_to_int[word] for word in sentence.split()] source_id_text.append(source_ids_words) for sentence in target_text.split('\n'): sentence = sentence + ' <EOS>' target_ids_words = [target_vocab_to_int[word] for word in sentence.split()] target_id_text.append(target_ids_words) return source_id_text, target_id_text DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_text_to_ids(text_to_ids) DON'T MODIFY ANYTHING IN THIS CELL helper.preprocess_and_save_data(source_path, target_path, text_to_ids) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np import helper (source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess() DON'T MODIFY ANYTHING IN THIS CELL from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) in [LooseVersion('1.0.0'), LooseVersion('1.0.1')], 'This project requires TensorFlow version 1.0 You are using {}'.format(tf.__version__) print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) def model_inputs(): Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate, keep probability) # TODO: Implement Function input_data = tf.placeholder(tf.int32, [None, None],name="input") targets = tf.placeholder(tf.int32, [None, None], name="targets") learning_rate = tf.placeholder(tf.float32, name="learning_rate") keep_prob = tf.placeholder(tf.float32, name="keep_prob") return input_data, targets, learning_rate, keep_prob DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_model_inputs(model_inputs) def process_decoding_input(target_data, target_vocab_to_int, batch_size): Preprocess target data for decoding :param target_data: Target Placeholder :param target_vocab_to_int: Dictionary to go from the target words to an id :param batch_size: Batch Size :return: Preprocessed target data # TODO: Implement Function ending = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1]) dec_input = tf.concat([tf.fill([batch_size, 1], target_vocab_to_int['<GO>']), ending], 1) return dec_input DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_process_decoding_input(process_decoding_input) def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob): Create encoding layer :param rnn_inputs: Inputs for the RNN :param rnn_size: RNN Size :param num_layers: Number of layers :param keep_prob: Dropout keep probability :return: RNN state # TODO: Implement Function # Encoder enc_cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.BasicLSTMCell(rnn_size)] * num_layers) _, enc_state = tf.nn.dynamic_rnn(tf.contrib.rnn.DropoutWrapper(enc_cell, keep_prob), rnn_inputs, dtype=tf.float32) return enc_state DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_encoding_layer(encoding_layer) def decoding_layer_train(encoder_state, dec_cell, dec_embed_input, sequence_length, decoding_scope, output_fn, keep_prob): Create a decoding layer for training :param encoder_state: Encoder State :param dec_cell: Decoder RNN Cell :param dec_embed_input: Decoder embedded input :param sequence_length: Sequence Length :param decoding_scope: TenorFlow Variable Scope for decoding :param output_fn: Function to apply the output layer :param keep_prob: Dropout keep probability :return: Train Logits # TODO: Implement Function # Training Decoder train_decoder_fn = tf.contrib.seq2seq.simple_decoder_fn_train(encoder_state) train_pred, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder( tf.contrib.rnn.DropoutWrapper(dec_cell, keep_prob), train_decoder_fn, dec_embed_input, sequence_length, scope=decoding_scope) # Apply output function train_logits = output_fn(train_pred) return train_logits DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer_train(decoding_layer_train) def decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, maximum_length, vocab_size, decoding_scope, output_fn, keep_prob): Create a decoding layer for inference :param encoder_state: Encoder state :param dec_cell: Decoder RNN Cell :param dec_embeddings: Decoder embeddings :param start_of_sequence_id: GO ID :param end_of_sequence_id: EOS Id :param maximum_length: The maximum allowed time steps to decode :param vocab_size: Size of vocabulary :param decoding_scope: TensorFlow Variable Scope for decoding :param output_fn: Function to apply the output layer :param keep_prob: Dropout keep probability :return: Inference Logits # TODO: Implement Function infer_decoder_fn = tf.contrib.seq2seq.simple_decoder_fn_inference( output_fn, encoder_state, dec_embeddings, start_of_sequence_id, end_of_sequence_id, maximum_length - 1, vocab_size) inference_logits, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder(tf.contrib.rnn.DropoutWrapper(dec_cell, keep_prob), infer_decoder_fn, scope=decoding_scope) return inference_logits DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer_infer(decoding_layer_infer) def decoding_layer(dec_embed_input, dec_embeddings, encoder_state, vocab_size, sequence_length, rnn_size, num_layers, target_vocab_to_int, keep_prob): Create decoding layer :param dec_embed_input: Decoder embedded input :param dec_embeddings: Decoder embeddings :param encoder_state: The encoded state :param vocab_size: Size of vocabulary :param sequence_length: Sequence Length :param rnn_size: RNN Size :param num_layers: Number of layers :param target_vocab_to_int: Dictionary to go from the target words to an id :param keep_prob: Dropout keep probability :return: Tuple of (Training Logits, Inference Logits) # TODO: Implement Function start_of_sequence_id = target_vocab_to_int['<GO>'] end_of_sequence_id = target_vocab_to_int['<EOS>'] cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.BasicLSTMCell(rnn_size), output_keep_prob=keep_prob)] * num_layers) with tf.variable_scope("decoding") as decoding_scope: output_fn = lambda logits: tf.contrib.layers.fully_connected(logits, vocab_size, None, scope=decoding_scope) train_logits = decoding_layer_train(encoder_state, cell, dec_embed_input, sequence_length, decoding_scope, output_fn, keep_prob) with tf.variable_scope("decoding", reuse=True) as infer_scope: infer_logits = decoding_layer_infer(encoder_state, cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, sequence_length, vocab_size, infer_scope, output_fn, keep_prob) return train_logits, infer_logits DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer(decoding_layer) def seq2seq_model(input_data, target_data, keep_prob, batch_size, sequence_length, source_vocab_size, target_vocab_size, enc_embedding_size, dec_embedding_size, rnn_size, num_layers, target_vocab_to_int): Build the Sequence-to-Sequence part of the neural network :param input_data: Input placeholder :param target_data: Target placeholder :param keep_prob: Dropout keep probability placeholder :param batch_size: Batch Size :param sequence_length: Sequence Length :param source_vocab_size: Source vocabulary size :param target_vocab_size: Target vocabulary size :param enc_embedding_size: Decoder embedding size :param dec_embedding_size: Encoder embedding size :param rnn_size: RNN Size :param num_layers: Number of layers :param target_vocab_to_int: Dictionary to go from the target words to an id :return: Tuple of (Training Logits, Inference Logits) # Encoder embedding enc_embed_input = tf.contrib.layers.embed_sequence(input_data, source_vocab_size, enc_embedding_size) encoder_state = encoding_layer(enc_embed_input, rnn_size, num_layers, keep_prob) dec_input = process_decoding_input(target_data, target_vocab_to_int, batch_size) # Decoder Embedding dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, dec_embedding_size])) dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input) train_logits, infer_logits = decoding_layer(dec_embed_input, dec_embeddings, encoder_state, target_vocab_size, sequence_length, rnn_size, num_layers, target_vocab_to_int, keep_prob) return train_logits, infer_logits DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_seq2seq_model(seq2seq_model) # Number of Epochs epochs = 20 # Batch Size batch_size = 512 # RNN Size rnn_size = 128 # Number of Layers num_layers = 2 # Embedding Size encoding_embedding_size = 227 decoding_embedding_size = 227 # Learning Rate learning_rate = 0.001 # Dropout Keep Probability keep_probability = 0.8 DON'T MODIFY ANYTHING IN THIS CELL save_path = 'checkpoints/dev' (source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess() max_source_sentence_length = max([len(sentence) for sentence in source_int_text]) train_graph = tf.Graph() with train_graph.as_default(): input_data, targets, lr, keep_prob = model_inputs() sequence_length = tf.placeholder_with_default(max_source_sentence_length, None, name='sequence_length') input_shape = tf.shape(input_data) train_logits, inference_logits = seq2seq_model( tf.reverse(input_data, [-1]), targets, keep_prob, batch_size, sequence_length, len(source_vocab_to_int), len(target_vocab_to_int), encoding_embedding_size, decoding_embedding_size, rnn_size, num_layers, target_vocab_to_int) tf.identity(inference_logits, 'logits') with tf.name_scope("optimization"): # Loss function cost = tf.contrib.seq2seq.sequence_loss( train_logits, targets, tf.ones([input_shape[0], sequence_length])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) DON'T MODIFY ANYTHING IN THIS CELL import time def get_accuracy(target, logits): Calculate accuracy max_seq = max(target.shape[1], logits.shape[1]) if max_seq - target.shape[1]: target = np.pad( target, [(0,0),(0,max_seq - target.shape[1])], 'constant') if max_seq - logits.shape[1]: logits = np.pad( logits, [(0,0),(0,max_seq - logits.shape[1]), (0,0)], 'constant') return np.mean(np.equal(target, np.argmax(logits, 2))) train_source = source_int_text[batch_size:] train_target = target_int_text[batch_size:] valid_source = helper.pad_sentence_batch(source_int_text[:batch_size]) valid_target = helper.pad_sentence_batch(target_int_text[:batch_size]) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(epochs): for batch_i, (source_batch, target_batch) in enumerate( helper.batch_data(train_source, train_target, batch_size)): start_time = time.time() _, loss = sess.run( [train_op, cost], {input_data: source_batch, targets: target_batch, lr: learning_rate, sequence_length: target_batch.shape[1], keep_prob: keep_probability}) batch_train_logits = sess.run( inference_logits, {input_data: source_batch, keep_prob: 1.0}) batch_valid_logits = sess.run( inference_logits, {input_data: valid_source, keep_prob: 1.0}) train_acc = get_accuracy(target_batch, batch_train_logits) valid_acc = get_accuracy(np.array(valid_target), batch_valid_logits) end_time = time.time() print('Epoch {:>3} Batch {:>4}/{} - Train Accuracy: {:>6.3f}, Validation Accuracy: {:>6.3f}, Loss: {:>6.3f}' .format(epoch_i, batch_i, len(source_int_text) // batch_size, train_acc, valid_acc, loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_path) print('Model Trained and Saved') DON'T MODIFY ANYTHING IN THIS CELL # Save parameters for checkpoint helper.save_params(save_path) DON'T MODIFY ANYTHING IN THIS CELL import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, (source_vocab_to_int, target_vocab_to_int), (source_int_to_vocab, target_int_to_vocab) = helper.load_preprocess() load_path = helper.load_params() def sentence_to_seq(sentence, vocab_to_int): Convert a sentence to a sequence of ids :param sentence: String :param vocab_to_int: Dictionary to go from the words to an id :return: List of word ids # TODO: Implement Function return [vocab_to_int.get(word, vocab_to_int['<UNK>']) for word in sentence.lower().split()] DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_sentence_to_seq(sentence_to_seq) translate_sentence = 'he saw a old yellow truck .' DON'T MODIFY ANYTHING IN THIS CELL translate_sentence = sentence_to_seq(translate_sentence, source_vocab_to_int) loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_path + '.meta') loader.restore(sess, load_path) input_data = loaded_graph.get_tensor_by_name('input:0') logits = loaded_graph.get_tensor_by_name('logits:0') keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0') translate_logits = sess.run(logits, {input_data: [translate_sentence], keep_prob: 1.0})[0] print('Input') print(' Word Ids: {}'.format([i for i in translate_sentence])) print(' English Words: {}'.format([source_int_to_vocab[i] for i in translate_sentence])) print('\nPrediction') print(' Word Ids: {}'.format([i for i in np.argmax(translate_logits, 1)])) print(' French Words: {}'.format([target_int_to_vocab[i] for i in np.argmax(translate_logits, 1)])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Problem 1 Step2: Generate a set of $50$ one-dimensional inputs regularly spaced between -5 and 5 and store them in a variable called x, then compute the covariance matrix for these inputs, for $A=\Gamma=1$, store the results in a variable called K, and display it using matplotlib's imshow function. Step3: Problem 1b Step4: Now draw 5 samples from the distribution and plot them. Step5: Problem 1c Step6: Execute the cell below to define a handful of observations Step7: Evaluate and plot the mean and 95% confidence interval of the resulting posterior distribution, as well as a few samples, for a squared exponential GP with $A=\Gamma=1$, assuming the measurement uncertainty on each observation was 0.1 Step8: Some things to note Step9: Try evaluating the likelihood of the model given the observations you defined in problem 1 by executing the cell below. Hopefully it will run without errors... Step10: Now try changing the covariance parameters and the observational uncertainties, and see how that affects the likelihood. Does it behave as you would expect, given the way these parameters affected the predictive distribution? Step11: Plot the data and the predictive distribution and samples for the best-fit hyper-parameters Step12: That may not have worked quite as well as you might have liked -- it's normal Step13: Problem 3a Step14: Problem 3b Step15: Now you are ready to fit for all the hyper-parameters simultaneously Step16: NB Step17: NB Step18: Now try fitting the data using the LinearMean mean function and the M32Kernel covariance function. Step19: How does the best fit likelihood compare to what you obtained using the SEKernel? Which kernel would you adopt if you had to chose between the two. Write your answer in the cell below. Step20: Now evaluate the BIC in each case. Which model is preferred? Step21: Thus the model with a non-zero mean function is strongly preferred (BIC differences $> 10$ are generally considered to represent very strong support for one model over the other).
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt from scipy.spatial.distance import cdist from numpy.random import multivariate_normal from numpy.linalg import inv from numpy.linalg import slogdet from scipy.optimize import fmin def SEKernel(par, x1, x2): A, Gamma = par D2 = cdist(# complete return # complete x = np.linspace(# complete K = # complete plt.imshow(K,interpolation='none'); m = # complete sig = # complete plt.plot(x,m,'k-') plt.fill_between(x,m+2*sig,m-2*sig,color='k',alpha=0.2) plt.xlabel(r'$x$') plt.ylabel(r'$y$') plt.title('Prior distribution'); samples = multivariate_normal(# complete plt.plot(x,samples.T) plt.xlabel(r'$x$') plt.ylabel(r'$y$') plt.title('Samples from prior distribution'); def Pred_GP(CovFunc, CovPar, xobs, yobs, eobs, xtest): # evaluate the covariance matrix for pairs of observed inputs K = # complete # add white noise K += np.identity(# complete # evaluate the covariance matrix for pairs of test inputs Kss = # complete # evaluate the cross-term Ks = # complete # invert K Ki = inv(K) # evaluate the predictive mean m = np.dot(# complete # evaluate the covariance cov = # complete return m, cov xobs = np.array([-4,-2,0,1,2]) yobs = np.array([1.0,-1.0, -1.0, 0.7, 0.0]) eobs = 0.1 m,C=Pred_GP(# complete sig = # complete samples = multivariate_normal(# complete plt.errorbar(xobs,yobs,yerr=2*eobs,capsize=0,fmt='k.') plt.plot(x,m,'k-') plt.fill_between(x,m+2*sig,m-2*sig,color='k',alpha=0.2) plt.plot(x,samples.T,alpha=0.5) plt.xlabel(r'$x$') plt.ylabel(r'$y$') plt.title('Predictive distribution'); def NLL_GP(p,CovFunc,x,y,e): # Evaluate the covariance matrix K = # complete # Add the white noise term K += # complete # invert it Ki = inv(K) # evaluate each of the three terms in the NLL term1 = # complete term2 = # complete term3 = # complete # return the total return term1 + term2 + term3 print(NLL_GP(# complete p0 = [1.0,1.0] p1 = fmin(NLL_GP,p0,args=(# complete print(p1) # You can reuse code from Problem 1c almost exactly here... xobs = np.linspace(-10,10,50) linear_trend = 0.03 * xobs - 0.3 correlated_noise = multivariate_normal(np.zeros(len(xobs)),SEKernel([0.005,2.0],xobs,xobs),1).flatten() eobs = 0.01 white_noise = np.random.normal(0,eobs,len(xobs)) yobs = linear_trend + correlated_noise + white_noise plt.errorbar(xobs,yobs,yerr=eobs,fmt='k.',capsize=0) plt.xlabel(r'$x$') plt.ylabel(r'$y$'); def LinearMean(p,x): return # complete pm0 = [0.03, -0.3] m = # complete plt.errorbar(xobs,yobs,yerr=eobs,fmt='k.',capsize=0) plt.plot(xobs,m,'r-') plt.xlabel(r'$x$') plt.ylabel(r'$y$'); def NLL_GP2(p,CovFunc,x,y,e, MeanFunc=None, nmp = 0): if MeanFunc: pc = p[# complete pm = p[# complete r = y - # complete else: pc = p[:] r = y[:] # Evaluate the covariance matrix K = # complete # Add the white noise term K += # complete # invert it Ki = inv(K) # evaluate each of the three terms in the NLL term1 = # complete term2 = # complete term3 = # complete # return the total return term1 + term2 + term3 p0 = [0.005,2.0,0.03,-0.3] print(NLL_GP2# complete p1 = fmin(# complete print(p1) # Generate test inputs (values at which we ant to evaluate the predictive distribution) x = np.linspace(# complete # Evaluate mean function at observed inputs, and compute residuals mobs = # complete robs = yobs-mobs # Evaluate stochastic component at test inputs m,C = Pred_GP(# complete # Evaluate mean function at test inputs m += # complete sig = # complete plt.errorbar(xobs,yobs,yerr=2*eobs,capsize=0,fmt='k.') plt.plot(x,m,'k-') plt.fill_between(x,m+2*sig,m-2*sig,color='k',alpha=0.2) plt.xlabel(r'$x$') plt.ylabel(r'$y$') plt.title('Maximum likelihood distribution'); def M32Kernel(par, x1, x2): A, Gamma = par R = cdist(# complete return # complete p0 = [0.005,2.0,0.03,-0.3] print(NLL_GP2(# complete p1 = fmin(# complete print(p1) print(NLL_GP2(# complete # Copy and paste your answer to the previous problem and modify it as needed N = len(xobs) BIC_mean = # complete print(BIC_mean) BIC_no_mean = # complete print(BIC_no_mean) # Plot the data plt.errorbar(xobs,yobs,yerr=2*eobs,capsize=0,fmt='k.') plt.xlabel(r'$x$') plt.ylabel(r'$y$') plt.title('Model comparison') # Evaluate and plot the predictive distribution with a mean function mobs = # complete robs = yobs-mobs m,C = Pred_GP(# complete m += # complete sig = # complete plt.plot(x,m,'b-') plt.fill_between(x,m+2*sig,m-2*sig,color='b',alpha=0.2) # Now do the same for the model without mean function m,C = Pred_GP(# complete sig = # complete plt.plot(x,m,'r-') plt.fill_between(x,m+2*sig,m-2*sig,color='r',alpha=0.2) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: def get_row(lst, x): coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x] return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Loss under a Mixture of Gaussians model Step2: We use autograd for functions that deliver gradients of those losses Step3: Just a pretty display Step4: Learning, starting from random weights and bias.
<ASSISTANT_TASK:> Python Code: def sigmoid(phi): return 1.0/(1.0 + np.exp(-phi)) def calc_prob_class1(params): # Sigmoid perceptron ('logistic regression') tildex = X - params['mean'] W = params['wgts'] phi = np.dot(tildex, W) return sigmoid(phi) # Sigmoid perceptron ('logistic regression') def calc_membership(params): # NB. this is just a helper function for training_loss really. tildex = X - params['mean'] W, r2, R2 = params['wgts'], params['r2'], params['R2'] Dr2 = np.power(np.dot(tildex, W), 2.0) L2X = (np.power(tildex, 2.0)).sum(1) DR2 = L2X - Dr2 dist2 = (Dr2/r2) + (DR2/R2) # rescaled 'distance' to the shifted 'origin' membership = np.exp(-0.5*dist2) #print(membership) return np.array(membership) def classification_loss(params): membership = calc_membership(params) Y = calc_prob_class1(params) return np.sum(membership*(Targ*np.log(Y) + (1-Targ)*np.log(1-Y))) def MoG_loss(params): membership = calc_membership(params) return np.sum(membership) classification_gradient = grad(classification_loss) MoG_gradient = grad(MoG_loss) # Be able to show the current solution, against the data in 2D. def show_result(params, X, Targ): print("Parameters:") for key in params.keys(): print(key,'\t', params[key]) print("Loss:", training_loss(params)) membership = calc_membership(params) Y = calc_prob_class1(params) pl.clf() marksize = 8 cl ={0:'red', 1:'black'} for i, x in enumerate(X): pl.plot(x[0],x[1],'x',color=cl[int(Targ[i])],alpha=.4,markersize=marksize) pl.plot(x[0],x[1],'o',color=cl[int(Targ[i])],alpha=1.-float(abs(Targ[i]-Y[i])),markersize=marksize) pl.axis('equal') s = X.ravel().max() - X.ravel().min() m, w = params['mean'], params['wgts'] # Show the mean in blue #pl.arrow(0, 0, m[0], m[1], head_width=0.25, head_length=0.5, fc='b', ec='b', linewidth=1, alpha=.95) # Show the perceptron decision boundary, in green pl.arrow(m[0]-w[0], m[1]-w[1], w[0], w[1], head_width=s, head_length=s/5, fc='g', ec='g', linewidth=3, alpha=.5) pl.show() def do_one_learning_step(params,X,Targ,rate): grads = classification_gradient(params) params['wgts'] = params['wgts'] + rate * grads['wgts'] # one step of learning params['mean'] = params['mean'] + rate * grads['mean'] # one step of learning return (params) init_w = rng.normal(0,1,size=(Nins)) init_m = 4.*rng.normal(0,1,size=(Nins)) rate = 0.5 / Npats params = {'wgts':init_w, 'mean':init_m, 'r2':1000.0, 'R2':1000.0} for t in range(250): params = do_one_learning_step(params,X,Targ,rate) show_result(params, X, Targ) Y = sigmoid(np.dot(X-params['mean'], params['wgts'])) print('vanilla loss: ', np.sum(Targ*np.log(Y) + (1-Targ)*np.log(1-Y))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: What's the Fast Inverse Root Method you ask? Step2: Close Enough! Step3: Here, $$\begin{align} Step4: A Tale of two Variables Step5: Recall that the log-log plot for $y = M \cdot x^C$ is linear because Step6: Notice how as $C$ gets closer to $-\frac{1}{2}$, the 0x5f3759df line also gets closer to $x^C$. Step7: Graphing Calculator Woes Step8: Hmm, weren't we expecting 0x5f3759df instead of 0x5f400000? Step9: ```c Step10: Hey, that actually looks pretty good! But what about the errors? Step11: An error of around $10\%$? That's like nothing!
<ASSISTANT_TASK:> Python Code: setup_html = r''' <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/github-fork-ribbon-css/0.2.0/gh-fork-ribbon.min.css" /> <!--[if lt IE 9]> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/github-fork-ribbon-css/0.2.0/gh-fork-ribbon.ie.min.css" /> <![endif]--> <style> .github-fork-ribbon::after {line-height: initial !important;padding: initial !important;} .github-fork-ribbon {font-size: 14px;} .navigate-up, .navigate-down { display: none !important; } </style> <script> $(document).ready(function() { $("body").append('<a class="github-fork-ribbon" href="http://www.bullshitmath.lol" title="Bullshit Math">Bullshit Math</a>') }); </script> ''' # IPython.display.display_html(setup_html, raw=True) hide_code_in_slideshow() %matplotlib inline from struct import pack, unpack import numpy as np import matplotlib.pyplot as plt @np.vectorize def sharp(x): return unpack('I', pack('f', x))[0] @np.vectorize def flat(y): return unpack('f', pack('I', int(y) & 0xffffffff))[0] star_long_star_amp = sharp; star_float_star_amp = flat; hide_code_in_slideshow(); @np.vectorize def rsqrt(x): # float rsqrt(float x) { i = star_long_star_amp(x); # long i = * ( long * ) &x; i = 0x5f3759df - ( i >> 1 ); # i = 0x5f3759df - ( i >> 1 ); return star_float_star_amp(i); # return * ( float * ) &i; # } # Construct a plot fig = plt.figure(figsize=(16,8)); ax = plt.axes(); # Plot the approximation and the actual inverse sqrt function x = np.linspace(1, 50, 5000); approximation, = ax.plot(x, rsqrt(x)) actual, = ax.plot(x, 1/np.sqrt(x)) fig.legend(handles=[approximation, actual], labels=[r'qsqrt(x)', r'$\frac{1}{\sqrt{x}}$'], fontsize=20); fig.suptitle(r"$\frac{1}{\sqrt{x}}$ versus qsqrt(x)", fontsize=26); hide_code_in_slideshow() from struct import pack, unpack to_long = lambda hole: unpack('i', hole)[0] # y = (long*) x to_float = lambda hole: unpack('f', hole)[0] # y = (float*) x from_long = lambda hole: pack('i', int(hole) % 0x80000000) # long* y = &x from_float = lambda hole: pack('f', float(hole)) # float* y = &x hide_code_in_slideshow() @np.vectorize def f2l(x): return to_long(from_float(x)) @np.vectorize def l2f(y): return to_float(from_long(y)) int( l2f(f2l(1) + f2l(1)) ) # 1 + 1 is ... def foobar(M, C): return np.vectorize(lambda x: l2f(M + C * f2l(x))) # rsqrt(x) is instantiated with M = 0x5f3759df and C = -1/2 rsqrt = foobar(0x5f3759df, -1.0/2.0) import matplotlib matplotlib.rcParams['text.usetex'] = False matplotlib.rcParams['text.latex.unicode'] = False x = np.linspace(1, 1000, 5000) allM = (1 << 26, 1 << 28, 0x5f3759df) properties = { (0, 0): {'M': allM, 'C': -2}, (1, 0): {'M': allM, 'C': 8}, (0, 1): {'M': allM, 'C': 0.3}, (1, 1): {'M': allM, 'C': -0.6}, } fig, axarr = plt.subplots(2, 2, figsize=(14,8)); for key, property in properties.items(): C = property['C'] axarr[key].set_ylim(1e-39, 1e41) handle, = axarr[key].loglog(x, x ** C, linestyle='dotted'); handles = [handle] for M in property['M']: baz = foobar(M, C) kwargs = {'ls' : 'dashed'} if M == 0x5f3759df else {} handle, = axarr[key].loglog(x, np.abs(baz(x)), **kwargs) handles.append(handle) axarr[key].set_title(r'For slope C = $%s$, ${\rm foobar}_{M,%s}(x)$' % (C, C)) axarr[key].legend( handles, [ r'$x^{%s}$' % C, r'$M = 2^{26}$', r'$M = 2^{28}$', r'$M = {\rm 0x5f3759df}$' ], loc=4) hide_code_in_slideshow() from IPython.display import HTML from matplotlib import animation animation.Animation._repr_html_ = lambda anim: anim.to_html5_video() x = np.linspace(1, 1000, 5000) allM = (1 << 26, 1 << 28, 0x5f3759df) fig = plt.figure(figsize=(14,8)) ax = plt.axes(ylim=(1e-39, 1e41)) def plotSomeMagic(C, fig, ax, handles=None): if not handles: handle, = ax.loglog(x, x ** C, linestyle='dotted'); handles = [handle] for M in allM: baz = foobar(M, C) kwargs = {'ls' : 'dashed'} if M == 0x5f3759df else {} handle, = ax.loglog(x, np.abs(baz(x)), **kwargs) handles.append(handle) else: handles[0].set_data(x, x ** C) baz = foobar(allM[0], C) handles[1].set_data(x, np.abs(baz(x))) baz = foobar(allM[1], C) handles[2].set_data(x, np.abs(baz(x))) baz = foobar(allM[2], C) handles[3].set_data(x, np.abs(baz(x))) ax.set_title(r'For slope C = $%s$, ${\rm foobar}_{M,%s}(x)$' % (C, C)) ax.legend( handles, [ r'$x^{%s}$' % C, r'$M = 2^{26}$', r'$M = 2^{28}$', r'$M = {\rm 0x5f3759df}$' ], loc=4) return tuple(handles) handles = plotSomeMagic(0, fig, ax) # initialization function: plot the background of each frame def init(): return plotSomeMagic(1, fig, ax, handles) # animation function. This is called sequentially def animate(i): return plotSomeMagic(i, fig, ax, handles) hide_code_in_slideshow() video = animation.FuncAnimation(fig, animate, init_func=init, frames=np.arange(-2,8,0.10), interval=100, blit=True) plt.close(); video # What is 1#? display(Latex(r'Just $\textsf{f2l}(1) = \textsf{%s}$.' % hex(f2l(1)))) # What about inverse square-root? display(Latex(r'For the inverse square-root, its magical constant should be \ $$\left(1 - \frac{-1}{2}\right)\textsf{f2l}(1) = \textsf{%s}$$' % hex(3 * f2l(1) // 2))) hide_code_in_slideshow() def qexp(C): # (1 - C) * f2l(1) + C * f2l(x) return np.vectorize(lambda x: l2f((1 - C) * f2l(1) + C * f2l(x))) x = np.linspace(1, 1000, 5000) properties = { (0, 0): {'M': allM, 'C': -1}, (1, 0): {'M': allM, 'C': 2}, (0, 1): {'M': allM, 'C': 0.3}, (1, 1): {'M': allM, 'C': -0.6}, } fig, axarr = plt.subplots(2, 2, figsize=(14,8)); for key, property in properties.items(): C = property['C'] handle, = axarr[key].plot(x, x ** C); handles = [handle] baz = qexp(C) handle, = axarr[key].plot(x, baz(x)) handles.append(handle) # axarr[key].set_title(r'For slope C = $%s$, ${\rm foobar}_{M,%s}(x)$' % (C, C)) axarr[key].legend( handles, [ r'$x^{%s}$' % C, r'$M^* = $ %s' % hex(int(C * sharp(1))), ], loc=4) hide_code_in_slideshow() from matplotlib.ticker import FuncFormatter def to_percent(y, position): # Ignore the passed in position. This has the effect of scaling the default # tick locations. s = str(int(100 * y)) # The percent symbol needs escaping in latex if matplotlib.rcParams['text.usetex'] is True: return s + r'$\%$' else: return s + '%' # Create the formatter using the function to_percent. This multiplies all the # default labels by 100, making them all percentages formatter = FuncFormatter(to_percent) # ax.yaxis.set_major_formatter(formatter) hide_code_in_slideshow() x = np.linspace(1, 1000, 5000) properties = { (0, 0): {'C': -1}, (1, 0): {'C': 2}, (0, 1): {'C': 0.3}, (1, 1): {'C': -0.6}, } fig, axarr = plt.subplots(2, 2, figsize=(14,8)); for key, property in properties.items(): axarr[key].set_ylim(0, 0.5) axarr[key].yaxis.set_major_formatter(formatter) C = property['C'] baz = qexp(C) handle, = axarr[key].plot(x, np.abs(x ** C - baz(x))/(x ** C)); axarr[key].set_title(r'Relative error for $x^{%s}$' % C) axarr[key].legend( [handle], [r'Relative error for $x^{%s}$' % C]) hide_code_in_slideshow() %%html <div id="meh"> <small style="font-size: 8px;">[Double Click for Code]</small> <style> .hide-in-slideshow-meh { display: None ! important; } </style> </div> <script type="text/javascript"> var show_meh = function() { var p = $("#meh"); var orig = p; if (p.length==0) return; while (!p.hasClass("cell")) { p=p.parent(); if (p.prop("tagName") =="body") return; } var cell = p; cell.dblclick(function() { if (!orig.hasClass("hide-in-slideshow-meh")) { cell.find(".input").removeClass("hide-in-slideshow-meh"); orig.addClass("hide-in-slideshow-meh"); } else { cell.find(".input").addClass("hide-in-slideshow-meh"); orig.removeClass("hide-in-slideshow-meh"); } }); cell.find(".input").addClass("hide-in-slideshow-meh"); } show_meh(); </script> <pre id="wee" class="language-c cm-s-ipython highlight"> // For x^(-0.5) float qpow(float x) { long i = * ( long * ) &x; i = 0x5f400000 + -0.5 * i; return * ( float * ) &i; } </pre> <p> <input type="text" id="pown" val="-0.5"/> </p> <script type="text/javascript"> require.config({ paths: { "highlight": "https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.4.0/highlight.min", } }); require(["highlight"], function(hljs) { hljs.configure({ classPrefix: 'cm-' // don't append class prefix }); $('#wee').each(function(i, block) { hljs.highlightBlock(block); }); $("#pown").keyup(function() { var C = Number($("#pown").val()); if (Number.isNaN(C)) return; var M = Math.floor(1065353216 * (1 - C)) % 4294967296; var sign = M >= 0 ? '' : '-'; var code = "// For x^(" + C + ")\nfloat qpow(float x) {\n long i = * ( long * ) &x;\n i = " + sign + "0x" + Math.abs(M).toString(16) + " + " + C + " * i;\n return * ( float * ) &i;\n}\n"; $("#wee").html(code); $('#wee').each(function(i, block) { hljs.highlightBlock(block); }); }); }); </script> <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Part 1 Step2: The first two sentences have very similar content, and as such the SCM should be large. Before we compute the SCM, we want to remove stopwords ("the", "to", etc.), as these do not contribute a lot to the information in the sentences. Step3: Now, as we mentioned earlier, we will be using some downloaded pre-trained embeddings. Note that the embeddings we have chosen here require a lot of memory. We will use the embeddings to construct a term similarity matrix that will be used by the softcossim function. Step4: So let's compute SCM using the softcossim function. Step5: Let's try the same thing with two completely unrelated sentences. Notice that the similarity is smaller. Step6: Part 2 Step7: Using the corpus we have just build, we will now construct a dictionary, a TF-IDF model, a word2vec model, and a term similarity matrix. Step8: Evaluation Step9: Finally, we will perform an evaluation to compare three unsupervised similarity measures – the Soft Cosine Measure, two different implementations of the Word Mover's Distance, and standard cosine similarity. We will use the Mean Average Precision (MAP) as an evaluation measure and 10-fold cross-validation to get an estimate of the variance of MAP for each similarity measure. Step10: The table below shows the pointwise estimates of means and standard variances for MAP scores and elapsed times. Baselines and winners for each year are displayed in bold. We can see that the Soft Cosine Measure gives a strong performance on both the 2016 and the 2017 dataset.
<ASSISTANT_TASK:> Python Code: # Initialize logging. import logging logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) sentence_obama = 'Obama speaks to the media in Illinois'.lower().split() sentence_president = 'The president greets the press in Chicago'.lower().split() sentence_orange = 'Oranges are my favorite fruit'.lower().split() # Import and download stopwords from NLTK. from nltk.corpus import stopwords from nltk import download download('stopwords') # Download stopwords list. # Remove stopwords. stop_words = stopwords.words('english') sentence_obama = [w for w in sentence_obama if w not in stop_words] sentence_president = [w for w in sentence_president if w not in stop_words] sentence_orange = [w for w in sentence_orange if w not in stop_words] # Prepare a dictionary and a corpus. from gensim import corpora documents = [sentence_obama, sentence_president, sentence_orange] dictionary = corpora.Dictionary(documents) corpus = [dictionary.doc2bow(document) for document in documents] # Convert the sentences into bag-of-words vectors. sentence_obama = dictionary.doc2bow(sentence_obama) sentence_president = dictionary.doc2bow(sentence_president) sentence_orange = dictionary.doc2bow(sentence_orange) %%time import gensim.downloader as api w2v_model = api.load("glove-wiki-gigaword-50") similarity_matrix = w2v_model.similarity_matrix(dictionary) from gensim.matutils import softcossim similarity = softcossim(sentence_obama, sentence_president, similarity_matrix) print('similarity = %.4f' % similarity) similarity = softcossim(sentence_obama, sentence_orange, similarity_matrix) print('similarity = %.4f' % similarity) %%time from itertools import chain import json from re import sub from os.path import isfile import gensim.downloader as api from gensim.utils import simple_preprocess from nltk.corpus import stopwords from nltk import download download("stopwords") # Download stopwords list. stopwords = set(stopwords.words("english")) def preprocess(doc): doc = sub(r'<img[^<>]+(>|$)', " image_token ", doc) doc = sub(r'<[^<>]+(>|$)', " ", doc) doc = sub(r'\[img_assist[^]]*?\]', " ", doc) doc = sub(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', " url_token ", doc) return [token for token in simple_preprocess(doc, min_len=0, max_len=float("inf")) if token not in stopwords] corpus = list(chain(*[ chain( [preprocess(thread["RelQuestion"]["RelQSubject"]), preprocess(thread["RelQuestion"]["RelQBody"])], [preprocess(relcomment["RelCText"]) for relcomment in thread["RelComments"]]) for thread in api.load("semeval-2016-2017-task3-subtaskA-unannotated")])) print("Number of documents: %d" % len(documents)) %%time from gensim.corpora import Dictionary from gensim.models import TfidfModel from gensim.models import Word2Vec from multiprocessing import cpu_count dictionary = Dictionary(corpus) tfidf = TfidfModel(dictionary=dictionary) w2v_model = Word2Vec(corpus, workers=cpu_count(), min_count=5, size=300, seed=12345) similarity_matrix = w2v_model.wv.similarity_matrix(dictionary, tfidf, nonzero_limit=100) print("Number of unique words: %d" % len(dictionary)) datasets = api.load("semeval-2016-2017-task3-subtaskBC") from math import isnan from time import time from gensim.similarities import MatrixSimilarity, WmdSimilarity, SoftCosineSimilarity import numpy as np from sklearn.model_selection import KFold from wmd import WMD def produce_test_data(dataset): for orgquestion in datasets[dataset]: query = preprocess(orgquestion["OrgQSubject"]) + preprocess(orgquestion["OrgQBody"]) documents = [ preprocess(thread["RelQuestion"]["RelQSubject"]) + preprocess(thread["RelQuestion"]["RelQBody"]) for thread in orgquestion["Threads"]] relevance = [ thread["RelQuestion"]["RELQ_RELEVANCE2ORGQ"] in ("PerfectMatch", "Relevant") for thread in orgquestion["Threads"]] yield query, documents, relevance def cossim(query, documents): # Compute cosine similarity between the query and the documents. query = tfidf[dictionary.doc2bow(query)] index = MatrixSimilarity( tfidf[[dictionary.doc2bow(document) for document in documents]], num_features=len(dictionary)) similarities = index[query] return similarities def softcossim(query, documents): # Compute Soft Cosine Measure between the query and the documents. query = tfidf[dictionary.doc2bow(query)] index = SoftCosineSimilarity( tfidf[[dictionary.doc2bow(document) for document in documents]], similarity_matrix) similarities = index[query] return similarities def wmd_gensim(query, documents): # Compute Word Mover's Distance as implemented in PyEMD by William Mayner # between the query and the documents. index = WmdSimilarity(documents, w2v_model) similarities = index[query] return similarities def wmd_relax(query, documents): # Compute Word Mover's Distance as implemented in WMD by Source{d} # between the query and the documents. words = [word for word in set(chain(query, *documents)) if word in w2v_model.wv] indices, words = zip(*sorted(( (index, word) for (index, _), word in zip(dictionary.doc2bow(words), words)))) query = dict(tfidf[dictionary.doc2bow(query)]) query = [ (new_index, query[dict_index]) for new_index, dict_index in enumerate(indices) if dict_index in query] documents = [dict(tfidf[dictionary.doc2bow(document)]) for document in documents] documents = [[ (new_index, document[dict_index]) for new_index, dict_index in enumerate(indices) if dict_index in document] for document in documents] embeddings = np.array([w2v_model.wv[word] for word in words], dtype=np.float32) nbow = dict(((index, list(chain([None], zip(*document)))) for index, document in enumerate(documents))) nbow["query"] = (None, *zip(*query)) distances = WMD(embeddings, nbow, vocabulary_min=1).nearest_neighbors("query") similarities = [-distance for _, distance in sorted(distances)] return similarities strategies = { "cossim" : cossim, "softcossim": softcossim, "wmd-gensim": wmd_gensim, "wmd-relax": wmd_relax} def evaluate(split, strategy): # Perform a single round of evaluation. results = [] start_time = time() for query, documents, relevance in split: similarities = strategies[strategy](query, documents) assert len(similarities) == len(documents) precision = [ (num_correct + 1) / (num_total + 1) for num_correct, num_total in enumerate( num_total for num_total, (_, relevant) in enumerate( sorted(zip(similarities, relevance), reverse=True)) if relevant)] average_precision = np.mean(precision) if precision else 0.0 results.append(average_precision) return (np.mean(results) * 100, time() - start_time) def crossvalidate(args): # Perform a cross-validation. dataset, strategy = args test_data = np.array(list(produce_test_data(dataset))) kf = KFold(n_splits=10) samples = [] for _, test_index in kf.split(test_data): samples.append(evaluate(test_data[test_index], strategy)) return (np.mean(samples, axis=0), np.std(samples, axis=0)) %%time from multiprocessing import Pool args_list = [ (dataset, technique) for dataset in ("2016-test", "2017-test") for technique in ("softcossim", "wmd-gensim", "wmd-relax", "cossim")] with Pool() as pool: results = pool.map(crossvalidate, args_list) from IPython.display import display, Markdown output = [] baselines = [ (("2016-test", "**Winner (UH-PRHLT-primary)**"), ((76.70, 0), (0, 0))), (("2016-test", "**Baseline 1 (IR)**"), ((74.75, 0), (0, 0))), (("2016-test", "**Baseline 2 (random)**"), ((46.98, 0), (0, 0))), (("2017-test", "**Winner (SimBow-primary)**"), ((47.22, 0), (0, 0))), (("2017-test", "**Baseline 1 (IR)**"), ((41.85, 0), (0, 0))), (("2017-test", "**Baseline 2 (random)**"), ((29.81, 0), (0, 0)))] table_header = ["Dataset | Strategy | MAP score | Elapsed time (sec)", ":---|:---|:---|---:"] for row, ((dataset, technique), ((mean_map_score, mean_duration), (std_map_score, std_duration))) \ in enumerate(sorted(chain(zip(args_list, results), baselines), key=lambda x: (x[0][0], -x[1][0][0]))): if row % (len(strategies) + 3) == 0: output.extend(chain(["\n"], table_header)) map_score = "%.02f ±%.02f" % (mean_map_score, std_map_score) duration = "%.02f ±%.02f" % (mean_duration, std_duration) if mean_duration else "" output.append("%s|%s|%s|%s" % (dataset, technique, map_score, duration)) display(Markdown('\n'.join(output))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 建立 ndarray Step2: 看 ndarray 的第一件事情: shape , dtype Step3: 有時候,可以看圖 Step4: 有很多其他建立的方式 Step5: 這是一堆資料 Step6: Q0 Step7: Q1 Step8: Indexing Step9: Q2 Step10: ndarray 也可以 Step11: Q3 Step12: 試試看下面的結果 Step13: Q4 Step14: 用圖形來練習 Step15: Q Step16: Q Step17: indexing 的其他用法 Step18: Reshaping Step19: 堆疊在一起 Step20: 作用在整個 array/axis 的函數 Step21: 多重意義的運用, 水平平均,整合垂直平均 Step22: Tensor 乘法 Step23: 矩陣乘法
<ASSISTANT_TASK:> Python Code: # 起手式 import numpy as np np.array([1,2,3,4]) x = _ y = np.array([[1.,2,3],[4,5,6]]) y x.shape y.shape x.dtype y.dtype # import matplotlib %matplotlib inline import matplotlib.pyplot as plt # 畫圖 plt.plot(x, 'x'); # 建立 0 array np.zeros_like(y) np.zeros((10,10)) # 跟 range 差不多 x = np.arange(0, 10, 0.1) # 亂數 y = np.random.uniform(-1,1, size=x.shape) plt.plot(x, y) x = np.linspace(0, 2* np.pi, 1000) plt.plot(x, np.sin(x)) #可以用 %run -i 跑參考範例 %run -i q0.py # 或者看看參考範例 #%load q0.py # 參考答案 #%load q1.py a = np.arange(30) a a[5] a[3:7] # 列出所有奇數項 a[1::2] # 還可以用來設定值 a[1::2] = -1 a # 或是 a[1::2] = -a[::2]-1 a %run -i q2.py #%load q2.py b = np.array([[1,2,3], [4,5,6], [7,8,9]]) b b[1][2] b[1,2] b[1] b = np.random.randint(0,99, size=(5,10)) b b[[1,3]] b[(1,3)] b[[1,2], [3,4]] b[[(1,2),(3,4)]] b[[True, False, False, True, False]] #參考範例 %run -i q4.py # 還記得剛才的 from PIL import Image img = Image.open('img/Green-Rolling-Hills-Landscape-800px.png') img_array = np.array(img) Image.fromarray(img_array) # 用來顯示圖片的函數 from IPython.display import display def show(img_array): display(Image.fromarray(img_array)) # 將圖片縮小成一半 %run -i q_half.py # 將圖片放大 %run -i q_scale2.py # 圖片上下顛倒 show(img_array[::-1]) %run -i q_paste.py %run -i q_grayscale.py # 用迴圈畫圓 %run -i q_slow_circle.py # 用 fancy index 畫圓 %run -i q_fast_circle.py # 還可以做模糊化 a = img_array.astype(float) for i in range(10): a[1:,1:] = (a[1:,1:]+a[:-1,1:]+a[1:,:-1]+a[:-1,:-1])/4 show(a.astype('uint8')) # 求邊界 a = img_array.astype(float) a = a @ [0.299, 0.587, 0.114, 0] a = np.abs((a[1:]-a[:-1]))*2 show(a.astype('uint8')) # reshaping 的應用 R,G,B,A = img_array.reshape(-1,4).T plt.hist((R,G,B,A), color="rgby"); # 例子 show(np.hstack([img_array, img_array2])) # 例子 np.concatenate([img_array, img_array2], axis=2).shape np.max([1,2,3,4]) np.sum([1,2,3,4]) np.mean([1,2,3,4]) np.min([1,2,3,4]) x_mean = img_array.astype(float).min(axis=0, keepdims=True) print(x_mean.dtype, x_mean.shape) y_mean = img_array.astype(float).min(axis=1, keepdims=True) print(y_mean.dtype, y_mean.shape) # 自動 broadcast xy_combined = ((x_mean+y_mean)/2).astype('uint8') show(xy_combined) # = 1*4 + 2*5 + 4*6 np.dot([1,2,3], [4,5,6]) u=np.array([1,2,3]) v=np.array([4,5,6]) print( u@v ) print( (u*v).sum() ) A=np.random.randint(0,10, size=(5,3)) A B=np.random.randint(0,10, size=(3,7)) B A.dot(B) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Part 1 Step2: Notes
<ASSISTANT_TASK:> Python Code: from collections import defaultdict, Counter from itertools import zip_longest import json import os import re import sys import urllib import numpy as np import requests from eva_cttv_pipeline.clinvar_xml_io.clinvar_xml_io import * %matplotlib inline import matplotlib.pyplot as plt from eva_cttv_pipeline.clinvar_xml_io.clinvar_xml_io.hgvs_variant import HgvsVariant PROJECT_ROOT = '/home/april/projects/opentargets/' clinvar_path = os.path.join(PROJECT_ROOT, 'ClinVarFullRelease_00-latest.xml.gz') # clinvar_path = os.path.join(PROJECT_ROOT, 'clinvar-sample.xml.gz') dataset = ClinVarDataset(clinvar_path) def vcv(record): if record.measure: return find_mandatory_unique_element(record.rcv, './MeasureSet').attrib['Acc'] limit = None # for each HGVS that structural variants pipeline would process, how many rcvs/vcvs are associated? # and would any of them potentially get annotated by the simple VEP pipeline? (assuming repeats override complex) complex_hgvs_to_complex_rcv = defaultdict(list) complex_hgvs_to_complex_vcv = defaultdict(list) complex_hgvs_to_other_rcv = defaultdict(list) complex_hgvs_to_other_vcv = defaultdict(list) i = 0 for r in dataset: if pipeline.can_process(r): complex_hgvs = [h for h in r.measure.current_hgvs if h is not None] for h in complex_hgvs: complex_hgvs_to_complex_rcv[h].append(r.accession) complex_hgvs_to_complex_vcv[h].append(vcv(r)) else: if r.measure and r.measure.current_hgvs: other_hgvs = [h for h in r.measure.current_hgvs if h is not None] for h in other_hgvs: if h in complex_hgvs_to_complex_rcv: complex_hgvs_to_other_rcv[h].append(r.accession) complex_hgvs_to_other_vcv[h].append(vcv(r)) i += 1 if limit and i > limit: break from eva_cttv_pipeline.clinvar_xml_io.clinvar_xml_io.hgvs_variant import SequenceType problem_rcvs = [] for h in complex_hgvs_to_other_rcv.keys(): if HgvsVariant(h).sequence_type == SequenceType.GENOMIC: problem_rcvs.extend(complex_hgvs_to_other_rcv[h]) problem_rcvs.extend(complex_hgvs_to_complex_rcv[h]) problem_rcvs = set(problem_rcvs) problem_rcvs # includes both complex and "other" rcvs for r in dataset: if r.accession in problem_rcvs: print(r.accession) print(vcv(r)) print(r.measure.current_hgvs) print(r.measure.vcf_full_coords) print('\n=========\n') for h, vcvs in complex_hgvs_to_complex_vcv.items(): num_vcvs = len(set(vcvs)) if num_vcvs > 1 and HgvsVariant(h).sequence_type == SequenceType.GENOMIC: print(h) print(set(vcvs)) print('\n========\n') # for two sets of HGVS identifiers associated with two different VCVs, what's the intersection & set difference? with_coordinates = {'NM_000080.4:c.1327delG', 'LRG_1254t1:c.1327del', 'LRG_1254:g.9185del', 'NG_028005.1:g.70553del', 'NG_008029.2:g.9185del', 'NC_000017.11:g.4898892del', 'NC_000017.10:g.4802186del', None, None, 'p.Glu443Lysfs*64', 'NP_000071.1:p.Glu443LysfsTer64'} no_coordinates = {'LRG_1254t1:c.1327del', 'NM_000080.4:c.1327del', 'LRG_1254:g.9185del', 'NG_028005.1:g.70553del', 'NG_008029.2:g.9185del', 'NC_000017.11:g.4898892del', None, 'LRG_1254p1:p.Glu443fs', 'NP_000071.1:p.Glu443fs'} with_coordinates & no_coordinates with_coordinates - no_coordinates no_coordinates - with_coordinates import pandas as pd pd.set_option('display.max_colwidth', None) from consequence_prediction.structural_variants import pipeline as structural_pipeline from consequence_prediction.vep_mapping_pipeline.consequence_mapping import colon_based_id_to_vep_id, process_variants problem_path = os.path.join(PROJECT_ROOT, 'complex-events/rcvs_sharing_hgvs.xml.gz') problem_dataset = ClinVarDataset(problem_path) # convert VEP pipeline to be more usable... IUPAC_AMBIGUOUS_SEQUENCE = re.compile(r'[^ACGT]') def vep_pipeline_main(clinvar_xml): variants = [] for clinvar_record in ClinVarDataset(clinvar_xml): if clinvar_record.measure is None or not clinvar_record.measure.has_complete_coordinates: continue m = clinvar_record.measure if IUPAC_AMBIGUOUS_SEQUENCE.search(m.vcf_ref + m.vcf_alt): continue variants.append(f'{m.chr}:{m.vcf_pos}:{m.vcf_ref}:{m.vcf_alt}') variants_to_query = [colon_based_id_to_vep_id(v) for v in variants] variant_results = process_variants(variants_to_query) variant_data = [] for variant_id, gene_id, gene_symbol, consequence_term, distance in variant_results: variant_data.append((variant_id, '1', gene_id, gene_symbol, consequence_term, distance)) consequences = pd.DataFrame(variant_data, columns=('VariantID', 'PlaceholderOnes', 'EnsemblGeneID', 'EnsemblGeneName', 'ConsequenceTerm', 'Distance')) return consequences vep_consequences = vep_pipeline_main(problem_path) vep_consequences struct_consequences = structural_pipeline.main(problem_path) # haven't implemented the single base deletion case as it's not a range, but I think we'd get the following # https://rest.ensembl.org/vep/human/region/NC_000017.11:4898892-4898892:1/DEL?content-type=application/json struct_consequences = struct_consequences.append( pd.DataFrame( [['NC_000017.11 4898892 4898892 DEL +', 1, 'ENSG00000108556', 'CHRNE', 'frameshift_variant', 0]], columns=('VariantID', 'PlaceholderOnes', 'EnsemblGeneID', 'EnsemblGeneName', 'ConsequenceTerm', 'Distance') ) ) struct_consequences <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Toy Network Step2: Centrality Step3: Eigenvector Centrality Step4: Betweenness Centrality Step5: Centrality Measures Are Different Step6: Transitivity Step7: Measure Transitivity Step8: Clustering Coefficient Step9: Community Detection Step10: Real Network Step11: Subset the Data Step12: Subset the Data Step13: Create the network (two ways) Step14: Set edge weights for Network Object Step15: Thresholding Step16: Look at the network Step17: Take out the singletons to get a clearer picture Step18: Look at the degree distribution Step19: Look at party in the network Step20: Prepare the Visualization Step21: Visualize the network by party Step22: Do it again with a lower threshold Step23: Modularity Step24: Visualize the Communities Step25: How did we do? Step26: Pretty, but now what? Step27: Merge in some network data Step28: Degree is not significant Step29: Betweeness is! Step40: Questions?
<ASSISTANT_TASK:> Python Code: import pandas as pd import networkx as nx import numpy as np import scipy as sp import itertools import matplotlib.pyplot as plt import statsmodels.api as sm %matplotlib inline G = nx.Graph() G.add_nodes_from(['A','B','C','D','E','F','G']) G.add_edges_from([('A','B'),('A','C'), ('A','D'),('A','F'), ('B','E'),('C','E'), ('F','G')]) nx.draw_networkx(G, with_labels=True) deg = nx.degree_centrality(G) print(deg) eig_c = nx.eigenvector_centrality_numpy(G) toy_adj = nx.adjacency_matrix(G) print(eig_c) val,vec = np.linalg.eig(toy_adj.toarray()) print(val) vec[:,0] betw = nx.betweenness_centrality(G) print(betw) cent_scores = pd.DataFrame({'deg':deg,'eig_c':eig_c,'betw':betw}) print(cent_scores.corr()) cent_scores G_trans = G.copy() G_trans.add_edge('A','E') G_trans.add_edge('F','D') nx.draw_networkx(G_trans, with_labels=True) print("Transitivity:") print(nx.transitivity(G)) print(nx.transitivity(G_trans)) print("Triangles:") print(nx.triangles(G)) print(nx.triangles(G_trans)) print("Clustering coefficient") print(nx.clustering(G)) print(nx.clustering(G_trans)) print("Average Clustering") print(nx.average_clustering(G)) print(nx.average_clustering(G_trans)) coms = nx.algorithms.community.centrality.girvan_newman(G) i = 2 for com in itertools.islice(coms,4): print(i, ' communities') i+=1 print(tuple(c for c in com)) edges = [] with open('cosponsors.txt') as d: for line in d: edges.append(line.split()) dates = pd.read_csv('Dates.txt',sep='-',header=None) dates.columns = ['year','month','day'] index_loc = np.where(dates.year==2004) edges_04 = [edges[i] for i in index_loc[0]] # Get nodes senate = pd.read_csv('senate.csv') senators = senate.loc[senate.congress==108,['id','party']] # Creae adjacency matrix adj_mat = np.zeros([len(senators),len(senators)]) senators = pd.DataFrame(senators) senators['adj_ind']=range(len(senators)) # Create Graph Object senateG= nx.Graph() senateG.add_nodes_from(senators.id) party_dict = dict(zip(senators.id,senators.party)) nx.set_node_attributes(senateG, name='party',values=party_dict) for bill in edges_04: if bill[0] == "NA": continue bill = [int(i) for i in bill] if bill[0] not in list(senators.id): continue combos = list(itertools.combinations(bill,2)) senateG.add_edges_from(combos) for pair in combos: i = senators.loc[senators.id == int(pair[0]), 'adj_ind'] j = senators.loc[senators.id == int(pair[1]), 'adj_ind'] adj_mat[i,j]+=1 adj_mat[j,i]+=1 for row in range(len(adj_mat)): cols = np.where(adj_mat[row,:])[0] i = senators.loc[senators.adj_ind==row,'id'] i = int(i) for col in cols: j = senators.loc[senators.adj_ind==col,'id'] j = int(j) senateG[i][j]['bills']=adj_mat[row,col] bill_dict = nx.get_edge_attributes(senateG,'bills') elarge=[(i,j) for (i,j) in bill_dict if bill_dict[(i,j)] >40] nx.draw_spring(senateG, edgelist = elarge,with_labels=True) senateGt= nx.Graph() senateGt.add_nodes_from(senateG.nodes) senateGt.add_edges_from(elarge) deg = senateGt.degree() rem = [n[0] for n in deg if n[1]==0] senateGt_all = senateGt.copy() senateGt.remove_nodes_from(rem) nx.draw_spring(senateGt,with_labels=True) foo=pd.DataFrame({'tup':deg}) deg = senateGt.degree() foo = pd.DataFrame(foo) foo[['grp','deg']]=foo['tup'].apply(pd.Series) foo.deg.plot.hist() party = nx.get_node_attributes(senateG,'party') dems = [] gop = [] for i in party: if party[i]==100: dems.append(i) else: gop.append(i) pos = nx.spring_layout(senateGt) pos_all = nx.circular_layout(senateG) dem_dict={} gop_dict={} dem_lone = {} gop_lone= {} for n in dems: if n in rem: dem_lone[n]=pos_all[n] else:dem_dict[n] = pos[n] for n in gop: if n in rem: gop_lone[n]=pos_all[n] else:gop_dict[n] = pos[n] dems = list(set(dems)-set(rem)) gop = list(set(gop)-set(rem)) nx.draw_networkx_nodes(senateGt, pos=dem_dict, nodelist = dems,node_color='b',node_size = 100) nx.draw_networkx_nodes(senateGt, pos=gop_dict, nodelist = gop,node_color='r', node_size = 100) nx.draw_networkx_nodes(senateG, pos=dem_lone, nodelist = list(dem_lone.keys()),node_color='b',node_size = 200) nx.draw_networkx_nodes(senateG, pos=gop_lone, nodelist = list(gop_lone.keys()),node_color='r', node_size = 200) nx.draw_networkx_edges(senateGt,pos=pos, edgelist=elarge) dems = list(set(dems)-set(rem)) gop = list(set(gop)-set(rem)) nx.draw_networkx_nodes(senateGt, pos=dem_dict, nodelist = dems,node_color='b',node_size = 100) nx.draw_networkx_nodes(senateGt, pos=gop_dict, nodelist = gop,node_color='r', node_size = 100) nx.draw_networkx_nodes(senateGt_all, pos=dem_lone, nodelist = list(dem_lone.keys()),node_color='b',node_size = 100) nx.draw_networkx_nodes(senateGt_all, pos=gop_lone, nodelist = list(gop_lone.keys()),node_color='r', node_size = 100) nx.draw_networkx_edges(senateGt,pos=pos, edgelist=elarge) colors = greedy_modularity_communities(senateGt, weight = 'bills') pos = nx.spring_layout(senateGt) pos0={} pos1={} for n in colors[0]: pos0[n] = pos[n] for n in colors[1]: pos1[n] = pos[n]nx.draw_networkx_nodes(senateGt, pos=pos0, nodelist = colors[0],node_color='r') nx.draw_networkx_nodes(senateGt, pos=pos1, nodelist = colors[1],node_color='b') nx.draw_networkx_edges(senateGt,pos=pos, edgelist=elarge) print('gop misclassification') for i in colors[1]: if i in dems: print(i,len(senateGt[i])) print('dem misclassification') for i in colors[0]: if i in gop: print(i,len(senateGt[i])) sh = pd.read_csv('SH.tab',sep='\t') sh['dem']= sh.party==100 sh['dem']=sh.dem*1 model_data = sh.loc[ (sh.congress == 108) & (sh.chamber=='S'), ['ids','dem','pb','pa'] ] model_data['passed']=model_data.pb+model_data.pa model_data.set_index('ids',inplace=True) bet_cent = nx.betweenness_centrality(senateG,weight='bills') bet_cent = pd.Series(bet_cent) deg_cent = nx.degree_centrality(senateGt) deg_cent = pd.Series(deg_cent) model_data['between']=bet_cent model_data['degree']=deg_cent y =model_data.loc[:,'passed'] x =model_data.loc[:,['degree','dem']] x['c'] = 1 ols_model1 = sm.OLS(y,x,missing='drop') results = ols_model1.fit() print(results.summary()) y =model_data.loc[:,'passed'] x =model_data.loc[:,['between','dem']] x['c'] = 1 ols_model1 = sm.OLS(y,x,missing='drop') results = ols_model1.fit() print(results.summary()) # Some functions from the NetworkX package import heapq class MappedQueue(object): The MappedQueue class implements an efficient minimum heap. The smallest element can be popped in O(1) time, new elements can be pushed in O(log n) time, and any element can be removed or updated in O(log n) time. The queue cannot contain duplicate elements and an attempt to push an element already in the queue will have no effect. MappedQueue complements the heapq package from the python standard library. While MappedQueue is designed for maximum compatibility with heapq, it has slightly different functionality. Examples -------- A `MappedQueue` can be created empty or optionally given an array of initial elements. Calling `push()` will add an element and calling `pop()` will remove and return the smallest element. >>> q = MappedQueue([916, 50, 4609, 493, 237]) >>> q.push(1310) True >>> x = [q.pop() for i in range(len(q.h))] >>> x [50, 237, 493, 916, 1310, 4609] Elements can also be updated or removed from anywhere in the queue. >>> q = MappedQueue([916, 50, 4609, 493, 237]) >>> q.remove(493) >>> q.update(237, 1117) >>> x = [q.pop() for i in range(len(q.h))] >>> x [50, 916, 1117, 4609] References ---------- .. [1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms second edition. .. [2] Knuth, D. E. (1997). The art of computer programming (Vol. 3). Pearson Education. def __init__(self, data=[]): Priority queue class with updatable priorities. self.h = list(data) self.d = dict() self._heapify() def __len__(self): return len(self.h) def _heapify(self): Restore heap invariant and recalculate map. heapq.heapify(self.h) self.d = dict([(elt, pos) for pos, elt in enumerate(self.h)]) if len(self.h) != len(self.d): raise AssertionError("Heap contains duplicate elements") def push(self, elt): Add an element to the queue. # If element is already in queue, do nothing if elt in self.d: return False # Add element to heap and dict pos = len(self.h) self.h.append(elt) self.d[elt] = pos # Restore invariant by sifting down self._siftdown(pos) return True def pop(self): Remove and return the smallest element in the queue. # Remove smallest element elt = self.h[0] del self.d[elt] # If elt is last item, remove and return if len(self.h) == 1: self.h.pop() return elt # Replace root with last element last = self.h.pop() self.h[0] = last self.d[last] = 0 # Restore invariant by sifting up, then down pos = self._siftup(0) self._siftdown(pos) # Return smallest element return elt def update(self, elt, new): Replace an element in the queue with a new one. # Replace pos = self.d[elt] self.h[pos] = new del self.d[elt] self.d[new] = pos # Restore invariant by sifting up, then down pos = self._siftup(pos) self._siftdown(pos) def remove(self, elt): Remove an element from the queue. # Find and remove element try: pos = self.d[elt] del self.d[elt] except KeyError: # Not in queue raise # If elt is last item, remove and return if pos == len(self.h) - 1: self.h.pop() return # Replace elt with last element last = self.h.pop() self.h[pos] = last self.d[last] = pos # Restore invariant by sifting up, then down pos = self._siftup(pos) self._siftdown(pos) def _siftup(self, pos): Move element at pos down to a leaf by repeatedly moving the smaller child up. h, d = self.h, self.d elt = h[pos] # Continue until element is in a leaf end_pos = len(h) left_pos = (pos << 1) + 1 while left_pos < end_pos: # Left child is guaranteed to exist by loop predicate left = h[left_pos] try: right_pos = left_pos + 1 right = h[right_pos] # Out-of-place, swap with left unless right is smaller if right < left: h[pos], h[right_pos] = right, elt pos, right_pos = right_pos, pos d[elt], d[right] = pos, right_pos else: h[pos], h[left_pos] = left, elt pos, left_pos = left_pos, pos d[elt], d[left] = pos, left_pos except IndexError: # Left leaf is the end of the heap, swap h[pos], h[left_pos] = left, elt pos, left_pos = left_pos, pos d[elt], d[left] = pos, left_pos # Update left_pos left_pos = (pos << 1) + 1 return pos def _siftdown(self, pos): Restore invariant by repeatedly replacing out-of-place element with its parent. h, d = self.h, self.d elt = h[pos] # Continue until element is at root while pos > 0: parent_pos = (pos - 1) >> 1 parent = h[parent_pos] if parent > elt: # Swap out-of-place element with parent h[parent_pos], h[pos] = elt, parent parent_pos, pos = pos, parent_pos d[elt] = pos d[parent] = parent_pos else: # Invariant is satisfied break return pos from __future__ import division import networkx as nx from networkx.algorithms.community.quality import modularity def greedy_modularity_communities(G, weight=None): Find communities in graph using Clauset-Newman-Moore greedy modularity maximization. This method currently supports the Graph class and does not consider edge weights. Greedy modularity maximization begins with each node in its own community and joins the pair of communities that most increases modularity until no such pair exists. Parameters ---------- G : NetworkX graph Returns ------- Yields sets of nodes, one for each community. Examples -------- >>> from networkx.algorithms.community import greedy_modularity_communities >>> G = nx.karate_club_graph() >>> c = list(greedy_modularity_communities(G)) >>> sorted(c[0]) [8, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] References ---------- .. [1] M. E. J Newman 'Networks: An Introduction', page 224 Oxford University Press 2011. .. [2] Clauset, A., Newman, M. E., & Moore, C. "Finding community structure in very large networks." Physical Review E 70(6), 2004. # Count nodes and edges N = len(G.nodes()) m = sum([d.get('weight', 1) for u, v, d in G.edges(data=True)]) q0 = 1.0 / (2.0*m) # Map node labels to contiguous integers label_for_node = dict((i, v) for i, v in enumerate(G.nodes())) node_for_label = dict((label_for_node[i], i) for i in range(N)) # Calculate degrees k_for_label = G.degree(G.nodes(), weight=weight) k = [k_for_label[label_for_node[i]] for i in range(N)] # Initialize community and merge lists communities = dict((i, frozenset([i])) for i in range(N)) merges = [] # Initial modularity partition = [[label_for_node[x] for x in c] for c in communities.values()] q_cnm = modularity(G, partition) # Initialize data structures # CNM Eq 8-9 (Eq 8 was missing a factor of 2 (from A_ij + A_ji) # a[i]: fraction of edges within community i # dq_dict[i][j]: dQ for merging community i, j # dq_heap[i][n] : (-dq, i, j) for communitiy i nth largest dQ # H[n]: (-dq, i, j) for community with nth largest max_j(dQ_ij) a = [k[i]*q0 for i in range(N)] dq_dict = dict( (i, dict( (j, 2*q0 - 2*k[i]*k[j]*q0*q0) for j in [ node_for_label[u] for u in G.neighbors(label_for_node[i])] if j != i)) for i in range(N)) dq_heap = [ MappedQueue([ (-dq, i, j) for j, dq in dq_dict[i].items()]) for i in range(N)] H = MappedQueue([ dq_heap[i].h[0] for i in range(N) if len(dq_heap[i]) > 0]) # Merge communities until we can't improve modularity while len(H) > 1: # Find best merge # Remove from heap of row maxes # Ties will be broken by choosing the pair with lowest min community id try: dq, i, j = H.pop() except IndexError: break dq = -dq # Remove best merge from row i heap dq_heap[i].pop() # Push new row max onto H if len(dq_heap[i]) > 0: H.push(dq_heap[i].h[0]) # If this element was also at the root of row j, we need to remove the # dupliate entry from H if dq_heap[j].h[0] == (-dq, j, i): H.remove((-dq, j, i)) # Remove best merge from row j heap dq_heap[j].remove((-dq, j, i)) # Push new row max onto H if len(dq_heap[j]) > 0: H.push(dq_heap[j].h[0]) else: # Duplicate wasn't in H, just remove from row j heap dq_heap[j].remove((-dq, j, i)) # Stop when change is non-positive if dq <= 0: break # Perform merge communities[j] = frozenset(communities[i] | communities[j]) del communities[i] merges.append((i, j, dq)) # New modularity q_cnm += dq # Get list of communities connected to merged communities i_set = set(dq_dict[i].keys()) j_set = set(dq_dict[j].keys()) all_set = (i_set | j_set) - set([i, j]) both_set = i_set & j_set # Merge i into j and update dQ for k in all_set: # Calculate new dq value if k in both_set: dq_jk = dq_dict[j][k] + dq_dict[i][k] elif k in j_set: dq_jk = dq_dict[j][k] - 2.0*a[i]*a[k] else: # k in i_set dq_jk = dq_dict[i][k] - 2.0*a[j]*a[k] # Update rows j and k for row, col in [(j, k), (k, j)]: # Save old value for finding heap index if k in j_set: d_old = (-dq_dict[row][col], row, col) else: d_old = None # Update dict for j,k only (i is removed below) dq_dict[row][col] = dq_jk # Save old max of per-row heap if len(dq_heap[row]) > 0: d_oldmax = dq_heap[row].h[0] else: d_oldmax = None # Add/update heaps d = (-dq_jk, row, col) if d_old is None: # We're creating a new nonzero element, add to heap dq_heap[row].push(d) else: # Update existing element in per-row heap dq_heap[row].update(d_old, d) # Update heap of row maxes if necessary if d_oldmax is None: # No entries previously in this row, push new max H.push(d) else: # We've updated an entry in this row, has the max changed? if dq_heap[row].h[0] != d_oldmax: H.update(d_oldmax, dq_heap[row].h[0]) # Remove row/col i from matrix i_neighbors = dq_dict[i].keys() for k in i_neighbors: # Remove from dict dq_old = dq_dict[k][i] del dq_dict[k][i] # Remove from heaps if we haven't already if k != j: # Remove both row and column for row, col in [(k, i), (i, k)]: # Check if replaced dq is row max d_old = (-dq_old, row, col) if dq_heap[row].h[0] == d_old: # Update per-row heap and heap of row maxes dq_heap[row].remove(d_old) H.remove(d_old) # Update row max if len(dq_heap[row]) > 0: H.push(dq_heap[row].h[0]) else: # Only update per-row heap dq_heap[row].remove(d_old) del dq_dict[i] # Mark row i as deleted, but keep placeholder dq_heap[i] = MappedQueue() # Merge i into j and update a a[j] += a[i] a[i] = 0 communities = [ frozenset([label_for_node[i] for i in c]) for c in communities.values()] return sorted(communities, key=len, reverse=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Simulating A/B testing to build intuition Step2: Each test is like flipping a fair coin N times Step3: Run the cell above a few times. Step4: Rewards of the actions might be different Step5: Add treatment B to make it more instesting Step6: Simulating multiple arms with different payoffs Step7: Why worry about the total reward? I thought we wanted to know if A > B? Step8: Now is them it jump to your power and significance testing expertise. Step9: More Arms Step10: Quick aside Step11: 2. Practicalities of testing and operation Step12: 3. Optimizing outcomes with multiple options with different payoffs Step13: Anealing Softmax Step14: UCB2
<ASSISTANT_TASK:> Python Code: from IPython.display import Image Image(filename='img/treat_aud_reward.jpg') import matplotlib import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd from numpy.random import binomial from ggplot import * import random import sys plt.figure(figsize=(6,6),dpi=80); %matplotlib inline Image(filename='img/ab.jpg') Image(filename='img/a.jpg') # This is A/ testing! # This is the result of 1 arm, 100 trials df = pd.DataFrame({"coin_toss":binomial(1,0.5,100)}) df.hist() # Everyone got the same treatment, this is the distribution of the outcome # reward is the total height of the right-hand bar plt.show() # every sample is 0/1, heads or tails df.head() # now with a high probability of heads df = pd.DataFrame({"coin_toss":binomial(1,0.6,100)}) df.hist() plt.show() # Compare the variability across many different experiments # of 100 flips each (variability of the mean) df = pd.DataFrame({"coin_%i"%i:binomial(1,0.5,100) for i in range(20)}) df.hist() plt.show() # Can we distinguish a small differce in probability? df = pd.DataFrame({"coin_%i"%i:binomial(1,0.52,100) for i in range(20)}) df.hist() plt.show() # 1 arm payoff = [-0.1,0.5] a = np.bincount(binomial(1,0.5,100)) print "Number of 0s and 1s:", a print "Total reward with pay off specified =", np.dot(a, payoff) # 2-arm, equal unity reward per coin # (4 outcomes but 1,0=0,1 with this payoff vector) payoff = [0,1,2] a = np.bincount(binomial(2,0.5,100)) print a print np.dot(a, payoff) payoff1=[0,1] reward1 = np.dot(np.bincount(binomial(1,0.5,100)), payoff1) print "Arm A reward = ", reward1 payoff2=[0,1.05] reward2 = np.dot(np.bincount(binomial(1,0.5,100)), payoff2) print "Arm B reward = ", reward2 total_reward = reward1 + reward2 print "Total reward for arms A and B = ", total_reward def a_b_test(one_payoff=[1, 1.01]): # assume payoff for outcome 0 is 0 reward1 = np.bincount(binomial(1,0.5,100))[1] * one_payoff[0] reward2 = np.bincount(binomial(1,0.5,100))[1] * one_payoff[1] return reward1, reward2, reward1 + reward2, reward1-reward2 n_tests = 1000 sim = np.array([a_b_test() for i in range(n_tests)]) df = pd.DataFrame(sim, columns=["t1", "t2", "tot", "diff"]) print "Number of tests in which Arm B won (expect > {} because of payoff) = {}".format( n_tests/2 , len(df[df["diff"] <= 0.0])) df.hist() plt.show() def a_b_test(ps=[0.5, 0.51], one_payoff=[1, 1]): reward1 = np.bincount(binomial(1,ps[0],100))[1] * one_payoff[0] reward2 = np.bincount(binomial(1,ps[1],100))[1] * one_payoff[1] return reward1, reward2, reward1 + reward2, reward1-reward2 n_tests= 100 sim = np.array([a_b_test() for i in range(n_tests)]) df = pd.DataFrame(sim, columns=["t1", "t2", "tot", "diff"]) print "Number of tests in which Arm B won (expect > {} because of probability) = {}".format( n_tests/2 , len(df[df["diff"] <= 0.0])) df.hist() plt.show() Image(filename='img/abcd.jpg') # repeating what did before with equal equal payoff, more arms # remember the degenerate outcomes df = pd.DataFrame({"tot_reward":binomial(2,0.5,100)}) df.hist() plt.show() # ok, now with 4 df = pd.DataFrame({"tot_reward":binomial(4,0.5,100)}) df.hist() plt.show() # a little more practice with total reward distribution trials = 100 probabilities = [0.1, 0.1, 0.9] reward = np.zeros(trials) for m in probabilities: # equal rewards of 1 or 0 reward += binomial(1,m,trials) df = pd.DataFrame({"reward":reward, "fair__uniform_reward":binomial(3,0.5,trials)}) df.hist() plt.show() sys.path.append('../../BanditsBook/python') from core import * random.seed(1) # Mean (arm probabilities) (Bernoulli) means = [0.1, 0.1, 0.1, 0.1, 0.9] # Mulitple arms! n_arms = len(means) random.shuffle(means) arms = map(lambda (mu): BernoulliArm(mu), means) print("Best arm is " + str(ind_max(means))) t_horizon = 250 n_sims = 1000 data = [] for epsilon in [0.1, 0.2, 0.3, 0.4, 0.5]: algo = EpsilonGreedy(epsilon, [], []) algo.initialize(n_arms) # results are column oriented # simulation_num, time, chosen arm, reward, cumulative reward results = test_algorithm(algo, arms, n_sims, t_horizon) results.append([epsilon]*len(results[0])) data.extend(np.array(results).T) df = pd.DataFrame(data , columns = ["Sim" , "T" , "ChosenArm" , "Reward" , "CumulativeReward" , "Epsilon"]) df.head() a=df.groupby(["Epsilon", "T"]).mean().reset_index() a.head() ggplot(aes(x="T",y="Reward", color="Epsilon"), data=a) + geom_line() ggplot(aes(x="T",y="CumulativeReward", color="Epsilon"), data=a) + geom_line() t_horizon = 250 n_sims = 1000 algo = AnnealingSoftmax([], []) algo.initialize(n_arms) data = np.array(test_algorithm(algo, arms, n_sims, t_horizon)).T df = pd.DataFrame(data) #df.head() df.columns = ["Sim", "T", "ChosenArm", "Reward", "CumulativeReward"] df.head() a=df.groupby(["T"]).mean().reset_index() a.head() ggplot(aes(x="T",y="Reward", color="Sim"), data=a) + geom_line() ggplot(aes(x="T",y="CumulativeReward", color="Sim"), data=a) + geom_line() t_horizon = 250 n_sims = 1000 data = [] for alpha in [0.1, 0.3, 0.5, 0.7, 0.9]: algo = UCB2(alpha, [], []) algo.initialize(n_arms) results = test_algorithm(algo, arms, n_sims, t_horizon) results.append([alpha]*len(results[0])) data.extend(np.array(results).T) df = pd.DataFrame(data, columns = ["Sim", "T", "ChosenArm", "Reward", "CumulativeReward", "Alpha"]) df.head() a=df.groupby(["Alpha", "T"]).mean().reset_index() a.head() ggplot(aes(x="T",y="Reward", color="Alpha"), data=a) + geom_line() ggplot(aes(x="T",y="CumulativeReward", color="Alpha"), data=a) + geom_line() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: In the following cell, complete the code with an expression that evaluates to a list of integers derived from the raw numbers in numbers_str, assigning the value of this expression to a variable numbers. If you do everything correctly, executing the cell should produce the output 985 (not '985'). Step2: Great! We'll be using the numbers list you created above in the next few problems. Step3: In the cell below, write an expression that evaluates to a list of the integers from numbers that are evenly divisible by three, sorted in numerical order. Expected output Step4: Problem set #2 Step5: Now, in the cell below, write a list comprehension that evaluates to a list of names of the planets that have a diameter greater than four earth radii. Expected output Step6: In the cell below, write a single expression that evaluates to the sum of the mass of all planets in the solar system. Expected output Step7: Good work. Last one with the planets. Write an expression that evaluates to the names of the planets that have the word giant anywhere in the value for their type key. Expected output Step8: EXTREME BONUS ROUND Step9: In the cell above, I defined a variable poem_lines which has a list of lines in the poem, and imported the re library. Step10: ['Then took the other, as just as fair,', Step11: Okay, now a slightly trickier one. In the cell below, I've created a string all_lines which evaluates to the entire text of the poem in one string. Execute this cell. Step12: Now, write an expression that evaluates to all of the words in the poem that follow the word 'I'. (The strings in the resulting list should not include the I.) Hint Step13: Finally, something super tricky. Here's a list of strings that contains a restaurant menu. Your job is to wrangle this plain text, slightly-structured data into a list of dictionaries. Step14: You'll need to pull out the name of the dish and the price of the dish. The v after the hyphen indicates that the dish is vegetarian---you'll need to include that information in your dictionary as well. I've included the basic framework; you just need to fill in the contents of the for loop.
<ASSISTANT_TASK:> Python Code: numbers_str = '496,258,332,550,506,699,7,985,171,581,436,804,736,528,65,855,68,279,721,120' number_list = numbers_str.split(",") numbers = [int(item) for item in number_list] max(numbers) #len(numbers) sorted(numbers)[10:] from math import sqrt squared = [] for item in numbers: if item < 100: numbers_squared = sqrt(item) squared.append(numbers_squared) squared planets = [ {'diameter': 0.382, 'mass': 0.06, 'moons': 0, 'name': 'Mercury', 'orbital_period': 0.24, 'rings': 'no', 'type': 'terrestrial'}, {'diameter': 0.949, 'mass': 0.82, 'moons': 0, 'name': 'Venus', 'orbital_period': 0.62, 'rings': 'no', 'type': 'terrestrial'}, {'diameter': 1.00, 'mass': 1.00, 'moons': 1, 'name': 'Earth', 'orbital_period': 1.00, 'rings': 'no', 'type': 'terrestrial'}, {'diameter': 0.532, 'mass': 0.11, 'moons': 2, 'name': 'Mars', 'orbital_period': 1.88, 'rings': 'no', 'type': 'terrestrial'}, {'diameter': 11.209, 'mass': 317.8, 'moons': 67, 'name': 'Jupiter', 'orbital_period': 11.86, 'rings': 'yes', 'type': 'gas giant'}, {'diameter': 9.449, 'mass': 95.2, 'moons': 62, 'name': 'Saturn', 'orbital_period': 29.46, 'rings': 'yes', 'type': 'gas giant'}, {'diameter': 4.007, 'mass': 14.6, 'moons': 27, 'name': 'Uranus', 'orbital_period': 84.01, 'rings': 'yes', 'type': 'ice giant'}, {'diameter': 3.883, 'mass': 17.2, 'moons': 14, 'name': 'Neptune', 'orbital_period': 164.8, 'rings': 'yes', 'type': 'ice giant'}] [item['name'] for item in planets if item['diameter'] > 2] sum([item['mass'] for item in planets]) import re planet_with_giant= [item['name'] for item in planets if re.search(r'\bgiant\b', item['type'])] planet_with_giant import re poem_lines = ['Two roads diverged in a yellow wood,', 'And sorry I could not travel both', 'And be one traveler, long I stood', 'And looked down one as far as I could', 'To where it bent in the undergrowth;', '', 'Then took the other, as just as fair,', 'And having perhaps the better claim,', 'Because it was grassy and wanted wear;', 'Though as for that the passing there', 'Had worn them really about the same,', '', 'And both that morning equally lay', 'In leaves no step had trodden black.', 'Oh, I kept the first for another day!', 'Yet knowing how way leads on to way,', 'I doubted if I should ever come back.', '', 'I shall be telling this with a sigh', 'Somewhere ages and ages hence:', 'Two roads diverged in a wood, and I---', 'I took the one less travelled by,', 'And that has made all the difference.'] [item for item in poem_lines if re.search(r'\b[a-zA-Z]{4}\b \b[a-zA-Z]{4}\b', item)] [item for item in poem_lines if re.search(r'\b[a-zA-Z]{5}\b.?$',item)] all_lines = " ".join(poem_lines) re.findall(r'[I] (\b\w+\b)', all_lines) entrees = [ "Yam, Rosemary and Chicken Bowl with Hot Sauce $10.95", "Lavender and Pepperoni Sandwich $8.49", "Water Chestnuts and Peas Power Lunch (with mayonnaise) $12.95 - v", "Artichoke, Mustard Green and Arugula with Sesame Oil over noodles $9.95 - v", "Flank Steak with Lentils And Tabasco Pepper With Sweet Chilli Sauce $19.95", "Rutabaga And Cucumber Wrap $8.49 - v" ] menu = [] for item in entrees: entrees_dictionary= {} match = re.search(r'(.*) .(\d*\d\.\d{2})\ ?( - v+)?$', item) if match: name = match.group(1) price= match.group(2) if match.group(3): entrees_dictionary['vegetarian']= True else: entrees_dictionary['vegetarian']= False entrees_dictionary['name']= name entrees_dictionary['price']= price menu.append(entrees_dictionary) menu <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Exercise A.1.1 Step2: Exercise A.1.2 Step3: Exercise A.1.3 Step4: Exercise A.1.4 Step5: Exercise A.1.5 Step6: Exercise A.1.6 Step7: <a id='Numpy'></a> Step8: Lets imagine that we want to change to 2 classes instead by combining classes A with B and C with D. Use np.reshape and np.sum to create a new vector Y1. Hint Step9: Exercise A.2.2 Step10: Exercise A.2.3 Step11: <a id='h5py'></a> Step12: Each row represents a LHC collision event. Each column contains some observable from that event. The variable names are Step13: Some of these variables represent the "raw" kinematics of the observed final state particles, while others are "features" that are derived from these raw quantities Step14: <a id='Pandas'></a> Step15: Now we can read the data into a pandas dataframe. It's a ~GB file, so be patient. Step16: Another nice feature of pandas is that you can see the data in Jupyter by just evaluating the dataframe Step17: The first column stores the "truth" label of whether an event was signal or background. Pandas makes it easy to create dataframes that store only the signal or background events Step18: The following example plots the signal and background distributions of every variable. Note that we use VarNames[1 Step19: <a id='Scikit-learn'></a> Step20: Lets separate the data into inputs (X) vs outputs (Y) and training vs testing samples Step21: We can train the classifier as follow Step22: We can plot the output, comparing signal and background Step23: And we can make a ROC curve and evaluate the AUC Step24: Exercise B.3.1 Step25: Exercise B.3.2 Step26: Answer the following questions Step27: Now lets define training and test samples. Note that DNNs take very long to train, so for testing purposes we will use only about 10% of the 5 million events in the training/validation sample. Once you get everything working, you can go back and make the final version of your plots with the full sample. Step28: <a id='Keras'></a> Step29: The model has to be compiled. At this time we set the loss function and the optimizer too Step30: Now we train. We are running only 10 epochs in this example. Models may need hundreds of epochs before they stop improving. Step31: The model history keeps track of the loss and accuracy for each epoch. Note that the training above was setup to run on the validation sample at the end of each epoch Step32: You can plot the loss versus epoch Step33: Exercise C.1.1 Step34: We can evaluate how the trained model does on the test sample as follows Step35: And we can make ROC curves as before Step36: Exercise C.1.2 Step37: Exercise C.1.3 Step38: Exercise C.1.4
<ASSISTANT_TASK:> Python Code: import random x=random.random() print ("The Value of x is", x) # Skeleton def GenerateData(N,min,max): out = [] ### BEGIN SOLUTION # Fill in your solution here ### END SOLUTION return out Data=GenerateData(1000,-10,10) print ("Data Type:", type(Data)) print ("Data Length:", len(Data)) if len(Data)>0: print ("Type of Data Contents:", type(Data[0])) print ("Data Minimum:", min(Data)) print ("Data Maximum:", max(Data)) # Skeleton def mean(Data): m=0 ### BEGIN SOLUTION # Fill in your solution here ### END SOLUTION return m print ("Mean of Data:", mean(Data)) def where(mylist,myfunc): out= [] ### BEGIN SOLUTION # Fill in your solution here ### END SOLUTION return out def inrange(mymin,mymax): def testrange(x): return x<mymax and x>=mymin return testrange # Examples: F1=inrange(0,10) F2=inrange(10,20) print (F1(0), F1(1), F1(10), F1(15), F1(20)) print (F2(0), F2(1), F2(10), F2(15), F2(20)) print ("Number of Entries passing F1:", len(where(Data,F1))) print ("Number of Entries passing F2:", len(where(Data,F2))) ### BEGIN SOLUTION # Fill in your solution here ### END SOLUTION def GenerateDataFromFunction(N,mymin,mymax,myfunc): out = [] ### BEGIN SOLUTION # Fill in your solution here ### END SOLUTION return out import math def gaussian(mean, sigma): def f(x): return (1/math.sqrt(2*math.pi*sigma**2))*math.exp(-( (x-mean)**2)/(2*(sigma**2) )) return f # Example Instantiation g1=gaussian(0,1) g2=gaussian(10,3) ### BEGIN SOLUTION # Fill in your solution here ### END SOLUTION import numpy as np Y=np.array( [ [0, 1, 0, 0], # Class B [1, 0, 0, 0], # Class A [0, 0, 0, 1], # Class C [0, 0, 1, 0] # Class D ]) print ("Shape of Y:", Y.shape) print ("Transpose:", np.transpose(Y)) print ("Reshape 8,2:", np.transpose(Y).reshape((8,2))) print ("Sum:", np.sum(np.transpose(Y).reshape((8,2)),axis=1)) Y1= np.sum(np.transpose(Y) .reshape((8,2)),axis=1).reshape(4,2) print ("Answer: ",Y1) X=np.random.normal(4,10,1000) print(np.mean(X)) print(np.min(X)) print(np.max(X)) print(np.var(X)) import math X1=(X-np.mean(X))/math.sqrt(np.var(X)) # Replace X with your answer print(np.mean(X1)) print(np.var(X1)) X0=np.random.random(1000) def CheckFlatness(D,steps=10): maxD=np.max(D) minD=np.min(D) i=minD stepsize=(maxD-minD)/steps while i<maxD: print (i,i+stepsize,":",np.shape(np.where((D<=(i+stepsize)) & (D>i) ))) i+=stepsize CheckFlatness(X0) CheckFlatness(X) filename="SUSY.csv" # print out the first 5 lines using unix head command (note in jupyter ! => shell command) !head -5 "SUSY.csv" VarNames=["signal", "l_1_pT", "l_1_eta","l_1_phi", "l_2_pT", "l_2_eta", "l_2_phi", "MET", "MET_phi", "MET_rel", "axial_MET", "M_R", "M_TR_2", "R", "MT2", "S_R", "M_Delta_R", "dPhi_r_b", "cos_theta_r1"] RawNames=["l_1_pT", "l_1_eta","l_1_phi", "l_2_pT", "l_2_eta", "l_2_phi"] FeatureNames=[ "MET", "MET_phi", "MET_rel", "axial_MET", "M_R", "M_TR_2", "R", "MT2", "S_R", "M_Delta_R", "dPhi_r_b", "cos_theta_r1"] import pandas as pd import matplotlib.pyplot as plt %matplotlib inline df = pd.read_csv(filename, dtype='float64', names=VarNames) df df_sig=df[df.signal==1] df_bkg=df[df.signal==0] for var in VarNames[1:]: print(var) plt.figure() plt.hist(df_sig[var],bins=100,histtype="step", color="red",label="background",stacked=True) plt.hist(df_bkg[var],bins=100,histtype="step", color="blue", label="signal",stacked=True) plt.legend(loc='upper right') plt.show() import sklearn.discriminant_analysis as DA Fisher=DA.LinearDiscriminantAnalysis() N_Train=4000000 Train_Sample=df[:N_Train] Test_Sample=df[N_Train:] X_Train=Train_Sample[VarNames[1:]] y_Train=Train_Sample["signal"] X_Test=Test_Sample[VarNames[1:]] y_Test=Test_Sample["signal"] Test_sig=Test_Sample[Test_Sample.signal==1] Test_bkg=Test_Sample[Test_Sample.signal==0] Fisher.fit(X_Train,y_Train) plt.figure() plt.hist(Fisher.decision_function(Test_sig[VarNames[1:]]),bins=100,histtype="step", color="blue", label="signal",stacked=True) plt.hist(Fisher.decision_function(Test_bkg[VarNames[1:]]),bins=100,histtype="step", color="red", label="background",stacked=True) plt.legend(loc='upper right') plt.show() from sklearn.metrics import roc_curve, auc fpr, tpr, _ = roc_curve(y_Test, Fisher.decision_function(X_Test)) roc_auc = auc(fpr, tpr) plt.plot(fpr,tpr,color='darkorange',label='ROC curve (area = %0.2f)' % roc_auc) plt.legend(loc="lower right") plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.show() X_Train_Raw=Train_Sample[RawNames] X_Test_Raw=Test_Sample[RawNames] X_Train_Features=Train_Sample[FeatureNames] X_Test_Features=Test_Sample[FeatureNames] def TrainFisher(X_Train,X_Test,y_Train): Fisher=DA.LinearDiscriminantAnalysis() Fisher.fit(X_Train,y_Train) fpr, tpr, _ = roc_curve(y_Test, Fisher.decision_function(X_Test)) roc_auc = auc(fpr, tpr) plt.plot(fpr,tpr,color='darkorange',label='ROC curve (area = %0.2f)' % roc_auc) plt.legend(loc="lower right") plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.show() return Fisher RawFisher=TrainFisher(X_Train_Raw,X_Test_Raw,y_Train) FeatureFisher=TrainFisher(X_Train_Features,X_Test_Features,y_Train) def PlotSignificance(N_S,N_B, N_S_min=1): plt.figure() eff_sig,bins_sig,p_sig=plt.hist(Fisher.decision_function(Test_sig[VarNames[1:]]),bins=100,histtype="step", color="blue", label="signal",cumulative=-1,stacked=True,density=True) eff_bkg,bins_bkg,p_bkg=plt.hist(Fisher.decision_function(Test_bkg[VarNames[1:]]),bins=100,histtype="step", color="red", label="background",cumulative=-1,stacked=True,density=True) plt.legend(loc='upper right') plt.show() good_bins = np.where(eff_sig*N_S>=N_S_min) print(len(good_bins[0])) if len(good_bins[0])<1: print ("Insufficient Signal.") return 0,0,0 significance=(N_S*eff_sig)/np.sqrt((N_B*eff_bkg)+(N_S*eff_sig)) plt.figure() plt.plot(bins_sig[:-1],significance) max_sign=np.max(significance[good_bins]) max_signI=np.argmax(significance[good_bins]) plt.show() print ("Max significance at ", bins_sig[max_signI], " of", max_sign) return bins_sig[max_signI],max_sign, max_signI PlotSignificance(1000000,1e11) import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline filename="SUSY.csv" VarNames=["signal", "l_1_pT", "l_1_eta","l_1_phi", "l_2_pT", "l_2_eta", "l_2_phi", "MET", "MET_phi", "MET_rel", "axial_MET", "M_R", "M_TR_2", "R", "MT2", "S_R", "M_Delta_R", "dPhi_r_b", "cos_theta_r1"] RawNames=["l_1_pT", "l_1_eta","l_1_phi", "l_2_pT", "l_2_eta", "l_2_phi"] FeatureNames=[ "MET", "MET_phi", "MET_rel", "axial_MET", "M_R", "M_TR_2", "R", "MT2", "S_R", "M_Delta_R", "dPhi_r_b", "cos_theta_r1"] df = pd.read_csv(filename, dtype='float64', names=VarNames) N_Max=550000 N_Train=500000 Train_Sample=df[:N_Train] Test_Sample=df[N_Train:N_Max] X_Train=np.array(Train_Sample[VarNames[1:]]) y_Train=np.array(Train_Sample["signal"]) X_Test=np.array(Test_Sample[VarNames[1:]]) y_Test=np.array(Test_Sample["signal"]) from keras.models import Sequential from keras.layers import Dense model = Sequential() model.add(Dense(12, input_dim=X_Train.shape[1], kernel_initializer='random_uniform', activation='relu')) model.add(Dense(8, kernel_initializer='random_uniform', activation='relu')) model.add(Dense(1, kernel_initializer='random_uniform', activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() history=model.fit(X_Train, y_Train, validation_data=(X_Test,y_Test), epochs=10, batch_size=2048) print(history.history) loss_history=history.history["loss"] plt.plot(range(len(loss_history)),loss_history) ## Your Solution Here scores = model.evaluate(X_Test, y_Test) print(scores) from sklearn.metrics import roc_curve, auc fpr, tpr, _ = roc_curve(y_Test, model.predict(X_Test)) roc_auc = auc(fpr, tpr) plt.plot(fpr,tpr,color='darkorange',label='ROC curve (area = %0.2f)' % roc_auc) plt.legend(loc="lower right") plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.show() ## Your solution here ## Your solution here ## Your solution here <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Linear regression Step2: Quick exploration Step3: You can also do quick plotting of the data. The results are not aesthetically the best, but it is useful for a quick visual of the data Step4: Much nicer results can be obtained using a dedicated plotter like seaborn. Step5: Performing the regression Step6: ANOVA anslysis Step7: Each row in the above data is one group.
<ASSISTANT_TASK:> Python Code: # Cumulative probability P(X<120) where X ~ N(100, 10^2) print("P(X<120) where X ~ N(100, 10^2) = %.3f" % stats.norm.cdf(120, loc=100, scale=10)) # Calculate value print("x for which P(X < x = 0.97) = %.1f" % stats.norm.ppf(0.97, loc=100, scale=10)) # Cumulative probability P(X<120) where X ~ N(100, 10^2) print("P(X<120) where X ~ t with df = 10, mean = 100 and sigma = 10) = %.3f" % stats.t.cdf(120, df=10, loc=100, scale=10)) # Calculate value print("x for which P(X < x = 0.97) = %.1f" % stats.t.ppf(0.97, df=10, loc=100, scale=10)) df = pd.read_csv("co2_temp_yr.csv", delimiter=",") print(df) df.describe() ax = df.plot(x="CO2 ppm", y="Global Temp", style='o') ax = sns.regplot(x="CO2 ppm", y="Global Temp", data=df) res = stats.linregress(df["CO2 ppm"], df["Global Temp"]) print("Slope = %.3f" % res.slope) print("Intercept = %.3f" % res.intercept) print("R = %.3f" % res.rvalue) print("Std error = %.3f" % res.stderr) df = pd.read_table("polymer.csv", delimiter=",", index_col=0) print(df) print(stats.f_oneway(*df.as_matrix())) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Chemistry Scheme Scope Step7: 1.4. Basic Approximations Step8: 1.5. Prognostic Variables Form Step9: 1.6. Number Of Tracers Step10: 1.7. Family Approach Step11: 1.8. Coupling With Chemical Reactivity Step12: 2. Key Properties --&gt; Software Properties Step13: 2.2. Code Version Step14: 2.3. Code Languages Step15: 3. Key Properties --&gt; Timestep Framework Step16: 3.2. Split Operator Advection Timestep Step17: 3.3. Split Operator Physical Timestep Step18: 3.4. Split Operator Chemistry Timestep Step19: 3.5. Split Operator Alternate Order Step20: 3.6. Integrated Timestep Step21: 3.7. Integrated Scheme Type Step22: 4. Key Properties --&gt; Timestep Framework --&gt; Split Operator Order Step23: 4.2. Convection Step24: 4.3. Precipitation Step25: 4.4. Emissions Step26: 4.5. Deposition Step27: 4.6. Gas Phase Chemistry Step28: 4.7. Tropospheric Heterogeneous Phase Chemistry Step29: 4.8. Stratospheric Heterogeneous Phase Chemistry Step30: 4.9. Photo Chemistry Step31: 4.10. Aerosols Step32: 5. Key Properties --&gt; Tuning Applied Step33: 5.2. Global Mean Metrics Used Step34: 5.3. Regional Metrics Used Step35: 5.4. Trend Metrics Used Step36: 6. Grid Step37: 6.2. Matches Atmosphere Grid Step38: 7. Grid --&gt; Resolution Step39: 7.2. Canonical Horizontal Resolution Step40: 7.3. Number Of Horizontal Gridpoints Step41: 7.4. Number Of Vertical Levels Step42: 7.5. Is Adaptive Grid Step43: 8. Transport Step44: 8.2. Use Atmospheric Transport Step45: 8.3. Transport Details Step46: 9. Emissions Concentrations Step47: 10. Emissions Concentrations --&gt; Surface Emissions Step48: 10.2. Method Step49: 10.3. Prescribed Climatology Emitted Species Step50: 10.4. Prescribed Spatially Uniform Emitted Species Step51: 10.5. Interactive Emitted Species Step52: 10.6. Other Emitted Species Step53: 11. Emissions Concentrations --&gt; Atmospheric Emissions Step54: 11.2. Method Step55: 11.3. Prescribed Climatology Emitted Species Step56: 11.4. Prescribed Spatially Uniform Emitted Species Step57: 11.5. Interactive Emitted Species Step58: 11.6. Other Emitted Species Step59: 12. Emissions Concentrations --&gt; Concentrations Step60: 12.2. Prescribed Upper Boundary Step61: 13. Gas Phase Chemistry Step62: 13.2. Species Step63: 13.3. Number Of Bimolecular Reactions Step64: 13.4. Number Of Termolecular Reactions Step65: 13.5. Number Of Tropospheric Heterogenous Reactions Step66: 13.6. Number Of Stratospheric Heterogenous Reactions Step67: 13.7. Number Of Advected Species Step68: 13.8. Number Of Steady State Species Step69: 13.9. Interactive Dry Deposition Step70: 13.10. Wet Deposition Step71: 13.11. Wet Oxidation Step72: 14. Stratospheric Heterogeneous Chemistry Step73: 14.2. Gas Phase Species Step74: 14.3. Aerosol Species Step75: 14.4. Number Of Steady State Species Step76: 14.5. Sedimentation Step77: 14.6. Coagulation Step78: 15. Tropospheric Heterogeneous Chemistry Step79: 15.2. Gas Phase Species Step80: 15.3. Aerosol Species Step81: 15.4. Number Of Steady State Species Step82: 15.5. Interactive Dry Deposition Step83: 15.6. Coagulation Step84: 16. Photo Chemistry Step85: 16.2. Number Of Reactions Step86: 17. Photo Chemistry --&gt; Photolysis Step87: 17.2. Environmental Conditions
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'bnu', 'sandbox-3', 'atmoschem') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.chemistry_scheme_scope') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "troposhere" # "stratosphere" # "mesosphere" # "mesosphere" # "whole atmosphere" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.basic_approximations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.prognostic_variables_form') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "3D mass/mixing ratio for gas" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.number_of_tracers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.family_approach') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.coupling_with_chemical_reactivity') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Operator splitting" # "Integrated" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_advection_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_physical_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_chemistry_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_alternate_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.integrated_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.integrated_scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Implicit" # "Semi-implicit" # "Semi-analytic" # "Impact solver" # "Back Euler" # "Newton Raphson" # "Rosenbrock" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.turbulence') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.convection') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.precipitation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.emissions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.gas_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.tropospheric_heterogeneous_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.stratospheric_heterogeneous_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.photo_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.aerosols') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.matches_atmosphere_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.is_adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.use_atmospheric_transport') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.transport_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Vegetation" # "Soil" # "Sea surface" # "Anthropogenic" # "Biomass burning" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Climatology" # "Spatially uniform mixing ratio" # "Spatially uniform concentration" # "Interactive" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Aircraft" # "Biomass burning" # "Lightning" # "Volcanos" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Climatology" # "Spatially uniform mixing ratio" # "Spatially uniform concentration" # "Interactive" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.concentrations.prescribed_lower_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.concentrations.prescribed_upper_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HOx" # "NOy" # "Ox" # "Cly" # "HSOx" # "Bry" # "VOCs" # "isoprene" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_bimolecular_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_termolecular_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_tropospheric_heterogenous_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_stratospheric_heterogenous_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_advected_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_steady_state_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.interactive_dry_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.wet_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.wet_oxidation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.gas_phase_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Cly" # "Bry" # "NOy" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.aerosol_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sulphate" # "Polar stratospheric ice" # "NAT (Nitric acid trihydrate)" # "NAD (Nitric acid dihydrate)" # "STS (supercooled ternary solution aerosol particule))" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.number_of_steady_state_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.sedimentation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.coagulation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.gas_phase_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.aerosol_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sulphate" # "Nitrate" # "Sea salt" # "Dust" # "Ice" # "Organic" # "Black carbon/soot" # "Polar stratospheric ice" # "Secondary organic aerosols" # "Particulate organic matter" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.number_of_steady_state_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.interactive_dry_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.coagulation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.number_of_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.photolysis.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Offline (clear sky)" # "Offline (with clouds)" # "Online" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.photolysis.environmental_conditions') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: BERT Question Answer with TensorFlow Lite Model Maker Step2: Import the required packages. Step3: The "End-to-End Overview" demonstrates a simple end-to-end example. The following sections walk through the example step by step to show more detail. Step4: Load Input Data Specific to an On-device ML App and Preprocess the Data Step5: You can also train the MobileBERT model with your own dataset. If you are running this notebook on Colab, upload your data by using the left sidebar. Step6: Customize the TensorFlow Model Step7: Have a look at the detailed model structure. Step8: Evaluate the Customized Model Step9: Export to TensorFlow Lite Model Step10: You can use the TensorFlow Lite model file in the bert_qa reference app using BertQuestionAnswerer API in TensorFlow Lite Task Library by downloading it from the left sidebar on Colab. Step11: You can also evaluate the tflite model with the evaluate_tflite method. This step is expected to take a long time. Step12: Advanced Usage
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. !sudo apt -y install libportaudio2 !pip install -q tflite-model-maker-nightly import numpy as np import os import tensorflow as tf assert tf.__version__.startswith('2') from tflite_model_maker import model_spec from tflite_model_maker import question_answer from tflite_model_maker.config import ExportFormat from tflite_model_maker.question_answer import DataLoader spec = model_spec.get('mobilebert_qa_squad') train_data_path = tf.keras.utils.get_file( fname='triviaqa-web-train-8000.json', origin='https://storage.googleapis.com/download.tensorflow.org/models/tflite/dataset/triviaqa-web-train-8000.json') validation_data_path = tf.keras.utils.get_file( fname='triviaqa-verified-web-dev.json', origin='https://storage.googleapis.com/download.tensorflow.org/models/tflite/dataset/triviaqa-verified-web-dev.json') train_data = DataLoader.from_squad(train_data_path, spec, is_training=True) validation_data = DataLoader.from_squad(validation_data_path, spec, is_training=False) model = question_answer.create(train_data, model_spec=spec) model.summary() model.evaluate(validation_data) model.export(export_dir='.') model.export(export_dir='.', export_format=ExportFormat.VOCAB) model.evaluate_tflite('model.tflite', validation_data) new_spec = model_spec.get('mobilebert_qa') new_spec.seq_len = 512 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Question 1 Step2: We can then print the Sum of the costs of all those rows. (The cost column is named total_cost.) Step3: Question 2 Step4: We then use the aggregate function to sum the total_cost column for each table in the group. The resulting values are collapsed into a new table, totals, which has a row for each county and a column named total_cost_sum containing the new total. Step5: Finally, we sort the counties by their total cost, limit the results to the top 10 and then print the results as a text bar chart.
<ASSISTANT_TASK:> Python Code: import agate table = agate.Table.from_csv('examples/realdata/ks_1033_data.csv') print(table) kansas_city = table.where(lambda r: r['county'] in ('JACKSON', 'CLAY', 'CASS', 'PLATTE')) print(len(table.rows)) print(len(kansas_city.rows)) print('$%d' % kansas_city.aggregate(agate.Sum('total_cost'))) # Group by county counties = table.group_by('county') print(counties.keys()) # Aggregate totals for all counties totals = counties.aggregate([ ('total_cost_sum', agate.Sum('total_cost'),) ]) print(totals.column_names) totals.order_by('total_cost_sum', reverse=True).limit(20).print_bars('county', 'total_cost_sum', width=100) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import torch softmax_output = load_data() y = torch.argmax(softmax_output, dim=1).view(-1, 1) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Reading data from BigQuery with TFX and Vertex Pipelines Step2: Did you restart the runtime? Step3: Login in to Google for this notebook Step4: If you are on AI Platform Notebooks, authenticate with Google Cloud before Step5: Set up variables Step6: Set gcloud to use your project. Step7: By default the Vertex Pipelines uses the default GCE VM service account of Step8: Please see Step9: All features were already normalized to 0~1 except species which is the Step13: Write model code. Step14: Copy the module file to GCS which can be accessed from the pipeline components. Step16: Write a pipeline definition Step17: Run the pipeline on Vertex Pipelines. Step18: The generated definition file can be submitted using kfp client.
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Use the latest version of pip. !pip install --upgrade pip !pip install --upgrade "tfx[kfp]<2" # docs_infra: no_execute import sys if not 'google.colab' in sys.modules: # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) import sys if 'google.colab' in sys.modules: from google.colab import auth auth.authenticate_user() import tensorflow as tf print('TensorFlow version: {}'.format(tf.__version__)) from tfx import v1 as tfx print('TFX version: {}'.format(tfx.__version__)) import kfp print('KFP version: {}'.format(kfp.__version__)) GOOGLE_CLOUD_PROJECT = '' # <--- ENTER THIS GOOGLE_CLOUD_PROJECT_NUMBER = '' # <--- ENTER THIS GOOGLE_CLOUD_REGION = '' # <--- ENTER THIS GCS_BUCKET_NAME = '' # <--- ENTER THIS if not (GOOGLE_CLOUD_PROJECT and GOOGLE_CLOUD_PROJECT_NUMBER and GOOGLE_CLOUD_REGION and GCS_BUCKET_NAME): from absl import logging logging.error('Please set all required parameters.') !gcloud config set project {GOOGLE_CLOUD_PROJECT} PIPELINE_NAME = 'penguin-bigquery' # Path to various pipeline artifact. PIPELINE_ROOT = 'gs://{}/pipeline_root/{}'.format( GCS_BUCKET_NAME, PIPELINE_NAME) # Paths for users' Python module. MODULE_ROOT = 'gs://{}/pipeline_module/{}'.format( GCS_BUCKET_NAME, PIPELINE_NAME) # Paths for users' data. DATA_ROOT = 'gs://{}/data/{}'.format(GCS_BUCKET_NAME, PIPELINE_NAME) # This is the path where your model will be pushed for serving. SERVING_MODEL_DIR = 'gs://{}/serving_model/{}'.format( GCS_BUCKET_NAME, PIPELINE_NAME) print('PIPELINE_ROOT: {}'.format(PIPELINE_ROOT)) !gcloud projects add-iam-policy-binding {GOOGLE_CLOUD_PROJECT} \ --member=serviceAccount:{GOOGLE_CLOUD_PROJECT_NUMBER}-compute@developer.gserviceaccount.com \ --role=roles/bigquery.user # docs_infra: no_execute %%bigquery --project {GOOGLE_CLOUD_PROJECT} SELECT * FROM `tfx-oss-public.palmer_penguins.palmer_penguins` LIMIT 5 QUERY = "SELECT * FROM `tfx-oss-public.palmer_penguins.palmer_penguins`" _trainer_module_file = 'penguin_trainer.py' %%writefile {_trainer_module_file} # Copied from https://www.tensorflow.org/tfx/tutorials/tfx/penguin_simple from typing import List from absl import logging import tensorflow as tf from tensorflow import keras from tensorflow_transform.tf_metadata import schema_utils from tfx import v1 as tfx from tfx_bsl.public import tfxio from tensorflow_metadata.proto.v0 import schema_pb2 _FEATURE_KEYS = [ 'culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g' ] _LABEL_KEY = 'species' _TRAIN_BATCH_SIZE = 20 _EVAL_BATCH_SIZE = 10 # Since we're not generating or creating a schema, we will instead create # a feature spec. Since there are a fairly small number of features this is # manageable for this dataset. _FEATURE_SPEC = { **{ feature: tf.io.FixedLenFeature(shape=[1], dtype=tf.float32) for feature in _FEATURE_KEYS }, _LABEL_KEY: tf.io.FixedLenFeature(shape=[1], dtype=tf.int64) } def _input_fn(file_pattern: List[str], data_accessor: tfx.components.DataAccessor, schema: schema_pb2.Schema, batch_size: int) -> tf.data.Dataset: Generates features and label for training. Args: file_pattern: List of paths or patterns of input tfrecord files. data_accessor: DataAccessor for converting input to RecordBatch. schema: schema of the input data. batch_size: representing the number of consecutive elements of returned dataset to combine in a single batch Returns: A dataset that contains (features, indices) tuple where features is a dictionary of Tensors, and indices is a single Tensor of label indices. return data_accessor.tf_dataset_factory( file_pattern, tfxio.TensorFlowDatasetOptions( batch_size=batch_size, label_key=_LABEL_KEY), schema=schema).repeat() def _make_keras_model() -> tf.keras.Model: Creates a DNN Keras model for classifying penguin data. Returns: A Keras Model. # The model below is built with Functional API, please refer to # https://www.tensorflow.org/guide/keras/overview for all API options. inputs = [keras.layers.Input(shape=(1,), name=f) for f in _FEATURE_KEYS] d = keras.layers.concatenate(inputs) for _ in range(2): d = keras.layers.Dense(8, activation='relu')(d) outputs = keras.layers.Dense(3)(d) model = keras.Model(inputs=inputs, outputs=outputs) model.compile( optimizer=keras.optimizers.Adam(1e-2), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[keras.metrics.SparseCategoricalAccuracy()]) model.summary(print_fn=logging.info) return model # TFX Trainer will call this function. def run_fn(fn_args: tfx.components.FnArgs): Train the model based on given args. Args: fn_args: Holds args used to train the model as name/value pairs. # This schema is usually either an output of SchemaGen or a manually-curated # version provided by pipeline author. A schema can also derived from TFT # graph if a Transform component is used. In the case when either is missing, # `schema_from_feature_spec` could be used to generate schema from very simple # feature_spec, but the schema returned would be very primitive. schema = schema_utils.schema_from_feature_spec(_FEATURE_SPEC) train_dataset = _input_fn( fn_args.train_files, fn_args.data_accessor, schema, batch_size=_TRAIN_BATCH_SIZE) eval_dataset = _input_fn( fn_args.eval_files, fn_args.data_accessor, schema, batch_size=_EVAL_BATCH_SIZE) model = _make_keras_model() model.fit( train_dataset, steps_per_epoch=fn_args.train_steps, validation_data=eval_dataset, validation_steps=fn_args.eval_steps) # The result of the training should be saved in `fn_args.serving_model_dir` # directory. model.save(fn_args.serving_model_dir, save_format='tf') !gsutil cp {_trainer_module_file} {MODULE_ROOT}/ from typing import List, Optional def _create_pipeline(pipeline_name: str, pipeline_root: str, query: str, module_file: str, serving_model_dir: str, beam_pipeline_args: Optional[List[str]], ) -> tfx.dsl.Pipeline: Creates a TFX pipeline using BigQuery. # NEW: Query data in BigQuery as a data source. example_gen = tfx.extensions.google_cloud_big_query.BigQueryExampleGen( query=query) # Uses user-provided Python function that trains a model. trainer = tfx.components.Trainer( module_file=module_file, examples=example_gen.outputs['examples'], train_args=tfx.proto.TrainArgs(num_steps=100), eval_args=tfx.proto.EvalArgs(num_steps=5)) # Pushes the model to a file destination. pusher = tfx.components.Pusher( model=trainer.outputs['model'], push_destination=tfx.proto.PushDestination( filesystem=tfx.proto.PushDestination.Filesystem( base_directory=serving_model_dir))) components = [ example_gen, trainer, pusher, ] return tfx.dsl.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=components, # NEW: `beam_pipeline_args` is required to use BigQueryExampleGen. beam_pipeline_args=beam_pipeline_args) # docs_infra: no_execute import os # We need to pass some GCP related configs to BigQuery. This is currently done # using `beam_pipeline_args` parameter. BIG_QUERY_WITH_DIRECT_RUNNER_BEAM_PIPELINE_ARGS = [ '--project=' + GOOGLE_CLOUD_PROJECT, '--temp_location=' + os.path.join('gs://', GCS_BUCKET_NAME, 'tmp'), ] PIPELINE_DEFINITION_FILE = PIPELINE_NAME + '_pipeline.json' runner = tfx.orchestration.experimental.KubeflowV2DagRunner( config=tfx.orchestration.experimental.KubeflowV2DagRunnerConfig(), output_filename=PIPELINE_DEFINITION_FILE) _ = runner.run( _create_pipeline( pipeline_name=PIPELINE_NAME, pipeline_root=PIPELINE_ROOT, query=QUERY, module_file=os.path.join(MODULE_ROOT, _trainer_module_file), serving_model_dir=SERVING_MODEL_DIR, beam_pipeline_args=BIG_QUERY_WITH_DIRECT_RUNNER_BEAM_PIPELINE_ARGS)) # docs_infra: no_execute from google.cloud import aiplatform from google.cloud.aiplatform import pipeline_jobs import logging logging.getLogger().setLevel(logging.INFO) aiplatform.init(project=GOOGLE_CLOUD_PROJECT, location=GOOGLE_CLOUD_REGION) job = pipeline_jobs.PipelineJob(template_path=PIPELINE_DEFINITION_FILE, display_name=PIPELINE_NAME) job.submit() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: There is much, much more to know, but these few operations are fundamental to what we'll Step2: The CSR representation can be very efficient for computations, but it is not Step3: Often, once an LIL matrix is created, it is useful to convert it to a CSR format Step4: There are several other sparse formats that can be useful for various problems Step5: There are many, many more plot types available. One useful way to explore these is by
<ASSISTANT_TASK:> Python Code: import numpy as np # Generating a random array X = np.random.random((3, 5)) # a 3 x 5 array print(X) # Accessing elements # get a single element print(X[0, 0]) # get a row print(X[1]) # get a column print(X[:, 1]) # Transposing an array print(X.T) # Turning a row vector into a column vector y = np.linspace(0, 12, 5) print(y) # make into a column vector print(y[:, np.newaxis]) # getting the shape or reshaping an array print(X.shape) print(X.reshape(5, 3)) # indexing by an array of integers (fancy indexing) indices = np.array([3, 1, 0]) print(indices) X[:, indices] from scipy import sparse # Create a random array with a lot of zeros X = np.random.random((10, 5)) print(X) # set the majority of elements to zero X[X < 0.7] = 0 print(X) # turn X into a csr (Compressed-Sparse-Row) matrix X_csr = sparse.csr_matrix(X) print(X_csr) # convert the sparse matrix to a dense array print(X_csr.toarray()) # Create an empty LIL matrix and add some items X_lil = sparse.lil_matrix((5, 5)) for i, j in np.random.randint(0, 5, (15, 2)): X_lil[i, j] = i + j print(X_lil) print(X_lil.toarray()) print(X_lil.tocsr()) %matplotlib inline import matplotlib.pyplot as plt # plotting a line x = np.linspace(0, 10, 100) plt.plot(x, np.sin(x)) # scatter-plot points x = np.random.normal(size=500) y = np.random.normal(size=500) plt.scatter(x, y) # showing images x = np.linspace(1, 12, 100) y = x[:, np.newaxis] im = y * np.sin(x) * np.cos(y) print(im.shape) # imshow - note that origin is at the top-left by default! plt.imshow(im) # Contour plot - note that origin here is at the bottom-left by default! plt.contour(im) # 3D plotting from mpl_toolkits.mplot3d import Axes3D ax = plt.axes(projection='3d') xgrid, ygrid = np.meshgrid(x, y.ravel()) ax.plot_surface(xgrid, ygrid, im, cmap=plt.cm.jet, cstride=2, rstride=2, linewidth=0) # %load http://matplotlib.org/mpl_examples/pylab_examples/ellipse_collection.py import matplotlib.pyplot as plt import numpy as np from matplotlib.collections import EllipseCollection x = np.arange(10) y = np.arange(15) X, Y = np.meshgrid(x, y) XY = np.hstack((X.ravel()[:,np.newaxis], Y.ravel()[:,np.newaxis])) ww = X/10.0 hh = Y/15.0 aa = X*9 fig, ax = plt.subplots() ec = EllipseCollection(ww, hh, aa, units='x', offsets=XY, transOffset=ax.transData) ec.set_array((X+Y).ravel()) ax.add_collection(ec) ax.autoscale_view() ax.set_xlabel('X') ax.set_ylabel('y') cbar = plt.colorbar(ec) cbar.set_label('X+Y') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Part 2 Step2: Part 3 Step4: Assignment wrapup
<ASSISTANT_TASK:> Python Code: # put your code here! myfile = open('oshea.txt','w') myfile.write('I love pizza.\n') myfile.write('I have two children, both of whom are girls.\n') myfile.write('I also have two dogs.\n') myfile.write('Arguably, I spend far too much time on the computer.\n') myfile.close() myfilenew = open('oshea.txt','r') for line in myfilenew: words = line.split(' ') print(words[0]) myfilenew.close() # put your code here! %matplotlib inline import matplotlib.pyplot as plt import numpy as np import csv # writing x = np.arange(-10.0,10.0,0.1) y = np.sin(x) csvfile = open('my_sine_wave.csv','w',newline='') csvwriter = csv.writer(csvfile,delimiter=',') for i in range(x.size): csvwriter.writerow([x[i], y[i]]) csvfile.close() # reading combined_arrays = np.loadtxt('my_sine_wave.csv',delimiter=',',unpack=True) plt.plot(combined_arrays[0],combined_arrays[1]) # put your code here! # writing np.savez('my_sine_wave.npz',xvals=x,sinewave=y) # reading all_data = np.load('my_sine_wave.npz') plt.plot(all_data['xvals'],all_data['sinewave'],'r-') from IPython.display import HTML HTML( <iframe src="https://goo.gl/forms/cGV5yNRzgxzx6naf2?embedded=true" width="80%" height="1200px" frameborder="0" marginheight="0" marginwidth="0"> Loading... </iframe> ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Language Detection Step2: Tokenization Step3: Part of Speech Tagging Step4: Named Entity Recognition Step5: Polarity Step6: Embeddings Step7: Morphology Step8: Transliteration
<ASSISTANT_TASK:> Python Code: import polyglot from polyglot.text import Text, Word text = Text("Bonjour, Mesdames.") print("Language Detected: Code={}, Name={}\n".format(text.language.code, text.language.name)) zen = Text("Beautiful is better than ugly. " "Explicit is better than implicit. " "Simple is better than complex.") print(zen.words) print(zen.sentences) text = Text(u"O primeiro uso de desobediência civil em massa ocorreu em setembro de 1906.") print("{:<16}{}".format("Word", "POS Tag")+"\n"+"-"*30) for word, tag in text.pos_tags: print(u"{:<16}{:>2}".format(word, tag)) text = Text(u"In Großbritannien war Gandhi mit dem westlichen Lebensstil vertraut geworden") print(text.entities) print("{:<16}{}".format("Word", "Polarity")+"\n"+"-"*30) for w in zen.words[:6]: print("{:<16}{:>2}".format(w, w.polarity)) word = Word("Obama", language="en") print("Neighbors (Synonms) of {}".format(word)+"\n"+"-"*30) for w in word.neighbors: print("{:<16}".format(w)) print("\n\nThe first 10 dimensions out the {} dimensions\n".format(word.vector.shape[0])) print(word.vector[:10]) word = Text("Preprocessing is an essential step.").words[0] print(word.morphemes) from polyglot.transliteration import Transliterator transliterator = Transliterator(source_lang="en", target_lang="ru") print(transliterator.transliterate(u"preprocessing")) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: 2. Build map Step4: 2.2. HTML for popups Step5: 2.3. Create map
<ASSISTANT_TASK:> Python Code: df = pd.read_csv('toc_trends_long_format.csv') df.dropna(subset=['latitude', 'longitude'], inplace=True) df = df.query('(analysis_period == "1990-2016") and (non_missing > 0)') base = "http://77.104.141.195/~icpwater/wp-content/core_plots/trends_plots_1990-2016/" fname = df['station_id'].astype(str) + '_' + df['par_id'] + '_' + df['data_period'] + '.png' df['link'] = base + fname df.head() from branca.element import Template, MacroElement template = {% macro html(this, kwargs) %} <!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <title>jQuery UI Draggable - Default functionality</title> <link rel="stylesheet" href="//code.jquery.com/ui/1.12.1/themes/base/jquery-ui.css"> <script src="https://code.jquery.com/jquery-1.12.4.js"></script> <script src="https://code.jquery.com/ui/1.12.1/jquery-ui.js"></script> <script> $( function() { $( "#maplegend" ).draggable({ start: function (event, ui) { $(this).css({ right: "auto", top: "auto", bottom: "auto" }); } }); }); </script> </head> <body> <div id='maplegend' class='maplegend' style='position: absolute; z-index:9999; border:2px solid grey; background-color:rgba(255, 255, 255, 0.8); border-radius:6px; padding: 10px; font-size:14px; right: 20px; bottom: 20px;'> <div class='legend-title'>Legend (draggable)</div> <div class='legend-scale'> <ul class='legend-labels'> <li><span style='background:red;opacity:0.7;'></span>Increasing</li> <li><span style='background:yellow;opacity:0.7;'></span>No trend</li> <li><span style='background:green;opacity:0.7;'></span>Decreasing</li> </ul> </div> </div> </body> </html> <style type='text/css'> .maplegend .legend-title { text-align: left; margin-bottom: 5px; font-weight: bold; font-size: 90%; } .maplegend .legend-scale ul { margin: 0; margin-bottom: 5px; padding: 0; float: left; list-style: none; } .maplegend .legend-scale ul li { font-size: 80%; list-style: none; margin-left: 0; line-height: 18px; margin-bottom: 2px; } .maplegend ul.legend-labels li span { display: block; float: left; height: 16px; width: 30px; margin-right: 5px; margin-left: 0; border: 1px solid #999; } .maplegend .legend-source { font-size: 80%; color: #777; clear: both; } .maplegend a { color: #777; } </style> {% endmacro %} macro = MacroElement() macro._template = Template(template) # HTML for popup styling html = <center><h3>{par_id} at {station_name}, {country}</h3></center> <center><table> <tr> <td><b>ICPW ID:</b></td> <td>{station_id}</td> </tr> <tr> <td><b>ICPW code:</b></td> <td>{station_code}</td> </tr> <tr> <td><b>NFC code:</b></td> <td>{nfc_code}</td> </tr> <tr> <td><b>Number of years with data:</b></td> <td>{non_missing}</td> </tr> <tr> <td><b>Median:</b></td> <td>{median:.3f}</td> </tr> <tr> <td><b>Standard deviation:</b></td> <td>{std_dev:.3f}</td> </tr> <tr> <td><b>Mann-Kendall p-value:</b></td> <td>{mk_p_val:.3f}</td> </tr> <tr> <td><b>Trend:</b></td> <td>{trend}</td> </tr> <tr> <td><b>Theil-Sen slope:</b></td> <td>{sen_slp:.3f}</td> </tr> </table></center> <center><img src={link} height="300"></center> # Create basemap m = folium.Map(location=[55, -35], zoom_start=3) # Add Google aerial imagery folium.raster_layers.TileLayer(tiles='http://{s}.google.com/vt/lyrs=s&x={x}&y={y}&z={z}', attr='google', name='Google satellite', max_zoom=20, subdomains=['mt0', 'mt1', 'mt2', 'mt3'], overlay=False, control=True).add_to(m) # Loop over parameters for par in df['par_id'].unique(): # Add feature group. Show TOC by default if par == 'TOC': fg = folium.FeatureGroup(name=par, show=True) else: fg = folium.FeatureGroup(name=par, show=False) m.add_child(fg) # Get data par_df = df.query('par_id == @par') rec_list = par_df.to_dict(orient='records') # Get station summary data for rec in rec_list: popup = HTML(html.format(**rec)) # Get marker colour trend = rec['trend'] if trend == 'increasing': colour = 'red' elif trend == 'decreasing': colour = 'green' else: colour = 'yellow' cm = folium.CircleMarker(location=[rec['latitude'], rec['longitude']], radius=6, popup=popup, parse_html=True, fill=True, fill_color=colour, color='black', fill_opacity=0.7, ) fg.add_child(cm) folium.LayerControl().add_to(m) m.get_root().add_child(macro) m.save("icpw_map.html") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Simulation setup Step2: Create the coordinate systems Step3: Step 1 Step4: Step 2 Step5: Now compute the point-spread function via Step6: Step 3 Step7: Compute the cumulative distribution Step8: Interpolate the cumulative distribution
<ASSISTANT_TASK:> Python Code: import sys %pylab inline import scipy.special from scipy.interpolate import interp1d from scipy.interpolate import RectBivariateSpline print('Python {}\n'.format(sys.version)) print('NumPy\t\t{}'.format(np.__version__)) print('matplotlib\t{}'.format(matplotlib.__version__)) print('SciPy\t\t{}'.format(scipy.__version__)) # Image properties # Size of the PSF array, pixels size_x = 256 size_y = 256 size_z = 1 # Precision control num_basis = 100 # Number of rescaled Bessels that approximate the phase function num_samples = 1000 # Number of pupil samples along radial direction oversampling = 2 # Defines the upsampling ratio on the image space grid for computations # Microscope parameters NA = 1.4 wavelength = 0.610 # microns M = 100 # magnification ns = 1.33 # specimen refractive index (RI) ng0 = 1.5 # coverslip RI design value ng = 1.5 # coverslip RI experimental value ni0 = 1.5 # immersion medium RI design value ni = 1.5 # immersion medium RI experimental value ti0 = 150 # microns, working distance (immersion medium thickness) design value tg0 = 170 # microns, coverslip thickness design value tg = 170 # microns, coverslip thickness experimental value resPSF = 0.02 # microns (resPSF in the Java code) resLateral = 0.1 # microns (resLateral in the Java code) res_axial = 0.25 # microns pZ = 2 # microns, particle distance from coverslip z = [-2] # microns, stage displacement away from best focus # Scaling factors for the Fourier-Bessel series expansion min_wavelength = 0.436 # microns scaling_factor = NA * (3 * np.arange(1, num_basis + 1) - 2) * min_wavelength / wavelength # Place the origin at the center of the final PSF array x0 = (size_x - 1) / 2 y0 = (size_y - 1) / 2 # Find the maximum possible radius coordinate of the PSF array by finding the distance # from the center of the array to a corner max_radius = round(sqrt((size_x - x0) * (size_x - x0) + (size_y - y0) * (size_y - y0))) + 1; # Radial coordinates, image space r = resPSF * np.arange(0, oversampling * max_radius) / oversampling # Radial coordinates, pupil space a = min([NA, ns, ni, ni0, ng, ng0]) / NA rho = np.linspace(0, a, num_samples) # Convert z to array z = np.array(z) # Define the wavefront aberration OPDs = pZ * np.sqrt(ns * ns - NA * NA * rho * rho) # OPD in the sample OPDi = (z.reshape(-1,1) + ti0) * np.sqrt(ni * ni - NA * NA * rho * rho) - ti0 * np.sqrt(ni0 * ni0 - NA * NA * rho * rho) # OPD in the immersion medium OPDg = tg * np.sqrt(ng * ng - NA * NA * rho * rho) - tg0 * np.sqrt(ng0 * ng0 - NA * NA * rho * rho) # OPD in the coverslip W = 2 * np.pi / wavelength * (OPDs + OPDi + OPDg) # Sample the phase # Shape is (number of z samples by number of rho samples) phase = np.cos(W) + 1j * np.sin(W) # Define the basis of Bessel functions # Shape is (number of basis functions by number of rho samples) J = scipy.special.jv(0, scaling_factor.reshape(-1, 1) * rho) # Compute the approximation to the sampled pupil phase by finding the least squares # solution to the complex coefficients of the Fourier-Bessel expansion. # Shape of C is (number of basis functions by number of z samples). # Note the matrix transposes to get the dimensions correct. C, residuals, _, _ = np.linalg.lstsq(J.T, phase.T) b = 2 * np. pi * r.reshape(-1, 1) * NA / wavelength # Convenience functions for J0 and J1 Bessel functions J0 = lambda x: scipy.special.jv(0, x) J1 = lambda x: scipy.special.jv(1, x) # See equation 5 in Li, Xue, and Blu denom = scaling_factor * scaling_factor - b * b R = (scaling_factor * J1(scaling_factor * a) * J0(b * a) * a - b * J0(scaling_factor * a) * J1(b * a) * a) R /= denom # The transpose places the axial direction along the first dimension of the array, i.e. rows # This is only for convenience. PSF_rz = (np.abs(R.dot(C))**2).T # Create the fleshed-out xy grid of radial distances from the center xy = np.mgrid[0:size_y, 0:size_x] r_pixel = np.sqrt((xy[1] - x0) * (xy[1] - x0) + (xy[0] - y0) * (xy[0] - y0)) * resPSF PSF = np.zeros((size_y, size_x, size_z)) for z_index in range(PSF.shape[2]): # Interpolate the radial PSF function PSF_interp = interp1d(r, PSF_rz[z_index, :]) # Evaluate the PSF at each value of r_pixel PSF[:,:, z_index] = PSF_interp(r_pixel.ravel()).reshape(size_y, size_x) # Normalize to the area norm_const = np.sum(np.sum(PSF[:,:,0])) * resPSF**2 PSF /= norm_const plt.imshow(PSF[:,:,0]) plt.show() cdf = np.cumsum(PSF[:,:,0], axis=1) * resPSF cdf = np.cumsum(cdf, axis=0) * resPSF print('Min: {:.4f}'.format(np.min(cdf))) print('Max: {:.4f}'.format(np.max(cdf))) plt.imshow(cdf) plt.show() x = (resPSF * (xy[1] - x0))[0] y = (resPSF * (xy[0] - y0))[:,0] # Compute the interpolated CDF f = RectBivariateSpline(x, y, cdf) def generatePixelSignature(pX, pY, eX, eY, eZ): value = f((pX - eX + 0.5) * resLateral, (pY - eY + 0.5) * resLateral) + \ f((pX - eX - 0.5) * resLateral, (pY - eY - 0.5) * resLateral) - \ f((pX - eX + 0.5) * resLateral, (pY - eY - 0.5) * resLateral) - \ f((pX - eX - 0.5) * resLateral, (pY - eY + 0.5) * resLateral) return value generatePixelSignature(0, 0, 0, -1, 0) generatePixelSignature(1, 1, 1, 1, 0) generatePixelSignature(2, 1, 1, 1, 0) generatePixelSignature(0, 1, 1, 1, 0) generatePixelSignature(1, 2, 1, 1, 0) generatePixelSignature(1, 0, 1, 1, 0) generatePixelSignature(-1, 1, 1, 1, 0) generatePixelSignature(3, 1, 1, 1, 0) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This was developed using Python 3.5.2 (Anaconda) and TensorFlow version Step2: The VGG-16 model is downloaded from the internet. This is the default directory where you want to save the data-files. The directory will be created if it does not exist. Step3: Helper-functions for image manipulation Step4: Save an image as a jpeg-file. The image is given as a numpy array with pixel-values between 0 and 255. Step5: This function plots a large image. The image is given as a numpy array with pixel-values between 0 and 255. Step9: Loss Functions Step10: Example Step11: Then we load the style-image which has the colours and textures we want in the mixed-image. Step12: Then we define a list of integers which identify the layers in the neural network that we want to use for matching the content-image. These are indices into the layers in the neural network. For the VGG16 model, the 5th layer (index 4) seems to work well as the sole content-layer. Step13: Then we define another list of integers for the style-layers.
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import tensorflow as tf import numpy as np import PIL.Image tf.__version__ import vgg16 # vgg16.data_dir = 'vgg16/' vgg16.maybe_download() def load_image(filename, max_size=None): image = PIL.Image.open(filename) if max_size is not None: # Calculate the appropriate rescale-factor for # ensuring a max height and width, while keeping # the proportion between them. factor = max_size / np.max(image.size) # Scale the image's height and width. size = np.array(image.size) * factor # The size is now floating-point because it was scaled. # But PIL requires the size to be integers. size = size.astype(int) # Resize the image. image = image.resize(size, PIL.Image.LANCZOS) print(image) # Convert to numpy floating-point array. return np.float32(image) def save_image(image, filename): # Ensure the pixel-values are between 0 and 255. image = np.clip(image, 0.0, 255.0) # Convert to bytes. image = image.astype(np.uint8) # Write the image-file in jpeg-format. with open(filename, 'wb') as file: PIL.Image.fromarray(image).save(file, 'jpeg') def plot_image_big(image): # Ensure the pixel-values are between 0 and 255. image = np.clip(image, 0.0, 255.0) # Convert pixels to bytes. image = image.astype(np.uint8) # Convert to a PIL-image and display it. display(PIL.Image.fromarray(image)) def plot_images(content_image, style_image, mixed_image): # Create figure with sub-plots. fig, axes = plt.subplots(1, 3, figsize=(10, 10)) # Adjust vertical spacing. fig.subplots_adjust(hspace=0.1, wspace=0.1) # Use interpolation to smooth pixels? smooth = True # Interpolation type. if smooth: interpolation = 'sinc' else: interpolation = 'nearest' # Plot the content-image. # Note that the pixel-values are normalized to # the [0.0, 1.0] range by dividing with 255. ax = axes.flat[0] ax.imshow(content_image / 255.0, interpolation=interpolation) ax.set_xlabel("Content") # Plot the mixed-image. ax = axes.flat[1] ax.imshow(mixed_image / 255.0, interpolation=interpolation) ax.set_xlabel("Mixed") # Plot the style-image ax = axes.flat[2] ax.imshow(style_image / 255.0, interpolation=interpolation) ax.set_xlabel("Style") # Remove ticks from all the plots. for ax in axes.flat: ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() def mean_squared_error(a, b): return tf.reduce_mean(tf.square(a - b)) def create_content_loss(session, model, content_image, layer_ids): Create the loss-function for the content-image. Parameters: session: An open TensorFlow session for running the model's graph. model: The model, e.g. an instance of the VGG16-class. content_image: Numpy float array with the content-image. layer_ids: List of integer id's for the layers to use in the model. # Create a feed-dict with the content-image. feed_dict = model.create_feed_dict(image=content_image) # Get references to the tensors for the given layers. layers = model.get_layer_tensors(layer_ids) # Calculate the output values of those layers when # feeding the content-image to the model. values = session.run(layers, feed_dict=feed_dict) # Set the model's graph as the default so we can add # computational nodes to it. It is not always clear # when this is necessary in TensorFlow, but if you # want to re-use this code then it may be necessary. with model.graph.as_default(): # Initialize an empty list of loss-functions. layer_losses = [] # For each layer and its corresponding values # for the content-image. for value, layer in zip(values, layers): # These are the values that are calculated # for this layer in the model when inputting # the content-image. Wrap it to ensure it # is a const - although this may be done # automatically by TensorFlow. value_const = tf.constant(value) # The loss-function for this layer is the # Mean Squared Error between the layer-values # when inputting the content- and mixed-images. # Note that the mixed-image is not calculated # yet, we are merely creating the operations # for calculating the MSE between those two. loss = mean_squared_error(layer, value_const) # Add the loss-function for this layer to the # list of loss-functions. layer_losses.append(loss) # The combined loss for all layers is just the average. # The loss-functions could be weighted differently for # each layer. You can try it and see what happens. total_loss = tf.reduce_mean(layer_losses) return total_loss def gram_matrix(tensor): shape = tensor.get_shape() # Get the number of feature channels for the input tensor, # which is assumed to be from a convolutional layer with 4-dim. num_channels = int(shape[3]) # Reshape the tensor so it is a 2-dim matrix. This essentially # flattens the contents of each feature-channel. matrix = tf.reshape(tensor, shape=[-1, num_channels]) # Calculate the Gram-matrix as the matrix-product of # the 2-dim matrix with itself. This calculates the # dot-products of all combinations of the feature-channels. gram = tf.matmul(tf.transpose(matrix), matrix) return gram def create_style_loss(session, model, style_image, layer_ids): Create the loss-function for the style-image. Parameters: session: An open TensorFlow session for running the model's graph. model: The model, e.g. an instance of the VGG16-class. style_image: Numpy float array with the style-image. layer_ids: List of integer id's for the layers to use in the model. # Create a feed-dict with the style-image. feed_dict = model.create_feed_dict(image=style_image) # Get references to the tensors for the given layers. layers = model.get_layer_tensors(layer_ids) layerIdCount=len(layer_ids) print('count of layer ids:',layerIdCount) # Set the model's graph as the default so we can add # computational nodes to it. It is not always clear # when this is necessary in TensorFlow, but if you # want to re-use this code then it may be necessary. with model.graph.as_default(): # Construct the TensorFlow-operations for calculating # the Gram-matrices for each of the layers. gram_layers = [gram_matrix(layer) for layer in layers] # Calculate the values of those Gram-matrices when # feeding the style-image to the model. values = session.run(gram_layers, feed_dict=feed_dict) # Initialize an empty list of loss-functions. layer_losses = [] # For each Gram-matrix layer and its corresponding values. for value, gram_layer in zip(values, gram_layers): # These are the Gram-matrix values that are calculated # for this layer in the model when inputting the # style-image. Wrap it to ensure it is a const, # although this may be done automatically by TensorFlow. value_const = tf.constant(value) # The loss-function for this layer is the # Mean Squared Error between the Gram-matrix values # for the content- and mixed-images. # Note that the mixed-image is not calculated # yet, we are merely creating the operations # for calculating the MSE between those two. loss = mean_squared_error(gram_layer, value_const) # Add the loss-function for this layer to the # list of loss-functions. layer_losses.append(loss) # The combined loss for all layers is just the average. # The loss-functions could be weighted differently for # each layer. You can try it and see what happens. total_loss = tf.reduce_mean(layer_losses) return total_loss def create_denoise_loss(model): loss = tf.reduce_sum(tf.abs(model.input[:,1:,:,:] - model.input[:,:-1,:,:])) + \ tf.reduce_sum(tf.abs(model.input[:,:,1:,:] - model.input[:,:,:-1,:])) return loss def style_transfer(content_image, style_image, content_layer_ids, style_layer_ids, weight_content=1.5, weight_style=10.0, weight_denoise=0.3, num_iterations=120, step_size=10.0): Use gradient descent to find an image that minimizes the loss-functions of the content-layers and style-layers. This should result in a mixed-image that resembles the contours of the content-image, and resembles the colours and textures of the style-image. Parameters: content_image: Numpy 3-dim float-array with the content-image. style_image: Numpy 3-dim float-array with the style-image. content_layer_ids: List of integers identifying the content-layers. style_layer_ids: List of integers identifying the style-layers. weight_content: Weight for the content-loss-function. weight_style: Weight for the style-loss-function. weight_denoise: Weight for the denoising-loss-function. num_iterations: Number of optimization iterations to perform. step_size: Step-size for the gradient in each iteration. # Create an instance of the VGG16-model. This is done # in each call of this function, because we will add # operations to the graph so it can grow very large # and run out of RAM if we keep using the same instance. model = vgg16.VGG16() # Create a TensorFlow-session. session = tf.InteractiveSession(graph=model.graph) # Print the names of the content-layers. print("Content layers:") print(model.get_layer_names(content_layer_ids)) print('Content Layers:',content_layer_ids) print() # Print the names of the style-layers. print("Style layers:") print(model.get_layer_names(style_layer_ids)) print('Style Layers:',style_layer_ids) print() #Printing the input paramenter to the function print('Weight Content:',weight_content) print('Weight Style:',weight_style) # Commented by Shreyas.......... #print('Weight Denoise:',weight_denoise) print('Number of Iterations:',num_iterations) print('Step Size:',step_size) print() # Create the loss-function for the content-layers and -image. loss_content = create_content_loss(session=session, model=model, content_image=content_image, layer_ids=content_layer_ids) # Create the loss-function for the style-layers and -image. loss_style = create_style_loss(session=session, model=model, style_image=style_image, layer_ids=style_layer_ids) # Create the loss-function for the denoising of the mixed-image. #loss_denoise = create_denoise_loss(model) # Create TensorFlow variables for adjusting the values of # the loss-functions. This is explained below. adj_content = tf.Variable(1e-10, name='adj_content') adj_style = tf.Variable(1e-10, name='adj_style') #adj_denoise = tf.Variable(1e-10, name='adj_denoise') # Initialize the adjustment values for the loss-functions. #session.run([adj_content.initializer, # adj_style.initializer, # adj_denoise.initializer]) session.run([adj_content.initializer, adj_style.initializer]) # Create TensorFlow operations for updating the adjustment values. # These are basically just the reciprocal values of the # loss-functions, with a small value 1e-10 added to avoid the # possibility of division by zero. update_adj_content = adj_content.assign(1.0 / (loss_content + 1e-10)) update_adj_style = adj_style.assign(1.0 / (loss_style + 1e-10)) #update_adj_denoise = adj_denoise.assign(1.0 / (loss_denoise + 1e-10)) # This is the weighted loss-function that we will minimize # below in order to generate the mixed-image. # Because we multiply the loss-values with their reciprocal # adjustment values, we can use relative weights for the # loss-functions that are easier to select, as they are # independent of the exact choice of style- and content-layers. #loss_combined = weight_content * adj_content * loss_content + \ # weight_style * adj_style * loss_style + \ # weight_denoise * adj_denoise * loss_denoise loss_combined = weight_content * adj_content * loss_content + \ weight_style * adj_style * loss_style #loss_combined = loss_combined/3 # Use TensorFlow to get the mathematical function for the # gradient of the combined loss-function with regard to # the input image. gradient = tf.gradients(loss_combined, model.input) # List of tensors that we will run in each optimization iteration. #run_list = [gradient, update_adj_content, update_adj_style, \ # update_adj_denoise] run_list = [gradient, update_adj_content, update_adj_style] # The mixed-image is initialized with random noise. # It is the same size as the content-image. mixed_image = np.random.rand(*content_image.shape) + 128 for i in range(num_iterations): # Create a feed-dict with the mixed-image. feed_dict = model.create_feed_dict(image=mixed_image) # Use TensorFlow to calculate the value of the # gradient, as well as updating the adjustment values. #grad, adj_content_val, adj_style_val, adj_denoise_val \ #= session.run(run_list, feed_dict=feed_dict) grad, adj_content_val, adj_style_val \ = session.run(run_list, feed_dict=feed_dict) # Reduce the dimensionality of the gradient. grad = np.squeeze(grad) # Scale the step-size according to the gradient-values. step_size_scaled = step_size / (np.std(grad) + 1e-8) # Update the image by following the gradient. mixed_image -= grad * step_size_scaled # Ensure the image has valid pixel-values between 0 and 255. mixed_image = np.clip(mixed_image, 0.0, 255.0) # Print a little progress-indicator. print(". ", end="") # Display status once every 10 iterations, and the last. if (i % 10 == 0) or (i == num_iterations - 1): print() print("Iteration:", i) # Print adjustment weights for loss-functions. #msg = "Weight Adj. for Content: {0:.2e}, Style: {1:.2e}, Denoise: {2:.2e}" #print(msg.format(adj_content_val, adj_style_val, adj_denoise_val)) msg = "Weight Adj. for Content: {0:.2e}, Style: {1:.2e}" print(msg.format(adj_content_val, adj_style_val)) # Plot the content-, style- and mixed-images. plot_images(content_image=content_image, style_image=style_image, mixed_image=mixed_image) #Saving the mixed image after every 10 iterations filename='images/outputs_StyleTransfer/Mixed_Iteration' + str(i) +'.jpg' print(filename) save_image(mixed_image, filename) print() print("Final image:") plot_image_big(mixed_image) # Close the TensorFlow session to release its resources. session.close() # Return the mixed-image. return mixed_image content_filename = 'images/eiffel.jpg' content_image = load_image(content_filename, max_size=None) filenamecontent='images/outputs_StyleTransfer/Content.jpg' print(filenamecontent) save_image(content_image, filenamecontent) style_filename = 'images/style26.jpg' style_image = load_image(style_filename, max_size=None) filenamestyle='images/outputs_StyleTransfer/Style.jpg' print(filenamestyle) save_image(style_image, filenamestyle) content_layer_ids = [4,6] # The VGG16-model has 13 convolutional layers. # This selects all those layers as the style-layers. # This is somewhat slow to optimize. style_layer_ids = list(range(13)) # You can also select a sub-set of the layers, e.g. like this: # style_layer_ids = [1, 2, 3, 4] %%time img = style_transfer(content_image=content_image, style_image=style_image, content_layer_ids=content_layer_ids, style_layer_ids=style_layer_ids, weight_content=1.5, weight_style=10.0, weight_denoise=0.3, num_iterations=150, step_size=10.0) # Function for printing mixed output image filename='images/outputs_StyleTransfer/Mixed.jpg' save_image(img, filename) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Model Family Step7: 1.4. Basic Approximations Step8: 1.5. Prognostic Variables Step9: 2. Key Properties --&gt; Seawater Properties Step10: 2.2. Eos Functional Temp Step11: 2.3. Eos Functional Salt Step12: 2.4. Eos Functional Depth Step13: 2.5. Ocean Freezing Point Step14: 2.6. Ocean Specific Heat Step15: 2.7. Ocean Reference Density Step16: 3. Key Properties --&gt; Bathymetry Step17: 3.2. Type Step18: 3.3. Ocean Smoothing Step19: 3.4. Source Step20: 4. Key Properties --&gt; Nonoceanic Waters Step21: 4.2. River Mouth Step22: 5. Key Properties --&gt; Software Properties Step23: 5.2. Code Version Step24: 5.3. Code Languages Step25: 6. Key Properties --&gt; Resolution Step26: 6.2. Canonical Horizontal Resolution Step27: 6.3. Range Horizontal Resolution Step28: 6.4. Number Of Horizontal Gridpoints Step29: 6.5. Number Of Vertical Levels Step30: 6.6. Is Adaptive Grid Step31: 6.7. Thickness Level 1 Step32: 7. Key Properties --&gt; Tuning Applied Step33: 7.2. Global Mean Metrics Used Step34: 7.3. Regional Metrics Used Step35: 7.4. Trend Metrics Used Step36: 8. Key Properties --&gt; Conservation Step37: 8.2. Scheme Step38: 8.3. Consistency Properties Step39: 8.4. Corrected Conserved Prognostic Variables Step40: 8.5. Was Flux Correction Used Step41: 9. Grid Step42: 10. Grid --&gt; Discretisation --&gt; Vertical Step43: 10.2. Partial Steps Step44: 11. Grid --&gt; Discretisation --&gt; Horizontal Step45: 11.2. Staggering Step46: 11.3. Scheme Step47: 12. Timestepping Framework Step48: 12.2. Diurnal Cycle Step49: 13. Timestepping Framework --&gt; Tracers Step50: 13.2. Time Step Step51: 14. Timestepping Framework --&gt; Baroclinic Dynamics Step52: 14.2. Scheme Step53: 14.3. Time Step Step54: 15. Timestepping Framework --&gt; Barotropic Step55: 15.2. Time Step Step56: 16. Timestepping Framework --&gt; Vertical Physics Step57: 17. Advection Step58: 18. Advection --&gt; Momentum Step59: 18.2. Scheme Name Step60: 18.3. ALE Step61: 19. Advection --&gt; Lateral Tracers Step62: 19.2. Flux Limiter Step63: 19.3. Effective Order Step64: 19.4. Name Step65: 19.5. Passive Tracers Step66: 19.6. Passive Tracers Advection Step67: 20. Advection --&gt; Vertical Tracers Step68: 20.2. Flux Limiter Step69: 21. Lateral Physics Step70: 21.2. Scheme Step71: 22. Lateral Physics --&gt; Momentum --&gt; Operator Step72: 22.2. Order Step73: 22.3. Discretisation Step74: 23. Lateral Physics --&gt; Momentum --&gt; Eddy Viscosity Coeff Step75: 23.2. Constant Coefficient Step76: 23.3. Variable Coefficient Step77: 23.4. Coeff Background Step78: 23.5. Coeff Backscatter Step79: 24. Lateral Physics --&gt; Tracers Step80: 24.2. Submesoscale Mixing Step81: 25. Lateral Physics --&gt; Tracers --&gt; Operator Step82: 25.2. Order Step83: 25.3. Discretisation Step84: 26. Lateral Physics --&gt; Tracers --&gt; Eddy Diffusity Coeff Step85: 26.2. Constant Coefficient Step86: 26.3. Variable Coefficient Step87: 26.4. Coeff Background Step88: 26.5. Coeff Backscatter Step89: 27. Lateral Physics --&gt; Tracers --&gt; Eddy Induced Velocity Step90: 27.2. Constant Val Step91: 27.3. Flux Type Step92: 27.4. Added Diffusivity Step93: 28. Vertical Physics Step94: 29. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Details Step95: 30. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Tracers Step96: 30.2. Closure Order Step97: 30.3. Constant Step98: 30.4. Background Step99: 31. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Momentum Step100: 31.2. Closure Order Step101: 31.3. Constant Step102: 31.4. Background Step103: 32. Vertical Physics --&gt; Interior Mixing --&gt; Details Step104: 32.2. Tide Induced Mixing Step105: 32.3. Double Diffusion Step106: 32.4. Shear Mixing Step107: 33. Vertical Physics --&gt; Interior Mixing --&gt; Tracers Step108: 33.2. Constant Step109: 33.3. Profile Step110: 33.4. Background Step111: 34. Vertical Physics --&gt; Interior Mixing --&gt; Momentum Step112: 34.2. Constant Step113: 34.3. Profile Step114: 34.4. Background Step115: 35. Uplow Boundaries --&gt; Free Surface Step116: 35.2. Scheme Step117: 35.3. Embeded Seaice Step118: 36. Uplow Boundaries --&gt; Bottom Boundary Layer Step119: 36.2. Type Of Bbl Step120: 36.3. Lateral Mixing Coef Step121: 36.4. Sill Overflow Step122: 37. Boundary Forcing Step123: 37.2. Surface Pressure Step124: 37.3. Momentum Flux Correction Step125: 37.4. Tracers Flux Correction Step126: 37.5. Wave Effects Step127: 37.6. River Runoff Budget Step128: 37.7. Geothermal Heating Step129: 38. Boundary Forcing --&gt; Momentum --&gt; Bottom Friction Step130: 39. Boundary Forcing --&gt; Momentum --&gt; Lateral Friction Step131: 40. Boundary Forcing --&gt; Tracers --&gt; Sunlight Penetration Step132: 40.2. Ocean Colour Step133: 40.3. Extinction Depth Step134: 41. Boundary Forcing --&gt; Tracers --&gt; Fresh Water Forcing Step135: 41.2. From Sea Ice Step136: 41.3. Forced Mode Restoring
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'test-institute-2', 'sandbox-3', 'ocean') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.model_family') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OGCM" # "slab ocean" # "mixed layer ocean" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.basic_approximations') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Primitive equations" # "Non-hydrostatic" # "Boussinesq" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Potential temperature" # "Conservative temperature" # "Salinity" # "U-velocity" # "V-velocity" # "W-velocity" # "SSH" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Linear" # "Wright, 1997" # "Mc Dougall et al." # "Jackett et al. 2006" # "TEOS 2010" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_temp') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Potential temperature" # "Conservative temperature" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_salt') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Practical salinity Sp" # "Absolute salinity Sa" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pressure (dbars)" # "Depth (meters)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_freezing_point') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "TEOS 2010" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_specific_heat') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_reference_density') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.reference_dates') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Present day" # "21000 years BP" # "6000 years BP" # "LGM" # "Pliocene" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.type') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.ocean_smoothing') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.source') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.nonoceanic_waters.isolated_seas') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.nonoceanic_waters.river_mouth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.range_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.is_adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.thickness_level_1') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.scheme') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Energy" # "Enstrophy" # "Salt" # "Volume of ocean" # "Momentum" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.consistency_properties') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.corrected_conserved_prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.was_flux_correction_used') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.vertical.coordinates') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Z-coordinate" # "Z*-coordinate" # "S-coordinate" # "Isopycnic - sigma 0" # "Isopycnic - sigma 2" # "Isopycnic - sigma 4" # "Isopycnic - other" # "Hybrid / Z+S" # "Hybrid / Z+isopycnic" # "Hybrid / other" # "Pressure referenced (P)" # "P*" # "Z**" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.vertical.partial_steps') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Lat-lon" # "Rotated north pole" # "Two north poles (ORCA-style)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.staggering') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Arakawa B-grid" # "Arakawa C-grid" # "Arakawa E-grid" # "N/a" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Finite difference" # "Finite volumes" # "Finite elements" # "Unstructured grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.diurnal_cycle') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Via coupling" # "Specific treatment" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.tracers.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Leap-frog + Asselin filter" # "Leap-frog + Periodic Euler" # "Predictor-corrector" # "Runge-Kutta 2" # "AM3-LF" # "Forward-backward" # "Forward operator" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.tracers.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Preconditioned conjugate gradient" # "Sub cyling" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Leap-frog + Asselin filter" # "Leap-frog + Periodic Euler" # "Predictor-corrector" # "Runge-Kutta 2" # "AM3-LF" # "Forward-backward" # "Forward operator" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.barotropic.splitting') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "split explicit" # "implicit" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.barotropic.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.vertical_physics.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.momentum.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Flux form" # "Vector form" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.momentum.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.momentum.ALE') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.flux_limiter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.effective_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.passive_tracers') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Ideal age" # "CFC 11" # "CFC 12" # "SF6" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.passive_tracers_advection') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.vertical_tracers.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.vertical_tracers.flux_limiter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Eddy active" # "Eddy admitting" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.direction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Horizontal" # "Isopycnal" # "Isoneutral" # "Geopotential" # "Iso-level" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.order') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Harmonic" # "Bi-harmonic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Second order" # "Higher order" # "Flux limiter" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Space varying" # "Time + space varying (Smagorinsky)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.constant_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.variable_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.coeff_background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.coeff_backscatter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.mesoscale_closure') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.submesoscale_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.direction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Horizontal" # "Isopycnal" # "Isoneutral" # "Geopotential" # "Iso-level" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.order') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Harmonic" # "Bi-harmonic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Second order" # "Higher order" # "Flux limiter" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Space varying" # "Time + space varying (Smagorinsky)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.constant_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.variable_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.coeff_background') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.coeff_backscatter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "GM" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.constant_val') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.flux_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.added_diffusivity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.details.langmuir_cells_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure - TKE" # "Turbulent closure - KPP" # "Turbulent closure - Mellor-Yamada" # "Turbulent closure - Bulk Mixed Layer" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.closure_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure - TKE" # "Turbulent closure - KPP" # "Turbulent closure - Mellor-Yamada" # "Turbulent closure - Bulk Mixed Layer" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.closure_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.convection_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Non-penetrative convective adjustment" # "Enhanced vertical diffusion" # "Included in turbulence closure" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.tide_induced_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.double_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.shear_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure / TKE" # "Turbulent closure - Mellor-Yamada" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.profile') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure / TKE" # "Turbulent closure - Mellor-Yamada" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.profile') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Linear implicit" # "Linear filtered" # "Linear semi-explicit" # "Non-linear implicit" # "Non-linear filtered" # "Non-linear semi-explicit" # "Fully explicit" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.embeded_seaice') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.type_of_bbl') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Diffusive" # "Acvective" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.lateral_mixing_coef') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.sill_overflow') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.surface_pressure') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.momentum_flux_correction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers_flux_correction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.wave_effects') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.river_runoff_budget') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.geothermal_heating') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.momentum.bottom_friction.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Linear" # "Non-linear" # "Non-linear (drag function of speed of tides)" # "Constant drag coefficient" # "None" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.momentum.lateral_friction.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Free-slip" # "No-slip" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "1 extinction depth" # "2 extinction depth" # "3 extinction depth" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.ocean_colour') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.extinction_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.from_atmopshere') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Freshwater flux" # "Virtual salt flux" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.from_sea_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Freshwater flux" # "Virtual salt flux" # "Real salt flux" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.forced_mode_restoring') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: import numpy as np from sklearn.preprocessing import MinMaxScaler a = np.array([[-1, 2], [-0.5, 6]]) scaler = MinMaxScaler() a_one_column = a.reshape(-1, 1) result_one_column = scaler.fit_transform(a_one_column) result = result_one_column.reshape(a.shape) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The speech commands Step2: The below code is generating a label ID for a command. The ID will be -1 for any command not in the to_keep list. Other ID will be the index of the keyword in this list. Step3: The feature Step4: The final feature is the zcr computed on a segment of 1 second and filtered. We are using a sliding window and using a Hann window. Step5: The patterns Step6: Following code is giving the number of speech samples for each keyword. Step7: The following code is generating the patterns used for the training of the ML model,. Step8: Below code is extracting the training and test patterns. Step9: Testing on a signal Step10: Simple function to display a spectrogram. It is adapted from a SciPy example. Step11: Display of the feature to compare with the spectrogram. Step12: Patterns for training Step13: Logistic Regression Step14: We are using the best estimator found during the randomized search Step15: The confusion matrix is generated from the test patterns to check the behavior of the classifier Step16: We compute the final score. 0.8 is really the minimum acceptable value for this kind of demo. Step17: We can now save the model so that next time we want to play with the notebook and test the CMSIS-DSP implementation we do not have to retrain the model Step18: And we can reload the saved model Step19: Reference implementation with Matrix Step20: And like in the code above with scikit-learn, we are checking the result with the confusion matrix and the score. It should give the same results Step21: CMSIS-DSP implementation Step22: For the FIR, CMSIS-DSP is using a FIR instance structure and thus we need to define it Step23: Let's check that the feature is giving the same result as the reference implemenattion using linear algebra. Step24: The feature code is working, so now we can implement the predict Step25: And finally we can check the CMSIS-DSP behavior of the test patterns Step26: We are getting very similar results to the reference implementation. Now let's explore fixed point. Step27: Now we can implement the zcr and feature in Q31. Step28: Let's check the feature on the data to compare with the F32 version and check it is working Step29: The Q31 feature is very similar to the F32 one so now we can implement the predict Step30: Now we can check the Q31 implementation on the test patterns Step31: The score is as good as the F32 implementation. Step32: Q15 version is as good as other versions so we are selecting this implementation to run on the Arduino (once it has been converted to C). Step33: To describe our compute graph, we need to describe the nodes which are used in this graph. Step34: We need some parameters. Those parameters need to be coherent with the values defined in the features in the above code. Step36: Below function is Step37: Next line is generating sched.py which is the Python implementation of the compute graph and its static scheduling. This file is describing the FIFOs connecting the nodes and describing how the nodes are scheduled. Step38: Next line is generating the C++ schedule that we will need for the Arduino implementation Step39: Now we'd like to test the Q15 classifier and the static schedule on a real patterns. Step40: Let's plot the signal to check we have the right one Step41: Now we can run our static schedule on this file. Step42: The code is working. We are getting more printed Yes than Yes in the pattern because we are sliding by 0.5 second between each recognition and the same word can be recognized several time. Step43: Once the model is loaded, we extract the values and convert them to Q15 Step45: Now we need to generate C arrays for the ML model parameters. Those parameters are generated into kws/coef.cpp Step46: Generation of the coef code Step47: The implementation of the nodes is in kws/AppNodes.h. It is very similar to the appnodes.py but using the CMSIS-DSP C API. Step48: The first time the below command is executed, it will take a very long time. The full CMSIS-DSP library has to be rebuilt for the Arduino. Step49: Testing
<ASSISTANT_TASK:> Python Code: import cmsisdsp as dsp import cmsisdsp.fixedpoint as fix import numpy as np import os.path import glob import pathlib import random import soundfile as sf import matplotlib.pyplot as plt from IPython.display import display,Audio,HTML import scipy.signal from numpy.lib.stride_tricks import sliding_window_view from scipy.signal.windows import hann from sklearn import svm from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from scipy.stats import uniform from sklearn.linear_model import LogisticRegression import pickle MINISPEECH="mini_speech_commands" commands=np.array([os.path.basename(f) for f in glob.glob(os.path.join(MINISPEECH,"mini_speech_commands","*"))]) commands=commands[commands != "README.md"] # Any other word will be recognized as unknown to_keep=['yes'] UNKNOWN_CLASS = -1 def get_label(name): return(pathlib.PurePath(name).parts[-2]) def get_label_id(name): label=get_label(name) if label in to_keep: return(to_keep.index(label)) else: return(UNKNOWN_CLASS) def zcr(w): w = w-np.mean(w) f=w[:-1] g=w[1:] k=np.count_nonzero(np.logical_and(f*g<0, g>f)) return(1.0*k/len(f)) def feature(data): samplerate=16000 input_len = 16000 # The speech pattern is padded to ensure it has a duration of 1 second waveform = data[:input_len] zero_padding = np.zeros( 16000 - waveform.shape[0], dtype=np.float32) signal = np.hstack([waveform, zero_padding]) # We decompose the intput signal into overlapping window. And the signal in each window # is premultiplied by a Hann window of the right size. # Warning : if you change the window duration and audio offset, you'll need to change the value # in the scripts used for the scheduling of the compute graph later. winDuration=25e-3 audioOffsetDuration=10e-3 winLength=int(np.floor(samplerate*winDuration)) audioOffset=int(np.floor(samplerate*audioOffsetDuration)) overlap=winLength-audioOffset window=hann(winLength,sym=False) reta=[zcr(x*window) for x in sliding_window_view(signal,winLength)[::audioOffset,:]] # The final signal is filtered. We have tested several variations on the feature. This filtering is # improving the recognition reta=scipy.signal.lfilter(np.ones(10)/10.0,[1],reta) return(np.array(reta)) class Pattern: def __init__(self,p): global UNKNOWN_CLASS if isinstance(p, str): self._isFile=True self._filename=p self._label=get_label_id(p) data, samplerate = sf.read(self._filename) self._feature = feature(data) else: self._isFile=False self._noiseLevel=p self._label=UNKNOWN_CLASS noise=np.random.randn(16000)*p self._feature=feature(noise) @property def label(self): return(self._label) @property def feature(self): return(self._feature) # Only useful for plotting # The random pattern will be different each time @property def signal(self): if not self._isFile: return(np.random.randn(16000)*self._noiseLevel) else: data, samplerate = sf.read(self._filename) return(data) files_per_command=len(glob.glob(os.path.join(MINISPEECH,"mini_speech_commands",commands[0],"*"))) files_per_command # Add patterns we want to detect filenames=[] for f in to_keep: filenames+=glob.glob(os.path.join(MINISPEECH,"mini_speech_commands",f,"*")) random.shuffle(filenames) # Add remaining patterns remaining_words=list(set(commands)-set(to_keep)) nb_noise=0 remaining=[] for f in remaining_words: remaining+=glob.glob(os.path.join(MINISPEECH,"mini_speech_commands",f,"*")) random.shuffle(remaining) filenames += remaining[0:files_per_command-nb_noise] patterns=[Pattern(x) for x in filenames] for i in range(nb_noise): patterns.append(Pattern(np.abs(np.random.rand(1)*0.05)[0])) random.shuffle(patterns) print(len(patterns)) patterns=np.array(patterns) nb_patterns = len(patterns) nb_train= int(np.floor(0.8 * nb_patterns)) nb_tests=nb_patterns-nb_train train_patterns = patterns[:nb_train] test_patterns = patterns[-nb_tests:] nbpat=50 data = patterns[nbpat].signal samplerate=16000 plt.plot(data) plt.show() audio=Audio(data=data,rate=samplerate,autoplay=False) audio def get_spectrogram(waveform,fs): # Zero-padding for an audio waveform with less than 16,000 samples. input_len = 16000 waveform = waveform[:input_len] zero_padding = np.zeros( 16000 - waveform.shape[0], dtype=np.float32) mmax=np.max(np.abs(waveform)) equal_length = np.hstack([waveform, zero_padding]) f, t, Zxx = scipy.signal.stft(equal_length, fs, nperseg=1000) plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=mmax/100, shading='gouraud') plt.title('STFT Magnitude') plt.ylabel('Frequency [Hz]') plt.xlabel('Time [sec]') plt.show() get_spectrogram(data,16000) feat=feature(data) plt.plot(feat) plt.show() X=np.array([x.feature for x in train_patterns]) X.shape y=np.array([x.label for x in train_patterns]) y.shape y_test = [x.label for x in test_patterns] X_test = [x.feature for x in test_patterns] distributionsb = dict(C=uniform(loc=1, scale=1000) ) reg = LogisticRegression(penalty="l1", solver="saga", tol=0.1) clfb=RandomizedSearchCV(reg, distributionsb,random_state=0,n_iter=50).fit(X, y) clfb.best_estimator_ y_pred = clfb.predict(X_test) labels=["Unknown"] + to_keep ConfusionMatrixDisplay.from_predictions(y_test, y_pred,display_labels=labels) clfb.score(X_test, y_test) with open("logistic.pickle","wb") as f: s = pickle.dump(clfb,f) with open("logistic.pickle","rb") as f: clfb=pickle.load(f) def predict(feat): coef=clfb.best_estimator_.coef_ intercept=clfb.best_estimator_.intercept_ res=np.dot(coef,feat) + intercept if res<0: return(-1) else: return(0) y_pred_ref = [predict(x) for x in X_test] labels=["Unknown"] + to_keep ConfusionMatrixDisplay.from_predictions(y_test, y_pred_ref,display_labels=labels) np.count_nonzero(np.equal(y_test,y_pred_ref))/len(y_test) coef_f32=clfb.best_estimator_.coef_ intercept_f32=clfb.best_estimator_.intercept_ def dsp_zcr(w): m = dsp.arm_mean_f32(w) m = -m w = dsp.arm_offset_f32(w,m) f=w[:-1] g=w[1:] k=np.count_nonzero(np.logical_and(f*g<0, g>f)) return(1.0*k/len(f)) firf32 = dsp.arm_fir_instance_f32() def dsp_feature(data): samplerate=16000 input_len = 16000 waveform = data[:input_len] zero_padding = np.zeros( 16000 - waveform.shape[0], dtype=np.float32) signal = np.hstack([waveform, zero_padding]) winDuration=25e-3 audioOffsetDuration=10e-3 winLength=int(np.floor(samplerate*winDuration)) audioOffset=int(np.floor(samplerate*audioOffsetDuration)) overlap=winLength -audioOffset window=hann(winLength,sym=False) reta=[dsp_zcr(dsp.arm_mult_f32(x,window)) for x in sliding_window_view(signal,winLength)[::audioOffset,:]] # Reset state and filter # We want to start with a clean filter each time we filter a new feature. # So the filter state is reset each time. blockSize=98 numTaps=10 stateLength = numTaps + blockSize - 1 dsp.arm_fir_init_f32(firf32,10,np.ones(10)/10.0,np.zeros(stateLength)) reta=dsp.arm_fir_f32(firf32,reta) return(np.array(reta)) feat=dsp_feature(data) plt.plot(feat) plt.show() def dsp_predict(feat): res=dsp.arm_dot_prod_f32(coef_f32,feat) res = res + intercept_f32 if res[0]<0: return(-1) else: return(0) y_pred_ref = [dsp_predict(dsp_feature(x.signal)) for x in test_patterns] labels=["Unknown"] + to_keep ConfusionMatrixDisplay.from_predictions(y_test, y_pred_ref,display_labels=labels) np.count_nonzero(np.equal(y_test,y_pred_ref))/len(y_test) scaled_coef=clfb.best_estimator_.coef_ coef_shift=0 while np.max(np.abs(scaled_coef)) > 1: scaled_coef = scaled_coef / 2.0 coef_shift = coef_shift + 1 coef_q31=fix.toQ31(scaled_coef) scaled_intercept = clfb.best_estimator_.intercept_ intercept_shift = 0 while np.abs(scaled_intercept) > 1: scaled_intercept = scaled_intercept / 2.0 intercept_shift = intercept_shift + 1 intercept_q31=fix.toQ31(scaled_intercept) def dsp_zcr_q31(w): m = dsp.arm_mean_q31(w) # Negate can saturate so we use CMSIS-DSP function which is working on array (and we have a scalar) m = dsp.arm_negate_q31(np.array([m]))[0] w = dsp.arm_offset_q31(w,m) f=w[:-1] g=w[1:] k=np.count_nonzero(np.logical_and(np.logical_or(np.logical_and(f>0,g<0), np.logical_and(f<0,g>0)),g>f)) # k < len(f) so shift should be 0 except when k == len(f) # When k==len(f) normally quotient is 0x40000000 and shift 1 and we convert # this to 0x7FFFFFF and shift 0 status,quotient,shift_val=dsp.arm_divide_q31(k,len(f)) if shift_val==1: return(dsp.arm_shift_q31(np.array([quotient]),shift)[0]) else: return(quotient) firq31 = dsp.arm_fir_instance_q31() def dsp_feature_q31(data): samplerate=16000 input_len = 16000 waveform = data[:input_len] zero_padding = np.zeros( 16000 - waveform.shape[0], dtype=np.int32) signal = np.hstack([waveform, zero_padding]) winDuration=25e-3 audioOffsetDuration=10e-3 winLength=int(np.floor(samplerate*winDuration)) audioOffset=int(np.floor(samplerate*audioOffsetDuration)) overlap=winLength-audioOffset window=fix.toQ31(hann(winLength,sym=False)) reta=[dsp_zcr_q31(dsp.arm_mult_q31(x,window)) for x in sliding_window_view(signal,winLength)[::audioOffset,:]] # Reset state and filter blockSize=98 numTaps=10 stateLength = numTaps + blockSize - 1 dsp.arm_fir_init_q31(firq31,10,fix.toQ31(np.ones(10)/10.0),np.zeros(stateLength,dtype=np.int32)) reta=dsp.arm_fir_q31(firq31,reta) return(np.array(reta)) feat=fix.Q31toF32(dsp_feature_q31(fix.toQ31(data))) plt.plot(feat) plt.show() def dsp_predict_q31(feat): res=dsp.arm_dot_prod_q31(coef_q31,feat) # Before adding the res and the intercept we need to ensure they are in the same Qx.x format # The scaling applied to the coefs and to the intercept is different so we need to scale # the intercept to take this into account scaled=dsp.arm_shift_q31(np.array([intercept_q31]),intercept_shift-coef_shift)[0] # Because dot prod output is in Q16.48 # and ret is on 64 bits scaled = np.int64(scaled) << 17 res = res + scaled if res<0: return(-1) else: return(0) y_pred_ref = [dsp_predict_q31(dsp_feature_q31(fix.toQ31(x.signal))) for x in test_patterns] labels=["Unknown"] + to_keep ConfusionMatrixDisplay.from_predictions(y_test, y_pred_ref,display_labels=labels) np.count_nonzero(np.equal(y_test,y_pred_ref))/len(y_test) scaled_coef=clfb.best_estimator_.coef_ coef_shift=0 while np.max(np.abs(scaled_coef)) > 1: scaled_coef = scaled_coef / 2.0 coef_shift = coef_shift + 1 coef_q15=fix.toQ15(scaled_coef) scaled_intercept = clfb.best_estimator_.intercept_ intercept_shift = 0 while np.abs(scaled_intercept) > 1: scaled_intercept = scaled_intercept / 2.0 intercept_shift = intercept_shift + 1 intercept_q15=fix.toQ15(scaled_intercept) def dsp_zcr_q15(w): m = dsp.arm_mean_q15(w) # Negate can saturate so we use CMSIS-DSP function which is working on array (and we have a scalar) m = dsp.arm_negate_q15(np.array([m]))[0] w = dsp.arm_offset_q15(w,m) f=w[:-1] g=w[1:] k=np.count_nonzero(np.logical_and(np.logical_or(np.logical_and(f>0,g<0), np.logical_and(f<0,g>0)),g>f)) # k < len(f) so shift should be 0 except when k == len(f) # When k==len(f) normally quotient is 0x4000 and shift 1 and we convert # this to 0x7FFF and shift 0 status,quotient,shift_val=dsp.arm_divide_q15(k,len(f)) if shift_val==1: return(dsp.arm_shift_q15(np.array([quotient]),shift)[0]) else: return(quotient) firq15 = dsp.arm_fir_instance_q15() def dsp_feature_q15(data): samplerate=16000 input_len = 16000 waveform = data[:input_len] zero_padding = np.zeros( 16000 - waveform.shape[0], dtype=np.int16) signal = np.hstack([waveform, zero_padding]) winDuration=25e-3 audioOffsetDuration=10e-3 winLength=int(np.floor(samplerate*winDuration)) audioOffset=int(np.floor(samplerate*audioOffsetDuration)) overlap=winLength - audioOffset window=fix.toQ15(hann(winLength,sym=False)) reta=[dsp_zcr_q15(dsp.arm_mult_q15(x,window)) for x in sliding_window_view(signal,winLength)[::audioOffset,:]] # Reset state and filter blockSize=98 numTaps=10 stateLength = numTaps + blockSize - 1 dsp.arm_fir_init_q15(firq15,10,fix.toQ15(np.ones(10)/10.0),np.zeros(stateLength,dtype=np.int16)) reta=dsp.arm_fir_q15(firq15,reta) return(np.array(reta)) feat=fix.Q15toF32(dsp_feature_q15(fix.toQ15(data))) plt.plot(feat) plt.show() def dsp_predict_q15(feat): res=dsp.arm_dot_prod_q15(coef_q15,feat) scaled=dsp.arm_shift_q15(np.array([intercept_q15]),intercept_shift-coef_shift)[0] # Because dot prod output is in Q34.30 # and ret is on 64 bits scaled = np.int64(scaled) << 15 res = res + scaled if res<0: return(-1) else: return(0) y_pred_ref = [dsp_predict_q15(dsp_feature_q15(fix.toQ15(x.signal))) for x in test_patterns] labels=["Unknown"] + to_keep ConfusionMatrixDisplay.from_predictions(y_test, y_pred_ref,display_labels=labels) np.count_nonzero(np.equal(y_test,y_pred_ref))/len(y_test) from cmsisdsp.sdf.scheduler import * class Source(GenericSource): def __init__(self,name,inLength): GenericSource.__init__(self,name) q15Type=CType(Q15) self.addOutput("o",q15Type,inLength) @property def typeName(self): return "Source" class Sink(GenericSink): def __init__(self,name,outLength): GenericSink.__init__(self,name) q15Type=CType(Q15) self.addInput("i",q15Type,outLength) @property def typeName(self): return "Sink" class Feature(GenericNode): def __init__(self,name,inLength): GenericNode.__init__(self,name) q15Type=CType(Q15) self.addInput("i",q15Type,inLength) self.addOutput("o",q15Type,1) @property def typeName(self): return "Feature" class FIR(GenericNode): def __init__(self,name,inLength,outLength): GenericNode.__init__(self,name) q15Type=CType(Q15) self.addInput("i",q15Type,inLength) self.addOutput("o",q15Type,outLength) @property def typeName(self): return "FIR" class KWS(GenericNode): def __init__(self,name,inLength): GenericNode.__init__(self,name) q15Type=CType(Q15) self.addInput("i",q15Type,inLength) self.addOutput("o",q15Type,1) @property def typeName(self): return "KWS" q15Type=CType(Q15) FS=16000 winDuration=25e-3 audioOffsetDuration=10e-3 winLength=int(np.floor(FS*winDuration)) audio_input_length=int(np.floor(FS*audioOffsetDuration)) AUDIO_INTERRUPT_LENGTH = audio_input_length def gen_sched(python_code=True): src=Source("src",AUDIO_INTERRUPT_LENGTH) # For Python code, the input is a numpy array which is passed # as argument of the node if python_code: src.addVariableArg("input_array") sink=Sink("sink",1) feature=Feature("feature",winLength) feature.addVariableArg("window") sliding_audio=SlidingBuffer("audioWin",q15Type,winLength,winLength-audio_input_length) FEATURE_LENGTH=98 # for one second FEATURE_OVERLAP = 49 # We slide feature by 0.5 second sliding_feature=SlidingBuffer("featureWin",q15Type,FEATURE_LENGTH,FEATURE_OVERLAP) kws=KWS("kws",FEATURE_LENGTH) # Parameters of the ML model used by the node. kws.addVariableArg("coef_q15") kws.addVariableArg("coef_shift") kws.addVariableArg("intercept_q15") kws.addVariableArg("intercept_shift") fir=FIR("fir",FEATURE_LENGTH,FEATURE_LENGTH) # Description of the compute graph g = Graph() g.connect(src.o, sliding_audio.i) g.connect(sliding_audio.o, feature.i) g.connect(feature.o, sliding_feature.i) g.connect(sliding_feature.o, fir.i) g.connect(fir.o, kws.i) g.connect(kws.o, sink.i) # For Python we run for only around 13 seconds of input signal. # Without this, it would run forever. conf=Configuration() if python_code: conf.debugLimit=13 # We compute the scheduling sched = g.computeSchedule(conf) print("Schedule length = %d" % sched.scheduleLength) print("Memory usage %d bytes" % sched.memory) # We generate the scheduling code for a Python and C++ implementations if python_code: conf.pyOptionalArgs="input_array,window,coef_q15,coef_shift,intercept_q15,intercept_shift" sched.pythoncode(".",config=conf) with open("test.dot","w") as f: sched.graphviz(f) else: conf.cOptionalArgs=const q15_t *window, const q15_t *coef_q15, const int coef_shift, const q15_t intercept_q15, const int intercept_shift conf.memoryOptimization=True # When schedule is long conf.codeArray=True sched.ccode("kws",config=conf) with open("kws/test.dot","w") as f: sched.graphviz(f) gen_sched(True) gen_sched(False) from urllib.request import urlopen import io import soundfile as sf test_pattern_url="https://github.com/ARM-software/VHT-SystemModeling/blob/main/EchoCanceller/sounds/yesno.wav?raw=true" f = urlopen(test_pattern_url) filedata = f.read() data, samplerate = sf.read(io.BytesIO(filedata)) if len(data.shape)>1: data=data[:,0] plt.plot(data) plt.show() import sched as s from importlib import reload import appnodes appnodes= reload(appnodes) s = reload(s) dataQ15=fix.toQ15(data) windowQ15=fix.toQ15(hann(winLength,sym=False)) nb,error = s.scheduler(dataQ15,windowQ15,coef_q15,coef_shift,intercept_q15,intercept_shift) with open("logistic.pickle","rb") as f: clfb=pickle.load(f) scaled_coef=clfb.best_estimator_.coef_ coef_shift=0 while np.max(np.abs(scaled_coef)) > 1: scaled_coef = scaled_coef / 2.0 coef_shift = coef_shift + 1 coef_q15=fix.toQ15(scaled_coef) scaled_intercept = clfb.best_estimator_.intercept_ intercept_shift = 0 while np.abs(scaled_intercept) > 1: scaled_intercept = scaled_intercept / 2.0 intercept_shift = intercept_shift + 1 intercept_q15=fix.toQ15(scaled_intercept) def carray(a): s="{" k=0 for x in a: s = s + ("%d," % (x,)) k = k + 1 if k == 10: k=0; s = s + "\n" s = s + "}" return(s) ccode=#include "arm_math.h" #include "coef.h" const q15_t fir_coefs[NUMTAPS]=%s; const q15_t coef_q15[%d]=%s; const q15_t intercept_q15 = %d; const int coef_shift=%d; const int intercept_shift=%d; const q15_t window[%d]=%s; def gen_coef_code(): fir_coef = carray(fix.toQ15(np.ones(10)/10.0)) winq15=carray(fix.toQ15(hann(winLength,sym=False))) res = ccode % (fir_coef, len(coef_q15[0]), carray(coef_q15[0]), intercept_q15, coef_shift, intercept_shift, winLength, winq15 ) with open(os.path.join("kws","coef.cpp"),"w") as f: print(res,file=f) gen_coef_code() !arduino-cli board list !arduino-cli config init !arduino-cli lib install Arduino_CMSIS-DSP !arduino-cli compile -b arduino:mbed_nano:nano33ble kws !arduino-cli upload -b arduino:mbed_nano:nano33ble -p COM5 kws import serial import ipywidgets as widgets import time import threading STOPSERIAL=False def stop_action(btn): global STOPSERIAL STOPSERIAL=True out = widgets.Output(layout={'border': '1px solid black','height':'40px'}) button = widgets.Button( description='Stop', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Click me' ) button.on_click(stop_action) out.clear_output() display(widgets.VBox([out,button])) STOPSERIAL = False def get_serial(): try: with serial.Serial('COM6', 115200, timeout=1) as ser: ser.reset_input_buffer() global STOPSERIAL while not STOPSERIAL: data=ser.readline() if (len(data)>0): with out: out.clear_output() res=data.decode('ascii').rstrip() if res=="Yes": display(HTML("<p style='color:#00AA00';>YES</p>")) else: print(res) with out: out.clear_output() print("Communication closed") except Exception as inst: with out: out.clear_output() print(inst) t = threading.Thread(target=get_serial) t.start() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As always, let's do imports and initialize a logger and a new Bundle. See Building a System for more details. Step2: In order for apsidal motion to be apparent, we need an eccentric system that is precessing. Step3: Let's set a very noticeable rate of precession. Step4: We'll add lc and orb datasets to see how the apsidal motion affects each. We'll need to sample over several orbits of the binary (which has a period of 3 days, by default). Step5: Influence on Orbits (positions) Step6: Influence on Light Curves (fluxes)
<ASSISTANT_TASK:> Python Code: !pip install -I "phoebe>=2.1,<2.2" %matplotlib inline import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_binary() b['ecc'] = 0.2 b['dperdt'] = 2.0 * u.deg/u.d b.add_dataset('lc', times=np.linspace(0,1,101), dataset='lc01') b.add_dataset('lc', times=np.linspace(4,5,101), dataset='lc02') b.add_dataset('orb', times=np.linspace(0,5,401), dataset='orb01') b.run_compute(irrad_method='none') afig, mplfig = b['orb01@model'].plot(y='ws', time=[0,1,2,3,4,5], show=True) afig, mplfig = b['lc01@model'].plot() afig, mplfig = b['lc02@model'].plot(time=[0,1,4,5], show=True) afig, mplfig = b['lc01@model'].plot(x='phases') afig, mplfig = b['lc02@model'].plot(x='phases', show=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Error plots for MiniZephyr vs. the AnalyticalHelmholtz response Step2: Relative error of the MiniZephyr solution (in %)
<ASSISTANT_TASK:> Python Code: import sys sys.path.append('../') import numpy as np from zephyr.backend import MiniZephyr, SparseKaiserSource, AnalyticalHelmholtz import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib %matplotlib inline from IPython.display import set_matplotlib_formats set_matplotlib_formats('png') matplotlib.rcParams['savefig.dpi'] = 150 # Change this to adjust figure size systemConfig = { 'dx': 1., # m 'dz': 1., # m 'c': 2500., # m/s 'rho': 1000., # kg/m^3 'nx': 100, # count 'nz': 200, # count 'freq': 2e2, # Hz } nx = systemConfig['nx'] nz = systemConfig['nz'] dx = systemConfig['dx'] dz = systemConfig['dz'] MZ = MiniZephyr(systemConfig) AH = AnalyticalHelmholtz(systemConfig) SKS = SparseKaiserSource(systemConfig) xs, zs = 25, 25 sloc = np.array([xs, zs]).reshape((1,2)) q = SKS(sloc) uMZ = MZ*q uAH = AH(sloc) clip = 100 plotopts = { 'vmin': -np.pi, 'vmax': np.pi, 'extent': [0., dx * nx, dz * nz, 0.], 'cmap': cm.bwr, } fig = plt.figure() ax1 = fig.add_subplot(1,4,1) plt.imshow(np.angle(uAH.reshape((nz, nx))), **plotopts) plt.title('AH Phase') ax2 = fig.add_subplot(1,4,2) plt.imshow(np.angle(uMZ.reshape((nz, nx))), **plotopts) plt.title('MZ Phase') plotopts.update({ 'vmin': -clip, 'vmax': clip, }) ax3 = fig.add_subplot(1,4,3) plt.imshow(uAH.reshape((nz, nx)).real, **plotopts) plt.title('AH Real') ax4 = fig.add_subplot(1,4,4) plt.imshow(uMZ.reshape((nz, nx)).real, **plotopts) plt.title('MZ Real') fig.tight_layout() fig = plt.figure() ax = fig.add_subplot(1,1,1, aspect=0.1) plt.plot(uAH.real.reshape((nz, nx))[:,xs], label='AnalyticalHelmholtz') plt.plot(uMZ.real.reshape((nz, nx))[:,xs], label='MiniZephyr') plt.legend(loc=4) plt.title('Real part of response through xs=%d'%xs) uMZr = uMZ.reshape((nz, nx)) uAHr = uAH.reshape((nz, nx)) plotopts.update({ 'cmap': cm.jet, 'vmin': 0., 'vmax': 20., }) fig = plt.figure() ax1 = fig.add_subplot(1,2,1) plt.imshow(abs(uAHr - uMZr)/(abs(uAHr)+1e-15) * 100, **plotopts) cb = plt.colorbar() cb.set_label('Percent error') plotopts.update({'vmax': 5.}) ax2 = fig.add_subplot(1,2,2) plt.imshow(abs(uAHr - uMZr)/(abs(uAHr)+1e-15) * 100, **plotopts) cb = plt.colorbar() cb.set_label('Percent error') fig.tight_layout() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create datasets Step2: Feature Space Step3: We'll be using the popular data manipulation framework pandas. Step4: We can use head() to get a quick look at the contents of each table Step5: This is very representative of a typical industry dataset. Step6: Data Cleaning / Feature Engineering Step7: Turn state Holidays to Bool Step8: Define function for joining tables on specific fields. Step9: Join weather/state names. Step10: In pandas you can add new columns to a dataframe by simply defining it. We'll do this for googletrends by extracting dates and state names from the given data and adding those columns. Step11: The following extracts particular date fields from a complete datetime for the purpose of constructing categoricals. Step12: We'll add to every table w/ a date field. Step13: Now we can outer join all of our data into a single dataframe. Step14: Next we'll fill in missing values to avoid complications w/ na's. Step15: Next we'll extract features "CompetitionOpenSince" and "CompetitionDaysOpen". Note the use of apply() in mapping a function across dataframe values. Step16: We'll replace some erroneous / outlying data. Step17: Added "CompetitionMonthsOpen" field, limit the maximum to 2 years to limit number of unique embeddings. Step18: Same process for Promo dates. Step19: Durations Step20: We've defined a class elapsed for cumulative counting across a sorted dataframe. Step21: And a function for applying said class across dataframe rows and adding values to a new column. Step22: Let's walk through an example. Step23: We'll do this for two more fields. Step24: We're going to set the active index to Date. Step25: Then set null values from elapsed field calculations to 0. Step26: Next we'll demonstrate window functions in pandas to calculate rolling quantities. Step27: Next we want to drop the Store indices grouped together in the window function. Step28: Now we'll merge these values onto the df. Step29: It's usually a good idea to back up large tables of extracted / wrangled features before you join them onto another one, that way you can go back to it easily if you need to make changes to it. Step30: We'll back this up as well. Step31: We now have our final set of engineered features. Step32: While these steps were explicitly outlined in the paper, these are all fairly typical feature engineering steps for dealing with time series data and are practical in any similar setting. Step33: This dictionary maps categories to embedding dimensionality. In generally, categories we might expect to be conceptually more complex have larger dimension. Step35: Name categorical variables Step37: Likewise for continuous Step38: Replace nulls w/ 0 for continuous, "" for categorical. Step39: Here we create a list of tuples, each containing a variable and an instance of a transformer for that variable. Step40: The same instances need to be used for the test set as well, so values are mapped/standardized appropriately. Step41: Example of first five rows of zeroth column being transformed appropriately. Step42: We can also pickle these mappings, which is great for portability! Step43: Sample data Step44: We speculate that this may have cost them a higher standing in the competition. One reason this may be the case is that a little EDA reveals that there are often periods where stores are closed, typically for refurbishment. Before and after these periods, there are naturally spikes in sales that one might expect. Be ommitting this data from their training, the authors gave up the ability to leverage information about these periods to predict this otherwise volatile behavior. Step45: We're going to run on a sample. Step46: In time series data, cross-validation is not random. Instead, our holdout data is always the most recent data, as it would be in real application. Step47: Here's a preprocessor for our categoricals using our instance mapper. Step48: Same for continuous. Step49: Grab our targets. Step50: Finally, the authors modified the target values by applying a logarithmic transformation and normalizing to unit scale by dividing by the maximum log value. Step52: Note Step53: Root-mean-squared percent error is the metric Kaggle used for this competition. Step54: These undo the target transformations. Step56: Create models Step57: Helper function for getting categorical name and dim. Step58: Helper function for constructing embeddings. Notice commented out codes, several different ways to compute embeddings at play. Step59: Helper function for continuous inputs. Step60: Let's build them. Step61: Now we can put them together. Given the inputs, continuous and categorical embeddings, we're going to concatenate all of them. Step62: Start training Step63: Result on validation data Step64: Using 3rd place data Step66: Neural net Step67: XGBoost Step68: Easily, competition distance is the most important, while events are not important at all.
<ASSISTANT_TASK:> Python Code: %matplotlib inline import math, keras, datetime, pandas as pd, numpy as np, keras.backend as K import matplotlib.pyplot as plt, xgboost, operator, random, pickle from utils2 import * np.set_printoptions(threshold=50, edgeitems=20) limit_mem() from isoweek import Week from pandas_summary import DataFrameSummary %cd data/rossman/ def concat_csvs(dirname): os.chdir(dirname) filenames=glob.glob("*.csv") wrote_header = False with open("../"+dirname+".csv","w") as outputfile: for filename in filenames: name = filename.split(".")[0] with open(filename) as f: line = f.readline() if not wrote_header: wrote_header = True outputfile.write("file,"+line) for line in f: outputfile.write(name + "," + line) outputfile.write("\n") os.chdir("..") # concat_csvs('googletrend') # concat_csvs('weather') table_names = ['train', 'store', 'store_states', 'state_names', 'googletrend', 'weather', 'test'] tables = [pd.read_csv(fname+'.csv', low_memory=False) for fname in table_names] from IPython.display import HTML for t in tables: display(t.head()) for t in tables: display(DataFrameSummary(t).summary()) train, store, store_states, state_names, googletrend, weather, test = tables len(train),len(test) train.StateHoliday = train.StateHoliday!='0' test.StateHoliday = test.StateHoliday!='0' def join_df(left, right, left_on, right_on=None): if right_on is None: right_on = left_on return left.merge(right, how='left', left_on=left_on, right_on=right_on, suffixes=("", "_y")) weather = join_df(weather, state_names, "file", "StateName") googletrend['Date'] = googletrend.week.str.split(' - ', expand=True)[0] googletrend['State'] = googletrend.file.str.split('_', expand=True)[2] googletrend.loc[googletrend.State=='NI', "State"] = 'HB,NI' def add_datepart(df): df.Date = pd.to_datetime(df.Date) df["Year"] = df.Date.dt.year df["Month"] = df.Date.dt.month df["Week"] = df.Date.dt.week df["Day"] = df.Date.dt.day add_datepart(weather) add_datepart(googletrend) add_datepart(train) add_datepart(test) trend_de = googletrend[googletrend.file == 'Rossmann_DE'] store = join_df(store, store_states, "Store") len(store[store.State.isnull()]) joined = join_df(train, store, "Store") len(joined[joined.StoreType.isnull()]) joined = join_df(joined, googletrend, ["State","Year", "Week"]) len(joined[joined.trend.isnull()]) joined = joined.merge(trend_de, 'left', ["Year", "Week"], suffixes=('', '_DE')) len(joined[joined.trend_DE.isnull()]) joined = join_df(joined, weather, ["State","Date"]) len(joined[joined.Mean_TemperatureC.isnull()]) joined_test = test.merge(store, how='left', left_on='Store', right_index=True) len(joined_test[joined_test.StoreType.isnull()]) joined.CompetitionOpenSinceYear = joined.CompetitionOpenSinceYear.fillna(1900).astype(np.int32) joined.CompetitionOpenSinceMonth = joined.CompetitionOpenSinceMonth.fillna(1).astype(np.int32) joined.Promo2SinceYear = joined.Promo2SinceYear.fillna(1900).astype(np.int32) joined.Promo2SinceWeek = joined.Promo2SinceWeek.fillna(1).astype(np.int32) joined["CompetitionOpenSince"] = pd.to_datetime(joined.apply(lambda x: datetime.datetime( x.CompetitionOpenSinceYear, x.CompetitionOpenSinceMonth, 15), axis=1).astype(pd.datetime)) joined["CompetitionDaysOpen"] = joined.Date.subtract(joined["CompetitionOpenSince"]).dt.days joined.loc[joined.CompetitionDaysOpen<0, "CompetitionDaysOpen"] = 0 joined.loc[joined.CompetitionOpenSinceYear<1990, "CompetitionDaysOpen"] = 0 joined["CompetitionMonthsOpen"] = joined["CompetitionDaysOpen"]//30 joined.loc[joined.CompetitionMonthsOpen>24, "CompetitionMonthsOpen"] = 24 joined.CompetitionMonthsOpen.unique() joined["Promo2Since"] = pd.to_datetime(joined.apply(lambda x: Week( x.Promo2SinceYear, x.Promo2SinceWeek).monday(), axis=1).astype(pd.datetime)) joined["Promo2Days"] = joined.Date.subtract(joined["Promo2Since"]).dt.days joined.loc[joined.Promo2Days<0, "Promo2Days"] = 0 joined.loc[joined.Promo2SinceYear<1990, "Promo2Days"] = 0 joined["Promo2Weeks"] = joined["Promo2Days"]//7 joined.loc[joined.Promo2Weeks<0, "Promo2Weeks"] = 0 joined.loc[joined.Promo2Weeks>25, "Promo2Weeks"] = 25 joined.Promo2Weeks.unique() columns = ["Date", "Store", "Promo", "StateHoliday", "SchoolHoliday"] class elapsed(object): def __init__(self, fld): self.fld = fld self.last = pd.to_datetime(np.nan) self.last_store = 0 def get(self, row): if row.Store != self.last_store: self.last = pd.to_datetime(np.nan) self.last_store = row.Store if (row[self.fld]): self.last = row.Date return row.Date-self.last df = train[columns] def add_elapsed(fld, prefix): sh_el = elapsed(fld) df[prefix+fld] = df.apply(sh_el.get, axis=1) fld = 'SchoolHoliday' df = df.sort_values(['Store', 'Date']) add_elapsed(fld, 'After') df = df.sort_values(['Store', 'Date'], ascending=[True, False]) add_elapsed(fld, 'Before') fld = 'StateHoliday' df = df.sort_values(['Store', 'Date']) add_elapsed(fld, 'After') df = df.sort_values(['Store', 'Date'], ascending=[True, False]) add_elapsed(fld, 'Before') fld = 'Promo' df = df.sort_values(['Store', 'Date']) add_elapsed(fld, 'After') df = df.sort_values(['Store', 'Date'], ascending=[True, False]) add_elapsed(fld, 'Before') display(df.head()) df = df.set_index("Date") columns = ['SchoolHoliday', 'StateHoliday', 'Promo'] for o in ['Before', 'After']: for p in columns: a = o+p df[a] = df[a].fillna(pd.Timedelta(0)).dt.days bwd = df[['Store']+columns].sort_index().groupby("Store").rolling(7, min_periods=1).sum() fwd = df[['Store']+columns].sort_index(ascending=False ).groupby("Store").rolling(7, min_periods=1).sum() bwd.drop('Store',1,inplace=True) bwd.reset_index(inplace=True) fwd.drop('Store',1,inplace=True) fwd.reset_index(inplace=True) df.reset_index(inplace=True) df = df.merge(bwd, 'left', ['Date', 'Store'], suffixes=['', '_bw']) df = df.merge(fwd, 'left', ['Date', 'Store'], suffixes=['', '_fw']) df.drop(columns,1,inplace=True) df.head() df.to_csv('df.csv') df = pd.read_csv('df.csv', index_col=0) df["Date"] = pd.to_datetime(df.Date) df.columns joined = join_df(joined, df, ['Store', 'Date']) joined.to_csv('joined.csv') joined = pd.read_csv('joined.csv', index_col=0) joined["Date"] = pd.to_datetime(joined.Date) joined.columns from sklearn_pandas import DataFrameMapper from sklearn.preprocessing import LabelEncoder, Imputer, StandardScaler cat_var_dict = {'Store': 50, 'DayOfWeek': 6, 'Year': 2, 'Month': 6, 'Day': 10, 'StateHoliday': 3, 'CompetitionMonthsOpen': 2, 'Promo2Weeks': 1, 'StoreType': 2, 'Assortment': 3, 'PromoInterval': 3, 'CompetitionOpenSinceYear': 4, 'Promo2SinceYear': 4, 'State': 6, 'Week': 2, 'Events': 4, 'Promo_fw': 1, 'Promo_bw': 1, 'StateHoliday_fw': 1, 'StateHoliday_bw': 1, 'SchoolHoliday_fw': 1, 'SchoolHoliday_bw': 1} cat_vars = [o[0] for o in sorted(cat_var_dict.items(), key=operator.itemgetter(1), reverse=True)] cat_vars = ['Store', 'DayOfWeek', 'Year', 'Month', 'Day', 'StateHoliday', 'StoreType', 'Assortment', 'Week', 'Events', 'Promo2SinceYear', 'CompetitionOpenSinceYear', 'PromoInterval', 'Promo', 'SchoolHoliday', 'State'] # mean/max wind; min temp; cloud; min/mean humid; contin_vars = ['CompetitionDistance', 'Max_TemperatureC', 'Mean_TemperatureC', 'Min_TemperatureC', 'Max_Humidity', 'Mean_Humidity', 'Min_Humidity', 'Max_Wind_SpeedKm_h', 'Mean_Wind_SpeedKm_h', 'CloudCover', 'trend', 'trend_DE', 'AfterStateHoliday', 'BeforeStateHoliday', 'Promo', 'SchoolHoliday'] contin_vars = ['CompetitionDistance', 'Max_TemperatureC', 'Mean_TemperatureC', 'Max_Humidity', 'trend', 'trend_DE', 'AfterStateHoliday', 'BeforeStateHoliday'] for v in contin_vars: joined.loc[joined[v].isnull(), v] = 0 for v in cat_vars: joined.loc[joined[v].isnull(), v] = "" cat_maps = [(o, LabelEncoder()) for o in cat_vars] contin_maps = [([o], StandardScaler()) for o in contin_vars] cat_mapper = DataFrameMapper(cat_maps) cat_map_fit = cat_mapper.fit(joined) cat_cols = len(cat_map_fit.features) cat_cols contin_mapper = DataFrameMapper(contin_maps) contin_map_fit = contin_mapper.fit(joined) contin_cols = len(contin_map_fit.features) contin_cols cat_map_fit.transform(joined)[0,:5], contin_map_fit.transform(joined)[0,:5] pickle.dump(contin_map_fit, open('contin_maps.pickle', 'wb')) pickle.dump(cat_map_fit, open('cat_maps.pickle', 'wb')) [len(o[1].classes_) for o in cat_map_fit.features] joined_sales = joined[joined.Sales!=0] n = len(joined_sales) n samp_size = 100000 np.random.seed(42) idxs = sorted(np.random.choice(n, samp_size, replace=False)) joined_samp = joined_sales.iloc[idxs].set_index("Date") samp_size = n joined_samp = joined_sales.set_index("Date") train_ratio = 0.9 train_size = int(samp_size * train_ratio) train_size joined_valid = joined_samp[train_size:] joined_train = joined_samp[:train_size] len(joined_valid), len(joined_train) def cat_preproc(dat): return cat_map_fit.transform(dat).astype(np.int64) cat_map_train = cat_preproc(joined_train) cat_map_valid = cat_preproc(joined_valid) def contin_preproc(dat): return contin_map_fit.transform(dat).astype(np.float32) contin_map_train = contin_preproc(joined_train) contin_map_valid = contin_preproc(joined_valid) y_train_orig = joined_train.Sales y_valid_orig = joined_valid.Sales max_log_y = np.max(np.log(joined_samp.Sales)) y_train = np.log(y_train_orig)/max_log_y y_valid = np.log(y_valid_orig)/max_log_y #y_train = np.log(y_train) ymean=y_train_orig.mean() ystd=y_train_orig.std() y_train = (y_train_orig-ymean)/ystd #y_valid = np.log(y_valid) y_valid = (y_valid_orig-ymean)/ystd def rmspe(y_pred, targ = y_valid_orig): pct_var = (targ - y_pred)/targ return math.sqrt(np.square(pct_var).mean()) def log_max_inv(preds, mx = max_log_y): return np.exp(preds * mx) # - This can be used if ymean and ystd are calculated above (they are currently commented out) def normalize_inv(preds): return preds * ystd + ymean 1 97s - loss: 0.0104 - val_loss: 0.0083 2 93s - loss: 0.0076 - val_loss: 0.0076 3 90s - loss: 0.0071 - val_loss: 0.0076 4 90s - loss: 0.0068 - val_loss: 0.0075 5 93s - loss: 0.0066 - val_loss: 0.0075 6 95s - loss: 0.0064 - val_loss: 0.0076 7 98s - loss: 0.0063 - val_loss: 0.0077 8 97s - loss: 0.0062 - val_loss: 0.0075 9 95s - loss: 0.0061 - val_loss: 0.0073 0 101s - loss: 0.0061 - val_loss: 0.0074 def split_cols(arr): return np.hsplit(arr,arr.shape[1]) # - This gives the correct list length for the model # - (list of 23 elements: 22 embeddings + 1 array of 16-dim elements) map_train = split_cols(cat_map_train) + [contin_map_train] map_valid = split_cols(cat_map_valid) + [contin_map_valid] len(map_train) # map_train = split_cols(cat_map_train) + split_cols(contin_map_train) # map_valid = split_cols(cat_map_valid) + split_cols(contin_map_valid) def cat_map_info(feat): return feat[0], len(feat[1].classes_) cat_map_info(cat_map_fit.features[1]) # - In Keras 2 the "initializations" module is not available. # - To keep here the custom initializer the code from Keras 1 "uniform" initializer is exploited def my_init(scale): # return lambda shape, name=None: initializations.uniform(shape, scale=scale, name=name) return K.variable(np.random.uniform(low=-scale, high=scale, size=shape), name=name) # - In Keras 2 the "initializations" module is not available. # - To keep here the custom initializer the code from Keras 1 "uniform" initializer is exploited def emb_init(shape, name=None): # return initializations.uniform(shape, scale=2/(shape[1]+1), name=name) return K.variable(np.random.uniform(low=-2/(shape[1]+1), high=2/(shape[1]+1), size=shape), name=name) def get_emb(feat): name, c = cat_map_info(feat) #c2 = cat_var_dict[name] c2 = (c+1)//2 if c2>50: c2=50 inp = Input((1,), dtype='int64', name=name+'_in') # , kernel_regularizer=l2(1e-6) # Keras 2 u = Flatten(name=name+'_flt')(Embedding(c, c2, input_length=1, embeddings_initializer=emb_init)(inp)) # Keras 2 # u = Flatten(name=name+'_flt')(Embedding(c, c2, input_length=1)(inp)) return inp,u def get_contin(feat): name = feat[0][0] inp = Input((1,), name=name+'_in') return inp, Dense(1, name=name+'_d', kernel_initializer=my_init(1.))(inp) # Keras 2 contin_inp = Input((contin_cols,), name='contin') contin_out = Dense(contin_cols*10, activation='relu', name='contin_d')(contin_inp) #contin_out = BatchNormalization()(contin_out) embs = [get_emb(feat) for feat in cat_map_fit.features] #conts = [get_contin(feat) for feat in contin_map_fit.features] #contin_d = [d for inp,d in conts] x = concatenate([emb for inp,emb in embs] + [contin_out]) # Keras 2 #x = concatenate([emb for inp,emb in embs] + contin_d) # Keras 2 x = Dropout(0.02)(x) x = Dense(1000, activation='relu', kernel_initializer='uniform')(x) x = Dense(500, activation='relu', kernel_initializer='uniform')(x) x = Dropout(0.2)(x) x = Dense(1, activation='sigmoid')(x) model = Model([inp for inp,emb in embs] + [contin_inp], x) #model = Model([inp for inp,emb in embs] + [inp for inp,d in conts], x) model.compile('adam', 'mean_absolute_error') #model.compile(Adam(), 'mse') %%time hist = model.fit(map_train, y_train, batch_size=128, epochs=25, verbose=1, validation_data=(map_valid, y_valid)) hist.history plot_train(hist) preds = np.squeeze(model.predict(map_valid, 1024)) log_max_inv(preds) # - This will work if ymean and ystd are calculated in the "Data" section above (in this case uncomment) # normalize_inv(preds) pkl_path = '/data/jhoward/github/entity-embedding-rossmann/' def load_pickle(fname): return pickle.load(open(pkl_path+fname + '.pickle', 'rb')) [x_pkl_orig, y_pkl_orig] = load_pickle('feature_train_data') max_log_y_pkl = np.max(np.log(y_pkl_orig)) y_pkl = np.log(y_pkl_orig)/max_log_y_pkl pkl_vars = ['Open', 'Store', 'DayOfWeek', 'Promo', 'Year', 'Month', 'Day', 'StateHoliday', 'SchoolHoliday', 'CompetitionMonthsOpen', 'Promo2Weeks', 'Promo2Weeks_L', 'CompetitionDistance', 'StoreType', 'Assortment', 'PromoInterval', 'CompetitionOpenSinceYear', 'Promo2SinceYear', 'State', 'Week', 'Max_TemperatureC', 'Mean_TemperatureC', 'Min_TemperatureC', 'Max_Humidity', 'Mean_Humidity', 'Min_Humidity', 'Max_Wind_SpeedKm_h', 'Mean_Wind_SpeedKm_h', 'CloudCover','Events', 'Promo_fw', 'Promo_bw', 'StateHoliday_fw', 'StateHoliday_bw', 'AfterStateHoliday', 'BeforeStateHoliday', 'SchoolHoliday_fw', 'SchoolHoliday_bw', 'trend_DE', 'trend'] x_pkl = np.array(x_pkl_orig) gt_enc = StandardScaler() gt_enc.fit(x_pkl[:,-2:]) x_pkl[:,-2:] = gt_enc.transform(x_pkl[:,-2:]) x_pkl.shape x_pkl = x_pkl[idxs] y_pkl = y_pkl[idxs] x_pkl_trn, x_pkl_val = x_pkl[:train_size], x_pkl[train_size:] y_pkl_trn, y_pkl_val = y_pkl[:train_size], y_pkl[train_size:] x_pkl_trn.shape xgb_parms = {'learning_rate': 0.1, 'subsample': 0.6, 'colsample_bylevel': 0.6, 'silent': True, 'objective': 'reg:linear'} xdata_pkl = xgboost.DMatrix(x_pkl_trn, y_pkl_trn, feature_names=pkl_vars) xdata_val_pkl = xgboost.DMatrix(x_pkl_val, y_pkl_val, feature_names=pkl_vars) xgb_parms['seed'] = random.randint(0,1e9) model_pkl = xgboost.train(xgb_parms, xdata_pkl) model_pkl.eval(xdata_val_pkl) #0.117473 importance = model_pkl.get_fscore() importance = sorted(importance.items(), key=operator.itemgetter(1)) df = pd.DataFrame(importance, columns=['feature', 'fscore']) df['fscore'] = df['fscore'] / df['fscore'].sum() df.plot(kind='barh', x='feature', y='fscore', legend=False, figsize=(6, 10)) plt.title('XGBoost Feature Importance') plt.xlabel('relative importance'); #np.savez_compressed('vars.npz', pkl_cats, pkl_contins) #np.savez_compressed('deps.npz', y_pkl) pkl_cats = np.stack([x_pkl[:,pkl_vars.index(f)] for f in cat_vars], 1) pkl_contins = np.stack([x_pkl[:,pkl_vars.index(f)] for f in contin_vars], 1) co_enc = StandardScaler().fit(pkl_contins) pkl_contins = co_enc.transform(pkl_contins) pkl_contins_trn, pkl_contins_val = pkl_contins[:train_size], pkl_contins[train_size:] pkl_cats_trn, pkl_cats_val = pkl_cats[:train_size], pkl_cats[train_size:] y_pkl_trn, y_pkl_val = y_pkl[:train_size], y_pkl[train_size:] def get_emb_pkl(feat): name, c = cat_map_info(feat) c2 = (c+2)//3 if c2>50: c2=50 inp = Input((1,), dtype='int64', name=name+'_in') u = Flatten(name=name+'_flt')(Embedding(c, c2, input_length=1, init=emb_init)(inp)) return inp,u n_pkl_contin = pkl_contins_trn.shape[1] contin_inp = Input((n_pkl_contin,), name='contin') contin_out = BatchNormalization()(contin_inp) map_train_pkl = split_cols(pkl_cats_trn) + [pkl_contins_trn] map_valid_pkl = split_cols(pkl_cats_val) + [pkl_contins_val] def train_pkl(bs=128, ne=10): return model_pkl.fit(map_train_pkl, y_pkl_trn, batch_size=bs, nb_epoch=ne, verbose=0, validation_data=(map_valid_pkl, y_pkl_val)) def get_model_pkl(): conts = [get_contin_pkl(feat) for feat in contin_map_fit.features] embs = [get_emb_pkl(feat) for feat in cat_map_fit.features] x = merge([emb for inp,emb in embs] + [contin_out], mode='concat') x = Dropout(0.02)(x) x = Dense(1000, activation='relu', init='uniform')(x) x = Dense(500, activation='relu', init='uniform')(x) x = Dense(1, activation='sigmoid')(x) model_pkl = Model([inp for inp,emb in embs] + [contin_inp], x) model_pkl.compile('adam', 'mean_absolute_error') #model.compile(Adam(), 'mse') return model_pkl model_pkl = get_model_pkl() train_pkl(128, 10).history['val_loss'] K.set_value(model_pkl.optimizer.lr, 1e-4) train_pkl(128, 5).history['val_loss'] 1 97s - loss: 0.0104 - val_loss: 0.0083 2 93s - loss: 0.0076 - val_loss: 0.0076 3 90s - loss: 0.0071 - val_loss: 0.0076 4 90s - loss: 0.0068 - val_loss: 0.0075 5 93s - loss: 0.0066 - val_loss: 0.0075 6 95s - loss: 0.0064 - val_loss: 0.0076 7 98s - loss: 0.0063 - val_loss: 0.0077 8 97s - loss: 0.0062 - val_loss: 0.0075 9 95s - loss: 0.0061 - val_loss: 0.0073 0 101s - loss: 0.0061 - val_loss: 0.0074 plot_train(hist) preds = np.squeeze(model_pkl.predict(map_valid_pkl, 1024)) y_orig_pkl_val = log_max_inv(y_pkl_val, max_log_y_pkl) rmspe(log_max_inv(preds, max_log_y_pkl), y_orig_pkl_val) X_train = np.concatenate([cat_map_train, contin_map_train], axis=1) X_valid = np.concatenate([cat_map_valid, contin_map_valid], axis=1) all_vars = cat_vars + contin_vars xgb_parms = {'learning_rate': 0.1, 'subsample': 0.6, 'colsample_bylevel': 0.6, 'silent': True, 'objective': 'reg:linear'} xdata = xgboost.DMatrix(X_train, y_train, feature_names=all_vars) xdata_val = xgboost.DMatrix(X_valid, y_valid, feature_names=all_vars) xgb_parms['seed'] = random.randint(0,1e9) model = xgboost.train(xgb_parms, xdata) model.eval(xdata_val) model.eval(xdata_val) importance = model.get_fscore() importance = sorted(importance.items(), key=operator.itemgetter(1)) df = pd.DataFrame(importance, columns=['feature', 'fscore']) df['fscore'] = df['fscore'] / df['fscore'].sum() df.plot(kind='barh', x='feature', y='fscore', legend=False, figsize=(6, 10)) plt.title('XGBoost Feature Importance') plt.xlabel('relative importance'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: EXPLORE THE DATA Step2: SUBSET THE DATA Step3: STANDARDIZE THE DATA Step5: K-MEANS ANALYSIS - INITIAL CLUSTER SET Step6: Interpret 2 cluster solution Step7: BEGIN multiple steps to merge cluster assignment with clustering variables to examine cluster variable means by cluster Step8: calculate clustering variable means by cluster Step9: validate clusters in training data by examining cluster differences in CLASS using ANOVA first have to merge CLASS of poker hand with clustering variables and cluster assignment data
<ASSISTANT_TASK:> Python Code: # read training and test data from the url link and save the file to your working directory url = "http://archive.ics.uci.edu/ml/machine-learning-databases/poker/poker-hand-training-true.data" urllib.request.urlretrieve(url, "poker_train.csv") url2 = "http://archive.ics.uci.edu/ml/machine-learning-databases/poker/poker-hand-testing.data" urllib.request.urlretrieve(url2, "poker_test.csv") # read the data in and add column names data_train = pd.read_csv("poker_train.csv", header=None, names=['S1', 'C1', 'S2', 'C2', 'S3', 'C3','S4', 'C4', 'S5', 'C5', 'CLASS']) data_test = pd.read_csv("poker_test.csv", header=None, names=['S1', 'C1', 'S2', 'C2', 'S3', 'C3','S4', 'C4', 'S5', 'C5', 'CLASS']) # summary statistics including counts, mean, stdev, quartiles for the training dataset data_train.head(n=5) data_train.dtypes # data types of each variable data_train.describe() # subset clustering variables cluster=data_train[['S1', 'C1', 'S2', 'C2', 'S3', 'C3','S4', 'C4', 'S5', 'C5']] # standardize clustering variables to have mean=0 and sd=1 so that card suit and # rank are on the same scale as to have the variables equally contribute to the analysis clustervar=cluster.copy() # create a copy clustervar['S1']=preprocessing.scale(clustervar['S1'].astype('float64')) clustervar['C1']=preprocessing.scale(clustervar['C1'].astype('float64')) clustervar['S2']=preprocessing.scale(clustervar['S2'].astype('float64')) clustervar['C2']=preprocessing.scale(clustervar['C2'].astype('float64')) clustervar['S3']=preprocessing.scale(clustervar['S3'].astype('float64')) clustervar['C3']=preprocessing.scale(clustervar['C3'].astype('float64')) clustervar['S4']=preprocessing.scale(clustervar['S4'].astype('float64')) clustervar['C4']=preprocessing.scale(clustervar['C4'].astype('float64')) clustervar['S5']=preprocessing.scale(clustervar['S5'].astype('float64')) clustervar['C5']=preprocessing.scale(clustervar['C5'].astype('float64')) # The data has been already split data into train and test sets clus_train = clustervar # k-means cluster analysis for 1-10 clusters due to the 10 possible class outcomes for poker hands from scipy.spatial.distance import cdist clusters=range(1,11) meandist=[] # loop through each cluster and fit the model to the train set # generate the predicted cluster assingment and append the mean distance my taking the sum divided by the shape for k in clusters: model=KMeans(n_clusters=k) model.fit(clus_train) clusassign=model.predict(clus_train) meandist.append(sum(np.min(cdist(clus_train, model.cluster_centers_, 'euclidean'), axis=1)) / clus_train.shape[0]) Plot average distance from observations from the cluster centroid to use the Elbow Method to identify number of clusters to choose plt.plot(clusters, meandist) plt.xlabel('Number of clusters') plt.ylabel('Average distance') plt.title('Selecting k with the Elbow Method') # pick the fewest number of clusters that reduces the average distance model3=KMeans(n_clusters=2) model3.fit(clus_train) # has cluster assingments based on using 2 clusters clusassign=model3.predict(clus_train) # plot clusters ''' Canonical Discriminant Analysis for variable reduction: 1. creates a smaller number of variables 2. linear combination of clustering variables 3. Canonical variables are ordered by proportion of variance accounted for 4. most of the variance will be accounted for in the first few canonical variables ''' from sklearn.decomposition import PCA # CA from PCA function pca_2 = PCA(2) # return 2 first canonical variables plot_columns = pca_2.fit_transform(clus_train) # fit CA to the train dataset plt.scatter(x=plot_columns[:,0], y=plot_columns[:,1], c=model3.labels_,) # plot 1st canonical variable on x axis, 2nd on y-axis plt.xlabel('Canonical variable 1') plt.ylabel('Canonical variable 2') plt.title('Scatterplot of Canonical Variables for 2 Clusters') plt.show() # close or overlapping clusters idicate correlated variables with low in-class variance but not good separation. 2 cluster might be better. # create a unique identifier variable from the index for the # cluster training data to merge with the cluster assignment variable clus_train.reset_index(level=0, inplace=True) # create a list that has the new index variable cluslist=list(clus_train['index']) # create a list of cluster assignments labels=list(model3.labels_) # combine index variable list with cluster assignment list into a dictionary newlist=dict(zip(cluslist, labels)) newlist # convert newlist dictionary to a dataframe newclus=DataFrame.from_dict(newlist, orient='index') newclus # rename the cluster assignment column newclus.columns = ['cluster'] # now do the same for the cluster assignment variable create a unique identifier variable from the index for the # cluster assignment dataframe to merge with cluster training data newclus.reset_index(level=0, inplace=True) # merge the cluster assignment dataframe with the cluster training variable dataframe # by the index variable merged_train=pd.merge(clus_train, newclus, on='index') merged_train.head(n=100) # cluster frequencies merged_train.cluster.value_counts() clustergrp = merged_train.groupby('cluster').mean() print ("Clustering variable means by cluster") print(clustergrp) # split into test / train for class pokerhand_train=data_train['CLASS'] pokerhand_test=data_test['CLASS'] # put into a pandas dataFrame pokerhand_train=pd.DataFrame(pokerhand_train) pokerhand_test=pd.DataFrame(pokerhand_test) pokerhand_train.reset_index(level=0, inplace=True) # reset index merged_train_all=pd.merge(pokerhand_train, merged_train, on='index') # merge the pokerhand train with merged clusters sub1 = merged_train_all[['CLASS', 'cluster']].dropna() import statsmodels.formula.api as smf import statsmodels.stats.multicomp as multi # respone formula pokermod = smf.ols(formula='CLASS ~ cluster', data=sub1).fit() print (pokermod.summary()) print ('means for Poker hands by cluster') m1= sub1.groupby('cluster').mean() print (m1) print ('standard deviations for Poker hands by cluster') m2= sub1.groupby('cluster').std() print (m2) mc1 = multi.MultiComparison(sub1['CLASS'], sub1['cluster']) res1 = mc1.tukeyhsd() print(res1.summary()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The goal of this notebook is to illustrate how a model can wrapped and used in different tasks in Emukit. Step2: Define the objective function Step3: Define the parameter space Step4: Collect some observations of f Step5: Fit and wrap a model to the collected data Step6: 2. Load the package components, run the decision loop (if needed), solve your problem Step7: Bayesian optimization Step8: Experimental design Step9: Bayesian Quadrature Step10: Sensitivity analysis
<ASSISTANT_TASK:> Python Code: # General imports and parameters of figures should be loaded at the beginning of the overview import numpy as np from emukit.test_functions import branin_function from emukit.core import ParameterSpace, ContinuousParameter from emukit.core.initial_designs import RandomDesign from GPy.models import GPRegression from emukit.model_wrappers import GPyModelWrapper from emukit.model_wrappers.gpy_quadrature_wrappers import BaseGaussianProcessGPy, RBFGPy import warnings warnings.filterwarnings('ignore') f, _ = branin_function() parameter_space = ParameterSpace([ContinuousParameter('x1', -5, 10), ContinuousParameter('x2', 0, 15)]) num_data_points = 30 design = RandomDesign(parameter_space) X = design.get_samples(num_data_points) Y = f(X) model_gpy = GPRegression(X,Y) model_gpy.optimize() model_emukit = GPyModelWrapper(model_gpy) # Decision loops from emukit.experimental_design import ExperimentalDesignLoop from emukit.bayesian_optimization.loops import BayesianOptimizationLoop from emukit.quadrature.loop import VanillaBayesianQuadratureLoop # Acquisition functions from emukit.bayesian_optimization.acquisitions import ExpectedImprovement from emukit.experimental_design.acquisitions import ModelVariance from emukit.quadrature.acquisitions import IntegralVarianceReduction # Acquistion optimizers from emukit.core.optimization import GradientAcquisitionOptimizer # Stopping conditions from emukit.core.loop import FixedIterationsStoppingCondition from emukit.core.loop import ConvergenceStoppingCondition # Bayesian quadrature kernel and model from emukit.quadrature.kernels import QuadratureRBFLebesgueMeasure from emukit.quadrature.methods import VanillaBayesianQuadrature from emukit.quadrature.measures import LebesgueMeasure # Load core elements for Bayesian optimization expected_improvement = ExpectedImprovement(model = model_emukit) optimizer = GradientAcquisitionOptimizer(space = parameter_space) # Create the Bayesian optimization object bayesopt_loop = BayesianOptimizationLoop(model = model_emukit, space = parameter_space, acquisition = expected_improvement, batch_size = 5) # Run the loop and extract the optimum # Run the loop until we either complete 10 steps or converge stopping_condition = FixedIterationsStoppingCondition(i_max = 10) | ConvergenceStoppingCondition(eps=0.01) bayesopt_loop.run_loop(f, stopping_condition) # Load core elements for Experimental design model_variance = ModelVariance(model = model_emukit) optimizer = GradientAcquisitionOptimizer(space = parameter_space) # Create the Experimental design object expdesign_loop = ExperimentalDesignLoop(space = parameter_space, model = model_emukit, acquisition = model_variance, update_interval = 1, batch_size = 5) # Run the loop stopping_condition = FixedIterationsStoppingCondition(i_max = 10) expdesign_loop.run_loop(f, stopping_condition) # Define the lower and upper bounds of the integral. integral_bounds = [(-5, 10), (0, 15)] # Load core elements for Bayesian quadrature emukit_measure = LebesgueMeasure.from_bounds(integral_bounds) emukit_qrbf = QuadratureRBFLebesgueMeasure(RBFGPy(model_gpy.kern), emukit_measure) emukit_model = BaseGaussianProcessGPy(kern=emukit_qrbf, gpy_model=model_gpy) emukit_method = VanillaBayesianQuadrature(base_gp=emukit_model, X=X, Y=Y) # Create the Bayesian quadrature object bq_loop = VanillaBayesianQuadratureLoop(model=emukit_method) # Run the loop and extract the integral estimate num_iter = 5 bq_loop.run_loop(f, stopping_condition=num_iter) integral_mean, integral_variance = bq_loop.model.integrate() from emukit.sensitivity.monte_carlo import MonteCarloSensitivity # No loop here, compute Sobol indices senstivity_analysis = MonteCarloSensitivity(model = model_emukit, input_domain = parameter_space) main_effects, total_effects, _ = senstivity_analysis.compute_effects(num_monte_carlo_points = 10000) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Interactive Line Plotting of Data Frames Step2: Plotting independent series Step3: This does not affect filtering or pivoting in any way Step4: Interactive Line Plotting of Traces Step5: You can also change the drawstyle to "steps-post" for step plots. These are suited if the data is discrete Step6: Synchronized zoom in multiple plots Step7: EventPlot Step8: Lane names can also be specified as strings (or hashable objects that have an str representation) as follows Step9: TracePlot
<ASSISTANT_TASK:> Python Code: import sys,os sys.path.append("..") import numpy.random import pandas as pd import shutil import tempfile import trappy trace_thermal = "./trace.txt" trace_sched = "../tests/raw_trace.dat" TEMP_BASE = "/tmp" def setup_thermal(): tDir = tempfile.mkdtemp(dir="/tmp", prefix="trappy_doc", suffix = ".tempDir") shutil.copyfile(trace_thermal, os.path.join(tDir, "trace.txt")) return tDir def setup_sched(): tDir = tempfile.mkdtemp(dir="/tmp", prefix="trappy_doc", suffix = ".tempDir") shutil.copyfile(trace_sched, os.path.join(tDir, "trace.dat")) return tDir temp_thermal_location = setup_thermal() trace1 = trappy.FTrace(temp_thermal_location) trace2 = trappy.FTrace(temp_thermal_location) trace2.thermal.data_frame["temp"] = trace1.thermal.data_frame["temp"] * 2 trace2.cpu_out_power.data_frame["power"] = trace1.cpu_out_power.data_frame["power"] * 2 columns = ["tick", "tock"] df = pd.DataFrame(numpy.random.randn(1000, 2), columns=columns).cumsum() trappy.ILinePlot(df, column=columns).view() columns = ["tick", "tock", "bang"] df_len = 1000 df1 = pd.DataFrame(numpy.random.randn(df_len, 3), columns=columns, index=range(df_len)).cumsum() df2 = pd.DataFrame(numpy.random.randn(df_len, 3), columns=columns, index=(numpy.arange(0.5, df_len, 1))).cumsum() trappy.ILinePlot([df1, df2], column="tick").view() df1["bang"] = df1["bang"].apply(lambda x: numpy.random.randint(0, 4)) df2["bang"] = df2["bang"].apply(lambda x: numpy.random.randint(0, 4)) trappy.ILinePlot([df1, df2], column="tick", filters = {'bang' : [2]}, title="tick column values for which bang is 2").view() trappy.ILinePlot([df1, df2], column="tick", pivot="bang", title="tick column pivoted on bang column").view() map_label = { "00000000,00000006" : "A57", "00000000,00000039" : "A53", } l = trappy.ILinePlot( trace1, # TRAPpy FTrace Object trappy.cpu_power.CpuInPower, # TRAPpy Event (maps to a unique word in the Trace) column=[ # Column(s) "dynamic_power", "load1"], filters={ # Filter the data "cdev_state": [ 1, 0]}, pivot="cpus", # One plot for each pivot will be created map_label=map_label, # Optionally, provide an alternative label for pivots per_line=1) # Number of graphs per line l.view() l = trappy.ILinePlot( trace1, # TRAPpy FTrace Object trappy.cpu_power.CpuInPower, # TRAPpy Event (maps to a unique word in the Trace) column=[ # Column(s) "dynamic_power", "load1"], filters={ # Filter the data "cdev_state": [ 1, 0]}, pivot="cpus", # One plot for each pivot will be created per_line=1, # Number of graphs per line drawstyle="steps-post") l.view() trappy.ILinePlot( trace1, signals=["cpu_in_power:dynamic_power", "cpu_in_power:load1"], pivot="cpus", group="synchronized", sync_zoom=True ).view() A = [ [0, 3, 0], [4, 5, 2], ] B = [ [0, 2, 1], [2, 3, 3], [3, 4, 0], ] C = [ [0, 2, 3], [2, 3, 2], [3, 4, 1], ] EVENTS = {} EVENTS["A"] = A EVENTS["B"] = B EVENTS["C"] = C trappy.EventPlot(EVENTS, keys=EVENTS.keys, # Name of the Process Element lane_prefix="LANE: ", # Name of Each TimeLine num_lanes=4, # Number of Timelines domain=[0,5] # Time Domain ).view() A = [ [0, 3, "zero"], [4, 5, "two"], ] B = [ [0, 2, 1], [2, 3, "three"], [3, 4, "zero"], ] C = [ [0, 2, "three"], [2, 3, "two"], [3, 4, 1], ] EVENTS = {} EVENTS["A"] = A EVENTS["B"] = B EVENTS["C"] = C trappy.EventPlot(EVENTS, keys=EVENTS.keys, # Name of the Process Element lanes=["zero", 1, "two", "three"], domain=[0,5] # Time Domain ).view() f = setup_sched() trappy.plotter.plot_trace(f) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The driver is used to execute the harmonization. It will handle the data formatting needed to execute the harmonizaiton operation and stores the harmonized results until they are needed. Step2: Since the default function which chooses, which method to use does not apply the budget method, we specify overrides to use budget for all the variables in the model data. Step3: All data of interest is combined in order to easily view it. We will specifically investigate output for the World in this example. A few operations are performed in order to get the data into a plotting-friendly format. Step4: Calculation details Step5: We calculate the carbon budget from the model and historical data by estimating the integral between discrete data points using the Riemann trapezoidal sum. Step6: Harmonization via Optimization Step7: The model itself minimizes the $L_2$ norm of the rates of change Step8: The historical value must match Step9: And the carbon budget must be maintained, using a trapezoidal rule Reimann sum, Step10: The model is solved with IPOPT and compared with the original trajectory.
<ASSISTANT_TASK:> Python Code: import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import pyomo.environ as pyomo import aneris from aneris.tutorial import load_data %matplotlib inline model, hist, driver = load_data() driver.overrides = model[["Model", "Scenario", "Region", "Variable", "Unit"]].assign(Method="budget") driver.overrides.head() for scenario in driver.scenarios(): driver.harmonize(scenario) harmonized, metadata, diagnostics = driver.harmonized_results() data = pd.concat([hist, model, harmonized], sort=True) df = data[data.Region == 'World'] df = pd.melt(df, id_vars=aneris.iamc_idx, value_vars=aneris.numcols(df), var_name='Year', value_name='Emissions') df['Label'] = df['Model'] + ' ' + df['Variable'] df.head() sns.lineplot(x='Year', y='Emissions', hue='Label', data=df.assign(Year=df.Year.astype(int))) plt.legend(bbox_to_anchor=(1.05, 1)) ms = df.loc[(df.Variable == 'prefix|Emissions|BC|suffix') & (df.Model == 'model')].set_index('Year')['Emissions'].dropna() hs = df.loc[(df.Variable == 'prefix|Emissions|BC|suffix') & (df.Model == 'History')].set_index('Year')['Emissions'].dropna() def calc_budget(data): # trapezoid rule reimann sum dx = data.index.to_series().astype(int).diff() y1 = data dy = data.diff() budget = (dx * (y1 - .5 * dy)).iloc[1:].sum() return budget calc_budget(ms) / 1e3 # in Gt BC years = ms.index[ms.index.astype(int) >= int(hs.index[-1])] model_vals = ms.loc[years] hist_val = hs.iloc[-1] budget = calc_budget(model_vals) model = pyomo.ConcreteModel() model.x = pyomo.Var(list(years), initialize=0, domain=pyomo.Reals) x = pd.Series([model.x[y] for y in years], years) delta_years = years.to_series().astype(int).diff() delta_x = x.diff() delta_m = model_vals.diff() def l2_norm(): return pyomo.quicksum(((delta_m / delta_years - delta_x / delta_years) ** 2).dropna()) model.obj = pyomo.Objective(expr=l2_norm(), sense=pyomo.minimize) model.hist_val = pyomo.Constraint(expr=model.x[years[0]] == hist_val) model.budget = pyomo.Constraint(expr=calc_budget(x) == budget) solver = pyomo.SolverFactory('ipopt') solver.solve(model) data = pd.concat( dict( model=ms, history=hs, model_harmonized=pd.Series([pyomo.value(model.x[y]) for y in years], years) ), axis=1, sort=True ) data.index = data.index.astype(int) data.plot.line() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: OLS Analysis Using Full PSU dataset Step3: Partitioning a dataset in training and test sets Step4: Determine Feature Importances Step5: Test Prediction Results
<ASSISTANT_TASK:> Python Code: #Import required packages import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt def format_date(df_date): Splits Meeting Times and Dates into datetime objects where applicable using regex. df_date['Days'] = df_date['Meeting_Times'].str.extract('([^\s]+)', expand=True) df_date['Start_Date'] = df_date['Meeting_Dates'].str.extract('([^\s]+)', expand=True) df_date['Year'] = df_date['Term'].astype(str).str.slice(0,4) df_date['Quarter'] = df_date['Term'].astype(str).str.slice(4,6) df_date['Term_Date'] = pd.to_datetime(df_date['Year'] + df_date['Quarter'], format='%Y%m') df_date['End_Date'] = df_date['Meeting_Dates'].str.extract('(?<=-)(.*)(?= )', expand=True) df_date['Start_Time'] = df_date['Meeting_Times'].str.extract('(?<= )(.*)(?=-)', expand=True) df_date['Start_Time'] = pd.to_datetime(df_date['Start_Time'], format='%H%M') df_date['End_Time'] = df_date['Meeting_Times'].str.extract('((?<=-).*$)', expand=True) df_date['End_Time'] = pd.to_datetime(df_date['End_Time'], format='%H%M') df_date['Duration_Hr'] = ((df_date['End_Time'] - df_date['Start_Time']).dt.seconds)/3600 return df_date def format_xlist(df_xl): revises % capacity calculations by using Max Enrollment instead of room capacity. df_xl['Cap_Diff'] = np.where(df_xl['Xlst'] != '', df_xl['Max_Enrl'].astype(int) - df_xl['Actual_Enrl'].astype(int), df_xl['Room_Capacity'].astype(int) - df_xl['Actual_Enrl'].astype(int)) df_xl = df_xl.loc[df_xl['Room_Capacity'].astype(int) < 999] return df_xl pd.set_option('display.max_rows', None) df = pd.read_csv('data/PSU_master_classroom_91-17.csv', dtype={'Schedule': object, 'Schedule Desc': object}) df = df.fillna('') df = format_date(df) # Avoid classes that only occur on a single day df = df.loc[df['Start_Date'] != df['End_Date']] #terms = [199104, 199204, 199304, 199404, 199504, 199604, 199704, 199804, 199904, 200004, 200104, 200204, 200304, 200404, 200504, 200604, 200704, 200804, 200904, 201004, 201104, 201204, 201304, 201404, 201504, 201604] terms = [200604, 200704, 200804, 200904, 201004, 201104, 201204, 201304, 201404, 201504, 201604] df = df.loc[df['Term'].isin(terms)] df = df.loc[df['Online Instruct Method'] != 'Fully Online'] # Calculate number of days per week and treat Sunday condition df['Days_Per_Week'] = df['Days'].str.len() df['Room_Capacity'] = df['Room_Capacity'].apply(lambda x: x if (x != 'No Data Available') else 0) df['Building'] = df['ROOM'].str.extract('([^\s]+)', expand=True) df_cl = format_xlist(df) df_cl['%_Empty'] = df_cl['Cap_Diff'].astype(float) / df_cl['Room_Capacity'].astype(float) # Normalize the results df_cl['%_Empty'] = df_cl['Actual_Enrl'].astype(np.float32)/df_cl['Room_Capacity'].astype(np.float32) df_cl = df_cl.replace([np.inf, -np.inf], np.nan).dropna() from sklearn.preprocessing import LabelEncoder df_cl = df_cl.sample(n = 15000) # Save as a 1D array. Otherwise will throw errors. y = np.asarray(df_cl['%_Empty'], dtype="|S6") df_cl = df_cl[['Dept', 'Class', 'Days', 'Start_Time', 'ROOM', 'Term', 'Room_Capacity', 'Building']] cat_columns = ['Dept', 'Class', 'Days', 'Start_Time', 'ROOM', 'Building'] for column in cat_columns: room_mapping = {label: idx for idx, label in enumerate(np.unique(df_cl['{0}'.format(column)]))} df_cl['{0}'.format(column)] = df_cl['{0}'.format(column)].map(room_mapping) from distutils.version import LooseVersion as Version from sklearn import __version__ as sklearn_version if Version(sklearn_version) < '0.18': from sklearn.cross_validation import train_test_split else: from sklearn.model_selection import train_test_split X = df_cl.iloc[:, 1:].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, random_state=0) from sklearn.ensemble import RandomForestClassifier feat_labels = df_cl.columns[1:] forest = RandomForestClassifier(n_estimators=100, random_state=0, n_jobs=-1) # -1 sets n_jobs=n_CPU cores forest.fit(X_train, y_train) importances = forest.feature_importances_ indices = np.argsort(importances)[::-1] for f in range(X_train.shape[1]): print("%2d) %-*s %f" % (f + 1, 30, feat_labels[indices[f]], importances[indices[f]])) plt.title('Feature Importances') plt.bar(range(X_train.shape[1]), importances[indices], color='lightblue', align='center') plt.xticks(range(X_train.shape[1]), feat_labels[indices], rotation=90) plt.xlim([-1, X_train.shape[1]]) plt.tight_layout() plt.show() # Random Forest Classification from sklearn import model_selection kfold = model_selection.KFold(n_splits=10, random_state=0) model = RandomForestClassifier(n_estimators=20, random_state=0, n_jobs=-1) results = model_selection.cross_val_score(model, X, y, cv=kfold) print(results.mean()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The command %matplotlib inline is not a Python command, but an IPython command. When using the console, or the notebook, it makes the plots appear inline. You do not want to use this in a plain Python code. Step2: We have defined two sequences - in this case lists, but tuples would also work. One contains the $x$-axis coordinates, the other the data points to appear on the $y$-axis. A basic plot is produced using the plot command of pyplot. However, this plot will not automatically appear on the screen, as after plotting the data you may wish to add additional information. Nothing will actually happen until you either save the figure to a file (using pyplot.savefig(&lt;filename&gt;)) or explicitly ask for it to be displayed (with the show command). When the plot is displayed the program will typically pause until you dismiss the plot. Step3: Whilst most of the commands are self-explanatory, a note should be made of the strings line r'$x$'. These strings are in LaTeX format, which is the standard typesetting method for professional-level mathematics. The $ symbols surround mathematics. The r before the definition of the string is Python notation, not LaTeX. It says that the following string will be "raw"
<ASSISTANT_TASK:> Python Code: from matplotlib import pyplot %matplotlib inline from math import sin, pi x = [] y = [] for i in range(201): x.append(0.01*i) y.append(sin(pi*x[-1])**2) pyplot.plot(x, y) pyplot.show() from math import sin, pi x = [] y = [] for i in range(201): x.append(0.01*i) y.append(sin(pi*x[-1])**2) pyplot.plot(x, y, marker='+', markersize=8, linestyle=':', linewidth=3, color='b', label=r'$\sin^2(\pi x)$') pyplot.legend(loc='lower right') pyplot.xlabel(r'$x$') pyplot.ylabel(r'$y$') pyplot.title('A basic plot') pyplot.show() from math import sin, pi, exp, log x = [] y1 = [] y2 = [] for i in range(201): x.append(1.0+0.01*i) y1.append(exp(sin(pi*x[-1]))) y2.append(log(pi+x[-1]*sin(x[-1]))) pyplot.loglog(x, y1, linestyle='--', linewidth=4, color='k', label=r'$y_1=e^{\sin(\pi x)}$') pyplot.loglog(x, y2, linestyle='-.', linewidth=4, color='r', label=r'$y_2=\log(\pi+x\sin(x))$') pyplot.legend(loc='lower right') pyplot.xlabel(r'$x$') pyplot.ylabel(r'$y$') pyplot.title('A basic logarithmic plot') pyplot.show() from math import sin, pi, exp, log x = [] y1 = [] y2 = [] for i in range(201): x.append(1.0+0.01*i) y1.append(exp(sin(pi*x[-1]))) y2.append(log(pi+x[-1]*sin(x[-1]))) pyplot.semilogy(x, y1, linestyle='None', marker='o', color='g', label=r'$y_1=e^{\sin(\pi x)}$') pyplot.semilogy(x, y2, linestyle='None', marker='^', color='r', label=r'$y_2=\log(\pi+x\sin(x))$') pyplot.legend(loc='lower right') pyplot.xlabel(r'$x$') pyplot.ylabel(r'$y$') pyplot.title('A different logarithmic plot') pyplot.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Load and prepare the data Step3: Tokenize Step5: Padding Step7: Preprocess pipeline Step8: Split the data into training and test sets Step10: Ids Back to Text Step12: 2. Recurrent neural network Step13: Train the model Step14: Evaluate the model
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt import seaborn as sns import helper import keras helper.info_gpu() np.random.seed(9) %matplotlib inline %load_ext autoreload %autoreload 2 with open('data/small_vocab_en', "r") as f: english_sentences = f.read().split('\n') with open('data/small_vocab_fr', "r") as f: french_sentences = f.read().split('\n') print("Number of sentences: {}\n".format(len(english_sentences))) for i in range(2): print("sample {}:".format(i)) print("{} \n{} \n".format(english_sentences[i], french_sentences[i])) import collections words = dict() words["English"] = [word for sentence in english_sentences for word in sentence.split()] words["French"] = [word for sentence in french_sentences for word in sentence.split()] for key, value in words.items(): print("{}: {} words, {} unique words".format(key, len(value), len(collections.Counter(value)))) from keras.preprocessing.text import Tokenizer def tokenize(x): :param x: List of sentences/strings to be tokenized :return: Tuple of (tokenized x data, tokenizer used to tokenize x) tokenizer = Tokenizer() tokenizer.fit_on_texts(x) tokens = tokenizer.texts_to_sequences(x) return tokens, tokenizer from keras.preprocessing.sequence import pad_sequences def pad(x, length=None): :param x: List of sequences. :param length: Length to pad the sequence to. If None, longest sequence length in x. :return: Padded numpy array of sequences return pad_sequences(x, maxlen=length, padding='post') def preprocess(x, y, length=None): :param x: Feature List of sentences :param y: Label List of sentences :return: Tuple of (Preprocessed x, Preprocessed y, x tokenizer, y tokenizer) preprocess_x, x_tk = tokenize(x) preprocess_y, y_tk = tokenize(y) preprocess_x = pad(preprocess_x, length) preprocess_y = pad(preprocess_y, length) # Keras's sparse_categorical_crossentropy function requires the labels to be in 3 dims preprocess_y = preprocess_y.reshape(*preprocess_y.shape, 1) return preprocess_x, preprocess_y, x_tk, y_tk x, y, x_tk, y_tk = preprocess(english_sentences, french_sentences) print('Data Preprocessed') # Only the 10 last translations will be predicted x_train, y_train = x[:-10], y[:-10] x_test, y_test = x[-10:-1], y[-10:-1] # last sentence removed test_english_sentences, test_french_sentences = english_sentences[-10:], french_sentences[-10:] def logits_to_text(logits, tokenizer, show_pad=True): Turn logits from a neural network into text using the tokenizer :param logits: Logits from a neural network :param tokenizer: Keras Tokenizer fit on the labels :return: String that represents the text of the logits index_to_words = {id: word for word, id in tokenizer.word_index.items()} index_to_words[0] = '<PAD>' if show_pad else '' return ' '.join([index_to_words[prediction] for prediction in np.argmax(logits, 1)]) from keras.models import Sequential from keras.layers import GRU, Dense, TimeDistributed, LSTM, Bidirectional, RepeatVector from keras.layers.embeddings import Embedding from keras.layers.core import Dropout from keras.losses import sparse_categorical_crossentropy def rnn_model(input_shape, output_sequence_length, english_vocab_size, french_vocab_size): Build a model with embedding, encoder-decoder, and bidirectional RNN :param input_shape: Tuple of input shape :param output_sequence_length: Length of output sequence :param english_vocab_size: Number of unique English words in the dataset :param french_vocab_size: Number of unique French words in the dataset :return: Keras model built, but not trained learning_rate = 0.01 model = Sequential() vector_size = english_vocab_size // 10 model.add( Embedding( english_vocab_size, vector_size, input_shape=input_shape[1:], mask_zero=False)) model.add(Bidirectional(GRU(output_sequence_length))) model.add(Dense(128, activation='relu')) model.add(RepeatVector(output_sequence_length)) model.add(Bidirectional(GRU(128, return_sequences=True))) model.add(TimeDistributed(Dense(french_vocab_size, activation="softmax"))) print(model.summary()) model.compile( loss=sparse_categorical_crossentropy, optimizer=keras.optimizers.adam(learning_rate), metrics=['accuracy']) return model model = rnn_model(x_train.shape, y_train.shape[1], len(x_tk.word_index), len(y_tk.word_index)) print('Training...') callbacks = [keras.callbacks.EarlyStopping(monitor='val_acc', patience=3, verbose=1)] %time history = model.fit(x_train, y_train, batch_size=1024, epochs=50, verbose=0, \ validation_split=0.2, callbacks=callbacks) helper.show_training(history) score = model.evaluate(x_test, y_test, verbose=0) print("Test Accuracy: {:.2f}\n".format(score[1])) y = model.predict(x_test) for idx, value in enumerate(y): print('Sample: {}'.format(test_english_sentences[idx])) print('Actual: {}'.format(test_french_sentences[idx])) print('Predicted: {}\n'.format(logits_to_text(value, y_tk, show_pad=False))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Login to and initialize wandb. You will need to use your wandb API key to run this demo. Step2: Dataset and Dataloader for Custom Object Detection Step3: Visualizing sample data from train split
<ASSISTANT_TASK:> Python Code: import torch import numpy as np import wandb import label_utils from torch.utils.data import DataLoader from torchvision import transforms from PIL import Image wandb.login() config = { "num_workers": 4, "pin_memory": True, "batch_size": 32, "dataset": "drinks", "train_split": "drinks/labels_train.csv", "test_split": "drinks/labels_test.csv",} run = wandb.init(project="dataloader-project", entity="upeee", config=config) test_dict, test_classes = label_utils.build_label_dictionary( config['test_split']) train_dict, train_classes = label_utils.build_label_dictionary( config['train_split']) class ImageDataset(torch.utils.data.Dataset): def __init__(self, dictionary, transform=None): self.dictionary = dictionary self.transform = transform def __len__(self): return len(self.dictionary) def __getitem__(self, idx): # retrieve the image filename key = list(self.dictionary.keys())[idx] # retrieve all bounding boxes boxes = self.dictionary[key] # open the file as a PIL image img = Image.open(key) # apply the necessary transforms # transforms like crop, resize, normalize, etc if self.transform: img = self.transform(img) # return a list of images and corresponding labels return img, boxes train_split = ImageDataset(train_dict, transforms.ToTensor()) test_split = ImageDataset(test_dict, transforms.ToTensor()) # This is approx 95/5 split print("Train split len:", len(train_split)) print("Test split len:", len(test_split)) # We do not have a validation split def collate_fn(batch): maxlen = max([len(x[1]) for x in batch]) images = [] boxes = [] for i in range(len(batch)): img, box = batch[i] images.append(img) # pad with zeros if less than maxlen if len(box) < maxlen: box = np.concatenate( (box, np.zeros((maxlen-len(box), box.shape[-1]))), axis=0) box = torch.from_numpy(box) boxes.append(box) return torch.stack(images, 0), torch.stack(boxes, 0) train_loader = DataLoader(train_split, batch_size=config['batch_size'], shuffle=True, num_workers=config['num_workers'], pin_memory=config['pin_memory'], collate_fn=collate_fn) test_loader = DataLoader(test_split, batch_size=config['batch_size'], shuffle=False, num_workers=config['num_workers'], pin_memory=config['pin_memory'], collate_fn=collate_fn) # sample one mini-batch images, boxes = next(iter(train_loader)) # map of label to class name class_labels = {i: label_utils.index2class(i) for i in train_classes} run.display(height=1000) table = wandb.Table(columns=['Image']) # we use wandb to visualize the objects and bounding boxes for image, box in zip(images, boxes): dict = [] for i in range(box.shape[0]): if box[i, -1] == 0: continue dict_item = {} dict_item["position"] = { "minX": box[i, 0].item(), "maxX": box[i, 1].item(), "minY": box[i, 2].item(), "maxY": box[i, 3].item(), } dict_item["domain"] = "pixel" dict_item["class_id"] = (int)(box[i, 4].item()) dict_item["box_caption"] = label_utils.index2class( dict_item["class_id"]) dict.append(dict_item) img = wandb.Image(image, boxes={ "ground_truth": { "box_data": dict, "class_labels": class_labels } }) table.add_data(img) wandb.log({"train_loader": table}) wandb.finish() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load Digits Dataset Step2: Create Pipeline Step3: Create k-Fold Cross-Validation Step4: Conduct k-Fold Cross-Validation Step5: Calculate Mean Performance Score
<ASSISTANT_TASK:> Python Code: # Load libraries import numpy as np from sklearn import datasets from sklearn import metrics from sklearn.model_selection import KFold, cross_val_score from sklearn.pipeline import make_pipeline from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler # Load the digits dataset digits = datasets.load_digits() # Create the features matrix X = digits.data # Create the target vector y = digits.target # Create standardizer standardizer = StandardScaler() # Create logistic regression logit = LogisticRegression() # Create a pipeline that standardizes, then runs logistic regression pipeline = make_pipeline(standardizer, logit) # Create k-Fold cross-validation kf = KFold(n_splits=10, shuffle=True, random_state=1) # Do k-fold cross-validation cv_results = cross_val_score(pipeline, # Pipeline X, # Feature matrix y, # Target vector cv=kf, # Cross-validation technique scoring="accuracy", # Loss function n_jobs=-1) # Use all CPU scores # Calculate mean cv_results.mean() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: That's all we need to create and train a model Step2: Movielens 100k Step3: Here's some benchmarks on the same dataset for the popular Librec system for collaborative filtering. They show best results based on RMSE of 0.91, which corresponds to an MSE of 0.91**2 = 0.83. Step4: Movie bias Step5: Movie weights
<ASSISTANT_TASK:> Python Code: user,item,title = 'userId','movieId','title' path = untar_data(URLs.ML_SAMPLE) path ratings = pd.read_csv(path/'ratings.csv') ratings.head() data = CollabDataBunch.from_df(ratings, seed=42) y_range = [0,5.5] learn = collab_learner(data, n_factors=50, y_range=y_range) learn.fit_one_cycle(3, 5e-3) path=Config.data_path()/'ml-100k' ratings = pd.read_csv(path/'u.data', delimiter='\t', header=None, names=[user,item,'rating','timestamp']) ratings.head() movies = pd.read_csv(path/'u.item', delimiter='|', encoding='latin-1', header=None, names=[item, 'title', 'date', 'N', 'url', *[f'g{i}' for i in range(19)]]) movies.head() len(ratings) rating_movie = ratings.merge(movies[[item, title]]) rating_movie.head() data = CollabDataBunch.from_df(rating_movie, seed=42, valid_pct=0.1, item_name=title) data.show_batch() y_range = [0,5.5] learn = collab_learner(data, n_factors=40, y_range=y_range, wd=1e-1) learn.lr_find() learn.recorder.plot(skip_end=15) learn.fit_one_cycle(5, 5e-3) learn.save('dotprod') learn.load('dotprod'); learn.model g = rating_movie.groupby(title)['rating'].count() top_movies = g.sort_values(ascending=False).index.values[:1000] top_movies[:10] movie_bias = learn.bias(top_movies, is_item=True) movie_bias.shape mean_ratings = rating_movie.groupby(title)['rating'].mean() movie_ratings = [(b, i, mean_ratings.loc[i]) for i,b in zip(top_movies,movie_bias)] item0 = lambda o:o[0] sorted(movie_ratings, key=item0)[:15] sorted(movie_ratings, key=lambda o: o[0], reverse=True)[:15] movie_w = learn.weight(top_movies, is_item=True) movie_w.shape movie_pca = movie_w.pca(3) movie_pca.shape fac0,fac1,fac2 = movie_pca.t() movie_comp = [(f, i) for f,i in zip(fac0, top_movies)] sorted(movie_comp, key=itemgetter(0), reverse=True)[:10] sorted(movie_comp, key=itemgetter(0))[:10] movie_comp = [(f, i) for f,i in zip(fac1, top_movies)] sorted(movie_comp, key=itemgetter(0), reverse=True)[:10] sorted(movie_comp, key=itemgetter(0))[:10] idxs = np.random.choice(len(top_movies), 50, replace=False) idxs = list(range(50)) X = fac0[idxs] Y = fac2[idxs] plt.figure(figsize=(15,15)) plt.scatter(X, Y) for i, x, y in zip(top_movies[idxs], X, Y): plt.text(x,y,i, color=np.random.rand(3)*0.7, fontsize=11) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Exercise 1 Step2: Exercise 2 Step3: Exercise 3
<ASSISTANT_TASK:> Python Code: # Import all necessary libraries, this is a configuration step for the exercise. # Please run it before the simulation code! import numpy as np import matplotlib.pyplot as plt # Show the plots in the Notebook. plt.switch_backend("nbagg") def fourier_derivative(f, dx): # Length of vector f nx = np.size(f) # Initialize k vector up to Nyquist wavenumber kmax = np.pi/dx dk = kmax/(nx/2) k = np.arange(float(nx)) k[: int(nx/2)] = k[: int(nx/2)] * dk k[int(nx/2) :] = k[: int(nx/2)] - kmax # Fourier derivative ff = np.fft.fft(f); ff = 1j*k*ff df_num = np.real(np.fft.ifft(ff)) return df_num # Basic parameters # --------------------------------------------------------------- nx = 128 x, dx = np.linspace(2*np.pi/nx, 2*np.pi, nx, retstep=True) sigma = 0.5 xo = np.pi # Initialize Gauss function f = np.exp(-1/sigma**2 * (x - xo)**2) # Numerical derivative df_num = fourier_derivative(f, dx) # Analytical derivative df_ana = -2*(x-xo)/sigma**2 * np.exp(-1/sigma**2 * (x-xo)**2) # To make the error visible, it is multiply by 10^13 df_err = 1e13*(df_ana - df_num) # Error between analytical and numerical solution err = np.sum((df_num - df_ana)**2) / np.sum(df_ana**2) * 100 print('Error: %s' %err) # Plot analytical and numerical derivatives # --------------------------------------------------------------- plt.subplot(2,1,1) plt.plot(x, f, "g", lw = 1.5, label='Gaussian') plt.legend(loc='upper right', shadow=True) plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.axis([2*np.pi/nx, 2*np.pi, 0, 1]) plt.subplot(2,1,2) plt.plot(x, df_ana, "b", lw = 1.5, label='Analytical') plt.plot(x, df_num, 'k--', lw = 1.5, label='Numerical') plt.plot(x, df_err, "r", lw = 1.5, label='Difference') plt.legend(loc='upper right', shadow=True) plt.xlabel('$x$') plt.ylabel('$\partial_x f(x)$') plt.axis([2*np.pi/nx, 2*np.pi, -2, 2]) plt.show() #plt.savefig('Fig_5.9.png') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Read in train & val data Step2: Extract X and Y matrices Step4: Convert to SystemML Matrices Step6: Trigger Caching (Optional) Step8: Save Matrices (Optional) Step10: Softmax Classifier Step12: Train Step14: Eval Step16: LeNet-like ConvNet Step18: Hyperparameter Search Step20: Train Step22: Eval
<ASSISTANT_TASK:> Python Code: %load_ext autoreload %autoreload 2 %matplotlib inline import os import matplotlib.pyplot as plt import numpy as np from pyspark.sql.functions import col, max import systemml # pip3 install systemml from systemml import MLContext, dml plt.rcParams['figure.figsize'] = (10, 6) ml = MLContext(sc) # Settings size=64 grayscale = True c = 1 if grayscale else 3 p = 0.01 tr_sample_filename = os.path.join("data", "train_{}_sample_{}{}.parquet".format(p, size, "_grayscale" if grayscale else "")) val_sample_filename = os.path.join("data", "val_{}_sample_{}{}.parquet".format(p, size, "_grayscale" if grayscale else "")) train_df = sqlContext.read.load(tr_sample_filename) val_df = sqlContext.read.load(val_sample_filename) train_df, val_df tc = train_df.count() vc = val_df.count() tc, vc, tc + vc train_df.select(max(col("__INDEX"))).show() train_df.groupBy("tumor_score").count().show() val_df.groupBy("tumor_score").count().show() # Note: Must use the row index column, or X may not # necessarily correspond correctly to Y X_df = train_df.select("__INDEX", "sample") X_val_df = val_df.select("__INDEX", "sample") y_df = train_df.select("__INDEX", "tumor_score") y_val_df = val_df.select("__INDEX", "tumor_score") X_df, X_val_df, y_df, y_val_df script = # Scale images to [-1,1] X = X / 255 X_val = X_val / 255 X = X * 2 - 1 X_val = X_val * 2 - 1 # One-hot encode the labels num_tumor_classes = 3 n = nrow(y) n_val = nrow(y_val) Y = table(seq(1, n), y, n, num_tumor_classes) Y_val = table(seq(1, n_val), y_val, n_val, num_tumor_classes) outputs = ("X", "X_val", "Y", "Y_val") script = dml(script).input(X=X_df, X_val=X_val_df, y=y_df, y_val=y_val_df).output(*outputs) X, X_val, Y, Y_val = ml.execute(script).get(*outputs) X, X_val, Y, Y_val # script = # # Trigger conversions and caching # # Note: This may take a while, but will enable faster iteration later # print(sum(X)) # print(sum(Y)) # print(sum(X_val)) # print(sum(Y_val)) # # script = dml(script).input(X=X, X_val=X_val, Y=Y, Y_val=Y_val) # ml.execute(script) # script = # write(X, "data/X_"+p+"_sample_binary", format="binary") # write(Y, "data/Y_"+p+"_sample_binary", format="binary") # write(X_val, "data/X_val_"+p+"_sample_binary", format="binary") # write(Y_val, "data/Y_val_"+p+"_sample_binary", format="binary") # # script = dml(script).input(X=X, X_val=X_val, Y=Y, Y_val=Y_val, p=p) # ml.execute(script) script = source("softmax_clf.dml") as clf # Hyperparameters & Settings lr = 1e-2 # learning rate mu = 0.9 # momentum decay = 0.999 # learning rate decay constant batch_size = 50 epochs = 500 log_interval = 1 n = 200 # sample size for overfitting sanity check # Train [W, b] = clf::train(X[1:n,], Y[1:n,], X[1:n,], Y[1:n,], lr, mu, decay, batch_size, epochs, log_interval) outputs = ("W", "b") script = dml(script).input(X=X, Y=Y, X_val=X_val, Y_val=Y_val).output(*outputs) W, b = ml.execute(script).get(*outputs) W, b script = source("softmax_clf.dml") as clf # Hyperparameters & Settings lr = 5e-7 # learning rate mu = 0.5 # momentum decay = 0.999 # learning rate decay constant batch_size = 50 epochs = 1 log_interval = 10 # Train [W, b] = clf::train(X, Y, X_val, Y_val, lr, mu, decay, batch_size, epochs, log_interval) outputs = ("W", "b") script = dml(script).input(X=X, Y=Y, X_val=X_val, Y_val=Y_val).output(*outputs) W, b = ml.execute(script).get(*outputs) W, b script = source("softmax_clf.dml") as clf # Eval probs = clf::predict(X, W, b) [loss, accuracy] = clf::eval(probs, Y) probs_val = clf::predict(X_val, W, b) [loss_val, accuracy_val] = clf::eval(probs_val, Y_val) outputs = ("loss", "accuracy", "loss_val", "accuracy_val") script = dml(script).input(X=X, Y=Y, X_val=X_val, Y_val=Y_val, W=W, b=b).output(*outputs) loss, acc, loss_val, acc_val = ml.execute(script).get(*outputs) loss, acc, loss_val, acc_val script = source("convnet.dml") as clf # Hyperparameters & Settings lr = 1e-2 # learning rate mu = 0.9 # momentum decay = 0.999 # learning rate decay constant lambda = 0 #5e-04 batch_size = 50 epochs = 300 log_interval = 1 dir = "models/lenet-cnn/sanity/" n = 200 # sample size for overfitting sanity check # Train [Wc1, bc1, Wc2, bc2, Wc3, bc3, Wa1, ba1, Wa2, ba2] = clf::train(X[1:n,], Y[1:n,], X[1:n,], Y[1:n,], C, Hin, Win, lr, mu, decay, lambda, batch_size, epochs, log_interval, dir) outputs = ("Wc1", "bc1", "Wc2", "bc2", "Wc3", "bc3", "Wa1", "ba1", "Wa2", "ba2") script = (dml(script).input(X=X, X_val=X_val, Y=Y, Y_val=Y_val, C=c, Hin=size, Win=size) .output(*outputs)) Wc1, bc1, Wc2, bc2, Wc3, bc3, Wa1, ba1, Wa2, ba2 = ml.execute(script).get(*outputs) Wc1, bc1, Wc2, bc2, Wc3, bc3, Wa1, ba1, Wa2, ba2 script = source("convnet.dml") as clf dir = "models/lenet-cnn/hyperparam-search/" # TODO: Fix `parfor` so that it can be efficiently used for hyperparameter tuning j = 1 while(j < 2) { #parfor(j in 1:10000, par=6) { # Hyperparameter Sampling & Settings lr = 10 ^ as.scalar(rand(rows=1, cols=1, min=-7, max=-1)) # learning rate mu = as.scalar(rand(rows=1, cols=1, min=0.5, max=0.9)) # momentum decay = as.scalar(rand(rows=1, cols=1, min=0.9, max=1)) # learning rate decay constant lambda = 10 ^ as.scalar(rand(rows=1, cols=1, min=-7, max=-1)) # regularization constant batch_size = 50 epochs = 1 log_interval = 10 trial_dir = dir + "j/" # Train [Wc1, bc1, Wc2, bc2, Wc3, bc3, Wa1, ba1, Wa2, ba2] = clf::train(X, Y, X_val, Y_val, C, Hin, Win, lr, mu, decay, lambda, batch_size, epochs, log_interval, trial_dir) # Eval #probs = clf::predict(X, C, Hin, Win, Wc1, bc1, Wc2, bc2, Wc3, bc3, Wa1, ba1, Wa2, ba2) #[loss, accuracy] = clf::eval(probs, Y) probs_val = clf::predict(X_val, C, Hin, Win, Wc1, bc1, Wc2, bc2, Wc3, bc3, Wa1, ba1, Wa2, ba2) [loss_val, accuracy_val] = clf::eval(probs_val, Y_val) # Save hyperparams str = "lr: " + lr + ", mu: " + mu + ", decay: " + decay + ", lambda: " + lambda + ", batch_size: " + batch_size name = dir + accuracy_val + "," + j #+","+accuracy+","+j write(str, name) j = j + 1 } script = (dml(script).input(X=X, X_val=X_val, Y=Y, Y_val=Y_val, C=c, Hin=size, Win=size)) ml.execute(script) script = source("convnet.dml") as clf # Hyperparameters & Settings lr = 0.00205 # learning rate mu = 0.632 # momentum decay = 0.99 # learning rate decay constant lambda = 0.00385 batch_size = 50 epochs = 1 log_interval = 10 dir = "models/lenet-cnn/train/" # Train [Wc1, bc1, Wc2, bc2, Wc3, bc3, Wa1, ba1, Wa2, ba2] = clf::train(X, Y, X_val, Y_val, C, Hin, Win, lr, mu, decay, lambda, batch_size, epochs, log_interval, dir) outputs = ("Wc1", "bc1", "Wc2", "bc2", "Wc3", "bc3", "Wa1", "ba1", "Wa2", "ba2") script = (dml(script).input(X=X, X_val=X_val, Y=Y, Y_val=Y_val, C=c, Hin=size, Win=size) .output(*outputs)) Wc1, bc1, Wc2, bc2, Wc3, bc3, Wa1, ba1, Wa2, ba2 = ml.execute(script).get(*outputs) Wc1, bc1, Wc2, bc2, Wc3, bc3, Wa1, ba1, Wa2, ba2 script = source("convnet.dml") as clf # Eval probs = clf::predict(X, C, Hin, Win, Wc1, bc1, Wc2, bc2, Wc3, bc3, Wa1, ba1, Wa2, ba2) [loss, accuracy] = clf::eval(probs, Y) probs_val = clf::predict(X_val, C, Hin, Win, Wc1, bc1, Wc2, bc2, Wc3, bc3, Wa1, ba1, Wa2, ba2) [loss_val, accuracy_val] = clf::eval(probs_val, Y_val) outputs = ("loss", "accuracy", "loss_val", "accuracy_val") script = (dml(script).input(X=X, X_val=X_val, Y=Y, Y_val=Y_val, C=c, Hin=size, Win=size, Wc1=Wc1, bc1=bc1, Wc2=Wc2, bc2=bc2, Wc3=Wc3, bc3=bc3, Wa1=Wa1, ba1=ba1, Wa2=Wa2, ba2=ba2) .output(*outputs)) loss, acc, loss_val, acc_val = ml.execute(script).get(*outputs) loss, acc, loss_val, acc_val <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Dados Step2: Análise modal Step3: Ordenação dos modos Step4: Normalização dos modos de vibração relativamente à matriz de massa Step5: Massa e rigidez modais Step6: Excitação dinâmica Step8: Função auxiliar para o cálculo da resposta modal Step9: Solução clássica Step10: Solução alternativa
<ASSISTANT_TASK:> Python Code: import sys import math import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline print('System: {}'.format(sys.version)) for package in (np, mpl): print('Package: {} {}'.format(package.__name__, package.__version__)) MM = np.matrix(np.diag([1.,2.,3.])) KK = np.matrix([[2,-1,0],[-1,2,-1],[0,-1,1]])*1000. print(MM) print(KK) W2, F1 = np.linalg.eig(KK.I@MM) print(W2) print(F1) ix = np.argsort(W2)[::-1] W2 = 1./W2[ix] F1 = F1[:,ix] Wn = np.sqrt(W2) print(W2) print(Wn) print(F1) Fn = F1/np.sqrt(np.diag(F1.T@MM@F1)) print(Fn) Mn = np.diag(Fn.T@MM@Fn) Kn = np.diag(Fn.T@KK@Fn) print(Mn) print(Kn) sp = np.matrix([[0.], [1.], [0.]]) wp = 2.*np.pi*4. print(sp) print(wp) tt = np.arange(1000)*0.005 pt = np.sin(wp*tt) plt.figure() plt.plot(tt, pt) plt.xlabel('Tempo (s)') plt.ylabel('Força (kN)') plt.show() def qn(amplitude, wp, beta, zn, tt): Calcula a resposta modal do modo n. qn_t = amplitude * ((1.-beta**2)*np.sin(wp*tt)-2.*zn*beta*np.cos(wp*tt))/((1.-beta**2)**2+(2.*zn*beta)**2) return qn_t Gn = np.diag(1./Mn)@Fn.T@sp print(Gn) qn_t = [] plt.figure() for n in range(3): an = Gn[n]/Kn[n] bn = wp/Wn[n] q = qn(an[0,0], wp, bn, 0.05, tt) qn_t.append(q) plt.plot(tt, q, label='an={:.2e},bn={:.2f}'.format(an[0,0], bn)) plt.legend() plt.xlabel('Tempo (s)') plt.ylabel('Deslocamento modal (m)') plt.show() plt.figure() u_t = Fn@qn_t for n in range(3): plt.plot(tt, u_t[n].T, label='{:.2e}'.format(np.max(u_t[n]))) plt.legend() plt.xlabel('Tempo (s)') plt.ylabel('Deslocamento (m)') plt.show() ust = KK.I@sp print(ust) qn_st_t = [] plt.figure() for n in range(3): an = Fn.T[n]@MM@ust/Mn[n] bn = wp/Wn[n] qst = qn(an[0,0], wp, bn, 0.05, tt) qn_st_t.append(qst) plt.plot(tt, qst, label='an={:.2e},bn={:.2f}'.format(an[0,0], bn)) plt.legend() plt.xlabel('Tempo (s)') plt.ylabel('Deslocamento modal (m)') plt.show() plt.figure() u_t = Fn@qn_st_t for n in range(3): plt.plot(tt, u_t[n].T, label='{:.2e}'.format(np.max(u_t[n]))) plt.legend() plt.xlabel('Tempo (s)') plt.ylabel('Deslocamento (m)') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code:: import tensorflow as tf from tensorflow.keras.losses import MeanAbsoluteError y_true = [1., 0.] y_pred = [2., 3.] mae_loss = MeanAbsoluteError() loss = mae_loss(y_true, y_pred).numpy() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Date string for filenames Step2: Load data Step3: Because the 2017 facility dataframe only includes annually reporting facilities I'm going to duplicate the plant id, lat/lon, and state information from 2016. Step4: Load known NERC labels from EIA-860 Step5: I want to assign NERC regions for every year. We have data for 2012 onward from the EIA-860 files. For the purpose of this analysis I'll assume that all years from 2001-2011 are the same NERC as 2012. Step6: Look for plants listed with different NERC labels Step7: Some plants in EIA-860 don't have NERC labels. Drop them now. Step8: Load EIA-860m for some info on recent facilities Step9: Make lists of plant codes for SPP and TRE facilities Step10: Append my 2017 SPP and TRE guesses to the full nerc dataframe Step11: Clean and prep data for KNN Step12: Checked to make sure the type of merge doesn't matter once rows without nerc values are dropped Step13: Drop plants that don't have lat/lon data (using just lon to check), and then drop duplicates. If any plants have kept the same plant id but moved over time (maybe a diesel generator?) or switched NERC they will show up twice. Step14: Separate out the list of plants where we don't have NERC labels from EIA-860. Step15: Create X and y matricies Step16: GridSearch to find the best parameters in a RandomForest Classifier Step17: Accuracy score by region Step18: F1 score by region Step19: Plants without lat/lon Step20: Encode state names as numbers for use in sklearn Step21: Accuracy score by region Step22: F1 score by region Step23: Use best RandomForest parameters to predict NERC for unknown plants Step24: Ensuring that no plants in Alaska or Hawaii are assigned to continental NERCs, or the other way around. Step25: Export plants with lat/lon, state, and nerc Step26: There are 7 facilities that don't show up in my labeled data.
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import os from os.path import join import pandas as pd from sklearn import neighbors, metrics from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split, GridSearchCV from collections import Counter from copy import deepcopy cwd = os.getcwd() data_path = join(cwd, '..', 'Data storage') file_date = '2018-03-06' most_recent_860_year = 2016 path = os.path.join(data_path, 'Derived data', 'Facility gen fuels and CO2 {}.csv'.format(file_date)) facility_df = pd.read_csv(path) facility_df['state'] = facility_df['geography'].str[-2:] plants = facility_df.loc[:, ['plant id', 'year', 'lat', 'lon', 'state']] plants.drop_duplicates(inplace=True) # make a copy of 2016 (or most recent annual data year) and change the year to plants_2017 = plants.loc[plants['year'] == most_recent_860_year, :].copy() plants_2017.loc[:, 'year'] += 1 plants = pd.concat([plants.loc[plants['year']<=most_recent_860_year, :], plants_2017]) (set(plants.loc[plants.year==2016, 'plant id']) - set(plants.loc[plants.year==2017, 'plant id'])) eia_base_path = join(data_path, 'EIA downloads') file_860_info = { # 2011: {'io': join(eia_base_path, 'eia8602011', 'Plant.xlsx'), # 'skiprows': 0, # 'parse_cols': 'B,J'}, 2012: {'io': join(eia_base_path, 'eia8602012', 'PlantY2012.xlsx'), 'skiprows': 0, 'usecols': 'B,J'}, 2013: {'io': join(eia_base_path, 'eia8602013', '2___Plant_Y2013.xlsx'), 'skiprows': 0, 'usecols': 'C,L'}, 2014: {'io': join(eia_base_path, 'eia8602014', '2___Plant_Y2014.xlsx'), 'skiprows': 0, 'usecols': 'C,L'}, 2015: {'io': join(eia_base_path, 'eia8602015', '2___Plant_Y2015.xlsx'), 'skiprows': 0, 'usecols': 'C,L'}, 2016: {'io': join(eia_base_path, 'eia8602016', '2___Plant_Y2016.xlsx'), 'skiprows': 0, 'usecols': 'C,L'} } eia_nercs = {} for key, args in file_860_info.items(): eia_nercs[key] = pd.read_excel(**args) eia_nercs[key].columns = ['plant id', 'nerc'] eia_nercs[key]['year'] = key for year in range(2001, 2012): # the pandas .copy() method is deep by default but I'm not sure in this case df = deepcopy(eia_nercs[2012]) df['year'] = year eia_nercs[year] = df df = deepcopy(eia_nercs[2016]) df['year'] = 2017 eia_nercs[2017] = df eia_nercs.keys() eia_nercs[2001].head() nercs = pd.concat(eia_nercs.values()) nercs.sort_values('year', inplace=True) nercs.head() (set(nercs.loc[(nercs.nerc == 'MRO') & (nercs.year == 2016), 'plant id']) - set(nercs.loc[(nercs.nerc == 'MRO') & (nercs.year == 2017), 'plant id'])) nercs.year.unique() for df_ in list(eia_nercs.values()) + [nercs]: print('{} total records'.format(len(df_))) print('{} unique plants'.format(len(df_['plant id'].unique()))) dup_plants = nercs.loc[nercs['plant id'].duplicated(keep=False), 'plant id'].unique() dup_plants region_list = [] for plant in dup_plants: regions = nercs.loc[nercs['plant id'] == plant, 'nerc'].unique() # regions = regions.tolist() region_list.append(regions) Counter(tuple(x) for x in region_list) (facility_df.loc[facility_df['plant id'].isin(dup_plants), :] .groupby('year')['generation (MWh)'].sum() / facility_df.loc[:, :] .groupby('year')['generation (MWh)'].sum()) nan_plants = {} all_nan = [] years = nercs.year.unique() for year in years: nan_plants[year] = nercs.loc[(nercs.year == year) & (nercs.isnull().any(axis=1)), 'plant id'].tolist() all_nan.extend(nan_plants[year]) # number of plants that don't have a nerc in at least one year len(all_nan) # drop all the rows without a nerc value nercs.dropna(inplace=True) nan_plants[2017] path = join(data_path, 'EIA downloads', 'december_generator2017.xlsx') # Check the excel file columns if there is a read error. They should match # the plant id, plant state, operating year, and balancing authority code. _m860 = pd.read_excel(path, sheet_name='Operating',skip_footer=1, usecols='C,F,P,AE', skiprows=0) _m860.columns = _m860.columns.str.lower() # most_recent_860_year is defined at the top of this notebook # The goal here is to only look at plants that started operating after # the most recent annual data. So only include units starting after # the last annual data and that don't have plant ids in the nercs # dataframe m860 = _m860.loc[(_m860['operating year'] > most_recent_860_year)].copy() #& # (~_m860['plant id'].isin(nercs['plant id'].unique()))].copy() m860.tail() m860.loc[(m860['plant state'].isin(['TX', 'OK'])) & (m860['balancing authority code'] == 'SWPP'), 'nerc'] = 'SPP' m860.loc[(m860['plant state'].isin(['TX'])) & (m860['balancing authority code'] == 'ERCO'), 'nerc'] = 'TRE' # Drop all rows except the ones I've labeled as TRE or SPP m860.dropna(inplace=True) m860.head() nercs.head() # Create additional dataframes with 2017 SPP and TRE plants. # Use these to fill in values for 2017 plants m860_spp_plants = (m860.loc[m860['nerc'] == 'SPP', 'plant id'] .drop_duplicates() .reset_index(drop=True)) additional_spp = pd.DataFrame(m860_spp_plants.copy()) # additional_spp['plant id'] = m860_spp_plants additional_spp['nerc'] = 'SPP' additional_spp['year'] = 2017 m860_tre_plants = (m860.loc[m860['nerc'] == 'TRE', 'plant id'] .drop_duplicates() .reset_index(drop=True)) additional_tre = pd.DataFrame(m860_tre_plants) # additional_tre['plant id'] = m860_tre_plants additional_tre['nerc'] = 'TRE' additional_tre['year'] = 2017 additional_spp additional_tre nercs = pd.concat([nercs, additional_spp, additional_tre]) plants.head() nercs.tail() df = pd.merge(plants, nercs, on=['plant id', 'year'], how='left') omitted = set(df['plant id'].unique()) - set(nercs['plant id'].unique()) df.head() df.tail() df.columns cols = ['plant id', 'lat', 'lon', 'nerc', 'state', 'year'] df_slim = (df.loc[:, cols].dropna(subset=['lon']) .drop_duplicates(subset=['plant id', 'year', 'nerc'])) df_slim.tail() unknown = df_slim.loc[df_slim.nerc.isnull()].copy() print("{} plants/years don't have NERC labels\n".format(len(unknown))) print(unknown.head()) unknown.tail() X = df_slim.loc[df_slim.notnull().all(axis=1), ['lat', 'lon', 'year']] y = df_slim.loc[df_slim.notnull().all(axis=1), 'nerc'] len(X) # Make sure that unknown and X include all records from df_slim len(X) + len(unknown) - len(df_slim) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.33, random_state=42) from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier() params = dict( n_estimators = [5, 10, 25, 50], min_samples_split = [2, 5, 10], min_samples_leaf = [1, 3, 5], ) clf_rf = GridSearchCV(rf, params, n_jobs=-1, iid=False, verbose=1) clf_rf.fit(X_train, y_train) clf_rf.best_estimator_, clf_rf.best_score_ clf_rf.score(X_test, y_test) nerc_labels = nercs.nerc.dropna().unique() for region in nerc_labels: mask = y_test == region X_masked = X_test[mask] y_hat_masked = clf_rf.predict(X_masked) y_test_masked = y_test[mask] accuracy = metrics.accuracy_score(y_test_masked, y_hat_masked) print('{} : {}'.format(region, accuracy)) y_hat = clf_rf.predict(X_test) for region in nerc_labels: f1 = metrics.f1_score(y_test, y_hat, labels=[region], average='macro') print('{} : {}'.format(region, f1)) cols = ['plant id', 'nerc', 'state', 'year', 'lon'] df_state_slim = (df.loc[:, cols].dropna(subset=['state']).copy()) df_state_slim.head() len(df_state_slim) le = LabelEncoder() df_state_slim.loc[:, 'enc state'] = le.fit_transform(df_state_slim.loc[:, 'state'].tolist()) len(df_state_slim) unknown_state = df_state_slim.loc[(df_state_slim.nerc.isnull()) & (df_state_slim.lon.isnull())].copy() len(unknown_state), len(unknown) X_state = df_state_slim.loc[df_state_slim.notnull().all(axis=1), ['enc state', 'year']].copy() y_state = df_state_slim.loc[df_state_slim.notnull().all(axis=1), 'nerc'].copy() X_state_train, X_state_test, y_state_train, y_state_test = train_test_split( X_state, y_state, test_size=0.33, random_state=42) rf = RandomForestClassifier() params = dict( n_estimators = [5, 10, 25, 50], min_samples_split = [2, 5, 10], min_samples_leaf = [1, 3, 5], ) clf_rf_state = GridSearchCV(rf, params, n_jobs=-1, iid=False, verbose=1) clf_rf_state.fit(X_state_train, y_state_train) clf_rf_state.best_estimator_, clf_rf_state.best_score_ clf_rf_state.score(X_state_test, y_state_test) nerc_labels = nercs.nerc.dropna().unique() for region in nerc_labels: mask = y_state_test == region X_state_masked = X_state_test[mask] y_state_hat_masked = clf_rf_state.predict(X_state_masked) y_state_test_masked = y_state_test[mask] accuracy = metrics.accuracy_score(y_state_test_masked, y_state_hat_masked) print('{} : {}'.format(region, accuracy)) y_state_hat = clf_rf_state.predict(X_state_test) for region in nerc_labels: f1 = metrics.f1_score(y_state_test, y_state_hat, labels=[region], average='macro') print('{} : {}'.format(region, f1)) unknown.loc[:, 'nerc'] = clf_rf.predict(unknown.loc[:, ['lat', 'lon', 'year']]) unknown_state.loc[:, 'nerc'] = clf_rf_state.predict(unknown_state.loc[:, ['enc state', 'year']]) print(unknown.loc[unknown.state.isin(['AK', 'HI']), 'nerc'].unique()) print(unknown.loc[unknown.nerc.isin(['HICC', 'ASCC']), 'state'].unique()) Counter(unknown['nerc']) unknown.head() unknown_state.head() nercs.tail() unknown.head() unknown_state.tail() len(unknown_state['plant id'].unique()) df_slim.head() labeled = pd.concat([df_slim.loc[df_slim.notnull().all(axis=1)], unknown, unknown_state.loc[:, ['plant id', 'nerc', 'state', 'year']]]) labeled.tail() labeled.loc[labeled.nerc.isnull()] facility_df.loc[~facility_df['plant id'].isin(labeled['plant id']), 'plant id'].unique() len(labeled), len(nercs) nerc_labels mro_2016 = set(labeled.loc[(labeled.nerc == 'MRO') & (labeled.year == 2016), 'plant id']) mro_2017 = set(labeled.loc[(labeled.nerc == 'MRO') & (labeled.year == 2017), 'plant id']) (set(nercs.loc[(nercs.nerc=='MRO') & (nercs.year==2017),'plant id']) - mro_2017) for nerc in nerc_labels: l = len((set(labeled.loc[(labeled.nerc == nerc) & (labeled.year == 2016), 'plant id']) - set(labeled.loc[(labeled.nerc == nerc) & (labeled.year == 2017), 'plant id']))) print('{} plants dropped in {}'.format(l, nerc)) (set(labeled.loc[(labeled.nerc == 'MRO') & (labeled.year == 2016), 'plant id']) - set(labeled.loc[(labeled.nerc == 'MRO') & (labeled.year == 2017), 'plant id'])) path = join(data_path, 'Facility labels', 'Facility locations_RF.csv') labeled.to_csv(path, index=False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create Noisy Data Step2: Model Fitting Step3: Fit result from an lmfit Model can be inspected with Step4: These methods a re convenient but extracting the data Step5: The glance Step6: The tidy function returns one row for each parameter. Step7: Augment Step8: The augment function returns one row for each data point.
<ASSISTANT_TASK:> Python Code: import numpy as np from numpy import sqrt, pi, exp, linspace from lmfit import Model import matplotlib.pyplot as plt %matplotlib inline %config InlineBackend.figure_format='retina' # for hi-dpi displays import lmfit print('lmfit: %s' % lmfit.__version__) import pybroom as br x = np.linspace(-10, 10, 101) peak1 = lmfit.models.GaussianModel(prefix='p1_') peak2 = lmfit.models.GaussianModel(prefix='p2_') model = peak1 + peak2 params = model.make_params(p1_amplitude=1, p2_amplitude=1, p1_sigma=1, p2_sigma=1) y_data = model.eval(x=x, p1_center=-1, p2_center=2, p1_sigma=0.5, p2_sigma=1, p1_amplitude=1, p2_amplitude=2) y_data.shape y_data += np.random.randn(*y_data.shape)/10 plt.plot(x, y_data) params = model.make_params(p1_center=0, p2_center=3, p1_sigma=0.5, p2_sigma=1, p1_amplitude=1, p2_amplitude=2) result = model.fit(y_data, x=x, params=params) print(result.fit_report()) result.params.pretty_print() dg = br.glance(result) dg.drop('model', 1).drop('message', 1) dt = br.tidy(result) dt dt.loc[dt.name == 'p1_center'] da = br.augment(result) da.head() d = br.augment(result) fig, ax = plt.subplots(2, 1, figsize=(7, 8)) ax[1].plot('x', 'data', data=d, marker='o', ls='None') ax[1].plot('x', "Model(gaussian, prefix='p1_')", data=d, lw=2, ls='--') ax[1].plot('x', "Model(gaussian, prefix='p2_')", data=d, lw=2, ls='--') ax[1].plot('x', 'best_fit', data=d, lw=2) ax[0].plot('x', 'residual', data=d); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: aws cli Step2: IAM (identity and access management) Step3: Find cheapest prices Step4: Finding AMIs
<ASSISTANT_TASK:> Python Code: import boto3 s3=boto3.client('s3') list=s3.list_objects(Bucket='mert01')['Contents'] list[1:3] # https://stackoverflow.com/questions/3337912/quick-way-to-list-all-files-in-amazon-s3-bucket import boto s3 = boto.connect_s3() bucket = s3.get_bucket('mert01') #bl = bucket.list() #for key in bucket.list(): # print(key.name) import itertools for el in itertools.islice(bl, 0, 3): print(el.name) # len(bl) i = 0 for key in bucket.list(): i = i + 1 print(i) bl2 = bucket.list(prefix="201") for el in itertools.islice(bl2, 0, 3): print(el.name) # https://stackoverflow.com/questions/10054985/how-to-delete-files-recursively-from-an-s3-bucket#18698235 result = bucket.delete_keys([key.name for key in bl2]) result !aws configure help !aws configure list !cat ~/.aws/config !export AWS_DEFAULT_REGION=us-west-1 !aws ec2 describe-volumes !aws iam list-groups !aws iam list-attached-group-policies --group-name iterative !aws iam list-users !awespottr c4.xlarge !export AWS_DEFAULT_REGION=us-east-2 !aws ec2 describe-spot-price-history --availability-zone "${AWS_DEFAULT_REGION}b" --product-description "Linux/UNIX" --instance-types c4.xlarge --start-time `date -u --date="7 days ago" +'%Y-%m-%dT%H:%M:00'` | jq -r -c '.SpotPriceHistory[] | (.SpotPrice)' | head -n 20 !aws ec2 describe-regions !aws ec2 describe-availability-zones --region us-east-2 !aws ec2 describe-images --owners self amazon --filters "Name=root-device-type,Values=ebs" > data/ex_aws01.json !cat data/ex_aws01.json | head -n 30 !jq '{ami: .Images[].ImageId}' data/ex_aws01.json | head -n 8 !jq '{ami: [.Images[].ImageId]}' data/ex_aws01.json | head -n 5 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: And the distribution of time between goals is given by the exponential Step2: I use the variable lam because lambda is a Step3: Figure 7.1 Step4: I chose the upper bound, 10, because the probability of scoring more Step5: Figure 7.2 Step6: The subtraction operator invokes Pmf.__sub__, which enumerates pairs Step7: With the distributions from the previous section, p_win is 46%, Step8: high is the upper bound of the distribution. In this case I Step9: Figure 7.3 below shows the resulting distributions. For time values Step10: For the Bruins, the probability of winning in overtime is 52%. Step11: Figure 7.3
<ASSISTANT_TASK:> Python Code: def EvalPoissonPmf(k, lam): return (lam)**k * math.exp(-lam) / math.factorial(k) def EvalExponentialPdf(x, lam): return lam * math.exp(-lam * x) from hockey import * import thinkplot suite1 = Hockey('bruins') suite1.UpdateSet([0, 2, 8, 4]) suite2 = Hockey('canucks') suite2.UpdateSet([1, 3, 1, 0]) thinkplot.PrePlot(num=2) thinkplot.Pmf(suite1) thinkplot.Pmf(suite2) lam = 3.4 goal_dist = thinkbayes.MakePoissonPmf(lam, 10) goal_dist1 = MakeGoalPmf(suite1) goal_dist2 = MakeGoalPmf(suite2) thinkplot.Clf() thinkplot.PrePlot(num=2) thinkplot.Pmf(goal_dist1) thinkplot.Pmf(goal_dist2) goal_dist1 = MakeGoalPmf(suite1) goal_dist2 = MakeGoalPmf(suite2) diff = goal_dist1 - goal_dist2 p_win = diff.ProbGreater(0) p_loss = diff.ProbLess(0) p_tie = diff.Prob(0) print(p_win) print(p_loss) print(p_tie) lam = 3.4 time_dist = thinkbayes.MakeExponentialPmf(lam, high=2, n=101) def MakeGoalTimePmf(suite): metapmf = thinkbayes.Pmf() for lam, prob in suite.Items(): pmf = thinkbayes.MakeExponentialPmf(lam, high=2, n=2001) metapmf.Set(pmf, prob) mix = thinkbayes.MakeMixture(metapmf, name=suite.name) return mix time_dist1 = MakeGoalTimePmf(suite1) time_dist2 = MakeGoalTimePmf(suite2) p_overtime = thinkbayes.PmfProbLess(time_dist1, time_dist2) p_tie = diff.Prob(0) p_overtime = thinkbayes.PmfProbLess(time_dist1, time_dist2) p_win = diff.ProbGreater(0) + p_tie * p_overtime import matplotlib.pyplot as plt thinkplot.PrePlot(num=2) thinkplot.Pmf(time_dist1) thinkplot.Pmf(time_dist2) plt.legend(); # win the next two p_series = p_win**2 # split the next two, win the third p_series += 2 * p_win * (1-p_win) * p_win p_series <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We explore the Lorenz system of differential equations Step2: For the default set of parameters, we see the trajectories swirling around two points, called attractors. Step3: After interacting with the system, we can take the result and perform further computations. In this case, we compute the average positions in \(x\), \(y\) and \(z\). Step4: Creating histograms of the average positions (across different trajectories) show that, on average, the trajectories swirl about the attractors.
<ASSISTANT_TASK:> Python Code: %matplotlib inline from ipywidgets import interactive, fixed from lorenz import solve_lorenz w=interactive(solve_lorenz,sigma=(0.0,50.0),rho=(0.0,50.0)) w t, x_t = w.result w.kwargs xyz_avg = x_t.mean(axis=1) xyz_avg.shape from matplotlib import pyplot as plt plt.hist(xyz_avg[:,0]) plt.title('Average $x(t)$'); plt.hist(xyz_avg[:,1]) plt.title('Average $y(t)$'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: La clase poly1D representa polinomios unidimensionales con base en sus coeficientes. Sea el polinomio Step2: Se puede evaluar el valor de $p(x)$ Step3: Se puede determinar el orden del polinomio con Step4: y sus raíces Step5: Y que tal el polinomio con raíces complejas $p2(x) = 2 x^2 -3 x +7$ Step6: Se puede obtener la gráfica del polinomio Step7: Ajuste de curvas mediante polinomios Step8: Teniendo un conjunto de values x,y se puede determinar el polimonio que mejor se ajusta Step9: Obtener la gráfica de las observaciones y del polinomio de mejor ajuste
<ASSISTANT_TASK:> Python Code: import numpy as np p = np.poly1d([6., 1., -2.]) p(0), p(1), p(10) p.order p.roots # Comprobando las raíces p(p.roots) np.poly1d([2.,-3.,7.]).roots import matplotlib.pyplot as plt xvalues = np.linspace(-10.,10.,100) plt.plot(xvalues, p(xvalues), '-') plt.show() y = p(xvalues) + np.random.randn(xvalues.size)*p(xvalues).std()/2 # Intentar ajustar un polinomio de grado 3 np.polyfit(xvalues,y,deg=3) # Intentar ajustar un polinomio de grado 2 p3 = np.poly1d( np.polyfit(xvalues,y,deg=2) ) p3 plt.plot(xvalues, y, 'xr', xvalues, p3(xvalues), '-b') plt.show() <END_TASK>