id
int64
599M
2.47B
url
stringlengths
58
61
repository_url
stringclasses
1 value
events_url
stringlengths
65
68
labels
listlengths
0
4
active_lock_reason
null
updated_at
stringlengths
20
20
assignees
listlengths
0
4
html_url
stringlengths
46
51
author_association
stringclasses
4 values
state_reason
stringclasses
3 values
draft
bool
2 classes
milestone
dict
comments
sequencelengths
0
30
title
stringlengths
1
290
reactions
dict
node_id
stringlengths
18
32
pull_request
dict
created_at
stringlengths
20
20
comments_url
stringlengths
67
70
body
stringlengths
0
228k
user
dict
labels_url
stringlengths
72
75
timeline_url
stringlengths
67
70
state
stringclasses
2 values
locked
bool
1 class
number
int64
1
7.11k
performed_via_github_app
null
closed_at
stringlengths
20
20
assignee
dict
is_pull_request
bool
2 classes
2,083,108,156
https://api.github.com/repos/huggingface/datasets/issues/6596
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6596/events
[]
null
2024-01-16T17:16:16Z
[]
https://github.com/huggingface/datasets/pull/6596
CONTRIBUTOR
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6596). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004768 / 0.011353 (-0.006585) | 0.003084 / 0.011008 (-0.007924) | 0.062775 / 0.038508 (0.024267) | 0.029909 / 0.023109 (0.006800) | 0.242905 / 0.275898 (-0.032993) | 0.265609 / 0.323480 (-0.057871) | 0.003856 / 0.007986 (-0.004130) | 0.002610 / 0.004328 (-0.001718) | 0.048631 / 0.004250 (0.044381) | 0.040464 / 0.037052 (0.003412) | 0.256023 / 0.258489 (-0.002467) | 0.285914 / 0.293841 (-0.007927) | 0.027305 / 0.128546 (-0.101241) | 0.010345 / 0.075646 (-0.065301) | 0.206264 / 0.419271 (-0.213008) | 0.035290 / 0.043533 (-0.008243) | 0.247785 / 0.255139 (-0.007353) | 0.267053 / 0.283200 (-0.016147) | 0.017910 / 0.141683 (-0.123773) | 1.166096 / 1.452155 (-0.286059) | 1.210717 / 1.492716 (-0.281999) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095759 / 0.018006 (0.077753) | 0.311030 / 0.000490 (0.310540) | 0.000234 / 0.000200 (0.000034) | 0.000042 / 0.000054 (-0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.017828 / 0.037411 (-0.019583) | 0.060123 / 0.014526 (0.045597) | 0.071947 / 0.176557 (-0.104610) | 0.119353 / 0.737135 (-0.617782) | 0.073529 / 0.296338 (-0.222809) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282737 / 0.215209 (0.067528) | 2.761914 / 2.077655 (0.684260) | 1.480310 / 1.504120 (-0.023810) | 1.329977 / 1.541195 (-0.211218) | 1.332686 / 1.468490 (-0.135804) | 0.566309 / 4.584777 (-4.018468) | 2.361838 / 3.745712 (-1.383874) | 2.775613 / 5.269862 (-2.494249) | 1.744985 / 4.565676 (-2.820692) | 0.063038 / 0.424275 (-0.361237) | 0.004969 / 0.007607 (-0.002638) | 0.335543 / 0.226044 (0.109499) | 3.293779 / 2.268929 (1.024851) | 1.816093 / 55.444624 (-53.628532) | 1.562658 / 6.876477 (-5.313819) | 1.544888 / 2.142072 (-0.597185) | 0.641762 / 4.805227 (-4.163465) | 0.117904 / 6.500664 (-6.382760) | 0.042534 / 0.075469 (-0.032935) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.935577 / 1.841788 (-0.906211) | 11.565833 / 8.074308 (3.491525) | 10.314723 / 10.191392 (0.123331) | 0.138912 / 0.680424 (-0.541512) | 0.013968 / 0.534201 (-0.520233) | 0.296270 / 0.579283 (-0.283013) | 0.266106 / 0.434364 (-0.168258) | 0.334729 / 0.540337 (-0.205609) | 0.443191 / 1.386936 (-0.943745) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004865 / 0.011353 (-0.006488) | 0.003523 / 0.011008 (-0.007485) | 0.049303 / 0.038508 (0.010795) | 0.029252 / 0.023109 (0.006143) | 0.271288 / 0.275898 (-0.004610) | 0.290529 / 0.323480 (-0.032951) | 0.003982 / 0.007986 (-0.004004) | 0.002740 / 0.004328 (-0.001589) | 0.048513 / 0.004250 (0.044262) | 0.044473 / 0.037052 (0.007420) | 0.282072 / 0.258489 (0.023583) | 0.311321 / 0.293841 (0.017480) | 0.028825 / 0.128546 (-0.099721) | 0.010311 / 0.075646 (-0.065335) | 0.057071 / 0.419271 (-0.362200) | 0.052629 / 0.043533 (0.009097) | 0.273134 / 0.255139 (0.017995) | 0.290989 / 0.283200 (0.007789) | 0.018074 / 0.141683 (-0.123609) | 1.171724 / 1.452155 (-0.280431) | 1.236178 / 1.492716 (-0.256538) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097099 / 0.018006 (0.079093) | 0.309788 / 0.000490 (0.309298) | 0.000221 / 0.000200 (0.000021) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021703 / 0.037411 (-0.015708) | 0.076104 / 0.014526 (0.061578) | 0.088202 / 0.176557 (-0.088355) | 0.127351 / 0.737135 (-0.609784) | 0.089754 / 0.296338 (-0.206585) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294574 / 0.215209 (0.079365) | 2.851581 / 2.077655 (0.773926) | 1.599117 / 1.504120 (0.094997) | 1.476183 / 1.541195 (-0.065012) | 1.512309 / 1.468490 (0.043819) | 0.559785 / 4.584777 (-4.024992) | 2.453287 / 3.745712 (-1.292425) | 2.660101 / 5.269862 (-2.609760) | 1.743043 / 4.565676 (-2.822633) | 0.063450 / 0.424275 (-0.360825) | 0.005019 / 0.007607 (-0.002589) | 0.351507 / 0.226044 (0.125462) | 3.431587 / 2.268929 (1.162658) | 1.943349 / 55.444624 (-53.501275) | 1.658706 / 6.876477 (-5.217771) | 1.780042 / 2.142072 (-0.362030) | 0.641364 / 4.805227 (-4.163863) | 0.118052 / 6.500664 (-6.382612) | 0.040961 / 0.075469 (-0.034508) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.974219 / 1.841788 (-0.867568) | 12.257824 / 8.074308 (4.183516) | 10.821225 / 10.191392 (0.629833) | 0.139399 / 0.680424 (-0.541025) | 0.015277 / 0.534201 (-0.518924) | 0.286975 / 0.579283 (-0.292309) | 0.283419 / 0.434364 (-0.150945) | 0.324299 / 0.540337 (-0.216039) | 0.424538 / 1.386936 (-0.962398) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f2ba3f30bae5ff75ac48f0e653240b924d7982d5 \"CML watermark\")\n" ]
Drop redundant None guard.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6596/reactions" }
PR_kwDODunzps5kJceH
{ "diff_url": "https://github.com/huggingface/datasets/pull/6596.diff", "html_url": "https://github.com/huggingface/datasets/pull/6596", "merged_at": "2024-01-16T17:05:52Z", "patch_url": "https://github.com/huggingface/datasets/pull/6596.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6596" }
2024-01-16T06:31:54Z
https://api.github.com/repos/huggingface/datasets/issues/6596/comments
`xxx if xxx is not None else None` is no-op.
{ "avatar_url": "https://avatars.githubusercontent.com/u/5203025?v=4", "events_url": "https://api.github.com/users/xkszltl/events{/privacy}", "followers_url": "https://api.github.com/users/xkszltl/followers", "following_url": "https://api.github.com/users/xkszltl/following{/other_user}", "gists_url": "https://api.github.com/users/xkszltl/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/xkszltl", "id": 5203025, "login": "xkszltl", "node_id": "MDQ6VXNlcjUyMDMwMjU=", "organizations_url": "https://api.github.com/users/xkszltl/orgs", "received_events_url": "https://api.github.com/users/xkszltl/received_events", "repos_url": "https://api.github.com/users/xkszltl/repos", "site_admin": false, "starred_url": "https://api.github.com/users/xkszltl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/xkszltl/subscriptions", "type": "User", "url": "https://api.github.com/users/xkszltl" }
https://api.github.com/repos/huggingface/datasets/issues/6596/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6596/timeline
closed
false
6,596
null
2024-01-16T17:05:52Z
null
true
2,082,896,148
https://api.github.com/repos/huggingface/datasets/issues/6595
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6595/events
[]
null
2024-01-27T18:26:33Z
[]
https://github.com/huggingface/datasets/issues/6595
NONE
completed
null
null
[ "Hi ! I think the issue comes from the \"float16\" features that are not supported yet in Parquet\r\n\r\nFeel free to open an issue in `pyarrow` about this. In the meantime, I'd encourage you to use \"float32\" for your \"pooled_prompt_embeds\" and \"prompt_embeds\" features.\r\n\r\nYou can cast them to \"float32\" using\r\n\r\n```python\r\nfrom datasets import Value\r\n\r\nds = ds.cast_column(\"pooled_prompt_embeds\", Value(\"float32\"))\r\nds = ds.cast_column(\"prompt_embeds\", Value(\"float32\"))\r\n```", "@lhoestq hm. Thank you very much.\r\n\r\nDo you think it won't have any impact on the training? That it won't break it or the quality won't degrade because of this?\r\n\r\nI need to use it for [SDXL training](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_sdxl.py)", "Increasing the precision should not degrade training (it only increases the precision), but make sure that it doesn't break your pytorch code (e.g. if it expects a float16 instead of a float32 somewhere)", "@lhoestq just fyi pyarrow 15.0.0 (just released) supports float16 as the underlying parquetcpp does as well now :)", "Oh that's amazing ! (and great timing ^^)\r\n\r\n@kopyl can you try to update `pyarrow` and try again ?\r\n\r\nBtw @assignUser there seems to be some casting implementations missing with float16 in 15.0.0, e.g.\r\n\r\n```\r\nArrowNotImplementedError: Unsupported cast from int64 to halffloat using function cast_half_float\r\n```\r\n\r\n```\r\nArrowNotImplementedError: Unsupported cast from double to halffloat using function cast_half_float\r\n```", "Ah you are right casting is not implemented yet, it's even mentioned in the docs. This pr references the relevant issues if you'd like to track them\nhttps://github.com/apache/arrow/pull/38494", "Cool thank you :)", "@lhoestq i just recently found out that it's supported in 15.0.0, but wanted to try it first before telling you...\r\n\r\nTrying this right now and it seemingly works (although i need to wait till the end to make sure there is nothing wrong). Will update you when it's finished.\r\n\r\n<img width=\"918\" alt=\"image\" src=\"https://github.com/huggingface/datasets/assets/17604849/4821e215-e782-4736-8c76-d06187078175\">\r\n\r\nA couple of questions though:\r\n\r\n1. What does that missing casting implementation mean for my specific case and what does it mean in general?\r\n2. Do you know how to `push_to_hub` with multiple processes?", "@lhoestq also it's strange that there was no error for a dataset with the same features, same data type, but smaller (much smaller).\r\n\r\nAltho i'm not sure about this, but chances are the dataset was loaded directly, not `load_from_disk`.... Maybe because of this.", "> What does that missing casting implementation mean for my specific case and what does it mean in general?\r\n\r\nNothing for you, just that casting to float16 using `.cast_column(\"my_column_name\", Value(\"float16\"))` raises an error\r\n\r\n> Do you know how to push_to_hub with multiple processes?\r\n\r\nIt's not possible (yet ?). Mostly because we haven't implemented yet how to do parallel uploads to the Hub from `datasets`.\r\nThough if you want faster uploads you can already enable `hf_transfer` \r\n\r\n```\r\npip install hf_transfer\r\n```\r\n\r\nand setting `HF_HUB_ENABLE_HF_TRANSFER=1` as an environment variable\r\n\r\nsee https://huggingface.co/docs/huggingface_hub/guides/upload#tips-and-tricks-for-large-uploads", "@lhoestq thank you very much.\r\n\r\nThat would be amazing, I need to create a feature request for this :)\r\n\r\nBy the way, in short, how does hf_transfer improves the upload speed under the hood?", "@lhoestq i was just able to successfully upload without the dataset with the new pyarrow update and without increasing the precision :)", "Awesome !\r\n\r\nRegarding hf_transfer: it's been optimized in rust ;)", "@lhoestq wow, cool :)" ]
Loading big dataset raises pyarrow.lib.ArrowNotImplementedError 2
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6595/reactions" }
I_kwDODunzps58JnkU
null
2024-01-16T02:03:09Z
https://api.github.com/repos/huggingface/datasets/issues/6595/comments
### Describe the bug I'm aware of the issue #5695 . I'm using a modified SDXL trainer: https://github.com/kopyl/diffusers/blob/5e70f604155aeecee254a5c63c5e4236ad4a0d3d/examples/text_to_image/train_text_to_image_sdxl.py#L1027C16-L1027C16 So i 1. Map dataset 2. Save to disk 3. Try to upload: ``` import datasets from datasets import load_from_disk dataset = load_from_disk("ds") datasets.config.DEFAULT_MAX_BATCH_SIZE = 1 dataset.push_to_hub("kopyl/ds", private=True, max_shard_size="500MB") ``` And i get this error: `pyarrow.lib.ArrowNotImplementedError: Unhandled type for Arrow to Parquet schema conversion: halffloat` Full traceback: ``` >>> dataset.push_to_hub("kopyl/3M_icons_monochrome_only_no_captioning_mapped-for-SDXL-2", private=True, max_shard_size="500MB") Map: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1451/1451 [00:00<00:00, 6827.40 examples/s] Uploading the dataset shards: 0%| | 0/2099 [00:00<?, ?it/s] Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python3.10/dist-packages/datasets/dataset_dict.py", line 1705, in push_to_hub split_additions, uploaded_size, dataset_nbytes = self[split]._push_parquet_shards_to_hub( File "/usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py", line 5208, in _push_parquet_shards_to_hub shard.to_parquet(buffer) File "/usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py", line 4931, in to_parquet return ParquetDatasetWriter(self, path_or_buf, batch_size=batch_size, **parquet_writer_kwargs).write() File "/usr/local/lib/python3.10/dist-packages/datasets/io/parquet.py", line 129, in write written = self._write(file_obj=self.path_or_buf, batch_size=batch_size, **self.parquet_writer_kwargs) File "/usr/local/lib/python3.10/dist-packages/datasets/io/parquet.py", line 141, in _write writer = pq.ParquetWriter(file_obj, schema=schema, **parquet_writer_kwargs) File "/usr/local/lib/python3.10/dist-packages/pyarrow/parquet/core.py", line 1016, in __init__ self.writer = _parquet.ParquetWriter( File "pyarrow/_parquet.pyx", line 1869, in pyarrow._parquet.ParquetWriter.__cinit__ File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowNotImplementedError: Unhandled type for Arrow to Parquet schema conversion: halffloat ``` Smaller datasets with the same way of saving and pushing work wonders. Big ones are not. I'm currently trying to upload dataset like this: `HfApi().upload_folder...` But i'm not sure that in this case "load_dataset" would work well. This setting num_shards does not help too: ``` dataset.push_to_hub("kopyl/3M_icons_monochrome_only_no_captioning_mapped-for-SDXL-2", private=True, num_shards={'train': 500}) ``` Tried 3000, 500, 478, 100 Also do you know if it's possible to push a dataset with multiple processes? It would take an eternity pushing 1TB... ### Steps to reproduce the bug Described above ### Expected behavior Should be able to upload... ### Environment info Total dataset size: 978G Amount of `.arrow` files: 2101 Each `.arrow` file size: 477M (i know 477 megabytes * 2101 does not equal 978G, but i just checked the size of a couple `.arrow` files, i don't know if some might have different size) Some files: - "ds/train/state.json": https://pastebin.com/tJ3ZLGAg - "ds/train/dataset_info.json": https://pastebin.com/JdXMQ5ih
{ "avatar_url": "https://avatars.githubusercontent.com/u/17604849?v=4", "events_url": "https://api.github.com/users/kopyl/events{/privacy}", "followers_url": "https://api.github.com/users/kopyl/followers", "following_url": "https://api.github.com/users/kopyl/following{/other_user}", "gists_url": "https://api.github.com/users/kopyl/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kopyl", "id": 17604849, "login": "kopyl", "node_id": "MDQ6VXNlcjE3NjA0ODQ5", "organizations_url": "https://api.github.com/users/kopyl/orgs", "received_events_url": "https://api.github.com/users/kopyl/received_events", "repos_url": "https://api.github.com/users/kopyl/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kopyl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kopyl/subscriptions", "type": "User", "url": "https://api.github.com/users/kopyl" }
https://api.github.com/repos/huggingface/datasets/issues/6595/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6595/timeline
closed
false
6,595
null
2024-01-26T02:28:32Z
null
false
2,082,748,275
https://api.github.com/repos/huggingface/datasets/issues/6594
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6594/events
[]
null
2024-01-15T22:25:10Z
[]
https://github.com/huggingface/datasets/issues/6594
NONE
null
null
null
[]
IterableDataset sharding logic needs improvement
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6594/reactions" }
I_kwDODunzps58JDdz
null
2024-01-15T22:22:36Z
https://api.github.com/repos/huggingface/datasets/issues/6594/comments
### Describe the bug The sharding of IterableDatasets with respect to distributed and dataloader worker processes appears problematic with significant performance traps and inconsistencies wrt to distributed train processes vs worker processes. Splitting across num_workers (per train process loader processes) and world_size (distributed training processes) appears inconsistent. * worker split: https://github.com/huggingface/datasets/blob/9d6d16117a30ba345b0236407975f701c5b288d4/src/datasets/iterable_dataset.py#L1266-L1283 * distributed split: https://github.com/huggingface/datasets/blob/9d6d16117a30ba345b0236407975f701c5b288d4/src/datasets/iterable_dataset.py#L1335-L1356 In the case of the distributed split, there is a modulus check that flips between two very different behaviours, why is this different than splitting across the data loader workers? For IterableDatasets the DataLoaders worker processes are independent, so whether it's workers within one train process or across a distributed world the shards should be distributed the same, across `world_size * num_worker` independent workers in either case... Further, the fallback case when the `n_shards % world_size == 0` check fails is a rather extreme change. I argue it is not desirable to do that implicitly, it should be an explicit case for specific scenarios (ie reliable validation). A train scenario would likely be much better handled with improved wrapping / stopping behaviour to eg also fix #6437. Changing from stepping shards to stepping samples means that every single process reads ALL of the shards. This was never an intended default for sharded training, shards gain their performance advantage in large scale distributed training by explicitly avoiding the need to have every process overlapping in the data they read, by default, only the data allocated to each process via their assigned shards should be read in each pass of the dataset. Using a large scale CLIP example, some of the larger datasets have 10-20k shards across 100+TB of data. Training with 1000 GPUs we are switching between reading 100 terabytes per epoch to 100 petabytes if say change 20k % 1000 and drop one gpu-node to 20k % 992. The 'step over samples' case might be worth the overhead in specific validation scenarios where gaurantees of at least/most once samples seen are more important and do not make up a significant portion of train time or are done in smaller world sizes outside of train. ### Steps to reproduce the bug N/A ### Expected behavior We have an iterable dataset with N shards, to split across workers * shuffle shards (same seed across all train processes) * step shard iterator across distributed processes * step shard iterator across dataloader worker processes * shuffle samples in every worker via shuffle buffer (different seed in each worker, but ideally controllable (based on base seed + worker id + epoch). * end up with (possibly uneven) number of shards per worker but each shard only ever accessed by 1 worker per pass (epoch) ### Environment info N/A
{ "avatar_url": "https://avatars.githubusercontent.com/u/5702664?v=4", "events_url": "https://api.github.com/users/rwightman/events{/privacy}", "followers_url": "https://api.github.com/users/rwightman/followers", "following_url": "https://api.github.com/users/rwightman/following{/other_user}", "gists_url": "https://api.github.com/users/rwightman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rwightman", "id": 5702664, "login": "rwightman", "node_id": "MDQ6VXNlcjU3MDI2NjQ=", "organizations_url": "https://api.github.com/users/rwightman/orgs", "received_events_url": "https://api.github.com/users/rwightman/received_events", "repos_url": "https://api.github.com/users/rwightman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rwightman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rwightman/subscriptions", "type": "User", "url": "https://api.github.com/users/rwightman" }
https://api.github.com/repos/huggingface/datasets/issues/6594/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6594/timeline
open
false
6,594
null
null
null
false
2,082,410,257
https://api.github.com/repos/huggingface/datasets/issues/6592
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6592/events
[]
null
2024-02-12T17:35:21Z
[]
https://github.com/huggingface/datasets/issues/6592
NONE
not_planned
null
null
[ "Hi! `tqdm` doesn't work well in non-interactive environments, so there isn't much we can do about this. It's best to [disable it](https://huggingface.co/docs/datasets/v2.16.1/en/package_reference/utilities#datasets.disable_progress_bars) in such environments and instead use logging to track progress." ]
Logs are delayed when doing .map when `docker logs`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6592/reactions" }
I_kwDODunzps58Hw8R
null
2024-01-15T17:05:21Z
https://api.github.com/repos/huggingface/datasets/issues/6592/comments
### Describe the bug When I run my SD training in a Docker image and then listen to logs like `docker logs train -f`, the progress bar is delayed. It's updating every few percent. When you have a large dataset that has to be mapped (like 1+ million samples), it's crucial to see the updates in real-time, not every couple hours to make sure nothing got frozen or broken ### Steps to reproduce the bug 1. Run any huge dataset processing as a Docker image 2. `docker logs image_name` to it ### Expected behavior ... ### Environment info ...
{ "avatar_url": "https://avatars.githubusercontent.com/u/17604849?v=4", "events_url": "https://api.github.com/users/kopyl/events{/privacy}", "followers_url": "https://api.github.com/users/kopyl/followers", "following_url": "https://api.github.com/users/kopyl/following{/other_user}", "gists_url": "https://api.github.com/users/kopyl/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kopyl", "id": 17604849, "login": "kopyl", "node_id": "MDQ6VXNlcjE3NjA0ODQ5", "organizations_url": "https://api.github.com/users/kopyl/orgs", "received_events_url": "https://api.github.com/users/kopyl/received_events", "repos_url": "https://api.github.com/users/kopyl/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kopyl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kopyl/subscriptions", "type": "User", "url": "https://api.github.com/users/kopyl" }
https://api.github.com/repos/huggingface/datasets/issues/6592/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6592/timeline
closed
false
6,592
null
2024-02-12T17:35:21Z
null
false
2,082,378,957
https://api.github.com/repos/huggingface/datasets/issues/6591
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6591/events
[]
null
2024-01-22T23:18:09Z
[]
https://github.com/huggingface/datasets/issues/6591
NONE
completed
null
null
[ "Hi! Indeed, Dropbox is not a reliable host. I've just merged https://huggingface.co/datasets/PolyAI/minds14/discussions/24 to fix this by hosting the data files inside the repo." ]
The datasets models housed in Dropbox can't support a lot of users downloading them
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6591/reactions" }
I_kwDODunzps58HpTN
null
2024-01-15T16:43:38Z
https://api.github.com/repos/huggingface/datasets/issues/6591/comments
### Describe the bug I'm using the datasets ``` from datasets import load_dataset, Audio dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") ``` And it seems that sometimes when I imagine a lot of users are accessing the same resources, the Dropbox host fails: `raise ConnectionError(f"Couldn't reach {url} (error {response.status_code})") ConnectionError: Couldn't reach https://www.dropbox.com/s/e2us0hcs3ilr20e/MInDS-14.zip?dl=1 (error 429)` My question is if we can somehow host these files elsewhere or can you change the limit of simultaneous users accessing those resources or any other solution? Also, has anyone had this issue before? Thanks ### Steps to reproduce the bug 1: Create a python script like so: ``` from datasets import load_dataset, Audio dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") ``` 2: Execute this by a certain number of users at the same time ### Expected behavior I woudl expect that this shouldnt happen unless its a huge amount of users, which it is not the case ### Environment info This was done in an Ubuntu 22 environment.
{ "avatar_url": "https://avatars.githubusercontent.com/u/4933774?v=4", "events_url": "https://api.github.com/users/RDaneelOlivav/events{/privacy}", "followers_url": "https://api.github.com/users/RDaneelOlivav/followers", "following_url": "https://api.github.com/users/RDaneelOlivav/following{/other_user}", "gists_url": "https://api.github.com/users/RDaneelOlivav/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/RDaneelOlivav", "id": 4933774, "login": "RDaneelOlivav", "node_id": "MDQ6VXNlcjQ5MzM3NzQ=", "organizations_url": "https://api.github.com/users/RDaneelOlivav/orgs", "received_events_url": "https://api.github.com/users/RDaneelOlivav/received_events", "repos_url": "https://api.github.com/users/RDaneelOlivav/repos", "site_admin": false, "starred_url": "https://api.github.com/users/RDaneelOlivav/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/RDaneelOlivav/subscriptions", "type": "User", "url": "https://api.github.com/users/RDaneelOlivav" }
https://api.github.com/repos/huggingface/datasets/issues/6591/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6591/timeline
closed
false
6,591
null
2024-01-22T23:18:09Z
null
false
2,082,000,084
https://api.github.com/repos/huggingface/datasets/issues/6590
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6590/events
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
null
2024-01-15T13:07:07Z
[]
https://github.com/huggingface/datasets/issues/6590
NONE
null
null
null
[]
Feature request: Multi-GPU dataset mapping for SDXL training
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6590/reactions" }
I_kwDODunzps58GMzU
null
2024-01-15T13:06:06Z
https://api.github.com/repos/huggingface/datasets/issues/6590/comments
### Feature request We need to speed up SDXL dataset pre-process. Please make it possible to use multiple GPUs for the [official SDXL trainer](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_sdxl.py) :) ### Motivation Pre-computing 3 million of images takes around 2 days. Would be nice to be able to be able to do multi-GPU (or even better – multi-GPU + multi-node) vae and embedding precompute... ### Your contribution I'm not sure i can wrap my head around the multi-GPU mapping... Plus it's too expensive for me to take x2 A100 and spend a day just figuring out the staff since I don't have a job right now.
{ "avatar_url": "https://avatars.githubusercontent.com/u/17604849?v=4", "events_url": "https://api.github.com/users/kopyl/events{/privacy}", "followers_url": "https://api.github.com/users/kopyl/followers", "following_url": "https://api.github.com/users/kopyl/following{/other_user}", "gists_url": "https://api.github.com/users/kopyl/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kopyl", "id": 17604849, "login": "kopyl", "node_id": "MDQ6VXNlcjE3NjA0ODQ5", "organizations_url": "https://api.github.com/users/kopyl/orgs", "received_events_url": "https://api.github.com/users/kopyl/received_events", "repos_url": "https://api.github.com/users/kopyl/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kopyl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kopyl/subscriptions", "type": "User", "url": "https://api.github.com/users/kopyl" }
https://api.github.com/repos/huggingface/datasets/issues/6590/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6590/timeline
open
false
6,590
null
null
null
false
2,081,358,619
https://api.github.com/repos/huggingface/datasets/issues/6589
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6589/events
[]
null
2024-02-02T07:55:38Z
[]
https://github.com/huggingface/datasets/issues/6589
NONE
completed
null
null
[ "We'll do a new release of `datasets` in the coming days with a fix !", "@lhoestq Thank you very much!" ]
After `2.16.0` version, there are `PermissionError` when users use shared cache_dir
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6589/reactions" }
I_kwDODunzps58DwMb
null
2024-01-15T06:46:27Z
https://api.github.com/repos/huggingface/datasets/issues/6589/comments
### Describe the bug - We use shared `cache_dir` using `HF_HOME="{shared_directory}"` - After dataset version 2.16.0, datasets uses `filelock` package for file locking #6445 - But, `filelock` package make `.lock` file with `644` permission - Dataset is not available to other users except the user who created the lock file via `load_dataset`. ### Steps to reproduce the bug 1. `pip install datasets==2.16.0` 2. `export HF_HOME="{shared_directory}"` 3. download dataset with `load_dataset` 4. logout and login another user 5. `pip install datasets==2.16.0` 6. `export HF_HOME="{shared_directory}"` 7. download dataset with `load_dataset` 8. `PermissionError` occurs ### Expected behavior - Users can share `cache_dir` using environment variable `HF_HOME` ### Environment info - python == 3.9.10 - datasets == 2.16.0 - ubuntu 22.04 - shared_directory has ACL ![image (1)](https://github.com/huggingface/datasets/assets/106717516/5ca759db-ad0c-4883-9a97-9c8fccd00d8a) - users are same group (developers)
{ "avatar_url": "https://avatars.githubusercontent.com/u/106717516?v=4", "events_url": "https://api.github.com/users/minhopark-neubla/events{/privacy}", "followers_url": "https://api.github.com/users/minhopark-neubla/followers", "following_url": "https://api.github.com/users/minhopark-neubla/following{/other_user}", "gists_url": "https://api.github.com/users/minhopark-neubla/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/minhopark-neubla", "id": 106717516, "login": "minhopark-neubla", "node_id": "U_kgDOBlxhTA", "organizations_url": "https://api.github.com/users/minhopark-neubla/orgs", "received_events_url": "https://api.github.com/users/minhopark-neubla/received_events", "repos_url": "https://api.github.com/users/minhopark-neubla/repos", "site_admin": false, "starred_url": "https://api.github.com/users/minhopark-neubla/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/minhopark-neubla/subscriptions", "type": "User", "url": "https://api.github.com/users/minhopark-neubla" }
https://api.github.com/repos/huggingface/datasets/issues/6589/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6589/timeline
closed
false
6,589
null
2024-01-30T15:28:38Z
null
false
2,081,284,253
https://api.github.com/repos/huggingface/datasets/issues/6588
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6588/events
[]
null
2024-01-24T10:08:29Z
[]
https://github.com/huggingface/datasets/issues/6588
CONTRIBUTOR
completed
null
null
[]
fix os.listdir return name is empty string
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6588/reactions" }
I_kwDODunzps58DeCd
null
2024-01-15T05:34:36Z
https://api.github.com/repos/huggingface/datasets/issues/6588/comments
### Describe the bug xlistdir return name is empty string Overloaded os.listdir ### Steps to reproduce the bug ```python from datasets.download.streaming_download_manager import xjoin from datasets.download.streaming_download_manager import xlistdir config = DownloadConfig(storage_options=options) manger = StreamingDownloadManager("ILSVRC2012",download_config=config) input_path = "lakefs://datalab/main/imagenet/ILSVRC2012.zip" download_files = manger.download_and_extract(input_path) current_dir = xjoin(download_files,"ILSVRC2012/Images/ILSVRC2012_img_train") folder_list = xlistdir(current_dir) ``` in xlistdir function Obj ["name"] ends with "/" last return "" ### Expected behavior Obj ["name"] ends with "/" return folder name ### Environment info no
{ "avatar_url": "https://avatars.githubusercontent.com/u/12895488?v=4", "events_url": "https://api.github.com/users/d710055071/events{/privacy}", "followers_url": "https://api.github.com/users/d710055071/followers", "following_url": "https://api.github.com/users/d710055071/following{/other_user}", "gists_url": "https://api.github.com/users/d710055071/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/d710055071", "id": 12895488, "login": "d710055071", "node_id": "MDQ6VXNlcjEyODk1NDg4", "organizations_url": "https://api.github.com/users/d710055071/orgs", "received_events_url": "https://api.github.com/users/d710055071/received_events", "repos_url": "https://api.github.com/users/d710055071/repos", "site_admin": false, "starred_url": "https://api.github.com/users/d710055071/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/d710055071/subscriptions", "type": "User", "url": "https://api.github.com/users/d710055071" }
https://api.github.com/repos/huggingface/datasets/issues/6588/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6588/timeline
closed
false
6,588
null
2024-01-24T10:08:29Z
null
false
2,080,348,016
https://api.github.com/repos/huggingface/datasets/issues/6587
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6587/events
[]
null
2024-02-15T15:20:06Z
[]
https://github.com/huggingface/datasets/pull/6587
CONTRIBUTOR
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6587). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "friendly bump", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005403 / 0.011353 (-0.005950) | 0.003807 / 0.011008 (-0.007201) | 0.063850 / 0.038508 (0.025342) | 0.028242 / 0.023109 (0.005132) | 0.242866 / 0.275898 (-0.033032) | 0.266015 / 0.323480 (-0.057464) | 0.004111 / 0.007986 (-0.003875) | 0.002816 / 0.004328 (-0.001513) | 0.048862 / 0.004250 (0.044611) | 0.043036 / 0.037052 (0.005984) | 0.255149 / 0.258489 (-0.003340) | 0.280105 / 0.293841 (-0.013736) | 0.028182 / 0.128546 (-0.100365) | 0.010997 / 0.075646 (-0.064649) | 0.208131 / 0.419271 (-0.211141) | 0.036030 / 0.043533 (-0.007502) | 0.241551 / 0.255139 (-0.013588) | 0.260741 / 0.283200 (-0.022459) | 0.018045 / 0.141683 (-0.123638) | 1.175308 / 1.452155 (-0.276847) | 1.192160 / 1.492716 (-0.300556) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094579 / 0.018006 (0.076573) | 0.309850 / 0.000490 (0.309360) | 0.000232 / 0.000200 (0.000032) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019519 / 0.037411 (-0.017892) | 0.062201 / 0.014526 (0.047675) | 0.074017 / 0.176557 (-0.102539) | 0.121987 / 0.737135 (-0.615148) | 0.078958 / 0.296338 (-0.217380) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286306 / 0.215209 (0.071097) | 2.777004 / 2.077655 (0.699350) | 1.481445 / 1.504120 (-0.022675) | 1.348643 / 1.541195 (-0.192552) | 1.382257 / 1.468490 (-0.086234) | 0.571436 / 4.584777 (-4.013341) | 2.373279 / 3.745712 (-1.372433) | 2.749366 / 5.269862 (-2.520496) | 1.724937 / 4.565676 (-2.840739) | 0.062233 / 0.424275 (-0.362042) | 0.005013 / 0.007607 (-0.002594) | 0.339623 / 0.226044 (0.113579) | 3.385770 / 2.268929 (1.116842) | 1.832023 / 55.444624 (-53.612601) | 1.556172 / 6.876477 (-5.320305) | 1.573301 / 2.142072 (-0.568772) | 0.648866 / 4.805227 (-4.156361) | 0.121228 / 6.500664 (-6.379436) | 0.041684 / 0.075469 (-0.033786) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.974595 / 1.841788 (-0.867192) | 11.519692 / 8.074308 (3.445383) | 9.773075 / 10.191392 (-0.418317) | 0.138149 / 0.680424 (-0.542274) | 0.014068 / 0.534201 (-0.520133) | 0.288161 / 0.579283 (-0.291122) | 0.272832 / 0.434364 (-0.161532) | 0.324476 / 0.540337 (-0.215862) | 0.419962 / 1.386936 (-0.966974) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005668 / 0.011353 (-0.005685) | 0.003637 / 0.011008 (-0.007371) | 0.049582 / 0.038508 (0.011074) | 0.030982 / 0.023109 (0.007872) | 0.273036 / 0.275898 (-0.002862) | 0.297562 / 0.323480 (-0.025918) | 0.004382 / 0.007986 (-0.003603) | 0.002763 / 0.004328 (-0.001566) | 0.050807 / 0.004250 (0.046556) | 0.046914 / 0.037052 (0.009862) | 0.287443 / 0.258489 (0.028954) | 0.319694 / 0.293841 (0.025853) | 0.051110 / 0.128546 (-0.077436) | 0.010650 / 0.075646 (-0.064997) | 0.058254 / 0.419271 (-0.361018) | 0.033419 / 0.043533 (-0.010114) | 0.275634 / 0.255139 (0.020495) | 0.288618 / 0.283200 (0.005419) | 0.018004 / 0.141683 (-0.123678) | 1.134166 / 1.452155 (-0.317989) | 1.192533 / 1.492716 (-0.300183) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098573 / 0.018006 (0.080566) | 0.308152 / 0.000490 (0.307662) | 0.000249 / 0.000200 (0.000049) | 0.000045 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022443 / 0.037411 (-0.014968) | 0.075628 / 0.014526 (0.061103) | 0.088807 / 0.176557 (-0.087750) | 0.127519 / 0.737135 (-0.609617) | 0.090156 / 0.296338 (-0.206182) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294493 / 0.215209 (0.079284) | 2.862084 / 2.077655 (0.784429) | 1.585962 / 1.504120 (0.081842) | 1.466366 / 1.541195 (-0.074829) | 1.503306 / 1.468490 (0.034816) | 0.581524 / 4.584777 (-4.003253) | 2.475593 / 3.745712 (-1.270120) | 2.852014 / 5.269862 (-2.417847) | 1.834047 / 4.565676 (-2.731630) | 0.064009 / 0.424275 (-0.360266) | 0.005094 / 0.007607 (-0.002514) | 0.355960 / 0.226044 (0.129916) | 3.428849 / 2.268929 (1.159920) | 1.958501 / 55.444624 (-53.486124) | 1.675448 / 6.876477 (-5.201029) | 1.719960 / 2.142072 (-0.422113) | 0.659609 / 4.805227 (-4.145618) | 0.119036 / 6.500664 (-6.381628) | 0.041800 / 0.075469 (-0.033669) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.025955 / 1.841788 (-0.815833) | 12.432417 / 8.074308 (4.358108) | 10.444854 / 10.191392 (0.253462) | 0.130106 / 0.680424 (-0.550318) | 0.015655 / 0.534201 (-0.518546) | 0.288184 / 0.579283 (-0.291099) | 0.285023 / 0.434364 (-0.149340) | 0.329244 / 0.540337 (-0.211093) | 0.415484 / 1.386936 (-0.971452) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b262b060525efd973cac3f2073ba3944f3ddd7e3 \"CML watermark\")\n" ]
Allow concatenation of datasets with mixed structs
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6587/reactions" }
PR_kwDODunzps5kAT_5
{ "diff_url": "https://github.com/huggingface/datasets/pull/6587.diff", "html_url": "https://github.com/huggingface/datasets/pull/6587", "merged_at": "2024-02-08T14:38:32Z", "patch_url": "https://github.com/huggingface/datasets/pull/6587.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6587" }
2024-01-13T15:33:20Z
https://api.github.com/repos/huggingface/datasets/issues/6587/comments
Fixes #6466 The idea is to do a recursive check for structs. PyArrow handles it well enough. For a demo you can do: ```python from datasets import Dataset, concatenate_datasets ds = Dataset.from_dict({'speaker': [{'name': 'Ben', 'email': None}]}) ds2 = Dataset.from_dict({'speaker': [{'name': 'Fred', 'email': 'abc@aol.com'}]}) print(concatenate_datasets([ds, ds2]).features) print(concatenate_datasets([ds, ds2]).to_dict()) ``` Now both the features and the rows are fixed. I note that Sequence suffers from the same problem, so I can fix that in a future PR once this one is merged.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8976546?v=4", "events_url": "https://api.github.com/users/Dref360/events{/privacy}", "followers_url": "https://api.github.com/users/Dref360/followers", "following_url": "https://api.github.com/users/Dref360/following{/other_user}", "gists_url": "https://api.github.com/users/Dref360/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Dref360", "id": 8976546, "login": "Dref360", "node_id": "MDQ6VXNlcjg5NzY1NDY=", "organizations_url": "https://api.github.com/users/Dref360/orgs", "received_events_url": "https://api.github.com/users/Dref360/received_events", "repos_url": "https://api.github.com/users/Dref360/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Dref360/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Dref360/subscriptions", "type": "User", "url": "https://api.github.com/users/Dref360" }
https://api.github.com/repos/huggingface/datasets/issues/6587/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6587/timeline
closed
false
6,587
null
2024-02-08T14:38:32Z
null
true
2,079,192,651
https://api.github.com/repos/huggingface/datasets/issues/6586
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6586/events
[]
null
2024-01-26T15:59:35Z
[]
https://github.com/huggingface/datasets/pull/6586
CONTRIBUTOR
null
false
null
[ "@JochenSiegWork fyi, that seems to also affect the `trainer.push_to_hub()` method, which I guess also needs to parse that DatasetInfo from the `kwargs` used by `push_to_hub`.\r\nThere is short discussion about it [here](https://github.com/huggingface/blog/issues/1623).\r\nWould be great if you can check if your PR would also fix that!", "> @JochenSiegWork fyi, that seems to also affect the `trainer.push_to_hub()` method, which I guess also needs to parse that DatasetInfo from the `kwargs` used by `push_to_hub`. There is short discussion about it [here](https://github.com/huggingface/blog/issues/1623). Would be great if you can check if your PR would also fix that!\r\n\r\nHi @thiagobarbosa, it might be related but I didn't worked with `push_to_hub` yet. I don't see a minimal example reproducing the specific error in your link. However, if you have a running version producing the error locally you can test it by pulling this PR and run your specific example locally. ", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6586). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004729 / 0.011353 (-0.006624) | 0.002983 / 0.011008 (-0.008025) | 0.062482 / 0.038508 (0.023974) | 0.028406 / 0.023109 (0.005297) | 0.255896 / 0.275898 (-0.020002) | 0.276423 / 0.323480 (-0.047057) | 0.003828 / 0.007986 (-0.004157) | 0.002601 / 0.004328 (-0.001728) | 0.048954 / 0.004250 (0.044704) | 0.040661 / 0.037052 (0.003609) | 0.277710 / 0.258489 (0.019221) | 0.290360 / 0.293841 (-0.003481) | 0.027105 / 0.128546 (-0.101441) | 0.010168 / 0.075646 (-0.065478) | 0.206835 / 0.419271 (-0.212436) | 0.035226 / 0.043533 (-0.008306) | 0.262567 / 0.255139 (0.007428) | 0.273979 / 0.283200 (-0.009221) | 0.017576 / 0.141683 (-0.124106) | 1.125588 / 1.452155 (-0.326566) | 1.185018 / 1.492716 (-0.307698) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092192 / 0.018006 (0.074186) | 0.298350 / 0.000490 (0.297861) | 0.000217 / 0.000200 (0.000017) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.017925 / 0.037411 (-0.019486) | 0.060285 / 0.014526 (0.045759) | 0.076579 / 0.176557 (-0.099978) | 0.118830 / 0.737135 (-0.618305) | 0.073017 / 0.296338 (-0.223322) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.288149 / 0.215209 (0.072940) | 2.840004 / 2.077655 (0.762349) | 1.495758 / 1.504120 (-0.008361) | 1.362338 / 1.541195 (-0.178857) | 1.389746 / 1.468490 (-0.078744) | 0.576891 / 4.584777 (-4.007886) | 2.375724 / 3.745712 (-1.369988) | 2.707405 / 5.269862 (-2.562457) | 1.719850 / 4.565676 (-2.845826) | 0.067055 / 0.424275 (-0.357220) | 0.005039 / 0.007607 (-0.002568) | 0.346626 / 0.226044 (0.120581) | 3.468346 / 2.268929 (1.199418) | 1.860686 / 55.444624 (-53.583938) | 1.582929 / 6.876477 (-5.293548) | 1.613131 / 2.142072 (-0.528941) | 0.659022 / 4.805227 (-4.146206) | 0.118477 / 6.500664 (-6.382187) | 0.041614 / 0.075469 (-0.033855) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.005062 / 1.841788 (-0.836726) | 11.203210 / 8.074308 (3.128902) | 10.320764 / 10.191392 (0.129372) | 0.128541 / 0.680424 (-0.551883) | 0.014646 / 0.534201 (-0.519555) | 0.285280 / 0.579283 (-0.294003) | 0.263613 / 0.434364 (-0.170751) | 0.321161 / 0.540337 (-0.219177) | 0.420565 / 1.386936 (-0.966371) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005288 / 0.011353 (-0.006065) | 0.003048 / 0.011008 (-0.007960) | 0.049196 / 0.038508 (0.010688) | 0.032104 / 0.023109 (0.008994) | 0.279345 / 0.275898 (0.003447) | 0.300194 / 0.323480 (-0.023286) | 0.004045 / 0.007986 (-0.003941) | 0.002594 / 0.004328 (-0.001735) | 0.047680 / 0.004250 (0.043430) | 0.044294 / 0.037052 (0.007241) | 0.292330 / 0.258489 (0.033841) | 0.318610 / 0.293841 (0.024769) | 0.050417 / 0.128546 (-0.078129) | 0.010326 / 0.075646 (-0.065320) | 0.057372 / 0.419271 (-0.361899) | 0.032985 / 0.043533 (-0.010548) | 0.277717 / 0.255139 (0.022579) | 0.295692 / 0.283200 (0.012493) | 0.017756 / 0.141683 (-0.123927) | 1.166277 / 1.452155 (-0.285877) | 1.213337 / 1.492716 (-0.279380) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091365 / 0.018006 (0.073359) | 0.296261 / 0.000490 (0.295772) | 0.000225 / 0.000200 (0.000025) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021973 / 0.037411 (-0.015438) | 0.074631 / 0.014526 (0.060106) | 0.085645 / 0.176557 (-0.090911) | 0.125181 / 0.737135 (-0.611955) | 0.086893 / 0.296338 (-0.209445) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294110 / 0.215209 (0.078901) | 2.855531 / 2.077655 (0.777876) | 1.583204 / 1.504120 (0.079084) | 1.453911 / 1.541195 (-0.087284) | 1.467031 / 1.468490 (-0.001460) | 0.581214 / 4.584777 (-4.003562) | 2.423626 / 3.745712 (-1.322086) | 2.736665 / 5.269862 (-2.533197) | 1.707000 / 4.565676 (-2.858676) | 0.061171 / 0.424275 (-0.363104) | 0.004789 / 0.007607 (-0.002818) | 0.344546 / 0.226044 (0.118502) | 3.530955 / 2.268929 (1.262027) | 1.962532 / 55.444624 (-53.482092) | 1.670207 / 6.876477 (-5.206270) | 1.669041 / 2.142072 (-0.473031) | 0.642298 / 4.805227 (-4.162929) | 0.115503 / 6.500664 (-6.385161) | 0.040729 / 0.075469 (-0.034740) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.973101 / 1.841788 (-0.868687) | 11.823894 / 8.074308 (3.749586) | 10.664592 / 10.191392 (0.473200) | 0.139848 / 0.680424 (-0.540576) | 0.015728 / 0.534201 (-0.518473) | 0.289135 / 0.579283 (-0.290148) | 0.271325 / 0.434364 (-0.163039) | 0.332253 / 0.540337 (-0.208085) | 0.416982 / 1.386936 (-0.969954) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ca76ca1152fce82bfeaab9f9a33849d4d7f9dd63 \"CML watermark\")\n" ]
keep more info in DatasetInfo.from_merge #6585
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6586/reactions" }
PR_kwDODunzps5j8aJn
{ "diff_url": "https://github.com/huggingface/datasets/pull/6586.diff", "html_url": "https://github.com/huggingface/datasets/pull/6586", "merged_at": "2024-01-26T15:53:28Z", "patch_url": "https://github.com/huggingface/datasets/pull/6586.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6586" }
2024-01-12T16:08:16Z
https://api.github.com/repos/huggingface/datasets/issues/6586/comments
* try not to merge DatasetInfos if they're equal * fixes losing DatasetInfo during parallel Dataset.map
{ "avatar_url": "https://avatars.githubusercontent.com/u/135010976?v=4", "events_url": "https://api.github.com/users/JochenSiegWork/events{/privacy}", "followers_url": "https://api.github.com/users/JochenSiegWork/followers", "following_url": "https://api.github.com/users/JochenSiegWork/following{/other_user}", "gists_url": "https://api.github.com/users/JochenSiegWork/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JochenSiegWork", "id": 135010976, "login": "JochenSiegWork", "node_id": "U_kgDOCAwaoA", "organizations_url": "https://api.github.com/users/JochenSiegWork/orgs", "received_events_url": "https://api.github.com/users/JochenSiegWork/received_events", "repos_url": "https://api.github.com/users/JochenSiegWork/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JochenSiegWork/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JochenSiegWork/subscriptions", "type": "User", "url": "https://api.github.com/users/JochenSiegWork" }
https://api.github.com/repos/huggingface/datasets/issues/6586/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6586/timeline
closed
false
6,586
null
2024-01-26T15:53:28Z
null
true
2,078,874,005
https://api.github.com/repos/huggingface/datasets/issues/6585
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6585/events
[]
null
2024-01-12T14:08:24Z
[ { "avatar_url": "https://avatars.githubusercontent.com/u/135010976?v=4", "events_url": "https://api.github.com/users/JochenSiegWork/events{/privacy}", "followers_url": "https://api.github.com/users/JochenSiegWork/followers", "following_url": "https://api.github.com/users/JochenSiegWork/following{/other_user}", "gists_url": "https://api.github.com/users/JochenSiegWork/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JochenSiegWork", "id": 135010976, "login": "JochenSiegWork", "node_id": "U_kgDOCAwaoA", "organizations_url": "https://api.github.com/users/JochenSiegWork/orgs", "received_events_url": "https://api.github.com/users/JochenSiegWork/received_events", "repos_url": "https://api.github.com/users/JochenSiegWork/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JochenSiegWork/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JochenSiegWork/subscriptions", "type": "User", "url": "https://api.github.com/users/JochenSiegWork" } ]
https://github.com/huggingface/datasets/issues/6585
CONTRIBUTOR
null
null
null
[ "Hi ! This issue comes from the fact that `map()` with `num_proc>1` shards the dataset in multiple chunks to be processed (one per process) and merges them. The DatasetInfos of each chunk are then merged together, but for some fields like `dataset_name` it's not been implemented and default to None.\r\n\r\nThe DatasetInfo merge is defined here, in case you'd like to contribute an improvement: \r\n\r\nhttps://github.com/huggingface/datasets/blob/d2e0034122a788015c0834a72e6c6279e7ecbac5/src/datasets/info.py#L269-L270", "#self-assign" ]
losing DatasetInfo in Dataset.map when num_proc > 1
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6585/reactions" }
I_kwDODunzps576RmV
null
2024-01-12T13:39:19Z
https://api.github.com/repos/huggingface/datasets/issues/6585/comments
### Describe the bug Hello and thanks for developing this package! When I process a Dataset with the map function using multiple processors some set attributes of the DatasetInfo get lost and are None in the resulting Dataset. ### Steps to reproduce the bug ```python from datasets import Dataset, DatasetInfo def run_map(num_proc): dataset = Dataset.from_dict( {"col1": [0, 1], "col2": [3, 4]}, info=DatasetInfo( dataset_name="my_dataset", ), ) ds = dataset.map(lambda x: x, num_proc=num_proc) print(ds.info.dataset_name) run_map(1) run_map(2) ``` This puts out: ```bash Map: 100%|██████████| 2/2 [00:00<00:00, 724.66 examples/s] my_dataset Map (num_proc=2): 100%|██████████| 2/2 [00:00<00:00, 18.25 examples/s] None ``` ### Expected behavior I expect the DatasetInfo to be kept as it was and there should be no difference in the output of running map with num_proc=1 and num_proc=2. Expected output: ```bash Map: 100%|██████████| 2/2 [00:00<00:00, 724.66 examples/s] my_dataset Map (num_proc=2): 100%|██████████| 2/2 [00:00<00:00, 18.25 examples/s] my_dataset ``` ### Environment info - `datasets` version: 2.16.1 - Platform: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.17 - Python version: 3.8.18 - `huggingface_hub` version: 0.20.2 - PyArrow version: 12.0.1 - Pandas version: 2.0.3 - `fsspec` version: 2023.9.2
{ "avatar_url": "https://avatars.githubusercontent.com/u/135010976?v=4", "events_url": "https://api.github.com/users/JochenSiegWork/events{/privacy}", "followers_url": "https://api.github.com/users/JochenSiegWork/followers", "following_url": "https://api.github.com/users/JochenSiegWork/following{/other_user}", "gists_url": "https://api.github.com/users/JochenSiegWork/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JochenSiegWork", "id": 135010976, "login": "JochenSiegWork", "node_id": "U_kgDOCAwaoA", "organizations_url": "https://api.github.com/users/JochenSiegWork/orgs", "received_events_url": "https://api.github.com/users/JochenSiegWork/received_events", "repos_url": "https://api.github.com/users/JochenSiegWork/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JochenSiegWork/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JochenSiegWork/subscriptions", "type": "User", "url": "https://api.github.com/users/JochenSiegWork" }
https://api.github.com/repos/huggingface/datasets/issues/6585/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6585/timeline
open
false
6,585
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/135010976?v=4", "events_url": "https://api.github.com/users/JochenSiegWork/events{/privacy}", "followers_url": "https://api.github.com/users/JochenSiegWork/followers", "following_url": "https://api.github.com/users/JochenSiegWork/following{/other_user}", "gists_url": "https://api.github.com/users/JochenSiegWork/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JochenSiegWork", "id": 135010976, "login": "JochenSiegWork", "node_id": "U_kgDOCAwaoA", "organizations_url": "https://api.github.com/users/JochenSiegWork/orgs", "received_events_url": "https://api.github.com/users/JochenSiegWork/received_events", "repos_url": "https://api.github.com/users/JochenSiegWork/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JochenSiegWork/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JochenSiegWork/subscriptions", "type": "User", "url": "https://api.github.com/users/JochenSiegWork" }
false
2,078,454,878
https://api.github.com/repos/huggingface/datasets/issues/6584
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6584/events
[]
null
2024-01-15T05:20:50Z
[]
https://github.com/huggingface/datasets/issues/6584
CONTRIBUTOR
null
null
null
[ "@lhoestq\r\nCan you provide me with some ideas?", "Hi ! What's the error ?", "@lhoestq \r\n```\r\nTraceback (most recent call last):\r\n File \"/home/dongzf/miniconda3/envs/dataset_ai/lib/python3.11/runpy.py\", line 198, in _run_module_as_main\r\n return _run_code(code, main_globals, None,\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"/home/dongzf/miniconda3/envs/dataset_ai/lib/python3.11/runpy.py\", line 88, in _run_code\r\n exec(code, run_globals)\r\n File \"/home/dongzf/.vscode/extensions/ms-python.python-2023.22.1/pythonFiles/lib/python/debugpy/adapter/../../debugpy/launcher/../../debugpy/__main__.py\", line 39, in <module>\r\n cli.main()\r\n File \"/home/dongzf/.vscode/extensions/ms-python.python-2023.22.1/pythonFiles/lib/python/debugpy/adapter/../../debugpy/launcher/../../debugpy/../debugpy/server/cli.py\", line 430, in main\r\n run()\r\n File \"/home/dongzf/.vscode/extensions/ms-python.python-2023.22.1/pythonFiles/lib/python/debugpy/adapter/../../debugpy/launcher/../../debugpy/../debugpy/server/cli.py\", line 284, in run_file\r\n runpy.run_path(target, run_name=\"__main__\")\r\n File \"/home/dongzf/.vscode/extensions/ms-python.python-2023.22.1/pythonFiles/lib/python/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py\", line 321, in run_path\r\n return _run_module_code(code, init_globals, run_name,\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"/home/dongzf/.vscode/extensions/ms-python.python-2023.22.1/pythonFiles/lib/python/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py\", line 135, in _run_module_code\r\n _run_code(code, mod_globals, init_globals,\r\n File \"/home/dongzf/.vscode/extensions/ms-python.python-2023.22.1/pythonFiles/lib/python/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py\", line 124, in _run_code\r\n exec(code, run_globals)\r\n File \"/mnt/sda/code/dataset_ai/dataset_ai/example/test.py\", line 83, in <module>\r\n data = xnumpy_fromfile(current_dir, download_config=config,dtype=numpy.float32,)\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"/mnt/sda/code/dataset_ai/dataset_ai/src/datasets/download/streaming_download_manager.py\", line 765, in xnumpy_fromfile\r\n return np.fromfile(xopen(filepath_or_buffer, \"rb\", download_config=download_config).read(), *args, **kwargs)\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\nValueError: embedded null byte\r\n```", " not add read() \r\nthe error is \r\n\r\nreturn np.fromfile(xopen(filepath_or_buffer, \"rb\", download_config=download_config), *args, **kwargs)\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\nio.UnsupportedOperation: fileno", "xopen return obj do not have fileno function\r\nI don't know why?", "I used this method to read point cloud data in the script\r\n\r\n\r\n```python\r\nwith open(velodyne_filepath,\"rb\") as obj:\r\n velodyne_data = numpy.frombuffer(obj.read(), dtype=numpy.float32).reshape([-1, 4])\r\n```" ]
np.fromfile not supported
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6584/reactions" }
I_kwDODunzps574rRe
null
2024-01-12T09:46:17Z
https://api.github.com/repos/huggingface/datasets/issues/6584/comments
How to do np.fromfile to use it like np.load ```python def xnumpy_fromfile(filepath_or_buffer, *args, download_config: Optional[DownloadConfig] = None, **kwargs): import numpy as np if hasattr(filepath_or_buffer, "read"): return np.fromfile(filepath_or_buffer, *args, **kwargs) else: filepath_or_buffer = str(filepath_or_buffer) return np.fromfile(xopen(filepath_or_buffer, "rb", download_config=download_config).read(), *args, **kwargs) ``` this is not work
{ "avatar_url": "https://avatars.githubusercontent.com/u/12895488?v=4", "events_url": "https://api.github.com/users/d710055071/events{/privacy}", "followers_url": "https://api.github.com/users/d710055071/followers", "following_url": "https://api.github.com/users/d710055071/following{/other_user}", "gists_url": "https://api.github.com/users/d710055071/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/d710055071", "id": 12895488, "login": "d710055071", "node_id": "MDQ6VXNlcjEyODk1NDg4", "organizations_url": "https://api.github.com/users/d710055071/orgs", "received_events_url": "https://api.github.com/users/d710055071/received_events", "repos_url": "https://api.github.com/users/d710055071/repos", "site_admin": false, "starred_url": "https://api.github.com/users/d710055071/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/d710055071/subscriptions", "type": "User", "url": "https://api.github.com/users/d710055071" }
https://api.github.com/repos/huggingface/datasets/issues/6584/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6584/timeline
open
false
6,584
null
null
null
false
2,077,049,491
https://api.github.com/repos/huggingface/datasets/issues/6583
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6583/events
[]
null
2024-01-11T16:15:34Z
[]
https://github.com/huggingface/datasets/pull/6583
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6583). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005024 / 0.011353 (-0.006329) | 0.003172 / 0.011008 (-0.007836) | 0.062934 / 0.038508 (0.024426) | 0.031737 / 0.023109 (0.008628) | 0.249251 / 0.275898 (-0.026647) | 0.273084 / 0.323480 (-0.050396) | 0.002958 / 0.007986 (-0.005027) | 0.002726 / 0.004328 (-0.001603) | 0.048519 / 0.004250 (0.044269) | 0.043608 / 0.037052 (0.006556) | 0.253648 / 0.258489 (-0.004841) | 0.280095 / 0.293841 (-0.013746) | 0.027500 / 0.128546 (-0.101046) | 0.010545 / 0.075646 (-0.065101) | 0.206781 / 0.419271 (-0.212490) | 0.035515 / 0.043533 (-0.008018) | 0.259449 / 0.255139 (0.004310) | 0.271488 / 0.283200 (-0.011712) | 0.019352 / 0.141683 (-0.122331) | 1.152002 / 1.452155 (-0.300153) | 1.190325 / 1.492716 (-0.302391) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093253 / 0.018006 (0.075247) | 0.302182 / 0.000490 (0.301692) | 0.000216 / 0.000200 (0.000016) | 0.000047 / 0.000054 (-0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.017889 / 0.037411 (-0.019523) | 0.060292 / 0.014526 (0.045766) | 0.072640 / 0.176557 (-0.103917) | 0.121320 / 0.737135 (-0.615815) | 0.073866 / 0.296338 (-0.222472) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282910 / 0.215209 (0.067701) | 2.779815 / 2.077655 (0.702160) | 1.537929 / 1.504120 (0.033809) | 1.405990 / 1.541195 (-0.135205) | 1.407911 / 1.468490 (-0.060579) | 0.561551 / 4.584777 (-4.023226) | 2.368053 / 3.745712 (-1.377659) | 2.732608 / 5.269862 (-2.537254) | 1.710274 / 4.565676 (-2.855402) | 0.061925 / 0.424275 (-0.362350) | 0.004975 / 0.007607 (-0.002632) | 0.338843 / 0.226044 (0.112799) | 3.328579 / 2.268929 (1.059650) | 1.865994 / 55.444624 (-53.578631) | 1.603145 / 6.876477 (-5.273332) | 1.615440 / 2.142072 (-0.526633) | 0.635646 / 4.805227 (-4.169581) | 0.116185 / 6.500664 (-6.384479) | 0.041964 / 0.075469 (-0.033505) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.956977 / 1.841788 (-0.884811) | 11.539802 / 8.074308 (3.465494) | 10.048855 / 10.191392 (-0.142537) | 0.128758 / 0.680424 (-0.551666) | 0.013491 / 0.534201 (-0.520710) | 0.287330 / 0.579283 (-0.291953) | 0.262416 / 0.434364 (-0.171947) | 0.327327 / 0.540337 (-0.213011) | 0.418423 / 1.386936 (-0.968513) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004963 / 0.011353 (-0.006390) | 0.003335 / 0.011008 (-0.007673) | 0.052082 / 0.038508 (0.013574) | 0.029302 / 0.023109 (0.006192) | 0.284986 / 0.275898 (0.009088) | 0.304082 / 0.323480 (-0.019398) | 0.004065 / 0.007986 (-0.003921) | 0.002643 / 0.004328 (-0.001685) | 0.049504 / 0.004250 (0.045253) | 0.044514 / 0.037052 (0.007461) | 0.287064 / 0.258489 (0.028575) | 0.312921 / 0.293841 (0.019080) | 0.029195 / 0.128546 (-0.099351) | 0.010471 / 0.075646 (-0.065175) | 0.057620 / 0.419271 (-0.361651) | 0.050221 / 0.043533 (0.006689) | 0.285392 / 0.255139 (0.030253) | 0.302111 / 0.283200 (0.018912) | 0.018690 / 0.141683 (-0.122993) | 1.165637 / 1.452155 (-0.286518) | 1.203757 / 1.492716 (-0.288959) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095035 / 0.018006 (0.077028) | 0.304447 / 0.000490 (0.303957) | 0.000231 / 0.000200 (0.000031) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022345 / 0.037411 (-0.015066) | 0.077195 / 0.014526 (0.062669) | 0.089564 / 0.176557 (-0.086992) | 0.129248 / 0.737135 (-0.607887) | 0.091974 / 0.296338 (-0.204365) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300641 / 0.215209 (0.085432) | 2.936669 / 2.077655 (0.859014) | 1.649100 / 1.504120 (0.144980) | 1.510693 / 1.541195 (-0.030502) | 1.517011 / 1.468490 (0.048521) | 0.572511 / 4.584777 (-4.012266) | 2.442704 / 3.745712 (-1.303009) | 2.833089 / 5.269862 (-2.436772) | 1.762668 / 4.565676 (-2.803008) | 0.063754 / 0.424275 (-0.360521) | 0.005034 / 0.007607 (-0.002573) | 0.401631 / 0.226044 (0.175586) | 3.418986 / 2.268929 (1.150057) | 1.989639 / 55.444624 (-53.454986) | 1.695776 / 6.876477 (-5.180701) | 1.712822 / 2.142072 (-0.429250) | 0.654029 / 4.805227 (-4.151198) | 0.117624 / 6.500664 (-6.383040) | 0.041058 / 0.075469 (-0.034411) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.986008 / 1.841788 (-0.855779) | 12.146838 / 8.074308 (4.072530) | 11.105900 / 10.191392 (0.914508) | 0.139938 / 0.680424 (-0.540486) | 0.015117 / 0.534201 (-0.519084) | 0.286151 / 0.579283 (-0.293132) | 0.272960 / 0.434364 (-0.161404) | 0.323370 / 0.540337 (-0.216967) | 0.427379 / 1.386936 (-0.959557) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#91888ea888fec1f2c96d8316a569439e64eb508e \"CML watermark\")\n" ]
remove eli5 test
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6583/reactions" }
PR_kwDODunzps5j1DzY
{ "diff_url": "https://github.com/huggingface/datasets/pull/6583.diff", "html_url": "https://github.com/huggingface/datasets/pull/6583", "merged_at": "2024-01-11T16:09:24Z", "patch_url": "https://github.com/huggingface/datasets/pull/6583.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6583" }
2024-01-11T16:05:20Z
https://api.github.com/repos/huggingface/datasets/issues/6583/comments
since the dataset is defunct
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6583/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6583/timeline
closed
false
6,583
null
2024-01-11T16:09:24Z
null
true
2,076,072,101
https://api.github.com/repos/huggingface/datasets/issues/6582
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6582/events
[]
null
2024-03-01T19:09:14Z
[]
https://github.com/huggingface/datasets/pull/6582
CONTRIBUTOR
null
false
null
[ "A toy example to reveal the bug.\r\n\r\n```python\r\n\"\"\"\r\nDATASETS_VERBOSITY=debug torchrun --nproc-per-node 2 main.py \r\n\"\"\"\r\nimport torch.utils.data\r\nimport torch.distributed\r\nimport datasets.distributed\r\nimport datasets\r\n\r\n# num shards = 4\r\nshards = [(0, 100), (100, 200), (200, 300), (300, 400)]\r\n\r\n\r\ndef gen(shards):\r\n for st, ed in shards:\r\n yield from range(st, ed)\r\n\r\ntorch.distributed.init_process_group()\r\n\r\n# want to create total worker = world_size * 8\r\nds = datasets.IterableDataset.from_generator(gen, gen_kwargs={'shards': shards})\r\nds = datasets.distributed.split_dataset_by_node(\r\n ds,\r\n rank=torch.distributed.get_rank(),\r\n world_size=torch.distributed.get_world_size(),\r\n)\r\ndl = torch.utils.data.DataLoader(ds, batch_size=10, num_workers=8)\r\n\r\nfor x in dl:\r\n print(f\"RANK={torch.distributed.get_rank()} {x}\")\r\n```", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005401 / 0.011353 (-0.005952) | 0.004023 / 0.011008 (-0.006985) | 0.064601 / 0.038508 (0.026093) | 0.028567 / 0.023109 (0.005457) | 0.245476 / 0.275898 (-0.030422) | 0.292727 / 0.323480 (-0.030752) | 0.003080 / 0.007986 (-0.004905) | 0.002779 / 0.004328 (-0.001549) | 0.050046 / 0.004250 (0.045796) | 0.043906 / 0.037052 (0.006854) | 0.273896 / 0.258489 (0.015407) | 0.308430 / 0.293841 (0.014589) | 0.028442 / 0.128546 (-0.100104) | 0.010694 / 0.075646 (-0.064953) | 0.209048 / 0.419271 (-0.210223) | 0.036062 / 0.043533 (-0.007471) | 0.242689 / 0.255139 (-0.012450) | 0.261695 / 0.283200 (-0.021504) | 0.018519 / 0.141683 (-0.123163) | 1.122735 / 1.452155 (-0.329420) | 1.172680 / 1.492716 (-0.320036) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093827 / 0.018006 (0.075820) | 0.302650 / 0.000490 (0.302161) | 0.000218 / 0.000200 (0.000018) | 0.000045 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018778 / 0.037411 (-0.018633) | 0.067516 / 0.014526 (0.052990) | 0.079693 / 0.176557 (-0.096864) | 0.125907 / 0.737135 (-0.611228) | 0.081771 / 0.296338 (-0.214568) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281809 / 0.215209 (0.066600) | 2.773937 / 2.077655 (0.696283) | 1.443622 / 1.504120 (-0.060497) | 1.334359 / 1.541195 (-0.206836) | 1.364813 / 1.468490 (-0.103677) | 0.561670 / 4.584777 (-4.023107) | 2.338292 / 3.745712 (-1.407420) | 2.807595 / 5.269862 (-2.462267) | 1.734162 / 4.565676 (-2.831514) | 0.063681 / 0.424275 (-0.360594) | 0.004934 / 0.007607 (-0.002673) | 0.336781 / 0.226044 (0.110737) | 3.311744 / 2.268929 (1.042815) | 1.826802 / 55.444624 (-53.617822) | 1.579604 / 6.876477 (-5.296872) | 1.620526 / 2.142072 (-0.521546) | 0.647061 / 4.805227 (-4.158166) | 0.117729 / 6.500664 (-6.382935) | 0.042216 / 0.075469 (-0.033253) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.994289 / 1.841788 (-0.847499) | 12.266185 / 8.074308 (4.191877) | 9.634035 / 10.191392 (-0.557357) | 0.144521 / 0.680424 (-0.535902) | 0.013787 / 0.534201 (-0.520414) | 0.288353 / 0.579283 (-0.290930) | 0.262183 / 0.434364 (-0.172181) | 0.336960 / 0.540337 (-0.203378) | 0.441142 / 1.386936 (-0.945794) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005678 / 0.011353 (-0.005675) | 0.004011 / 0.011008 (-0.006998) | 0.049319 / 0.038508 (0.010811) | 0.032543 / 0.023109 (0.009434) | 0.276389 / 0.275898 (0.000491) | 0.298495 / 0.323480 (-0.024985) | 0.004192 / 0.007986 (-0.003794) | 0.002765 / 0.004328 (-0.001563) | 0.048739 / 0.004250 (0.044489) | 0.046212 / 0.037052 (0.009160) | 0.286614 / 0.258489 (0.028125) | 0.315949 / 0.293841 (0.022108) | 0.029833 / 0.128546 (-0.098714) | 0.010762 / 0.075646 (-0.064884) | 0.058489 / 0.419271 (-0.360783) | 0.052258 / 0.043533 (0.008725) | 0.275873 / 0.255139 (0.020734) | 0.288668 / 0.283200 (0.005468) | 0.018828 / 0.141683 (-0.122855) | 1.140196 / 1.452155 (-0.311959) | 1.229500 / 1.492716 (-0.263217) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094161 / 0.018006 (0.076155) | 0.303519 / 0.000490 (0.303030) | 0.000219 / 0.000200 (0.000019) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022088 / 0.037411 (-0.015324) | 0.076376 / 0.014526 (0.061850) | 0.088705 / 0.176557 (-0.087851) | 0.127602 / 0.737135 (-0.609533) | 0.088689 / 0.296338 (-0.207649) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292363 / 0.215209 (0.077154) | 2.859215 / 2.077655 (0.781561) | 1.566389 / 1.504120 (0.062270) | 1.439195 / 1.541195 (-0.102000) | 1.463805 / 1.468490 (-0.004685) | 0.551660 / 4.584777 (-4.033116) | 2.427462 / 3.745712 (-1.318250) | 2.712372 / 5.269862 (-2.557490) | 1.811331 / 4.565676 (-2.754346) | 0.061539 / 0.424275 (-0.362736) | 0.005062 / 0.007607 (-0.002545) | 0.341984 / 0.226044 (0.115940) | 3.352171 / 2.268929 (1.083242) | 1.917550 / 55.444624 (-53.527074) | 1.642668 / 6.876477 (-5.233809) | 1.817204 / 2.142072 (-0.324868) | 0.630849 / 4.805227 (-4.174379) | 0.115788 / 6.500664 (-6.384876) | 0.041041 / 0.075469 (-0.034428) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.017725 / 1.841788 (-0.824062) | 12.976994 / 8.074308 (4.902686) | 10.307414 / 10.191392 (0.116022) | 0.141090 / 0.680424 (-0.539334) | 0.015548 / 0.534201 (-0.518653) | 0.288184 / 0.579283 (-0.291099) | 0.276409 / 0.434364 (-0.157955) | 0.328289 / 0.540337 (-0.212048) | 0.429138 / 1.386936 (-0.957798) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#31ae21ff806c3d1fc19a48ce41178c82d2f69368 \"CML watermark\")\n" ]
Fix for Incorrect ex_iterable used with multi num_worker
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6582/reactions" }
PR_kwDODunzps5jxpry
{ "diff_url": "https://github.com/huggingface/datasets/pull/6582.diff", "html_url": "https://github.com/huggingface/datasets/pull/6582", "merged_at": "2024-03-01T19:02:33Z", "patch_url": "https://github.com/huggingface/datasets/pull/6582.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6582" }
2024-01-11T08:49:43Z
https://api.github.com/repos/huggingface/datasets/issues/6582/comments
Corrects an issue where `self._ex_iterable` was erroneously used instead of `ex_iterable`, when both Distributed Data Parallel (DDP) and multi num_worker are used concurrently. This improper usage led to the generation of incorrect `shards_indices`, subsequently causing issues with the control flow responsible for worker creation. The fix ensures the appropriate iterable is used, thus providing a more accurate determination of whether a new worker should be instantiated or not.
{ "avatar_url": "https://avatars.githubusercontent.com/u/136600500?v=4", "events_url": "https://api.github.com/users/kq-chen/events{/privacy}", "followers_url": "https://api.github.com/users/kq-chen/followers", "following_url": "https://api.github.com/users/kq-chen/following{/other_user}", "gists_url": "https://api.github.com/users/kq-chen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kq-chen", "id": 136600500, "login": "kq-chen", "node_id": "U_kgDOCCRbtA", "organizations_url": "https://api.github.com/users/kq-chen/orgs", "received_events_url": "https://api.github.com/users/kq-chen/received_events", "repos_url": "https://api.github.com/users/kq-chen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kq-chen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kq-chen/subscriptions", "type": "User", "url": "https://api.github.com/users/kq-chen" }
https://api.github.com/repos/huggingface/datasets/issues/6582/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6582/timeline
closed
false
6,582
null
2024-03-01T19:02:33Z
null
true
2,075,919,265
https://api.github.com/repos/huggingface/datasets/issues/6581
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6581/events
[]
null
2024-01-24T10:14:43Z
[]
https://github.com/huggingface/datasets/pull/6581
CONTRIBUTOR
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6581). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "\r\nObj [\"name\"] ends with \"/\"", "@lhoestq \r\n\r\nhello,\r\nCan you help me check if there are any issues with this PR? Why hasn't anyone merged?\r\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004968 / 0.011353 (-0.006385) | 0.003516 / 0.011008 (-0.007492) | 0.063787 / 0.038508 (0.025279) | 0.031695 / 0.023109 (0.008586) | 0.240081 / 0.275898 (-0.035817) | 0.260984 / 0.323480 (-0.062496) | 0.003832 / 0.007986 (-0.004153) | 0.002680 / 0.004328 (-0.001648) | 0.049199 / 0.004250 (0.044948) | 0.044720 / 0.037052 (0.007668) | 0.255812 / 0.258489 (-0.002677) | 0.275923 / 0.293841 (-0.017918) | 0.026849 / 0.128546 (-0.101697) | 0.010473 / 0.075646 (-0.065174) | 0.209069 / 0.419271 (-0.210202) | 0.035731 / 0.043533 (-0.007802) | 0.246596 / 0.255139 (-0.008543) | 0.265889 / 0.283200 (-0.017311) | 0.017607 / 0.141683 (-0.124075) | 1.128648 / 1.452155 (-0.323507) | 1.174379 / 1.492716 (-0.318338) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098214 / 0.018006 (0.080207) | 0.311969 / 0.000490 (0.311480) | 0.000266 / 0.000200 (0.000066) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018401 / 0.037411 (-0.019010) | 0.061347 / 0.014526 (0.046821) | 0.073628 / 0.176557 (-0.102928) | 0.121359 / 0.737135 (-0.615776) | 0.075148 / 0.296338 (-0.221190) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.274098 / 0.215209 (0.058889) | 2.707633 / 2.077655 (0.629978) | 1.453615 / 1.504120 (-0.050504) | 1.311942 / 1.541195 (-0.229253) | 1.332394 / 1.468490 (-0.136096) | 0.566947 / 4.584777 (-4.017830) | 2.383291 / 3.745712 (-1.362421) | 2.754779 / 5.269862 (-2.515083) | 1.725164 / 4.565676 (-2.840512) | 0.062124 / 0.424275 (-0.362152) | 0.005111 / 0.007607 (-0.002496) | 0.334217 / 0.226044 (0.108173) | 3.271619 / 2.268929 (1.002690) | 1.776906 / 55.444624 (-53.667718) | 1.519238 / 6.876477 (-5.357239) | 1.534722 / 2.142072 (-0.607351) | 0.646143 / 4.805227 (-4.159084) | 0.117015 / 6.500664 (-6.383649) | 0.042578 / 0.075469 (-0.032891) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.948488 / 1.841788 (-0.893299) | 11.598027 / 8.074308 (3.523719) | 10.269199 / 10.191392 (0.077807) | 0.144887 / 0.680424 (-0.535537) | 0.014745 / 0.534201 (-0.519456) | 0.289185 / 0.579283 (-0.290099) | 0.275243 / 0.434364 (-0.159120) | 0.328088 / 0.540337 (-0.212250) | 0.430161 / 1.386936 (-0.956775) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005020 / 0.011353 (-0.006333) | 0.003246 / 0.011008 (-0.007762) | 0.049810 / 0.038508 (0.011302) | 0.032215 / 0.023109 (0.009105) | 0.271033 / 0.275898 (-0.004866) | 0.294957 / 0.323480 (-0.028523) | 0.004192 / 0.007986 (-0.003793) | 0.002652 / 0.004328 (-0.001677) | 0.049132 / 0.004250 (0.044881) | 0.047818 / 0.037052 (0.010766) | 0.292370 / 0.258489 (0.033881) | 0.316142 / 0.293841 (0.022301) | 0.049539 / 0.128546 (-0.079007) | 0.010533 / 0.075646 (-0.065113) | 0.058131 / 0.419271 (-0.361141) | 0.033807 / 0.043533 (-0.009725) | 0.277623 / 0.255139 (0.022484) | 0.292294 / 0.283200 (0.009094) | 0.021110 / 0.141683 (-0.120573) | 1.160997 / 1.452155 (-0.291157) | 1.213553 / 1.492716 (-0.279163) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098220 / 0.018006 (0.080214) | 0.312342 / 0.000490 (0.311852) | 0.000231 / 0.000200 (0.000031) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022893 / 0.037411 (-0.014519) | 0.075572 / 0.014526 (0.061046) | 0.088357 / 0.176557 (-0.088199) | 0.126354 / 0.737135 (-0.610782) | 0.089763 / 0.296338 (-0.206575) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284368 / 0.215209 (0.069159) | 2.785497 / 2.077655 (0.707842) | 1.499364 / 1.504120 (-0.004756) | 1.376020 / 1.541195 (-0.165175) | 1.394270 / 1.468490 (-0.074220) | 0.571945 / 4.584777 (-4.012832) | 2.419148 / 3.745712 (-1.326564) | 2.796974 / 5.269862 (-2.472887) | 1.749531 / 4.565676 (-2.816145) | 0.064088 / 0.424275 (-0.360187) | 0.005294 / 0.007607 (-0.002313) | 0.336250 / 0.226044 (0.110206) | 3.315933 / 2.268929 (1.047004) | 1.877165 / 55.444624 (-53.567459) | 1.592336 / 6.876477 (-5.284140) | 1.599979 / 2.142072 (-0.542093) | 0.655617 / 4.805227 (-4.149610) | 0.117636 / 6.500664 (-6.383028) | 0.040813 / 0.075469 (-0.034656) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.976887 / 1.841788 (-0.864901) | 12.668753 / 8.074308 (4.594445) | 11.081253 / 10.191392 (0.889861) | 0.134494 / 0.680424 (-0.545930) | 0.016053 / 0.534201 (-0.518148) | 0.291607 / 0.579283 (-0.287676) | 0.287726 / 0.434364 (-0.146638) | 0.328108 / 0.540337 (-0.212229) | 0.425194 / 1.386936 (-0.961742) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#32672349e3e5abe21505fdbda122dd3426f8920f \"CML watermark\")\n" ]
fix os.listdir return name is empty string
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6581/reactions" }
PR_kwDODunzps5jxIbt
{ "diff_url": "https://github.com/huggingface/datasets/pull/6581.diff", "html_url": "https://github.com/huggingface/datasets/pull/6581", "merged_at": "2024-01-24T10:08:28Z", "patch_url": "https://github.com/huggingface/datasets/pull/6581.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6581" }
2024-01-11T07:10:55Z
https://api.github.com/repos/huggingface/datasets/issues/6581/comments
fix #6588 xlistdir return name is empty string for example: ` from datasets.download.streaming_download_manager import xjoin from datasets.download.streaming_download_manager import xlistdir config = DownloadConfig(storage_options=options) manger = StreamingDownloadManager("ILSVRC2012",download_config=config) input_path = "lakefs://datalab/main/imagenet/ILSVRC2012.zip" download_files = manger.download_and_extract(input_path) current_dir = xjoin(download_files,"ILSVRC2012/Images/ILSVRC2012_img_train") folder_list = xlistdir(current_dir) `
{ "avatar_url": "https://avatars.githubusercontent.com/u/12895488?v=4", "events_url": "https://api.github.com/users/d710055071/events{/privacy}", "followers_url": "https://api.github.com/users/d710055071/followers", "following_url": "https://api.github.com/users/d710055071/following{/other_user}", "gists_url": "https://api.github.com/users/d710055071/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/d710055071", "id": 12895488, "login": "d710055071", "node_id": "MDQ6VXNlcjEyODk1NDg4", "organizations_url": "https://api.github.com/users/d710055071/orgs", "received_events_url": "https://api.github.com/users/d710055071/received_events", "repos_url": "https://api.github.com/users/d710055071/repos", "site_admin": false, "starred_url": "https://api.github.com/users/d710055071/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/d710055071/subscriptions", "type": "User", "url": "https://api.github.com/users/d710055071" }
https://api.github.com/repos/huggingface/datasets/issues/6581/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6581/timeline
closed
false
6,581
null
2024-01-24T10:08:28Z
null
true
2,075,645,042
https://api.github.com/repos/huggingface/datasets/issues/6580
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6580/events
[]
null
2024-01-20T12:46:16Z
[]
https://github.com/huggingface/datasets/issues/6580
NONE
completed
null
null
[]
dataset cache only stores one config of the dataset in parquet dir, and uses that for all other configs resulting in showing same data in all configs.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6580/reactions" }
I_kwDODunzps57t9Ry
null
2024-01-11T03:14:18Z
https://api.github.com/repos/huggingface/datasets/issues/6580/comments
### Describe the bug ds = load_dataset("ai2_arc", "ARC-Easy"), i have tried to force redownload, delete cache and changing the cache dir. ### Steps to reproduce the bug dataset = [] dataset_name = "ai2_arc" possible_configs = [ 'ARC-Challenge', 'ARC-Easy' ] for config in possible_configs: dataset_slice = load_dataset(dataset_name, config,ignore_verifications=True,cache_dir='ai2_arc_files') dataset.append(dataset_slice) ### Expected behavior all configs should get saved in cache with their respective names. ### Environment info ai2_arc
{ "avatar_url": "https://avatars.githubusercontent.com/u/78641018?v=4", "events_url": "https://api.github.com/users/kartikgupta321/events{/privacy}", "followers_url": "https://api.github.com/users/kartikgupta321/followers", "following_url": "https://api.github.com/users/kartikgupta321/following{/other_user}", "gists_url": "https://api.github.com/users/kartikgupta321/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kartikgupta321", "id": 78641018, "login": "kartikgupta321", "node_id": "MDQ6VXNlcjc4NjQxMDE4", "organizations_url": "https://api.github.com/users/kartikgupta321/orgs", "received_events_url": "https://api.github.com/users/kartikgupta321/received_events", "repos_url": "https://api.github.com/users/kartikgupta321/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kartikgupta321/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kartikgupta321/subscriptions", "type": "User", "url": "https://api.github.com/users/kartikgupta321" }
https://api.github.com/repos/huggingface/datasets/issues/6580/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6580/timeline
closed
false
6,580
null
2024-01-20T12:46:16Z
null
false
2,075,407,473
https://api.github.com/repos/huggingface/datasets/issues/6579
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6579/events
[]
null
2024-01-11T09:19:18Z
[]
https://github.com/huggingface/datasets/issues/6579
NONE
not_planned
null
null
[ "Hi @haok1402, I have created an issue in the Discussion tab of the corresponding dataset: https://huggingface.co/datasets/eli5/discussions/7\r\nLet's continue the discussion there!" ]
Unable to load `eli5` dataset with streaming
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6579/reactions" }
I_kwDODunzps57tDRx
null
2024-01-10T23:44:20Z
https://api.github.com/repos/huggingface/datasets/issues/6579/comments
### Describe the bug Unable to load `eli5` dataset with streaming. ### Steps to reproduce the bug This fails with FileNotFoundError: https://files.pushshift.io/reddit/submissions ``` from datasets import load_dataset load_dataset("eli5", streaming=True) ``` This works correctly. ``` from datasets import load_dataset load_dataset("eli5") ``` ### Expected behavior - Loading `eli5` dataset should not raise an error under the streaming mode. - Or at the very least, show a warning that streaming mode is not supported with `eli5` dataset. ### Environment info - `datasets` version: 2.16.1 - Platform: Linux-6.2.0-39-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.19.4 - PyArrow version: 12.0.1 - Pandas version: 2.0.3 - `fsspec` version: 2023.6.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/89672451?v=4", "events_url": "https://api.github.com/users/haok1402/events{/privacy}", "followers_url": "https://api.github.com/users/haok1402/followers", "following_url": "https://api.github.com/users/haok1402/following{/other_user}", "gists_url": "https://api.github.com/users/haok1402/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/haok1402", "id": 89672451, "login": "haok1402", "node_id": "MDQ6VXNlcjg5NjcyNDUx", "organizations_url": "https://api.github.com/users/haok1402/orgs", "received_events_url": "https://api.github.com/users/haok1402/received_events", "repos_url": "https://api.github.com/users/haok1402/repos", "site_admin": false, "starred_url": "https://api.github.com/users/haok1402/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/haok1402/subscriptions", "type": "User", "url": "https://api.github.com/users/haok1402" }
https://api.github.com/repos/huggingface/datasets/issues/6579/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6579/timeline
closed
false
6,579
null
2024-01-11T09:19:17Z
null
false
2,074,923,321
https://api.github.com/repos/huggingface/datasets/issues/6578
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6578/events
[]
null
2024-01-30T18:46:02Z
[]
https://github.com/huggingface/datasets/pull/6578
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6578). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "I added faster streaming support using streaming Requests instances in `huggingface_hub` and will be available in 0.21.\r\n\r\nThis PR can be used with https://github.com/huggingface/huggingface_hub/pull/1967 to get fast WebDataset streaming", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004941 / 0.011353 (-0.006412) | 0.003431 / 0.011008 (-0.007577) | 0.062768 / 0.038508 (0.024260) | 0.029212 / 0.023109 (0.006103) | 0.253053 / 0.275898 (-0.022845) | 0.273061 / 0.323480 (-0.050419) | 0.004114 / 0.007986 (-0.003871) | 0.002713 / 0.004328 (-0.001616) | 0.048481 / 0.004250 (0.044231) | 0.040001 / 0.037052 (0.002949) | 0.268461 / 0.258489 (0.009971) | 0.287767 / 0.293841 (-0.006074) | 0.027885 / 0.128546 (-0.100661) | 0.010474 / 0.075646 (-0.065172) | 0.207989 / 0.419271 (-0.211282) | 0.035893 / 0.043533 (-0.007640) | 0.256833 / 0.255139 (0.001694) | 0.274197 / 0.283200 (-0.009003) | 0.017283 / 0.141683 (-0.124400) | 1.133597 / 1.452155 (-0.318558) | 1.206661 / 1.492716 (-0.286055) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.089610 / 0.018006 (0.071604) | 0.306051 / 0.000490 (0.305562) | 0.000217 / 0.000200 (0.000017) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018686 / 0.037411 (-0.018725) | 0.061253 / 0.014526 (0.046727) | 0.073654 / 0.176557 (-0.102903) | 0.120499 / 0.737135 (-0.616637) | 0.074827 / 0.296338 (-0.221511) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293756 / 0.215209 (0.078547) | 2.897755 / 2.077655 (0.820100) | 1.558146 / 1.504120 (0.054026) | 1.458020 / 1.541195 (-0.083174) | 1.453489 / 1.468490 (-0.015001) | 0.576666 / 4.584777 (-4.008111) | 2.423441 / 3.745712 (-1.322271) | 2.727760 / 5.269862 (-2.542102) | 1.750287 / 4.565676 (-2.815390) | 0.062094 / 0.424275 (-0.362181) | 0.004940 / 0.007607 (-0.002667) | 0.338815 / 0.226044 (0.112770) | 3.342677 / 2.268929 (1.073748) | 1.928335 / 55.444624 (-53.516290) | 1.629965 / 6.876477 (-5.246511) | 1.651836 / 2.142072 (-0.490236) | 0.644354 / 4.805227 (-4.160874) | 0.117890 / 6.500664 (-6.382774) | 0.041907 / 0.075469 (-0.033562) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.984399 / 1.841788 (-0.857389) | 11.516572 / 8.074308 (3.442264) | 10.326922 / 10.191392 (0.135530) | 0.130821 / 0.680424 (-0.549603) | 0.014084 / 0.534201 (-0.520117) | 0.287078 / 0.579283 (-0.292205) | 0.263466 / 0.434364 (-0.170898) | 0.326867 / 0.540337 (-0.213470) | 0.425313 / 1.386936 (-0.961623) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005305 / 0.011353 (-0.006048) | 0.003646 / 0.011008 (-0.007362) | 0.049402 / 0.038508 (0.010894) | 0.031719 / 0.023109 (0.008610) | 0.272579 / 0.275898 (-0.003319) | 0.295241 / 0.323480 (-0.028239) | 0.004309 / 0.007986 (-0.003677) | 0.002781 / 0.004328 (-0.001548) | 0.048134 / 0.004250 (0.043883) | 0.044702 / 0.037052 (0.007650) | 0.288201 / 0.258489 (0.029712) | 0.320351 / 0.293841 (0.026510) | 0.051327 / 0.128546 (-0.077219) | 0.011019 / 0.075646 (-0.064628) | 0.057983 / 0.419271 (-0.361288) | 0.034211 / 0.043533 (-0.009322) | 0.272856 / 0.255139 (0.017717) | 0.290007 / 0.283200 (0.006807) | 0.018656 / 0.141683 (-0.123027) | 1.135017 / 1.452155 (-0.317138) | 1.183904 / 1.492716 (-0.308813) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090854 / 0.018006 (0.072847) | 0.299654 / 0.000490 (0.299165) | 0.000224 / 0.000200 (0.000024) | 0.000063 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021882 / 0.037411 (-0.015529) | 0.075297 / 0.014526 (0.060771) | 0.086620 / 0.176557 (-0.089937) | 0.127125 / 0.737135 (-0.610011) | 0.088622 / 0.296338 (-0.207717) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.287104 / 0.215209 (0.071895) | 2.802723 / 2.077655 (0.725068) | 1.570137 / 1.504120 (0.066017) | 1.452234 / 1.541195 (-0.088961) | 1.465457 / 1.468490 (-0.003033) | 0.564965 / 4.584777 (-4.019812) | 2.416724 / 3.745712 (-1.328988) | 2.645057 / 5.269862 (-2.624805) | 1.727599 / 4.565676 (-2.838078) | 0.063338 / 0.424275 (-0.360937) | 0.005018 / 0.007607 (-0.002589) | 0.345280 / 0.226044 (0.119235) | 3.384323 / 2.268929 (1.115395) | 1.957227 / 55.444624 (-53.487397) | 1.667620 / 6.876477 (-5.208856) | 1.795339 / 2.142072 (-0.346733) | 0.642049 / 4.805227 (-4.163178) | 0.114853 / 6.500664 (-6.385811) | 0.040459 / 0.075469 (-0.035010) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.023640 / 1.841788 (-0.818147) | 11.998130 / 8.074308 (3.923822) | 10.858137 / 10.191392 (0.666744) | 0.130235 / 0.680424 (-0.550189) | 0.016201 / 0.534201 (-0.518000) | 0.289743 / 0.579283 (-0.289540) | 0.275100 / 0.434364 (-0.159264) | 0.329299 / 0.540337 (-0.211039) | 0.418632 / 1.386936 (-0.968304) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#98495237883c5ed5a36fac125e68cad97598916f \"CML watermark\")\n" ]
Faster webdataset streaming
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6578/reactions" }
PR_kwDODunzps5jtthB
{ "diff_url": "https://github.com/huggingface/datasets/pull/6578.diff", "html_url": "https://github.com/huggingface/datasets/pull/6578", "merged_at": "2024-01-30T18:39:51Z", "patch_url": "https://github.com/huggingface/datasets/pull/6578.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6578" }
2024-01-10T18:18:09Z
https://api.github.com/repos/huggingface/datasets/issues/6578/comments
requests.get(..., streaming=True) is faster than using HTTP range requests when streaming large TAR files it can be enabled using block_size=0 in fsspec cc @rwightman
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6578/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6578/timeline
closed
false
6,578
null
2024-01-30T18:39:51Z
null
true
2,074,790,848
https://api.github.com/repos/huggingface/datasets/issues/6577
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6577/events
[ { "color": "fef2c0", "default": false, "description": "", "id": 3287858981, "name": "streaming", "node_id": "MDU6TGFiZWwzMjg3ODU4OTgx", "url": "https://api.github.com/repos/huggingface/datasets/labels/streaming" } ]
null
2024-02-12T11:46:03Z
[]
https://github.com/huggingface/datasets/issues/6577
CONTRIBUTOR
completed
null
null
[ "cc @mariosasko @lhoestq ", "Hi! We should be able to avoid this error by retrying to read the data when it happens. I'll open a PR in `huggingface_hub` to address this.", "Thanks for the fix @mariosasko! Just wondering whether \"500 error\" should also be excluded? I got these errors overnight:\r\n\r\n```\r\nhuggingface_hub.utils._errors.HfHubHTTPError: 500 Server Error: Internal Server Error for url: https://huggingface.co/da\r\ntasets/sanchit-gandhi/concatenated-train-set-label-length-256/resolve/91e6a0cd0356605b021384ded813cfcf356a221c/train/tra\r\nin-02618-of-04012.parquet (Request ID: Root=1-65b18b81-627f2c2943bbb8ab68d19ee2;129537bd-1934-4257-a4d8-1cb774f8e1f8) \r\n \r\nInternal Error - We're working hard to fix this as soon as possible! \r\n```", "Gently pining @mariosasko and @Wauplin - when trying to stream this large dataset from the HF Hub, I'm running into `500 Internal Server Errors` as described above. I'd love to be able to use the Hub exclusively to stream data when training, but this error pops up a few times a week, terminating training runs and causing me to have to rewind to the last saved checkpoint. Do we reckon there's a way we can protect Datasets' streaming against these errors? The same reproducer as the [original comment](https://github.com/huggingface/datasets/issues/6577#issue-2074790848) can be used, but it's somewhat random whether we hit a 500 error. Leaving the full traceback below: \r\n\r\n```\r\nTraceback (most recent call last): \r\n File \"/home/sanchitgandhi/hf/lib/python3.10/site-packages/torch/utils/data/_utils/worker.py\", line 308, in _worker_loo\r\np \r\n data = fetcher.fetch(index) \r\n File \"/home/sanchitgandhi/hf/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py\", line 32, in fetch \r\n data.append(next(self.dataset_iter)) \r\n File \"/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py\", line 1367, in __iter__ \r\n yield from self._iter_pytorch() \r\n File \"/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py\", line 1302, in _iter_pytorch \r\n for key, example in ex_iterable: \r\n File \"/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py\", line 987, in __iter__ \r\n for x in self.ex_iterable: \r\n File \"/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py\", line 867, in __iter__ \r\n yield from self._iter() \r\n File \"/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py\", line 904, in _iter \r\n for key, example in iterator: \r\n File \"/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py\", line 679, in __iter__ \r\n yield from self._iter() \r\n File \"/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py\", line 741, in _iter [235/1892]\r\n for key, example in iterator: \r\n File \"/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py\", line 1119, in __iter__ \r\n for key, example in self.ex_iterable: \r\n File \"/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py\", line 282, in __iter__ \r\n for key, pa_table in self.generate_tables_fn(**self.kwargs): \r\n File \"/home/sanchitgandhi/datasets/src/datasets/packaged_modules/parquet/parquet.py\", line 87, in _generate_tables \r\n for batch_idx, record_batch in enumerate( \r\n File \"pyarrow/_parquet.pyx\", line 1587, in iter_batches \r\n File \"pyarrow/types.pxi\", line 88, in pyarrow.lib._datatype_to_pep3118 \r\n File \"/home/sanchitgandhi/datasets/src/datasets/download/streaming_download_manager.py\", line 342, in read_with_retrie\r\ns \r\n out = read(*args, **kwargs) \r\n File \"/home/sanchitgandhi/hf/lib/python3.10/site-packages/fsspec/spec.py\", line 1856, in read \r\n out = self.cache._fetch(self.loc, self.loc + length) \r\n File \"/home/sanchitgandhi/hf/lib/python3.10/site-packages/fsspec/caching.py\", line 189, in _fetch \r\n self.cache = self.fetcher(start, end) # new block replaces old \r\n File \"/home/sanchitgandhi/hf/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py\", line 629, in _fetch_rang\r\ne \r\n hf_raise_for_status(r) \r\n File \"/home/sanchitgandhi/hf/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py\", line 362, in hf_raise_for\r\n_status \r\n raise HfHubHTTPError(str(e), response=response) from e \r\nhuggingface_hub.utils._errors.HfHubHTTPError: 500 Server Error: Internal Server Error for url: https://huggingface.co/da\r\ntasets/sanchit-gandhi/concatenated-train-set-label-length-256-conditioned/resolve/3c3c0cce51df9f9d2e75968bb2a1851894f504\r\n0d/train/train-03515-of-04010.parquet (Request ID: Root=1-65c7c4c4-153fe71401558c8c2d272c8a;fec3ec68-4a0a-4bfd-95ba-b0a0\r\n5684d612) \r\n \r\nInternal Error - We're working hard to fix this as soon as possible! ", "@sanchit-gandhi thanks for the feedback. I've opened https://github.com/huggingface/huggingface_hub/pull/2026 to make the download process more robust. I believe that you've witness this problem on Saturday due to the Hub outage. Hope the PR will make your life easier though :)", "Awesome, thanks @Wauplin! Makes sense re the Hub outage" ]
502 Server Errors when streaming large dataset
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6577/reactions" }
I_kwDODunzps57qsvA
null
2024-01-10T16:59:36Z
https://api.github.com/repos/huggingface/datasets/issues/6577/comments
### Describe the bug When streaming a [large ASR dataset](https://huggingface.co/datasets/sanchit-gandhi/concatenated-train-set) from the Hug (~3TB) I often encounter 502 Server Errors seemingly randomly during streaming: ``` huggingface_hub.utils._errors.HfHubHTTPError: 502 Server Error: Bad Gateway for url: https://huggingface.co/datasets/sanchit-gandhi/concatenated-train-set/resolve/7d2acc5c59de848e456e951a76e805304d6fb350/train/train-00288-of-07135.parquet ``` This is despite the parquet file definitely existing on the Hub: https://huggingface.co/datasets/sanchit-gandhi/concatenated-train-set/blob/main/train/train-00228-of-07135.parquet And having the correct commit id: [7d2acc5c59de848e456e951a76e805304d6fb350](https://huggingface.co/datasets/sanchit-gandhi/concatenated-train-set/commits/main/train) I’m wondering whether this is coming from datasets? Or from the Hub side? ### Steps to reproduce the bug Reproducer: ```python from datasets import load_dataset from torch.utils.data import DataLoader from tqdm import tqdm NUM_EPOCHS = 20 dataset = load_dataset("sanchit-gandhi/concatenated-train-set", "train", streaming=True) dataset = dataset.with_format("torch") dataloader = DataLoader(dataset["train"], batch_size=256, drop_last=True, pin_memory=True, num_workers=16) for epoch in tqdm(range(NUM_EPOCHS), desc="Epoch", position=0): for batch in tqdm(dataloader, desc="Batch", position=1): continue ``` Running the above script tends to fail within about 2 hours with a traceback like the following: <details> <summary> Traceback: </summary> ```python 1029 for batch in train_loader: 1030 File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 630, in __next__ 1031 data = self._next_data() 1032 File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1325, in _next_data 1033 return self._process_data(data) 1034 File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1371, in _process_data 1035 data.reraise() 1036 File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/_utils.py", line 694, in reraise 1037 raise exception 1038 huggingface_hub.utils._errors.HfHubHTTPError: Caught HfHubHTTPError in DataLoader worker process 10. 1039 Original Traceback (most recent call last): 1040 File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py", line 286, in hf_raise_for_status 1041 response.raise_for_status() 1042 File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/requests/models.py", line 1021, in raise_for_status 1043 raise HTTPError(http_error_msg, response=self) 1044 requests.exceptions.HTTPError: 502 Server Error: Bad Gateway for url: https://huggingface.co/datasets/sanchit-gandhi/concatenated-train-set/resolve/7d2acc5c59de848e456e951a76e805304d6fb350/train/train-00288-of-07135.parquet 1045 The above exception was the direct cause of the following exception: 1046 Traceback (most recent call last): 1047 File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 308, in _worker_loop 1048 data = fetcher.fetch(index) 1049 File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 32, in fetch 1050 data.append(next(self.dataset_iter)) 1051 File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 1363, in __iter__ 1052 yield from self._iter_pytorch() 1053 File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 1298, in _iter_pytorch 1054 for key, example in ex_iterable: 1055 File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 983, in __iter__ 1056 for x in self.ex_iterable: 1057 File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 863, in __iter__ 1058 yield from self._iter() 1059 File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 900, in _iter 1060 for key, example in iterator: 1061 File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 679, in __iter__ 1062 yield from self._iter() 1063 File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 741, in _iter 1064 for key, example in iterator: 1065 File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 863, in __iter__ 1066 yield from self._iter() 1067 File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 900, in _iter 1068 for key, example in iterator: 1069 File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 1115, in __iter__ 1070 for key, example in self.ex_iterable: 1071 File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 679, in __iter__ 1072 yield from self._iter() 1073 File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 741, in _iter 1074 for key, example in iterator: 1075 File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 1115, in __iter__ 1076 for key, example in self.ex_iterable: 1077 File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 282, in __iter__ 1078 for key, pa_table in self.generate_tables_fn(**self.kwargs): 1079 File "/home/sanchitgandhi/datasets/src/datasets/packaged_modules/parquet/parquet.py", line 87, in _generate_tables 1080 for batch_idx, record_batch in enumerate( 1081 File "pyarrow/_parquet.pyx", line 1367, in iter_batches 1082 File "pyarrow/types.pxi", line 88, in pyarrow.lib._datatype_to_pep3118 1083 File "/home/sanchitgandhi/datasets/src/datasets/download/streaming_download_manager.py", line 341, in read_with_retries 1084 out = read(*args, **kwargs) 1085 File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/fsspec/spec.py", line 1856, in read 1086 out = self.cache._fetch(self.loc, self.loc + length) 1087 File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/fsspec/caching.py", line 189, in _fetch 1088 self.cache = self.fetcher(start, end) # new block replaces old 1089 File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/huggingface_hub/hf_file_system.py", line 626, in _fetch_range 1090 hf_raise_for_status(r) 1091 File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py", line 333, in hf_raise_for_status 1092 raise HfHubHTTPError(str(e), response=response) from e 1093 huggingface_hub.utils._errors.HfHubHTTPError: 502 Server Error: Bad Gateway for url: https://huggingface.co/datasets/sanchit-gandhi/concatenated-train-set/resolve/7d2acc5c59de848e456e951a76e805304d6fb350/train/train-00288-of-07135.parquet ``` </details> ### Expected behavior Should be able to stream the dataset without any 502 error. ### Environment info - `datasets` version: 2.16.2.dev0 - Platform: Linux-5.13.0-1023-gcp-x86_64-with-glibc2.29 - Python version: 3.8.10 - `huggingface_hub` version: 0.20.1 - PyArrow version: 14.0.2 - Pandas version: 2.0.3 - `fsspec` version: 2023.10.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4", "events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}", "followers_url": "https://api.github.com/users/sanchit-gandhi/followers", "following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}", "gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sanchit-gandhi", "id": 93869735, "login": "sanchit-gandhi", "node_id": "U_kgDOBZhWpw", "organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs", "received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events", "repos_url": "https://api.github.com/users/sanchit-gandhi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions", "type": "User", "url": "https://api.github.com/users/sanchit-gandhi" }
https://api.github.com/repos/huggingface/datasets/issues/6577/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6577/timeline
closed
false
6,577
null
2024-01-15T16:05:44Z
null
false
2,073,710,124
https://api.github.com/repos/huggingface/datasets/issues/6576
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6576/events
[]
null
2024-01-17T14:01:31Z
[]
https://github.com/huggingface/datasets/issues/6576
NONE
completed
null
null
[ "Thanks for reporting! I've opened a PR with a fix." ]
document page 404 not found after redirection
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6576/reactions" }
I_kwDODunzps57mk4s
null
2024-01-10T06:48:14Z
https://api.github.com/repos/huggingface/datasets/issues/6576/comments
### Describe the bug The redirected page encountered 404 not found. ### Steps to reproduce the bug 1. In this tutorial: https://huggingface.co/learn/nlp-course/chapter5/4?fw=pt original md: https://github.com/huggingface/course/blob/2c733c2246b8b7e0e6f19a9e5d15bb12df43b2a3/chapters/en/chapter5/4.mdx#L49 ``` By default, 🤗 Datasets will decompress the files needed to load a dataset. If you want to preserve hard drive space, you can pass `DownloadConfig(delete_extracted=True)` to the `download_config` argument of `load_dataset()`. See the [documentation](https://huggingface.co/docs/datasets/package_reference/builder_classes.html?#datasets.utils.DownloadConfig) for more details. ``` The documentation points to `https://huggingface.co/docs/datasets/package_reference/builder_classes.html?#datasets.utils.DownloadConfig` it shows `The documentation page PACKAGE_REFERENCE/BUILDER_CLASSES.HTML doesn’t exist in v2.16.1, but exists on the main version. Click [here](https://huggingface.co/docs/datasets/main/en/package_reference/builder_classes.html) to redirect to the main version of the documentation.` But the redirected website `https://huggingface.co/docs/datasets/main/en/package_reference/builder_classes.html` is 404 not found. ### Expected behavior I Guess the redirected webisite should be `https://huggingface.co/docs/datasets/main/en/package_reference/builder_classes` (without `.html`) or `https://huggingface.co/docs/datasets/main/en/package_reference/builder_classes#datasets.DownloadConfig`. ### Environment info Datasets main
{ "avatar_url": "https://avatars.githubusercontent.com/u/39179888?v=4", "events_url": "https://api.github.com/users/annahung31/events{/privacy}", "followers_url": "https://api.github.com/users/annahung31/followers", "following_url": "https://api.github.com/users/annahung31/following{/other_user}", "gists_url": "https://api.github.com/users/annahung31/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/annahung31", "id": 39179888, "login": "annahung31", "node_id": "MDQ6VXNlcjM5MTc5ODg4", "organizations_url": "https://api.github.com/users/annahung31/orgs", "received_events_url": "https://api.github.com/users/annahung31/received_events", "repos_url": "https://api.github.com/users/annahung31/repos", "site_admin": false, "starred_url": "https://api.github.com/users/annahung31/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/annahung31/subscriptions", "type": "User", "url": "https://api.github.com/users/annahung31" }
https://api.github.com/repos/huggingface/datasets/issues/6576/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6576/timeline
closed
false
6,576
null
2024-01-17T14:01:31Z
null
false
2,072,617,406
https://api.github.com/repos/huggingface/datasets/issues/6575
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6575/events
[]
null
2024-01-11T16:16:54Z
[]
https://github.com/huggingface/datasets/pull/6575
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6575). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005095 / 0.011353 (-0.006257) | 0.003531 / 0.011008 (-0.007478) | 0.063634 / 0.038508 (0.025126) | 0.031187 / 0.023109 (0.008078) | 0.246375 / 0.275898 (-0.029523) | 0.261204 / 0.323480 (-0.062276) | 0.002898 / 0.007986 (-0.005088) | 0.003280 / 0.004328 (-0.001049) | 0.050739 / 0.004250 (0.046488) | 0.042905 / 0.037052 (0.005852) | 0.244506 / 0.258489 (-0.013983) | 0.269403 / 0.293841 (-0.024438) | 0.027588 / 0.128546 (-0.100959) | 0.010860 / 0.075646 (-0.064787) | 0.208332 / 0.419271 (-0.210939) | 0.035762 / 0.043533 (-0.007771) | 0.244448 / 0.255139 (-0.010691) | 0.278464 / 0.283200 (-0.004735) | 0.019839 / 0.141683 (-0.121844) | 1.145340 / 1.452155 (-0.306815) | 1.173240 / 1.492716 (-0.319476) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090472 / 0.018006 (0.072466) | 0.300883 / 0.000490 (0.300394) | 0.000202 / 0.000200 (0.000003) | 0.000049 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.017884 / 0.037411 (-0.019527) | 0.060629 / 0.014526 (0.046103) | 0.073157 / 0.176557 (-0.103400) | 0.120065 / 0.737135 (-0.617070) | 0.074519 / 0.296338 (-0.221820) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.289586 / 0.215209 (0.074377) | 2.821042 / 2.077655 (0.743387) | 1.515515 / 1.504120 (0.011395) | 1.390569 / 1.541195 (-0.150625) | 1.433238 / 1.468490 (-0.035252) | 0.567357 / 4.584777 (-4.017420) | 2.345483 / 3.745712 (-1.400229) | 2.803964 / 5.269862 (-2.465898) | 1.775343 / 4.565676 (-2.790334) | 0.063186 / 0.424275 (-0.361089) | 0.005013 / 0.007607 (-0.002594) | 0.335607 / 0.226044 (0.109562) | 3.307071 / 2.268929 (1.038143) | 1.875228 / 55.444624 (-53.569396) | 1.618286 / 6.876477 (-5.258191) | 1.615963 / 2.142072 (-0.526109) | 0.642633 / 4.805227 (-4.162594) | 0.117222 / 6.500664 (-6.383443) | 0.042590 / 0.075469 (-0.032879) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.960724 / 1.841788 (-0.881064) | 11.652978 / 8.074308 (3.578670) | 10.069318 / 10.191392 (-0.122074) | 0.128161 / 0.680424 (-0.552263) | 0.014095 / 0.534201 (-0.520106) | 0.288386 / 0.579283 (-0.290897) | 0.260373 / 0.434364 (-0.173991) | 0.327443 / 0.540337 (-0.212894) | 0.419020 / 1.386936 (-0.967916) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005018 / 0.011353 (-0.006335) | 0.003503 / 0.011008 (-0.007505) | 0.049718 / 0.038508 (0.011210) | 0.029311 / 0.023109 (0.006202) | 0.271097 / 0.275898 (-0.004801) | 0.297370 / 0.323480 (-0.026110) | 0.004230 / 0.007986 (-0.003755) | 0.002741 / 0.004328 (-0.001587) | 0.049686 / 0.004250 (0.045435) | 0.044171 / 0.037052 (0.007119) | 0.274851 / 0.258489 (0.016362) | 0.309554 / 0.293841 (0.015714) | 0.029488 / 0.128546 (-0.099058) | 0.010767 / 0.075646 (-0.064880) | 0.057739 / 0.419271 (-0.361532) | 0.053319 / 0.043533 (0.009786) | 0.277739 / 0.255139 (0.022600) | 0.291341 / 0.283200 (0.008142) | 0.019587 / 0.141683 (-0.122096) | 1.113823 / 1.452155 (-0.338332) | 1.169409 / 1.492716 (-0.323307) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091889 / 0.018006 (0.073883) | 0.309162 / 0.000490 (0.308672) | 0.000222 / 0.000200 (0.000022) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022202 / 0.037411 (-0.015209) | 0.076113 / 0.014526 (0.061587) | 0.088416 / 0.176557 (-0.088141) | 0.126822 / 0.737135 (-0.610314) | 0.089540 / 0.296338 (-0.206798) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293697 / 0.215209 (0.078487) | 2.880680 / 2.077655 (0.803026) | 1.580122 / 1.504120 (0.076002) | 1.449492 / 1.541195 (-0.091703) | 1.478900 / 1.468490 (0.010410) | 0.563402 / 4.584777 (-4.021375) | 2.408692 / 3.745712 (-1.337020) | 2.794108 / 5.269862 (-2.475754) | 1.728549 / 4.565676 (-2.837128) | 0.063152 / 0.424275 (-0.361123) | 0.004985 / 0.007607 (-0.002622) | 0.343340 / 0.226044 (0.117295) | 3.426454 / 2.268929 (1.157525) | 1.932918 / 55.444624 (-53.511706) | 1.649533 / 6.876477 (-5.226944) | 1.673416 / 2.142072 (-0.468656) | 0.640000 / 4.805227 (-4.165227) | 0.115501 / 6.500664 (-6.385163) | 0.040756 / 0.075469 (-0.034713) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.992468 / 1.841788 (-0.849319) | 12.392072 / 8.074308 (4.317764) | 11.025362 / 10.191392 (0.833970) | 0.130788 / 0.680424 (-0.549635) | 0.015647 / 0.534201 (-0.518554) | 0.285914 / 0.579283 (-0.293369) | 0.277208 / 0.434364 (-0.157156) | 0.322917 / 0.540337 (-0.217420) | 0.427308 / 1.386936 (-0.959628) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#999790bcf52f883de1b5233c5632ae73395021cf \"CML watermark\")\n" ]
[IterableDataset] Fix `drop_last_batch`in map after shuffling or sharding
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6575/reactions" }
PR_kwDODunzps5jl1V6
{ "diff_url": "https://github.com/huggingface/datasets/pull/6575.diff", "html_url": "https://github.com/huggingface/datasets/pull/6575", "merged_at": "2024-01-11T16:10:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/6575.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6575" }
2024-01-09T15:35:31Z
https://api.github.com/repos/huggingface/datasets/issues/6575/comments
It was not taken into account e.g. when passing to a DataLoader with num_workers>0 Fix https://github.com/huggingface/datasets/issues/6565
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6575/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6575/timeline
closed
false
6,575
null
2024-01-11T16:10:30Z
null
true
2,072,579,549
https://api.github.com/repos/huggingface/datasets/issues/6574
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6574/events
[]
null
2024-01-09T16:11:33Z
[]
https://github.com/huggingface/datasets/pull/6574
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6574). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005447 / 0.011353 (-0.005906) | 0.004030 / 0.011008 (-0.006978) | 0.063770 / 0.038508 (0.025262) | 0.032602 / 0.023109 (0.009493) | 0.247722 / 0.275898 (-0.028176) | 0.286507 / 0.323480 (-0.036973) | 0.003035 / 0.007986 (-0.004951) | 0.003638 / 0.004328 (-0.000690) | 0.048790 / 0.004250 (0.044540) | 0.045358 / 0.037052 (0.008306) | 0.256308 / 0.258489 (-0.002181) | 0.286601 / 0.293841 (-0.007239) | 0.028644 / 0.128546 (-0.099903) | 0.011149 / 0.075646 (-0.064497) | 0.209796 / 0.419271 (-0.209475) | 0.036737 / 0.043533 (-0.006796) | 0.247427 / 0.255139 (-0.007712) | 0.274564 / 0.283200 (-0.008636) | 0.019717 / 0.141683 (-0.121966) | 1.107423 / 1.452155 (-0.344732) | 1.167830 / 1.492716 (-0.324886) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095695 / 0.018006 (0.077688) | 0.305675 / 0.000490 (0.305185) | 0.000211 / 0.000200 (0.000011) | 0.000054 / 0.000054 (-0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018969 / 0.037411 (-0.018443) | 0.063764 / 0.014526 (0.049239) | 0.075831 / 0.176557 (-0.100726) | 0.125340 / 0.737135 (-0.611795) | 0.077585 / 0.296338 (-0.218753) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.280876 / 0.215209 (0.065667) | 2.748107 / 2.077655 (0.670452) | 1.452201 / 1.504120 (-0.051919) | 1.328001 / 1.541195 (-0.213194) | 1.415581 / 1.468490 (-0.052909) | 0.568228 / 4.584777 (-4.016549) | 2.410486 / 3.745712 (-1.335226) | 2.975157 / 5.269862 (-2.294704) | 1.854096 / 4.565676 (-2.711581) | 0.063275 / 0.424275 (-0.361000) | 0.005121 / 0.007607 (-0.002487) | 0.340006 / 0.226044 (0.113961) | 3.362404 / 2.268929 (1.093476) | 1.803913 / 55.444624 (-53.640711) | 1.540557 / 6.876477 (-5.335919) | 1.629240 / 2.142072 (-0.512833) | 0.653595 / 4.805227 (-4.151632) | 0.119558 / 6.500664 (-6.381107) | 0.044365 / 0.075469 (-0.031104) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.964557 / 1.841788 (-0.877231) | 12.550303 / 8.074308 (4.475995) | 10.261302 / 10.191392 (0.069910) | 0.130834 / 0.680424 (-0.549589) | 0.014458 / 0.534201 (-0.519743) | 0.294833 / 0.579283 (-0.284450) | 0.268141 / 0.434364 (-0.166223) | 0.332492 / 0.540337 (-0.207845) | 0.427835 / 1.386936 (-0.959101) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005577 / 0.011353 (-0.005776) | 0.003823 / 0.011008 (-0.007185) | 0.050815 / 0.038508 (0.012307) | 0.031197 / 0.023109 (0.008088) | 0.269869 / 0.275898 (-0.006029) | 0.294371 / 0.323480 (-0.029109) | 0.004153 / 0.007986 (-0.003833) | 0.002884 / 0.004328 (-0.001445) | 0.048985 / 0.004250 (0.044735) | 0.047824 / 0.037052 (0.010772) | 0.270062 / 0.258489 (0.011573) | 0.306354 / 0.293841 (0.012514) | 0.030614 / 0.128546 (-0.097932) | 0.011209 / 0.075646 (-0.064438) | 0.058943 / 0.419271 (-0.360329) | 0.060824 / 0.043533 (0.017291) | 0.273580 / 0.255139 (0.018441) | 0.288375 / 0.283200 (0.005175) | 0.022097 / 0.141683 (-0.119585) | 1.159109 / 1.452155 (-0.293046) | 1.201463 / 1.492716 (-0.291253) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093024 / 0.018006 (0.075018) | 0.302838 / 0.000490 (0.302348) | 0.000223 / 0.000200 (0.000023) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022991 / 0.037411 (-0.014420) | 0.081575 / 0.014526 (0.067050) | 0.090134 / 0.176557 (-0.086423) | 0.129506 / 0.737135 (-0.607629) | 0.091747 / 0.296338 (-0.204592) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294735 / 0.215209 (0.079525) | 2.857557 / 2.077655 (0.779902) | 1.590577 / 1.504120 (0.086457) | 1.479404 / 1.541195 (-0.061790) | 1.515746 / 1.468490 (0.047256) | 0.579934 / 4.584777 (-4.004843) | 2.462790 / 3.745712 (-1.282922) | 2.944498 / 5.269862 (-2.325363) | 1.836767 / 4.565676 (-2.728909) | 0.064899 / 0.424275 (-0.359376) | 0.005232 / 0.007607 (-0.002375) | 0.349708 / 0.226044 (0.123664) | 3.424801 / 2.268929 (1.155873) | 1.945331 / 55.444624 (-53.499294) | 1.688862 / 6.876477 (-5.187615) | 1.712593 / 2.142072 (-0.429480) | 0.665894 / 4.805227 (-4.139333) | 0.121356 / 6.500664 (-6.379308) | 0.046908 / 0.075469 (-0.028561) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.983507 / 1.841788 (-0.858280) | 13.279790 / 8.074308 (5.205482) | 11.623531 / 10.191392 (1.432139) | 0.144567 / 0.680424 (-0.535857) | 0.016253 / 0.534201 (-0.517948) | 0.291842 / 0.579283 (-0.287441) | 0.278389 / 0.434364 (-0.155975) | 0.328971 / 0.540337 (-0.211366) | 0.443204 / 1.386936 (-0.943732) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9fad0c69738434aec91b61d52c0450336f7535ed \"CML watermark\")\n" ]
Fix tests based on datasets that used to have scripts
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6574/reactions" }
PR_kwDODunzps5jltBC
{ "diff_url": "https://github.com/huggingface/datasets/pull/6574.diff", "html_url": "https://github.com/huggingface/datasets/pull/6574", "merged_at": "2024-01-09T16:05:13Z", "patch_url": "https://github.com/huggingface/datasets/pull/6574.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6574" }
2024-01-09T15:16:16Z
https://api.github.com/repos/huggingface/datasets/issues/6574/comments
...now that `squad` and `paws` don't have a script anymore
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6574/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6574/timeline
closed
false
6,574
null
2024-01-09T16:05:13Z
null
true
2,072,553,951
https://api.github.com/repos/huggingface/datasets/issues/6573
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6573/events
[]
null
2024-01-11T16:17:28Z
[]
https://github.com/huggingface/datasets/pull/6573
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6573). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005421 / 0.011353 (-0.005932) | 0.003915 / 0.011008 (-0.007094) | 0.065109 / 0.038508 (0.026601) | 0.031274 / 0.023109 (0.008165) | 0.248702 / 0.275898 (-0.027196) | 0.275688 / 0.323480 (-0.047792) | 0.003007 / 0.007986 (-0.004978) | 0.002942 / 0.004328 (-0.001387) | 0.050928 / 0.004250 (0.046678) | 0.043751 / 0.037052 (0.006699) | 0.263860 / 0.258489 (0.005371) | 0.291499 / 0.293841 (-0.002342) | 0.028268 / 0.128546 (-0.100278) | 0.011467 / 0.075646 (-0.064180) | 0.210531 / 0.419271 (-0.208740) | 0.036302 / 0.043533 (-0.007231) | 0.251565 / 0.255139 (-0.003574) | 0.272001 / 0.283200 (-0.011199) | 0.020370 / 0.141683 (-0.121313) | 1.175493 / 1.452155 (-0.276662) | 1.229167 / 1.492716 (-0.263550) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095713 / 0.018006 (0.077707) | 0.308912 / 0.000490 (0.308422) | 0.000231 / 0.000200 (0.000031) | 0.000057 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019080 / 0.037411 (-0.018332) | 0.062043 / 0.014526 (0.047517) | 0.075642 / 0.176557 (-0.100915) | 0.122789 / 0.737135 (-0.614347) | 0.077507 / 0.296338 (-0.218831) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279929 / 0.215209 (0.064720) | 2.773336 / 2.077655 (0.695682) | 1.481740 / 1.504120 (-0.022379) | 1.357207 / 1.541195 (-0.183987) | 1.414314 / 1.468490 (-0.054176) | 0.573776 / 4.584777 (-4.011000) | 2.399273 / 3.745712 (-1.346439) | 2.918885 / 5.269862 (-2.350977) | 1.798867 / 4.565676 (-2.766809) | 0.064352 / 0.424275 (-0.359923) | 0.005164 / 0.007607 (-0.002443) | 0.337141 / 0.226044 (0.111097) | 3.402291 / 2.268929 (1.133362) | 1.854308 / 55.444624 (-53.590317) | 1.555789 / 6.876477 (-5.320687) | 1.625873 / 2.142072 (-0.516199) | 0.658589 / 4.805227 (-4.146638) | 0.122273 / 6.500664 (-6.378391) | 0.043910 / 0.075469 (-0.031560) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.933127 / 1.841788 (-0.908660) | 12.436657 / 8.074308 (4.362348) | 10.891750 / 10.191392 (0.700358) | 0.143236 / 0.680424 (-0.537187) | 0.014636 / 0.534201 (-0.519565) | 0.290375 / 0.579283 (-0.288908) | 0.275473 / 0.434364 (-0.158891) | 0.327007 / 0.540337 (-0.213331) | 0.425888 / 1.386936 (-0.961048) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005820 / 0.011353 (-0.005533) | 0.003684 / 0.011008 (-0.007324) | 0.050234 / 0.038508 (0.011726) | 0.030744 / 0.023109 (0.007634) | 0.279560 / 0.275898 (0.003662) | 0.305829 / 0.323480 (-0.017651) | 0.004053 / 0.007986 (-0.003933) | 0.002743 / 0.004328 (-0.001585) | 0.051087 / 0.004250 (0.046836) | 0.047601 / 0.037052 (0.010549) | 0.290441 / 0.258489 (0.031951) | 0.326719 / 0.293841 (0.032878) | 0.030245 / 0.128546 (-0.098301) | 0.011508 / 0.075646 (-0.064139) | 0.058436 / 0.419271 (-0.360835) | 0.059235 / 0.043533 (0.015702) | 0.278978 / 0.255139 (0.023839) | 0.298146 / 0.283200 (0.014946) | 0.020926 / 0.141683 (-0.120757) | 1.205608 / 1.452155 (-0.246547) | 1.224920 / 1.492716 (-0.267796) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098384 / 0.018006 (0.080378) | 0.307975 / 0.000490 (0.307485) | 0.000233 / 0.000200 (0.000033) | 0.000054 / 0.000054 (-0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023012 / 0.037411 (-0.014399) | 0.077450 / 0.014526 (0.062924) | 0.089314 / 0.176557 (-0.087242) | 0.128610 / 0.737135 (-0.608526) | 0.091521 / 0.296338 (-0.204818) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.310620 / 0.215209 (0.095411) | 3.030374 / 2.077655 (0.952720) | 1.653468 / 1.504120 (0.149348) | 1.526860 / 1.541195 (-0.014334) | 1.605328 / 1.468490 (0.136838) | 0.585444 / 4.584777 (-3.999333) | 2.471700 / 3.745712 (-1.274012) | 2.791268 / 5.269862 (-2.478594) | 1.815965 / 4.565676 (-2.749712) | 0.064713 / 0.424275 (-0.359562) | 0.005095 / 0.007607 (-0.002512) | 0.364843 / 0.226044 (0.138799) | 3.601633 / 2.268929 (1.332705) | 2.022642 / 55.444624 (-53.421982) | 1.737164 / 6.876477 (-5.139312) | 1.923636 / 2.142072 (-0.218437) | 0.670673 / 4.805227 (-4.134554) | 0.121547 / 6.500664 (-6.379117) | 0.042880 / 0.075469 (-0.032589) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.987873 / 1.841788 (-0.853914) | 13.279323 / 8.074308 (5.205015) | 11.480806 / 10.191392 (1.289414) | 0.142118 / 0.680424 (-0.538306) | 0.016486 / 0.534201 (-0.517715) | 0.291617 / 0.579283 (-0.287667) | 0.284639 / 0.434364 (-0.149725) | 0.329596 / 0.540337 (-0.210742) | 0.430168 / 1.386936 (-0.956768) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4a5b7d9562231c9fbb36e30c1cf0ac54133d1e77 \"CML watermark\")\n" ]
[WebDataset] Audio support and bug fixes
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6573/reactions" }
PR_kwDODunzps5jlnaj
{ "diff_url": "https://github.com/huggingface/datasets/pull/6573.diff", "html_url": "https://github.com/huggingface/datasets/pull/6573", "merged_at": "2024-01-11T16:11:04Z", "patch_url": "https://github.com/huggingface/datasets/pull/6573.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6573" }
2024-01-09T15:03:04Z
https://api.github.com/repos/huggingface/datasets/issues/6573/comments
- Add audio support - Fix an issue where user-provided features with additional fields are not taken into account Close https://github.com/huggingface/datasets/issues/6569
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6573/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6573/timeline
closed
false
6,573
null
2024-01-11T16:11:04Z
null
true
2,072,384,281
https://api.github.com/repos/huggingface/datasets/issues/6572
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6572/events
[]
null
2024-02-25T08:13:01Z
[]
https://github.com/huggingface/datasets/pull/6572
NONE
null
false
null
[ "On closer examination, this appears to be unnecessary. " ]
Adding option for multipart achive download
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6572/reactions" }
PR_kwDODunzps5jlCO5
{ "diff_url": "https://github.com/huggingface/datasets/pull/6572.diff", "html_url": "https://github.com/huggingface/datasets/pull/6572", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6572.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6572" }
2024-01-09T13:35:44Z
https://api.github.com/repos/huggingface/datasets/issues/6572/comments
Right now we can only download multiple separate archives or a single file archive, but not multipart archives, such as those produced by `tar --multi-volume`. This PR allows for downloading and extraction of archives split into multiple parts. With the new `multi_part` field of the `DownloadConfig` set, the downloader will first retrieve all the files and attempt to concatenate them before starting extraction. This will obviously fail if files retrieved are actually multiple separate archives, so the option is set to `False` by default. Tests and docs incoming.
{ "avatar_url": "https://avatars.githubusercontent.com/u/66251151?v=4", "events_url": "https://api.github.com/users/jpodivin/events{/privacy}", "followers_url": "https://api.github.com/users/jpodivin/followers", "following_url": "https://api.github.com/users/jpodivin/following{/other_user}", "gists_url": "https://api.github.com/users/jpodivin/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jpodivin", "id": 66251151, "login": "jpodivin", "node_id": "MDQ6VXNlcjY2MjUxMTUx", "organizations_url": "https://api.github.com/users/jpodivin/orgs", "received_events_url": "https://api.github.com/users/jpodivin/received_events", "repos_url": "https://api.github.com/users/jpodivin/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jpodivin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jpodivin/subscriptions", "type": "User", "url": "https://api.github.com/users/jpodivin" }
https://api.github.com/repos/huggingface/datasets/issues/6572/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6572/timeline
closed
false
6,572
null
2024-02-25T08:13:01Z
null
true
2,072,111,000
https://api.github.com/repos/huggingface/datasets/issues/6571
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6571/events
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
null
2024-01-09T10:45:17Z
[]
https://github.com/huggingface/datasets/issues/6571
MEMBER
null
null
null
[]
Make DatasetDict.column_names return a list instead of dict
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6571/reactions" }
I_kwDODunzps57geeY
null
2024-01-09T10:45:17Z
https://api.github.com/repos/huggingface/datasets/issues/6571/comments
Currently, `DatasetDict.column_names` returns a dict, with each split name as keys and the corresponding list of column names as values. However, by construction, all splits have the same column names. I think it makes more sense to return a single list with the column names, which is the same for all the split keys.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
https://api.github.com/repos/huggingface/datasets/issues/6571/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6571/timeline
open
false
6,571
null
null
null
false
2,071,805,265
https://api.github.com/repos/huggingface/datasets/issues/6570
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6570/events
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" }, { "color": "0075ca", "default": true, "description": "Improvements or additions to documentation", "id": 1935892861, "name": "documentation", "node_id": "MDU6TGFiZWwxOTM1ODkyODYx", "url": "https://api.github.com/repos/huggingface/datasets/labels/documentation" } ]
null
2024-01-09T16:45:50Z
[]
https://github.com/huggingface/datasets/issues/6570
MEMBER
completed
null
null
[ "Though the `build / build_main_documentation` CI job ran for 2.16.0: https://github.com/huggingface/datasets/actions/runs/7300836845/job/19896275099 🤔 ", "Yes, I saw it. Maybe @mishig25 can give us some hint...", "fixed https://huggingface.co/docs/datasets/v2.16.0/en/index", "Still missing 2.16.1.", "> Still missing 2.16.1.\r\n\r\nre-running the doc-buld job for the missing ones should fix\r\n\r\n", "Re-running the job for the 2.16.1 release: https://github.com/huggingface/datasets/actions/runs/7365231552/job/20310278583", "Fixed for 2.16.1: https://huggingface.co/docs/datasets/v2.16.1/en/index" ]
No online docs for 2.16 release
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6570/reactions" }
I_kwDODunzps57fT1R
null
2024-01-09T07:43:30Z
https://api.github.com/repos/huggingface/datasets/issues/6570/comments
We do not have the online docs for the latest minor release 2.16 (2.16.0 nor 2.16.1). In the online docs, the latest version appearing is 2.15.0: https://huggingface.co/docs/datasets/index ![Screenshot from 2024-01-09 08-43-08](https://github.com/huggingface/datasets/assets/8515462/83613222-867f-41f4-8833-7a4a76582f44)
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
https://api.github.com/repos/huggingface/datasets/issues/6570/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6570/timeline
closed
false
6,570
null
2024-01-09T16:45:50Z
null
false
2,070,251,122
https://api.github.com/repos/huggingface/datasets/issues/6569
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6569/events
[]
null
2024-01-11T16:11:06Z
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" } ]
https://github.com/huggingface/datasets/issues/6569
MEMBER
completed
null
null
[]
WebDataset ignores features defined in YAML or passed to load_dataset
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6569/reactions" }
I_kwDODunzps57ZYZy
null
2024-01-08T11:24:21Z
https://api.github.com/repos/huggingface/datasets/issues/6569/comments
we should not override if the features exist already https://github.com/huggingface/datasets/blob/d26abadce0b884db32382b92422d8a6aa997d40a/src/datasets/packaged_modules/webdataset/webdataset.py#L78-L85
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6569/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6569/timeline
closed
false
6,569
null
2024-01-11T16:11:05Z
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
false
2,069,922,151
https://api.github.com/repos/huggingface/datasets/issues/6568
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6568/events
[]
null
2024-01-13T04:53:04Z
[]
https://github.com/huggingface/datasets/issues/6568
NONE
null
null
null
[ "Seems like I just used the old code which did not have `keep_in_memory=True` argument, sorry.\r\n\r\nAlthough i encountered a different problem – at 97% my python process just hung for around 11 minutes with no logs (when running dataset.map without `keep_in_memory=True` over around 3 million of dataset samples)...", "Can you open a new issue and provide a bit more details ? What kind of map operations did you run ?", "Hey. I will try to find some free time to describe it.\r\n\r\n(can't do it now, cause i need to reproduce it myself to be sure about everything, which requires spinning a new Azuree VM, copying a huge dataset to drive from network disk for a long time etc...)", "@lhoestq loading dataset like this does not spawn 50 python processes:\r\n\r\n```\r\ndatasets.load_dataset(\"/preprocessed_2256k/train\", num_proc=50)\r\n```\r\n\r\nI have 64 vCPU so i hoped it could speed up the dataset loading...\r\n\r\nMy dataset onlly has images and metadata.csv with text column alongside image file path column", "now noticed\r\n```\r\n'Setting num_proc from 50 back to 1 for the train split to disable multiprocessing as it only contains one shard\r\n```\r\n\r\nAny way to work around this?", "@lhoestq thanks, [this helped](https://github.com/huggingface/datasets/blob/9d6d16117a30ba345b0236407975f701c5b288d4/src/datasets/arrow_dataset.py#L1053)\r\n\r\n" ]
keep_in_memory=True does not seem to work
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6568/reactions" }
I_kwDODunzps57YIFn
null
2024-01-08T08:03:58Z
https://api.github.com/repos/huggingface/datasets/issues/6568/comments
UPD: [Fixed](https://github.com/huggingface/datasets/issues/6568#issuecomment-1880817794) . But a new issue came up :(
{ "avatar_url": "https://avatars.githubusercontent.com/u/17604849?v=4", "events_url": "https://api.github.com/users/kopyl/events{/privacy}", "followers_url": "https://api.github.com/users/kopyl/followers", "following_url": "https://api.github.com/users/kopyl/following{/other_user}", "gists_url": "https://api.github.com/users/kopyl/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kopyl", "id": 17604849, "login": "kopyl", "node_id": "MDQ6VXNlcjE3NjA0ODQ5", "organizations_url": "https://api.github.com/users/kopyl/orgs", "received_events_url": "https://api.github.com/users/kopyl/received_events", "repos_url": "https://api.github.com/users/kopyl/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kopyl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kopyl/subscriptions", "type": "User", "url": "https://api.github.com/users/kopyl" }
https://api.github.com/repos/huggingface/datasets/issues/6568/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6568/timeline
open
false
6,568
null
null
null
false
2,069,808,842
https://api.github.com/repos/huggingface/datasets/issues/6567
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6567/events
[]
null
2024-01-08T11:56:19Z
[]
https://github.com/huggingface/datasets/issues/6567
NONE
completed
null
null
[ "I think you are reporting an issue with the `transformers` library. Note this is the repository of the `datasets` library. I recommend that you open an issue in their repository: https://github.com/huggingface/transformers/issues\r\n\r\nEDIT: I have not the rights to transfer the issue\r\n~~I am transferring your issue to their repository.~~", "Thanks, I hope someone from transformers library addresses this issue.\r\n\r\nOn Mon, Jan 8, 2024 at 15:29 Albert Villanova del Moral <\r\n***@***.***> wrote:\r\n\r\n> I think you are reporting an issue with the transformers library. Note\r\n> this is the repository of the datasets library. I am transferring your\r\n> issue to their repository.\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/6567#issuecomment-1880688586>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AE4LJNOYMD6WJMXFKPMH6DLYNO7PJAVCNFSM6AAAAABBQ63HWOVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTQOBQGY4DQNJYGY>\r\n> .\r\n> You are receiving this because you authored the thread.Message ID:\r\n> ***@***.***>\r\n>\r\n", "@andysingal, I recommend that you open an issue in their repository: https://github.com/huggingface/transformers/issues\r\nI don't have the rights to transfer this issue to their repo." ]
AttributeError: 'str' object has no attribute 'to'
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6567/reactions" }
I_kwDODunzps57XsbK
null
2024-01-08T06:40:21Z
https://api.github.com/repos/huggingface/datasets/issues/6567/comments
### Describe the bug ``` -------------------------------------------------------------------------- AttributeError Traceback (most recent call last) [<ipython-input-6-80c6086794e8>](https://localhost:8080/#) in <cell line: 10>() 8 report_to="wandb") 9 ---> 10 trainer = Trainer( 11 model=model, 12 args=training_args, 1 frames [/usr/local/lib/python3.10/dist-packages/transformers/trainer.py](https://localhost:8080/#) in _move_model_to_device(self, model, device) 688 689 def _move_model_to_device(self, model, device): --> 690 model = model.to(device) 691 # Moving a model to an XLA device disconnects the tied weights, so we have to retie them. 692 if self.args.parallel_mode == ParallelMode.TPU and hasattr(model, "tie_weights"): AttributeError: 'str' object has no attribute 'to' ``` ### Steps to reproduce the bug here is the notebook: ``` https://colab.research.google.com/drive/10JDBNsLlYrQdnI2FWfDK3F5M8wvVUDXG?usp=sharing ``` ### Expected behavior run the Training ### Environment info Colab Notebook , T4
{ "avatar_url": "https://avatars.githubusercontent.com/u/20493493?v=4", "events_url": "https://api.github.com/users/andysingal/events{/privacy}", "followers_url": "https://api.github.com/users/andysingal/followers", "following_url": "https://api.github.com/users/andysingal/following{/other_user}", "gists_url": "https://api.github.com/users/andysingal/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/andysingal", "id": 20493493, "login": "andysingal", "node_id": "MDQ6VXNlcjIwNDkzNDkz", "organizations_url": "https://api.github.com/users/andysingal/orgs", "received_events_url": "https://api.github.com/users/andysingal/received_events", "repos_url": "https://api.github.com/users/andysingal/repos", "site_admin": false, "starred_url": "https://api.github.com/users/andysingal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/andysingal/subscriptions", "type": "User", "url": "https://api.github.com/users/andysingal" }
https://api.github.com/repos/huggingface/datasets/issues/6567/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6567/timeline
closed
false
6,567
null
2024-01-08T10:03:17Z
null
false
2,069,495,429
https://api.github.com/repos/huggingface/datasets/issues/6566
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6566/events
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
null
2024-06-02T14:24:39Z
[]
https://github.com/huggingface/datasets/issues/6566
NONE
completed
null
null
[ "I also see the same error and get passed it by casting that line to float. \r\n\r\nso `for x in obj.detach().cpu().numpy()` becomes `for x in obj.detach().to(torch.float).cpu().numpy()`\r\n\r\nI got the idea from [this ](https://github.com/kohya-ss/sd-webui-additional-networks/pull/128/files) PR where someone was facing a similar issue (in a different repository). I guess numpy doesn't support bfloat16.\r\n\r\n" ]
I train controlnet_sdxl in bf16 datatype, got unsupported ERROR in datasets
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6566/reactions" }
I_kwDODunzps57Wf6F
null
2024-01-08T02:37:03Z
https://api.github.com/repos/huggingface/datasets/issues/6566/comments
### Describe the bug ``` Traceback (most recent call last): File "train_controlnet_sdxl.py", line 1252, in <module> main(args) File "train_controlnet_sdxl.py", line 1013, in main train_dataset = train_dataset.map(compute_embeddings_fn, batched=True, new_fingerprint=new_fingerprint) File "/home/miniconda3/envs/mhh_df/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 592, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/home/miniconda3/envs/mhh_df/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 557, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/home/miniconda3/envs/mhh_df/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 3093, in map for rank, done, content in Dataset._map_single(**dataset_kwargs): File "/home/miniconda3/envs/mhh_df/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 3489, in _map_single writer.write_batch(batch) File "/home/miniconda3/envs/mhh_df/lib/python3.8/site-packages/datasets/arrow_writer.py", line 557, in write_batch arrays.append(pa.array(typed_sequence)) File "pyarrow/array.pxi", line 248, in pyarrow.lib.array File "pyarrow/array.pxi", line 113, in pyarrow.lib._handle_arrow_array_protocol File "/home/miniconda3/envs/mhh_df/lib/python3.8/site-packages/datasets/arrow_writer.py", line 191, in __arrow_array__ out = pa.array(cast_to_python_objects(data, only_1d_for_numpy=True)) File "/home/miniconda3/envs/mhh_df/lib/python3.8/site-packages/datasets/features/features.py", line 447, in cast_to_python_objects return _cast_to_python_objects( File "/home/miniconda3/envs/mhh_df/lib/python3.8/site-packages/datasets/features/features.py", line 324, in _cast_to_python_objects for x in obj.detach().cpu().numpy() TypeError: Got unsupported ScalarType BFloat16 ``` ### Steps to reproduce the bug Here is my train script I use BF16 type,I use diffusers train my model ``` export MODEL_DIR="/home/mhh/sd_models/stable-diffusion-xl-base-1.0" export OUTPUT_DIR="./control_net" export VAE_NAME="/home/mhh/sd_models/sdxl-vae-fp16-fix" accelerate launch train_controlnet_sdxl.py \ --pretrained_model_name_or_path=$MODEL_DIR \ --output_dir=$OUTPUT_DIR \ --pretrained_vae_model_name_or_path=$VAE_NAME \ --dataset_name=/home/mhh/sd_datasets/fusing/fill50k \ --mixed_precision="bf16" \ --resolution=1024 \ --learning_rate=1e-5 \ --max_train_steps=200 \ --validation_image "/home/mhh/sd_datasets/controlnet_image/conditioning_image_1.png" "/home/mhh/sd_datasets/controlnet_image/conditioning_image_2.png" \ --validation_prompt "red circle with blue background" "cyan circle with brown floral background" \ --validation_steps=50 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --report_to="wandb" \ --seed=42 \ ``` ### Expected behavior When I changed the data type to fp16, it worked. ### Environment info datasets 2.16.1 numpy 1.24.4
{ "avatar_url": "https://avatars.githubusercontent.com/u/25008090?v=4", "events_url": "https://api.github.com/users/HelloWorldBeginner/events{/privacy}", "followers_url": "https://api.github.com/users/HelloWorldBeginner/followers", "following_url": "https://api.github.com/users/HelloWorldBeginner/following{/other_user}", "gists_url": "https://api.github.com/users/HelloWorldBeginner/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/HelloWorldBeginner", "id": 25008090, "login": "HelloWorldBeginner", "node_id": "MDQ6VXNlcjI1MDA4MDkw", "organizations_url": "https://api.github.com/users/HelloWorldBeginner/orgs", "received_events_url": "https://api.github.com/users/HelloWorldBeginner/received_events", "repos_url": "https://api.github.com/users/HelloWorldBeginner/repos", "site_admin": false, "starred_url": "https://api.github.com/users/HelloWorldBeginner/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/HelloWorldBeginner/subscriptions", "type": "User", "url": "https://api.github.com/users/HelloWorldBeginner" }
https://api.github.com/repos/huggingface/datasets/issues/6566/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6566/timeline
closed
false
6,566
null
2024-05-17T09:40:14Z
null
false
2,068,939,670
https://api.github.com/repos/huggingface/datasets/issues/6565
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6565/events
[]
null
2024-01-11T16:10:31Z
[]
https://github.com/huggingface/datasets/issues/6565
NONE
completed
null
null
[ "My current workaround this issue is to return `None` in the second element and then filter out samples which have `None` in them.\r\n\r\n```python\r\ndef merge_samples(batch):\r\n if len(batch['a']) == 1:\r\n batch['c'] = [batch['a'][0]]\r\n batch['d'] = [None]\r\n else:\r\n batch['c'] = [batch['a'][0]]\r\n batch['d'] = [batch['a'][1]]\r\n return batch\r\n \r\ndef filter_fn(x):\r\n return x['d'] is not None\r\n\r\n# other code...\r\nmapped = mapped.filter(filter_fn)\r\n```" ]
`drop_last_batch=True` for IterableDataset map function is ignored with multiprocessing DataLoader
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6565/reactions" }
I_kwDODunzps57UYOW
null
2024-01-07T02:46:50Z
https://api.github.com/repos/huggingface/datasets/issues/6565/comments
### Describe the bug Scenario: - Interleaving two iterable datasets of unequal lengths (`all_exhausted`), followed by a batch mapping with batch size 2 to effectively merge the two datasets and get a sample from each dataset in a single batch, with `drop_last_batch=True` to skip the last batch in case it doesn't have two samples. What works: - Using DataLoader with `num_workers=0` What does not work: - Using DataLoader with `num_workers=1`, errors in the last batch. Basically, `drop_last_batch=True` is ignored when using multiple dataloading workers. Please take a look at the minimal repro script below. ### Steps to reproduce the bug ```python from datasets import Dataset, interleave_datasets from torch.utils.data import DataLoader def merge_samples(batch): assert len(batch['a']) == 2, "Batch size must be 2" batch['c'] = [batch['a'][0]] batch['d'] = [batch['a'][1]] return batch def gen1(): for ii in range(1, 8385): yield {"a": ii} def gen2(): for ii in range(1, 5302): yield {"a": ii} if __name__ == '__main__': dataset1 = Dataset.from_generator(gen1).to_iterable_dataset(num_shards=1024) dataset2 = Dataset.from_generator(gen2).to_iterable_dataset(num_shards=1024) interleaved = interleave_datasets([dataset1, dataset2], stopping_strategy="all_exhausted") mapped = interleaved.map(merge_samples, batched=True, batch_size=2, remove_columns=interleaved.column_names, drop_last_batch=True) # Works loader = DataLoader(mapped, batch_size=32, num_workers=0) i = 0 for b in loader: print(i, b['c'].shape, b['d'].shape) i += 1 print("DataLoader with num_workers=0 works") # Doesn't work loader = DataLoader(mapped, batch_size=32, num_workers=1) i = 0 for b in loader: print(i, b['c'].shape, b['d'].shape) i += 1 ``` ### Expected behavior `drop_last_batch=True` should have same behaviour for `num_workers=0` and `num_workers>=1` ### Environment info - `datasets` version: 2.16.1 - Platform: macOS-10.16-x86_64-i386-64bit - Python version: 3.10.12 - `huggingface_hub` version: 0.20.2 - PyArrow version: 12.0.1 - Pandas version: 2.0.3 - `fsspec` version: 2023.6.0 I have also tested on Linux and got the same behavior.
{ "avatar_url": "https://avatars.githubusercontent.com/u/12119806?v=4", "events_url": "https://api.github.com/users/naba89/events{/privacy}", "followers_url": "https://api.github.com/users/naba89/followers", "following_url": "https://api.github.com/users/naba89/following{/other_user}", "gists_url": "https://api.github.com/users/naba89/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/naba89", "id": 12119806, "login": "naba89", "node_id": "MDQ6VXNlcjEyMTE5ODA2", "organizations_url": "https://api.github.com/users/naba89/orgs", "received_events_url": "https://api.github.com/users/naba89/received_events", "repos_url": "https://api.github.com/users/naba89/repos", "site_admin": false, "starred_url": "https://api.github.com/users/naba89/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/naba89/subscriptions", "type": "User", "url": "https://api.github.com/users/naba89" }
https://api.github.com/repos/huggingface/datasets/issues/6565/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6565/timeline
closed
false
6,565
null
2024-01-11T16:10:31Z
null
false
2,068,893,194
https://api.github.com/repos/huggingface/datasets/issues/6564
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6564/events
[]
null
2024-01-29T16:36:55Z
[]
https://github.com/huggingface/datasets/issues/6564
NONE
completed
null
null
[ "Thanks for reporting! I've opened a PR with a fix", "@mariosasko thank you very much :)" ]
`Dataset.filter` missing `with_rank` parameter
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6564/reactions" }
I_kwDODunzps57UM4K
null
2024-01-06T23:48:13Z
https://api.github.com/repos/huggingface/datasets/issues/6564/comments
### Describe the bug The issue shall be open: https://github.com/huggingface/datasets/issues/6435 When i try to pass `with_rank` to `Dataset.filter()`, i get this: `Dataset.filter() got an unexpected keyword argument 'with_rank'` ### Steps to reproduce the bug Run notebook: https://colab.research.google.com/drive/1WUNKph8BdP0on5ve3gQnh_PE0cFLQqTn?usp=sharing ### Expected behavior Should work? ### Environment info NVIDIA RTX 4090
{ "avatar_url": "https://avatars.githubusercontent.com/u/17604849?v=4", "events_url": "https://api.github.com/users/kopyl/events{/privacy}", "followers_url": "https://api.github.com/users/kopyl/followers", "following_url": "https://api.github.com/users/kopyl/following{/other_user}", "gists_url": "https://api.github.com/users/kopyl/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kopyl", "id": 17604849, "login": "kopyl", "node_id": "MDQ6VXNlcjE3NjA0ODQ5", "organizations_url": "https://api.github.com/users/kopyl/orgs", "received_events_url": "https://api.github.com/users/kopyl/received_events", "repos_url": "https://api.github.com/users/kopyl/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kopyl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kopyl/subscriptions", "type": "User", "url": "https://api.github.com/users/kopyl" }
https://api.github.com/repos/huggingface/datasets/issues/6564/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6564/timeline
closed
false
6,564
null
2024-01-29T16:36:54Z
null
false
2,068,302,402
https://api.github.com/repos/huggingface/datasets/issues/6563
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6563/events
[]
null
2024-03-14T02:59:42Z
[]
https://github.com/huggingface/datasets/issues/6563
NONE
completed
null
null
[ "@Wauplin Do you happen to know what's up?", "<del>Installing `datasets` from `main` did the trick so I guess it will be fixed in the next release.\r\n\r\nNVM https://github.com/huggingface/datasets/blob/d26abadce0b884db32382b92422d8a6aa997d40a/src/datasets/utils/info_utils.py#L5", "@wasertech upgrading `huggingface_hub` to a newer version should fix your issue. Latest version is 0.20.2. ", "Ha yes I had pinned `tokenizers` to an old version so it downgraded `huggingface_hub`. Note to myself keep HuggingFace modules relatively close together chronologically release wise.", "Glad to know your problem's solved! ", "@Wauplin Thanks for your insight 👍", "pip install --upgrade huggingface-hub" ]
`ImportError`: cannot import name 'insecure_hashlib' from 'huggingface_hub.utils' (.../huggingface_hub/utils/__init__.py)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6563/reactions" }
I_kwDODunzps57R8pC
null
2024-01-06T02:28:54Z
https://api.github.com/repos/huggingface/datasets/issues/6563/comments
### Describe the bug Yep its not [there](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/utils/__init__.py) anymore. ```text + python /home/trainer/sft_train.py --model_name cognitivecomputations/dolphin-2.2.1-mistral-7b --dataset_name wasertech/OneOS --load_in_4bit --use_peft --batch_size 4 --num_train_epochs 1 --learning_rate 1.41e-5 --gradient_accumulation_steps 8 --seq_length 4096 --output_dir output --log_with wandb Traceback (most recent call last): File "/home/trainer/sft_train.py", line 22, in <module> from datasets import load_dataset File "/home/trainer/llm-train/lib/python3.8/site-packages/datasets/__init__.py", line 22, in <module> from .arrow_dataset import Dataset File "/home/trainer/llm-train/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 66, in <module> from .arrow_reader import ArrowReader File "/home/trainer/llm-train/lib/python3.8/site-packages/datasets/arrow_reader.py", line 30, in <module> from .download.download_config import DownloadConfig File "/home/trainer/llm-train/lib/python3.8/site-packages/datasets/download/__init__.py", line 9, in <module> from .download_manager import DownloadManager, DownloadMode File "/home/trainer/llm-train/lib/python3.8/site-packages/datasets/download/download_manager.py", line 31, in <module> from ..utils import tqdm as hf_tqdm File "/home/trainer/llm-train/lib/python3.8/site-packages/datasets/utils/__init__.py", line 19, in <module> from .info_utils import VerificationMode File "/home/trainer/llm-train/lib/python3.8/site-packages/datasets/utils/info_utils.py", line 5, in <module> from huggingface_hub.utils import insecure_hashlib ImportError: cannot import name 'insecure_hashlib' from 'huggingface_hub.utils' (/home/trainer/llm-train/lib/python3.8/site-packages/huggingface_hub/utils/__init__.py) ``` ### Steps to reproduce the bug Using `datasets==2.16.1` and `huggingface_hub== 0.17.3`, load a dataset with `load_dataset`. ### Expected behavior The dataset should be (downloaded - if needed - and) returned. ### Environment info ```text trainer@a311ae86939e:/mnt$ pip show datasets Name: datasets Version: 2.16.1 Summary: HuggingFace community-driven open-source library of datasets Home-page: https://github.com/huggingface/datasets Author: HuggingFace Inc. Author-email: thomas@huggingface.co License: Apache 2.0 Location: /home/trainer/llm-train/lib/python3.8/site-packages Requires: packaging, pyyaml, multiprocess, pyarrow-hotfix, pandas, pyarrow, xxhash, dill, numpy, aiohttp, tqdm, fsspec, requests, filelock, huggingface-hub Required-by: trl, lm-eval, evaluate trainer@a311ae86939e:/mnt$ pip show huggingface_hub Name: huggingface-hub Version: 0.17.3 Summary: Client library to download and publish models, datasets and other repos on the huggingface.co hub Home-page: https://github.com/huggingface/huggingface_hub Author: Hugging Face, Inc. Author-email: julien@huggingface.co License: Apache Location: /home/trainer/llm-train/lib/python3.8/site-packages Requires: requests, pyyaml, packaging, typing-extensions, tqdm, filelock, fsspec Required-by: transformers, tokenizers, peft, evaluate, datasets, accelerate trainer@a311ae86939e:/mnt$ huggingface-cli env Copy-and-paste the text below in your GitHub issue. - huggingface_hub version: 0.17.3 - Platform: Linux-6.5.13-7-MANJARO-x86_64-with-glibc2.29 - Python version: 3.8.10 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /home/trainer/.cache/huggingface/token - Has saved token ?: True - Who am I ?: wasertech - Configured git credential helpers: - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.2 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 10.2.0 - hf_transfer: N/A - gradio: N/A - tensorboard: N/A - numpy: 1.24.4 - pydantic: N/A - aiohttp: 3.9.1 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /home/trainer/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /home/trainer/.cache/huggingface/assets - HF_TOKEN_PATH: /home/trainer/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/79070834?v=4", "events_url": "https://api.github.com/users/wasertech/events{/privacy}", "followers_url": "https://api.github.com/users/wasertech/followers", "following_url": "https://api.github.com/users/wasertech/following{/other_user}", "gists_url": "https://api.github.com/users/wasertech/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/wasertech", "id": 79070834, "login": "wasertech", "node_id": "MDQ6VXNlcjc5MDcwODM0", "organizations_url": "https://api.github.com/users/wasertech/orgs", "received_events_url": "https://api.github.com/users/wasertech/received_events", "repos_url": "https://api.github.com/users/wasertech/repos", "site_admin": false, "starred_url": "https://api.github.com/users/wasertech/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wasertech/subscriptions", "type": "User", "url": "https://api.github.com/users/wasertech" }
https://api.github.com/repos/huggingface/datasets/issues/6563/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6563/timeline
closed
false
6,563
null
2024-01-06T16:13:27Z
null
false
2,067,904,504
https://api.github.com/repos/huggingface/datasets/issues/6562
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6562/events
[]
null
2024-01-05T19:10:25Z
[]
https://github.com/huggingface/datasets/issues/6562
NONE
null
null
null
[]
datasets.DownloadMode.FORCE_REDOWNLOAD use cache to download dataset features with load_dataset function
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6562/reactions" }
I_kwDODunzps57Qbf4
null
2024-01-05T19:10:25Z
https://api.github.com/repos/huggingface/datasets/issues/6562/comments
### Describe the bug I have updated my dataset by adding a new feature, and push it to the hub. When I want to download it on my machine which contain the old version by using `datasets.load_dataset("your_dataset_name", download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD)` I get an error (paste bellow). Seems that the load_dataset function still use the old features schema instead of downloading everything new from the HUB. I find a way to go around this issue by manually deleting the old dataset cache. But from my understanding of `datasets.DownloadMode.FORCE_REDOWNLOAD` option, the dataset cache should be ignored. ### Steps to reproduce the bug 1. Download your dataset in your machine using `datasets.load_dataset` 2. Create a new feature in your dataset and push it to the hub 3. On the same machine redownload your dataset using `datasets.load_dataset("your_dataset_name", download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD)` ### Expected behavior ` ValueError: Couldn't cast id: string level: string context: list<element: string> child 0, element: string type: string answer: string question: string supporting_facts: list<element: string> child 0, element: string fra_answer: string fra_question: string -- schema metadata -- huggingface: '{"info": {"features": {"id": {"dtype": "string", "_type": "' + 490 to {'id': Value(dtype='string', id=None), 'level': Value(dtype='string', id=None), 'context': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'type': Value(dtype='string', id=None), 'answer': Value(dtype='string', id=None), 'question': Value(dtype='string', id=None), 'supporting_facts': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)} because column names don't match The above exception was the direct cause of the following exception: DatasetGenerationError ... DatasetGenerationError: An error occurred while generating the dataset` ### Environment info datasets-2.16.1 huggingface-hub-0.20.2
{ "avatar_url": "https://avatars.githubusercontent.com/u/73234162?v=4", "events_url": "https://api.github.com/users/LsTam91/events{/privacy}", "followers_url": "https://api.github.com/users/LsTam91/followers", "following_url": "https://api.github.com/users/LsTam91/following{/other_user}", "gists_url": "https://api.github.com/users/LsTam91/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/LsTam91", "id": 73234162, "login": "LsTam91", "node_id": "MDQ6VXNlcjczMjM0MTYy", "organizations_url": "https://api.github.com/users/LsTam91/orgs", "received_events_url": "https://api.github.com/users/LsTam91/received_events", "repos_url": "https://api.github.com/users/LsTam91/repos", "site_admin": false, "starred_url": "https://api.github.com/users/LsTam91/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/LsTam91/subscriptions", "type": "User", "url": "https://api.github.com/users/LsTam91" }
https://api.github.com/repos/huggingface/datasets/issues/6562/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6562/timeline
open
false
6,562
null
null
null
false
2,067,404,951
https://api.github.com/repos/huggingface/datasets/issues/6561
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6561/events
[ { "color": "0075ca", "default": true, "description": "Improvements or additions to documentation", "id": 1935892861, "name": "documentation", "node_id": "MDU6TGFiZWwxOTM1ODkyODYx", "url": "https://api.github.com/repos/huggingface/datasets/labels/documentation" } ]
null
2024-01-05T14:06:18Z
[]
https://github.com/huggingface/datasets/issues/6561
CONTRIBUTOR
null
null
null
[ "In particular, I would like to have an example of how to replace the following configuration (from https://huggingface.co/docs/hub/datasets-manual-configuration#splits)\r\n\r\n```\r\n---\r\nconfigs:\r\n- config_name: default\r\n data_files:\r\n - split: train\r\n path: \"data/*.csv\"\r\n - split: test\r\n path: \"holdout/*.csv\"\r\n---\r\n```\r\n\r\nwith the `data_dir` field." ]
Document YAML configuration with "data_dir"
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6561/reactions" }
I_kwDODunzps57OhiX
null
2024-01-05T14:03:33Z
https://api.github.com/repos/huggingface/datasets/issues/6561/comments
See https://huggingface.co/datasets/uonlp/CulturaX/discussions/15#6597e83f185db94370d6bf50 for reference
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
https://api.github.com/repos/huggingface/datasets/issues/6561/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6561/timeline
open
false
6,561
null
null
null
false
2,065,637,625
https://api.github.com/repos/huggingface/datasets/issues/6560
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6560/events
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
null
2024-01-04T13:10:58Z
[]
https://github.com/huggingface/datasets/issues/6560
NONE
null
null
null
[]
Support Video
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6560/reactions" }
I_kwDODunzps57HyD5
null
2024-01-04T13:10:58Z
https://api.github.com/repos/huggingface/datasets/issues/6560/comments
### Feature request HF datasets are awesome in supporting text and images. Will be great to see such a support in videos :) ### Motivation Video generation :) ### Your contribution Will probably be limited to raising this feature request ;)
{ "avatar_url": "https://avatars.githubusercontent.com/u/57996478?v=4", "events_url": "https://api.github.com/users/yuvalkirstain/events{/privacy}", "followers_url": "https://api.github.com/users/yuvalkirstain/followers", "following_url": "https://api.github.com/users/yuvalkirstain/following{/other_user}", "gists_url": "https://api.github.com/users/yuvalkirstain/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yuvalkirstain", "id": 57996478, "login": "yuvalkirstain", "node_id": "MDQ6VXNlcjU3OTk2NDc4", "organizations_url": "https://api.github.com/users/yuvalkirstain/orgs", "received_events_url": "https://api.github.com/users/yuvalkirstain/received_events", "repos_url": "https://api.github.com/users/yuvalkirstain/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yuvalkirstain/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yuvalkirstain/subscriptions", "type": "User", "url": "https://api.github.com/users/yuvalkirstain" }
https://api.github.com/repos/huggingface/datasets/issues/6560/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6560/timeline
open
false
6,560
null
null
null
false
2,065,118,332
https://api.github.com/repos/huggingface/datasets/issues/6559
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6559/events
[]
null
2024-04-03T10:40:53Z
[]
https://github.com/huggingface/datasets/issues/6559
NONE
completed
null
null
[ "Hi ! The \"allenai--c4\" config doesn't exist (this naming schema comes from old versions of `datasets`)\r\n\r\nYou can load it this way instead:\r\n\r\n```python\r\nfrom datasets import load_dataset\r\ncache_dir = 'path/to/your/cache/directory'\r\ndataset = load_dataset('allenai/c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train', cache_dir=cache_dir)\r\n```", "> Hi ! The \"allenai--c4\" config doesn't exist (this naming schema comes from old versions of `datasets`)\r\n> \r\n> You can load it this way instead:\r\n> \r\n> ```python\r\n> from datasets import load_dataset\r\n> cache_dir = 'path/to/your/cache/directory'\r\n> dataset = load_dataset('allenai/c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train', cache_dir=cache_dir)\r\n> ```\r\n\r\nthanks, the command run successfully in the latest version\r\n", "> Hi ! The \"allenai--c4\" config doesn't exist (this naming schema comes from old versions of `datasets`)\r\n> \r\n> You can load it this way instead:\r\n> \r\n> ```python\r\n> from datasets import load_dataset\r\n> cache_dir = 'path/to/your/cache/directory'\r\n> dataset = load_dataset('allenai/c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train', cache_dir=cache_dir)\r\n> ```\r\n\r\n@lhoestq \r\nIn this case, should we traverse through al 1024 json files to load the whole dataset?\r\nThanks!", "It will only load the first file (`data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}` only mentions one file)", "> It will only load the first file (`data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}` only mentions one file)\r\n\r\nThen what if we want to load the whole dataset?", "There is a \"en\" subset that you can load (see the list in the \"subset\" dropdown at https://huggingface.co/datasets/allenai/c4)\r\n\r\n```python\r\ndataset = load_dataset('allenai/c4', 'en', split=\"train\")\r\n```\r\n\r\nalternatively you can specify all the the files yourself using a glob pattern (or a list):\r\n\r\n```python\r\ndataset = load_dataset('allenai/c4', data_files='en/c4-train.00000-of-*.json.gz', split=\"train\")\r\n```", "> There is a \"en\" subset that you can load (see the list in the \"subset\" dropdown at https://huggingface.co/datasets/allenai/c4)\r\n> \r\n> ```python\r\n> dataset = load_dataset('allenai/c4', 'en', split=\"train\")\r\n> ```\r\n> \r\n> alternatively you can specify all the the files yourself using a glob pattern (or a list):\r\n> \r\n> ```python\r\n> dataset = load_dataset('allenai/c4', data_files='en/c4-train.00000-of-*.json.gz', split=\"train\")\r\n> ```\r\n\r\nThanks, the second solution works. The first line simply fails due to missing schema specific to this dataset.", "The latest version of `datasets` seems to have broken my dataset for my users (see this Hugging Face issue: https://huggingface.co/datasets/umarbutler/open-australian-legal-corpus/discussions/3). I changed it by renaming my dataset's config to `default` instead of `train` and then updating my dataset card accordingly." ]
Latest version 2.16.1, when load dataset error occurs. ValueError: BuilderConfig 'allenai--c4' not found. Available: ['default']
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6559/reactions" }
I_kwDODunzps57FzR8
null
2024-01-04T07:04:48Z
https://api.github.com/repos/huggingface/datasets/issues/6559/comments
### Describe the bug python script is: ``` from datasets import load_dataset cache_dir = 'path/to/your/cache/directory' dataset = load_dataset('allenai/c4','allenai--c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train', use_auth_token=False, cache_dir=cache_dir) ``` the script success when datasets version is 2.14.7. when using 2.16.1, error occurs ` ValueError: BuilderConfig 'allenai--c4' not found. Available: ['default']` ### Steps to reproduce the bug 1. pip install datasets==2.16.1 2. run python script: ``` from datasets import load_dataset cache_dir = 'path/to/your/cache/directory' dataset = load_dataset('allenai/c4','allenai--c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train', use_auth_token=False, cache_dir=cache_dir) ``` ### Expected behavior the dataset should be loaded successful in the latest version. ### Environment info datasets 2.16.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/145004780?v=4", "events_url": "https://api.github.com/users/zhulinJulia24/events{/privacy}", "followers_url": "https://api.github.com/users/zhulinJulia24/followers", "following_url": "https://api.github.com/users/zhulinJulia24/following{/other_user}", "gists_url": "https://api.github.com/users/zhulinJulia24/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/zhulinJulia24", "id": 145004780, "login": "zhulinJulia24", "node_id": "U_kgDOCKSY7A", "organizations_url": "https://api.github.com/users/zhulinJulia24/orgs", "received_events_url": "https://api.github.com/users/zhulinJulia24/received_events", "repos_url": "https://api.github.com/users/zhulinJulia24/repos", "site_admin": false, "starred_url": "https://api.github.com/users/zhulinJulia24/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zhulinJulia24/subscriptions", "type": "User", "url": "https://api.github.com/users/zhulinJulia24" }
https://api.github.com/repos/huggingface/datasets/issues/6559/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6559/timeline
closed
false
6,559
null
2024-01-05T01:26:25Z
null
false
2,064,885,984
https://api.github.com/repos/huggingface/datasets/issues/6558
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6558/events
[]
null
2024-02-21T00:38:12Z
[]
https://github.com/huggingface/datasets/issues/6558
NONE
completed
null
null
[ "You can add \r\n\r\n```python\r\nfrom PIL import ImageFile\r\nImageFile.LOAD_TRUNCATED_IMAGES = True\r\n```\r\n\r\nafter the imports to be able to read truncated images." ]
OSError: image file is truncated (1 bytes not processed) #28323
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6558/reactions" }
I_kwDODunzps57E6jg
null
2024-01-04T02:15:13Z
https://api.github.com/repos/huggingface/datasets/issues/6558/comments
### Describe the bug ``` --------------------------------------------------------------------------- OSError Traceback (most recent call last) Cell In[24], line 28 23 return example 25 # Filter the dataset 26 # filtered_dataset = dataset.filter(contains_number) 27 # Add the 'label' field in the dataset ---> 28 labeled_dataset = dataset.filter(contains_number).map(add_label) 29 # View the structure of the updated dataset 30 print(labeled_dataset) File /usr/local/lib/python3.10/dist-packages/datasets/dataset_dict.py:975, in DatasetDict.filter(self, function, with_indices, input_columns, batched, batch_size, keep_in_memory, load_from_cache_file, cache_file_names, writer_batch_size, fn_kwargs, num_proc, desc) 972 if cache_file_names is None: 973 cache_file_names = {k: None for k in self} 974 return DatasetDict( --> 975 { 976 k: dataset.filter( 977 function=function, 978 with_indices=with_indices, 979 input_columns=input_columns, 980 batched=batched, 981 batch_size=batch_size, 982 keep_in_memory=keep_in_memory, 983 load_from_cache_file=load_from_cache_file, 984 cache_file_name=cache_file_names[k], 985 writer_batch_size=writer_batch_size, 986 fn_kwargs=fn_kwargs, 987 num_proc=num_proc, 988 desc=desc, 989 ) 990 for k, dataset in self.items() 991 } 992 ) File /usr/local/lib/python3.10/dist-packages/datasets/dataset_dict.py:976, in <dictcomp>(.0) 972 if cache_file_names is None: 973 cache_file_names = {k: None for k in self} 974 return DatasetDict( 975 { --> 976 k: dataset.filter( 977 function=function, 978 with_indices=with_indices, 979 input_columns=input_columns, 980 batched=batched, 981 batch_size=batch_size, 982 keep_in_memory=keep_in_memory, 983 load_from_cache_file=load_from_cache_file, 984 cache_file_name=cache_file_names[k], 985 writer_batch_size=writer_batch_size, 986 fn_kwargs=fn_kwargs, 987 num_proc=num_proc, 988 desc=desc, 989 ) 990 for k, dataset in self.items() 991 } 992 ) File /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:557, in transmit_format.<locals>.wrapper(*args, **kwargs) 550 self_format = { 551 "type": self._format_type, 552 "format_kwargs": self._format_kwargs, 553 "columns": self._format_columns, 554 "output_all_columns": self._output_all_columns, 555 } 556 # apply actual function --> 557 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 558 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 559 # re-apply format to the output File /usr/local/lib/python3.10/dist-packages/datasets/fingerprint.py:481, in fingerprint_transform.<locals>._fingerprint.<locals>.wrapper(*args, **kwargs) 477 validate_fingerprint(kwargs[fingerprint_name]) 479 # Call actual function --> 481 out = func(dataset, *args, **kwargs) 483 # Update fingerprint of in-place transforms + update in-place history of transforms 485 if inplace: # update after calling func so that the fingerprint doesn't change if the function fails File /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:3623, in Dataset.filter(self, function, with_indices, input_columns, batched, batch_size, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc) 3620 if len(self) == 0: 3621 return self -> 3623 indices = self.map( 3624 function=partial( 3625 get_indices_from_mask_function, function, batched, with_indices, input_columns, self._indices 3626 ), 3627 with_indices=True, 3628 features=Features({"indices": Value("uint64")}), 3629 batched=True, 3630 batch_size=batch_size, 3631 remove_columns=self.column_names, 3632 keep_in_memory=keep_in_memory, 3633 load_from_cache_file=load_from_cache_file, 3634 cache_file_name=cache_file_name, 3635 writer_batch_size=writer_batch_size, 3636 fn_kwargs=fn_kwargs, 3637 num_proc=num_proc, 3638 suffix_template=suffix_template, 3639 new_fingerprint=new_fingerprint, 3640 input_columns=input_columns, 3641 desc=desc or "Filter", 3642 ) 3643 new_dataset = copy.deepcopy(self) 3644 new_dataset._indices = indices.data File /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:592, in transmit_tasks.<locals>.wrapper(*args, **kwargs) 590 self: "Dataset" = kwargs.pop("self") 591 # apply actual function --> 592 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 593 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 594 for dataset in datasets: 595 # Remove task templates if a column mapping of the template is no longer valid File /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:557, in transmit_format.<locals>.wrapper(*args, **kwargs) 550 self_format = { 551 "type": self._format_type, 552 "format_kwargs": self._format_kwargs, 553 "columns": self._format_columns, 554 "output_all_columns": self._output_all_columns, 555 } 556 # apply actual function --> 557 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 558 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 559 # re-apply format to the output File /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:3093, in Dataset.map(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc) 3087 if transformed_dataset is None: 3088 with hf_tqdm( 3089 unit=" examples", 3090 total=pbar_total, 3091 desc=desc or "Map", 3092 ) as pbar: -> 3093 for rank, done, content in Dataset._map_single(**dataset_kwargs): 3094 if done: 3095 shards_done += 1 File /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:3470, in Dataset._map_single(shard, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset) 3466 indices = list( 3467 range(*(slice(i, i + batch_size).indices(shard.num_rows))) 3468 ) # Something simpler? 3469 try: -> 3470 batch = apply_function_on_filtered_inputs( 3471 batch, 3472 indices, 3473 check_same_num_examples=len(shard.list_indexes()) > 0, 3474 offset=offset, 3475 ) 3476 except NumExamplesMismatchError: 3477 raise DatasetTransformationNotAllowedError( 3478 "Using `.map` in batched mode on a dataset with attached indexes is allowed only if it doesn't create or remove existing examples. You can first run `.drop_index() to remove your index and then re-add it." 3479 ) from None File /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:3349, in Dataset._map_single.<locals>.apply_function_on_filtered_inputs(pa_inputs, indices, check_same_num_examples, offset) 3347 if with_rank: 3348 additional_args += (rank,) -> 3349 processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) 3350 if isinstance(processed_inputs, LazyDict): 3351 processed_inputs = { 3352 k: v for k, v in processed_inputs.data.items() if k not in processed_inputs.keys_to_format 3353 } File /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:6212, in get_indices_from_mask_function(function, batched, with_indices, input_columns, indices_mapping, *args, **fn_kwargs) 6209 if input_columns is None: 6210 # inputs only contains a batch of examples 6211 batch: dict = inputs[0] -> 6212 num_examples = len(batch[next(iter(batch.keys()))]) 6213 for i in range(num_examples): 6214 example = {key: batch[key][i] for key in batch} File /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:272, in LazyDict.__getitem__(self, key) 270 value = self.data[key] 271 if key in self.keys_to_format: --> 272 value = self.format(key) 273 self.data[key] = value 274 self.keys_to_format.remove(key) File /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:375, in LazyBatch.format(self, key) 374 def format(self, key): --> 375 return self.formatter.format_column(self.pa_table.select([key])) File /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:442, in PythonFormatter.format_column(self, pa_table) 440 def format_column(self, pa_table: pa.Table) -> list: 441 column = self.python_arrow_extractor().extract_column(pa_table) --> 442 column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) 443 return column File /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:218, in PythonFeaturesDecoder.decode_column(self, column, column_name) 217 def decode_column(self, column: list, column_name: str) -> list: --> 218 return self.features.decode_column(column, column_name) if self.features else column File /usr/local/lib/python3.10/dist-packages/datasets/features/features.py:1951, in Features.decode_column(self, column, column_name) 1938 def decode_column(self, column: list, column_name: str): 1939 """Decode column with custom feature decoding. 1940 1941 Args: (...) 1948 `list[Any]` 1949 """ 1950 return ( -> 1951 [decode_nested_example(self[column_name], value) if value is not None else None for value in column] 1952 if self._column_requires_decoding[column_name] 1953 else column 1954 ) File /usr/local/lib/python3.10/dist-packages/datasets/features/features.py:1951, in <listcomp>(.0) 1938 def decode_column(self, column: list, column_name: str): 1939 """Decode column with custom feature decoding. 1940 1941 Args: (...) 1948 `list[Any]` 1949 """ 1950 return ( -> 1951 [decode_nested_example(self[column_name], value) if value is not None else None for value in column] 1952 if self._column_requires_decoding[column_name] 1953 else column 1954 ) File /usr/local/lib/python3.10/dist-packages/datasets/features/features.py:1339, in decode_nested_example(schema, obj, token_per_repo_id) 1336 elif isinstance(schema, (Audio, Image)): 1337 # we pass the token to read and decode files from private repositories in streaming mode 1338 if obj is not None and schema.decode: -> 1339 return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) 1340 return obj File /usr/local/lib/python3.10/dist-packages/datasets/features/image.py:185, in Image.decode_example(self, value, token_per_repo_id) 183 else: 184 image = PIL.Image.open(BytesIO(bytes_)) --> 185 image.load() # to avoid "Too many open files" errors 186 return image File /usr/local/lib/python3.10/dist-packages/PIL/ImageFile.py:254, in ImageFile.load(self) 252 break 253 else: --> 254 raise OSError( 255 "image file is truncated " 256 f"({len(b)} bytes not processed)" 257 ) 259 b = b + s 260 n, err_code = decoder.decode(b) OSError: image file is truncated (1 bytes not processed) ``` ### Steps to reproduce the bug ``` from datasets import load_dataset dataset = load_dataset("mehul7/captioned_military_aircraft") from transformers import AutoImageProcessor checkpoint = "microsoft/resnet-50" image_processor = AutoImageProcessor.from_pretrained(checkpoint) import re from PIL import Image import io def contains_number(example): try: image = Image.open(io.BytesIO(example["image"]['bytes'])) t = image_processor(images=image, return_tensors="pt")['pixel_values'] except Exception as e: print(f"Error processing image:{example['text']}") return False return bool(re.search(r'\d', example['text'])) # Define a function to add the 'label' field def add_label(example): lab = example['text'].split() temp = 'NOT' for item in lab: if str(item[-1]).isdigit(): temp = item break example['label'] = temp return example # Filter the dataset # filtered_dataset = dataset.filter(contains_number) # Add the 'label' field in the dataset labeled_dataset = dataset.filter(contains_number).map(add_label) # View the structure of the updated dataset print(labeled_dataset) ``` ### Expected behavior needs to form labels same as : https://www.kaggle.com/code/jiabaowangts/dataset-air/notebook ### Environment info Kaggle notebook P100
{ "avatar_url": "https://avatars.githubusercontent.com/u/20493493?v=4", "events_url": "https://api.github.com/users/andysingal/events{/privacy}", "followers_url": "https://api.github.com/users/andysingal/followers", "following_url": "https://api.github.com/users/andysingal/following{/other_user}", "gists_url": "https://api.github.com/users/andysingal/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/andysingal", "id": 20493493, "login": "andysingal", "node_id": "MDQ6VXNlcjIwNDkzNDkz", "organizations_url": "https://api.github.com/users/andysingal/orgs", "received_events_url": "https://api.github.com/users/andysingal/received_events", "repos_url": "https://api.github.com/users/andysingal/repos", "site_admin": false, "starred_url": "https://api.github.com/users/andysingal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/andysingal/subscriptions", "type": "User", "url": "https://api.github.com/users/andysingal" }
https://api.github.com/repos/huggingface/datasets/issues/6558/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6558/timeline
closed
false
6,558
null
2024-02-21T00:38:12Z
null
false
2,064,341,965
https://api.github.com/repos/huggingface/datasets/issues/6557
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6557/events
[]
null
2024-01-11T17:59:51Z
[]
https://github.com/huggingface/datasets/pull/6557
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6557). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "@lhoestq \r\nhello\r\nI think it should be defined in config.py\r\nDATASET_ README_ FILENAME=\"README. md\"\r\nThis can replace all \"README. md\"\r\n", "Thanks for the feedback :) merging now", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004890 / 0.011353 (-0.006463) | 0.003535 / 0.011008 (-0.007473) | 0.062894 / 0.038508 (0.024386) | 0.029133 / 0.023109 (0.006024) | 0.242387 / 0.275898 (-0.033511) | 0.262720 / 0.323480 (-0.060760) | 0.002880 / 0.007986 (-0.005106) | 0.002674 / 0.004328 (-0.001655) | 0.048932 / 0.004250 (0.044682) | 0.041669 / 0.037052 (0.004617) | 0.255922 / 0.258489 (-0.002567) | 0.282106 / 0.293841 (-0.011734) | 0.028137 / 0.128546 (-0.100409) | 0.010620 / 0.075646 (-0.065026) | 0.207799 / 0.419271 (-0.211473) | 0.035499 / 0.043533 (-0.008034) | 0.246158 / 0.255139 (-0.008981) | 0.262671 / 0.283200 (-0.020528) | 0.017297 / 0.141683 (-0.124386) | 1.118681 / 1.452155 (-0.333474) | 1.156732 / 1.492716 (-0.335985) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091670 / 0.018006 (0.073664) | 0.300327 / 0.000490 (0.299837) | 0.000212 / 0.000200 (0.000012) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018080 / 0.037411 (-0.019332) | 0.060357 / 0.014526 (0.045831) | 0.072221 / 0.176557 (-0.104336) | 0.119281 / 0.737135 (-0.617855) | 0.073861 / 0.296338 (-0.222477) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.289848 / 0.215209 (0.074639) | 2.845203 / 2.077655 (0.767549) | 1.531271 / 1.504120 (0.027152) | 1.366110 / 1.541195 (-0.175085) | 1.395041 / 1.468490 (-0.073449) | 0.563353 / 4.584777 (-4.021424) | 2.389074 / 3.745712 (-1.356638) | 2.752960 / 5.269862 (-2.516901) | 1.715508 / 4.565676 (-2.850168) | 0.063063 / 0.424275 (-0.361212) | 0.004967 / 0.007607 (-0.002640) | 0.340757 / 0.226044 (0.114713) | 3.387667 / 2.268929 (1.118739) | 1.845182 / 55.444624 (-53.599442) | 1.569616 / 6.876477 (-5.306861) | 1.571393 / 2.142072 (-0.570679) | 0.643455 / 4.805227 (-4.161772) | 0.116919 / 6.500664 (-6.383745) | 0.042551 / 0.075469 (-0.032918) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.943761 / 1.841788 (-0.898027) | 11.481068 / 8.074308 (3.406760) | 10.422180 / 10.191392 (0.230788) | 0.132015 / 0.680424 (-0.548408) | 0.013932 / 0.534201 (-0.520268) | 0.288340 / 0.579283 (-0.290943) | 0.263695 / 0.434364 (-0.170669) | 0.324459 / 0.540337 (-0.215878) | 0.415204 / 1.386936 (-0.971732) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005042 / 0.011353 (-0.006310) | 0.003465 / 0.011008 (-0.007543) | 0.050107 / 0.038508 (0.011599) | 0.029542 / 0.023109 (0.006433) | 0.273645 / 0.275898 (-0.002253) | 0.293661 / 0.323480 (-0.029818) | 0.004099 / 0.007986 (-0.003887) | 0.002667 / 0.004328 (-0.001661) | 0.048281 / 0.004250 (0.044030) | 0.044406 / 0.037052 (0.007353) | 0.284245 / 0.258489 (0.025756) | 0.312303 / 0.293841 (0.018462) | 0.030057 / 0.128546 (-0.098489) | 0.010675 / 0.075646 (-0.064971) | 0.058404 / 0.419271 (-0.360868) | 0.051874 / 0.043533 (0.008342) | 0.273308 / 0.255139 (0.018169) | 0.289356 / 0.283200 (0.006157) | 0.018628 / 0.141683 (-0.123055) | 1.148764 / 1.452155 (-0.303391) | 1.194181 / 1.492716 (-0.298535) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091383 / 0.018006 (0.073376) | 0.300221 / 0.000490 (0.299731) | 0.000232 / 0.000200 (0.000032) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021814 / 0.037411 (-0.015597) | 0.076420 / 0.014526 (0.061894) | 0.087404 / 0.176557 (-0.089152) | 0.126184 / 0.737135 (-0.610951) | 0.089738 / 0.296338 (-0.206600) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.299839 / 0.215209 (0.084630) | 2.929260 / 2.077655 (0.851605) | 1.608327 / 1.504120 (0.104207) | 1.479757 / 1.541195 (-0.061437) | 1.494768 / 1.468490 (0.026278) | 0.563873 / 4.584777 (-4.020904) | 2.434442 / 3.745712 (-1.311270) | 2.641384 / 5.269862 (-2.628478) | 1.724222 / 4.565676 (-2.841454) | 0.062125 / 0.424275 (-0.362150) | 0.004994 / 0.007607 (-0.002613) | 0.350895 / 0.226044 (0.124851) | 3.448550 / 2.268929 (1.179621) | 1.928910 / 55.444624 (-53.515714) | 1.669887 / 6.876477 (-5.206590) | 1.781304 / 2.142072 (-0.360768) | 0.649301 / 4.805227 (-4.155926) | 0.116255 / 6.500664 (-6.384409) | 0.040947 / 0.075469 (-0.034522) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.977537 / 1.841788 (-0.864251) | 12.119913 / 8.074308 (4.045605) | 10.874078 / 10.191392 (0.682686) | 0.130174 / 0.680424 (-0.550250) | 0.016176 / 0.534201 (-0.518025) | 0.287967 / 0.579283 (-0.291316) | 0.280591 / 0.434364 (-0.153773) | 0.324332 / 0.540337 (-0.216005) | 0.419479 / 1.386936 (-0.967457) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9d6d16117a30ba345b0236407975f701c5b288d4 \"CML watermark\")\n" ]
Support standalone yaml
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6557/reactions" }
PR_kwDODunzps5jJ63z
{ "diff_url": "https://github.com/huggingface/datasets/pull/6557.diff", "html_url": "https://github.com/huggingface/datasets/pull/6557", "merged_at": "2024-01-11T17:53:42Z", "patch_url": "https://github.com/huggingface/datasets/pull/6557.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6557" }
2024-01-03T16:47:35Z
https://api.github.com/repos/huggingface/datasets/issues/6557/comments
see (internal) https://huggingface.slack.com/archives/C02V51Q3800/p1703885853581679
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6557/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6557/timeline
closed
false
6,557
null
2024-01-11T17:53:42Z
null
true
2,064,018,208
https://api.github.com/repos/huggingface/datasets/issues/6556
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6556/events
[]
null
2024-02-12T21:57:34Z
[]
https://github.com/huggingface/datasets/pull/6556
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6556). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Fixed in dataset viewer: https://huggingface.co/datasets/multimodalart/repro_1_image\r\n\r\n<img width=\"682\" alt=\"Capture d’écran 2024-02-12 à 22 57 08\" src=\"https://github.com/huggingface/datasets/assets/1676121/be9a8dbc-2d78-4ffc-aed4-293a7c57bc0d\">\r\n" ]
Fix imagefolder with one image
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6556/reactions" }
PR_kwDODunzps5jI0nN
{ "diff_url": "https://github.com/huggingface/datasets/pull/6556.diff", "html_url": "https://github.com/huggingface/datasets/pull/6556", "merged_at": "2024-01-09T13:06:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/6556.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6556" }
2024-01-03T13:13:02Z
https://api.github.com/repos/huggingface/datasets/issues/6556/comments
A dataset repository with one image and one metadata file was considered a JSON dataset instead of an ImageFolder dataset. This is because we pick the dataset type with the most compatible data file extensions present in the repository and it results in a tie in this case. e.g. for https://huggingface.co/datasets/multimodalart/repro_1_image I fixed this by deprioritizing metadata files in the count. fix https://github.com/huggingface/datasets/issues/6545
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6556/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6556/timeline
closed
false
6,556
null
2024-01-09T13:06:30Z
null
true
2,063,841,286
https://api.github.com/repos/huggingface/datasets/issues/6555
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6555/events
[]
null
2024-02-02T10:41:33Z
[]
https://github.com/huggingface/datasets/pull/6555
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6555). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "As shared on slack, `HubDatasetModuleFactoryWithParquetExport` raises a `DatasetsServerError` already if the user tries to load another revision that the one from the parquet export. And therefore it fall backs on using `HubDatasetModuleFactoryWithScript`", "@lhoestq I would say that although current implementation finally returns `HubDatasetModuleFactoryWithScript` as expected, with this PR we avoid the useless call to `HubDatasetModuleFactoryWithParquetExport.get_module`, so this is more optimal.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005596 / 0.011353 (-0.005757) | 0.004022 / 0.011008 (-0.006986) | 0.064041 / 0.038508 (0.025533) | 0.030683 / 0.023109 (0.007574) | 0.245236 / 0.275898 (-0.030662) | 0.269657 / 0.323480 (-0.053823) | 0.003142 / 0.007986 (-0.004844) | 0.002821 / 0.004328 (-0.001507) | 0.048774 / 0.004250 (0.044523) | 0.043771 / 0.037052 (0.006719) | 0.258202 / 0.258489 (-0.000287) | 0.288381 / 0.293841 (-0.005460) | 0.028154 / 0.128546 (-0.100392) | 0.011071 / 0.075646 (-0.064576) | 0.209836 / 0.419271 (-0.209436) | 0.035923 / 0.043533 (-0.007609) | 0.248361 / 0.255139 (-0.006777) | 0.268728 / 0.283200 (-0.014472) | 0.019982 / 0.141683 (-0.121701) | 1.172330 / 1.452155 (-0.279824) | 1.192262 / 1.492716 (-0.300455) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.089231 / 0.018006 (0.071225) | 0.299192 / 0.000490 (0.298702) | 0.000214 / 0.000200 (0.000014) | 0.000054 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018358 / 0.037411 (-0.019053) | 0.062633 / 0.014526 (0.048107) | 0.076276 / 0.176557 (-0.100280) | 0.120862 / 0.737135 (-0.616274) | 0.075958 / 0.296338 (-0.220380) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291575 / 0.215209 (0.076366) | 2.855908 / 2.077655 (0.778253) | 1.459891 / 1.504120 (-0.044229) | 1.374945 / 1.541195 (-0.166250) | 1.333759 / 1.468490 (-0.134731) | 0.575428 / 4.584777 (-4.009348) | 2.414253 / 3.745712 (-1.331459) | 2.768222 / 5.269862 (-2.501639) | 1.705005 / 4.565676 (-2.860672) | 0.063406 / 0.424275 (-0.360869) | 0.004981 / 0.007607 (-0.002626) | 0.343826 / 0.226044 (0.117781) | 3.418143 / 2.268929 (1.149215) | 1.856571 / 55.444624 (-53.588053) | 1.571318 / 6.876477 (-5.305159) | 1.609897 / 2.142072 (-0.532175) | 0.646779 / 4.805227 (-4.158448) | 0.118143 / 6.500664 (-6.382521) | 0.042408 / 0.075469 (-0.033061) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.965091 / 1.841788 (-0.876697) | 11.569655 / 8.074308 (3.495347) | 10.587818 / 10.191392 (0.396426) | 0.128518 / 0.680424 (-0.551905) | 0.013954 / 0.534201 (-0.520247) | 0.287244 / 0.579283 (-0.292039) | 0.263755 / 0.434364 (-0.170609) | 0.321661 / 0.540337 (-0.218676) | 0.428753 / 1.386936 (-0.958183) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005568 / 0.011353 (-0.005785) | 0.003755 / 0.011008 (-0.007253) | 0.049134 / 0.038508 (0.010626) | 0.032113 / 0.023109 (0.009004) | 0.276645 / 0.275898 (0.000747) | 0.299240 / 0.323480 (-0.024240) | 0.004297 / 0.007986 (-0.003689) | 0.002727 / 0.004328 (-0.001602) | 0.048420 / 0.004250 (0.044170) | 0.045070 / 0.037052 (0.008017) | 0.288597 / 0.258489 (0.030108) | 0.320824 / 0.293841 (0.026983) | 0.053293 / 0.128546 (-0.075253) | 0.011002 / 0.075646 (-0.064644) | 0.057747 / 0.419271 (-0.361524) | 0.034389 / 0.043533 (-0.009143) | 0.277914 / 0.255139 (0.022775) | 0.292919 / 0.283200 (0.009719) | 0.018252 / 0.141683 (-0.123431) | 1.187245 / 1.452155 (-0.264910) | 1.199823 / 1.492716 (-0.292893) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.088338 / 0.018006 (0.070332) | 0.297498 / 0.000490 (0.297008) | 0.000206 / 0.000200 (0.000006) | 0.000048 / 0.000054 (-0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021445 / 0.037411 (-0.015966) | 0.075522 / 0.014526 (0.060996) | 0.086010 / 0.176557 (-0.090546) | 0.124938 / 0.737135 (-0.612197) | 0.087542 / 0.296338 (-0.208796) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292460 / 0.215209 (0.077251) | 2.841290 / 2.077655 (0.763635) | 1.537941 / 1.504120 (0.033821) | 1.409903 / 1.541195 (-0.131291) | 1.435339 / 1.468490 (-0.033151) | 0.578967 / 4.584777 (-4.005810) | 2.398588 / 3.745712 (-1.347125) | 2.662342 / 5.269862 (-2.607520) | 1.743055 / 4.565676 (-2.822622) | 0.064043 / 0.424275 (-0.360232) | 0.005030 / 0.007607 (-0.002577) | 0.348542 / 0.226044 (0.122498) | 3.395854 / 2.268929 (1.126926) | 1.918935 / 55.444624 (-53.525689) | 1.639320 / 6.876477 (-5.237157) | 1.740406 / 2.142072 (-0.401666) | 0.653346 / 4.805227 (-4.151881) | 0.117298 / 6.500664 (-6.383366) | 0.040635 / 0.075469 (-0.034834) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.008277 / 1.841788 (-0.833510) | 12.069369 / 8.074308 (3.995061) | 10.967322 / 10.191392 (0.775930) | 0.131938 / 0.680424 (-0.548486) | 0.015418 / 0.534201 (-0.518783) | 0.297257 / 0.579283 (-0.282026) | 0.270742 / 0.434364 (-0.163622) | 0.332296 / 0.540337 (-0.208042) | 0.421606 / 1.386936 (-0.965330) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8f22ec79a1ce4fbf0a1728d53f0338d5fdf664d8 \"CML watermark\")\n" ]
Do not use Parquet exports if revision is passed
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6555/reactions" }
PR_kwDODunzps5jIM79
{ "diff_url": "https://github.com/huggingface/datasets/pull/6555.diff", "html_url": "https://github.com/huggingface/datasets/pull/6555", "merged_at": "2024-02-02T10:35:28Z", "patch_url": "https://github.com/huggingface/datasets/pull/6555.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6555" }
2024-01-03T11:33:10Z
https://api.github.com/repos/huggingface/datasets/issues/6555/comments
Fix #6554.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
https://api.github.com/repos/huggingface/datasets/issues/6555/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6555/timeline
closed
false
6,555
null
2024-02-02T10:35:28Z
null
true
2,063,839,916
https://api.github.com/repos/huggingface/datasets/issues/6554
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6554/events
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
null
2024-02-02T10:35:29Z
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
https://github.com/huggingface/datasets/issues/6554
MEMBER
completed
null
null
[ "I don't think this bug is a thing ? Do you have some code that leads to this issue ?" ]
Parquet exports are used even if revision is passed
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6554/reactions" }
I_kwDODunzps57A7Ks
null
2024-01-03T11:32:26Z
https://api.github.com/repos/huggingface/datasets/issues/6554/comments
We should not used Parquet exports if `revision` is passed. I think this is a regression.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
https://api.github.com/repos/huggingface/datasets/issues/6554/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6554/timeline
closed
false
6,554
null
2024-02-02T10:35:29Z
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
false
2,063,474,183
https://api.github.com/repos/huggingface/datasets/issues/6553
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6553/events
[]
null
2024-02-21T00:38:24Z
[]
https://github.com/huggingface/datasets/issues/6553
NONE
completed
null
null
[ "I don't know My conpany conputer cannot work. but in my computer, it work?", "Do you have a folder in your working directory called datasets?" ]
Cannot import name 'load_dataset' from .... module ‘datasets’
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6553/reactions" }
I_kwDODunzps56_h4H
null
2024-01-03T08:18:21Z
https://api.github.com/repos/huggingface/datasets/issues/6553/comments
### Describe the bug use python -m pip install datasets to install ### Steps to reproduce the bug from datasets import load_dataset ### Expected behavior it doesn't work ### Environment info datasets version==2.15.0 python == 3.10.12 linux version I don't know??
{ "avatar_url": "https://avatars.githubusercontent.com/u/83450192?v=4", "events_url": "https://api.github.com/users/ciaoyizhen/events{/privacy}", "followers_url": "https://api.github.com/users/ciaoyizhen/followers", "following_url": "https://api.github.com/users/ciaoyizhen/following{/other_user}", "gists_url": "https://api.github.com/users/ciaoyizhen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ciaoyizhen", "id": 83450192, "login": "ciaoyizhen", "node_id": "MDQ6VXNlcjgzNDUwMTky", "organizations_url": "https://api.github.com/users/ciaoyizhen/orgs", "received_events_url": "https://api.github.com/users/ciaoyizhen/received_events", "repos_url": "https://api.github.com/users/ciaoyizhen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ciaoyizhen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ciaoyizhen/subscriptions", "type": "User", "url": "https://api.github.com/users/ciaoyizhen" }
https://api.github.com/repos/huggingface/datasets/issues/6553/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6553/timeline
closed
false
6,553
null
2024-02-21T00:38:24Z
null
false
2,063,157,187
https://api.github.com/repos/huggingface/datasets/issues/6552
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6552/events
[]
null
2024-01-08T10:09:04Z
[]
https://github.com/huggingface/datasets/issues/6552
NONE
completed
null
null
[ "This bug comes from the `huggingface_hub` library, see: https://github.com/huggingface/huggingface_hub/issues/1952\r\n\r\nA fix is provided at https://github.com/huggingface/huggingface_hub/pull/1953. Feel free to install `huggingface_hub` from this PR, or wait for it to be merged and the new version of `huggingface_hub` to be released", "Thanks!" ]
Loading a dataset from Google Colab hangs at "Resolving data files".
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6552/reactions" }
I_kwDODunzps56-UfD
null
2024-01-03T02:18:17Z
https://api.github.com/repos/huggingface/datasets/issues/6552/comments
### Describe the bug Hello, I'm trying to load a dataset from Google Colab but the process hangs at `Resolving data files`: ![image](https://github.com/huggingface/datasets/assets/99779/7175ad85-e571-46ed-9f87-92653985777d) It is happening when the `_get_origin_metadata` definition is invoked: ```python def _get_origin_metadata( data_files: List[str], max_workers=64, download_config: Optional[DownloadConfig] = None, ) -> Tuple[str]: return thread_map( partial(_get_single_origin_metadata, download_config=download_config), data_files, max_workers=max_workers, tqdm_class=hf_tqdm, desc="Resolving data files", disable=len(data_files) <= 16, ``` The thread is then stuck at `waiter.acquire()` in the builtin `threading.py` file. I can load the dataset just fine on my machine. Cheers, Thomas ### Steps to reproduce the bug In Google Colab: ```python !pip install datasets from datasets import load_dataset dataset = load_dataset("colour-science/color-checker-detection-dataset") ``` ### Expected behavior The dataset should be loaded. ### Environment info - `datasets` version: 2.16.1 - Platform: Linux-6.1.58+-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.20.1 - PyArrow version: 10.0.1 - Pandas version: 1.5.3 - `fsspec` version: 2023.6.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/99779?v=4", "events_url": "https://api.github.com/users/KelSolaar/events{/privacy}", "followers_url": "https://api.github.com/users/KelSolaar/followers", "following_url": "https://api.github.com/users/KelSolaar/following{/other_user}", "gists_url": "https://api.github.com/users/KelSolaar/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/KelSolaar", "id": 99779, "login": "KelSolaar", "node_id": "MDQ6VXNlcjk5Nzc5", "organizations_url": "https://api.github.com/users/KelSolaar/orgs", "received_events_url": "https://api.github.com/users/KelSolaar/received_events", "repos_url": "https://api.github.com/users/KelSolaar/repos", "site_admin": false, "starred_url": "https://api.github.com/users/KelSolaar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/KelSolaar/subscriptions", "type": "User", "url": "https://api.github.com/users/KelSolaar" }
https://api.github.com/repos/huggingface/datasets/issues/6552/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6552/timeline
closed
false
6,552
null
2024-01-08T10:09:04Z
null
false
2,062,768,400
https://api.github.com/repos/huggingface/datasets/issues/6551
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6551/events
[]
null
2024-01-06T20:14:57Z
[]
https://github.com/huggingface/datasets/pull/6551
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6551). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005002 / 0.011353 (-0.006350) | 0.003300 / 0.011008 (-0.007708) | 0.062509 / 0.038508 (0.024001) | 0.029807 / 0.023109 (0.006698) | 0.249935 / 0.275898 (-0.025963) | 0.264320 / 0.323480 (-0.059160) | 0.003790 / 0.007986 (-0.004195) | 0.002554 / 0.004328 (-0.001774) | 0.048207 / 0.004250 (0.043956) | 0.042033 / 0.037052 (0.004981) | 0.245725 / 0.258489 (-0.012764) | 0.276695 / 0.293841 (-0.017146) | 0.026502 / 0.128546 (-0.102044) | 0.010379 / 0.075646 (-0.065268) | 0.207002 / 0.419271 (-0.212269) | 0.034648 / 0.043533 (-0.008885) | 0.247957 / 0.255139 (-0.007182) | 0.263921 / 0.283200 (-0.019278) | 0.017710 / 0.141683 (-0.123973) | 1.105851 / 1.452155 (-0.346304) | 1.163315 / 1.492716 (-0.329401) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.089842 / 0.018006 (0.071836) | 0.352499 / 0.000490 (0.352009) | 0.000201 / 0.000200 (0.000001) | 0.000054 / 0.000054 (-0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018094 / 0.037411 (-0.019317) | 0.060463 / 0.014526 (0.045937) | 0.073257 / 0.176557 (-0.103300) | 0.119771 / 0.737135 (-0.617364) | 0.075210 / 0.296338 (-0.221128) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.288365 / 0.215209 (0.073156) | 2.825377 / 2.077655 (0.747722) | 1.532436 / 1.504120 (0.028316) | 1.393475 / 1.541195 (-0.147719) | 1.381859 / 1.468490 (-0.086632) | 0.564155 / 4.584777 (-4.020622) | 2.398177 / 3.745712 (-1.347535) | 2.730271 / 5.269862 (-2.539590) | 1.713779 / 4.565676 (-2.851898) | 0.062789 / 0.424275 (-0.361486) | 0.004991 / 0.007607 (-0.002616) | 0.340789 / 0.226044 (0.114744) | 3.323543 / 2.268929 (1.054615) | 1.861925 / 55.444624 (-53.582700) | 1.555181 / 6.876477 (-5.321296) | 1.559512 / 2.142072 (-0.582560) | 0.634565 / 4.805227 (-4.170663) | 0.116529 / 6.500664 (-6.384135) | 0.041312 / 0.075469 (-0.034157) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.945739 / 1.841788 (-0.896049) | 11.376130 / 8.074308 (3.301822) | 10.007752 / 10.191392 (-0.183640) | 0.126815 / 0.680424 (-0.553609) | 0.013898 / 0.534201 (-0.520303) | 0.287438 / 0.579283 (-0.291845) | 0.261532 / 0.434364 (-0.172832) | 0.320197 / 0.540337 (-0.220140) | 0.414444 / 1.386936 (-0.972492) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004994 / 0.011353 (-0.006359) | 0.003407 / 0.011008 (-0.007601) | 0.049281 / 0.038508 (0.010773) | 0.042815 / 0.023109 (0.019706) | 0.268291 / 0.275898 (-0.007607) | 0.285877 / 0.323480 (-0.037603) | 0.004006 / 0.007986 (-0.003980) | 0.002607 / 0.004328 (-0.001721) | 0.047682 / 0.004250 (0.043431) | 0.044281 / 0.037052 (0.007228) | 0.268287 / 0.258489 (0.009798) | 0.298649 / 0.293841 (0.004808) | 0.028607 / 0.128546 (-0.099939) | 0.010367 / 0.075646 (-0.065279) | 0.057114 / 0.419271 (-0.362158) | 0.053753 / 0.043533 (0.010220) | 0.269010 / 0.255139 (0.013871) | 0.285057 / 0.283200 (0.001858) | 0.017693 / 0.141683 (-0.123990) | 1.134718 / 1.452155 (-0.317436) | 1.186609 / 1.492716 (-0.306107) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091109 / 0.018006 (0.073103) | 0.298603 / 0.000490 (0.298113) | 0.000216 / 0.000200 (0.000016) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022125 / 0.037411 (-0.015286) | 0.076570 / 0.014526 (0.062044) | 0.088903 / 0.176557 (-0.087654) | 0.126427 / 0.737135 (-0.610708) | 0.091001 / 0.296338 (-0.205338) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300332 / 0.215209 (0.085123) | 2.971106 / 2.077655 (0.893452) | 1.617886 / 1.504120 (0.113766) | 1.476679 / 1.541195 (-0.064516) | 1.483750 / 1.468490 (0.015260) | 0.582569 / 4.584777 (-4.002208) | 2.441804 / 3.745712 (-1.303908) | 2.753927 / 5.269862 (-2.515935) | 1.733546 / 4.565676 (-2.832130) | 0.062653 / 0.424275 (-0.361622) | 0.005019 / 0.007607 (-0.002588) | 0.355556 / 0.226044 (0.129512) | 3.497431 / 2.268929 (1.228503) | 1.951711 / 55.444624 (-53.492913) | 1.663874 / 6.876477 (-5.212602) | 1.657363 / 2.142072 (-0.484709) | 0.653488 / 4.805227 (-4.151739) | 0.117055 / 6.500664 (-6.383609) | 0.040687 / 0.075469 (-0.034782) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969485 / 1.841788 (-0.872303) | 12.064793 / 8.074308 (3.990485) | 10.851531 / 10.191392 (0.660139) | 0.129060 / 0.680424 (-0.551364) | 0.015339 / 0.534201 (-0.518862) | 0.287215 / 0.579283 (-0.292069) | 0.276545 / 0.434364 (-0.157819) | 0.322748 / 0.540337 (-0.217589) | 0.421363 / 1.386936 (-0.965573) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d26abadce0b884db32382b92422d8a6aa997d40a \"CML watermark\")\n", "@lhoestq \r\n<img width=\"1015\" alt=\"image\" src=\"https://github.com/huggingface/datasets/assets/17604849/b19b9d92-c6f7-4e3a-8c9d-1178e56c67ea\">\r\nit's still not fixed =(", "@lhoestq i was thinking uninstalling `datasets` and then `pip install git+https://github.com/huggingface/datasets.git` has to fix it. Buuuuut. I'm not sure what's going on actually...\r\n\r\nNow instead of showing progress bars one after another it seems to be downloading the dataset way way way faster (like 4 mins instead of 58, thank you very much) but does not show any progress bars related to downloading at all.\r\n\r\n<img width=\"1170\" alt=\"image\" src=\"https://github.com/huggingface/datasets/assets/17604849/21a84908-c44d-41b4-bb0d-8061cab3bc64\">\r\n\r\n<img width=\"1159\" alt=\"image\" src=\"https://github.com/huggingface/datasets/assets/17604849/26684a8a-c10a-4fa2-bd84-cab4f938ffcc\">\r\n" ]
Fix parallel downloads for datasets without scripts
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 2, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/6551/reactions" }
PR_kwDODunzps5jEi1C
{ "diff_url": "https://github.com/huggingface/datasets/pull/6551.diff", "html_url": "https://github.com/huggingface/datasets/pull/6551", "merged_at": "2024-01-03T13:19:47Z", "patch_url": "https://github.com/huggingface/datasets/pull/6551.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6551" }
2024-01-02T18:06:18Z
https://api.github.com/repos/huggingface/datasets/issues/6551/comments
Enable parallel downloads using multiprocessing when `num_proc` is passed to `load_dataset`. It was enabled for datasets with scripts already (if they passed lists to `dl_manager.download`) but not for no-script datasets (we pass dicts {split: [list of files]} to `dl_manager.download` for those ones). I fixed this by parallelising on the lists contained in the data files dicts when possible. I also added a context manager `stack_multiprocessing_download_progress_bars` in `DownloadManager` to stack the progress bard of the downloads (from `cached_path(...)` calls). Otherwise the progress bars overlap each other with an annoying flickering effect.
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6551/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6551/timeline
closed
false
6,551
null
2024-01-03T13:19:48Z
null
true
2,062,556,493
https://api.github.com/repos/huggingface/datasets/issues/6550
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6550/events
[]
null
2024-01-31T13:45:15Z
[]
https://github.com/huggingface/datasets/pull/6550
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6550). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Thanks @lhoestq . This is a very important fix for code to run on multiple GPUs. Otherwise, only one GPU is working. I wish it can be merged soon. \r\nI also wrote a [blog post](https://forrestbao.github.io/2024/01/30/datasets_map_with_rank_multiple_GPUs.html) with a complete example in case it can be helpful to someone. Please feel free to use complete example in any documentation. \r\n", "Thanks a lot @forrestbao ! I reused parts of your code for the documentation, I'm sure it will be useful to many people !", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005662 / 0.011353 (-0.005691) | 0.003930 / 0.011008 (-0.007078) | 0.063807 / 0.038508 (0.025299) | 0.030227 / 0.023109 (0.007118) | 0.235338 / 0.275898 (-0.040560) | 0.264433 / 0.323480 (-0.059047) | 0.004226 / 0.007986 (-0.003759) | 0.002847 / 0.004328 (-0.001481) | 0.048998 / 0.004250 (0.044747) | 0.042713 / 0.037052 (0.005660) | 0.250504 / 0.258489 (-0.007985) | 0.281101 / 0.293841 (-0.012740) | 0.029123 / 0.128546 (-0.099423) | 0.011388 / 0.075646 (-0.064258) | 0.211342 / 0.419271 (-0.207930) | 0.036437 / 0.043533 (-0.007096) | 0.238909 / 0.255139 (-0.016230) | 0.255853 / 0.283200 (-0.027347) | 0.018852 / 0.141683 (-0.122831) | 1.131870 / 1.452155 (-0.320284) | 1.209007 / 1.492716 (-0.283710) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092433 / 0.018006 (0.074427) | 0.303045 / 0.000490 (0.302556) | 0.000291 / 0.000200 (0.000091) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018349 / 0.037411 (-0.019062) | 0.062527 / 0.014526 (0.048002) | 0.075347 / 0.176557 (-0.101210) | 0.120587 / 0.737135 (-0.616549) | 0.075171 / 0.296338 (-0.221167) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.288364 / 0.215209 (0.073155) | 2.775779 / 2.077655 (0.698124) | 1.490875 / 1.504120 (-0.013245) | 1.375451 / 1.541195 (-0.165744) | 1.398923 / 1.468490 (-0.069567) | 0.588659 / 4.584777 (-3.996117) | 2.458114 / 3.745712 (-1.287598) | 2.928910 / 5.269862 (-2.340951) | 1.834221 / 4.565676 (-2.731456) | 0.064503 / 0.424275 (-0.359772) | 0.005028 / 0.007607 (-0.002580) | 0.340386 / 0.226044 (0.114341) | 3.408697 / 2.268929 (1.139769) | 1.843613 / 55.444624 (-53.601012) | 1.569300 / 6.876477 (-5.307177) | 1.636761 / 2.142072 (-0.505312) | 0.687854 / 4.805227 (-4.117374) | 0.123462 / 6.500664 (-6.377202) | 0.042877 / 0.075469 (-0.032593) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.984054 / 1.841788 (-0.857734) | 12.243934 / 8.074308 (4.169626) | 10.835244 / 10.191392 (0.643852) | 0.131609 / 0.680424 (-0.548815) | 0.014000 / 0.534201 (-0.520201) | 0.292070 / 0.579283 (-0.287213) | 0.271958 / 0.434364 (-0.162406) | 0.326866 / 0.540337 (-0.213471) | 0.440880 / 1.386936 (-0.946056) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005954 / 0.011353 (-0.005399) | 0.004123 / 0.011008 (-0.006885) | 0.050371 / 0.038508 (0.011863) | 0.034387 / 0.023109 (0.011277) | 0.273254 / 0.275898 (-0.002644) | 0.297785 / 0.323480 (-0.025695) | 0.004619 / 0.007986 (-0.003367) | 0.002884 / 0.004328 (-0.001444) | 0.050236 / 0.004250 (0.045986) | 0.048586 / 0.037052 (0.011533) | 0.283878 / 0.258489 (0.025389) | 0.315218 / 0.293841 (0.021377) | 0.060688 / 0.128546 (-0.067859) | 0.011991 / 0.075646 (-0.063655) | 0.059518 / 0.419271 (-0.359753) | 0.036113 / 0.043533 (-0.007420) | 0.274767 / 0.255139 (0.019628) | 0.290620 / 0.283200 (0.007420) | 0.020070 / 0.141683 (-0.121613) | 1.164635 / 1.452155 (-0.287519) | 1.189482 / 1.492716 (-0.303234) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095171 / 0.018006 (0.077165) | 0.307129 / 0.000490 (0.306639) | 0.000227 / 0.000200 (0.000027) | 0.000045 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022777 / 0.037411 (-0.014634) | 0.076761 / 0.014526 (0.062235) | 0.087654 / 0.176557 (-0.088902) | 0.126729 / 0.737135 (-0.610406) | 0.089491 / 0.296338 (-0.206847) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292208 / 0.215209 (0.076999) | 2.890491 / 2.077655 (0.812836) | 1.625696 / 1.504120 (0.121576) | 1.463484 / 1.541195 (-0.077710) | 1.490889 / 1.468490 (0.022399) | 0.582155 / 4.584777 (-4.002622) | 2.492209 / 3.745712 (-1.253503) | 2.817020 / 5.269862 (-2.452842) | 1.806812 / 4.565676 (-2.758864) | 0.065830 / 0.424275 (-0.358445) | 0.005089 / 0.007607 (-0.002518) | 0.356067 / 0.226044 (0.130022) | 3.489652 / 2.268929 (1.220723) | 1.959276 / 55.444624 (-53.485348) | 1.678819 / 6.876477 (-5.197657) | 1.853581 / 2.142072 (-0.288491) | 0.660515 / 4.805227 (-4.144712) | 0.119884 / 6.500664 (-6.380780) | 0.041713 / 0.075469 (-0.033757) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.021701 / 1.841788 (-0.820087) | 12.918290 / 8.074308 (4.843982) | 11.469371 / 10.191392 (1.277979) | 0.144830 / 0.680424 (-0.535594) | 0.015858 / 0.534201 (-0.518343) | 0.290136 / 0.579283 (-0.289148) | 0.277894 / 0.434364 (-0.156470) | 0.330091 / 0.540337 (-0.210247) | 0.422697 / 1.386936 (-0.964240) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#13b36ee5c6d77f7eacbb4dd545a21e785db7fd3e \"CML watermark\")\n" ]
Multi gpu docs
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6550/reactions" }
PR_kwDODunzps5jD1OL
{ "diff_url": "https://github.com/huggingface/datasets/pull/6550.diff", "html_url": "https://github.com/huggingface/datasets/pull/6550", "merged_at": "2024-01-31T13:38:59Z", "patch_url": "https://github.com/huggingface/datasets/pull/6550.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6550" }
2024-01-02T15:11:58Z
https://api.github.com/repos/huggingface/datasets/issues/6550/comments
after discussions in https://github.com/huggingface/datasets/pull/6415
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6550/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6550/timeline
closed
false
6,550
null
2024-01-31T13:38:59Z
null
true
2,062,420,259
https://api.github.com/repos/huggingface/datasets/issues/6549
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6549/events
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
null
2024-01-02T14:06:49Z
[]
https://github.com/huggingface/datasets/issues/6549
MEMBER
null
null
null
[ "Maybe we can add a helper message like `Maybe try again using \"hf://path/without/resolve\"` if the path contains `/resolve/` ?\r\n\r\ne.g.\r\n\r\n```\r\nFileNotFoundError: Unable to find 'hf://datasets/HuggingFaceTB/eval_data/resolve/main/eval_data_context_and_answers.json'\r\nIt looks like you used parts of the URL of the file from the Hugging Face website, but you should remove the \"/resolve/<revision>\" part to have a valid `hf://` path.\r\nPlease try again using this path instead:\r\n hf://datasets/HuggingFaceTB/eval_data/eval_data_context_and_answers.json\r\n```\r\n\r\nand suggest `f\"hf://datasets/HuggingFaceTB/eval_data@{revision}/eval_data_context_and_answers.json\"` if revision != \"main\"\r\n\r\nEDIT: I think this message should also be raised from the `huggingface_hub`'s `HfFileSystem` implementation" ]
Loading from hf hub with clearer error message
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6549/reactions" }
I_kwDODunzps567gkj
null
2024-01-02T13:26:34Z
https://api.github.com/repos/huggingface/datasets/issues/6549/comments
### Feature request Shouldn't this kinda work ? ``` Dataset.from_json("hf://datasets/HuggingFaceTB/eval_data/resolve/main/eval_data_context_and_answers.json") ``` I got an error ``` File ~/miniconda3/envs/datatrove/lib/python3.10/site-packages/datasets/data_files.py:380, in resolve_pattern(pattern, base_path, allowed_extensions, download_config) 378 if allowed_extensions is not None: 379 error_msg += f" with any supported extension {list(allowed_extensions)}" --> 380 raise FileNotFoundError(error_msg) 381 return out FileNotFoundError: Unable to find 'hf://datasets/HuggingFaceTB/eval_data/resolve/main/eval_data_context_and_answers.json' (I'm logged in) ``` Fix: the correct path is ``` hf://datasets/HuggingFaceTB/eval_data/eval_data_context_and_answers.json ``` Proposal: raise a clearer error ### Motivation Clearer error message ### Your contribution Can open a PR
{ "avatar_url": "https://avatars.githubusercontent.com/u/7353373?v=4", "events_url": "https://api.github.com/users/thomwolf/events{/privacy}", "followers_url": "https://api.github.com/users/thomwolf/followers", "following_url": "https://api.github.com/users/thomwolf/following{/other_user}", "gists_url": "https://api.github.com/users/thomwolf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/thomwolf", "id": 7353373, "login": "thomwolf", "node_id": "MDQ6VXNlcjczNTMzNzM=", "organizations_url": "https://api.github.com/users/thomwolf/orgs", "received_events_url": "https://api.github.com/users/thomwolf/received_events", "repos_url": "https://api.github.com/users/thomwolf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/thomwolf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/thomwolf/subscriptions", "type": "User", "url": "https://api.github.com/users/thomwolf" }
https://api.github.com/repos/huggingface/datasets/issues/6549/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6549/timeline
open
false
6,549
null
null
null
false
2,061,047,984
https://api.github.com/repos/huggingface/datasets/issues/6548
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6548/events
[]
null
2024-01-02T10:33:17Z
[]
https://github.com/huggingface/datasets/issues/6548
NONE
null
null
null
[ "It looks like a transient DNS issue. It should work fine now if you try again.\r\n\r\nThere is no parameter in load_dataset to skip failed downloads. In your case it would have skipped every single subsequent download until the DNS issue was resolved anyway." ]
Skip if a dataset has issues
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6548/reactions" }
I_kwDODunzps562Riw
null
2023-12-31T12:41:26Z
https://api.github.com/repos/huggingface/datasets/issues/6548/comments
### Describe the bug Hello everyone, I'm using **load_datasets** from **huggingface** to download the datasets and I'm facing an issue, the download starts but it reaches some state and then fails with the following error: Couldn't reach https://huggingface.co/datasets/wikimedia/wikipedia/resolve/4cb9b0d719291f1a10f96f67d609c5d442980dc9/20231101.ext/train-00000-of-00001.parquet Failed to resolve \'huggingface.co\' ([Errno -3] Temporary failure in name resolution)"))'))) ![image](https://github.com/huggingface/datasets/assets/143214684/8847d9cb-529e-4eda-9c76-282713dfa3af) so I was wondering is there a parameter to be passed to load_dataset() to skip files that can't be downloaded?? ### Steps to reproduce the bug Parameter to be passed to load_dataset() of huggingface to skip files that can't be downloaded?? ### Expected behavior load_dataset() finishes without error ### Environment info None
{ "avatar_url": "https://avatars.githubusercontent.com/u/143214684?v=4", "events_url": "https://api.github.com/users/hadianasliwa/events{/privacy}", "followers_url": "https://api.github.com/users/hadianasliwa/followers", "following_url": "https://api.github.com/users/hadianasliwa/following{/other_user}", "gists_url": "https://api.github.com/users/hadianasliwa/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hadianasliwa", "id": 143214684, "login": "hadianasliwa", "node_id": "U_kgDOCIlIXA", "organizations_url": "https://api.github.com/users/hadianasliwa/orgs", "received_events_url": "https://api.github.com/users/hadianasliwa/received_events", "repos_url": "https://api.github.com/users/hadianasliwa/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hadianasliwa/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hadianasliwa/subscriptions", "type": "User", "url": "https://api.github.com/users/hadianasliwa" }
https://api.github.com/repos/huggingface/datasets/issues/6548/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6548/timeline
open
false
6,548
null
null
null
false
2,060,796,927
https://api.github.com/repos/huggingface/datasets/issues/6547
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6547/events
[]
null
2023-12-30T16:53:38Z
[]
https://github.com/huggingface/datasets/pull/6547
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6547). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004855 / 0.011353 (-0.006498) | 0.003552 / 0.011008 (-0.007456) | 0.062328 / 0.038508 (0.023820) | 0.031142 / 0.023109 (0.008032) | 0.247726 / 0.275898 (-0.028172) | 0.270951 / 0.323480 (-0.052528) | 0.002887 / 0.007986 (-0.005099) | 0.002663 / 0.004328 (-0.001665) | 0.047888 / 0.004250 (0.043638) | 0.042932 / 0.037052 (0.005880) | 0.253660 / 0.258489 (-0.004829) | 0.274997 / 0.293841 (-0.018844) | 0.027200 / 0.128546 (-0.101347) | 0.010851 / 0.075646 (-0.064796) | 0.206566 / 0.419271 (-0.212706) | 0.035311 / 0.043533 (-0.008222) | 0.254146 / 0.255139 (-0.000993) | 0.269074 / 0.283200 (-0.014126) | 0.019221 / 0.141683 (-0.122462) | 1.101986 / 1.452155 (-0.350169) | 1.155541 / 1.492716 (-0.337175) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004749 / 0.018006 (-0.013257) | 0.301627 / 0.000490 (0.301138) | 0.000208 / 0.000200 (0.000008) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018205 / 0.037411 (-0.019206) | 0.060420 / 0.014526 (0.045894) | 0.072533 / 0.176557 (-0.104023) | 0.119807 / 0.737135 (-0.617328) | 0.073249 / 0.296338 (-0.223089) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284947 / 0.215209 (0.069738) | 2.796939 / 2.077655 (0.719285) | 1.486076 / 1.504120 (-0.018043) | 1.358247 / 1.541195 (-0.182948) | 1.383680 / 1.468490 (-0.084811) | 0.550253 / 4.584777 (-4.034524) | 2.364783 / 3.745712 (-1.380929) | 2.765631 / 5.269862 (-2.504230) | 1.695694 / 4.565676 (-2.869983) | 0.061519 / 0.424275 (-0.362756) | 0.004914 / 0.007607 (-0.002693) | 0.340370 / 0.226044 (0.114325) | 3.313175 / 2.268929 (1.044247) | 1.805421 / 55.444624 (-53.639203) | 1.532151 / 6.876477 (-5.344325) | 1.541195 / 2.142072 (-0.600878) | 0.625266 / 4.805227 (-4.179961) | 0.119980 / 6.500664 (-6.380684) | 0.042334 / 0.075469 (-0.033135) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.952893 / 1.841788 (-0.888895) | 11.322232 / 8.074308 (3.247924) | 9.982108 / 10.191392 (-0.209284) | 0.130034 / 0.680424 (-0.550389) | 0.013192 / 0.534201 (-0.521009) | 0.286041 / 0.579283 (-0.293243) | 0.269802 / 0.434364 (-0.164562) | 0.323582 / 0.540337 (-0.216755) | 0.428641 / 1.386936 (-0.958295) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005071 / 0.011353 (-0.006282) | 0.003368 / 0.011008 (-0.007640) | 0.049003 / 0.038508 (0.010495) | 0.029507 / 0.023109 (0.006398) | 0.271859 / 0.275898 (-0.004039) | 0.294660 / 0.323480 (-0.028820) | 0.004218 / 0.007986 (-0.003767) | 0.002686 / 0.004328 (-0.001642) | 0.047947 / 0.004250 (0.043696) | 0.044499 / 0.037052 (0.007447) | 0.273982 / 0.258489 (0.015493) | 0.303393 / 0.293841 (0.009552) | 0.029649 / 0.128546 (-0.098898) | 0.010555 / 0.075646 (-0.065091) | 0.057553 / 0.419271 (-0.361718) | 0.051686 / 0.043533 (0.008153) | 0.274079 / 0.255139 (0.018940) | 0.292535 / 0.283200 (0.009335) | 0.019211 / 0.141683 (-0.122472) | 1.130629 / 1.452155 (-0.321526) | 1.196791 / 1.492716 (-0.295925) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093617 / 0.018006 (0.075611) | 0.302698 / 0.000490 (0.302209) | 0.000222 / 0.000200 (0.000022) | 0.000046 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022830 / 0.037411 (-0.014581) | 0.077061 / 0.014526 (0.062535) | 0.089464 / 0.176557 (-0.087092) | 0.127487 / 0.737135 (-0.609649) | 0.092133 / 0.296338 (-0.204205) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295362 / 0.215209 (0.080153) | 2.902251 / 2.077655 (0.824596) | 1.600508 / 1.504120 (0.096388) | 1.477763 / 1.541195 (-0.063431) | 1.492242 / 1.468490 (0.023752) | 0.569347 / 4.584777 (-4.015430) | 2.449873 / 3.745712 (-1.295839) | 2.787207 / 5.269862 (-2.482655) | 1.723852 / 4.565676 (-2.841825) | 0.063076 / 0.424275 (-0.361199) | 0.005060 / 0.007607 (-0.002547) | 0.349614 / 0.226044 (0.123569) | 3.429735 / 2.268929 (1.160806) | 1.953883 / 55.444624 (-53.490741) | 1.664232 / 6.876477 (-5.212245) | 1.648864 / 2.142072 (-0.493209) | 0.640295 / 4.805227 (-4.164932) | 0.117053 / 6.500664 (-6.383611) | 0.041314 / 0.075469 (-0.034156) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.970663 / 1.841788 (-0.871125) | 12.144810 / 8.074308 (4.070502) | 10.938985 / 10.191392 (0.747593) | 0.140502 / 0.680424 (-0.539922) | 0.015522 / 0.534201 (-0.518679) | 0.286629 / 0.579283 (-0.292654) | 0.283695 / 0.434364 (-0.150669) | 0.327298 / 0.540337 (-0.213039) | 0.424635 / 1.386936 (-0.962301) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e23a59ef7ba2b50d4e5588825c41212a3cfd1331 \"CML watermark\")\n" ]
set dev version
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6547/reactions" }
PR_kwDODunzps5i-Jni
{ "diff_url": "https://github.com/huggingface/datasets/pull/6547.diff", "html_url": "https://github.com/huggingface/datasets/pull/6547", "merged_at": "2023-12-30T16:47:27Z", "patch_url": "https://github.com/huggingface/datasets/pull/6547.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6547" }
2023-12-30T16:47:17Z
https://api.github.com/repos/huggingface/datasets/issues/6547/comments
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6547/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6547/timeline
closed
false
6,547
null
2023-12-30T16:47:27Z
null
true
2,060,796,369
https://api.github.com/repos/huggingface/datasets/issues/6546
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6546/events
[]
null
2023-12-30T16:52:07Z
[]
https://github.com/huggingface/datasets/pull/6546
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6546). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005415 / 0.011353 (-0.005938) | 0.003733 / 0.011008 (-0.007275) | 0.064178 / 0.038508 (0.025670) | 0.033162 / 0.023109 (0.010053) | 0.249799 / 0.275898 (-0.026099) | 0.274875 / 0.323480 (-0.048605) | 0.002977 / 0.007986 (-0.005009) | 0.002696 / 0.004328 (-0.001633) | 0.050042 / 0.004250 (0.045792) | 0.047127 / 0.037052 (0.010074) | 0.250865 / 0.258489 (-0.007624) | 0.289758 / 0.293841 (-0.004083) | 0.028007 / 0.128546 (-0.100539) | 0.010671 / 0.075646 (-0.064975) | 0.207123 / 0.419271 (-0.212148) | 0.036403 / 0.043533 (-0.007130) | 0.261527 / 0.255139 (0.006388) | 0.277277 / 0.283200 (-0.005922) | 0.019418 / 0.141683 (-0.122264) | 1.118019 / 1.452155 (-0.334136) | 1.180254 / 1.492716 (-0.312462) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004604 / 0.018006 (-0.013402) | 0.308129 / 0.000490 (0.307639) | 0.000202 / 0.000200 (0.000002) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018400 / 0.037411 (-0.019011) | 0.060777 / 0.014526 (0.046251) | 0.073059 / 0.176557 (-0.103498) | 0.119677 / 0.737135 (-0.617458) | 0.074076 / 0.296338 (-0.222263) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.275353 / 0.215209 (0.060144) | 2.694079 / 2.077655 (0.616424) | 1.419670 / 1.504120 (-0.084450) | 1.302079 / 1.541195 (-0.239116) | 1.342077 / 1.468490 (-0.126413) | 0.549794 / 4.584777 (-4.034983) | 2.377149 / 3.745712 (-1.368563) | 2.800362 / 5.269862 (-2.469500) | 1.728152 / 4.565676 (-2.837524) | 0.061774 / 0.424275 (-0.362501) | 0.004898 / 0.007607 (-0.002709) | 0.330996 / 0.226044 (0.104952) | 3.262010 / 2.268929 (0.993082) | 1.761106 / 55.444624 (-53.683518) | 1.489783 / 6.876477 (-5.386694) | 1.532470 / 2.142072 (-0.609602) | 0.648814 / 4.805227 (-4.156414) | 0.116893 / 6.500664 (-6.383771) | 0.042167 / 0.075469 (-0.033303) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.937679 / 1.841788 (-0.904109) | 11.621632 / 8.074308 (3.547324) | 10.226177 / 10.191392 (0.034785) | 0.129242 / 0.680424 (-0.551182) | 0.014884 / 0.534201 (-0.519317) | 0.287619 / 0.579283 (-0.291664) | 0.261677 / 0.434364 (-0.172687) | 0.336361 / 0.540337 (-0.203976) | 0.426461 / 1.386936 (-0.960475) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005246 / 0.011353 (-0.006106) | 0.003533 / 0.011008 (-0.007475) | 0.051691 / 0.038508 (0.013182) | 0.031551 / 0.023109 (0.008442) | 0.297884 / 0.275898 (0.021986) | 0.323100 / 0.323480 (-0.000380) | 0.004101 / 0.007986 (-0.003884) | 0.002668 / 0.004328 (-0.001661) | 0.048764 / 0.004250 (0.044513) | 0.045429 / 0.037052 (0.008377) | 0.300107 / 0.258489 (0.041618) | 0.335650 / 0.293841 (0.041809) | 0.030061 / 0.128546 (-0.098485) | 0.010878 / 0.075646 (-0.064768) | 0.058561 / 0.419271 (-0.360710) | 0.052829 / 0.043533 (0.009296) | 0.302704 / 0.255139 (0.047565) | 0.320527 / 0.283200 (0.037327) | 0.018995 / 0.141683 (-0.122688) | 1.144050 / 1.452155 (-0.308105) | 1.255275 / 1.492716 (-0.237441) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092708 / 0.018006 (0.074701) | 0.305204 / 0.000490 (0.304714) | 0.000224 / 0.000200 (0.000024) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021607 / 0.037411 (-0.015805) | 0.075938 / 0.014526 (0.061412) | 0.090864 / 0.176557 (-0.085693) | 0.128248 / 0.737135 (-0.608887) | 0.090322 / 0.296338 (-0.206017) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.302095 / 0.215209 (0.086886) | 2.925686 / 2.077655 (0.848032) | 1.617767 / 1.504120 (0.113648) | 1.477975 / 1.541195 (-0.063220) | 1.508576 / 1.468490 (0.040086) | 0.574376 / 4.584777 (-4.010401) | 2.467483 / 3.745712 (-1.278229) | 2.832500 / 5.269862 (-2.437362) | 1.765233 / 4.565676 (-2.800443) | 0.064105 / 0.424275 (-0.360170) | 0.005090 / 0.007607 (-0.002517) | 0.349819 / 0.226044 (0.123774) | 3.468916 / 2.268929 (1.199987) | 1.946499 / 55.444624 (-53.498126) | 1.684369 / 6.876477 (-5.192107) | 1.711036 / 2.142072 (-0.431036) | 0.650153 / 4.805227 (-4.155075) | 0.116598 / 6.500664 (-6.384066) | 0.041213 / 0.075469 (-0.034256) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.990842 / 1.841788 (-0.850946) | 12.348468 / 8.074308 (4.274160) | 11.174441 / 10.191392 (0.983049) | 0.140950 / 0.680424 (-0.539473) | 0.016100 / 0.534201 (-0.518101) | 0.286486 / 0.579283 (-0.292797) | 0.282054 / 0.434364 (-0.152310) | 0.324261 / 0.540337 (-0.216076) | 0.420717 / 1.386936 (-0.966219) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7b2bcd76457de720454c3ac304f2ed5c6f40acaa \"CML watermark\")\n" ]
Release: 2.16.1
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6546/reactions" }
PR_kwDODunzps5i-Jgv
{ "diff_url": "https://github.com/huggingface/datasets/pull/6546.diff", "html_url": "https://github.com/huggingface/datasets/pull/6546", "merged_at": "2023-12-30T16:45:52Z", "patch_url": "https://github.com/huggingface/datasets/pull/6546.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6546" }
2023-12-30T16:44:51Z
https://api.github.com/repos/huggingface/datasets/issues/6546/comments
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6546/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6546/timeline
closed
false
6,546
null
2023-12-30T16:45:52Z
null
true
2,060,789,507
https://api.github.com/repos/huggingface/datasets/issues/6545
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6545/events
[]
null
2024-01-09T13:06:31Z
[]
https://github.com/huggingface/datasets/issues/6545
NONE
completed
null
null
[]
`image` column not automatically inferred if image dataset only contains 1 image
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6545/reactions" }
I_kwDODunzps561ScD
null
2023-12-30T16:17:29Z
https://api.github.com/repos/huggingface/datasets/issues/6545/comments
### Describe the bug By default, the standard Image Dataset maps out `file_name` to `image` when loading an Image Dataset. However, if the dataset contains only 1 image, this does not take place ### Steps to reproduce the bug Input (dataset with one image `multimodalart/repro_1_image`) ```py from datasets import load_dataset dataset = load_dataset("multimodalart/repro_1_image") dataset ``` Output: ```py DatasetDict({ train: Dataset({ features: ['file_name', 'prompt'], num_rows: 1 }) }) ``` Input (dataset with 2+ images `multimodalart/repro_2_image`) ```py from datasets import load_dataset dataset = load_dataset("multimodalart/repro_2_image") dataset ``` Output: ```py DatasetDict({ train: Dataset({ features: ['image', 'prompt'], num_rows: 2 }) }) ``` ### Expected behavior Expected to map `file_name` → `image` for all dataset sizes, including 1. ### Environment info Both latest main and 2.16.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/788417?v=4", "events_url": "https://api.github.com/users/apolinario/events{/privacy}", "followers_url": "https://api.github.com/users/apolinario/followers", "following_url": "https://api.github.com/users/apolinario/following{/other_user}", "gists_url": "https://api.github.com/users/apolinario/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/apolinario", "id": 788417, "login": "apolinario", "node_id": "MDQ6VXNlcjc4ODQxNw==", "organizations_url": "https://api.github.com/users/apolinario/orgs", "received_events_url": "https://api.github.com/users/apolinario/received_events", "repos_url": "https://api.github.com/users/apolinario/repos", "site_admin": false, "starred_url": "https://api.github.com/users/apolinario/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/apolinario/subscriptions", "type": "User", "url": "https://api.github.com/users/apolinario" }
https://api.github.com/repos/huggingface/datasets/issues/6545/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6545/timeline
closed
false
6,545
null
2024-01-09T13:06:31Z
null
false
2,060,782,594
https://api.github.com/repos/huggingface/datasets/issues/6544
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6544/events
[]
null
2024-01-02T11:02:39Z
[]
https://github.com/huggingface/datasets/pull/6544
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6544). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005462 / 0.011353 (-0.005891) | 0.003918 / 0.011008 (-0.007090) | 0.065021 / 0.038508 (0.026513) | 0.032620 / 0.023109 (0.009511) | 0.249794 / 0.275898 (-0.026104) | 0.277330 / 0.323480 (-0.046150) | 0.002962 / 0.007986 (-0.005023) | 0.003435 / 0.004328 (-0.000894) | 0.048992 / 0.004250 (0.044742) | 0.046841 / 0.037052 (0.009788) | 0.252459 / 0.258489 (-0.006030) | 0.287889 / 0.293841 (-0.005952) | 0.028322 / 0.128546 (-0.100224) | 0.011214 / 0.075646 (-0.064432) | 0.208555 / 0.419271 (-0.210717) | 0.037004 / 0.043533 (-0.006529) | 0.262537 / 0.255139 (0.007398) | 0.307418 / 0.283200 (0.024218) | 0.021552 / 0.141683 (-0.120131) | 1.144252 / 1.452155 (-0.307903) | 1.195687 / 1.492716 (-0.297029) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004766 / 0.018006 (-0.013240) | 0.301926 / 0.000490 (0.301436) | 0.000218 / 0.000200 (0.000018) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.017891 / 0.037411 (-0.019521) | 0.066848 / 0.014526 (0.052322) | 0.075522 / 0.176557 (-0.101035) | 0.120762 / 0.737135 (-0.616374) | 0.075980 / 0.296338 (-0.220359) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284843 / 0.215209 (0.069634) | 2.816260 / 2.077655 (0.738605) | 1.484370 / 1.504120 (-0.019750) | 1.362090 / 1.541195 (-0.179104) | 1.421729 / 1.468490 (-0.046762) | 0.561673 / 4.584777 (-4.023104) | 2.370793 / 3.745712 (-1.374919) | 2.982639 / 5.269862 (-2.287223) | 1.834614 / 4.565676 (-2.731063) | 0.063158 / 0.424275 (-0.361117) | 0.005044 / 0.007607 (-0.002563) | 0.339834 / 0.226044 (0.113790) | 3.369051 / 2.268929 (1.100122) | 1.821040 / 55.444624 (-53.623584) | 1.544009 / 6.876477 (-5.332468) | 1.603902 / 2.142072 (-0.538171) | 0.638151 / 4.805227 (-4.167076) | 0.117012 / 6.500664 (-6.383652) | 0.042999 / 0.075469 (-0.032470) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.941809 / 1.841788 (-0.899978) | 12.279635 / 8.074308 (4.205326) | 10.212876 / 10.191392 (0.021484) | 0.129904 / 0.680424 (-0.550519) | 0.014210 / 0.534201 (-0.519991) | 0.286140 / 0.579283 (-0.293143) | 0.267453 / 0.434364 (-0.166911) | 0.324417 / 0.540337 (-0.215921) | 0.428262 / 1.386936 (-0.958674) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005351 / 0.011353 (-0.006002) | 0.003591 / 0.011008 (-0.007417) | 0.048755 / 0.038508 (0.010247) | 0.030857 / 0.023109 (0.007748) | 0.270301 / 0.275898 (-0.005597) | 0.294459 / 0.323480 (-0.029021) | 0.004265 / 0.007986 (-0.003720) | 0.002712 / 0.004328 (-0.001616) | 0.047725 / 0.004250 (0.043475) | 0.048392 / 0.037052 (0.011339) | 0.274226 / 0.258489 (0.015737) | 0.304010 / 0.293841 (0.010169) | 0.029283 / 0.128546 (-0.099263) | 0.011196 / 0.075646 (-0.064450) | 0.057213 / 0.419271 (-0.362058) | 0.057504 / 0.043533 (0.013971) | 0.266091 / 0.255139 (0.010952) | 0.285991 / 0.283200 (0.002791) | 0.020030 / 0.141683 (-0.121653) | 1.121514 / 1.452155 (-0.330641) | 1.192608 / 1.492716 (-0.300108) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095041 / 0.018006 (0.077035) | 0.301255 / 0.000490 (0.300765) | 0.000218 / 0.000200 (0.000018) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022265 / 0.037411 (-0.015146) | 0.078416 / 0.014526 (0.063890) | 0.091097 / 0.176557 (-0.085460) | 0.129864 / 0.737135 (-0.607272) | 0.091683 / 0.296338 (-0.204655) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294104 / 0.215209 (0.078895) | 2.886809 / 2.077655 (0.809154) | 1.601931 / 1.504120 (0.097811) | 1.469353 / 1.541195 (-0.071842) | 1.525132 / 1.468490 (0.056642) | 0.565164 / 4.584777 (-4.019613) | 2.432873 / 3.745712 (-1.312839) | 2.885849 / 5.269862 (-2.384013) | 1.780474 / 4.565676 (-2.785203) | 0.064358 / 0.424275 (-0.359917) | 0.005186 / 0.007607 (-0.002421) | 0.349374 / 0.226044 (0.123329) | 3.424751 / 2.268929 (1.155823) | 1.956874 / 55.444624 (-53.487750) | 1.679002 / 6.876477 (-5.197475) | 1.718821 / 2.142072 (-0.423252) | 0.656974 / 4.805227 (-4.148254) | 0.120645 / 6.500664 (-6.380019) | 0.042355 / 0.075469 (-0.033114) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.001923 / 1.841788 (-0.839864) | 13.208127 / 8.074308 (5.133819) | 11.164863 / 10.191392 (0.973471) | 0.131964 / 0.680424 (-0.548460) | 0.015344 / 0.534201 (-0.518857) | 0.287961 / 0.579283 (-0.291322) | 0.273986 / 0.434364 (-0.160378) | 0.327280 / 0.540337 (-0.213058) | 0.426761 / 1.386936 (-0.960175) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ebb913eca80807521239efece1ff305625cb89b4 \"CML watermark\")\n", "Thanks for the fix and the patch release. This confirms that, as I suggested in the Summer, maybe we should avoid making a release right before leaving on holidays." ]
Fix custom configs from script
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6544/reactions" }
PR_kwDODunzps5i-G4_
{ "diff_url": "https://github.com/huggingface/datasets/pull/6544.diff", "html_url": "https://github.com/huggingface/datasets/pull/6544", "merged_at": "2023-12-30T16:09:49Z", "patch_url": "https://github.com/huggingface/datasets/pull/6544.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6544" }
2023-12-30T15:51:25Z
https://api.github.com/repos/huggingface/datasets/issues/6544/comments
We should not use the parquet export when the user is passing config_kwargs I also fixed a regression that would disallow creating a custom config when a dataset has multiple predefined configs fix https://github.com/huggingface/datasets/issues/6533
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6544/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6544/timeline
closed
false
6,544
null
2023-12-30T16:09:49Z
null
true
2,060,776,174
https://api.github.com/repos/huggingface/datasets/issues/6543
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6543/events
[]
null
2023-12-30T16:00:06Z
[]
https://github.com/huggingface/datasets/pull/6543
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6543). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004950 / 0.011353 (-0.006403) | 0.003502 / 0.011008 (-0.007506) | 0.062517 / 0.038508 (0.024009) | 0.030965 / 0.023109 (0.007856) | 0.250661 / 0.275898 (-0.025237) | 0.279165 / 0.323480 (-0.044314) | 0.002960 / 0.007986 (-0.005026) | 0.003382 / 0.004328 (-0.000946) | 0.048174 / 0.004250 (0.043923) | 0.042975 / 0.037052 (0.005922) | 0.248079 / 0.258489 (-0.010410) | 0.283770 / 0.293841 (-0.010070) | 0.027935 / 0.128546 (-0.100611) | 0.010634 / 0.075646 (-0.065012) | 0.207039 / 0.419271 (-0.212233) | 0.035863 / 0.043533 (-0.007670) | 0.257426 / 0.255139 (0.002287) | 0.274222 / 0.283200 (-0.008978) | 0.017590 / 0.141683 (-0.124093) | 1.126889 / 1.452155 (-0.325266) | 1.160795 / 1.492716 (-0.331921) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004298 / 0.018006 (-0.013708) | 0.301366 / 0.000490 (0.300876) | 0.000202 / 0.000200 (0.000002) | 0.000050 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018159 / 0.037411 (-0.019252) | 0.060566 / 0.014526 (0.046041) | 0.072500 / 0.176557 (-0.104057) | 0.119612 / 0.737135 (-0.617523) | 0.074467 / 0.296338 (-0.221871) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281859 / 0.215209 (0.066650) | 2.760157 / 2.077655 (0.682502) | 1.450632 / 1.504120 (-0.053487) | 1.326636 / 1.541195 (-0.214559) | 1.363381 / 1.468490 (-0.105109) | 0.576199 / 4.584777 (-4.008578) | 2.355776 / 3.745712 (-1.389936) | 2.807308 / 5.269862 (-2.462553) | 1.745449 / 4.565676 (-2.820228) | 0.063413 / 0.424275 (-0.360862) | 0.004978 / 0.007607 (-0.002630) | 0.332738 / 0.226044 (0.106693) | 3.267677 / 2.268929 (0.998748) | 1.766074 / 55.444624 (-53.678551) | 1.500853 / 6.876477 (-5.375624) | 1.532434 / 2.142072 (-0.609639) | 0.648238 / 4.805227 (-4.156989) | 0.116030 / 6.500664 (-6.384634) | 0.042018 / 0.075469 (-0.033451) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.934325 / 1.841788 (-0.907463) | 11.439765 / 8.074308 (3.365457) | 9.958624 / 10.191392 (-0.232768) | 0.130295 / 0.680424 (-0.550129) | 0.014437 / 0.534201 (-0.519764) | 0.286073 / 0.579283 (-0.293210) | 0.262430 / 0.434364 (-0.171934) | 0.323905 / 0.540337 (-0.216432) | 0.416615 / 1.386936 (-0.970321) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005149 / 0.011353 (-0.006204) | 0.003517 / 0.011008 (-0.007491) | 0.048658 / 0.038508 (0.010150) | 0.029638 / 0.023109 (0.006529) | 0.271002 / 0.275898 (-0.004896) | 0.324910 / 0.323480 (0.001430) | 0.004086 / 0.007986 (-0.003900) | 0.002609 / 0.004328 (-0.001719) | 0.047806 / 0.004250 (0.043556) | 0.045422 / 0.037052 (0.008369) | 0.274317 / 0.258489 (0.015828) | 0.304544 / 0.293841 (0.010703) | 0.029318 / 0.128546 (-0.099229) | 0.010626 / 0.075646 (-0.065020) | 0.057838 / 0.419271 (-0.361434) | 0.052408 / 0.043533 (0.008875) | 0.267736 / 0.255139 (0.012597) | 0.292024 / 0.283200 (0.008824) | 0.019244 / 0.141683 (-0.122439) | 1.167728 / 1.452155 (-0.284427) | 1.226364 / 1.492716 (-0.266352) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092441 / 0.018006 (0.074435) | 0.310316 / 0.000490 (0.309827) | 0.000218 / 0.000200 (0.000018) | 0.000049 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021818 / 0.037411 (-0.015594) | 0.076515 / 0.014526 (0.061989) | 0.089179 / 0.176557 (-0.087377) | 0.127034 / 0.737135 (-0.610102) | 0.089646 / 0.296338 (-0.206692) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292056 / 0.215209 (0.076847) | 2.841410 / 2.077655 (0.763756) | 1.550626 / 1.504120 (0.046506) | 1.426204 / 1.541195 (-0.114990) | 1.445838 / 1.468490 (-0.022652) | 0.555777 / 4.584777 (-4.029000) | 2.441077 / 3.745712 (-1.304635) | 2.773445 / 5.269862 (-2.496416) | 1.728951 / 4.565676 (-2.836726) | 0.062579 / 0.424275 (-0.361697) | 0.005063 / 0.007607 (-0.002544) | 0.350749 / 0.226044 (0.124705) | 3.461702 / 2.268929 (1.192773) | 1.892506 / 55.444624 (-53.552118) | 1.625958 / 6.876477 (-5.250519) | 1.649175 / 2.142072 (-0.492898) | 0.636123 / 4.805227 (-4.169105) | 0.116548 / 6.500664 (-6.384116) | 0.041174 / 0.075469 (-0.034295) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.973468 / 1.841788 (-0.868320) | 12.104761 / 8.074308 (4.030453) | 11.131691 / 10.191392 (0.940299) | 0.132309 / 0.680424 (-0.548115) | 0.016191 / 0.534201 (-0.518010) | 0.284748 / 0.579283 (-0.294535) | 0.282661 / 0.434364 (-0.151703) | 0.323797 / 0.540337 (-0.216540) | 0.417767 / 1.386936 (-0.969169) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#72b440325f6a84d341ea57539d8c368a001e2e75 \"CML watermark\")\n" ]
Fix dl_manager.extract returning FileNotFoundError
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6543/reactions" }
PR_kwDODunzps5i-Frx
{ "diff_url": "https://github.com/huggingface/datasets/pull/6543.diff", "html_url": "https://github.com/huggingface/datasets/pull/6543", "merged_at": "2023-12-30T15:53:59Z", "patch_url": "https://github.com/huggingface/datasets/pull/6543.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6543" }
2023-12-30T15:24:50Z
https://api.github.com/repos/huggingface/datasets/issues/6543/comments
The dl_manager base path is remote (e.g. a hf:// path), so local cached paths should be passed as absolute paths. This could happen if users provide a relative path as `cache_dir` fix https://github.com/huggingface/datasets/issues/6536
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6543/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6543/timeline
closed
false
6,543
null
2023-12-30T15:53:59Z
null
true
2,059,198,575
https://api.github.com/repos/huggingface/datasets/issues/6542
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6542/events
[]
null
2024-01-02T13:21:06Z
[]
https://github.com/huggingface/datasets/issues/6542
NONE
completed
null
null
[ "Hi ! We now recommend using the `wikimedia/wikipedia` dataset, can you try loading this one instead ?\r\n\r\n```python\r\nwiki_dataset = load_dataset(\"wikimedia/wikipedia\", \"20231101.en\")\r\n```", "This bug has been fixed in `2.16.1` thanks to https://github.com/huggingface/datasets/pull/6544, feel free to update `datasets` and re-run your code :)\r\n\r\n```\r\npip install -U datasets\r\n```" ]
Datasets : wikipedia 20220301.en error
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6542/reactions" }
I_kwDODunzps56vOBv
null
2023-12-29T08:34:51Z
https://api.github.com/repos/huggingface/datasets/issues/6542/comments
### Describe the bug When I used load_dataset to download this data set, the following error occurred. The main problem was that the target data did not exist. ### Steps to reproduce the bug 1.I tried downloading directly. ```python wiki_dataset = load_dataset("wikipedia", "20220301.en") ``` An exception occurred ``` MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20220301.en', beam_runner='DirectRunner')` ``` 2.I modified the code as prompted. ```python wiki_dataset = load_dataset('wikipedia', '20220301.en', beam_runner='DirectRunner') ``` An exception occurred: ``` FileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/enwiki/20220301/dumpstatus.json ``` ### Expected behavior I searched in the parent directory of the corresponding URL, but there was no corresponding "20220301" directory. I really need this data set and hope to provide a download method. ### Environment info python 3.8 datasets 2.16.0 apache-beam 2.52.0 dill 0.3.7
{ "avatar_url": "https://avatars.githubusercontent.com/u/53203620?v=4", "events_url": "https://api.github.com/users/ppx666/events{/privacy}", "followers_url": "https://api.github.com/users/ppx666/followers", "following_url": "https://api.github.com/users/ppx666/following{/other_user}", "gists_url": "https://api.github.com/users/ppx666/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ppx666", "id": 53203620, "login": "ppx666", "node_id": "MDQ6VXNlcjUzMjAzNjIw", "organizations_url": "https://api.github.com/users/ppx666/orgs", "received_events_url": "https://api.github.com/users/ppx666/received_events", "repos_url": "https://api.github.com/users/ppx666/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ppx666/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ppx666/subscriptions", "type": "User", "url": "https://api.github.com/users/ppx666" }
https://api.github.com/repos/huggingface/datasets/issues/6542/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6542/timeline
closed
false
6,542
null
2024-01-02T13:20:30Z
null
false
2,058,983,826
https://api.github.com/repos/huggingface/datasets/issues/6541
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6541/events
[]
null
2024-01-17T00:40:46Z
[]
https://github.com/huggingface/datasets/issues/6541
NONE
completed
null
null
[ "This is a problem with your environment. You should be able to fix it by upgrading `numpy` based on [this](https://github.com/numpy/numpy/issues/23570) issue.", "Bro I already update numpy package.", "Then, this shouldn't throw an error on your machine:\r\n```python\r\nimport numpy\r\nnumpy._no_nep50_warning\r\n```\r\n\r\nIf it does, run `python -m pip install numpy` to ensure the correct `pip` is used for the package installation.", "Your suggestion to run `python -m pip install numpy` proved to be successful, and my issue has been resolved. I am grateful for your assistance, @mariosasko" ]
Dataset not loading successfully.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6541/reactions" }
I_kwDODunzps56uZmS
null
2023-12-29T01:35:47Z
https://api.github.com/repos/huggingface/datasets/issues/6541/comments
### Describe the bug When I run down the below code shows this error: AttributeError: module 'numpy' has no attribute '_no_nep50_warning' I also added this issue in transformers library please check out: [link](https://github.com/huggingface/transformers/issues/28099) ### Steps to reproduce the bug ## Reproduction Hi, please check this line of code, when I run Show attribute error. ``` from datasets import load_dataset from transformers import WhisperProcessor, WhisperForConditionalGeneration # Select an audio file and read it: ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") audio_sample = ds[0]["audio"] waveform = audio_sample["array"] sampling_rate = audio_sample["sampling_rate"] # Load the Whisper model in Hugging Face format: processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") # Use the model and processor to transcribe the audio: input_features = processor( waveform, sampling_rate=sampling_rate, return_tensors="pt" ).input_features # Generate token ids predicted_ids = model.generate(input_features) # Decode token ids to text transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) transcription[0] ``` **Attribute Error** ``` AttributeError Traceback (most recent call last) Cell In[9], line 6 4 # Select an audio file and read it: 5 ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") ----> 6 audio_sample = ds[0]["audio"] 7 waveform = audio_sample["array"] 8 sampling_rate = audio_sample["sampling_rate"] File /opt/pytorch/lib/python3.8/site-packages/datasets/arrow_dataset.py:2795, in Dataset.__getitem__(self, key) 2793 def __getitem__(self, key): # noqa: F811 2794 """Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools).""" -> 2795 return self._getitem(key) File /opt/pytorch/lib/python3.8/site-packages/datasets/arrow_dataset.py:2780, in Dataset._getitem(self, key, **kwargs) 2778 formatter = get_formatter(format_type, features=self._info.features, **format_kwargs) 2779 pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None) -> 2780 formatted_output = format_table( 2781 pa_subtable, key, formatter=formatter, format_columns=format_columns, output_all_columns=output_all_columns 2782 ) 2783 return formatted_output File /opt/pytorch/lib/python3.8/site-packages/datasets/formatting/formatting.py:629, in format_table(table, key, formatter, format_columns, output_all_columns) 627 python_formatter = PythonFormatter(features=formatter.features) 628 if format_columns is None: --> 629 return formatter(pa_table, query_type=query_type) 630 elif query_type == "column": 631 if key in format_columns: File /opt/pytorch/lib/python3.8/site-packages/datasets/formatting/formatting.py:396, in Formatter.__call__(self, pa_table, query_type) 394 def __call__(self, pa_table: pa.Table, query_type: str) -> Union[RowFormat, ColumnFormat, BatchFormat]: 395 if query_type == "row": --> 396 return self.format_row(pa_table) 397 elif query_type == "column": 398 return self.format_column(pa_table) File /opt/pytorch/lib/python3.8/site-packages/datasets/formatting/formatting.py:437, in PythonFormatter.format_row(self, pa_table) 435 return LazyRow(pa_table, self) 436 row = self.python_arrow_extractor().extract_row(pa_table) --> 437 row = self.python_features_decoder.decode_row(row) 438 return row File /opt/pytorch/lib/python3.8/site-packages/datasets/formatting/formatting.py:215, in PythonFeaturesDecoder.decode_row(self, row) 214 def decode_row(self, row: dict) -> dict: --> 215 return self.features.decode_example(row) if self.features else row File /opt/pytorch/lib/python3.8/site-packages/datasets/features/features.py:1917, in Features.decode_example(self, example, token_per_repo_id) 1903 def decode_example(self, example: dict, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None): 1904 """Decode example with custom feature decoding. 1905 1906 Args: (...) 1914 `dict[str, Any]` 1915 """ -> 1917 return { 1918 column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id) 1919 if self._column_requires_decoding[column_name] 1920 else value 1921 for column_name, (feature, value) in zip_dict( 1922 {key: value for key, value in self.items() if key in example}, example 1923 ) 1924 } File /opt/pytorch/lib/python3.8/site-packages/datasets/features/features.py:1918, in <dictcomp>(.0) 1903 def decode_example(self, example: dict, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None): 1904 """Decode example with custom feature decoding. 1905 1906 Args: (...) 1914 `dict[str, Any]` 1915 """ 1917 return { -> 1918 column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id) 1919 if self._column_requires_decoding[column_name] 1920 else value 1921 for column_name, (feature, value) in zip_dict( 1922 {key: value for key, value in self.items() if key in example}, example 1923 ) 1924 } File /opt/pytorch/lib/python3.8/site-packages/datasets/features/features.py:1339, in decode_nested_example(schema, obj, token_per_repo_id) 1336 elif isinstance(schema, (Audio, Image)): 1337 # we pass the token to read and decode files from private repositories in streaming mode 1338 if obj is not None and schema.decode: -> 1339 return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) 1340 return obj File /opt/pytorch/lib/python3.8/site-packages/datasets/features/audio.py:191, in Audio.decode_example(self, value, token_per_repo_id) 189 array = array.T 190 if self.mono: --> 191 array = librosa.to_mono(array) 192 if self.sampling_rate and self.sampling_rate != sampling_rate: 193 array = librosa.resample(array, orig_sr=sampling_rate, target_sr=self.sampling_rate) File /opt/pytorch/lib/python3.8/site-packages/lazy_loader/__init__.py:78, in attach.<locals>.__getattr__(name) 76 submod_path = f"{package_name}.{attr_to_modules[name]}" 77 submod = importlib.import_module(submod_path) ---> 78 attr = getattr(submod, name) 80 # If the attribute lives in a file (module) with the same 81 # name as the attribute, ensure that the attribute and *not* 82 # the module is accessible on the package. 83 if name == attr_to_modules[name]: File /opt/pytorch/lib/python3.8/site-packages/lazy_loader/__init__.py:77, in attach.<locals>.__getattr__(name) 75 elif name in attr_to_modules: 76 submod_path = f"{package_name}.{attr_to_modules[name]}" ---> 77 submod = importlib.import_module(submod_path) 78 attr = getattr(submod, name) 80 # If the attribute lives in a file (module) with the same 81 # name as the attribute, ensure that the attribute and *not* 82 # the module is accessible on the package. File /usr/lib/python3.8/importlib/__init__.py:127, in import_module(name, package) 125 break 126 level += 1 --> 127 return _bootstrap._gcd_import(name[level:], package, level) File <frozen importlib._bootstrap>:1014, in _gcd_import(name, package, level) File <frozen importlib._bootstrap>:991, in _find_and_load(name, import_) File <frozen importlib._bootstrap>:975, in _find_and_load_unlocked(name, import_) File <frozen importlib._bootstrap>:671, in _load_unlocked(spec) File <frozen importlib._bootstrap_external>:848, in exec_module(self, module) File <frozen importlib._bootstrap>:219, in _call_with_frames_removed(f, *args, **kwds) File /opt/pytorch/lib/python3.8/site-packages/librosa/core/audio.py:13 11 import audioread 12 import numpy as np ---> 13 import scipy.signal 14 import soxr 15 import lazy_loader as lazy File /opt/pytorch/lib/python3.8/site-packages/scipy/signal/__init__.py:323 314 from ._spline import ( # noqa: F401 315 cspline2d, 316 qspline2d, (...) 319 symiirorder2, 320 ) 322 from ._bsplines import * --> 323 from ._filter_design import * 324 from ._fir_filter_design import * 325 from ._ltisys import * File /opt/pytorch/lib/python3.8/site-packages/scipy/signal/_filter_design.py:16 13 from numpy.polynomial.polynomial import polyval as npp_polyval 14 from numpy.polynomial.polynomial import polyvalfromroots ---> 16 from scipy import special, optimize, fft as sp_fft 17 from scipy.special import comb 18 from scipy._lib._util import float_factorial File /opt/pytorch/lib/python3.8/site-packages/scipy/optimize/__init__.py:405 1 """ 2 ===================================================== 3 Optimization and root finding (:mod:`scipy.optimize`) (...) 401 402 """ 404 from ._optimize import * --> 405 from ._minimize import * 406 from ._root import * 407 from ._root_scalar import * File /opt/pytorch/lib/python3.8/site-packages/scipy/optimize/_minimize.py:26 24 from ._trustregion_krylov import _minimize_trust_krylov 25 from ._trustregion_exact import _minimize_trustregion_exact ---> 26 from ._trustregion_constr import _minimize_trustregion_constr 28 # constrained minimization 29 from ._lbfgsb_py import _minimize_lbfgsb File /opt/pytorch/lib/python3.8/site-packages/scipy/optimize/_trustregion_constr/__init__.py:4 1 """This module contains the equality constrained SQP solver.""" ----> 4 from .minimize_trustregion_constr import _minimize_trustregion_constr 6 __all__ = ['_minimize_trustregion_constr'] File /opt/pytorch/lib/python3.8/site-packages/scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py:5 3 from scipy.sparse.linalg import LinearOperator 4 from .._differentiable_functions import VectorFunction ----> 5 from .._constraints import ( 6 NonlinearConstraint, LinearConstraint, PreparedConstraint, strict_bounds) 7 from .._hessian_update_strategy import BFGS 8 from .._optimize import OptimizeResult File /opt/pytorch/lib/python3.8/site-packages/scipy/optimize/_constraints.py:8 6 from ._optimize import OptimizeWarning 7 from warnings import warn, catch_warnings, simplefilter ----> 8 from numpy.testing import suppress_warnings 9 from scipy.sparse import issparse 12 def _arr_to_scalar(x): 13 # If x is a numpy array, return x.item(). This will 14 # fail if the array has more than one element. File /opt/pytorch/lib/python3.8/site-packages/numpy/testing/__init__.py:11 8 from unittest import TestCase 10 from . import _private ---> 11 from ._private.utils import * 12 from ._private.utils import (_assert_valid_refcount, _gen_alignment_data) 13 from ._private import extbuild, decorators as dec File /opt/pytorch/lib/python3.8/site-packages/numpy/testing/_private/utils.py:480 476 pprint.pprint(desired, msg) 477 raise AssertionError(msg.getvalue()) --> 480 @np._no_nep50_warning() 481 def assert_almost_equal(actual,desired,decimal=7,err_msg='',verbose=True): 482 """ 483 Raises an AssertionError if two items are not equal up to desired 484 precision. (...) 548 549 """ 550 __tracebackhide__ = True # Hide traceback for py.test File /opt/pytorch/lib/python3.8/site-packages/numpy/__init__.py:313, in __getattr__(attr) 305 raise AttributeError(__former_attrs__[attr]) 307 # Importing Tester requires importing all of UnitTest which is not a 308 # cheap import Since it is mainly used in test suits, we lazy import it 309 # here to save on the order of 10 ms of import time for most users 310 # 311 # The previous way Tester was imported also had a side effect of adding 312 # the full `numpy.testing` namespace --> 313 if attr == 'testing': 314 import numpy.testing as testing 315 return testing AttributeError: module 'numpy' has no attribute '_no_nep50_warning' ``` ### Expected behavior ``` ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' ``` Also, make sure this script is provided for your official website so please update: [script](https://huggingface.co/docs/transformers/model_doc/whisper) ### Environment info **System Info** * transformers -> 4.36.1 * datasets -> 2.15.0 * huggingface_hub -> 0.19.4 * python -> 3.8.10 * accelerate -> 0.25.0 * pytorch -> 2.0.1+cpu * Using GPU in Script -> No
{ "avatar_url": "https://avatars.githubusercontent.com/u/93595990?v=4", "events_url": "https://api.github.com/users/hi-sushanta/events{/privacy}", "followers_url": "https://api.github.com/users/hi-sushanta/followers", "following_url": "https://api.github.com/users/hi-sushanta/following{/other_user}", "gists_url": "https://api.github.com/users/hi-sushanta/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hi-sushanta", "id": 93595990, "login": "hi-sushanta", "node_id": "U_kgDOBZQpVg", "organizations_url": "https://api.github.com/users/hi-sushanta/orgs", "received_events_url": "https://api.github.com/users/hi-sushanta/received_events", "repos_url": "https://api.github.com/users/hi-sushanta/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hi-sushanta/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hi-sushanta/subscriptions", "type": "User", "url": "https://api.github.com/users/hi-sushanta" }
https://api.github.com/repos/huggingface/datasets/issues/6541/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6541/timeline
closed
false
6,541
null
2024-01-17T00:40:45Z
null
false
2,058,965,157
https://api.github.com/repos/huggingface/datasets/issues/6540
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6540/events
[]
null
2023-12-30T15:05:48Z
[]
https://github.com/huggingface/datasets/issues/6540
NONE
null
null
null
[ "Concatenating datasets doesn't create any indices mapping - so flattening indices is not needed (unless you shuffle the dataset).\r\nCan you share the snippet of code you are using to merge your datasets and save them to disk ?" ]
Extreme inefficiency for `save_to_disk` when merging datasets
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6540/reactions" }
I_kwDODunzps56uVCl
null
2023-12-29T00:44:35Z
https://api.github.com/repos/huggingface/datasets/issues/6540/comments
### Describe the bug Hi, I tried to merge in total 22M sequences of data, where each sequence is of maximum length 2000. I found that merging these datasets and then `save_to_disk` is extremely slow because of flattening the indices. Wondering if you have any suggestions or guidance on this. Thank you very much! ### Steps to reproduce the bug The source data is too big to demonstrate ### Expected behavior The source data is too big to demonstrate ### Environment info python 3.9.0 datasets 2.7.0 pytorch 2.0.0 tokenizers 0.13.1 transformers 4.31.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/43512683?v=4", "events_url": "https://api.github.com/users/KatarinaYuan/events{/privacy}", "followers_url": "https://api.github.com/users/KatarinaYuan/followers", "following_url": "https://api.github.com/users/KatarinaYuan/following{/other_user}", "gists_url": "https://api.github.com/users/KatarinaYuan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/KatarinaYuan", "id": 43512683, "login": "KatarinaYuan", "node_id": "MDQ6VXNlcjQzNTEyNjgz", "organizations_url": "https://api.github.com/users/KatarinaYuan/orgs", "received_events_url": "https://api.github.com/users/KatarinaYuan/received_events", "repos_url": "https://api.github.com/users/KatarinaYuan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/KatarinaYuan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/KatarinaYuan/subscriptions", "type": "User", "url": "https://api.github.com/users/KatarinaYuan" }
https://api.github.com/repos/huggingface/datasets/issues/6540/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6540/timeline
open
false
6,540
null
null
null
false
2,058,493,960
https://api.github.com/repos/huggingface/datasets/issues/6539
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6539/events
[]
null
2023-12-28T14:18:37Z
[]
https://github.com/huggingface/datasets/issues/6539
NONE
null
null
null
[]
'Repo card metadata block was not found' when loading a pragmeval dataset
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6539/reactions" }
I_kwDODunzps56siAI
null
2023-12-28T14:18:25Z
https://api.github.com/repos/huggingface/datasets/issues/6539/comments
### Describe the bug I can't load dataset subsets of 'pragmeval'. The funny thing is I ran the dataset author's [colab notebook](https://colab.research.google.com/drive/1sg--LF4z7XR1wxAOfp0-3d4J6kQ9nj_A?usp=sharing) and it works just fine. I tried to install exactly the same packages that are installed on colab using poetry, so my environment info only differs from the one from colab in linux version - I still get the same bug outside colab. ### Steps to reproduce the bug Install dependencies with poetry pyproject.toml ``` [tool.poetry] name = "project" version = "0.1.0" description = "" authors = [] [tool.poetry.dependencies] python = "^3.10" datasets = "2.16.0" pandas = "1.5.3" pyarrow = "10.0.1" huggingface-hub = "0.19.4" fsspec = "2023.6.0" [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api" ``` `poetry run python -c "import datasets; print(datasets.get_dataset_config_names('pragmeval'))` prints ['default'] ### Expected behavior The command should print ``` ['emergent', 'emobank-arousal', 'emobank-dominance', 'emobank-valence', 'gum', 'mrda', 'pdtb', 'persuasiveness-claimtype', 'persuasiveness-eloquence', 'persuasiveness-premisetype', 'persuasiveness-relevance', 'persuasiveness-specificity', 'persuasiveness-strength', 'sarcasm', 'squinky-formality', 'squinky-implicature', 'squinky-informativeness', 'stac', 'switchboard', 'verifiability'] ``` ### Environment info - `datasets` version: 2.16.0 - Platform: Linux-6.2.0-37-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.19.4 - PyArrow version: 10.0.1 - Pandas version: 1.5.3 - `fsspec` version: 2023.6.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/3647577?v=4", "events_url": "https://api.github.com/users/lambdaofgod/events{/privacy}", "followers_url": "https://api.github.com/users/lambdaofgod/followers", "following_url": "https://api.github.com/users/lambdaofgod/following{/other_user}", "gists_url": "https://api.github.com/users/lambdaofgod/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lambdaofgod", "id": 3647577, "login": "lambdaofgod", "node_id": "MDQ6VXNlcjM2NDc1Nzc=", "organizations_url": "https://api.github.com/users/lambdaofgod/orgs", "received_events_url": "https://api.github.com/users/lambdaofgod/received_events", "repos_url": "https://api.github.com/users/lambdaofgod/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lambdaofgod/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lambdaofgod/subscriptions", "type": "User", "url": "https://api.github.com/users/lambdaofgod" }
https://api.github.com/repos/huggingface/datasets/issues/6539/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6539/timeline
open
false
6,539
null
null
null
false
2,057,377,630
https://api.github.com/repos/huggingface/datasets/issues/6538
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6538/events
[]
null
2024-01-03T10:06:47Z
[]
https://github.com/huggingface/datasets/issues/6538
NONE
completed
null
null
[ "Hi ! Are you sure you have `datasets` 2.16 ? I just checked and on 2.16 I can run `from datasets.arrow_writer import SchemaInferenceError` without error", "I have the same issue - using with datasets version 2.16.1. Also this is on a kaggle notebook - other people with the same issue also seem to be having it on kaggle?", "I have the same issue now and didn't have this problem around 2 weeks ago.", "> Hi ! Are you sure you have `datasets` 2.16 ? I just checked and on 2.16 I can run `from datasets.arrow_writer import SchemaInferenceError` without error\r\n\r\nYes, I am sure\r\n\r\n```\r\n!pip show datasets\r\nName: datasets\r\nVersion: 2.16.1\r\nSummary: HuggingFace community-driven open-source library of datasets\r\nHome-page: https://github.com/huggingface/datasets\r\nAuthor: HuggingFace Inc.\r\nAuthor-email: thomas@huggingface.co\r\nLicense: Apache 2.0\r\nLocation: /opt/conda/lib/python3.10/site-packages\r\nRequires: aiohttp, dill, filelock, fsspec, huggingface-hub, multiprocess, numpy, packaging, pandas, pyarrow, pyarrow-hotfix, pyyaml, requests, tqdm, xxhash\r\nRequired-by: trl\r\n```", "> I have the same issue - using with datasets version 2.16.1. Also this is on a kaggle notebook - other people with the same issue also seem to be having it on kaggle?\r\n\r\nDon't know about other people. But I am having this issue whose solution I can't find anywhere. And this issue still persists. ", "> I have the same issue now and didn't have this problem around 2 weeks ago.\r\n\r\nSame here", "I was having the same issue but the datasets version was 2.6.1, after I updated it to latest(2.16), error is gone while importing.\r\n", "> I was having the same issue but the datasets version was 2.6.1, after I updated it to latest(2.16), error is gone while importing.\r\n\r\nI also have datasets version 2.16, but the error is still there.", "Can you try re-installing `datasets` ?", "> Can you try re-installing `datasets` ?\r\n\r\nI tried re-installing. Still getting the same error. \r\n", "> > Can you try re-installing `datasets` ?\r\n> \r\n> I tried re-installing. Still getting the same error.\r\n\r\nIn kaggle I used:\r\n- `%pip install -U datasets`\r\nand then restarted runtime and then everything works fine.", "> > > Can you try re-installing `datasets` ?\r\n> > \r\n> > \r\n> > I tried re-installing. Still getting the same error.\r\n> \r\n> In kaggle I used:\r\n> \r\n> * `%pip install -U datasets`\r\n> and then restarted runtime and then everything works fine.\r\n\r\nYes, this is working. When I restart the runtime after installing packages, it's working perfectly. Thank you so much. But why do we need to restart runtime every time after installing packages?", "> > > > Can you try re-installing `datasets` ?\r\n> > > \r\n> > > \r\n> > > I tried re-installing. Still getting the same error.\r\n> > \r\n> > \r\n> > In kaggle I used:\r\n> > \r\n> > * `%pip install -U datasets`\r\n> > and then restarted runtime and then everything works fine.\r\n> \r\n> Yes, this is working. When I restart the runtime after installing packages, it's working perfectly. Thank you so much. But why do we need to restart runtime every time after installing packages?\r\nFor some packages it is required.\r\nhttps://stackoverflow.com/questions/57831187/need-to-restart-runtime-before-import-an-installed-package-in-colab\r\n", "> > > > > Can you try re-installing `datasets` ?\r\n> > > > \r\n> > > > \r\n> > > > I tried re-installing. Still getting the same error.\r\n> > > \r\n> > > \r\n> > > In kaggle I used:\r\n> > > \r\n> > > * `%pip install -U datasets`\r\n> > > and then restarted runtime and then everything works fine.\r\n> > \r\n> > \r\n> > Yes, this is working. When I restart the runtime after installing packages, it's working perfectly. Thank you so much. But why do we need to restart runtime every time after installing packages?\r\n> > For some packages it is required.\r\n> > https://stackoverflow.com/questions/57831187/need-to-restart-runtime-before-import-an-installed-package-in-colab\r\n\r\nThank you for your assistance. I dedicated the past 2-3 weeks to resolving this issue. Interestingly, it runs flawlessly in Colab without requiring a runtime restart. However, the problem persisted exclusively in Kaggle. I appreciate your help once again. Thank you.", "Closing this issue as it is not related to the datasets library; rather, it's linked to platform-related issues." ]
ImportError: cannot import name 'SchemaInferenceError' from 'datasets.arrow_writer' (/opt/conda/lib/python3.10/site-packages/datasets/arrow_writer.py)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6538/reactions" }
I_kwDODunzps56oRde
null
2023-12-27T13:31:16Z
https://api.github.com/repos/huggingface/datasets/issues/6538/comments
### Describe the bug While importing from packages getting the error Code: ``` import os import torch from datasets import load_dataset, Dataset from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, pipeline, logging ) from peft import LoraConfig, PeftModel from trl import SFTTrainer from huggingface_hub import login import pandas as pd ``` Error: ```` --------------------------------------------------------------------------- ImportError Traceback (most recent call last) Cell In[5], line 14 4 from transformers import ( 5 AutoModelForCausalLM, 6 AutoTokenizer, (...) 11 logging 12 ) 13 from peft import LoraConfig, PeftModel ---> 14 from trl import SFTTrainer 15 from huggingface_hub import login 16 import pandas as pd File /opt/conda/lib/python3.10/site-packages/trl/__init__.py:21 8 from .import_utils import ( 9 is_diffusers_available, 10 is_npu_available, (...) 13 is_xpu_available, 14 ) 15 from .models import ( 16 AutoModelForCausalLMWithValueHead, 17 AutoModelForSeq2SeqLMWithValueHead, 18 PreTrainedModelWrapper, 19 create_reference_model, 20 ) ---> 21 from .trainer import ( 22 DataCollatorForCompletionOnlyLM, 23 DPOTrainer, 24 IterativeSFTTrainer, 25 PPOConfig, 26 PPOTrainer, 27 RewardConfig, 28 RewardTrainer, 29 SFTTrainer, 30 ) 33 if is_diffusers_available(): 34 from .models import ( 35 DDPOPipelineOutput, 36 DDPOSchedulerOutput, 37 DDPOStableDiffusionPipeline, 38 DefaultDDPOStableDiffusionPipeline, 39 ) File /opt/conda/lib/python3.10/site-packages/trl/trainer/__init__.py:44 42 from .ppo_trainer import PPOTrainer 43 from .reward_trainer import RewardTrainer, compute_accuracy ---> 44 from .sft_trainer import SFTTrainer 45 from .training_configs import RewardConfig File /opt/conda/lib/python3.10/site-packages/trl/trainer/sft_trainer.py:23 21 import torch.nn as nn 22 from datasets import Dataset ---> 23 from datasets.arrow_writer import SchemaInferenceError 24 from datasets.builder import DatasetGenerationError 25 from transformers import ( 26 AutoModelForCausalLM, 27 AutoTokenizer, (...) 33 TrainingArguments, 34 ) ImportError: cannot import name 'SchemaInferenceError' from 'datasets.arrow_writer' (/opt/conda/lib/python3.10/site-packages/datasets/arrow_writer.py ```` transformers version: 4.36.2 python version: 3.10.12 datasets version: 2.16.1 ### Steps to reproduce the bug 1. Install packages ``` !pip install -U datasets trl accelerate peft bitsandbytes transformers trl huggingface_hub ``` 2. import packages ``` import os import torch from datasets import load_dataset, Dataset from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, pipeline, logging ) from peft import LoraConfig, PeftModel from trl import SFTTrainer from huggingface_hub import login import pandas as pd ``` ### Expected behavior No error while importing ### Environment info - `datasets` version: 2.16.0 - Platform: Linux-5.15.133+-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.20.1 - PyArrow version: 11.0.0 - Pandas version: 2.1.4 - `fsspec` version: 2023.10.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/131662185?v=4", "events_url": "https://api.github.com/users/Sonali-Behera-TRT/events{/privacy}", "followers_url": "https://api.github.com/users/Sonali-Behera-TRT/followers", "following_url": "https://api.github.com/users/Sonali-Behera-TRT/following{/other_user}", "gists_url": "https://api.github.com/users/Sonali-Behera-TRT/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Sonali-Behera-TRT", "id": 131662185, "login": "Sonali-Behera-TRT", "node_id": "U_kgDOB9kBaQ", "organizations_url": "https://api.github.com/users/Sonali-Behera-TRT/orgs", "received_events_url": "https://api.github.com/users/Sonali-Behera-TRT/received_events", "repos_url": "https://api.github.com/users/Sonali-Behera-TRT/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Sonali-Behera-TRT/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Sonali-Behera-TRT/subscriptions", "type": "User", "url": "https://api.github.com/users/Sonali-Behera-TRT" }
https://api.github.com/repos/huggingface/datasets/issues/6538/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6538/timeline
closed
false
6,538
null
2024-01-03T10:04:58Z
null
false
2,057,132,173
https://api.github.com/repos/huggingface/datasets/issues/6537
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6537/events
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
null
2023-12-27T20:46:53Z
[]
https://github.com/huggingface/datasets/issues/6537
NONE
null
null
null
[ "Related to #3113 ", "Conceptually, we can use xarray to load the netCDF file, then xarray -> pandas -> pyarrow.", "I'd still need to verify that such a conversion would be lossless, especially for multi-dimensional data." ]
Adding support for netCDF (*.nc) files
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6537/reactions" }
I_kwDODunzps56nViN
null
2023-12-27T09:27:29Z
https://api.github.com/repos/huggingface/datasets/issues/6537/comments
### Feature request netCDF (*.nc) is a file format for storing multidimensional scientific data, which is used by packages like `xarray` (labelled multi-dimensional arrays in Python). It would be nice to have native support for netCDF in `datasets`. ### Motivation When uploading *.nc files onto Huggingface Hub through the `datasets` API, I would like to be able to preview the dataset without converting it to another format. ### Your contribution I can submit a PR, provided I have the time.
{ "avatar_url": "https://avatars.githubusercontent.com/u/12627125?v=4", "events_url": "https://api.github.com/users/shermansiu/events{/privacy}", "followers_url": "https://api.github.com/users/shermansiu/followers", "following_url": "https://api.github.com/users/shermansiu/following{/other_user}", "gists_url": "https://api.github.com/users/shermansiu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/shermansiu", "id": 12627125, "login": "shermansiu", "node_id": "MDQ6VXNlcjEyNjI3MTI1", "organizations_url": "https://api.github.com/users/shermansiu/orgs", "received_events_url": "https://api.github.com/users/shermansiu/received_events", "repos_url": "https://api.github.com/users/shermansiu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/shermansiu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shermansiu/subscriptions", "type": "User", "url": "https://api.github.com/users/shermansiu" }
https://api.github.com/repos/huggingface/datasets/issues/6537/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6537/timeline
open
false
6,537
null
null
null
false
2,056,863,239
https://api.github.com/repos/huggingface/datasets/issues/6536
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6536/events
[]
null
2023-12-30T18:58:04Z
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" } ]
https://github.com/huggingface/datasets/issues/6536
NONE
completed
null
null
[ "Hi ! Thanks for reporting\r\n\r\nThis is a bug in 2.16.0 for some datasets when `cache_dir` is a relative path. I opened https://github.com/huggingface/datasets/pull/6543 to fix this", "We just released 2.16.1 with a fix:\r\n\r\n```\r\npip install -U datasets\r\n```" ]
datasets.load_dataset raises FileNotFoundError for datasets==2.16.0
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6536/reactions" }
I_kwDODunzps56mT4H
null
2023-12-27T03:15:48Z
https://api.github.com/repos/huggingface/datasets/issues/6536/comments
### Describe the bug Seems `datasets.load_dataset` raises FileNotFoundError for some hub datasets with the latest `datasets==2.16.0` ### Steps to reproduce the bug For example `pip install datasets==2.16.0` then ```python import datasets datasets.load_dataset("wentingzhao/anthropic-hh-first-prompt", cache_dir='cache1')["train"] ``` This will raise: ```bash Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/xxx/miniconda3/envs/env/lib/python3.9/site-packages/datasets/load.py", line 2545, in load_dataset builder_instance.download_and_prepare( File "/Users/xxx/miniconda3/envs/env/lib/python3.9/site-packages/datasets/builder.py", line 1003, in download_and_prepare self._download_and_prepare( File "/Users/xxx/miniconda3/envs/env/lib/python3.9/site-packages/datasets/builder.py", line 1076, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/Users/xxx/miniconda3/envs/env/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 43, in _split_generators data_files = dl_manager.download_and_extract(self.config.data_files) File "/Users/xxx/miniconda3/envs/env/lib/python3.9/site-packages/datasets/download/download_manager.py", line 566, in download_and_extract return self.extract(self.download(url_or_urls)) File "/Users/xxx/miniconda3/envs/env/lib/python3.9/site-packages/datasets/download/download_manager.py", line 539, in extract extracted_paths = map_nested( File "/Users/xxx/miniconda3/envs/env/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 466, in map_nested mapped = [ File "/Users/xxx/miniconda3/envs/env/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 467, in <listcomp> _single_map_nested((function, obj, types, None, True, None)) File "/Users/xxx/miniconda3/envs/env/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 387, in _single_map_nested mapped = [_single_map_nested((function, v, types, None, True, None)) for v in pbar] File "/Users/xxx/miniconda3/envs/env/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 387, in <listcomp> mapped = [_single_map_nested((function, v, types, None, True, None)) for v in pbar] File "/Users/xxx/miniconda3/envs/env/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 370, in _single_map_nested return function(data_struct) File "/Users/xxx/miniconda3/envs/env/lib/python3.9/site-packages/datasets/download/download_manager.py", line 451, in _download out = cached_path(url_or_filename, download_config=download_config) File "/Users/xxx/miniconda3/envs/env/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 188, in cached_path output_path = get_from_cache( File "/Users/xxx/miniconda3/envs/env/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 570, in get_from_cache raise FileNotFoundError(f"Couldn't find file at {url}") FileNotFoundError: Couldn't find file at https://huggingface.co/datasets/wentingzhao/anthropic-hh-first-prompt/resolve/11b393a5545f706a357ebcd4a5285d93db176715/cache1/downloads/87d66c365626feca116cba323c4856c9aae056e4503f09f23e34aa085eb9de15 ``` However, seems it works fine for some datasets, for example, if works fine for `datasets.load_dataset("ag_news", cache_dir='cache2')["test"]` But the dataset works fine for datasets==2.15.0, for example `pip install datasets==2.15.0`, then ```python import datasets datasets.load_dataset("wentingzhao/anthropic-hh-first-prompt", cache_dir='cache3')["train"] Dataset({ features: ['user', 'system', 'source'], num_rows: 8552 }) ``` ### Expected behavior 2.16.0 should work as same as 2.15.0 for all datasets ### Environment info python3.9 conda env tested on MacOS and Linux
{ "avatar_url": "https://avatars.githubusercontent.com/u/46237844?v=4", "events_url": "https://api.github.com/users/ArvinZhuang/events{/privacy}", "followers_url": "https://api.github.com/users/ArvinZhuang/followers", "following_url": "https://api.github.com/users/ArvinZhuang/following{/other_user}", "gists_url": "https://api.github.com/users/ArvinZhuang/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ArvinZhuang", "id": 46237844, "login": "ArvinZhuang", "node_id": "MDQ6VXNlcjQ2MjM3ODQ0", "organizations_url": "https://api.github.com/users/ArvinZhuang/orgs", "received_events_url": "https://api.github.com/users/ArvinZhuang/received_events", "repos_url": "https://api.github.com/users/ArvinZhuang/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ArvinZhuang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ArvinZhuang/subscriptions", "type": "User", "url": "https://api.github.com/users/ArvinZhuang" }
https://api.github.com/repos/huggingface/datasets/issues/6536/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6536/timeline
closed
false
6,536
null
2023-12-30T15:54:00Z
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
false
2,056,264,339
https://api.github.com/repos/huggingface/datasets/issues/6535
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6535/events
[]
null
2024-02-05T08:42:31Z
[]
https://github.com/huggingface/datasets/issues/6535
NONE
null
null
null
[ "@sabman @pvl @kashif @vigsterkr ", "This is surely the same issue as https://discuss.huggingface.co/t/indexerror-invalid-key-16-is-out-of-bounds-for-size-0/14298/25 that comes from the `transformers` `Trainer`. You should add `remove_unused_columns=False` to `TrainingArguments`\r\n\r\nAlso check your logs: the `Trainer` should log the length of your dataset before training starts and it surely showed length=0.", "the same error \r\nIndexError: Invalid key: 22330 is out of bounds for size 0" ]
IndexError: Invalid key: 47682 is out of bounds for size 0 while using PEFT
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6535/reactions" }
I_kwDODunzps56kBqT
null
2023-12-26T10:14:33Z
https://api.github.com/repos/huggingface/datasets/issues/6535/comments
### Describe the bug I am trying to fine-tune the t5 model on the paraphrasing task. While running the same code without- model = get_peft_model(model, config) the model trains without any issues. However, using the model returned from get_peft_model raises the following error due to datasets- IndexError: Invalid key: 47682 is out of bounds for size 0. I had raised this in https://github.com/huggingface/peft/issues/1299#issue-2056173386 and they suggested that I raise it here. Here is the complete error- IndexError Traceback (most recent call last) in <cell line: 1>() ----> 1 trainer.train() 11 frames [/usr/local/lib/python3.10/dist-packages/transformers/trainer.py](https://localhost:8080/#) in train(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs) 1553 hf_hub_utils.enable_progress_bars() 1554 else: -> 1555 return inner_training_loop( 1556 args=args, 1557 resume_from_checkpoint=resume_from_checkpoint, [/usr/local/lib/python3.10/dist-packages/transformers/trainer.py](https://localhost:8080/#) in _inner_training_loop(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval) 1836 1837 step = -1 -> 1838 for step, inputs in enumerate(epoch_iterator): 1839 total_batched_samples += 1 1840 if rng_to_sync: [/usr/local/lib/python3.10/dist-packages/accelerate/data_loader.py](https://localhost:8080/#) in iter(self) 446 # We iterate one batch ahead to check when we are at the end 447 try: --> 448 current_batch = next(dataloader_iter) 449 except StopIteration: 450 yield [/usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py](https://localhost:8080/#) in next(self) 628 # TODO(https://github.com/pytorch/pytorch/issues/76750) 629 self._reset() # type: ignore[call-arg] --> 630 data = self._next_data() 631 self._num_yielded += 1 632 if self._dataset_kind == _DatasetKind.Iterable and \ [/usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py](https://localhost:8080/#) in _next_data(self) 672 def _next_data(self): 673 index = self._next_index() # may raise StopIteration --> 674 data = self._dataset_fetcher.fetch(index) # may raise StopIteration 675 if self._pin_memory: 676 data = _utils.pin_memory.pin_memory(data, self._pin_memory_device) [/usr/local/lib/python3.10/dist-packages/torch/utils/data/_utils/fetch.py](https://localhost:8080/#) in fetch(self, possibly_batched_index) 47 if self.auto_collation: 48 if hasattr(self.dataset, "getitems") and self.dataset.getitems: ---> 49 data = self.dataset.getitems(possibly_batched_index) 50 else: 51 data = [self.dataset[idx] for idx in possibly_batched_index] [/usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py](https://localhost:8080/#) in getitems(self, keys) 2802 def getitems(self, keys: List) -> List: 2803 """Can be used to get a batch using a list of integers indices.""" -> 2804 batch = self.getitem(keys) 2805 n_examples = len(batch[next(iter(batch))]) 2806 return [{col: array[i] for col, array in batch.items()} for i in range(n_examples)] [/usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py](https://localhost:8080/#) in getitem(self, key) 2798 def getitem(self, key): # noqa: F811 2799 """Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools).""" -> 2800 return self._getitem(key) 2801 2802 def getitems(self, keys: List) -> List: [/usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py](https://localhost:8080/#) in _getitem(self, key, **kwargs) 2782 format_kwargs = format_kwargs if format_kwargs is not None else {} 2783 formatter = get_formatter(format_type, features=self._info.features, **format_kwargs) -> 2784 pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None) 2785 formatted_output = format_table( 2786 pa_subtable, key, formatter=formatter, format_columns=format_columns, output_all_columns=output_all_columns [/usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py](https://localhost:8080/#) in query_table(table, key, indices) 581 else: 582 size = indices.num_rows if indices is not None else table.num_rows --> 583 _check_valid_index_key(key, size) 584 # Query the main table 585 if indices is None: [/usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py](https://localhost:8080/#) in _check_valid_index_key(key, size) 534 elif isinstance(key, Iterable): 535 if len(key) > 0: --> 536 _check_valid_index_key(int(max(key)), size=size) 537 _check_valid_index_key(int(min(key)), size=size) 538 else: [/usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py](https://localhost:8080/#) in _check_valid_index_key(key, size) 524 if isinstance(key, int): 525 if (key < 0 and key + size < 0) or (key >= size): --> 526 raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") 527 return 528 elif isinstance(key, slice): IndexError: Invalid key: 47682 is out of bounds for size 0 ### Steps to reproduce the bug device = "cuda:0" if torch.cuda.is_available() else "cpu" #defining model name for tokenizer and model loading model_name= "t5-small" #loading the tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) def preprocess_function(data, tokenizer): inputs = [f"Paraphrase this sentence: {doc}" for doc in data["text"]] model_inputs = tokenizer(inputs, max_length=150, truncation=True) labels = [ast.literal_eval(i)[0] for i in data['paraphrases']] labels = tokenizer(labels, max_length=150, truncation=True) model_inputs["labels"] = labels["input_ids"] return model_inputs train_dataset = load_dataset("humarin/chatgpt-paraphrases", split="train").shuffle(seed=42).select(range(50000)) val_dataset = load_dataset("humarin/chatgpt-paraphrases", split="train").shuffle(seed=42).select(range(50000,55000)) tokenized_train = train_dataset.map(lambda batch: preprocess_function(batch, tokenizer), batched=True) tokenized_val = val_dataset.map(lambda batch: preprocess_function(batch, tokenizer), batched=True) def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}" ) config = LoraConfig( r=16, #attention heads lora_alpha=32, #alpha scaling lora_dropout=0.05, bias="none", task_type="Seq2Seq" ) #loading the model model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device) model = get_peft_model(model, config) print_trainable_parameters(model) #loading the data collator data_collator = DataCollatorForSeq2Seq( tokenizer=tokenizer, model=model, label_pad_token_id=-100, padding="longest" ) #defining the training arguments training_args = Seq2SeqTrainingArguments( output_dir=os.getcwd(), evaluation_strategy="epoch", save_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, weight_decay=1e-3, save_total_limit=3, load_best_model_at_end=True, num_train_epochs=1, predict_with_generate=True ) def compute_metric_with_extra(tokenizer): def compute_metrics(eval_preds): metric = evaluate.load('rouge') preds, labels = eval_preds # decode preds and labels labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) # rougeLSum expects newline after each sentence decoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds] decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels] result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True) return result return compute_metrics trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=tokenized_train, eval_dataset=tokenized_val, tokenizer=tokenizer, data_collator=data_collator, compute_metrics= compute_metric_with_extra(tokenizer) ) trainer.train() ### Expected behavior I would want the trainer to train normally as it was before I used- model = get_peft_model(model, config) ### Environment info datasets version- 2.16.0 peft version- 0.7.1 transformers version- 4.35.2 accelerate version- 0.25.0 python- 3.10.12 enviroment- google colab
{ "avatar_url": "https://avatars.githubusercontent.com/u/57484266?v=4", "events_url": "https://api.github.com/users/MahavirDabas18/events{/privacy}", "followers_url": "https://api.github.com/users/MahavirDabas18/followers", "following_url": "https://api.github.com/users/MahavirDabas18/following{/other_user}", "gists_url": "https://api.github.com/users/MahavirDabas18/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/MahavirDabas18", "id": 57484266, "login": "MahavirDabas18", "node_id": "MDQ6VXNlcjU3NDg0MjY2", "organizations_url": "https://api.github.com/users/MahavirDabas18/orgs", "received_events_url": "https://api.github.com/users/MahavirDabas18/received_events", "repos_url": "https://api.github.com/users/MahavirDabas18/repos", "site_admin": false, "starred_url": "https://api.github.com/users/MahavirDabas18/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MahavirDabas18/subscriptions", "type": "User", "url": "https://api.github.com/users/MahavirDabas18" }
https://api.github.com/repos/huggingface/datasets/issues/6535/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6535/timeline
open
false
6,535
null
null
null
false
2,056,002,548
https://api.github.com/repos/huggingface/datasets/issues/6534
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6534/events
[]
null
2023-12-26T06:31:16Z
[]
https://github.com/huggingface/datasets/issues/6534
CONTRIBUTOR
null
null
null
[ "@albertvillanova" ]
How to configure multiple folders in the same zip package
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6534/reactions" }
I_kwDODunzps56jBv0
null
2023-12-26T03:56:20Z
https://api.github.com/repos/huggingface/datasets/issues/6534/comments
How should I write "config" in readme when all the data, such as train test, is in a zip file train floder and test floder in data.zip
{ "avatar_url": "https://avatars.githubusercontent.com/u/12895488?v=4", "events_url": "https://api.github.com/users/d710055071/events{/privacy}", "followers_url": "https://api.github.com/users/d710055071/followers", "following_url": "https://api.github.com/users/d710055071/following{/other_user}", "gists_url": "https://api.github.com/users/d710055071/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/d710055071", "id": 12895488, "login": "d710055071", "node_id": "MDQ6VXNlcjEyODk1NDg4", "organizations_url": "https://api.github.com/users/d710055071/orgs", "received_events_url": "https://api.github.com/users/d710055071/received_events", "repos_url": "https://api.github.com/users/d710055071/repos", "site_admin": false, "starred_url": "https://api.github.com/users/d710055071/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/d710055071/subscriptions", "type": "User", "url": "https://api.github.com/users/d710055071" }
https://api.github.com/repos/huggingface/datasets/issues/6534/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6534/timeline
open
false
6,534
null
null
null
false
2,055,929,101
https://api.github.com/repos/huggingface/datasets/issues/6533
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6533/events
[]
null
2023-12-30T18:58:21Z
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" } ]
https://github.com/huggingface/datasets/issues/6533
NONE
completed
null
null
[ "Hi ! Thanks for reporting. I opened https://github.com/huggingface/datasets/pull/6544 to fix this", "We just released 2.16.1 with a fix:\r\n\r\n```\r\npip install -U datasets\r\n```" ]
ted_talks_iwslt | Error: Config name is missing
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6533/reactions" }
I_kwDODunzps56iv0N
null
2023-12-26T00:38:18Z
https://api.github.com/repos/huggingface/datasets/issues/6533/comments
### Describe the bug Running load_dataset using the newest `datasets` library like below on the ted_talks_iwslt using year pair data will throw an error "Config name is missing" see also: https://huggingface.co/datasets/ted_talks_iwslt/discussions/3 likely caused by #6493, where the `and not config_kwargs` part in the if logic was removed https://github.com/huggingface/datasets/blob/ef3b5dd3633995c95d77f35fb17f89ff44990bc4/src/datasets/builder.py#L512 ### Steps to reproduce the bug run: ```python load_dataset("ted_talks_iwslt", language_pair=("ja", "en"), year="2015") ``` ### Expected behavior Load the data without error ### Environment info datasets 2.16.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/35850903?v=4", "events_url": "https://api.github.com/users/rayliuca/events{/privacy}", "followers_url": "https://api.github.com/users/rayliuca/followers", "following_url": "https://api.github.com/users/rayliuca/following{/other_user}", "gists_url": "https://api.github.com/users/rayliuca/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rayliuca", "id": 35850903, "login": "rayliuca", "node_id": "MDQ6VXNlcjM1ODUwOTAz", "organizations_url": "https://api.github.com/users/rayliuca/orgs", "received_events_url": "https://api.github.com/users/rayliuca/received_events", "repos_url": "https://api.github.com/users/rayliuca/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rayliuca/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rayliuca/subscriptions", "type": "User", "url": "https://api.github.com/users/rayliuca" }
https://api.github.com/repos/huggingface/datasets/issues/6533/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6533/timeline
closed
false
6,533
null
2023-12-30T16:09:50Z
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
false
2,055,631,201
https://api.github.com/repos/huggingface/datasets/issues/6532
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6532/events
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
null
2024-08-03T11:00:30Z
[]
https://github.com/huggingface/datasets/issues/6532
NONE
null
null
null
[ "You can simply use a python dict as index:\r\n\r\n```python\r\n>>> from datasets import load_dataset\r\n>>> ds = load_dataset(\"BeIR/dbpedia-entity\", \"corpus\", split=\"corpus\")\r\n>>> index = {key: idx for idx, key in enumerate(ds[\"_id\"])}\r\n>>> ds[index[\"<dbpedia:Pikachu>\"]]\r\n{'_id': '<dbpedia:Pikachu>',\r\n 'title': 'Pikachu',\r\n 'text': 'Pikachu (Japanese: ピカチュウ) are a fictional species of Pokémon. Pokémon are fictional creatures that appear in an assortment of comic books, animated movies and television shows, video games, and trading card games licensed by The Pokémon Company, a Japanese corporation. The Pikachu design was conceived by Ken Sugimori.'}\r\n```", "Thanks for your reply. Yes, I can do that, but it is time-consuming to do that every time I launch the program (some datasets are extremely big). HF Datasets has a nice feature to support instant data loading and efficient random access via row ids. I'm curious if this beneficial feature could be further extended to custom data columns.\r\n", "+1 on the issue I think it would be extremely useful", "+1. This could be very useful.", "+1 - currently having to manually implement this", "If anyone has an idea how to do this in the right way (perhaps @albertvillanova ?) I would be happy to implement it" ]
[Feature request] Indexing datasets by a customly-defined id field to enable random access dataset items via the id
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/6532/reactions" }
I_kwDODunzps56hnFh
null
2023-12-25T11:37:10Z
https://api.github.com/repos/huggingface/datasets/issues/6532/comments
### Feature request Some datasets may contain an id-like field, for example the `id` field in [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) and the `_id` field in [BeIR/dbpedia-entity](https://huggingface.co/datasets/BeIR/dbpedia-entity). HF datasets support efficient random access via row, but not via this kinds of id fields. I wonder if it is possible to add support for indexing by a custom "id-like" field to enable random access via such ids. The ids may be numbers or strings. ### Motivation In some cases, especially during inference/evaluation, I may want to find out the item that has a specified id, defined by the dataset itself. For example, in a typical re-ranking setting in information retrieval, the user may want to re-rank the set of candidate documents of each query. The input is usually presented in a TREC-style run file, with the following format: ``` <qid> Q0 <docno> <rank> <score> <tag> ``` The re-ranking program should be able to fetch the queries and documents according to the `<qid>` and `<docno>`, which are the original id defined in the query/document datasets. To accomplish this, I have to iterate over the whole HF dataset to get the mapping from real ids to row ids every time I start the program, which is time-consuming. Thus I want HF dataset to provide options for users to index by a custom id column, not by row. ### Your contribution I'm not an expert in this project and I'm afraid that I'm not able to make contributions on the code.
{ "avatar_url": "https://avatars.githubusercontent.com/u/3377221?v=4", "events_url": "https://api.github.com/users/Yu-Shi/events{/privacy}", "followers_url": "https://api.github.com/users/Yu-Shi/followers", "following_url": "https://api.github.com/users/Yu-Shi/following{/other_user}", "gists_url": "https://api.github.com/users/Yu-Shi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Yu-Shi", "id": 3377221, "login": "Yu-Shi", "node_id": "MDQ6VXNlcjMzNzcyMjE=", "organizations_url": "https://api.github.com/users/Yu-Shi/orgs", "received_events_url": "https://api.github.com/users/Yu-Shi/received_events", "repos_url": "https://api.github.com/users/Yu-Shi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Yu-Shi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Yu-Shi/subscriptions", "type": "User", "url": "https://api.github.com/users/Yu-Shi" }
https://api.github.com/repos/huggingface/datasets/issues/6532/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6532/timeline
open
false
6,532
null
null
null
false
2,055,201,605
https://api.github.com/repos/huggingface/datasets/issues/6531
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6531/events
[]
null
2024-03-08T19:29:25Z
[]
https://github.com/huggingface/datasets/pull/6531
CONTRIBUTOR
null
false
null
[ "Hi ! thanks for adding polars support :)\r\n\r\nYou added from_polars in arrow_dataset.py but not to_polars, is this on purpose ?\r\n\r\nAlso no need to touch table.py imo, which is for arrow-only logic (tables are just wrappers of pyarrow.Table with the exact same methods + optimization to existing methods + separation between in-memory and memory-mapped)", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6531). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Hi @lhoestq, thanks for pointing out the missing `to_polars` method.\r\n\r\nI see your point about `table.py` so I removed them.\r\n\r\nI also added tests in `test_arrow_dataset.py`, `test_dataset_dict.py`, and `test_formatting.py`. Let me know if I am missing any. ", "duckdb index files were deleted yesterday in dataset_with_script@ref/convert/parquet so I changed the hash to reflect the new SHA.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004993 / 0.011353 (-0.006360) | 0.003658 / 0.011008 (-0.007350) | 0.063868 / 0.038508 (0.025360) | 0.030022 / 0.023109 (0.006912) | 0.246359 / 0.275898 (-0.029539) | 0.273409 / 0.323480 (-0.050070) | 0.003091 / 0.007986 (-0.004894) | 0.003383 / 0.004328 (-0.000945) | 0.050666 / 0.004250 (0.046415) | 0.040609 / 0.037052 (0.003557) | 0.267250 / 0.258489 (0.008761) | 0.289823 / 0.293841 (-0.004018) | 0.027635 / 0.128546 (-0.100911) | 0.010786 / 0.075646 (-0.064860) | 0.208442 / 0.419271 (-0.210830) | 0.036627 / 0.043533 (-0.006906) | 0.254116 / 0.255139 (-0.001023) | 0.274368 / 0.283200 (-0.008832) | 0.018222 / 0.141683 (-0.123460) | 1.184472 / 1.452155 (-0.267683) | 1.194309 / 1.492716 (-0.298407) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092861 / 0.018006 (0.074855) | 0.304736 / 0.000490 (0.304246) | 0.000219 / 0.000200 (0.000019) | 0.000175 / 0.000054 (0.000121) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019378 / 0.037411 (-0.018034) | 0.062342 / 0.014526 (0.047817) | 0.074107 / 0.176557 (-0.102450) | 0.121746 / 0.737135 (-0.615390) | 0.075657 / 0.296338 (-0.220681) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286474 / 0.215209 (0.071265) | 2.832043 / 2.077655 (0.754389) | 1.453520 / 1.504120 (-0.050600) | 1.324714 / 1.541195 (-0.216480) | 1.335439 / 1.468490 (-0.133051) | 0.571753 / 4.584777 (-4.013024) | 2.427361 / 3.745712 (-1.318352) | 2.899838 / 5.269862 (-2.370024) | 1.775754 / 4.565676 (-2.789922) | 0.064177 / 0.424275 (-0.360098) | 0.004978 / 0.007607 (-0.002629) | 0.343585 / 0.226044 (0.117541) | 3.368494 / 2.268929 (1.099565) | 1.819825 / 55.444624 (-53.624800) | 1.502633 / 6.876477 (-5.373844) | 1.549182 / 2.142072 (-0.592891) | 0.658245 / 4.805227 (-4.146983) | 0.120052 / 6.500664 (-6.380612) | 0.043051 / 0.075469 (-0.032419) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.977055 / 1.841788 (-0.864733) | 11.595567 / 8.074308 (3.521259) | 9.450951 / 10.191392 (-0.740441) | 0.141060 / 0.680424 (-0.539364) | 0.014359 / 0.534201 (-0.519842) | 0.289938 / 0.579283 (-0.289345) | 0.266035 / 0.434364 (-0.168329) | 0.326802 / 0.540337 (-0.213536) | 0.431913 / 1.386936 (-0.955023) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005391 / 0.011353 (-0.005961) | 0.003724 / 0.011008 (-0.007284) | 0.050432 / 0.038508 (0.011924) | 0.029904 / 0.023109 (0.006794) | 0.270870 / 0.275898 (-0.005028) | 0.296773 / 0.323480 (-0.026706) | 0.004265 / 0.007986 (-0.003721) | 0.002751 / 0.004328 (-0.001577) | 0.050366 / 0.004250 (0.046116) | 0.046415 / 0.037052 (0.009363) | 0.283272 / 0.258489 (0.024783) | 0.320188 / 0.293841 (0.026347) | 0.029827 / 0.128546 (-0.098719) | 0.010736 / 0.075646 (-0.064910) | 0.059541 / 0.419271 (-0.359731) | 0.057080 / 0.043533 (0.013548) | 0.270653 / 0.255139 (0.015514) | 0.291235 / 0.283200 (0.008035) | 0.018590 / 0.141683 (-0.123093) | 1.129402 / 1.452155 (-0.322752) | 1.194499 / 1.492716 (-0.298217) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.102220 / 0.018006 (0.084214) | 0.302176 / 0.000490 (0.301686) | 0.000229 / 0.000200 (0.000029) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022809 / 0.037411 (-0.014602) | 0.076054 / 0.014526 (0.061528) | 0.087466 / 0.176557 (-0.089091) | 0.128495 / 0.737135 (-0.608640) | 0.089933 / 0.296338 (-0.206406) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296546 / 0.215209 (0.081337) | 2.898693 / 2.077655 (0.821039) | 1.605002 / 1.504120 (0.100883) | 1.468370 / 1.541195 (-0.072825) | 1.503541 / 1.468490 (0.035051) | 0.577233 / 4.584777 (-4.007544) | 2.460154 / 3.745712 (-1.285558) | 2.755651 / 5.269862 (-2.514211) | 1.777711 / 4.565676 (-2.787966) | 0.063137 / 0.424275 (-0.361138) | 0.005056 / 0.007607 (-0.002551) | 0.350189 / 0.226044 (0.124145) | 3.485473 / 2.268929 (1.216545) | 1.952553 / 55.444624 (-53.492072) | 1.669108 / 6.876477 (-5.207369) | 1.788504 / 2.142072 (-0.353569) | 0.672869 / 4.805227 (-4.132359) | 0.117717 / 6.500664 (-6.382948) | 0.040499 / 0.075469 (-0.034970) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.048187 / 1.841788 (-0.793601) | 12.663229 / 8.074308 (4.588921) | 10.316487 / 10.191392 (0.125095) | 0.142537 / 0.680424 (-0.537887) | 0.016024 / 0.534201 (-0.518177) | 0.292735 / 0.579283 (-0.286548) | 0.273294 / 0.434364 (-0.161069) | 0.327636 / 0.540337 (-0.212701) | 0.443062 / 1.386936 (-0.943874) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#90b896193a0a315789022580eb4c80305d168d4d \"CML watermark\")\n", "I'm so excited I tweeted about it: https://x.com/qlhoest/status/1766135995513082086?s=20 I hope it's fine !", "Thanks @lhoestq for the support and totally fine with the share! Happy to see people excited for this 😃 " ]
Add polars compatibility
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 4, "hooray": 2, "laugh": 0, "rocket": 0, "total_count": 8, "url": "https://api.github.com/repos/huggingface/datasets/issues/6531/reactions" }
PR_kwDODunzps5it5Sm
{ "diff_url": "https://github.com/huggingface/datasets/pull/6531.diff", "html_url": "https://github.com/huggingface/datasets/pull/6531", "merged_at": "2024-03-08T15:22:58Z", "patch_url": "https://github.com/huggingface/datasets/pull/6531.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6531" }
2023-12-24T20:03:23Z
https://api.github.com/repos/huggingface/datasets/issues/6531/comments
Hey there, I've just finished adding support to convert and format to `polars.DataFrame`. This was in response to the open issue about integrating Polars [#3334](https://github.com/huggingface/datasets/issues/3334). Datasets can be switched to Polars format via `Dataset.set_format("polars")`. I've also included `to_polars` and `from_polars`. All polars functions are checked via config.POLARS_AVAILABLE. A few notes: This only supports `DataFrames` and not `LazyFrames`. This probably could be integrated fairly easily via `is_lazy` args in `set_format`, and `to_polars`. Let me know your feedbacks.
{ "avatar_url": "https://avatars.githubusercontent.com/u/11325244?v=4", "events_url": "https://api.github.com/users/psmyth94/events{/privacy}", "followers_url": "https://api.github.com/users/psmyth94/followers", "following_url": "https://api.github.com/users/psmyth94/following{/other_user}", "gists_url": "https://api.github.com/users/psmyth94/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/psmyth94", "id": 11325244, "login": "psmyth94", "node_id": "MDQ6VXNlcjExMzI1MjQ0", "organizations_url": "https://api.github.com/users/psmyth94/orgs", "received_events_url": "https://api.github.com/users/psmyth94/received_events", "repos_url": "https://api.github.com/users/psmyth94/repos", "site_admin": false, "starred_url": "https://api.github.com/users/psmyth94/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/psmyth94/subscriptions", "type": "User", "url": "https://api.github.com/users/psmyth94" }
https://api.github.com/repos/huggingface/datasets/issues/6531/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6531/timeline
closed
false
6,531
null
2024-03-08T15:22:58Z
null
true
2,054,817,609
https://api.github.com/repos/huggingface/datasets/issues/6530
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6530/events
[]
null
2023-12-24T09:40:30Z
[]
https://github.com/huggingface/datasets/issues/6530
NONE
null
null
null
[ "I solved it with `train_dataset.with_format(None)`\r\nBut then faced some more issues (which i later solved too).\r\n\r\nHuggingface does not seem to care, so I do. Here is an updated training script which saves a pre-processed (mapped) dataset to your local directory if you specify `--save_precomputed_data_dir=DIR_NAME`. Then use `--train_precomputed_data_dir` with the same dir to load it instead of `--dataset_name`.\r\n\r\n[Proper SDXL trainer code](https://github.com/kopyl/diffusers/blob/main/examples/text_to_image/train_text_to_image_sdxl.py)\r\n[Notebook for pre-computing a dataset and saving locally](https://colab.research.google.com/drive/17Yo08hePx-NlHs99RecdeiNc8CQg4O7l?usp=sharing)\r\n\r\nExample:\r\n\r\n1st run (nothing is pre-computed yet):\r\n```\r\naccelerate launch train_text_to_image_sdxl.py \\\r\n --pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0 \\\r\n --pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix \\\r\n --dataset_name=lambdalabs/pokemon-blip-captions \\\r\n --save_precomputed_data_dir=\"test-5\"\r\n```\r\n\r\n2nd run (the pre-computed dataset is saved to `test-5` directory):\r\n```\r\naccelerate launch train_text_to_image_sdxl.py \\\r\n --pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0 \\\r\n --pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix \\\r\n --train_precomputed_data_dir test-5\r\n```\r\n\r\nThis way when you're gonna be using your pre-computed dataset you don't need to worry about re-mapping your dataset when you change an argument for your trainer script" ]
Impossible to save a mapped dataset to disk
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6530/reactions" }
I_kwDODunzps56egdJ
null
2023-12-23T15:18:27Z
https://api.github.com/repos/huggingface/datasets/issues/6530/comments
### Describe the bug I want to play around with different hyperparameters when training but don't want to re-map my dataset with 3 million samples each time for tens of hours when I [fully fine-tune SDXL](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_sdxl.py). After I do the mapping like this: ``` train_dataset = train_dataset.map(compute_embeddings_fn, batched=True) train_dataset = train_dataset.map( compute_vae_encodings_fn, batched=True, batch_size=16, ) ``` and try to save it like this: `train_dataset.save_to_disk("test")` i get this error ([full traceback](https://pastebin.com/kq3vt739)): ``` TypeError: Object of type function is not JSON serializable The format kwargs must be JSON serializable, but key 'transform' isn't. ``` But what is interesting is that pushing to hub works like that: `train_dataset.push_to_hub("kopyl/mapped-833-icons-sdxl-1024-dataset", token=True)` Here is the link of the pushed dataset: https://huggingface.co/datasets/kopyl/mapped-833-icons-sdxl-1024-dataset ### Steps to reproduce the bug Here is the self-contained notebook: https://colab.research.google.com/drive/1RtCsEMVcwWcMwlWURk_cj_9xUBHz065M?usp=sharing ### Expected behavior It should be easily saved to disk ### Environment info NVIDIA A100, Linux (NC24ads A100 v4 from Azure), CUDA 12.2. [pip freeze](https://pastebin.com/QTNb6iru)
{ "avatar_url": "https://avatars.githubusercontent.com/u/17604849?v=4", "events_url": "https://api.github.com/users/kopyl/events{/privacy}", "followers_url": "https://api.github.com/users/kopyl/followers", "following_url": "https://api.github.com/users/kopyl/following{/other_user}", "gists_url": "https://api.github.com/users/kopyl/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kopyl", "id": 17604849, "login": "kopyl", "node_id": "MDQ6VXNlcjE3NjA0ODQ5", "organizations_url": "https://api.github.com/users/kopyl/orgs", "received_events_url": "https://api.github.com/users/kopyl/received_events", "repos_url": "https://api.github.com/users/kopyl/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kopyl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kopyl/subscriptions", "type": "User", "url": "https://api.github.com/users/kopyl" }
https://api.github.com/repos/huggingface/datasets/issues/6530/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6530/timeline
open
false
6,530
null
null
null
false
2,054,209,449
https://api.github.com/repos/huggingface/datasets/issues/6529
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6529/events
[]
null
2024-02-02T00:05:04Z
[]
https://github.com/huggingface/datasets/issues/6529
NONE
null
null
null
[ "The only way right now is to load with streaming=True", "This feature has been proposed for a long time. I'm looking forward to the implementation. On clusters `streaming=True` is not an option since we do not have Internet on compute nodes. See: https://github.com/huggingface/datasets/discussions/1896#discussioncomment-2359593" ]
Impossible to only download a test split
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 1, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6529/reactions" }
I_kwDODunzps56cL-p
null
2023-12-22T16:56:32Z
https://api.github.com/repos/huggingface/datasets/issues/6529/comments
I've spent a significant amount of time trying to locate the split object inside my _split_generators() custom function. Then after diving [in the code](https://github.com/huggingface/datasets/blob/5ff3670c18ed34fa8ddfa70a9aa403ae6cc9ad54/src/datasets/load.py#L2558) I realized that `download_and_prepare` is executed before! split is passed to the dataset builder in `as_dataset`. If I'm not missing something, this seems like bad design, for the following use case: > Imagine there is a huge dataset that has an evaluation test set and you want to just download and run just to compare your method. Is there a current workaround that can help me achieve the same result? Thank you,
{ "avatar_url": "https://avatars.githubusercontent.com/u/28439529?v=4", "events_url": "https://api.github.com/users/ysig/events{/privacy}", "followers_url": "https://api.github.com/users/ysig/followers", "following_url": "https://api.github.com/users/ysig/following{/other_user}", "gists_url": "https://api.github.com/users/ysig/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ysig", "id": 28439529, "login": "ysig", "node_id": "MDQ6VXNlcjI4NDM5NTI5", "organizations_url": "https://api.github.com/users/ysig/orgs", "received_events_url": "https://api.github.com/users/ysig/received_events", "repos_url": "https://api.github.com/users/ysig/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ysig/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ysig/subscriptions", "type": "User", "url": "https://api.github.com/users/ysig" }
https://api.github.com/repos/huggingface/datasets/issues/6529/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6529/timeline
open
false
6,529
null
null
null
false
2,053,996,494
https://api.github.com/repos/huggingface/datasets/issues/6528
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6528/events
[]
null
2023-12-22T14:31:42Z
[]
https://github.com/huggingface/datasets/pull/6528
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6528). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004875 / 0.011353 (-0.006478) | 0.003501 / 0.011008 (-0.007507) | 0.062604 / 0.038508 (0.024096) | 0.031916 / 0.023109 (0.008806) | 0.256138 / 0.275898 (-0.019760) | 0.278514 / 0.323480 (-0.044966) | 0.002917 / 0.007986 (-0.005069) | 0.002636 / 0.004328 (-0.001693) | 0.049154 / 0.004250 (0.044904) | 0.041985 / 0.037052 (0.004933) | 0.256857 / 0.258489 (-0.001632) | 0.282628 / 0.293841 (-0.011213) | 0.027506 / 0.128546 (-0.101041) | 0.010736 / 0.075646 (-0.064910) | 0.207268 / 0.419271 (-0.212003) | 0.035312 / 0.043533 (-0.008221) | 0.259274 / 0.255139 (0.004135) | 0.281463 / 0.283200 (-0.001737) | 0.019905 / 0.141683 (-0.121778) | 1.108719 / 1.452155 (-0.343435) | 1.177871 / 1.492716 (-0.314845) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004435 / 0.018006 (-0.013571) | 0.310643 / 0.000490 (0.310153) | 0.000243 / 0.000200 (0.000043) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018013 / 0.037411 (-0.019398) | 0.060702 / 0.014526 (0.046176) | 0.073243 / 0.176557 (-0.103314) | 0.119523 / 0.737135 (-0.617613) | 0.074204 / 0.296338 (-0.222134) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281075 / 0.215209 (0.065866) | 2.722154 / 2.077655 (0.644499) | 1.441052 / 1.504120 (-0.063068) | 1.305940 / 1.541195 (-0.235255) | 1.356752 / 1.468490 (-0.111738) | 0.570399 / 4.584777 (-4.014378) | 2.329158 / 3.745712 (-1.416554) | 2.749093 / 5.269862 (-2.520768) | 1.717752 / 4.565676 (-2.847925) | 0.063228 / 0.424275 (-0.361047) | 0.004981 / 0.007607 (-0.002626) | 0.330601 / 0.226044 (0.104557) | 3.300987 / 2.268929 (1.032059) | 1.778673 / 55.444624 (-53.665951) | 1.507841 / 6.876477 (-5.368636) | 1.520454 / 2.142072 (-0.621619) | 0.650816 / 4.805227 (-4.154412) | 0.118606 / 6.500664 (-6.382058) | 0.042199 / 0.075469 (-0.033271) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.919668 / 1.841788 (-0.922119) | 11.293437 / 8.074308 (3.219129) | 9.928525 / 10.191392 (-0.262867) | 0.127142 / 0.680424 (-0.553282) | 0.013470 / 0.534201 (-0.520731) | 0.284648 / 0.579283 (-0.294636) | 0.264942 / 0.434364 (-0.169422) | 0.321866 / 0.540337 (-0.218471) | 0.414513 / 1.386936 (-0.972423) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005052 / 0.011353 (-0.006301) | 0.003204 / 0.011008 (-0.007804) | 0.051102 / 0.038508 (0.012594) | 0.032105 / 0.023109 (0.008996) | 0.273923 / 0.275898 (-0.001976) | 0.297031 / 0.323480 (-0.026449) | 0.004002 / 0.007986 (-0.003984) | 0.002636 / 0.004328 (-0.001693) | 0.047696 / 0.004250 (0.043445) | 0.044086 / 0.037052 (0.007034) | 0.277779 / 0.258489 (0.019289) | 0.306678 / 0.293841 (0.012837) | 0.028557 / 0.128546 (-0.099989) | 0.010631 / 0.075646 (-0.065015) | 0.056419 / 0.419271 (-0.362852) | 0.054285 / 0.043533 (0.010752) | 0.276506 / 0.255139 (0.021367) | 0.296315 / 0.283200 (0.013116) | 0.018642 / 0.141683 (-0.123040) | 1.146926 / 1.452155 (-0.305229) | 1.257625 / 1.492716 (-0.235092) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094231 / 0.018006 (0.076225) | 0.302805 / 0.000490 (0.302315) | 0.000229 / 0.000200 (0.000029) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022510 / 0.037411 (-0.014901) | 0.076092 / 0.014526 (0.061566) | 0.090642 / 0.176557 (-0.085915) | 0.127016 / 0.737135 (-0.610120) | 0.089169 / 0.296338 (-0.207169) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290812 / 0.215209 (0.075603) | 2.858528 / 2.077655 (0.780873) | 1.577555 / 1.504120 (0.073436) | 1.447810 / 1.541195 (-0.093384) | 1.447546 / 1.468490 (-0.020944) | 0.559118 / 4.584777 (-4.025659) | 2.408930 / 3.745712 (-1.336782) | 2.733761 / 5.269862 (-2.536101) | 1.700107 / 4.565676 (-2.865570) | 0.062447 / 0.424275 (-0.361828) | 0.004999 / 0.007607 (-0.002608) | 0.340207 / 0.226044 (0.114162) | 3.344131 / 2.268929 (1.075203) | 1.902289 / 55.444624 (-53.542335) | 1.628226 / 6.876477 (-5.248251) | 1.629435 / 2.142072 (-0.512637) | 0.625011 / 4.805227 (-4.180216) | 0.119929 / 6.500664 (-6.380735) | 0.041097 / 0.075469 (-0.034372) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.977461 / 1.841788 (-0.864327) | 12.303189 / 8.074308 (4.228881) | 11.008743 / 10.191392 (0.817351) | 0.128578 / 0.680424 (-0.551845) | 0.015305 / 0.534201 (-0.518896) | 0.286468 / 0.579283 (-0.292816) | 0.275824 / 0.434364 (-0.158540) | 0.321487 / 0.540337 (-0.218851) | 0.420591 / 1.386936 (-0.966345) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5ff3670c18ed34fa8ddfa70a9aa403ae6cc9ad54 \"CML watermark\")\n" ]
set dev version
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6528/reactions" }
PR_kwDODunzps5ip9JH
{ "diff_url": "https://github.com/huggingface/datasets/pull/6528.diff", "html_url": "https://github.com/huggingface/datasets/pull/6528", "merged_at": "2023-12-22T14:25:34Z", "patch_url": "https://github.com/huggingface/datasets/pull/6528.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6528" }
2023-12-22T14:23:18Z
https://api.github.com/repos/huggingface/datasets/issues/6528/comments
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6528/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6528/timeline
closed
false
6,528
null
2023-12-22T14:25:34Z
null
true
2,053,966,748
https://api.github.com/repos/huggingface/datasets/issues/6527
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6527/events
[]
null
2023-12-22T14:24:12Z
[]
https://github.com/huggingface/datasets/pull/6527
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6527). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004870 / 0.011353 (-0.006483) | 0.003606 / 0.011008 (-0.007402) | 0.062719 / 0.038508 (0.024211) | 0.031785 / 0.023109 (0.008676) | 0.238809 / 0.275898 (-0.037089) | 0.263000 / 0.323480 (-0.060480) | 0.002844 / 0.007986 (-0.005142) | 0.002698 / 0.004328 (-0.001631) | 0.048070 / 0.004250 (0.043819) | 0.042333 / 0.037052 (0.005280) | 0.243032 / 0.258489 (-0.015457) | 0.273197 / 0.293841 (-0.020644) | 0.027498 / 0.128546 (-0.101048) | 0.010592 / 0.075646 (-0.065055) | 0.204770 / 0.419271 (-0.214502) | 0.034837 / 0.043533 (-0.008696) | 0.242518 / 0.255139 (-0.012621) | 0.267461 / 0.283200 (-0.015739) | 0.018479 / 0.141683 (-0.123204) | 1.105444 / 1.452155 (-0.346710) | 1.163659 / 1.492716 (-0.329057) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004717 / 0.018006 (-0.013289) | 0.303338 / 0.000490 (0.302849) | 0.000221 / 0.000200 (0.000021) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018298 / 0.037411 (-0.019113) | 0.061225 / 0.014526 (0.046699) | 0.073514 / 0.176557 (-0.103043) | 0.120230 / 0.737135 (-0.616905) | 0.076195 / 0.296338 (-0.220144) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284731 / 0.215209 (0.069522) | 2.773463 / 2.077655 (0.695809) | 1.498239 / 1.504120 (-0.005881) | 1.372143 / 1.541195 (-0.169052) | 1.448949 / 1.468490 (-0.019542) | 0.572516 / 4.584777 (-4.012261) | 2.404041 / 3.745712 (-1.341671) | 2.763047 / 5.269862 (-2.506814) | 1.722419 / 4.565676 (-2.843257) | 0.063104 / 0.424275 (-0.361172) | 0.004989 / 0.007607 (-0.002618) | 0.341864 / 0.226044 (0.115820) | 3.391635 / 2.268929 (1.122707) | 1.872694 / 55.444624 (-53.571931) | 1.594490 / 6.876477 (-5.281987) | 1.596940 / 2.142072 (-0.545132) | 0.645265 / 4.805227 (-4.159962) | 0.117408 / 6.500664 (-6.383256) | 0.042405 / 0.075469 (-0.033064) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.963207 / 1.841788 (-0.878580) | 11.676551 / 8.074308 (3.602243) | 10.194287 / 10.191392 (0.002895) | 0.130329 / 0.680424 (-0.550094) | 0.015381 / 0.534201 (-0.518820) | 0.288848 / 0.579283 (-0.290435) | 0.264781 / 0.434364 (-0.169583) | 0.321212 / 0.540337 (-0.219126) | 0.418308 / 1.386936 (-0.968628) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005533 / 0.011353 (-0.005819) | 0.003733 / 0.011008 (-0.007276) | 0.048877 / 0.038508 (0.010369) | 0.030263 / 0.023109 (0.007154) | 0.281161 / 0.275898 (0.005263) | 0.302971 / 0.323480 (-0.020509) | 0.003943 / 0.007986 (-0.004043) | 0.002717 / 0.004328 (-0.001612) | 0.047845 / 0.004250 (0.043594) | 0.045809 / 0.037052 (0.008757) | 0.283337 / 0.258489 (0.024848) | 0.312914 / 0.293841 (0.019073) | 0.029074 / 0.128546 (-0.099472) | 0.010775 / 0.075646 (-0.064871) | 0.057461 / 0.419271 (-0.361810) | 0.053756 / 0.043533 (0.010223) | 0.281809 / 0.255139 (0.026670) | 0.298339 / 0.283200 (0.015139) | 0.019270 / 0.141683 (-0.122413) | 1.117575 / 1.452155 (-0.334580) | 1.191703 / 1.492716 (-0.301013) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093513 / 0.018006 (0.075507) | 0.301267 / 0.000490 (0.300777) | 0.000211 / 0.000200 (0.000012) | 0.000045 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022278 / 0.037411 (-0.015133) | 0.076805 / 0.014526 (0.062279) | 0.088820 / 0.176557 (-0.087736) | 0.127903 / 0.737135 (-0.609233) | 0.092988 / 0.296338 (-0.203350) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297787 / 0.215209 (0.082578) | 2.899652 / 2.077655 (0.821997) | 1.598830 / 1.504120 (0.094710) | 1.469398 / 1.541195 (-0.071797) | 1.511099 / 1.468490 (0.042609) | 0.559785 / 4.584777 (-4.024992) | 2.426448 / 3.745712 (-1.319264) | 2.798811 / 5.269862 (-2.471051) | 1.737790 / 4.565676 (-2.827887) | 0.062219 / 0.424275 (-0.362056) | 0.005120 / 0.007607 (-0.002487) | 0.351051 / 0.226044 (0.125007) | 3.492063 / 2.268929 (1.223134) | 1.965674 / 55.444624 (-53.478950) | 1.672874 / 6.876477 (-5.203603) | 1.709700 / 2.142072 (-0.432373) | 0.639347 / 4.805227 (-4.165880) | 0.126383 / 6.500664 (-6.374281) | 0.042731 / 0.075469 (-0.032738) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.968619 / 1.841788 (-0.873168) | 12.671030 / 8.074308 (4.596722) | 11.125347 / 10.191392 (0.933955) | 0.142983 / 0.680424 (-0.537441) | 0.015726 / 0.534201 (-0.518475) | 0.288610 / 0.579283 (-0.290673) | 0.276473 / 0.434364 (-0.157891) | 0.326590 / 0.540337 (-0.213748) | 0.423832 / 1.386936 (-0.963104) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a85fb52fc8ddb41307e61cbf6a5189f3bba27829 \"CML watermark\")\n" ]
Release: 2.16.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6527/reactions" }
PR_kwDODunzps5ip2vd
{ "diff_url": "https://github.com/huggingface/datasets/pull/6527.diff", "html_url": "https://github.com/huggingface/datasets/pull/6527", "merged_at": "2023-12-22T14:17:55Z", "patch_url": "https://github.com/huggingface/datasets/pull/6527.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6527" }
2023-12-22T13:59:56Z
https://api.github.com/repos/huggingface/datasets/issues/6527/comments
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6527/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6527/timeline
closed
false
6,527
null
2023-12-22T14:17:55Z
null
true
2,053,726,451
https://api.github.com/repos/huggingface/datasets/issues/6526
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6526/events
[]
null
2023-12-22T11:42:22Z
[]
https://github.com/huggingface/datasets/pull/6526
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6526). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005101 / 0.011353 (-0.006252) | 0.003471 / 0.011008 (-0.007537) | 0.062293 / 0.038508 (0.023785) | 0.032650 / 0.023109 (0.009541) | 0.249241 / 0.275898 (-0.026657) | 0.277079 / 0.323480 (-0.046400) | 0.002971 / 0.007986 (-0.005015) | 0.002637 / 0.004328 (-0.001691) | 0.048415 / 0.004250 (0.044165) | 0.042832 / 0.037052 (0.005779) | 0.247840 / 0.258489 (-0.010649) | 0.283994 / 0.293841 (-0.009847) | 0.027764 / 0.128546 (-0.100782) | 0.010544 / 0.075646 (-0.065102) | 0.208810 / 0.419271 (-0.210462) | 0.035744 / 0.043533 (-0.007789) | 0.252811 / 0.255139 (-0.002328) | 0.276163 / 0.283200 (-0.007036) | 0.018581 / 0.141683 (-0.123102) | 1.130043 / 1.452155 (-0.322112) | 1.194298 / 1.492716 (-0.298418) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004488 / 0.018006 (-0.013518) | 0.302072 / 0.000490 (0.301582) | 0.000211 / 0.000200 (0.000012) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.017799 / 0.037411 (-0.019613) | 0.061146 / 0.014526 (0.046620) | 0.081796 / 0.176557 (-0.094761) | 0.120407 / 0.737135 (-0.616729) | 0.075211 / 0.296338 (-0.221127) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295349 / 0.215209 (0.080140) | 2.953511 / 2.077655 (0.875857) | 1.495332 / 1.504120 (-0.008788) | 1.364144 / 1.541195 (-0.177051) | 1.429562 / 1.468490 (-0.038928) | 0.574325 / 4.584777 (-4.010452) | 2.384352 / 3.745712 (-1.361360) | 2.843625 / 5.269862 (-2.426236) | 1.806802 / 4.565676 (-2.758875) | 0.065076 / 0.424275 (-0.359199) | 0.004970 / 0.007607 (-0.002638) | 0.339935 / 0.226044 (0.113891) | 3.375103 / 2.268929 (1.106175) | 1.822921 / 55.444624 (-53.621703) | 1.546126 / 6.876477 (-5.330350) | 1.573630 / 2.142072 (-0.568442) | 0.655081 / 4.805227 (-4.150146) | 0.122446 / 6.500664 (-6.378218) | 0.042220 / 0.075469 (-0.033249) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.942127 / 1.841788 (-0.899661) | 11.470401 / 8.074308 (3.396093) | 10.025961 / 10.191392 (-0.165431) | 0.129087 / 0.680424 (-0.551337) | 0.014141 / 0.534201 (-0.520060) | 0.285470 / 0.579283 (-0.293813) | 0.266755 / 0.434364 (-0.167608) | 0.323391 / 0.540337 (-0.216947) | 0.427645 / 1.386936 (-0.959291) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005578 / 0.011353 (-0.005775) | 0.003734 / 0.011008 (-0.007274) | 0.049200 / 0.038508 (0.010692) | 0.030981 / 0.023109 (0.007872) | 0.281195 / 0.275898 (0.005297) | 0.309950 / 0.323480 (-0.013530) | 0.004046 / 0.007986 (-0.003939) | 0.002709 / 0.004328 (-0.001620) | 0.048505 / 0.004250 (0.044254) | 0.046245 / 0.037052 (0.009193) | 0.280130 / 0.258489 (0.021641) | 0.313739 / 0.293841 (0.019898) | 0.029828 / 0.128546 (-0.098718) | 0.011152 / 0.075646 (-0.064495) | 0.057753 / 0.419271 (-0.361518) | 0.055112 / 0.043533 (0.011580) | 0.281861 / 0.255139 (0.026722) | 0.304402 / 0.283200 (0.021203) | 0.019931 / 0.141683 (-0.121752) | 1.150585 / 1.452155 (-0.301570) | 1.217850 / 1.492716 (-0.274866) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091552 / 0.018006 (0.073546) | 0.301772 / 0.000490 (0.301282) | 0.000225 / 0.000200 (0.000025) | 0.000046 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023189 / 0.037411 (-0.014223) | 0.078741 / 0.014526 (0.064216) | 0.092320 / 0.176557 (-0.084236) | 0.129636 / 0.737135 (-0.607500) | 0.091673 / 0.296338 (-0.204665) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298542 / 0.215209 (0.083333) | 2.899358 / 2.077655 (0.821703) | 1.673896 / 1.504120 (0.169776) | 1.489518 / 1.541195 (-0.051677) | 1.542853 / 1.468490 (0.074363) | 0.559843 / 4.584777 (-4.024934) | 2.422101 / 3.745712 (-1.323611) | 2.844592 / 5.269862 (-2.425270) | 1.794527 / 4.565676 (-2.771150) | 0.064615 / 0.424275 (-0.359660) | 0.005078 / 0.007607 (-0.002530) | 0.355112 / 0.226044 (0.129068) | 3.462129 / 2.268929 (1.193200) | 1.975393 / 55.444624 (-53.469231) | 1.706513 / 6.876477 (-5.169963) | 1.716954 / 2.142072 (-0.425118) | 0.642094 / 4.805227 (-4.163133) | 0.119215 / 6.500664 (-6.381449) | 0.041941 / 0.075469 (-0.033528) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.986774 / 1.841788 (-0.855014) | 12.702049 / 8.074308 (4.627741) | 11.727663 / 10.191392 (1.536271) | 0.135008 / 0.680424 (-0.545416) | 0.016055 / 0.534201 (-0.518146) | 0.293564 / 0.579283 (-0.285719) | 0.284884 / 0.434364 (-0.149480) | 0.332524 / 0.540337 (-0.207814) | 0.425392 / 1.386936 (-0.961544) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7b5fc585fcaf77b92839e82d0ce2c2fbf0d9ea95 \"CML watermark\")\n" ]
Preserve order of configs and splits when using Parquet exports
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6526/reactions" }
PR_kwDODunzps5ipB5v
{ "diff_url": "https://github.com/huggingface/datasets/pull/6526.diff", "html_url": "https://github.com/huggingface/datasets/pull/6526", "merged_at": "2023-12-22T11:36:14Z", "patch_url": "https://github.com/huggingface/datasets/pull/6526.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6526" }
2023-12-22T10:35:56Z
https://api.github.com/repos/huggingface/datasets/issues/6526/comments
Preserve order of configs and splits, as defined in dataset infos. Fix #6521.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
https://api.github.com/repos/huggingface/datasets/issues/6526/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6526/timeline
closed
false
6,526
null
2023-12-22T11:36:14Z
null
true
2,053,119,357
https://api.github.com/repos/huggingface/datasets/issues/6525
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6525/events
[]
null
2024-01-11T06:34:51Z
[]
https://github.com/huggingface/datasets/pull/6525
MEMBER
null
true
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6525). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "closing in favor of other ideas that would not involve any typing" ]
BBox type
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6525/reactions" }
PR_kwDODunzps5im-lL
{ "diff_url": "https://github.com/huggingface/datasets/pull/6525.diff", "html_url": "https://github.com/huggingface/datasets/pull/6525", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6525.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6525" }
2023-12-21T22:13:27Z
https://api.github.com/repos/huggingface/datasets/issues/6525/comments
see [internal discussion](https://huggingface.slack.com/archives/C02EK7C3SHW/p1703097195609209) Draft to get some feedback on a possible `BBox` feature type that can be used to get object detection bounding boxes data in one format or another. ```python >>> from datasets import load_dataset, BBox >>> ds = load_dataset("svhn", "full_numbers", split="train") >>> ds[0] { 'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=107x46 at 0x126409BE0>, 'digits': {'bbox': [[38, 1, 21, 40], [57, 3, 16, 40]], 'label': [4, 6]} } >>> ds = ds.rename_column("digits", "annotations").cast_column("annotations", BBox(format="coco")) >>> ds[0] { 'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=107x46 at 0x147730070>, 'annotations': [{'bbox': [38, 1, 21, 40], 'category_id': 4}, {'bbox': [57, 3, 16, 40], 'category_id': 6}] } ``` note that it's a type for a list of bounding boxes, not just one - which would be needed to switch from a format to another using type casting.
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6525/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6525/timeline
closed
false
6,525
null
2023-12-21T22:39:27Z
null
true
2,053,076,311
https://api.github.com/repos/huggingface/datasets/issues/6524
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6524/events
[]
null
2023-12-22T09:17:05Z
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
https://github.com/huggingface/datasets/issues/6524
NONE
completed
null
null
[ "Hello @FelixLabelle,\r\n\r\nAs you can see in the Community tab of the corresponding dataset, it is a known issue: https://huggingface.co/datasets/EleutherAI/pile/discussions/15\r\n\r\nThe data has been taken down due to reported copyright infringement.\r\n\r\nFeel free to continue the discussion there." ]
Streaming the Pile: Missing Files
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6524/reactions" }
I_kwDODunzps56X3VX
null
2023-12-21T21:25:09Z
https://api.github.com/repos/huggingface/datasets/issues/6524/comments
### Describe the bug The pile does not stream, a "File not Found error" is returned. It looks like the Pile's files have been moved. ### Steps to reproduce the bug To reproduce run the following code: ``` from datasets import load_dataset dataset = load_dataset('EleutherAI/pile', 'en', split='train', streaming=True) next(iter(dataset)) ``` I get the following error: `FileNotFoundError: https://the-eye.eu/public/AI/pile/train/00.jsonl.zst` ### Expected behavior Return the data in a stream. ### Environment info - `datasets` version: 2.12.0 - Platform: Windows-10-10.0.22621-SP0 - Python version: 3.11.5 - Huggingface_hub version: 0.15.1 - PyArrow version: 11.0.0 - Pandas version: 2.0.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/23347756?v=4", "events_url": "https://api.github.com/users/FelixLabelle/events{/privacy}", "followers_url": "https://api.github.com/users/FelixLabelle/followers", "following_url": "https://api.github.com/users/FelixLabelle/following{/other_user}", "gists_url": "https://api.github.com/users/FelixLabelle/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/FelixLabelle", "id": 23347756, "login": "FelixLabelle", "node_id": "MDQ6VXNlcjIzMzQ3NzU2", "organizations_url": "https://api.github.com/users/FelixLabelle/orgs", "received_events_url": "https://api.github.com/users/FelixLabelle/received_events", "repos_url": "https://api.github.com/users/FelixLabelle/repos", "site_admin": false, "starred_url": "https://api.github.com/users/FelixLabelle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/FelixLabelle/subscriptions", "type": "User", "url": "https://api.github.com/users/FelixLabelle" }
https://api.github.com/repos/huggingface/datasets/issues/6524/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6524/timeline
closed
false
6,524
null
2023-12-22T09:17:05Z
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
false
2,052,643,484
https://api.github.com/repos/huggingface/datasets/issues/6523
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6523/events
[]
null
2023-12-21T15:56:54Z
[]
https://github.com/huggingface/datasets/pull/6523
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6523). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005160 / 0.011353 (-0.006192) | 0.003962 / 0.011008 (-0.007046) | 0.064952 / 0.038508 (0.026444) | 0.053291 / 0.023109 (0.030182) | 0.237182 / 0.275898 (-0.038716) | 0.263855 / 0.323480 (-0.059625) | 0.004157 / 0.007986 (-0.003829) | 0.002901 / 0.004328 (-0.001428) | 0.050679 / 0.004250 (0.046428) | 0.044885 / 0.037052 (0.007832) | 0.243806 / 0.258489 (-0.014683) | 0.273828 / 0.293841 (-0.020013) | 0.028681 / 0.128546 (-0.099866) | 0.011086 / 0.075646 (-0.064560) | 0.211987 / 0.419271 (-0.207285) | 0.035881 / 0.043533 (-0.007652) | 0.249618 / 0.255139 (-0.005521) | 0.262880 / 0.283200 (-0.020319) | 0.017788 / 0.141683 (-0.123895) | 1.209060 / 1.452155 (-0.243094) | 1.272143 / 1.492716 (-0.220574) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004594 / 0.018006 (-0.013412) | 0.305188 / 0.000490 (0.304698) | 0.000213 / 0.000200 (0.000013) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019526 / 0.037411 (-0.017886) | 0.062280 / 0.014526 (0.047754) | 0.074983 / 0.176557 (-0.101573) | 0.123466 / 0.737135 (-0.613670) | 0.076240 / 0.296338 (-0.220099) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.276001 / 0.215209 (0.060792) | 2.689614 / 2.077655 (0.611959) | 1.441092 / 1.504120 (-0.063028) | 1.319775 / 1.541195 (-0.221419) | 1.386904 / 1.468490 (-0.081587) | 0.561388 / 4.584777 (-4.023389) | 2.386718 / 3.745712 (-1.358994) | 2.813959 / 5.269862 (-2.455903) | 1.727447 / 4.565676 (-2.838230) | 0.061965 / 0.424275 (-0.362310) | 0.004977 / 0.007607 (-0.002630) | 0.335077 / 0.226044 (0.109032) | 3.313860 / 2.268929 (1.044932) | 1.814018 / 55.444624 (-53.630606) | 1.542840 / 6.876477 (-5.333637) | 1.586887 / 2.142072 (-0.555185) | 0.643225 / 4.805227 (-4.162002) | 0.117834 / 6.500664 (-6.382830) | 0.044024 / 0.075469 (-0.031445) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.952804 / 1.841788 (-0.888984) | 12.447378 / 8.074308 (4.373070) | 11.281734 / 10.191392 (1.090342) | 0.143407 / 0.680424 (-0.537017) | 0.014749 / 0.534201 (-0.519452) | 0.289298 / 0.579283 (-0.289985) | 0.268217 / 0.434364 (-0.166146) | 0.327995 / 0.540337 (-0.212343) | 0.430302 / 1.386936 (-0.956634) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005683 / 0.011353 (-0.005670) | 0.003813 / 0.011008 (-0.007195) | 0.048943 / 0.038508 (0.010435) | 0.060730 / 0.023109 (0.037621) | 0.266925 / 0.275898 (-0.008973) | 0.292553 / 0.323480 (-0.030927) | 0.004236 / 0.007986 (-0.003750) | 0.002790 / 0.004328 (-0.001538) | 0.048962 / 0.004250 (0.044711) | 0.040354 / 0.037052 (0.003302) | 0.266353 / 0.258489 (0.007864) | 0.298397 / 0.293841 (0.004556) | 0.029977 / 0.128546 (-0.098570) | 0.010788 / 0.075646 (-0.064858) | 0.057529 / 0.419271 (-0.361743) | 0.032896 / 0.043533 (-0.010636) | 0.266696 / 0.255139 (0.011557) | 0.283422 / 0.283200 (0.000223) | 0.020939 / 0.141683 (-0.120744) | 1.169867 / 1.452155 (-0.282287) | 1.213586 / 1.492716 (-0.279130) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097035 / 0.018006 (0.079029) | 0.306968 / 0.000490 (0.306478) | 0.000234 / 0.000200 (0.000034) | 0.000046 / 0.000054 (-0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023343 / 0.037411 (-0.014068) | 0.078238 / 0.014526 (0.063712) | 0.091083 / 0.176557 (-0.085474) | 0.131487 / 0.737135 (-0.605649) | 0.092614 / 0.296338 (-0.203724) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294454 / 0.215209 (0.079245) | 2.881053 / 2.077655 (0.803398) | 1.623934 / 1.504120 (0.119814) | 1.509001 / 1.541195 (-0.032194) | 1.567541 / 1.468490 (0.099051) | 0.574326 / 4.584777 (-4.010451) | 2.476826 / 3.745712 (-1.268886) | 2.826183 / 5.269862 (-2.443678) | 1.771949 / 4.565676 (-2.793727) | 0.063663 / 0.424275 (-0.360613) | 0.005039 / 0.007607 (-0.002568) | 0.354861 / 0.226044 (0.128816) | 3.397655 / 2.268929 (1.128727) | 1.961958 / 55.444624 (-53.482666) | 1.694795 / 6.876477 (-5.181682) | 1.719459 / 2.142072 (-0.422614) | 0.654512 / 4.805227 (-4.150715) | 0.119285 / 6.500664 (-6.381379) | 0.042146 / 0.075469 (-0.033323) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.982187 / 1.841788 (-0.859601) | 12.944627 / 8.074308 (4.870319) | 11.370381 / 10.191392 (1.178989) | 0.142759 / 0.680424 (-0.537665) | 0.016319 / 0.534201 (-0.517882) | 0.291339 / 0.579283 (-0.287944) | 0.276842 / 0.434364 (-0.157522) | 0.324285 / 0.540337 (-0.216052) | 0.426234 / 1.386936 (-0.960702) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e1b82eaa75d2c610e59b463a67d685ec858c0838 \"CML watermark\")\n" ]
fix tests
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6523/reactions" }
PR_kwDODunzps5ilV6d
{ "diff_url": "https://github.com/huggingface/datasets/pull/6523.diff", "html_url": "https://github.com/huggingface/datasets/pull/6523", "merged_at": "2023-12-21T15:50:38Z", "patch_url": "https://github.com/huggingface/datasets/pull/6523.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6523" }
2023-12-21T15:36:21Z
https://api.github.com/repos/huggingface/datasets/issues/6523/comments
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6523/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6523/timeline
closed
false
6,523
null
2023-12-21T15:50:38Z
null
true
2,052,332,528
https://api.github.com/repos/huggingface/datasets/issues/6522
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6522/events
[]
null
2023-12-21T13:24:31Z
[]
https://github.com/huggingface/datasets/issues/6522
NONE
null
null
null
[]
Loading HF Hub Dataset (private org repo) fails to load all features
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6522/reactions" }
I_kwDODunzps56VBvw
null
2023-12-21T12:26:35Z
https://api.github.com/repos/huggingface/datasets/issues/6522/comments
### Describe the bug When pushing a `Dataset` with multiple `Features` (`input`, `output`, `tags`) to Huggingface Hub (private org repo), and later downloading the `Dataset`, only `input` and `output` load - I believe the expected behavior is for all `Features` to be loaded by default? ### Steps to reproduce the bug Pushing the data. `data_concat` is a `list` of `dict`s. ```python for datum in data_concat: datum_tags = {d["key"]: d["value"] for d in datum["tags"]} split_fraction = # some logic that generates a train/test split number if split_faction < test_fraction: data_test.append(datum) else: data_train.append(datum) dataset = DatasetDict( { "train": Dataset.from_list(data_train), "test": Dataset.from_list(data_test), "full": Dataset.from_list(data_concat), }, ) dataset_shuffled = dataset.shuffle(seed=shuffle_seed) dataset_shuffled.push_to_hub( repo_id=hf_repo_id, private=True, config_name=m, revision=revision, token=hf_token, ) ``` Loading it later: ```python dataset = datasets.load_dataset( path=hf_repo_id, name=name, token=hf_token, ) ``` Produces: ``` DatasetDict({ train: Dataset({ features: ['input', 'output'], num_rows: <obfuscated> }) test: Dataset({ features: ['input', 'output'], num_rows: <obfuscated> }) full: Dataset({ features: ['input', 'output'], num_rows: <obfuscated> }) }) ``` ### Expected behavior The expected result is below: ``` DatasetDict({ train: Dataset({ features: ['input', 'output', 'tags'], num_rows: <obfuscated> }) test: Dataset({ features: ['input', 'output', 'tags'], num_rows: <obfuscated> }) full: Dataset({ features: ['input', 'output', 'tags'], num_rows: <obfuscated> }) }) ``` My workaround is as follows: ```python dsinfo = datasets.get_dataset_config_info( path=data_files, config_name=data_config, token=hf_token, ) allfeatures = dsinfo.features.copy() if "tags" not in allfeatures: allfeatures["tags"] = [{"key": Value(dtype="string", id=None), "value": Value(dtype="string", id=None)}] dataset = datasets.load_dataset( path=data_files, name=data_config, features=allfeatures, token=hf_token, ) ``` Interestingly enough (and perhaps a related bug?), if I don't add the `tags` to `allfeatures` above (i.e. only loading `input` and `output`), it throws an error when executing `load_dataset`: ``` ValueError: Couldn't cast tags: list<element: struct<key: string, value: string>> child 0, element: struct<key: string, value: string> child 0, key: string child 1, value: string input: <obfuscated> output: <obfuscated> -- schema metadata -- huggingface: '{"info": {"features": {"tags": [{"key": {"dtype": "string",' + 532 to {'input': <obfuscated>, 'output': <obfuscated> because column names don't match ``` Traceback for this: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/bt/github/core/.venv/lib/python3.11/site-packages/datasets/load.py", line 2152, in load_dataset builder_instance.download_and_prepare( File "/Users/bt/github/core/.venv/lib/python3.11/site-packages/datasets/builder.py", line 948, in download_and_prepare self._download_and_prepare( File "/Users/bt/github/core/.venv/lib/python3.11/site-packages/datasets/builder.py", line 1043, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/Users/bt/github/core/.venv/lib/python3.11/site-packages/datasets/builder.py", line 1805, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/Users/bt/github/core/.venv/lib/python3.11/site-packages/datasets/builder.py", line 1950, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.builder.DatasetGenerationError: An error occurred while generating the dataset ``` ### Environment info - `datasets` version: 2.15.0 - Platform: macOS-14.0-arm64-arm-64bit - Python version: 3.11.5 - `huggingface_hub` version: 0.19.4 - PyArrow version: 14.0.1 - Pandas version: 2.1.4 - `fsspec` version: 2023.10.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/6579034?v=4", "events_url": "https://api.github.com/users/versipellis/events{/privacy}", "followers_url": "https://api.github.com/users/versipellis/followers", "following_url": "https://api.github.com/users/versipellis/following{/other_user}", "gists_url": "https://api.github.com/users/versipellis/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/versipellis", "id": 6579034, "login": "versipellis", "node_id": "MDQ6VXNlcjY1NzkwMzQ=", "organizations_url": "https://api.github.com/users/versipellis/orgs", "received_events_url": "https://api.github.com/users/versipellis/received_events", "repos_url": "https://api.github.com/users/versipellis/repos", "site_admin": false, "starred_url": "https://api.github.com/users/versipellis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/versipellis/subscriptions", "type": "User", "url": "https://api.github.com/users/versipellis" }
https://api.github.com/repos/huggingface/datasets/issues/6522/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6522/timeline
open
false
6,522
null
null
null
false
2,052,229,538
https://api.github.com/repos/huggingface/datasets/issues/6521
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6521/events
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
null
2023-12-22T11:36:15Z
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
https://github.com/huggingface/datasets/issues/6521
MEMBER
completed
null
null
[ "After investigation, I think the issue was introduced by the use of the Parquet export:\r\n- #6448\r\n\r\nI am proposing a fix.\r\n\r\nCC: @lhoestq " ]
The order of the splits is not preserved
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6521/reactions" }
I_kwDODunzps56Uomi
null
2023-12-21T11:17:27Z
https://api.github.com/repos/huggingface/datasets/issues/6521/comments
We had a regression and the order of the splits is not preserved. They are alphabetically sorted, instead of preserving original "train", "validation", "test" order. Check: In branch "main" ```python In [9]: dataset = load_dataset("adversarial_qa", '"adversarialQA") In [10]: dataset Out[10]: DatasetDict({ test: Dataset({ features: ['id', 'title', 'context', 'question', 'answers', 'metadata'], num_rows: 3000 }) train: Dataset({ features: ['id', 'title', 'context', 'question', 'answers', 'metadata'], num_rows: 30000 }) validation: Dataset({ features: ['id', 'title', 'context', 'question', 'answers', 'metadata'], num_rows: 3000 }) }) ``` Before (2.15.0) it was: ```python DatasetDict({ train: Dataset({ features: ['id', 'title', 'context', 'question', 'answers', 'metadata'], num_rows: 30000 }) validation: Dataset({ features: ['id', 'title', 'context', 'question', 'answers', 'metadata'], num_rows: 3000 }) test: Dataset({ features: ['id', 'title', 'context', 'question', 'answers', 'metadata'], num_rows: 3000 }) }) ``` See issues: - https://huggingface.co/datasets/adversarial_qa/discussions/3 - https://huggingface.co/datasets/beans/discussions/4 This is a regression because it was previously fixed. See: - #6196 - #5728
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
https://api.github.com/repos/huggingface/datasets/issues/6521/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6521/timeline
closed
false
6,521
null
2023-12-22T11:36:15Z
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
false
2,052,059,078
https://api.github.com/repos/huggingface/datasets/issues/6520
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6520/events
[]
null
2023-12-21T14:49:47Z
[]
https://github.com/huggingface/datasets/pull/6520
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6520). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005484 / 0.011353 (-0.005869) | 0.003537 / 0.011008 (-0.007471) | 0.062631 / 0.038508 (0.024123) | 0.048037 / 0.023109 (0.024927) | 0.240342 / 0.275898 (-0.035556) | 0.268103 / 0.323480 (-0.055377) | 0.002927 / 0.007986 (-0.005059) | 0.002609 / 0.004328 (-0.001719) | 0.048112 / 0.004250 (0.043862) | 0.046111 / 0.037052 (0.009058) | 0.249249 / 0.258489 (-0.009240) | 0.277723 / 0.293841 (-0.016118) | 0.028374 / 0.128546 (-0.100172) | 0.010900 / 0.075646 (-0.064746) | 0.206252 / 0.419271 (-0.213019) | 0.035262 / 0.043533 (-0.008271) | 0.247438 / 0.255139 (-0.007701) | 0.270003 / 0.283200 (-0.013197) | 0.019157 / 0.141683 (-0.122526) | 1.116833 / 1.452155 (-0.335322) | 1.174495 / 1.492716 (-0.318221) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092490 / 0.018006 (0.074484) | 0.302794 / 0.000490 (0.302304) | 0.000213 / 0.000200 (0.000013) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018669 / 0.037411 (-0.018743) | 0.061902 / 0.014526 (0.047376) | 0.073612 / 0.176557 (-0.102945) | 0.121196 / 0.737135 (-0.615940) | 0.075960 / 0.296338 (-0.220378) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286983 / 0.215209 (0.071774) | 2.836819 / 2.077655 (0.759165) | 1.506635 / 1.504120 (0.002515) | 1.387134 / 1.541195 (-0.154061) | 1.442310 / 1.468490 (-0.026180) | 0.571281 / 4.584777 (-4.013496) | 2.440220 / 3.745712 (-1.305492) | 2.775306 / 5.269862 (-2.494555) | 1.727047 / 4.565676 (-2.838630) | 0.064955 / 0.424275 (-0.359320) | 0.004982 / 0.007607 (-0.002625) | 0.343153 / 0.226044 (0.117108) | 3.388745 / 2.268929 (1.119817) | 1.878983 / 55.444624 (-53.565641) | 1.592642 / 6.876477 (-5.283835) | 1.601037 / 2.142072 (-0.541035) | 0.636882 / 4.805227 (-4.168345) | 0.117804 / 6.500664 (-6.382861) | 0.042467 / 0.075469 (-0.033002) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.941534 / 1.841788 (-0.900254) | 12.093230 / 8.074308 (4.018922) | 10.590854 / 10.191392 (0.399462) | 0.136636 / 0.680424 (-0.543788) | 0.015244 / 0.534201 (-0.518957) | 0.300216 / 0.579283 (-0.279067) | 0.267622 / 0.434364 (-0.166742) | 0.337526 / 0.540337 (-0.202811) | 0.426856 / 1.386936 (-0.960080) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005282 / 0.011353 (-0.006071) | 0.003595 / 0.011008 (-0.007413) | 0.049237 / 0.038508 (0.010729) | 0.054057 / 0.023109 (0.030948) | 0.269781 / 0.275898 (-0.006117) | 0.293544 / 0.323480 (-0.029936) | 0.003991 / 0.007986 (-0.003995) | 0.002705 / 0.004328 (-0.001623) | 0.048755 / 0.004250 (0.044505) | 0.040425 / 0.037052 (0.003373) | 0.264753 / 0.258489 (0.006264) | 0.312773 / 0.293841 (0.018932) | 0.030011 / 0.128546 (-0.098535) | 0.010707 / 0.075646 (-0.064939) | 0.058164 / 0.419271 (-0.361107) | 0.033365 / 0.043533 (-0.010168) | 0.268854 / 0.255139 (0.013715) | 0.283618 / 0.283200 (0.000418) | 0.019571 / 0.141683 (-0.122111) | 1.114738 / 1.452155 (-0.337417) | 1.178990 / 1.492716 (-0.313726) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092183 / 0.018006 (0.074177) | 0.303797 / 0.000490 (0.303307) | 0.000218 / 0.000200 (0.000018) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023088 / 0.037411 (-0.014323) | 0.079813 / 0.014526 (0.065287) | 0.089593 / 0.176557 (-0.086964) | 0.128127 / 0.737135 (-0.609008) | 0.091578 / 0.296338 (-0.204761) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300153 / 0.215209 (0.084944) | 2.919532 / 2.077655 (0.841877) | 1.587870 / 1.504120 (0.083750) | 1.459031 / 1.541195 (-0.082164) | 1.483305 / 1.468490 (0.014815) | 0.555865 / 4.584777 (-4.028912) | 2.388350 / 3.745712 (-1.357362) | 2.817947 / 5.269862 (-2.451914) | 1.764446 / 4.565676 (-2.801230) | 0.067142 / 0.424275 (-0.357133) | 0.005148 / 0.007607 (-0.002460) | 0.347998 / 0.226044 (0.121953) | 3.431208 / 2.268929 (1.162280) | 1.942175 / 55.444624 (-53.502450) | 1.676606 / 6.876477 (-5.199871) | 1.692431 / 2.142072 (-0.449641) | 0.645974 / 4.805227 (-4.159253) | 0.117729 / 6.500664 (-6.382935) | 0.041670 / 0.075469 (-0.033799) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.981554 / 1.841788 (-0.860234) | 12.671959 / 8.074308 (4.597650) | 11.230694 / 10.191392 (1.039302) | 0.132694 / 0.680424 (-0.547730) | 0.015694 / 0.534201 (-0.518507) | 0.290271 / 0.579283 (-0.289013) | 0.279358 / 0.434364 (-0.155006) | 0.326515 / 0.540337 (-0.213823) | 0.421755 / 1.386936 (-0.965181) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0b2147ac644596b66886f398012351641672ee54 \"CML watermark\")\n" ]
Support commit_description parameter in push_to_hub
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6520/reactions" }
PR_kwDODunzps5ijUiw
{ "diff_url": "https://github.com/huggingface/datasets/pull/6520.diff", "html_url": "https://github.com/huggingface/datasets/pull/6520", "merged_at": "2023-12-21T14:43:35Z", "patch_url": "https://github.com/huggingface/datasets/pull/6520.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6520" }
2023-12-21T09:36:11Z
https://api.github.com/repos/huggingface/datasets/issues/6520/comments
Support `commit_description` parameter in `push_to_hub`. CC: @Wauplin
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
https://api.github.com/repos/huggingface/datasets/issues/6520/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6520/timeline
closed
false
6,520
null
2023-12-21T14:43:35Z
null
true
2,050,759,824
https://api.github.com/repos/huggingface/datasets/issues/6519
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6519/events
[]
null
2023-12-21T14:48:20Z
[]
https://github.com/huggingface/datasets/pull/6519
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6519). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "nice catch @albertvillanova ", "@huggingface/datasets this PR is ready for review.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005306 / 0.011353 (-0.006047) | 0.003454 / 0.011008 (-0.007555) | 0.062157 / 0.038508 (0.023649) | 0.051945 / 0.023109 (0.028835) | 0.241834 / 0.275898 (-0.034064) | 0.265590 / 0.323480 (-0.057890) | 0.003149 / 0.007986 (-0.004837) | 0.002695 / 0.004328 (-0.001633) | 0.049197 / 0.004250 (0.044947) | 0.045576 / 0.037052 (0.008524) | 0.242866 / 0.258489 (-0.015623) | 0.280963 / 0.293841 (-0.012878) | 0.028466 / 0.128546 (-0.100080) | 0.010670 / 0.075646 (-0.064976) | 0.206501 / 0.419271 (-0.212771) | 0.035314 / 0.043533 (-0.008219) | 0.240893 / 0.255139 (-0.014246) | 0.264762 / 0.283200 (-0.018438) | 0.019988 / 0.141683 (-0.121695) | 1.095222 / 1.452155 (-0.356933) | 1.144051 / 1.492716 (-0.348666) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098034 / 0.018006 (0.080028) | 0.308541 / 0.000490 (0.308051) | 0.000261 / 0.000200 (0.000061) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018646 / 0.037411 (-0.018766) | 0.062881 / 0.014526 (0.048355) | 0.074062 / 0.176557 (-0.102494) | 0.120860 / 0.737135 (-0.616276) | 0.075388 / 0.296338 (-0.220951) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282974 / 0.215209 (0.067765) | 2.755589 / 2.077655 (0.677934) | 1.459536 / 1.504120 (-0.044584) | 1.364543 / 1.541195 (-0.176652) | 1.429860 / 1.468490 (-0.038630) | 0.573277 / 4.584777 (-4.011500) | 2.422983 / 3.745712 (-1.322730) | 3.257258 / 5.269862 (-2.012603) | 1.930053 / 4.565676 (-2.635623) | 0.067476 / 0.424275 (-0.356799) | 0.005612 / 0.007607 (-0.001995) | 0.351538 / 0.226044 (0.125494) | 3.380356 / 2.268929 (1.111427) | 1.837887 / 55.444624 (-53.606738) | 1.537994 / 6.876477 (-5.338483) | 1.623630 / 2.142072 (-0.518442) | 0.662652 / 4.805227 (-4.142576) | 0.127074 / 6.500664 (-6.373590) | 0.049311 / 0.075469 (-0.026158) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.151273 / 1.841788 (-0.690515) | 12.766622 / 8.074308 (4.692314) | 10.967610 / 10.191392 (0.776218) | 0.131305 / 0.680424 (-0.549119) | 0.014227 / 0.534201 (-0.519974) | 0.292054 / 0.579283 (-0.287229) | 0.262737 / 0.434364 (-0.171627) | 0.334360 / 0.540337 (-0.205978) | 0.446711 / 1.386936 (-0.940225) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005194 / 0.011353 (-0.006159) | 0.003508 / 0.011008 (-0.007500) | 0.049287 / 0.038508 (0.010779) | 0.052109 / 0.023109 (0.029000) | 0.271501 / 0.275898 (-0.004397) | 0.290959 / 0.323480 (-0.032521) | 0.004347 / 0.007986 (-0.003638) | 0.002659 / 0.004328 (-0.001669) | 0.048769 / 0.004250 (0.044518) | 0.039388 / 0.037052 (0.002336) | 0.272811 / 0.258489 (0.014322) | 0.305632 / 0.293841 (0.011791) | 0.028419 / 0.128546 (-0.100127) | 0.010617 / 0.075646 (-0.065029) | 0.057433 / 0.419271 (-0.361838) | 0.032383 / 0.043533 (-0.011149) | 0.266566 / 0.255139 (0.011427) | 0.290993 / 0.283200 (0.007794) | 0.019939 / 0.141683 (-0.121743) | 1.157623 / 1.452155 (-0.294532) | 1.183298 / 1.492716 (-0.309419) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099074 / 0.018006 (0.081068) | 0.315282 / 0.000490 (0.314792) | 0.000235 / 0.000200 (0.000035) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022692 / 0.037411 (-0.014719) | 0.076455 / 0.014526 (0.061929) | 0.089094 / 0.176557 (-0.087462) | 0.126407 / 0.737135 (-0.610728) | 0.089588 / 0.296338 (-0.206750) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.338853 / 0.215209 (0.123644) | 2.809843 / 2.077655 (0.732188) | 1.538262 / 1.504120 (0.034143) | 1.418290 / 1.541195 (-0.122905) | 1.435145 / 1.468490 (-0.033345) | 0.565763 / 4.584777 (-4.019014) | 2.491525 / 3.745712 (-1.254187) | 2.944879 / 5.269862 (-2.324983) | 1.835840 / 4.565676 (-2.729837) | 0.065101 / 0.424275 (-0.359174) | 0.005196 / 0.007607 (-0.002412) | 0.345291 / 0.226044 (0.119247) | 3.399658 / 2.268929 (1.130729) | 1.892321 / 55.444624 (-53.552303) | 1.608293 / 6.876477 (-5.268184) | 1.651188 / 2.142072 (-0.490884) | 0.647806 / 4.805227 (-4.157421) | 0.119318 / 6.500664 (-6.381346) | 0.043058 / 0.075469 (-0.032412) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.983956 / 1.841788 (-0.857831) | 13.516125 / 8.074308 (5.441817) | 11.712571 / 10.191392 (1.521179) | 0.134253 / 0.680424 (-0.546171) | 0.015844 / 0.534201 (-0.518357) | 0.292444 / 0.579283 (-0.286839) | 0.282182 / 0.434364 (-0.152182) | 0.329327 / 0.540337 (-0.211010) | 0.419960 / 1.386936 (-0.966976) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a887ee78835573f5d80f9e414e8443b4caff3541 \"CML watermark\")\n" ]
Support push_to_hub canonical datasets
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6519/reactions" }
PR_kwDODunzps5ie4MA
{ "diff_url": "https://github.com/huggingface/datasets/pull/6519.diff", "html_url": "https://github.com/huggingface/datasets/pull/6519", "merged_at": "2023-12-21T14:40:57Z", "patch_url": "https://github.com/huggingface/datasets/pull/6519.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6519" }
2023-12-20T15:16:45Z
https://api.github.com/repos/huggingface/datasets/issues/6519/comments
Support `push_to_hub` canonical datasets. This is necessary in the Space to convert script-datasets to Parquet: https://huggingface.co/spaces/albertvillanova/convert-dataset-to-parquet Note that before this PR, the `repo_id` "dataset_name" was transformed to "user/dataset_name". This behavior was introduced by: - #6269
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
https://api.github.com/repos/huggingface/datasets/issues/6519/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6519/timeline
closed
false
6,519
null
2023-12-21T14:40:57Z
null
true
2,050,137,038
https://api.github.com/repos/huggingface/datasets/issues/6518
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6518/events
[]
null
2023-12-21T15:14:17Z
[]
https://github.com/huggingface/datasets/pull/6518
CONTRIBUTOR
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6518). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "hello!\r\n@albertvillanova \r\nThank you very much for your recognition。\r\nWhen can this PR be merged?", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005205 / 0.011353 (-0.006148) | 0.003730 / 0.011008 (-0.007278) | 0.063195 / 0.038508 (0.024687) | 0.052329 / 0.023109 (0.029219) | 0.247299 / 0.275898 (-0.028599) | 0.269600 / 0.323480 (-0.053880) | 0.004801 / 0.007986 (-0.003185) | 0.002728 / 0.004328 (-0.001600) | 0.049195 / 0.004250 (0.044944) | 0.044859 / 0.037052 (0.007807) | 0.253047 / 0.258489 (-0.005442) | 0.277253 / 0.293841 (-0.016588) | 0.028370 / 0.128546 (-0.100176) | 0.011095 / 0.075646 (-0.064551) | 0.211090 / 0.419271 (-0.208182) | 0.035944 / 0.043533 (-0.007589) | 0.252755 / 0.255139 (-0.002384) | 0.269466 / 0.283200 (-0.013733) | 0.017514 / 0.141683 (-0.124169) | 1.107815 / 1.452155 (-0.344339) | 1.154989 / 1.492716 (-0.337728) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093925 / 0.018006 (0.075919) | 0.300923 / 0.000490 (0.300433) | 0.000219 / 0.000200 (0.000019) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018268 / 0.037411 (-0.019143) | 0.060508 / 0.014526 (0.045983) | 0.074564 / 0.176557 (-0.101992) | 0.121523 / 0.737135 (-0.615612) | 0.077394 / 0.296338 (-0.218945) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.275859 / 0.215209 (0.060650) | 2.707593 / 2.077655 (0.629938) | 1.419178 / 1.504120 (-0.084942) | 1.286737 / 1.541195 (-0.254458) | 1.350504 / 1.468490 (-0.117986) | 0.570461 / 4.584777 (-4.014316) | 2.400795 / 3.745712 (-1.344917) | 2.840876 / 5.269862 (-2.428986) | 1.724044 / 4.565676 (-2.841633) | 0.063819 / 0.424275 (-0.360456) | 0.004961 / 0.007607 (-0.002647) | 0.342537 / 0.226044 (0.116492) | 3.370942 / 2.268929 (1.102013) | 1.788659 / 55.444624 (-53.655966) | 1.501921 / 6.876477 (-5.374556) | 1.535352 / 2.142072 (-0.606721) | 0.651838 / 4.805227 (-4.153390) | 0.118979 / 6.500664 (-6.381685) | 0.047796 / 0.075469 (-0.027673) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.949850 / 1.841788 (-0.891937) | 11.581988 / 8.074308 (3.507680) | 10.462837 / 10.191392 (0.271445) | 0.133298 / 0.680424 (-0.547125) | 0.015008 / 0.534201 (-0.519193) | 0.299265 / 0.579283 (-0.280018) | 0.268864 / 0.434364 (-0.165500) | 0.332888 / 0.540337 (-0.207450) | 0.420423 / 1.386936 (-0.966513) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005309 / 0.011353 (-0.006044) | 0.003628 / 0.011008 (-0.007380) | 0.049545 / 0.038508 (0.011036) | 0.054095 / 0.023109 (0.030985) | 0.270679 / 0.275898 (-0.005219) | 0.295744 / 0.323480 (-0.027736) | 0.004131 / 0.007986 (-0.003855) | 0.002732 / 0.004328 (-0.001596) | 0.048714 / 0.004250 (0.044464) | 0.039916 / 0.037052 (0.002863) | 0.272354 / 0.258489 (0.013865) | 0.310553 / 0.293841 (0.016712) | 0.029525 / 0.128546 (-0.099021) | 0.011322 / 0.075646 (-0.064324) | 0.058007 / 0.419271 (-0.361265) | 0.032883 / 0.043533 (-0.010650) | 0.273609 / 0.255139 (0.018470) | 0.291780 / 0.283200 (0.008581) | 0.020538 / 0.141683 (-0.121145) | 1.118031 / 1.452155 (-0.334123) | 1.160777 / 1.492716 (-0.331940) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092966 / 0.018006 (0.074959) | 0.301432 / 0.000490 (0.300943) | 0.000225 / 0.000200 (0.000025) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022736 / 0.037411 (-0.014676) | 0.077655 / 0.014526 (0.063129) | 0.093386 / 0.176557 (-0.083171) | 0.129694 / 0.737135 (-0.607441) | 0.092790 / 0.296338 (-0.203548) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.299161 / 0.215209 (0.083952) | 2.923300 / 2.077655 (0.845645) | 1.629661 / 1.504120 (0.125541) | 1.510797 / 1.541195 (-0.030398) | 1.507269 / 1.468490 (0.038778) | 0.574346 / 4.584777 (-4.010431) | 2.454396 / 3.745712 (-1.291316) | 2.843402 / 5.269862 (-2.426460) | 1.774815 / 4.565676 (-2.790861) | 0.063601 / 0.424275 (-0.360674) | 0.004977 / 0.007607 (-0.002630) | 0.347693 / 0.226044 (0.121649) | 3.430054 / 2.268929 (1.161126) | 1.987308 / 55.444624 (-53.457316) | 1.682756 / 6.876477 (-5.193721) | 1.688463 / 2.142072 (-0.453609) | 0.646449 / 4.805227 (-4.158778) | 0.117860 / 6.500664 (-6.382804) | 0.041305 / 0.075469 (-0.034164) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.987355 / 1.841788 (-0.854433) | 12.398721 / 8.074308 (4.324412) | 11.070442 / 10.191392 (0.879050) | 0.134946 / 0.680424 (-0.545477) | 0.016172 / 0.534201 (-0.518029) | 0.293359 / 0.579283 (-0.285924) | 0.282271 / 0.434364 (-0.152093) | 0.331919 / 0.540337 (-0.208418) | 0.432137 / 1.386936 (-0.954799) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2246d3187222ef939aa8e69cd1aa476cf9526945 \"CML watermark\")\n" ]
fix get_metadata_patterns function args error
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6518/reactions" }
PR_kwDODunzps5icu-W
{ "diff_url": "https://github.com/huggingface/datasets/pull/6518.diff", "html_url": "https://github.com/huggingface/datasets/pull/6518", "merged_at": "2023-12-21T15:07:57Z", "patch_url": "https://github.com/huggingface/datasets/pull/6518.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6518" }
2023-12-20T09:06:22Z
https://api.github.com/repos/huggingface/datasets/issues/6518/comments
Bug get_metadata_patterns arg error https://github.com/huggingface/datasets/issues/6517
{ "avatar_url": "https://avatars.githubusercontent.com/u/12895488?v=4", "events_url": "https://api.github.com/users/d710055071/events{/privacy}", "followers_url": "https://api.github.com/users/d710055071/followers", "following_url": "https://api.github.com/users/d710055071/following{/other_user}", "gists_url": "https://api.github.com/users/d710055071/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/d710055071", "id": 12895488, "login": "d710055071", "node_id": "MDQ6VXNlcjEyODk1NDg4", "organizations_url": "https://api.github.com/users/d710055071/orgs", "received_events_url": "https://api.github.com/users/d710055071/received_events", "repos_url": "https://api.github.com/users/d710055071/repos", "site_admin": false, "starred_url": "https://api.github.com/users/d710055071/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/d710055071/subscriptions", "type": "User", "url": "https://api.github.com/users/d710055071" }
https://api.github.com/repos/huggingface/datasets/issues/6518/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6518/timeline
closed
false
6,518
null
2023-12-21T15:07:57Z
null
true
2,050,121,588
https://api.github.com/repos/huggingface/datasets/issues/6517
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6517/events
[]
null
2023-12-22T00:24:23Z
[]
https://github.com/huggingface/datasets/issues/6517
CONTRIBUTOR
completed
null
null
[]
Bug get_metadata_patterns arg error
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6517/reactions" }
I_kwDODunzps56Ml90
null
2023-12-20T08:56:44Z
https://api.github.com/repos/huggingface/datasets/issues/6517/comments
https://github.com/huggingface/datasets/blob/3f149204a2a5948287adcade5e90707aa5207a92/src/datasets/load.py#L1240C1-L1240C69 metadata_patterns = get_metadata_patterns(base_path, download_config=self.download_config)
{ "avatar_url": "https://avatars.githubusercontent.com/u/12895488?v=4", "events_url": "https://api.github.com/users/d710055071/events{/privacy}", "followers_url": "https://api.github.com/users/d710055071/followers", "following_url": "https://api.github.com/users/d710055071/following{/other_user}", "gists_url": "https://api.github.com/users/d710055071/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/d710055071", "id": 12895488, "login": "d710055071", "node_id": "MDQ6VXNlcjEyODk1NDg4", "organizations_url": "https://api.github.com/users/d710055071/orgs", "received_events_url": "https://api.github.com/users/d710055071/received_events", "repos_url": "https://api.github.com/users/d710055071/repos", "site_admin": false, "starred_url": "https://api.github.com/users/d710055071/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/d710055071/subscriptions", "type": "User", "url": "https://api.github.com/users/d710055071" }
https://api.github.com/repos/huggingface/datasets/issues/6517/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6517/timeline
closed
false
6,517
null
2023-12-22T00:24:23Z
null
false
2,050,033,322
https://api.github.com/repos/huggingface/datasets/issues/6516
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6516/events
[]
null
2023-12-20T08:51:34Z
[]
https://github.com/huggingface/datasets/pull/6516
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6516). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005309 / 0.011353 (-0.006044) | 0.003231 / 0.011008 (-0.007777) | 0.062690 / 0.038508 (0.024182) | 0.050811 / 0.023109 (0.027701) | 0.258319 / 0.275898 (-0.017579) | 0.275977 / 0.323480 (-0.047503) | 0.002842 / 0.007986 (-0.005143) | 0.002606 / 0.004328 (-0.001723) | 0.048672 / 0.004250 (0.044421) | 0.038730 / 0.037052 (0.001677) | 0.258531 / 0.258489 (0.000042) | 0.289327 / 0.293841 (-0.004514) | 0.027994 / 0.128546 (-0.100552) | 0.010446 / 0.075646 (-0.065200) | 0.207152 / 0.419271 (-0.212119) | 0.035839 / 0.043533 (-0.007693) | 0.258416 / 0.255139 (0.003277) | 0.274348 / 0.283200 (-0.008851) | 0.019661 / 0.141683 (-0.122022) | 1.103688 / 1.452155 (-0.348466) | 1.207711 / 1.492716 (-0.285006) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090693 / 0.018006 (0.072687) | 0.300648 / 0.000490 (0.300158) | 0.000215 / 0.000200 (0.000015) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018589 / 0.037411 (-0.018822) | 0.061056 / 0.014526 (0.046530) | 0.074512 / 0.176557 (-0.102044) | 0.121260 / 0.737135 (-0.615875) | 0.073111 / 0.296338 (-0.223227) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285811 / 0.215209 (0.070602) | 2.785081 / 2.077655 (0.707426) | 1.469493 / 1.504120 (-0.034627) | 1.346389 / 1.541195 (-0.194806) | 1.391866 / 1.468490 (-0.076624) | 0.567304 / 4.584777 (-4.017473) | 2.407150 / 3.745712 (-1.338562) | 2.809915 / 5.269862 (-2.459946) | 1.741185 / 4.565676 (-2.824491) | 0.063073 / 0.424275 (-0.361202) | 0.004974 / 0.007607 (-0.002633) | 0.336431 / 0.226044 (0.110386) | 3.331371 / 2.268929 (1.062443) | 1.841466 / 55.444624 (-53.603159) | 1.559065 / 6.876477 (-5.317411) | 1.585033 / 2.142072 (-0.557039) | 0.647469 / 4.805227 (-4.157759) | 0.117488 / 6.500664 (-6.383176) | 0.042535 / 0.075469 (-0.032934) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.936409 / 1.841788 (-0.905379) | 11.301514 / 8.074308 (3.227206) | 10.500465 / 10.191392 (0.309073) | 0.131316 / 0.680424 (-0.549107) | 0.014007 / 0.534201 (-0.520194) | 0.286932 / 0.579283 (-0.292351) | 0.263516 / 0.434364 (-0.170848) | 0.340883 / 0.540337 (-0.199454) | 0.443589 / 1.386936 (-0.943347) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005204 / 0.011353 (-0.006149) | 0.003472 / 0.011008 (-0.007536) | 0.049235 / 0.038508 (0.010727) | 0.050668 / 0.023109 (0.027559) | 0.270198 / 0.275898 (-0.005700) | 0.293942 / 0.323480 (-0.029538) | 0.003964 / 0.007986 (-0.004022) | 0.002596 / 0.004328 (-0.001733) | 0.048654 / 0.004250 (0.044404) | 0.039411 / 0.037052 (0.002358) | 0.271938 / 0.258489 (0.013449) | 0.304308 / 0.293841 (0.010467) | 0.029042 / 0.128546 (-0.099504) | 0.010414 / 0.075646 (-0.065232) | 0.058273 / 0.419271 (-0.360999) | 0.032507 / 0.043533 (-0.011025) | 0.271671 / 0.255139 (0.016532) | 0.289850 / 0.283200 (0.006650) | 0.017292 / 0.141683 (-0.124391) | 1.126160 / 1.452155 (-0.325995) | 1.177365 / 1.492716 (-0.315351) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091158 / 0.018006 (0.073152) | 0.299143 / 0.000490 (0.298653) | 0.000217 / 0.000200 (0.000017) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022558 / 0.037411 (-0.014853) | 0.076139 / 0.014526 (0.061613) | 0.088344 / 0.176557 (-0.088212) | 0.126640 / 0.737135 (-0.610495) | 0.089736 / 0.296338 (-0.206602) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295351 / 0.215209 (0.080142) | 2.895779 / 2.077655 (0.818125) | 1.585886 / 1.504120 (0.081766) | 1.458601 / 1.541195 (-0.082594) | 1.468880 / 1.468490 (0.000390) | 0.554686 / 4.584777 (-4.030091) | 2.466276 / 3.745712 (-1.279437) | 2.741938 / 5.269862 (-2.527924) | 1.711793 / 4.565676 (-2.853883) | 0.062928 / 0.424275 (-0.361347) | 0.005177 / 0.007607 (-0.002430) | 0.343908 / 0.226044 (0.117863) | 3.393360 / 2.268929 (1.124431) | 1.928800 / 55.444624 (-53.515824) | 1.652181 / 6.876477 (-5.224296) | 1.643667 / 2.142072 (-0.498405) | 0.632829 / 4.805227 (-4.172398) | 0.114583 / 6.500664 (-6.386081) | 0.041248 / 0.075469 (-0.034221) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.986196 / 1.841788 (-0.855592) | 12.006772 / 8.074308 (3.932464) | 10.522661 / 10.191392 (0.331269) | 0.133710 / 0.680424 (-0.546713) | 0.016714 / 0.534201 (-0.517487) | 0.286502 / 0.579283 (-0.292781) | 0.280090 / 0.434364 (-0.154273) | 0.326063 / 0.540337 (-0.214275) | 0.548485 / 1.386936 (-0.838452) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3f149204a2a5948287adcade5e90707aa5207a92 \"CML watermark\")\n" ]
Support huggingface-hub pre-releases
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/6516/reactions" }
PR_kwDODunzps5icYX0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6516.diff", "html_url": "https://github.com/huggingface/datasets/pull/6516", "merged_at": "2023-12-20T08:44:44Z", "patch_url": "https://github.com/huggingface/datasets/pull/6516.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6516" }
2023-12-20T07:52:29Z
https://api.github.com/repos/huggingface/datasets/issues/6516/comments
Support `huggingface-hub` pre-releases. This way we will have our CI green when testing `huggingface-hub` release candidates. See: https://github.com/huggingface/datasets/tree/ci-test-huggingface-hub-v0.20.0.rc1 Close #6513.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
https://api.github.com/repos/huggingface/datasets/issues/6516/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6516/timeline
closed
false
6,516
null
2023-12-20T08:44:44Z
null
true
2,049,724,251
https://api.github.com/repos/huggingface/datasets/issues/6515
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6515/events
[]
null
2023-12-26T05:35:46Z
[]
https://github.com/huggingface/datasets/issues/6515
CONTRIBUTOR
completed
null
null
[]
Why call http_head() when fsspec_head() succeeds
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6515/reactions" }
I_kwDODunzps56LE9b
null
2023-12-20T02:25:51Z
https://api.github.com/repos/huggingface/datasets/issues/6515/comments
https://github.com/huggingface/datasets/blob/a91582de288d98e94bcb5ab634ca1cfeeff544c5/src/datasets/utils/file_utils.py#L510C1-L523C14
{ "avatar_url": "https://avatars.githubusercontent.com/u/12895488?v=4", "events_url": "https://api.github.com/users/d710055071/events{/privacy}", "followers_url": "https://api.github.com/users/d710055071/followers", "following_url": "https://api.github.com/users/d710055071/following{/other_user}", "gists_url": "https://api.github.com/users/d710055071/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/d710055071", "id": 12895488, "login": "d710055071", "node_id": "MDQ6VXNlcjEyODk1NDg4", "organizations_url": "https://api.github.com/users/d710055071/orgs", "received_events_url": "https://api.github.com/users/d710055071/received_events", "repos_url": "https://api.github.com/users/d710055071/repos", "site_admin": false, "starred_url": "https://api.github.com/users/d710055071/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/d710055071/subscriptions", "type": "User", "url": "https://api.github.com/users/d710055071" }
https://api.github.com/repos/huggingface/datasets/issues/6515/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6515/timeline
closed
false
6,515
null
2023-12-26T05:35:46Z
null
false
2,049,600,663
https://api.github.com/repos/huggingface/datasets/issues/6514
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6514/events
[]
null
2023-12-21T21:14:11Z
[]
https://github.com/huggingface/datasets/pull/6514
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6514). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "it's hard to tell if this works as expected without a test but i guess it's not trivial to implement such a test.\r\n\r\ni tried to reproduce locally (with this branch merged into the lazy-resolve-and-cache-reload) and it didn't work. \r\nI run:\r\n```\r\n ds = load_dataset(\"polinaeterna/audiofolder_two_configs_in_metadata\", \"v2\", data_files=\"v2/train/*\") \r\n```\r\nand i got this in the cache:\r\n```\r\nv2-374bfde4f55442bc/\r\n└── 0.0.0\r\n ├── 5a2339ad2bb7caf6a6daf2f213204e3ac03a13a5 # - from this pr\r\n │   ├── audiofolder_two_configs_in_metadata-train.arrow\r\n │   └── dataset_info.json\r\n ├── 5a2339ad2bb7caf6a6daf2f213204e3ac03a13a5_builder.lock\r\n ├── 5a2339ad2bb7caf6a6daf2f213204e3ac03a13a5.incomplete_info.lock\r\n ├── 7896925d64deea5d # from 2.15.0\r\n │   ├── audiofolder_two_configs_in_metadata-train.arrow\r\n │   └── dataset_info.json\r\n ├── 7896925d64deea5d_builder.lock\r\n └── 7896925d64deea5d.incomplete_info.lock\r\n```\r\nso the first hash (the top-level dir v2-374bfde4f55442bc) matches but the second (after version) doesn't.\r\nmaybe i did something wrong though.\r\n\r\nalso i'm not sure if this is worth too much effort, maybe nobody notices if their datasets will be generated again :D idk", "I just pushed a fix, it should work just fine now :)", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004798 / 0.011353 (-0.006555) | 0.003203 / 0.011008 (-0.007805) | 0.062247 / 0.038508 (0.023738) | 0.029906 / 0.023109 (0.006797) | 0.259370 / 0.275898 (-0.016528) | 0.276084 / 0.323480 (-0.047396) | 0.002910 / 0.007986 (-0.005076) | 0.002364 / 0.004328 (-0.001964) | 0.048080 / 0.004250 (0.043830) | 0.041168 / 0.037052 (0.004116) | 0.259833 / 0.258489 (0.001343) | 0.289882 / 0.293841 (-0.003959) | 0.026790 / 0.128546 (-0.101756) | 0.010336 / 0.075646 (-0.065311) | 0.209628 / 0.419271 (-0.209643) | 0.035080 / 0.043533 (-0.008452) | 0.256278 / 0.255139 (0.001139) | 0.279502 / 0.283200 (-0.003697) | 0.019755 / 0.141683 (-0.121928) | 1.121552 / 1.452155 (-0.330602) | 1.174360 / 1.492716 (-0.318356) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093510 / 0.018006 (0.075504) | 0.302065 / 0.000490 (0.301575) | 0.000214 / 0.000200 (0.000014) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.017652 / 0.037411 (-0.019759) | 0.060512 / 0.014526 (0.045986) | 0.072441 / 0.176557 (-0.104115) | 0.118058 / 0.737135 (-0.619078) | 0.072657 / 0.296338 (-0.223682) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283949 / 0.215209 (0.068740) | 2.803275 / 2.077655 (0.725620) | 1.527353 / 1.504120 (0.023233) | 1.408176 / 1.541195 (-0.133019) | 1.375335 / 1.468490 (-0.093155) | 0.546426 / 4.584777 (-4.038351) | 2.402210 / 3.745712 (-1.343502) | 2.765879 / 5.269862 (-2.503982) | 1.703722 / 4.565676 (-2.861955) | 0.062669 / 0.424275 (-0.361606) | 0.005006 / 0.007607 (-0.002601) | 0.337941 / 0.226044 (0.111897) | 3.385494 / 2.268929 (1.116566) | 1.817360 / 55.444624 (-53.627264) | 1.548594 / 6.876477 (-5.327883) | 1.548610 / 2.142072 (-0.593463) | 0.630188 / 4.805227 (-4.175040) | 0.117079 / 6.500664 (-6.383585) | 0.042077 / 0.075469 (-0.033392) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.941606 / 1.841788 (-0.900182) | 11.226277 / 8.074308 (3.151969) | 10.118005 / 10.191392 (-0.073387) | 0.130408 / 0.680424 (-0.550015) | 0.014419 / 0.534201 (-0.519782) | 0.284812 / 0.579283 (-0.294471) | 0.266951 / 0.434364 (-0.167413) | 0.322251 / 0.540337 (-0.218087) | 0.415014 / 1.386936 (-0.971922) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005192 / 0.011353 (-0.006161) | 0.003028 / 0.011008 (-0.007980) | 0.048322 / 0.038508 (0.009814) | 0.030550 / 0.023109 (0.007441) | 0.264360 / 0.275898 (-0.011538) | 0.289544 / 0.323480 (-0.033936) | 0.004053 / 0.007986 (-0.003933) | 0.002480 / 0.004328 (-0.001848) | 0.048215 / 0.004250 (0.043964) | 0.044208 / 0.037052 (0.007156) | 0.263943 / 0.258489 (0.005454) | 0.297648 / 0.293841 (0.003807) | 0.029315 / 0.128546 (-0.099231) | 0.010533 / 0.075646 (-0.065114) | 0.057021 / 0.419271 (-0.362251) | 0.053751 / 0.043533 (0.010218) | 0.265153 / 0.255139 (0.010014) | 0.284988 / 0.283200 (0.001788) | 0.018459 / 0.141683 (-0.123224) | 1.225657 / 1.452155 (-0.226498) | 1.195737 / 1.492716 (-0.296979) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093030 / 0.018006 (0.075024) | 0.301022 / 0.000490 (0.300533) | 0.000228 / 0.000200 (0.000028) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022073 / 0.037411 (-0.015339) | 0.075912 / 0.014526 (0.061386) | 0.087628 / 0.176557 (-0.088929) | 0.125607 / 0.737135 (-0.611529) | 0.088568 / 0.296338 (-0.207770) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.303482 / 0.215209 (0.088273) | 2.965987 / 2.077655 (0.888333) | 1.615273 / 1.504120 (0.111153) | 1.482851 / 1.541195 (-0.058344) | 1.562627 / 1.468490 (0.094137) | 0.563626 / 4.584777 (-4.021151) | 2.448741 / 3.745712 (-1.296971) | 2.761006 / 5.269862 (-2.508855) | 1.711242 / 4.565676 (-2.854434) | 0.064593 / 0.424275 (-0.359682) | 0.005044 / 0.007607 (-0.002563) | 0.354131 / 0.226044 (0.128087) | 3.511698 / 2.268929 (1.242770) | 1.951087 / 55.444624 (-53.493538) | 1.682171 / 6.876477 (-5.194305) | 1.666330 / 2.142072 (-0.475742) | 0.654880 / 4.805227 (-4.150347) | 0.118544 / 6.500664 (-6.382120) | 0.040753 / 0.075469 (-0.034717) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.967771 / 1.841788 (-0.874017) | 12.017277 / 8.074308 (3.942969) | 10.624947 / 10.191392 (0.433555) | 0.128834 / 0.680424 (-0.551590) | 0.015739 / 0.534201 (-0.518462) | 0.285906 / 0.579283 (-0.293377) | 0.273659 / 0.434364 (-0.160705) | 0.324044 / 0.540337 (-0.216293) | 0.419469 / 1.386936 (-0.967467) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2afbf785f8d0551cdd65a81c5c3228e469613724 \"CML watermark\")\n" ]
Cache backward compatibility with 2.15.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6514/reactions" }
PR_kwDODunzps5ia6Os
{ "diff_url": "https://github.com/huggingface/datasets/pull/6514.diff", "html_url": "https://github.com/huggingface/datasets/pull/6514", "merged_at": "2023-12-21T21:07:55Z", "patch_url": "https://github.com/huggingface/datasets/pull/6514.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6514" }
2023-12-19T23:52:25Z
https://api.github.com/repos/huggingface/datasets/issues/6514/comments
...for datasets without scripts It takes into account the changes in cache from - https://github.com/huggingface/datasets/pull/6493: switch to `config/version/commit_sha` schema - https://github.com/huggingface/datasets/pull/6454: fix `DataFilesDict` keys ordering when hashing requires https://github.com/huggingface/datasets/pull/6493 to be merged
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6514/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6514/timeline
closed
false
6,514
null
2023-12-21T21:07:55Z
null
true
2,048,869,151
https://api.github.com/repos/huggingface/datasets/issues/6513
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6513/events
[]
null
2023-12-20T08:44:45Z
[]
https://github.com/huggingface/datasets/issues/6513
MEMBER
completed
null
null
[]
Support huggingface-hub 0.20.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6513/reactions" }
I_kwDODunzps56H0Mf
null
2023-12-19T15:15:46Z
https://api.github.com/repos/huggingface/datasets/issues/6513/comments
CI to test the support of `huggingface-hub` 0.20.0: https://github.com/huggingface/datasets/compare/main...ci-test-huggingface-hub-v0.20.0.rc1 We need to merge: - #6510 - #6512 - #6516
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
https://api.github.com/repos/huggingface/datasets/issues/6513/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6513/timeline
closed
false
6,513
null
2023-12-20T08:44:45Z
null
false
2,048,795,819
https://api.github.com/repos/huggingface/datasets/issues/6512
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6512/events
[]
null
2023-12-19T20:21:13Z
[]
https://github.com/huggingface/datasets/pull/6512
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6512). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005468 / 0.011353 (-0.005885) | 0.003447 / 0.011008 (-0.007561) | 0.062569 / 0.038508 (0.024061) | 0.049427 / 0.023109 (0.026318) | 0.238463 / 0.275898 (-0.037435) | 0.268320 / 0.323480 (-0.055159) | 0.002834 / 0.007986 (-0.005151) | 0.002679 / 0.004328 (-0.001649) | 0.048613 / 0.004250 (0.044363) | 0.038793 / 0.037052 (0.001741) | 0.247710 / 0.258489 (-0.010779) | 0.277557 / 0.293841 (-0.016284) | 0.027134 / 0.128546 (-0.101412) | 0.010346 / 0.075646 (-0.065301) | 0.205782 / 0.419271 (-0.213490) | 0.035549 / 0.043533 (-0.007983) | 0.241667 / 0.255139 (-0.013472) | 0.268358 / 0.283200 (-0.014842) | 0.017119 / 0.141683 (-0.124563) | 1.108487 / 1.452155 (-0.343668) | 1.177519 / 1.492716 (-0.315197) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090925 / 0.018006 (0.072919) | 0.310422 / 0.000490 (0.309932) | 0.000212 / 0.000200 (0.000012) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018912 / 0.037411 (-0.018499) | 0.061534 / 0.014526 (0.047008) | 0.073608 / 0.176557 (-0.102949) | 0.119278 / 0.737135 (-0.617858) | 0.074698 / 0.296338 (-0.221640) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.287224 / 0.215209 (0.072014) | 2.792022 / 2.077655 (0.714367) | 1.474605 / 1.504120 (-0.029515) | 1.348714 / 1.541195 (-0.192481) | 1.381339 / 1.468490 (-0.087151) | 0.553033 / 4.584777 (-4.031744) | 2.360745 / 3.745712 (-1.384967) | 2.779281 / 5.269862 (-2.490580) | 1.743922 / 4.565676 (-2.821754) | 0.063817 / 0.424275 (-0.360458) | 0.004954 / 0.007607 (-0.002653) | 0.340039 / 0.226044 (0.113994) | 3.336771 / 2.268929 (1.067843) | 1.825573 / 55.444624 (-53.619051) | 1.525362 / 6.876477 (-5.351115) | 1.578793 / 2.142072 (-0.563280) | 0.638432 / 4.805227 (-4.166795) | 0.117601 / 6.500664 (-6.383063) | 0.041890 / 0.075469 (-0.033579) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.936896 / 1.841788 (-0.904892) | 11.426979 / 8.074308 (3.352671) | 10.636043 / 10.191392 (0.444651) | 0.136172 / 0.680424 (-0.544252) | 0.014249 / 0.534201 (-0.519952) | 0.287806 / 0.579283 (-0.291477) | 0.266046 / 0.434364 (-0.168318) | 0.326155 / 0.540337 (-0.214183) | 0.455508 / 1.386936 (-0.931428) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005199 / 0.011353 (-0.006154) | 0.003476 / 0.011008 (-0.007532) | 0.050519 / 0.038508 (0.012011) | 0.050732 / 0.023109 (0.027623) | 0.270140 / 0.275898 (-0.005758) | 0.295539 / 0.323480 (-0.027941) | 0.004057 / 0.007986 (-0.003928) | 0.002771 / 0.004328 (-0.001558) | 0.049157 / 0.004250 (0.044906) | 0.039863 / 0.037052 (0.002811) | 0.275934 / 0.258489 (0.017445) | 0.306971 / 0.293841 (0.013130) | 0.029405 / 0.128546 (-0.099141) | 0.010746 / 0.075646 (-0.064900) | 0.058427 / 0.419271 (-0.360845) | 0.032448 / 0.043533 (-0.011085) | 0.271851 / 0.255139 (0.016712) | 0.290337 / 0.283200 (0.007138) | 0.019145 / 0.141683 (-0.122538) | 1.112232 / 1.452155 (-0.339922) | 1.215153 / 1.492716 (-0.277564) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.088590 / 0.018006 (0.070584) | 0.299047 / 0.000490 (0.298558) | 0.000219 / 0.000200 (0.000019) | 0.000050 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022755 / 0.037411 (-0.014656) | 0.078720 / 0.014526 (0.064194) | 0.089051 / 0.176557 (-0.087505) | 0.129330 / 0.737135 (-0.607805) | 0.090645 / 0.296338 (-0.205693) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294083 / 0.215209 (0.078874) | 2.907195 / 2.077655 (0.829540) | 1.607392 / 1.504120 (0.103272) | 1.481931 / 1.541195 (-0.059263) | 1.486934 / 1.468490 (0.018444) | 0.574093 / 4.584777 (-4.010684) | 2.439775 / 3.745712 (-1.305937) | 2.739818 / 5.269862 (-2.530044) | 1.753922 / 4.565676 (-2.811755) | 0.063738 / 0.424275 (-0.360537) | 0.005219 / 0.007607 (-0.002388) | 0.350342 / 0.226044 (0.124297) | 3.463644 / 2.268929 (1.194716) | 1.971598 / 55.444624 (-53.473026) | 1.671752 / 6.876477 (-5.204724) | 1.686504 / 2.142072 (-0.455569) | 0.655870 / 4.805227 (-4.149357) | 0.117580 / 6.500664 (-6.383084) | 0.041210 / 0.075469 (-0.034259) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.996305 / 1.841788 (-0.845482) | 12.426361 / 8.074308 (4.352053) | 10.600309 / 10.191392 (0.408917) | 0.129728 / 0.680424 (-0.550695) | 0.015267 / 0.534201 (-0.518934) | 0.285444 / 0.579283 (-0.293839) | 0.272375 / 0.434364 (-0.161989) | 0.323478 / 0.540337 (-0.216860) | 0.547566 / 1.386936 (-0.839370) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a91582de288d98e94bcb5ab634ca1cfeeff544c5 \"CML watermark\")\n" ]
Remove deprecated HfFolder
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6512/reactions" }
PR_kwDODunzps5iYI5z
{ "diff_url": "https://github.com/huggingface/datasets/pull/6512.diff", "html_url": "https://github.com/huggingface/datasets/pull/6512", "merged_at": "2023-12-19T20:14:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/6512.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6512" }
2023-12-19T14:40:49Z
https://api.github.com/repos/huggingface/datasets/issues/6512/comments
...and use `huggingface_hub.get_token()` instead
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6512/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6512/timeline
closed
false
6,512
null
2023-12-19T20:14:30Z
null
true
2,048,465,958
https://api.github.com/repos/huggingface/datasets/issues/6511
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6511/events
[]
null
2023-12-21T14:48:57Z
[]
https://github.com/huggingface/datasets/pull/6511
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6511). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "@huggingface/datasets, this PR is ready for review.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005343 / 0.011353 (-0.006010) | 0.003521 / 0.011008 (-0.007487) | 0.061835 / 0.038508 (0.023327) | 0.052633 / 0.023109 (0.029524) | 0.243897 / 0.275898 (-0.032001) | 0.272961 / 0.323480 (-0.050519) | 0.003013 / 0.007986 (-0.004973) | 0.002692 / 0.004328 (-0.001636) | 0.050099 / 0.004250 (0.045848) | 0.045381 / 0.037052 (0.008329) | 0.249981 / 0.258489 (-0.008508) | 0.276789 / 0.293841 (-0.017052) | 0.027929 / 0.128546 (-0.100617) | 0.010933 / 0.075646 (-0.064714) | 0.206757 / 0.419271 (-0.212514) | 0.035334 / 0.043533 (-0.008199) | 0.249411 / 0.255139 (-0.005728) | 0.268893 / 0.283200 (-0.014306) | 0.019175 / 0.141683 (-0.122507) | 1.106932 / 1.452155 (-0.345223) | 1.177819 / 1.492716 (-0.314897) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092895 / 0.018006 (0.074889) | 0.303658 / 0.000490 (0.303169) | 0.000214 / 0.000200 (0.000014) | 0.000050 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018978 / 0.037411 (-0.018434) | 0.060459 / 0.014526 (0.045934) | 0.072900 / 0.176557 (-0.103657) | 0.119803 / 0.737135 (-0.617332) | 0.074349 / 0.296338 (-0.221989) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283715 / 0.215209 (0.068505) | 2.752394 / 2.077655 (0.674739) | 1.446619 / 1.504120 (-0.057501) | 1.319612 / 1.541195 (-0.221582) | 1.374769 / 1.468490 (-0.093721) | 0.571543 / 4.584777 (-4.013234) | 2.389106 / 3.745712 (-1.356607) | 2.797837 / 5.269862 (-2.472025) | 1.737615 / 4.565676 (-2.828062) | 0.063268 / 0.424275 (-0.361007) | 0.005118 / 0.007607 (-0.002489) | 0.340238 / 0.226044 (0.114193) | 3.366207 / 2.268929 (1.097278) | 1.845934 / 55.444624 (-53.598690) | 1.540640 / 6.876477 (-5.335837) | 1.585489 / 2.142072 (-0.556584) | 0.641178 / 4.805227 (-4.164049) | 0.118701 / 6.500664 (-6.381964) | 0.042719 / 0.075469 (-0.032750) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.946706 / 1.841788 (-0.895082) | 11.846230 / 8.074308 (3.771921) | 10.459268 / 10.191392 (0.267876) | 0.130557 / 0.680424 (-0.549867) | 0.014292 / 0.534201 (-0.519909) | 0.287455 / 0.579283 (-0.291828) | 0.265213 / 0.434364 (-0.169151) | 0.325670 / 0.540337 (-0.214667) | 0.422800 / 1.386936 (-0.964136) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005454 / 0.011353 (-0.005899) | 0.003567 / 0.011008 (-0.007441) | 0.048696 / 0.038508 (0.010188) | 0.058844 / 0.023109 (0.035735) | 0.277011 / 0.275898 (0.001113) | 0.302544 / 0.323480 (-0.020936) | 0.004077 / 0.007986 (-0.003908) | 0.002720 / 0.004328 (-0.001609) | 0.058251 / 0.004250 (0.054001) | 0.040946 / 0.037052 (0.003893) | 0.276261 / 0.258489 (0.017772) | 0.352827 / 0.293841 (0.058986) | 0.029915 / 0.128546 (-0.098632) | 0.010562 / 0.075646 (-0.065084) | 0.057836 / 0.419271 (-0.361436) | 0.033129 / 0.043533 (-0.010404) | 0.276053 / 0.255139 (0.020914) | 0.292045 / 0.283200 (0.008846) | 0.020504 / 0.141683 (-0.121179) | 1.129746 / 1.452155 (-0.322409) | 1.190888 / 1.492716 (-0.301829) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095202 / 0.018006 (0.077196) | 0.303956 / 0.000490 (0.303466) | 0.000226 / 0.000200 (0.000026) | 0.000054 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021960 / 0.037411 (-0.015451) | 0.076209 / 0.014526 (0.061683) | 0.088813 / 0.176557 (-0.087744) | 0.129061 / 0.737135 (-0.608074) | 0.091202 / 0.296338 (-0.205136) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.301394 / 0.215209 (0.086185) | 2.948057 / 2.077655 (0.870403) | 1.591371 / 1.504120 (0.087251) | 1.463515 / 1.541195 (-0.077680) | 1.516477 / 1.468490 (0.047987) | 0.577223 / 4.584777 (-4.007554) | 2.506716 / 3.745712 (-1.238996) | 2.833385 / 5.269862 (-2.436477) | 1.808896 / 4.565676 (-2.756781) | 0.063241 / 0.424275 (-0.361034) | 0.005057 / 0.007607 (-0.002550) | 0.350108 / 0.226044 (0.124063) | 3.470252 / 2.268929 (1.201324) | 1.925689 / 55.444624 (-53.518935) | 1.667521 / 6.876477 (-5.208955) | 1.690909 / 2.142072 (-0.451164) | 0.647070 / 4.805227 (-4.158157) | 0.117596 / 6.500664 (-6.383068) | 0.042431 / 0.075469 (-0.033038) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.977297 / 1.841788 (-0.864490) | 12.947399 / 8.074308 (4.873091) | 10.964949 / 10.191392 (0.773557) | 0.130905 / 0.680424 (-0.549518) | 0.015207 / 0.534201 (-0.518994) | 0.288151 / 0.579283 (-0.291132) | 0.281817 / 0.434364 (-0.152547) | 0.326398 / 0.540337 (-0.213940) | 0.421354 / 1.386936 (-0.965582) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8b04288f0b94c987a278c5bb8459746bc35ba367 \"CML watermark\")\n" ]
Implement get dataset default config name
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6511/reactions" }
PR_kwDODunzps5iXAXR
{ "diff_url": "https://github.com/huggingface/datasets/pull/6511.diff", "html_url": "https://github.com/huggingface/datasets/pull/6511", "merged_at": "2023-12-21T14:42:40Z", "patch_url": "https://github.com/huggingface/datasets/pull/6511.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6511" }
2023-12-19T11:26:19Z
https://api.github.com/repos/huggingface/datasets/issues/6511/comments
Implement `get_dataset_default_config_name`. Now that we support setting a configuration as default in `push_to_hub` (see #6500), we need a programmatically way to know in advance which is the default configuration. This will be used in the Space to convert script-datasets to Parquet: https://huggingface.co/spaces/albertvillanova/convert-dataset-to-parquet Follow-up of: - #6500 CC: @severo
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
https://api.github.com/repos/huggingface/datasets/issues/6511/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6511/timeline
closed
false
6,511
null
2023-12-21T14:42:41Z
null
true
2,046,928,742
https://api.github.com/repos/huggingface/datasets/issues/6510
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6510/events
[]
null
2023-12-19T18:05:47Z
[]
https://github.com/huggingface/datasets/pull/6510
COLLABORATOR
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6510). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "CI errors are unrelated to the changes, so I'm merging.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005161 / 0.011353 (-0.006192) | 0.003494 / 0.011008 (-0.007515) | 0.062601 / 0.038508 (0.024093) | 0.052876 / 0.023109 (0.029767) | 0.255595 / 0.275898 (-0.020303) | 0.283108 / 0.323480 (-0.040371) | 0.003856 / 0.007986 (-0.004130) | 0.002686 / 0.004328 (-0.001642) | 0.048604 / 0.004250 (0.044353) | 0.037886 / 0.037052 (0.000834) | 0.252902 / 0.258489 (-0.005587) | 0.286906 / 0.293841 (-0.006935) | 0.028570 / 0.128546 (-0.099976) | 0.010684 / 0.075646 (-0.064962) | 0.208154 / 0.419271 (-0.211118) | 0.036169 / 0.043533 (-0.007364) | 0.276026 / 0.255139 (0.020887) | 0.272274 / 0.283200 (-0.010925) | 0.017690 / 0.141683 (-0.123993) | 1.202400 / 1.452155 (-0.249755) | 1.231223 / 1.492716 (-0.261494) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095229 / 0.018006 (0.077222) | 0.302205 / 0.000490 (0.301716) | 0.000226 / 0.000200 (0.000026) | 0.000045 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018877 / 0.037411 (-0.018534) | 0.062286 / 0.014526 (0.047760) | 0.075191 / 0.176557 (-0.101366) | 0.121419 / 0.737135 (-0.615716) | 0.075641 / 0.296338 (-0.220697) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282914 / 0.215209 (0.067705) | 2.769156 / 2.077655 (0.691501) | 1.480219 / 1.504120 (-0.023901) | 1.355742 / 1.541195 (-0.185453) | 1.399740 / 1.468490 (-0.068750) | 0.556365 / 4.584777 (-4.028412) | 2.399679 / 3.745712 (-1.346033) | 2.850510 / 5.269862 (-2.419351) | 1.781428 / 4.565676 (-2.784249) | 0.063045 / 0.424275 (-0.361230) | 0.004931 / 0.007607 (-0.002676) | 0.343743 / 0.226044 (0.117698) | 3.374907 / 2.268929 (1.105978) | 1.857774 / 55.444624 (-53.586851) | 1.577154 / 6.876477 (-5.299323) | 1.626597 / 2.142072 (-0.515475) | 0.653991 / 4.805227 (-4.151236) | 0.121306 / 6.500664 (-6.379358) | 0.042131 / 0.075469 (-0.033339) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.948826 / 1.841788 (-0.892962) | 11.922497 / 8.074308 (3.848188) | 10.592334 / 10.191392 (0.400942) | 0.129145 / 0.680424 (-0.551279) | 0.014652 / 0.534201 (-0.519549) | 0.286074 / 0.579283 (-0.293210) | 0.265338 / 0.434364 (-0.169026) | 0.346872 / 0.540337 (-0.193466) | 0.450480 / 1.386936 (-0.936456) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005305 / 0.011353 (-0.006048) | 0.003583 / 0.011008 (-0.007426) | 0.049855 / 0.038508 (0.011347) | 0.052882 / 0.023109 (0.029773) | 0.268429 / 0.275898 (-0.007469) | 0.293375 / 0.323480 (-0.030105) | 0.004052 / 0.007986 (-0.003934) | 0.002685 / 0.004328 (-0.001644) | 0.049206 / 0.004250 (0.044955) | 0.040187 / 0.037052 (0.003135) | 0.270112 / 0.258489 (0.011623) | 0.306380 / 0.293841 (0.012539) | 0.029161 / 0.128546 (-0.099386) | 0.010948 / 0.075646 (-0.064698) | 0.057721 / 0.419271 (-0.361550) | 0.032628 / 0.043533 (-0.010905) | 0.267458 / 0.255139 (0.012319) | 0.291905 / 0.283200 (0.008705) | 0.018096 / 0.141683 (-0.123587) | 1.112744 / 1.452155 (-0.339410) | 1.161962 / 1.492716 (-0.330754) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097449 / 0.018006 (0.079443) | 0.304270 / 0.000490 (0.303780) | 0.000235 / 0.000200 (0.000035) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023550 / 0.037411 (-0.013861) | 0.078246 / 0.014526 (0.063720) | 0.091229 / 0.176557 (-0.085327) | 0.130624 / 0.737135 (-0.606511) | 0.092767 / 0.296338 (-0.203571) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284962 / 0.215209 (0.069753) | 2.761090 / 2.077655 (0.683435) | 1.545409 / 1.504120 (0.041289) | 1.424573 / 1.541195 (-0.116622) | 1.438869 / 1.468490 (-0.029621) | 0.571281 / 4.584777 (-4.013496) | 2.419493 / 3.745712 (-1.326219) | 2.802611 / 5.269862 (-2.467251) | 1.749880 / 4.565676 (-2.815796) | 0.062566 / 0.424275 (-0.361709) | 0.005243 / 0.007607 (-0.002364) | 0.344653 / 0.226044 (0.118608) | 3.367488 / 2.268929 (1.098559) | 1.925871 / 55.444624 (-53.518754) | 1.624258 / 6.876477 (-5.252219) | 1.663742 / 2.142072 (-0.478330) | 0.634553 / 4.805227 (-4.170675) | 0.116745 / 6.500664 (-6.383919) | 0.041734 / 0.075469 (-0.033735) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.006808 / 1.841788 (-0.834980) | 12.499711 / 8.074308 (4.425403) | 10.956260 / 10.191392 (0.764868) | 0.132393 / 0.680424 (-0.548031) | 0.015924 / 0.534201 (-0.518277) | 0.289837 / 0.579283 (-0.289446) | 0.281565 / 0.434364 (-0.152799) | 0.337393 / 0.540337 (-0.202945) | 0.560385 / 1.386936 (-0.826551) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3f699ab27ef2c0c23dc3a514b5bb155485ff6913 \"CML watermark\")\n" ]
Replace `list_files_info` with `list_repo_tree` in `push_to_hub`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6510/reactions" }
PR_kwDODunzps5iRyiV
{ "diff_url": "https://github.com/huggingface/datasets/pull/6510.diff", "html_url": "https://github.com/huggingface/datasets/pull/6510", "merged_at": "2023-12-19T17:58:34Z", "patch_url": "https://github.com/huggingface/datasets/pull/6510.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6510" }
2023-12-18T15:34:19Z
https://api.github.com/repos/huggingface/datasets/issues/6510/comments
Starting from `huggingface_hub` 0.20.0, `list_files_info` will be deprecated in favor of `list_repo_tree` (see https://github.com/huggingface/huggingface_hub/pull/1910)
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
https://api.github.com/repos/huggingface/datasets/issues/6510/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6510/timeline
closed
false
6,510
null
2023-12-19T17:58:34Z
null
true
2,046,720,869
https://api.github.com/repos/huggingface/datasets/issues/6509
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6509/events
[]
null
2023-12-19T09:37:12Z
[]
https://github.com/huggingface/datasets/pull/6509
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6509). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "I created `DatatasetGenerationCastError` in `exceptions.py` that inherits from `DatasetGenerationError` (for backward compatibility) that inherits from `DatasetsError`.\r\n\r\nI also added a help message at the end of the error:\r\n\r\n```\r\nPlease either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)\r\n```", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004991 / 0.011353 (-0.006361) | 0.003362 / 0.011008 (-0.007646) | 0.062093 / 0.038508 (0.023585) | 0.051533 / 0.023109 (0.028424) | 0.247508 / 0.275898 (-0.028390) | 0.275593 / 0.323480 (-0.047886) | 0.003828 / 0.007986 (-0.004158) | 0.002573 / 0.004328 (-0.001755) | 0.047727 / 0.004250 (0.043477) | 0.037029 / 0.037052 (-0.000023) | 0.250359 / 0.258489 (-0.008130) | 0.282640 / 0.293841 (-0.011201) | 0.027853 / 0.128546 (-0.100693) | 0.010247 / 0.075646 (-0.065400) | 0.206826 / 0.419271 (-0.212445) | 0.035837 / 0.043533 (-0.007695) | 0.251795 / 0.255139 (-0.003344) | 0.275654 / 0.283200 (-0.007545) | 0.017722 / 0.141683 (-0.123960) | 1.120287 / 1.452155 (-0.331868) | 1.203087 / 1.492716 (-0.289630) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092320 / 0.018006 (0.074314) | 0.300079 / 0.000490 (0.299589) | 0.000211 / 0.000200 (0.000011) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018193 / 0.037411 (-0.019218) | 0.061310 / 0.014526 (0.046784) | 0.072433 / 0.176557 (-0.104124) | 0.119092 / 0.737135 (-0.618043) | 0.074044 / 0.296338 (-0.222294) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297184 / 0.215209 (0.081975) | 2.805197 / 2.077655 (0.727543) | 1.521326 / 1.504120 (0.017206) | 1.374321 / 1.541195 (-0.166874) | 1.388767 / 1.468490 (-0.079723) | 0.571865 / 4.584777 (-4.012912) | 2.385213 / 3.745712 (-1.360499) | 2.726840 / 5.269862 (-2.543021) | 1.725352 / 4.565676 (-2.840325) | 0.063012 / 0.424275 (-0.361263) | 0.004911 / 0.007607 (-0.002697) | 0.336430 / 0.226044 (0.110385) | 3.390616 / 2.268929 (1.121688) | 1.846398 / 55.444624 (-53.598227) | 1.576797 / 6.876477 (-5.299680) | 1.579445 / 2.142072 (-0.562627) | 0.652515 / 4.805227 (-4.152712) | 0.118393 / 6.500664 (-6.382271) | 0.042155 / 0.075469 (-0.033314) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.942269 / 1.841788 (-0.899518) | 11.318258 / 8.074308 (3.243950) | 10.299948 / 10.191392 (0.108556) | 0.136088 / 0.680424 (-0.544336) | 0.013682 / 0.534201 (-0.520519) | 0.287549 / 0.579283 (-0.291734) | 0.258346 / 0.434364 (-0.176018) | 0.337146 / 0.540337 (-0.203191) | 0.443922 / 1.386936 (-0.943014) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005302 / 0.011353 (-0.006051) | 0.003234 / 0.011008 (-0.007774) | 0.049159 / 0.038508 (0.010651) | 0.050459 / 0.023109 (0.027350) | 0.273718 / 0.275898 (-0.002180) | 0.296997 / 0.323480 (-0.026483) | 0.003948 / 0.007986 (-0.004038) | 0.002590 / 0.004328 (-0.001739) | 0.048129 / 0.004250 (0.043879) | 0.039369 / 0.037052 (0.002317) | 0.276469 / 0.258489 (0.017980) | 0.306359 / 0.293841 (0.012519) | 0.028864 / 0.128546 (-0.099682) | 0.010253 / 0.075646 (-0.065394) | 0.058264 / 0.419271 (-0.361008) | 0.032451 / 0.043533 (-0.011082) | 0.277336 / 0.255139 (0.022197) | 0.296137 / 0.283200 (0.012937) | 0.018094 / 0.141683 (-0.123589) | 1.119539 / 1.452155 (-0.332615) | 1.163116 / 1.492716 (-0.329600) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092578 / 0.018006 (0.074572) | 0.300756 / 0.000490 (0.300267) | 0.000222 / 0.000200 (0.000022) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022333 / 0.037411 (-0.015078) | 0.076632 / 0.014526 (0.062107) | 0.087829 / 0.176557 (-0.088727) | 0.127686 / 0.737135 (-0.609449) | 0.091314 / 0.296338 (-0.205024) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297499 / 0.215209 (0.082290) | 2.889775 / 2.077655 (0.812120) | 1.598976 / 1.504120 (0.094856) | 1.478805 / 1.541195 (-0.062389) | 1.481818 / 1.468490 (0.013328) | 0.557972 / 4.584777 (-4.026804) | 2.453248 / 3.745712 (-1.292464) | 2.771823 / 5.269862 (-2.498039) | 1.721527 / 4.565676 (-2.844150) | 0.062786 / 0.424275 (-0.361489) | 0.005298 / 0.007607 (-0.002309) | 0.346660 / 0.226044 (0.120615) | 3.412262 / 2.268929 (1.143334) | 1.940240 / 55.444624 (-53.504384) | 1.654015 / 6.876477 (-5.222461) | 1.652039 / 2.142072 (-0.490034) | 0.636870 / 4.805227 (-4.168357) | 0.116213 / 6.500664 (-6.384451) | 0.040937 / 0.075469 (-0.034532) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.001605 / 1.841788 (-0.840183) | 11.986592 / 8.074308 (3.912284) | 10.231288 / 10.191392 (0.039896) | 0.130242 / 0.680424 (-0.550182) | 0.015764 / 0.534201 (-0.518437) | 0.289257 / 0.579283 (-0.290026) | 0.275996 / 0.434364 (-0.158368) | 0.323089 / 0.540337 (-0.217248) | 0.556383 / 1.386936 (-0.830553) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#773324159ad4afd7931588a710839b76670ddf87 \"CML watermark\")\n" ]
Better cast error when generating dataset
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6509/reactions" }
PR_kwDODunzps5iREyE
{ "diff_url": "https://github.com/huggingface/datasets/pull/6509.diff", "html_url": "https://github.com/huggingface/datasets/pull/6509", "merged_at": "2023-12-19T09:31:03Z", "patch_url": "https://github.com/huggingface/datasets/pull/6509.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6509" }
2023-12-18T13:57:24Z
https://api.github.com/repos/huggingface/datasets/issues/6509/comments
I want to improve the error message for datasets like https://huggingface.co/datasets/m-a-p/COIG-CQIA Cc @albertvillanova @severo is this new error ok ? Or should I use a dedicated error class ? New: ```python Traceback (most recent call last): File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 1920, in _prepare_split_single writer.write_table(table) File "/Users/quentinlhoest/hf/datasets/src/datasets/arrow_writer.py", line 574, in write_table pa_table = table_cast(pa_table, self._schema) File "/Users/quentinlhoest/hf/datasets/src/datasets/table.py", line 2322, in table_cast return cast_table_to_schema(table, schema) File "/Users/quentinlhoest/hf/datasets/src/datasets/table.py", line 2276, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast instruction: string other: string index: string domain: list<item: string> child 0, item: string output: string task_type: struct<major: list<item: string>, minor: list<item: string>> child 0, major: list<item: string> child 0, item: string child 1, minor: list<item: string> child 0, item: string task_name_in_eng: string input: string to {'answer_from': Value(dtype='string', id=None), 'instruction': Value(dtype='string', id=None), 'human_verified': Value(dtype='bool', id=None), 'domain': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'output': Value(dtype='string', id=None), 'task_type': {'major': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'minor': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)}, 'copyright': Value(dtype='string', id=None), 'input': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/quentinlhoest/hf/datasets/playground/ttest.py", line 74, in <module> load_dataset("m-a-p/COIG-CQIA") File "/Users/quentinlhoest/hf/datasets/src/datasets/load.py", line 2529, in load_dataset builder_instance.download_and_prepare( File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 936, in download_and_prepare self._download_and_prepare( File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 1031, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 1791, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 1922, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 3 new columns (other, index, task_name_in_eng) and 3 missing columns (answer_from, copyright, human_verified). This happened while the json dataset builder was generating data using hf://datasets/m-a-p/COIG-CQIA/coig_pc/coig_pc_core_sample.json (at revision b7b7ecf290f6515036c7c04bd8537228ac2eb474) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) ``` Previously: ```python Traceback (most recent call last): File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 1931, in _prepare_split_single writer.write_table(table) File "/Users/quentinlhoest/hf/datasets/src/datasets/arrow_writer.py", line 574, in write_table pa_table = table_cast(pa_table, self._schema) File "/Users/quentinlhoest/hf/datasets/src/datasets/table.py", line 2295, in table_cast return cast_table_to_schema(table, schema) File "/Users/quentinlhoest/hf/datasets/src/datasets/table.py", line 2253, in cast_table_to_schema raise ValueError(f"Couldn't cast\n{table.schema}\nto\n{features}\nbecause column names don't match") ValueError: Couldn't cast task_type: struct<major: list<item: string>, minor: list<item: string>> child 0, major: list<item: string> child 0, item: string child 1, minor: list<item: string> child 0, item: string other: string instruction: string task_name_in_eng: string domain: list<item: string> child 0, item: string index: string output: string input: string to {'human_verified': Value(dtype='bool', id=None), 'task_type': {'major': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'minor': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)}, 'answer_from': Value(dtype='string', id=None), 'copyright': Value(dtype='string', id=None), 'instruction': Value(dtype='string', id=None), 'domain': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'output': Value(dtype='string', id=None), 'input': Value(dtype='string', id=None)} because column names don't match The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/Users/quentinlhoest/hf/datasets/playground/ttest.py", line 74, in <module> load_dataset("m-a-p/COIG-CQIA") File "/Users/quentinlhoest/hf/datasets/src/datasets/load.py", line 2529, in load_dataset builder_instance.download_and_prepare( File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 949, in download_and_prepare self._download_and_prepare( File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 1044, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 1804, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 1949, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.builder.DatasetGenerationError: An error occurred while generating the dataset ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6509/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6509/timeline
closed
false
6,509
null
2023-12-19T09:31:03Z
null
true
2,045,733,273
https://api.github.com/repos/huggingface/datasets/issues/6508
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6508/events
[]
null
2024-01-26T18:22:35Z
[]
https://github.com/huggingface/datasets/pull/6508
CONTRIBUTOR
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6508). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Cool ! Do you mind writing a test using a geoparquet file in `tests/io/test_parquet.py` ?\r\n\r\nI'm not too familiar with geoparquet, does it use e.g. pyarrow extension types ? or schema metadata ?", "> Geometry columns MUST be stored using the BYTE_ARRAY parquet type. They MUST be encoded as [WKB](https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry#Well-known_binary).\r\n\r\nhttps://github.com/opengeospatial/geoparquet/blob/main/format-specs/geoparquet.md#geometry-columns\r\n\r\nIt has metadata:\r\n\r\n> File metadata indicating things like the version of this specification used\r\n> Column metadata with additional metadata for each geometry column\r\n\r\nhttps://github.com/opengeospatial/geoparquet/blob/main/format-specs/geoparquet.md#metadata", "The specification is very short by the way:\r\n\r\nhttps://github.com/opengeospatial/geoparquet/blob/main/format-specs/geoparquet.md", "https://github.com/opengeospatial/geoparquet/blob/main/format-specs/compatible-parquet.md is also worth reading for this PR", "> Cool ! Do you mind writing a test using a geoparquet file in `tests/io/test_parquet.py` ?\r\n\r\nYep, let me do that do that later today!\r\n\r\n> I'm not too familiar with geoparquet, does it use e.g. pyarrow extension types ? or schema metadata ?\r\n\r\nGeoParquet is a Parquet file with a `geometry` column that is encoded in a Binary format (technically WKB as @severo mentioned above). It is not a pyarrow extension type (though that would be cool). Regular `parquet` readers such as `pyarrow` would thus see the column as a binary column, while libraries such as `geopandas` which implement a GeoParquet reader would look at the schema metadata.\r\n\r\nE.g. taking this [file](https://huggingface.co/datasets/weiji14/clay_vector_embeddings/resolve/862b1602f326421adc99375912c08603a9f2cc5c/32VLM_v01.gpq) as an example, this is how the 'geo' schema looks like:\r\n\r\n```python\r\nimport pyarrow.parquet as pq\r\n\r\nschema = pq.read_schema(where=\"32VLM_v01.gpq\")\r\nprint(schema.metadata[b\"geo\"])\r\n```\r\n\r\n```\r\n{\r\n \"primary_column\": \"geometry\",\r\n \"columns\": {\r\n \"geometry\": {\r\n \"encoding\": \"WKB\",\r\n \"crs\": {\r\n \"$schema\": \"https://proj.org/schemas/v0.7/projjson.schema.json\",\r\n \"type\": \"GeographicCRS\",\r\n \"name\": \"WGS 84 (CRS84)\",\r\n \"datum_ensemble\": {\r\n \"name\": \"World Geodetic System 1984 ensemble\",\r\n \"members\": [\r\n {\"name\": \"World Geodetic System 1984 (Transit)\"},\r\n {\"name\": \"World Geodetic System 1984 (G730)\"},\r\n {\"name\": \"World Geodetic System 1984 (G873)\"},\r\n {\"name\": \"World Geodetic System 1984 (G1150)\"},\r\n {\"name\": \"World Geodetic System 1984 (G1674)\"},\r\n {\"name\": \"World Geodetic System 1984 (G1762)\"},\r\n {\"name\": \"World Geodetic System 1984 (G2139)\"},\r\n ],\r\n \"ellipsoid\": {\r\n \"name\": \"WGS 84\",\r\n \"semi_major_axis\": 6378137,\r\n \"inverse_flattening\": 298.257223563,\r\n },\r\n \"accuracy\": \"2.0\",\r\n \"id\": {\"authority\": \"EPSG\", \"code\": 6326},\r\n },\r\n \"coordinate_system\": {\r\n \"subtype\": \"ellipsoidal\",\r\n \"axis\": [\r\n {\r\n \"name\": \"Geodetic longitude\",\r\n \"abbreviation\": \"Lon\",\r\n \"direction\": \"east\",\r\n \"unit\": \"degree\",\r\n },\r\n {\r\n \"name\": \"Geodetic latitude\",\r\n \"abbreviation\": \"Lat\",\r\n \"direction\": \"north\",\r\n \"unit\": \"degree\",\r\n },\r\n ],\r\n },\r\n \"scope\": \"Not known.\",\r\n \"area\": \"World.\",\r\n \"bbox\": {\r\n \"south_latitude\": -90,\r\n \"west_longitude\": -180,\r\n \"north_latitude\": 90,\r\n \"east_longitude\": 180,\r\n },\r\n \"id\": {\"authority\": \"OGC\", \"code\": \"CRS84\"},\r\n },\r\n \"geometry_types\": [\"Polygon\"],\r\n \"bbox\": [\r\n 5.370542846111244,\r\n 59.42344573656881,\r\n 7.368267282586697,\r\n 60.42591328670696,\r\n ],\r\n }\r\n },\r\n \"version\": \"1.0.0\",\r\n \"creator\": {\"library\": \"geopandas\", \"version\": \"0.14.1\"},\r\n}\r\n```\r\n\r\nWe can continue the discussion on how to handle this extra 'geo' schema metadata in #6438. I'd like to keep this PR small by just piggy-backing off the default Parquet reader for now, which would just show the 'geometry' column as a binary column.", "Thanks ! Also if you can make sure that doing `ds.to_parquet(\"path/to/output.geoparquet\")` also saves as a valid geoparquet files (including the schema metadata) that would be awesome.\r\n\r\nIt would also enable `push_to_hub` to save geoparquet files", "> Thanks ! Also if you can make sure that doing `ds.to_parquet(\"path/to/output.geoparquet\")` also saves as a valid geoparquet files (including the schema metadata) that would be awesome.\r\n> \r\n> It would also enable `push_to_hub` to save geoparquet files\r\n\r\nHmm, it should be possible to let PyArrow save a Parquet file with a geometry WKB column, but saving the GeoParquet schema metadata won't be easy without introducing [`geopandas`](https://github.com/geopandas/geopandas) as a dependency. Does this need to be done in this PR, or can it be a separate one?", "I see, then let's keep it like this for now.\r\nI just checked and it would require to add support for keeping the schema metadata in `Features` anyway.\r\n\r\nFeel free to fix your code formatting using\r\n\r\n```\r\nmake style\r\n```\r\n\r\nand we can merge this PR :)\r\n\r\n", "Cool, linted to remove the extra blank line at 7088f585557807a63673cdc58900d7ce56146cf7. :rocket:", "The previous CI failure at https://github.com/huggingface/datasets/actions/runs/7482863299/job/20668381959#step:6:5299 says `datasets.exceptions.DefunctDatasetError: Dataset 'eli5' is defunct and no longer accessible due to unavailability of the source data` which seems unrelated, might be to do with https://github.com/huggingface/datasets/issues/6605. I've updated the PR branch with changes from `main` again, could someone re-run the tests and merge if ok? Thanks!", "sorry, it took me some time to fix the CI on the `main` branch\r\n\r\nwill merge once it's green :)", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005467 / 0.011353 (-0.005886) | 0.003696 / 0.011008 (-0.007313) | 0.063298 / 0.038508 (0.024790) | 0.032209 / 0.023109 (0.009100) | 0.246307 / 0.275898 (-0.029591) | 0.276864 / 0.323480 (-0.046616) | 0.003941 / 0.007986 (-0.004044) | 0.002616 / 0.004328 (-0.001713) | 0.049543 / 0.004250 (0.045292) | 0.044886 / 0.037052 (0.007833) | 0.266502 / 0.258489 (0.008013) | 0.288401 / 0.293841 (-0.005440) | 0.027911 / 0.128546 (-0.100635) | 0.011011 / 0.075646 (-0.064636) | 0.207972 / 0.419271 (-0.211299) | 0.036324 / 0.043533 (-0.007209) | 0.259450 / 0.255139 (0.004311) | 0.267317 / 0.283200 (-0.015883) | 0.018857 / 0.141683 (-0.122826) | 1.145350 / 1.452155 (-0.306805) | 1.204204 / 1.492716 (-0.288513) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.103864 / 0.018006 (0.085858) | 0.306941 / 0.000490 (0.306451) | 0.000218 / 0.000200 (0.000018) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018391 / 0.037411 (-0.019020) | 0.064600 / 0.014526 (0.050074) | 0.075454 / 0.176557 (-0.101102) | 0.120913 / 0.737135 (-0.616223) | 0.076998 / 0.296338 (-0.219341) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279491 / 0.215209 (0.064282) | 2.742471 / 2.077655 (0.664816) | 1.447980 / 1.504120 (-0.056140) | 1.328202 / 1.541195 (-0.212992) | 1.397291 / 1.468490 (-0.071199) | 0.585726 / 4.584777 (-3.999051) | 2.385132 / 3.745712 (-1.360580) | 2.874888 / 5.269862 (-2.394974) | 1.820177 / 4.565676 (-2.745500) | 0.063876 / 0.424275 (-0.360399) | 0.004946 / 0.007607 (-0.002661) | 0.336445 / 0.226044 (0.110401) | 3.396813 / 2.268929 (1.127885) | 1.832644 / 55.444624 (-53.611981) | 1.581304 / 6.876477 (-5.295172) | 1.607243 / 2.142072 (-0.534829) | 0.662752 / 4.805227 (-4.142476) | 0.119494 / 6.500664 (-6.381170) | 0.042573 / 0.075469 (-0.032896) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.936784 / 1.841788 (-0.905003) | 12.154288 / 8.074308 (4.079980) | 10.944835 / 10.191392 (0.753443) | 0.132856 / 0.680424 (-0.547568) | 0.015197 / 0.534201 (-0.519004) | 0.290647 / 0.579283 (-0.288636) | 0.273498 / 0.434364 (-0.160866) | 0.324893 / 0.540337 (-0.215444) | 0.427905 / 1.386936 (-0.959032) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005695 / 0.011353 (-0.005658) | 0.003562 / 0.011008 (-0.007446) | 0.050117 / 0.038508 (0.011608) | 0.033876 / 0.023109 (0.010767) | 0.275514 / 0.275898 (-0.000384) | 0.298460 / 0.323480 (-0.025020) | 0.004240 / 0.007986 (-0.003745) | 0.002738 / 0.004328 (-0.001591) | 0.048518 / 0.004250 (0.044268) | 0.049064 / 0.037052 (0.012012) | 0.287094 / 0.258489 (0.028605) | 0.314281 / 0.293841 (0.020440) | 0.057861 / 0.128546 (-0.070686) | 0.010893 / 0.075646 (-0.064753) | 0.062251 / 0.419271 (-0.357020) | 0.036788 / 0.043533 (-0.006745) | 0.272431 / 0.255139 (0.017292) | 0.292022 / 0.283200 (0.008822) | 0.019874 / 0.141683 (-0.121809) | 1.156939 / 1.452155 (-0.295216) | 1.237966 / 1.492716 (-0.254751) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096156 / 0.018006 (0.078150) | 0.306652 / 0.000490 (0.306162) | 0.000230 / 0.000200 (0.000031) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022965 / 0.037411 (-0.014447) | 0.081349 / 0.014526 (0.066823) | 0.089035 / 0.176557 (-0.087521) | 0.128831 / 0.737135 (-0.608304) | 0.090321 / 0.296338 (-0.206017) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293110 / 0.215209 (0.077901) | 2.884493 / 2.077655 (0.806839) | 1.582522 / 1.504120 (0.078402) | 1.518977 / 1.541195 (-0.022218) | 1.528449 / 1.468490 (0.059959) | 0.577369 / 4.584777 (-4.007408) | 2.473060 / 3.745712 (-1.272652) | 3.104363 / 5.269862 (-2.165499) | 1.916529 / 4.565676 (-2.649147) | 0.064594 / 0.424275 (-0.359682) | 0.005386 / 0.007607 (-0.002221) | 0.353336 / 0.226044 (0.127292) | 3.471914 / 2.268929 (1.202985) | 1.959222 / 55.444624 (-53.485402) | 1.677153 / 6.876477 (-5.199324) | 1.716961 / 2.142072 (-0.425112) | 0.658355 / 4.805227 (-4.146873) | 0.117296 / 6.500664 (-6.383368) | 0.041139 / 0.075469 (-0.034330) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.025220 / 1.841788 (-0.816567) | 14.510987 / 8.074308 (6.436679) | 11.851428 / 10.191392 (1.660036) | 0.143759 / 0.680424 (-0.536665) | 0.015644 / 0.534201 (-0.518557) | 0.296824 / 0.579283 (-0.282459) | 0.281566 / 0.434364 (-0.152798) | 0.335094 / 0.540337 (-0.205244) | 0.425199 / 1.386936 (-0.961737) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fabc2c8cee8822572115893715b76dfdabac1631 \"CML watermark\")\n" ]
Read GeoParquet files using parquet reader
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6508/reactions" }
PR_kwDODunzps5iNvAu
{ "diff_url": "https://github.com/huggingface/datasets/pull/6508.diff", "html_url": "https://github.com/huggingface/datasets/pull/6508", "merged_at": "2024-01-26T16:18:41Z", "patch_url": "https://github.com/huggingface/datasets/pull/6508.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6508" }
2023-12-18T04:50:37Z
https://api.github.com/repos/huggingface/datasets/issues/6508/comments
Let GeoParquet files with the file extension `*.geoparquet` or `*.gpq` be readable by the default parquet reader. Those two file extensions are the ones most commonly used for GeoParquet files, and is included in the `gpq` validator tool at https://github.com/planetlabs/gpq/blob/e5576b4ee7306b4d2259d56c879465a9364dab90/cmd/gpq/command/convert.go#L73-L75 Addresses https://github.com/huggingface/datasets/issues/6438
{ "avatar_url": "https://avatars.githubusercontent.com/u/23487320?v=4", "events_url": "https://api.github.com/users/weiji14/events{/privacy}", "followers_url": "https://api.github.com/users/weiji14/followers", "following_url": "https://api.github.com/users/weiji14/following{/other_user}", "gists_url": "https://api.github.com/users/weiji14/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/weiji14", "id": 23487320, "login": "weiji14", "node_id": "MDQ6VXNlcjIzNDg3MzIw", "organizations_url": "https://api.github.com/users/weiji14/orgs", "received_events_url": "https://api.github.com/users/weiji14/received_events", "repos_url": "https://api.github.com/users/weiji14/repos", "site_admin": false, "starred_url": "https://api.github.com/users/weiji14/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/weiji14/subscriptions", "type": "User", "url": "https://api.github.com/users/weiji14" }
https://api.github.com/repos/huggingface/datasets/issues/6508/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6508/timeline
closed
false
6,508
null
2024-01-26T16:18:41Z
null
true
2,045,152,928
https://api.github.com/repos/huggingface/datasets/issues/6507
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6507/events
[]
null
2023-12-18T11:42:49Z
[]
https://github.com/huggingface/datasets/issues/6507
NONE
not_planned
null
null
[]
where is glue_metric.py> @Frankie123421 what was the resolution to this?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6507/reactions" }
I_kwDODunzps555o6g
null
2023-12-17T09:58:25Z
https://api.github.com/repos/huggingface/datasets/issues/6507/comments
> @Frankie123421 what was the resolution to this? use glue_metric.py instead of glue.py in load_metric _Originally posted by @Frankie123421 in https://github.com/huggingface/datasets/issues/2117#issuecomment-905093763_
{ "avatar_url": "https://avatars.githubusercontent.com/u/119146162?v=4", "events_url": "https://api.github.com/users/Mcccccc1024/events{/privacy}", "followers_url": "https://api.github.com/users/Mcccccc1024/followers", "following_url": "https://api.github.com/users/Mcccccc1024/following{/other_user}", "gists_url": "https://api.github.com/users/Mcccccc1024/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Mcccccc1024", "id": 119146162, "login": "Mcccccc1024", "node_id": "U_kgDOBxoGsg", "organizations_url": "https://api.github.com/users/Mcccccc1024/orgs", "received_events_url": "https://api.github.com/users/Mcccccc1024/received_events", "repos_url": "https://api.github.com/users/Mcccccc1024/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Mcccccc1024/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Mcccccc1024/subscriptions", "type": "User", "url": "https://api.github.com/users/Mcccccc1024" }
https://api.github.com/repos/huggingface/datasets/issues/6507/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6507/timeline
closed
false
6,507
null
2023-12-18T11:42:49Z
null
false
2,044,975,038
https://api.github.com/repos/huggingface/datasets/issues/6506
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6506/events
[]
null
2023-12-21T09:57:57Z
[]
https://github.com/huggingface/datasets/issues/6506
NONE
completed
null
null
[ "As this is a specific issue of the \"glue\" dataset, I have transferred it to the dataset Discussion page: https://huggingface.co/datasets/glue/discussions/15\r\n\r\nLet's continue the discussion there!" ]
Incorrect test set labels for RTE and CoLA datasets via load_dataset
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6506/reactions" }
I_kwDODunzps5549e-
null
2023-12-16T22:06:08Z
https://api.github.com/repos/huggingface/datasets/issues/6506/comments
### Describe the bug The test set labels for the RTE and CoLA datasets when loading via datasets load_dataset are all -1. Edit: It appears this is also the case for every other dataset except for MRPC (stsb, sst2, qqp, mnli (both matched and mismatched), qnli, wnli, ax). Is this intended behavior to safeguard the test set for evaluation purposes? ### Steps to reproduce the bug !pip install datasets from datasets import load_dataset rte_data = load_dataset('glue', 'rte') cola_data = load_dataset('glue', 'cola') print(rte_data['test'][0:30]['label']) print(cola_data['test'][0:30]['label']) Output: [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] The non-label test data seems to be fine: e.g. rte_data['test'][1] is: {'sentence1': "Authorities in Brazil say that more than 200 people are being held hostage in a prison in the country's remote, Amazonian-jungle state of Rondonia.", 'sentence2': 'Authorities in Brazil hold 200 people as hostage.', 'label': -1, 'idx': 1} Training and validation data are also fine: e.g. rte_data['train][0] is: {'sentence1': 'No Weapons of Mass Destruction Found in Iraq Yet.', 'sentence2': 'Weapons of Mass Destruction Found in Iraq.', 'label': 1, 'idx': 0} ### Expected behavior Expected the labels to be binary 0/1 values; Got all -1s instead ### Environment info - `datasets` version: 2.15.0 - Platform: Linux-6.1.58+-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.19.4 - PyArrow version: 10.0.1 - Pandas version: 1.5.3 - `fsspec` version: 2023.6.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/73316684?v=4", "events_url": "https://api.github.com/users/emreonal11/events{/privacy}", "followers_url": "https://api.github.com/users/emreonal11/followers", "following_url": "https://api.github.com/users/emreonal11/following{/other_user}", "gists_url": "https://api.github.com/users/emreonal11/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/emreonal11", "id": 73316684, "login": "emreonal11", "node_id": "MDQ6VXNlcjczMzE2Njg0", "organizations_url": "https://api.github.com/users/emreonal11/orgs", "received_events_url": "https://api.github.com/users/emreonal11/received_events", "repos_url": "https://api.github.com/users/emreonal11/repos", "site_admin": false, "starred_url": "https://api.github.com/users/emreonal11/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/emreonal11/subscriptions", "type": "User", "url": "https://api.github.com/users/emreonal11" }
https://api.github.com/repos/huggingface/datasets/issues/6506/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6506/timeline
closed
false
6,506
null
2023-12-21T09:57:57Z
null
false
2,044,721,288
https://api.github.com/repos/huggingface/datasets/issues/6505
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6505/events
[]
null
2024-05-10T05:01:52Z
[]
https://github.com/huggingface/datasets/issues/6505
NONE
null
null
null
[ "I ran into the same problem when I used a server cluster (Slurm system managed) that couldn't load any of the huggingface datasets or models, but it worked on my laptop. I suspected some system configuration-related problem, but I had no idea. \r\nMy problems are consistent with [issue #2618](https://github.com/huggingface/datasets/issues/2618). All the huggingface-related libraries I use are the latest versions.\r\n\r\n", "> I ran into the same problem when I used a server cluster (Slurm system managed) that couldn't load any of the huggingface datasets or models, but it worked on my laptop. I suspected some system configuration-related problem, but I had no idea. My problems are consistent with [issue #2618](https://github.com/huggingface/datasets/issues/2618). All the huggingface-related libraries I use are the latest versions.\r\n\r\nhave you solved this issue yet? i met the same problem on server but everything works on laptop. I think maybe the filelock repo is contradictory with file system.", "I am having the same issue on a computing cluster but this works on my laptop as well. I instead have this error:\r\n`/home/.conda/envs/py10/lib/python3.10/site-packages/filelock/_unix.py\", line 43, in _acquire\r\n fcntl.flock(fd, fcntl.LOCK_EX | fcntl.LOCK_NB)\r\nOSError: [Errno 5] Input/output error`\r\n\r\nthe load_dataset command does not work on server for local or hosted hugging-face datasets, and I have tried for several files", "Same here. Is there any solution?", "In my case, `.cahce` was in a shared folder. Moving it into the user's home folder fixed the problem. #2618 for more details", "> In my case, `.cahce` was in a shared folder. Moving it into the user's home folder fixed the problem. #2618 for more details在我的情况下, `.cahce` 在一个共享文件夹中。将其移动到用户的主文件夹中解决了问题。 #2618 获取更多详细信息。\r\n\r\nCan you be more specific? thank." ]
Got stuck when I trying to load a dataset
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/6505/reactions" }
I_kwDODunzps553_iI
null
2023-12-16T11:51:07Z
https://api.github.com/repos/huggingface/datasets/issues/6505/comments
### Describe the bug Hello, everyone. I met a problem when I am trying to load a data file using load_dataset method on a Debian 10 system. The data file is not very large, only 1.63MB with 600 records. Here is my code: from datasets import load_dataset dataset = load_dataset('json', data_files='mypath/oaast_rm_zh.json') I waited it for 20 minutes. It still no response. I cannot using Ctrl+C to cancel the command. I have to use Ctrl+Z to kill it. I also try it with a txt file, it still no response in a long time. I can load the same file successfully using my laptop (windows 10, python 3.8.5, datasets==2.14.5). I can also make it on another computer (Ubuntu 20.04.5 LTS, python 3.10.13, datasets 2.14.7). It only takes me 1-2 miniutes. Could you give me some suggestions? Thank you. ### Steps to reproduce the bug from datasets import load_dataset dataset = load_dataset('json', data_files='mypath/oaast_rm_zh.json') ### Expected behavior I hope it can load the file successfully. ### Environment info OS: Debian GNU/Linux 10 Python: Python 3.10.13 Pip list: Package Version ------------------------- ------------ accelerate 0.25.0 addict 2.4.0 aiofiles 23.2.1 aiohttp 3.9.1 aiosignal 1.3.1 aliyun-python-sdk-core 2.14.0 aliyun-python-sdk-kms 2.16.2 altair 5.2.0 annotated-types 0.6.0 anyio 3.7.1 async-timeout 4.0.3 attrs 23.1.0 certifi 2023.11.17 cffi 1.16.0 charset-normalizer 3.3.2 click 8.1.7 contourpy 1.2.0 crcmod 1.7 cryptography 41.0.7 cycler 0.12.1 datasets 2.14.7 dill 0.3.7 docstring-parser 0.15 einops 0.7.0 exceptiongroup 1.2.0 fastapi 0.105.0 ffmpy 0.3.1 filelock 3.13.1 fonttools 4.46.0 frozenlist 1.4.1 fsspec 2023.10.0 gast 0.5.4 gradio 3.50.2 gradio_client 0.6.1 h11 0.14.0 httpcore 1.0.2 httpx 0.25.2 huggingface-hub 0.19.4 idna 3.6 importlib-metadata 7.0.0 importlib-resources 6.1.1 jieba 0.42.1 Jinja2 3.1.2 jmespath 0.10.0 joblib 1.3.2 jsonschema 4.20.0 jsonschema-specifications 2023.11.2 kiwisolver 1.4.5 markdown-it-py 3.0.0 MarkupSafe 2.1.3 matplotlib 3.8.2 mdurl 0.1.2 modelscope 1.10.0 mpmath 1.3.0 multidict 6.0.4 multiprocess 0.70.15 networkx 3.2.1 nltk 3.8.1 numpy 1.26.2 nvidia-cublas-cu12 12.1.3.1 nvidia-cuda-cupti-cu12 12.1.105 nvidia-cuda-nvrtc-cu12 12.1.105 nvidia-cuda-runtime-cu12 12.1.105 nvidia-cudnn-cu12 8.9.2.26 nvidia-cufft-cu12 11.0.2.54 nvidia-curand-cu12 10.3.2.106 nvidia-cusolver-cu12 11.4.5.107 nvidia-cusparse-cu12 12.1.0.106 nvidia-nccl-cu12 2.18.1 nvidia-nvjitlink-cu12 12.3.101 nvidia-nvtx-cu12 12.1.105 orjson 3.9.10 oss2 2.18.3 packaging 23.2 pandas 2.1.4 peft 0.7.1 Pillow 10.1.0 pip 23.3.1 platformdirs 4.1.0 protobuf 4.25.1 psutil 5.9.6 pyarrow 14.0.1 pyarrow-hotfix 0.6 pycparser 2.21 pycryptodome 3.19.0 pydantic 2.5.2 pydantic_core 2.14.5 pydub 0.25.1 Pygments 2.17.2 pyparsing 3.1.1 python-dateutil 2.8.2 python-multipart 0.0.6 pytz 2023.3.post1 PyYAML 6.0.1 referencing 0.32.0 regex 2023.10.3 requests 2.31.0 rich 13.7.0 rouge-chinese 1.0.3 rpds-py 0.13.2 safetensors 0.4.1 scipy 1.11.4 semantic-version 2.10.0 sentencepiece 0.1.99 setuptools 68.2.2 shtab 1.6.5 simplejson 3.19.2 six 1.16.0 sniffio 1.3.0 sortedcontainers 2.4.0 sse-starlette 1.8.2 starlette 0.27.0 sympy 1.12 tiktoken 0.5.2 tokenizers 0.15.0 tomli 2.0.1 toolz 0.12.0 torch 2.1.2 tqdm 4.66.1 transformers 4.36.1 triton 2.1.0 trl 0.7.4 typing_extensions 4.9.0 tyro 0.6.0 tzdata 2023.3 urllib3 2.1.0 uvicorn 0.24.0.post1 websockets 11.0.3 wheel 0.41.2 xxhash 3.4.1 yapf 0.40.2 yarl 1.9.4 zipp 3.17.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/18232551?v=4", "events_url": "https://api.github.com/users/yirenpingsheng/events{/privacy}", "followers_url": "https://api.github.com/users/yirenpingsheng/followers", "following_url": "https://api.github.com/users/yirenpingsheng/following{/other_user}", "gists_url": "https://api.github.com/users/yirenpingsheng/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yirenpingsheng", "id": 18232551, "login": "yirenpingsheng", "node_id": "MDQ6VXNlcjE4MjMyNTUx", "organizations_url": "https://api.github.com/users/yirenpingsheng/orgs", "received_events_url": "https://api.github.com/users/yirenpingsheng/received_events", "repos_url": "https://api.github.com/users/yirenpingsheng/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yirenpingsheng/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yirenpingsheng/subscriptions", "type": "User", "url": "https://api.github.com/users/yirenpingsheng" }
https://api.github.com/repos/huggingface/datasets/issues/6505/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6505/timeline
open
false
6,505
null
null
null
false
2,044,541,154
https://api.github.com/repos/huggingface/datasets/issues/6504
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6504/events
[]
null
2023-12-16T06:20:53Z
[]
https://github.com/huggingface/datasets/issues/6504
NONE
completed
null
null
[]
Error Pushing to Hub
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6504/reactions" }
I_kwDODunzps553Tji
null
2023-12-16T01:05:22Z
https://api.github.com/repos/huggingface/datasets/issues/6504/comments
### Describe the bug Error when trying to push a dataset in a special format to hub ### Steps to reproduce the bug ``` import datasets from datasets import Dataset dataset_dict = { "filename": ["apple", "banana"], "token": [[[1,2],[3,4]],[[1,2],[3,4]]], "label": [0, 1], } dataset = Dataset.from_dict(dataset_dict) dataset = dataset.cast_column("token", datasets.features.features.Array2D(shape=(2, 2),dtype="int16")) dataset.push_to_hub("SequenceModel/imagenet_val_256") ``` Error: ``` ... ConstructorError: could not determine a constructor for the tag 'tag:yaml.org,2002:python/tuple' in "<unicode string>", line 8, column 16: shape: !!python/tuple ^ ``` ### Expected behavior Dataset being pushed to hub ### Environment info - `datasets` version: 2.15.0 - Platform: Linux-5.19.0-1022-gcp-x86_64-with-glibc2.35 - Python version: 3.11.5 - `huggingface_hub` version: 0.19.4 - PyArrow version: 14.0.1 - Pandas version: 2.1.4 - `fsspec` version: 2023.10.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/55055083?v=4", "events_url": "https://api.github.com/users/Jiayi-Pan/events{/privacy}", "followers_url": "https://api.github.com/users/Jiayi-Pan/followers", "following_url": "https://api.github.com/users/Jiayi-Pan/following{/other_user}", "gists_url": "https://api.github.com/users/Jiayi-Pan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Jiayi-Pan", "id": 55055083, "login": "Jiayi-Pan", "node_id": "MDQ6VXNlcjU1MDU1MDgz", "organizations_url": "https://api.github.com/users/Jiayi-Pan/orgs", "received_events_url": "https://api.github.com/users/Jiayi-Pan/received_events", "repos_url": "https://api.github.com/users/Jiayi-Pan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Jiayi-Pan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Jiayi-Pan/subscriptions", "type": "User", "url": "https://api.github.com/users/Jiayi-Pan" }
https://api.github.com/repos/huggingface/datasets/issues/6504/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6504/timeline
closed
false
6,504
null
2023-12-16T06:20:53Z
null
false
2,043,847,591
https://api.github.com/repos/huggingface/datasets/issues/6503
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6503/events
[]
null
2023-12-15T14:51:06Z
[]
https://github.com/huggingface/datasets/pull/6503
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6503). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005003 / 0.011353 (-0.006350) | 0.003020 / 0.011008 (-0.007988) | 0.061370 / 0.038508 (0.022862) | 0.050996 / 0.023109 (0.027887) | 0.243434 / 0.275898 (-0.032464) | 0.266317 / 0.323480 (-0.057163) | 0.003888 / 0.007986 (-0.004098) | 0.002607 / 0.004328 (-0.001721) | 0.047541 / 0.004250 (0.043290) | 0.037933 / 0.037052 (0.000881) | 0.259695 / 0.258489 (0.001206) | 0.279374 / 0.293841 (-0.014467) | 0.027258 / 0.128546 (-0.101288) | 0.010184 / 0.075646 (-0.065462) | 0.207412 / 0.419271 (-0.211860) | 0.034978 / 0.043533 (-0.008554) | 0.247871 / 0.255139 (-0.007267) | 0.265273 / 0.283200 (-0.017927) | 0.017886 / 0.141683 (-0.123796) | 1.090451 / 1.452155 (-0.361704) | 1.152034 / 1.492716 (-0.340682) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094383 / 0.018006 (0.076377) | 0.301151 / 0.000490 (0.300661) | 0.000211 / 0.000200 (0.000011) | 0.000049 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018927 / 0.037411 (-0.018484) | 0.062152 / 0.014526 (0.047626) | 0.072177 / 0.176557 (-0.104380) | 0.119792 / 0.737135 (-0.617343) | 0.073333 / 0.296338 (-0.223005) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282671 / 0.215209 (0.067462) | 2.721148 / 2.077655 (0.643494) | 1.472689 / 1.504120 (-0.031431) | 1.355226 / 1.541195 (-0.185969) | 1.375935 / 1.468490 (-0.092556) | 0.562600 / 4.584777 (-4.022177) | 2.364046 / 3.745712 (-1.381666) | 2.714984 / 5.269862 (-2.554878) | 1.738413 / 4.565676 (-2.827263) | 0.062564 / 0.424275 (-0.361711) | 0.004964 / 0.007607 (-0.002643) | 0.341300 / 0.226044 (0.115255) | 3.345187 / 2.268929 (1.076259) | 1.857822 / 55.444624 (-53.586803) | 1.581002 / 6.876477 (-5.295475) | 1.585919 / 2.142072 (-0.556153) | 0.640105 / 4.805227 (-4.165122) | 0.117880 / 6.500664 (-6.382784) | 0.042032 / 0.075469 (-0.033437) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.962701 / 1.841788 (-0.879086) | 11.309251 / 8.074308 (3.234943) | 10.462520 / 10.191392 (0.271128) | 0.127399 / 0.680424 (-0.553025) | 0.014549 / 0.534201 (-0.519652) | 0.297017 / 0.579283 (-0.282266) | 0.266152 / 0.434364 (-0.168212) | 0.349252 / 0.540337 (-0.191085) | 0.457015 / 1.386936 (-0.929921) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005341 / 0.011353 (-0.006012) | 0.003108 / 0.011008 (-0.007900) | 0.048862 / 0.038508 (0.010353) | 0.053354 / 0.023109 (0.030245) | 0.274499 / 0.275898 (-0.001399) | 0.296698 / 0.323480 (-0.026782) | 0.003974 / 0.007986 (-0.004012) | 0.002631 / 0.004328 (-0.001697) | 0.048013 / 0.004250 (0.043762) | 0.040416 / 0.037052 (0.003363) | 0.276581 / 0.258489 (0.018092) | 0.301296 / 0.293841 (0.007455) | 0.029049 / 0.128546 (-0.099497) | 0.010253 / 0.075646 (-0.065393) | 0.057157 / 0.419271 (-0.362114) | 0.031830 / 0.043533 (-0.011703) | 0.274341 / 0.255139 (0.019202) | 0.292583 / 0.283200 (0.009383) | 0.018449 / 0.141683 (-0.123234) | 1.145099 / 1.452155 (-0.307055) | 1.192958 / 1.492716 (-0.299758) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091596 / 0.018006 (0.073590) | 0.300917 / 0.000490 (0.300427) | 0.000225 / 0.000200 (0.000025) | 0.000054 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021657 / 0.037411 (-0.015754) | 0.068464 / 0.014526 (0.053938) | 0.079869 / 0.176557 (-0.096687) | 0.117523 / 0.737135 (-0.619613) | 0.081257 / 0.296338 (-0.215082) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294876 / 0.215209 (0.079667) | 2.879372 / 2.077655 (0.801718) | 1.619887 / 1.504120 (0.115767) | 1.482154 / 1.541195 (-0.059041) | 1.494656 / 1.468490 (0.026166) | 0.558914 / 4.584777 (-4.025862) | 2.420948 / 3.745712 (-1.324765) | 2.728992 / 5.269862 (-2.540869) | 1.722135 / 4.565676 (-2.843542) | 0.062182 / 0.424275 (-0.362093) | 0.004933 / 0.007607 (-0.002674) | 0.342759 / 0.226044 (0.116715) | 3.424083 / 2.268929 (1.155154) | 1.950673 / 55.444624 (-53.493951) | 1.683126 / 6.876477 (-5.193351) | 1.673135 / 2.142072 (-0.468937) | 0.633711 / 4.805227 (-4.171516) | 0.114898 / 6.500664 (-6.385766) | 0.040332 / 0.075469 (-0.035137) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975102 / 1.841788 (-0.866685) | 11.975731 / 8.074308 (3.901423) | 10.961103 / 10.191392 (0.769711) | 0.131152 / 0.680424 (-0.549272) | 0.016268 / 0.534201 (-0.517933) | 0.285031 / 0.579283 (-0.294252) | 0.279556 / 0.434364 (-0.154808) | 0.324183 / 0.540337 (-0.216154) | 0.571404 / 1.386936 (-0.815532) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4f67312956fc15572b6a0ca0dfcc0ceb90fbb794 \"CML watermark\")\n" ]
Fix streaming xnli
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6503/reactions" }
PR_kwDODunzps5iHgZf
{ "diff_url": "https://github.com/huggingface/datasets/pull/6503.diff", "html_url": "https://github.com/huggingface/datasets/pull/6503", "merged_at": "2023-12-15T14:44:46Z", "patch_url": "https://github.com/huggingface/datasets/pull/6503.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6503" }
2023-12-15T14:40:57Z
https://api.github.com/repos/huggingface/datasets/issues/6503/comments
This code was failing ```python In [1]: from datasets import load_dataset In [2]: ...: ds = load_dataset("xnli", "all_languages", split="test", streaming=True) ...: ...: sample_data = next(iter(ds))["premise"] # pick up one data ...: input_text = list(sample_data.values()) ``` ``` File ~/hf/datasets/src/datasets/features/translation.py:104, in TranslationVariableLanguages.encode_example(self, translation_dict) 102 return translation_dict 103 elif self.languages and set(translation_dict) - lang_set: --> 104 raise ValueError( 105 f'Some languages in example ({", ".join(sorted(set(translation_dict) - lang_set))}) are not in valid set ({", ".join(lang_set)}).' 106 ) 108 # Convert dictionary into tuples, splitting out cases where there are 109 # multiple translations for a single language. 110 translation_tuples = [] ValueError: Some languages in example (language, translation) are not in valid set (ur, fr, hi, sw, vi, el, de, th, en, tr, zh, ar, bg, ru, es). ``` because in streaming mode we expect features encode methods to be no-ops if the example is already encoded. I fixed `TranslationVariableLanguages` to account for that
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6503/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6503/timeline
closed
false
6,503
null
2023-12-15T14:44:47Z
null
true
2,043,771,731
https://api.github.com/repos/huggingface/datasets/issues/6502
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6502/events
[]
null
2023-12-15T15:04:33Z
[]
https://github.com/huggingface/datasets/pull/6502
COLLABORATOR
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6502). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005472 / 0.011353 (-0.005881) | 0.003715 / 0.011008 (-0.007293) | 0.063257 / 0.038508 (0.024749) | 0.060683 / 0.023109 (0.037574) | 0.250885 / 0.275898 (-0.025013) | 0.271685 / 0.323480 (-0.051795) | 0.003051 / 0.007986 (-0.004934) | 0.002799 / 0.004328 (-0.001530) | 0.049113 / 0.004250 (0.044863) | 0.038965 / 0.037052 (0.001912) | 0.252688 / 0.258489 (-0.005801) | 0.282536 / 0.293841 (-0.011305) | 0.028722 / 0.128546 (-0.099824) | 0.010586 / 0.075646 (-0.065060) | 0.205145 / 0.419271 (-0.214127) | 0.036996 / 0.043533 (-0.006537) | 0.248874 / 0.255139 (-0.006265) | 0.266148 / 0.283200 (-0.017051) | 0.018540 / 0.141683 (-0.123143) | 1.120216 / 1.452155 (-0.331938) | 1.191072 / 1.492716 (-0.301644) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095721 / 0.018006 (0.077714) | 0.313401 / 0.000490 (0.312911) | 0.000234 / 0.000200 (0.000034) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018604 / 0.037411 (-0.018807) | 0.061571 / 0.014526 (0.047045) | 0.075343 / 0.176557 (-0.101213) | 0.121272 / 0.737135 (-0.615864) | 0.076448 / 0.296338 (-0.219890) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286885 / 0.215209 (0.071676) | 2.809100 / 2.077655 (0.731445) | 1.485365 / 1.504120 (-0.018755) | 1.367672 / 1.541195 (-0.173523) | 1.423570 / 1.468490 (-0.044920) | 0.571063 / 4.584777 (-4.013714) | 2.385248 / 3.745712 (-1.360464) | 2.855251 / 5.269862 (-2.414610) | 1.799371 / 4.565676 (-2.766306) | 0.063491 / 0.424275 (-0.360784) | 0.004942 / 0.007607 (-0.002665) | 0.346181 / 0.226044 (0.120137) | 3.388123 / 2.268929 (1.119195) | 1.819093 / 55.444624 (-53.625532) | 1.552998 / 6.876477 (-5.323479) | 1.627930 / 2.142072 (-0.514143) | 0.653438 / 4.805227 (-4.151789) | 0.123831 / 6.500664 (-6.376833) | 0.043340 / 0.075469 (-0.032129) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.952167 / 1.841788 (-0.889621) | 12.149515 / 8.074308 (4.075207) | 10.665085 / 10.191392 (0.473693) | 0.127768 / 0.680424 (-0.552656) | 0.014022 / 0.534201 (-0.520179) | 0.285959 / 0.579283 (-0.293324) | 0.269727 / 0.434364 (-0.164637) | 0.336646 / 0.540337 (-0.203692) | 0.442932 / 1.386936 (-0.944005) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005351 / 0.011353 (-0.006002) | 0.003561 / 0.011008 (-0.007448) | 0.048890 / 0.038508 (0.010382) | 0.054093 / 0.023109 (0.030984) | 0.274397 / 0.275898 (-0.001501) | 0.296980 / 0.323480 (-0.026500) | 0.004126 / 0.007986 (-0.003860) | 0.002751 / 0.004328 (-0.001578) | 0.049131 / 0.004250 (0.044880) | 0.040769 / 0.037052 (0.003716) | 0.279147 / 0.258489 (0.020658) | 0.302014 / 0.293841 (0.008173) | 0.029847 / 0.128546 (-0.098699) | 0.010710 / 0.075646 (-0.064936) | 0.057626 / 0.419271 (-0.361645) | 0.032801 / 0.043533 (-0.010732) | 0.272698 / 0.255139 (0.017559) | 0.289238 / 0.283200 (0.006039) | 0.017876 / 0.141683 (-0.123807) | 1.152059 / 1.452155 (-0.300096) | 1.212289 / 1.492716 (-0.280427) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092914 / 0.018006 (0.074908) | 0.303092 / 0.000490 (0.302603) | 0.000214 / 0.000200 (0.000014) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022074 / 0.037411 (-0.015337) | 0.070109 / 0.014526 (0.055583) | 0.083360 / 0.176557 (-0.093196) | 0.122445 / 0.737135 (-0.614690) | 0.083625 / 0.296338 (-0.212714) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282788 / 0.215209 (0.067579) | 2.789229 / 2.077655 (0.711574) | 1.571077 / 1.504120 (0.066957) | 1.452627 / 1.541195 (-0.088567) | 1.493176 / 1.468490 (0.024686) | 0.556892 / 4.584777 (-4.027885) | 2.442771 / 3.745712 (-1.302941) | 2.826316 / 5.269862 (-2.443545) | 1.758276 / 4.565676 (-2.807401) | 0.063039 / 0.424275 (-0.361236) | 0.004928 / 0.007607 (-0.002679) | 0.338247 / 0.226044 (0.112202) | 3.346344 / 2.268929 (1.077416) | 1.952520 / 55.444624 (-53.492104) | 1.664520 / 6.876477 (-5.211956) | 1.701528 / 2.142072 (-0.440544) | 0.634746 / 4.805227 (-4.170481) | 0.116879 / 6.500664 (-6.383786) | 0.040990 / 0.075469 (-0.034479) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969521 / 1.841788 (-0.872267) | 12.431395 / 8.074308 (4.357087) | 10.907503 / 10.191392 (0.716111) | 0.131028 / 0.680424 (-0.549396) | 0.015239 / 0.534201 (-0.518962) | 0.290793 / 0.579283 (-0.288490) | 0.275072 / 0.434364 (-0.159292) | 0.331036 / 0.540337 (-0.209301) | 0.567858 / 1.386936 (-0.819078) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#092118fc00f7dd718ab3643739d7b23ff16c9eff \"CML watermark\")\n" ]
Pickle support for `torch.Generator` objects
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6502/reactions" }
PR_kwDODunzps5iHPt-
{ "diff_url": "https://github.com/huggingface/datasets/pull/6502.diff", "html_url": "https://github.com/huggingface/datasets/pull/6502", "merged_at": "2023-12-15T14:58:22Z", "patch_url": "https://github.com/huggingface/datasets/pull/6502.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6502" }
2023-12-15T13:55:12Z
https://api.github.com/repos/huggingface/datasets/issues/6502/comments
Fix for https://discuss.huggingface.co/t/caching-a-dataset-processed-with-randomness/65616
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
https://api.github.com/repos/huggingface/datasets/issues/6502/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6502/timeline
closed
false
6,502
null
2023-12-15T14:58:22Z
null
true
2,043,377,240
https://api.github.com/repos/huggingface/datasets/issues/6501
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6501/events
[]
null
2023-12-15T10:10:21Z
[]
https://github.com/huggingface/datasets/issues/6501
NONE
null
null
null
[]
OverflowError: value too large to convert to int32_t
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6501/reactions" }
I_kwDODunzps55y3ZY
null
2023-12-15T10:10:21Z
https://api.github.com/repos/huggingface/datasets/issues/6501/comments
### Describe the bug ![image](https://github.com/huggingface/datasets/assets/47747764/f58044fb-ddda-48b6-ba68-7bbfef781630) ### Steps to reproduce the bug just loading datasets ### Expected behavior how can I fix it ### Environment info pip install /mnt/cluster/zhangfan/study_info/LLaMA-Factory/peft-0.6.0-py3-none-any.whl pip install huggingface_hub-0.19.4-py3-none-any.whl tokenizers-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl transformers-4.36.1-py3-none-any.whl pyarrow_hotfix-0.6-py3-none-any.whl datasets-2.15.0-py3-none-any.whl tyro-0.5.18-py3-none-any.whl trl-0.7.4-py3-none-any.whl done
{ "avatar_url": "https://avatars.githubusercontent.com/u/47747764?v=4", "events_url": "https://api.github.com/users/zhangfan-algo/events{/privacy}", "followers_url": "https://api.github.com/users/zhangfan-algo/followers", "following_url": "https://api.github.com/users/zhangfan-algo/following{/other_user}", "gists_url": "https://api.github.com/users/zhangfan-algo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/zhangfan-algo", "id": 47747764, "login": "zhangfan-algo", "node_id": "MDQ6VXNlcjQ3NzQ3NzY0", "organizations_url": "https://api.github.com/users/zhangfan-algo/orgs", "received_events_url": "https://api.github.com/users/zhangfan-algo/received_events", "repos_url": "https://api.github.com/users/zhangfan-algo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/zhangfan-algo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zhangfan-algo/subscriptions", "type": "User", "url": "https://api.github.com/users/zhangfan-algo" }
https://api.github.com/repos/huggingface/datasets/issues/6501/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6501/timeline
open
false
6,501
null
null
null
false
2,043,258,633
https://api.github.com/repos/huggingface/datasets/issues/6500
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6500/events
[]
null
2023-12-18T11:56:11Z
[]
https://github.com/huggingface/datasets/pull/6500
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6500). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "This is ready for review @huggingface/datasets. ", "Also what if the config is being overwritten and it was the default config and the user doesn't pass `set_default` ?\r\nI'd expect the config to keep being the default one but lmk what you think", "How can you unset a config as the default one? In the case you mentioned, I would expect the config not being the default one.", "Maybe by passing `set_default=False` ? (set_default can be None by default)", "I think that way we are unnecessarily complicating the logic of `push_to_hub` and as I told you, I would expect the contrary: the result of calling `push_to_hub` with a determined set of arguments should always be the same, independently of previous calls and the current state of the config on the Hub. Push to hub should be somehow stateless in that sense, and IMO the user expects that the push overwrites previous config if already present on the Hub. I find very confusing making it to partially update the config on the Hub.", "That makes sense, having it stateless is simpler and no need to do something too fancy indeed", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005329 / 0.011353 (-0.006024) | 0.002998 / 0.011008 (-0.008010) | 0.063756 / 0.038508 (0.025248) | 0.051713 / 0.023109 (0.028603) | 0.248135 / 0.275898 (-0.027763) | 0.269136 / 0.323480 (-0.054344) | 0.002970 / 0.007986 (-0.005015) | 0.002566 / 0.004328 (-0.001763) | 0.048110 / 0.004250 (0.043859) | 0.038415 / 0.037052 (0.001363) | 0.254012 / 0.258489 (-0.004477) | 0.281915 / 0.293841 (-0.011926) | 0.027503 / 0.128546 (-0.101043) | 0.010370 / 0.075646 (-0.065276) | 0.208965 / 0.419271 (-0.210306) | 0.035508 / 0.043533 (-0.008024) | 0.249116 / 0.255139 (-0.006023) | 0.266350 / 0.283200 (-0.016850) | 0.018440 / 0.141683 (-0.123243) | 1.101089 / 1.452155 (-0.351066) | 1.164870 / 1.492716 (-0.327847) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090909 / 0.018006 (0.072903) | 0.298041 / 0.000490 (0.297551) | 0.000211 / 0.000200 (0.000012) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018137 / 0.037411 (-0.019275) | 0.059574 / 0.014526 (0.045048) | 0.071754 / 0.176557 (-0.104803) | 0.117980 / 0.737135 (-0.619155) | 0.072903 / 0.296338 (-0.223435) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282844 / 0.215209 (0.067635) | 2.740916 / 2.077655 (0.663261) | 1.444546 / 1.504120 (-0.059574) | 1.321904 / 1.541195 (-0.219291) | 1.356957 / 1.468490 (-0.111533) | 0.568389 / 4.584777 (-4.016388) | 2.354042 / 3.745712 (-1.391671) | 2.719427 / 5.269862 (-2.550435) | 1.719616 / 4.565676 (-2.846061) | 0.062537 / 0.424275 (-0.361738) | 0.004915 / 0.007607 (-0.002692) | 0.334716 / 0.226044 (0.108672) | 3.299499 / 2.268929 (1.030571) | 1.814629 / 55.444624 (-53.629996) | 1.515245 / 6.876477 (-5.361232) | 1.553085 / 2.142072 (-0.588987) | 0.643859 / 4.805227 (-4.161368) | 0.116650 / 6.500664 (-6.384014) | 0.041432 / 0.075469 (-0.034037) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.948227 / 1.841788 (-0.893561) | 11.331103 / 8.074308 (3.256795) | 10.209658 / 10.191392 (0.018266) | 0.126721 / 0.680424 (-0.553703) | 0.013638 / 0.534201 (-0.520563) | 0.282540 / 0.579283 (-0.296743) | 0.262635 / 0.434364 (-0.171729) | 0.335357 / 0.540337 (-0.204981) | 0.441798 / 1.386936 (-0.945138) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005200 / 0.011353 (-0.006153) | 0.003012 / 0.011008 (-0.007996) | 0.047571 / 0.038508 (0.009063) | 0.055069 / 0.023109 (0.031959) | 0.271150 / 0.275898 (-0.004748) | 0.294957 / 0.323480 (-0.028523) | 0.003922 / 0.007986 (-0.004064) | 0.002627 / 0.004328 (-0.001702) | 0.047777 / 0.004250 (0.043527) | 0.039507 / 0.037052 (0.002454) | 0.276314 / 0.258489 (0.017825) | 0.300436 / 0.293841 (0.006595) | 0.028951 / 0.128546 (-0.099595) | 0.010583 / 0.075646 (-0.065063) | 0.056535 / 0.419271 (-0.362737) | 0.032654 / 0.043533 (-0.010879) | 0.272945 / 0.255139 (0.017806) | 0.291909 / 0.283200 (0.008709) | 0.017545 / 0.141683 (-0.124138) | 1.195897 / 1.452155 (-0.256258) | 1.171855 / 1.492716 (-0.320861) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091919 / 0.018006 (0.073913) | 0.299297 / 0.000490 (0.298807) | 0.000225 / 0.000200 (0.000025) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022271 / 0.037411 (-0.015140) | 0.068903 / 0.014526 (0.054377) | 0.083767 / 0.176557 (-0.092790) | 0.120239 / 0.737135 (-0.616896) | 0.083448 / 0.296338 (-0.212891) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295353 / 0.215209 (0.080144) | 2.911452 / 2.077655 (0.833798) | 1.577941 / 1.504120 (0.073821) | 1.454514 / 1.541195 (-0.086681) | 1.459575 / 1.468490 (-0.008915) | 0.572475 / 4.584777 (-4.012302) | 2.443634 / 3.745712 (-1.302078) | 2.801171 / 5.269862 (-2.468691) | 1.724214 / 4.565676 (-2.841462) | 0.063539 / 0.424275 (-0.360736) | 0.004939 / 0.007607 (-0.002668) | 0.347705 / 0.226044 (0.121660) | 3.489591 / 2.268929 (1.220663) | 1.944952 / 55.444624 (-53.499672) | 1.652810 / 6.876477 (-5.223667) | 1.656361 / 2.142072 (-0.485712) | 0.647052 / 4.805227 (-4.158176) | 0.117286 / 6.500664 (-6.383379) | 0.040979 / 0.075469 (-0.034490) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.971761 / 1.841788 (-0.870027) | 11.770547 / 8.074308 (3.696239) | 10.402502 / 10.191392 (0.211110) | 0.128280 / 0.680424 (-0.552144) | 0.015160 / 0.534201 (-0.519041) | 0.286706 / 0.579283 (-0.292578) | 0.274539 / 0.434364 (-0.159825) | 0.324591 / 0.540337 (-0.215747) | 0.573846 / 1.386936 (-0.813090) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3329be80b9abfe83285ef940a590a4e9f68835a3 \"CML watermark\")\n" ]
Enable setting config as default when push_to_hub
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6500/reactions" }
PR_kwDODunzps5iFc6e
{ "diff_url": "https://github.com/huggingface/datasets/pull/6500.diff", "html_url": "https://github.com/huggingface/datasets/pull/6500", "merged_at": "2023-12-18T11:50:03Z", "patch_url": "https://github.com/huggingface/datasets/pull/6500.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6500" }
2023-12-15T09:17:41Z
https://api.github.com/repos/huggingface/datasets/issues/6500/comments
Fix #6497.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
https://api.github.com/repos/huggingface/datasets/issues/6500/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6500/timeline
closed
false
6,500
null
2023-12-18T11:50:03Z
null
true
2,043,166,976
https://api.github.com/repos/huggingface/datasets/issues/6499
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6499/events
[]
null
2023-12-15T11:48:47Z
[]
https://github.com/huggingface/datasets/pull/6499
CONTRIBUTOR
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6499). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005701 / 0.011353 (-0.005652) | 0.003546 / 0.011008 (-0.007463) | 0.063335 / 0.038508 (0.024827) | 0.051987 / 0.023109 (0.028878) | 0.240429 / 0.275898 (-0.035469) | 0.260659 / 0.323480 (-0.062820) | 0.003866 / 0.007986 (-0.004120) | 0.002617 / 0.004328 (-0.001712) | 0.048653 / 0.004250 (0.044403) | 0.038176 / 0.037052 (0.001124) | 0.245496 / 0.258489 (-0.012993) | 0.277141 / 0.293841 (-0.016700) | 0.027886 / 0.128546 (-0.100660) | 0.010738 / 0.075646 (-0.064908) | 0.211255 / 0.419271 (-0.208016) | 0.045205 / 0.043533 (0.001672) | 0.243062 / 0.255139 (-0.012077) | 0.262877 / 0.283200 (-0.020323) | 0.023426 / 0.141683 (-0.118257) | 1.092247 / 1.452155 (-0.359908) | 1.161074 / 1.492716 (-0.331642) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090488 / 0.018006 (0.072482) | 0.300993 / 0.000490 (0.300504) | 0.000212 / 0.000200 (0.000012) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018543 / 0.037411 (-0.018868) | 0.061418 / 0.014526 (0.046892) | 0.073242 / 0.176557 (-0.103314) | 0.120757 / 0.737135 (-0.616378) | 0.073967 / 0.296338 (-0.222372) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282341 / 0.215209 (0.067132) | 2.741106 / 2.077655 (0.663451) | 1.416573 / 1.504120 (-0.087547) | 1.287904 / 1.541195 (-0.253291) | 1.309425 / 1.468490 (-0.159065) | 0.582592 / 4.584777 (-4.002184) | 2.404866 / 3.745712 (-1.340846) | 2.895397 / 5.269862 (-2.374464) | 1.799864 / 4.565676 (-2.765812) | 0.064386 / 0.424275 (-0.359889) | 0.004920 / 0.007607 (-0.002687) | 0.330879 / 0.226044 (0.104835) | 3.287064 / 2.268929 (1.018135) | 1.765169 / 55.444624 (-53.679456) | 1.490442 / 6.876477 (-5.386034) | 1.530960 / 2.142072 (-0.611113) | 0.655939 / 4.805227 (-4.149288) | 0.118529 / 6.500664 (-6.382135) | 0.042350 / 0.075469 (-0.033119) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.959027 / 1.841788 (-0.882761) | 11.911284 / 8.074308 (3.836976) | 10.576898 / 10.191392 (0.385506) | 0.141038 / 0.680424 (-0.539386) | 0.014184 / 0.534201 (-0.520017) | 0.305335 / 0.579283 (-0.273948) | 0.267531 / 0.434364 (-0.166832) | 0.353362 / 0.540337 (-0.186975) | 0.466258 / 1.386936 (-0.920678) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005194 / 0.011353 (-0.006159) | 0.003561 / 0.011008 (-0.007448) | 0.049181 / 0.038508 (0.010673) | 0.056664 / 0.023109 (0.033555) | 0.267142 / 0.275898 (-0.008756) | 0.291871 / 0.323480 (-0.031609) | 0.003996 / 0.007986 (-0.003990) | 0.003147 / 0.004328 (-0.001181) | 0.048527 / 0.004250 (0.044276) | 0.040239 / 0.037052 (0.003187) | 0.269728 / 0.258489 (0.011239) | 0.295531 / 0.293841 (0.001690) | 0.030316 / 0.128546 (-0.098231) | 0.010666 / 0.075646 (-0.064981) | 0.058176 / 0.419271 (-0.361095) | 0.033218 / 0.043533 (-0.010315) | 0.265383 / 0.255139 (0.010244) | 0.285102 / 0.283200 (0.001902) | 0.018295 / 0.141683 (-0.123388) | 1.117830 / 1.452155 (-0.334325) | 1.196919 / 1.492716 (-0.295798) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.088547 / 0.018006 (0.070541) | 0.293220 / 0.000490 (0.292730) | 0.000211 / 0.000200 (0.000011) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022060 / 0.037411 (-0.015351) | 0.071973 / 0.014526 (0.057448) | 0.081721 / 0.176557 (-0.094836) | 0.119990 / 0.737135 (-0.617145) | 0.081639 / 0.296338 (-0.214700) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293712 / 0.215209 (0.078503) | 2.872986 / 2.077655 (0.795331) | 1.568944 / 1.504120 (0.064824) | 1.434555 / 1.541195 (-0.106639) | 1.457747 / 1.468490 (-0.010743) | 0.559296 / 4.584777 (-4.025481) | 2.471845 / 3.745712 (-1.273867) | 2.840916 / 5.269862 (-2.428946) | 1.754909 / 4.565676 (-2.810768) | 0.064585 / 0.424275 (-0.359690) | 0.004992 / 0.007607 (-0.002615) | 0.349149 / 0.226044 (0.123104) | 3.385906 / 2.268929 (1.116977) | 1.940644 / 55.444624 (-53.503980) | 1.638300 / 6.876477 (-5.238177) | 1.649939 / 2.142072 (-0.492133) | 0.645680 / 4.805227 (-4.159547) | 0.118080 / 6.500664 (-6.382584) | 0.040643 / 0.075469 (-0.034826) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969965 / 1.841788 (-0.871822) | 12.099766 / 8.074308 (4.025457) | 10.550650 / 10.191392 (0.359258) | 0.131736 / 0.680424 (-0.548688) | 0.015483 / 0.534201 (-0.518718) | 0.289231 / 0.579283 (-0.290052) | 0.287505 / 0.434364 (-0.146858) | 0.327326 / 0.540337 (-0.213011) | 0.570364 / 1.386936 (-0.816572) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#533c38cef16111e9e8154eeb76c207f1f4936ddf \"CML watermark\")\n" ]
docs: add reference Git over SSH
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6499/reactions" }
PR_kwDODunzps5iFIUF
{ "diff_url": "https://github.com/huggingface/datasets/pull/6499.diff", "html_url": "https://github.com/huggingface/datasets/pull/6499", "merged_at": "2023-12-15T11:42:38Z", "patch_url": "https://github.com/huggingface/datasets/pull/6499.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6499" }
2023-12-15T08:38:31Z
https://api.github.com/repos/huggingface/datasets/issues/6499/comments
see https://discuss.huggingface.co/t/update-datasets-getting-started-to-new-git-security/65893
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
https://api.github.com/repos/huggingface/datasets/issues/6499/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6499/timeline
closed
false
6,499
null
2023-12-15T11:42:38Z
null
true
2,042,075,969
https://api.github.com/repos/huggingface/datasets/issues/6498
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6498/events
[]
null
2023-12-15T13:16:56Z
[]
https://github.com/huggingface/datasets/pull/6498
MEMBER
null
false
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6498). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "> I was just thinking: what if the user does not pass a config name and the dataset has only a config with a name different from \"default\"?\r\n\r\nYou mean if there is a DEFAULT_CONFIG_NAME defined in the script but the dataset only has one configuration ? We can't easily get the number of configs without running the python code so I don't think we can support detect this case\r\n", "Most datasets with a script don't define DEFAULT_CONFIG_NAME if there is only one configuration anyway.\r\n\r\nSo there is no issue e.g. for `squad`", "> I was trying to mean the case where DEFAULT_CONFIG_NAME is None but there is only a single config in BUILDER_CONFIGS, with a name different from \"default\".\r\n\r\nIn this case we can detect if \"DEFAULT_CONFIG_NAME\" is not mentioned and use the Parquet export. If it is mentioned (and maybe it is set to None or to the single config) I consider that it may have multiple configs and fall back on using the script", "... but the user does not pass the config name.", "In this case we load the single configuration (this is how a DatasetBuilder works)", "see \r\n\r\nhttps://github.com/huggingface/datasets/blob/2feaa589de86dd85941301fc8c3fa091731a67c0/src/datasets/builder.py#L532-L532", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005122 / 0.011353 (-0.006231) | 0.003565 / 0.011008 (-0.007443) | 0.062706 / 0.038508 (0.024198) | 0.049314 / 0.023109 (0.026205) | 0.247325 / 0.275898 (-0.028573) | 0.269788 / 0.323480 (-0.053692) | 0.003895 / 0.007986 (-0.004090) | 0.002788 / 0.004328 (-0.001540) | 0.048615 / 0.004250 (0.044365) | 0.037591 / 0.037052 (0.000539) | 0.253495 / 0.258489 (-0.004994) | 0.281200 / 0.293841 (-0.012641) | 0.027712 / 0.128546 (-0.100834) | 0.010901 / 0.075646 (-0.064745) | 0.205577 / 0.419271 (-0.213694) | 0.035989 / 0.043533 (-0.007544) | 0.252978 / 0.255139 (-0.002161) | 0.268042 / 0.283200 (-0.015157) | 0.017857 / 0.141683 (-0.123826) | 1.096633 / 1.452155 (-0.355521) | 1.147026 / 1.492716 (-0.345691) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095609 / 0.018006 (0.077603) | 0.311941 / 0.000490 (0.311451) | 0.000211 / 0.000200 (0.000011) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019042 / 0.037411 (-0.018369) | 0.060549 / 0.014526 (0.046023) | 0.074761 / 0.176557 (-0.101796) | 0.121729 / 0.737135 (-0.615406) | 0.075661 / 0.296338 (-0.220677) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284774 / 0.215209 (0.069565) | 2.764576 / 2.077655 (0.686921) | 1.489926 / 1.504120 (-0.014194) | 1.387276 / 1.541195 (-0.153919) | 1.400931 / 1.468490 (-0.067559) | 0.555623 / 4.584777 (-4.029154) | 2.409488 / 3.745712 (-1.336224) | 2.781053 / 5.269862 (-2.488808) | 1.750472 / 4.565676 (-2.815204) | 0.062232 / 0.424275 (-0.362043) | 0.004974 / 0.007607 (-0.002633) | 0.336324 / 0.226044 (0.110280) | 3.286619 / 2.268929 (1.017691) | 1.825070 / 55.444624 (-53.619554) | 1.537993 / 6.876477 (-5.338484) | 1.586520 / 2.142072 (-0.555553) | 0.640090 / 4.805227 (-4.165138) | 0.117637 / 6.500664 (-6.383027) | 0.042318 / 0.075469 (-0.033151) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.964051 / 1.841788 (-0.877736) | 11.706259 / 8.074308 (3.631951) | 10.752311 / 10.191392 (0.560919) | 0.128117 / 0.680424 (-0.552307) | 0.014001 / 0.534201 (-0.520200) | 0.286255 / 0.579283 (-0.293028) | 0.263810 / 0.434364 (-0.170554) | 0.329347 / 0.540337 (-0.210991) | 0.437349 / 1.386936 (-0.949587) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005303 / 0.011353 (-0.006050) | 0.003586 / 0.011008 (-0.007422) | 0.049339 / 0.038508 (0.010831) | 0.051287 / 0.023109 (0.028178) | 0.274397 / 0.275898 (-0.001501) | 0.292977 / 0.323480 (-0.030503) | 0.004029 / 0.007986 (-0.003957) | 0.002727 / 0.004328 (-0.001602) | 0.048779 / 0.004250 (0.044528) | 0.040075 / 0.037052 (0.003022) | 0.277676 / 0.258489 (0.019187) | 0.301963 / 0.293841 (0.008122) | 0.029340 / 0.128546 (-0.099206) | 0.010714 / 0.075646 (-0.064932) | 0.057253 / 0.419271 (-0.362018) | 0.033426 / 0.043533 (-0.010107) | 0.276673 / 0.255139 (0.021534) | 0.291053 / 0.283200 (0.007854) | 0.017660 / 0.141683 (-0.124023) | 1.122354 / 1.452155 (-0.329800) | 1.180381 / 1.492716 (-0.312335) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091903 / 0.018006 (0.073897) | 0.300720 / 0.000490 (0.300231) | 0.000288 / 0.000200 (0.000088) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021521 / 0.037411 (-0.015890) | 0.068233 / 0.014526 (0.053707) | 0.081245 / 0.176557 (-0.095312) | 0.119996 / 0.737135 (-0.617139) | 0.082483 / 0.296338 (-0.213856) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.302776 / 0.215209 (0.087567) | 2.950776 / 2.077655 (0.873122) | 1.631032 / 1.504120 (0.126912) | 1.502021 / 1.541195 (-0.039174) | 1.514213 / 1.468490 (0.045723) | 0.578246 / 4.584777 (-4.006531) | 2.443768 / 3.745712 (-1.301944) | 2.827811 / 5.269862 (-2.442051) | 1.771529 / 4.565676 (-2.794148) | 0.064479 / 0.424275 (-0.359797) | 0.005061 / 0.007607 (-0.002546) | 0.350966 / 0.226044 (0.124922) | 3.458616 / 2.268929 (1.189687) | 1.967917 / 55.444624 (-53.476707) | 1.704661 / 6.876477 (-5.171815) | 1.698895 / 2.142072 (-0.443178) | 0.663259 / 4.805227 (-4.141968) | 0.122140 / 6.500664 (-6.378525) | 0.041099 / 0.075469 (-0.034371) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.972080 / 1.841788 (-0.869708) | 12.123286 / 8.074308 (4.048978) | 10.819854 / 10.191392 (0.628462) | 0.131486 / 0.680424 (-0.548938) | 0.015785 / 0.534201 (-0.518416) | 0.290048 / 0.579283 (-0.289235) | 0.277822 / 0.434364 (-0.156542) | 0.325949 / 0.540337 (-0.214388) | 0.577681 / 1.386936 (-0.809255) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#30f6a2d9af183eba4501f0b8d90e9200bdca6bb1 \"CML watermark\")\n" ]
Fallback on dataset script if user wants to load default config
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6498/reactions" }
PR_kwDODunzps5iBcFj
{ "diff_url": "https://github.com/huggingface/datasets/pull/6498.diff", "html_url": "https://github.com/huggingface/datasets/pull/6498", "merged_at": "2023-12-15T13:10:48Z", "patch_url": "https://github.com/huggingface/datasets/pull/6498.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6498" }
2023-12-14T16:46:01Z
https://api.github.com/repos/huggingface/datasets/issues/6498/comments
Right now this code is failing on `main`: ```python load_dataset("openbookqa") ``` This is because it tries to load the dataset from the Parquet export but the dataset has multiple configurations and the Parquet export doesn't know which one is the default one. I fixed this by simply falling back on using the dataset script (which tells the user to pass `trust_remote_code=True`): ```python load_dataset("openbookqa", trust_remote_code=True) ``` Note that if the user happened to specify a config name I don't fall back on the script since we can use the Parquet export in this case (no need to know which config is the default) ```python load_dataset("openbookqa", "main") ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
https://api.github.com/repos/huggingface/datasets/issues/6498/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6498/timeline
closed
false
6,498
null
2023-12-15T13:10:48Z
null
true
2,041,994,274
https://api.github.com/repos/huggingface/datasets/issues/6497
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6497/events
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
null
2023-12-18T11:50:04Z
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
https://github.com/huggingface/datasets/issues/6497
MEMBER
completed
null
null
[]
Support setting a default config name in push_to_hub
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6497/reactions" }
I_kwDODunzps55tlwi
null
2023-12-14T15:59:03Z
https://api.github.com/repos/huggingface/datasets/issues/6497/comments
In order to convert script-datasets to no-script datasets, we need to support setting a default config name for those scripts that set one.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
https://api.github.com/repos/huggingface/datasets/issues/6497/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6497/timeline
closed
false
6,497
null
2023-12-18T11:50:04Z
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
false
2,041,589,386
https://api.github.com/repos/huggingface/datasets/issues/6496
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6496/events
[]
null
2023-12-14T12:22:21Z
[]
https://github.com/huggingface/datasets/issues/6496
NONE
null
null
null
[ "I transferred from datasets-server, since the issue is more about `datasets` and the integration with `huggingface_hub`." ]
Error when writing a dataset to HF Hub: A commit has happened since. Please refresh and try again.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6496/reactions" }
I_kwDODunzps55sC6K
null
2023-12-14T11:24:54Z
https://api.github.com/repos/huggingface/datasets/issues/6496/comments
**Describe the bug** Getting a `412 Client Error: Precondition Failed` when trying to write a dataset to the HF hub. ``` huggingface_hub.utils._errors.HfHubHTTPError: 412 Client Error: Precondition Failed for url: https://huggingface.co/api/datasets/GLorr/test-dask/commit/main (Request ID: Root=1-657ae26f-3bd92bf861bb254b2cc0826c;50a09ab7-9347-406a-ba49-69f98abee9cc) A commit has happened since. Please refresh and try again. ``` **Steps to reproduce the bug** This is a minimal reproducer: ``` import dask.dataframe as dd import pandas as pd import random import os import huggingface_hub import datasets huggingface_hub.login(token=os.getenv("HF_TOKEN")) data = {"number": [random.randint(0,10) for _ in range(1000)]} df = pd.DataFrame.from_dict(data) dataframe = dd.from_pandas(df, npartitions=1) dataframe = dataframe.repartition(npartitions=3) schema = datasets.Features({"number": datasets.Value("int64")}).arrow_schema repo_id = "GLorr/test-dask" repo_path = f"hf://datasets/{repo_id}" huggingface_hub.create_repo(repo_id=repo_id, repo_type="dataset", exist_ok=True) dd.to_parquet(dataframe, path=f"{repo_path}/data", schema=schema) ``` **Expected behavior** Would expect to write to the hub without any problem. **Environment info** ``` datasets==2.15.0 huggingface-hub==0.19.4 ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/35808396?v=4", "events_url": "https://api.github.com/users/GeorgesLorre/events{/privacy}", "followers_url": "https://api.github.com/users/GeorgesLorre/followers", "following_url": "https://api.github.com/users/GeorgesLorre/following{/other_user}", "gists_url": "https://api.github.com/users/GeorgesLorre/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/GeorgesLorre", "id": 35808396, "login": "GeorgesLorre", "node_id": "MDQ6VXNlcjM1ODA4Mzk2", "organizations_url": "https://api.github.com/users/GeorgesLorre/orgs", "received_events_url": "https://api.github.com/users/GeorgesLorre/received_events", "repos_url": "https://api.github.com/users/GeorgesLorre/repos", "site_admin": false, "starred_url": "https://api.github.com/users/GeorgesLorre/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/GeorgesLorre/subscriptions", "type": "User", "url": "https://api.github.com/users/GeorgesLorre" }
https://api.github.com/repos/huggingface/datasets/issues/6496/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6496/timeline
open
false
6,496
null
null
null
false